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Abstract

Due to the environmental benefits of timber as a building material, there has in the last
decade or so, been a significant rise in the popularity and interest in timber for construction
of tall buildings. One popular timber product in modern projects is Cross laminated
timber, CLT. This is a relatively new engineered wood product, and the number of tall CLT-
buildings are very limited. Consequently, the dynamic properties of CLT-structures and

how to model the buildings accurately and practically is not thoroughly understood.

The main goal of this thesis is therefore to investigate the modal properties of two CLT-
buildings in Tromsg by using an operational modal analysis (OMA) -procedure called
frequency domain decomposition (FDD). Acceleration data from the two buildings taken
in the spring of 2021 was made available, and from this, the natural frequencies, mode

shapes and damping ratios are found.

In addition to this, a parametric finite element model was developed in Abaqus, by using
discrete fasteners called connectors to model the joints between the CLT-plates. The
stiffness of the connections are controlled by two global parameters: axial stiffness ratio
(ASR) and sliding stiffness ratio (SSR). Damping in the connections is implemented by
defining two global viscous damping values, similar to the stiffness parameters, where one
covers damping in the axial deflection of connections, and the other covers damping in the

sliding of connections.

A parameter optimization of the models is performed to investigate the performance and
validity of the modeling scheme. Each model is run with different combinations of ASR and
SSR, in order to match the results from the data analysis as closely as possible. This led
to the conclusion that the modeling approach is able to reproduce the desired frequencies
for both buildings. However, the use of the method to predict the dynamic properties of a
building is more uncertain, because the interchange of the optimized stiffness ratios of the

two buildings does not yield very good results.

1
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Sammendrag

Som fglge av miljofordelene ved & bygge med trevirke har det de siste ti arene veert en
betydelig gkning interessen for a bygge hgyhus i tre. Et av materialene som har gjort
det mulig & bygge sapass hgyt, er krysslaminert trevirke (CLT). Dette er et relativt nytt
massivtre-produkt, og antallet hgye bygninger laget av CLT er derfor begrenset. Pa grunn
av dette er kjennskapen til de dynamiske egenskapene fortsatt usikre, og hvordan man

best skal modellere slike bygg er heller ikke fullstendig utforsket.

Hovedmalet med denne masteroppgaven er derfor a undersgke de dynamiske egenskapene
til to CLT-bygg i Tromsg ved & bruke en operasjonell modal analyse (OMA) kalt frekvens-
domene dekomposisjon (FDD). De to bygningene ble utstyrt med akselerometre, og
akselerasjonsdata ble samlet inn varen 2021. Disse méalingene er analysert, og ut i fra dette

er de naturlige frekvensene, svingeformene og dempningsforholdene funnet.

I tillegg er en parametrisk elementmodell utviklet i Abaqus ved a bruke diskrete festemidler
kalt connectors til & modellere sammenfgyningene mellom CLT-elementer. Stivheten i
disse connectorene kontrolleres av to globale parametre: aksialt stivhets-forholdstall (ASR)
og glidnings-stivhetsforholdstall(SSR). Demping i forbindelser dekkes ved & definere to
globale dempingsparametre for viskgs demping i forbindelser. En dekker demping i aksial-

deformasjon i festemidler, den andre dekker demping for glidning i forbindelser.

En parameteroptimalisering av modellene er ogsa gjennomfgrt for a studere hvordan
modellen responderer pa ulike parametersammensetninger, samt for a vurdere validiteten til
modelleringsteknikken. Hver av modellene ble kjgrt med ulike sammensetninger av ASR og
SSR, for & fa resultatene sa like de méalte verdiene som mulig. Dette forte til konklusjonen
at modelleringsteknikken klarer a reprodusere de gnskede modale verdiene for begge
bygningene. Samtidig tyder det pa at det a skulle bruke metoden for a predikere de modale
egenskapene til andre bygg er mer usikker, ettersom det & bytte om pa de optimaliserte

stivhets-forholdstallene for de to bygningene ikke fgrer til gode resultater.

1ii






Acronyms

ASR Axial stiffness ratio

CLT Cross-laminated timber

DFT Discrete fourier transform
DOF Degree of freedom

DSP Digital signal processing
EMA Experimental modal analysis
FDD Frequency domain decomposition
FEM Finite element modeling
IFT Inverse fourier transform
MAC Modal assurance criterion
MDOF Multi- degree of freedom
OMA Operational modal analysis
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Lundvall & Monsas 1. INTRODUCTION

1 Introduction

1.1 Background

Timber is a versatile building material with very good environmental properties. Because
of this the use of timber, especially in bigger structures, has become a lot more popular in

the last twenty years.

Historically, there has been heavy restrictions put on the use of timber in large structures,
due to its combustibility [1]. Because of persevering concerns about fires in the past few
centuries, timber has been disfavored or even banned to use in larger structures or in
densely populated areas. As a consequence brick and later reinforced concrete and steel
structures has been the dominating building materials for tall and/or urban structures.
In the last 20 years however, there has been many studies exploring the fire behaviour of

timber, causing the restrictions to gradually lift[2].

One of the driving forces behind the renewed interest in timber is the increased focus on
the environmental impact in the construction sector. The sector as a whole is responsible
for 23 % of the global emissions, in addition to consuming huge amounts of non-renewable
energy from oil and gas [3]. Timber is renewable, in addition to the fact that the production
process demands small amounts of energy compared to cement and steel production. In
choosing timber instead, the carbon emissions decrease significantly [4]. Growing support
from the public and politicians alike provides a powerful tailwind for the development
of timber and wood techniques, both in construction and in the material fabrication

processes.

Another factor contributing to the rise in popularity is the development of new engineered
wood products like glulam (glued laminated timber), CLT (cross laminated timber) or
OSB (oriented strand boards). This has opened up new possibilities allowing engineers to
tailor fit the properties of the product to the specified requirements, drastically increasing

the applicability of wood-based materials in construction.
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Cross-Laminated Timber (CLT)

Cross-laminated timber or CLT), is an engineered wood

product, consisting of orthogonal (typically 3 - 7) layers

+

thickness, t

of timber planks glued and pressed into a solid, massive

plate element. The planks used are the side-boards left

over from sawmilling, taking advantage of the fact that
this is where the log has the best material properties,
and making sure that there is less waste from the

timber production[6].

The resulting plates has a very good strength-to-weight

ratio, and are able to carry loads in two directions, mak-

ing them suitable for both wall- and floor elements.
) ) Figure 1.1: Assembly of a CLT

An advantage of using CLT is the fact that the ele- plate [3]

ments are prefabricated, and modern CNC-machining

(Computer Numerical Control) allow for complex rout-

ings, edge joints, ventilation openings and other types of geometry to be quickly and

precisely machined into the elements in the factory, allowing for technical installations

to be completed faster. In addition to this, the low density reduces the overall bearing

requirements of the building and its foundation. This makes the transportation, handling,

and installation easier, which in turn decreases the need for on site infrastructure during

construction, and results in a short erection time [7].

Dynamics in Timber Buildings

CLT buildings typically have low mass and medium-low stiffness. This in combination with
the high in-plane stiffness of the panels as well as the capacity of the connections to resist
deformations with little impact on their strength, leads to excellent seismic properties [8].
This allows the buildings to withstand and survive earthquake to a much higher degree
than many brick or stone buildings [9]. However, this also means that timber buildings
are susceptible to wind-induced motions [10]. While this is not typically a safety concern,
excessive swaying motions in buildings can make inhabiting them uncomfortable. This
is one of the major limiting factors for how tall it is possible to build with timber today

[10].

As timber buildings get taller and taller, it is crucial that engineers have good knowledge
of dynamics in such buildings, to be able to predict the dynamic behaviour accurately.
That way, the material can be utilized more efficiently, reliably, and safely. Timber as a
high rise building material is a relatively new concept, and the dynamic properties are not

yet fully understood.
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State of The Art: Dynamics in Timber Buildings A state of the art study
performed in 2018 by researchers at the American institute of civil engineering, reviewed
damping results for CLT-shear frame buildings, of which the tallest was only 6 storeys tall
[11]. In this study the 6-storey building had a damping ratio of approx 2 — 4%, but their

data reveals a clear trend of lower damping ratios for taller buildings.

A paper published in 2016 at the International Network on Timber Engineering Research-
conference presents a collection of measured frequency and damping values of tall timber
buildings from various locations [12]. These buildings were built with various techniques,
some with solid CLT-shear structures, some with more traditional column-beam frames

and some with a combination. See Figure 1.2 for plots of the aggregated data.

7
4h, + Timber a Trento CLT
6 % Timber-concrete b Trento TF
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\ d,d, Treet
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Height (m)

(b) Relationship between height and damping

(a) Relationship between height and base frequency ratio

Figure 1.2: Damping and frequency trends of a selection of tall timber buildings [12]

A lot of work is currently being done in this field, for instance the European DynaTTB
project[13].

1.2 Dramsvegen Panorama

The two buildings studied in this thesis are Smgrbukklia 3 and 5 in Tromsg, henceforth
referred to as SML3 and SML5. They are a part of a student housing development called
'Dramsvegen Panorama’, and is owned by the Arctic Student Welfare Organization. They
provide students with services like childcare, different sports and exercise possibilities, and
student housing [14]. Some of the inhabitants in the buildings in question has reported
uncomfortable swaying on the upper floors. Samskipnaden has therefore contacted NTNU

in order to examine this behaviour.
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Figure 1.3: Dramsvegen Panorama student housing. The two buildings in question are located
to the right [14].

(c)

Figure 1.4: Illustrations of SML3 provided by Amax consultAB. Figure a) shows the south-east
facing facade, b) the south-west facade, and c) shows a floor plan for the floors 3-13. SML5 has

a very similar construction

Both buildings are built on bedrock, and are constructed in a very similar manner, with
concrete storeys on the bottom and CLT-plates in the upper storeys. They have a
very regular, almost rectangular, shape which makes them very well suited for this type
of analysis because it is possible to cross compare the results in order to verify them
further.
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SML3 is the tallest of the two buildings, with thirteen storeys amounting to a height of the
main section of 39 metres, and a footprint of approx. 14m x 25m. The building process
was finished in February 2021 [15]. The first two storeys are made of reinforced concrete,
and the upper eleven storeys of CLT-plates of varying thicknesses. A continuous elevator
shaft and stairwell runs through the entirety of the building. On floor 3-13, there are 15
apartments spread around a common area with a kitchen and living room, as shown in
figure 1.4, and the lower floors has fewer apartments because they contain storage spaces,

bicycle parking and a technical room. In total there are 179 apartments.

SML5 has a footprint of approx. 14m x 25m over ten storeys with a total height of the
main section of 30 metres, and was finished in August 2017 [16]. This building also has
a base of reinforced concrete, with three concrete storeys and seven made of CLT. The
placement of the apartments is very similar to SML3, and there are 124 apartments in

total. There is also an elevator shaft and stairwell that runs through this building.

1.3 Previous Work

As a part of the ongoing project in Tromsg, two master theses were written in the spring
of 2021. This thesis is a continuation of the work done, and so the following sections is a

short summary of each thesis in order to understand what this thesis is based upon.

Lervik & Kristansen: Assessing Wind Induced Dynamic Properties of Two
Tall CLT Buildings in Tromsg

Lervik and Kristiansen performed on-site measurements of the two buildings in Tromsg,
and evaluated the results by operational modal analysis to find the dynamic properties
[17]. The buildings were instrumented with four accelerometers and one anemometer each,
to measure the accelerations of the buildings and the wind velocities. The accelerometers
were placed strategically in the building in order to obtain the best possible results.
The measurements were taken during operation, which limited the placement of the
accelerometers, but in return the measured values represent the actual behaviour of the

building.

Some of the measured data was evaluated by an output-only operational modal analysis
(OMA) called Data-Driven Stochastic Subspace Identification (DD-SSI). This is a method
for analysing acceleration data, where only the output, (the response of the structure) is
known, and the input (load) is unknown. From this, it is possible to acquire the natural
frequencies and mode shapes as well as the damping ratios. As a result of insufficient time,
Lervik & Kristiansen didn’t get to analyze the majority of the data. This made it difficult

to procure good results for both the mode-shapes and the damping ratios.
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Elstrand & Os: A Parametric Study of Connection Modeling in Tall CLT

Structures

In their master thesis, Elstrand and Os made a numerical model of the two CLT-buildings
in Smgrbukklia in Abaqus. After a literature study, they came to the conclusion that a
lot of the uncertainty concerning the modeling of CLT-buildings stems from inadequate
knowledge of how the connections in between plates influence the overall behaviour of the
building [18]. To account for this, they modeled the connections by defining "connection
zones" along the element edges. These zones has a reduced thickness, while the other
material parameters are the same as the original element except for the density, which is
increased to make sure that the mass matrix remains unchanged. The biggest advantage
of this method is that the walls are modelled as one continuous plate instead of many

CLT-elements, which eases the modeling process.

This modeling technique was then evaluated by performing both a sensitivity analysis and
a parameter update in Simulia Isight. The former was to determine which parameters
influence the overall results, while the latter was performed to optimize the model based on
measured frequencies. The conclusion was that this way of modeling makes it possible to hit
a wide range of frequencies, only by changing the thickness fractions of the connection zones

in the horizontal (wall-to-floor) and vertical (wall-to-wall) in both x- and z-direction.

1.4 Project Description
The work done in this thesis can be split into three separate but interconnected parts:

o The analysis of the acceleration data measured by Lervik & Kristiansen in the
spring 2021 [17]. By using an operational modal analysis called frequency domain
decomposition estimations of the natural frequencies, mode shapes and damping

ratios were extracted.

o The development of a parametric FEM-model inspired by the one Elstrand & Os made
in the spring of 2021 [18]. As discussed in section 1.3, they used a reduced thickness
around the joints to model connections, whereas in this thesis the connections are

modeled using discrete fasteners called connectors.

o A parametric optimization in which the models were optimized against the target
values obtained in the data analysis. This was done to explore the model response
from different inputs and to verify that the models are able to reproduce the actual

behaviour of the physical buildings.
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2 Theory

In the autumn 2021, as a part of the subject TKT4550, a preliminary project for this
thesis was conducted. Considerable parts of the theory section in this thesis is taken from

the project report, with permission from our supervisor.

2.1 Timber Structures

2.1.1 Material Structure of Wood

Wood is an organic material that consists of about 50% carbon, 6% hydrogen and 44%
oxygen. Together these three elements form cellulose, hemicellulose and lignin, which
are the building blocks that form the cell structure shown in figure 2.1. The cellulose
fibres, often called microfibrils form cell walls in a tube shaped form, in what is called a
tracheid-cell. The lignin is what binds the cell walls together, and acts like an adhesive

matrix [5].

Due to this structure, the material properties of wood is very dependent on which direction
the load is applied in, making the material anisotropic. To be able to describe the behaviour
of wood it is therefore necessary with 12 different engineering constants, which is very

computationally heavy.

Figure 2.1: Cell structure in wood [5]  Figure 2.2: Common axis system in timber [5]

2.1.2 Material Properties of Timber

The directions it is common to work with when modeling timber are the longitudinal,
radial and tangential (L, R and T as shown in 2.2). Strength-wise, T and R are in the
same range of magnitude relative to the L-direction which is about ten times stronger
than the other two [19].

For simplicity, the properties in R and T directions are averaged, and in practice we are left
with the 0- (parallel to grain) and 90-direction (perpendicular to grain) [20]. This reduces

the problem into 3 planes of symmetry, known as an orthotropic material [21].
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To describe the relations between the strains and stresses in the different directions, we

use Hooke’s law formulated on matrix form:

e=Co or o=Ke (2.1)
Where o denotes stress, € denotes strain, C is the compliance matrix, and K is the stiffness
matrix.

The compliance matrix, C, for an orthotropic material is given as [21]:

€11 Si Sz Sz 0 0 0 011

€22 So1 Saa S 0 0] |02

€33 _ S31 S3z Ss3 0 0 033 , (2-2)
V23 0 0 0 Sy 0 0|73

Y31 0 0 0 0 Ss O T31

Y12 0 0 0 0 0 Sel| |72

or expressed with engineering constants:

€11 E% -2 0 0 0 o011

€22 E% =20 0 0 099

ess| _ 5 0 0 0o 2.3)
V23 a0 0| |7

V31 sym G%l 0| 731

T2 G%Q T12

where E is the young’s modulus, G is the shear modulus, and v is Poisson’s ratio. The

numbers in the sub-indexes indicate what direction the value refers to.

From this, the stiffness-matrix can be found by inverting the compliance-matrix:

| |EER CERE CEREr 000 0o

G e 0 0| |ox

€33| _ 151’%22%1 0 0 01 |oss (2.4)
Y23 G23 0 0 T23 .
a1 sym Gz 0 | |73

Y12 Gr2| | T2
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Deflection in CLT Lateral deflection patterns of CLT panels include a combination of
bending- and shear deformation of the panel material, as well as sliding and rocking of the
panels as a whole (see Figure 2.3). The dominating deformation patterns are the sliding

and rocking [22].

frrereerrrrerrerrerereiensll]

7T

(a) (b) (c)

Figure 2.3: Displacement patterns of CLT-panels. a) Bending, b) Shear, c) Sliding and d)
Rocking [22]

2.2 Structural Dynamics

2.2.1 Equation of Motion

The equation of motion for a single degree of freedom system is given as

fr+ fa+ fs =p(t) (2.5)

where f; is the inertia force caused by the mass resisting the acceleration, from Newtons
second law of motion F' = Ma. The damping force f; is the sum of the structural and
material damping, or in other words the energy dissipation of the system. f is the stiffness
force derived from the spring stiffness relation: F' = kx where k is the stiffness of the

spring, while x denotes the distance from equilibrium position.

To make (2.5) applicable to a multi-degree of freedom (MDOF) system, the equation is
presented in matrix form, where each element in the matrices and vectors are related
to the DOF's of the system. With viscous damping, this leads to the classic equation of

motion:

Mii(t) + Cu(t) + Ku(t) = P(t) (2.6)

Here M, C and K denotes the mass-, damping-, and stiffness matrices respectively. P is
the force vector acting on the structure, and u(t) is a vector containing the displacement

of each degree of freedom as a function of time.
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2.2.2 Natural Frequencies and Modes

The natural frequencies of a structure refers
to the frequency the structure oscillates at
in free vibration, e.g. when there is no
outer load applied. A phenomenon called
resonance occurs when the load frequency

reaches the structures natural frequency.

Amplitude ratlo.%

At resonance, the amplitude increases and

increases while the load is acting, which may

lead to failure, and is why this is such an

important property in structural dynamics
[24].

Frequency ratio, B

) ) ) Figure 2.4: Response amplitude from different
Figure 2.4 shows how the vibration am- ) ] i
damping ratios and load frequencies, note reso-

plitude of a structure depends on the fre-
nance as 3 — 1 [23].

quency ratio, which is defined by f = w/w,,

where w is the load frequency and w, is the natural frequency of the structure. When

the two frequencies are equal (8 = 1), this is where the peak is located in the graph, as

expected.

Each structure has several resonant frequencies relating to different vibration modes,
often referred to as mode shapes. A mode shape is a dimensionless deflection pattern
that describes how the different degrees of freedom (DOFs) are excited in relation to
each other[24]. The mode shapes depends upon the distribution mass and stiffness of the

structure, more so than the global mass and stiffness.

To find the natural frequencies and mode shapes of a system, it is necessary to find
the eigenmodes and eigenvalues. This is done by solving the eigenvalue problem of the

undamped system:

(K — w?M)® =0 (2.7)

where w,, is the natural frequency and ® are the mode shapes that describes the different

vibration modes of the system. For the non-trivial solutions, the determinant is zero:

det(K —w’M) =0 (2.8)

After solving (2.8) for the natural frequencies, and substituting them in (2.7), the mode

shapes ®, can be found.

10
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The eigenvectors of an undamped system are orthogonal in relation to each other by
nature. Because of this, it is possible to describe all other displacement modes with a
linear combination of these, by using the superposition principle. Because of this, it is
possible to generalize the system matrices by pre-multiplying them with the transposed

mode vector, and post-multiplying by the regular mode vector as follows [25]:

®TMPF + TCPy + PTKPy = ¢ p(t) (2.9)

To simplify the notation, the generalized matrices are denoted with a tilde:

M = ®TMP
C=9aTCcoe (2.10)
K=®"TK®

These generalized mass and stiffness matrices has the advantage that they are diagonalized;
all the non-zero terms are located along the diagonal. This means that the entire system is
uncoupled, and each linear equation can be solved separately which reduces the computation

time significantly.

The damping matrix however, is not a part of the eigenvalueproblem, and is therefore
usually impossible to orthogonalize. This means that for a general case, (2.9) is not
possible to solve analytically to find the modal solutions, only explicit numerical solutions
exist.

2.2.3 Damping

The damping behaviour of built structures is very complex. It is the result of a combination
of factors [23]:

e The internal friction within the material
e The friction that appears in the connections
o Energy dissipation that happens as the vibration propagates

A common representation of the damping in structures is viscous damping. This means

that the damping is assumed to be proportional to velocity:

fa = cu(t) (2.11)

11
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The formulation of this type of damping was originally based on the study of damping

in liquids. It has been shown that viscous damping is not completely accurate for solids,
because the internal friction within liquids and solids behave differently [26]. However,

viscous damping models are still widely used, owing to their convenience and the fact that

it has sufficient accuracy in many cases [23].

Critically damped, ¢ =1

Overdamped, { =2

“ N T —

Underdamped, §= 0.1

u(t) / u(0)

Figure 2.5: Free harmonic vibration of damped systems [27]

Figure 2.5 shows the free vibration response of a system with different levels of damping,
denoted by the damping ratio (. Underdamped systems are systems that will oscillate
back and forth in free vibration some number of times before coming to a rest. Buildings,
bridges, and the like are almost always underdamped, except for very rare exeptions [27],

and thus civil engineers are usually only concerned with underdamped systems.

The introduction of damping to a under damped system introduces a frequency shift equal

to [27]:

wg = wpy/1 — (2 (2.12)

12



Lundvall & Monsas 2. THEORY

Rayleigh damping

As mentioned, the damping matrix, [C], makes the dynamic calculations more complicated
because of the fact that it is not possible to orthogonalize. A possible workaround of this
problem is to approximate it as a linear combination of [M] and [K]; see equation (2.13).
Figure 2.6 shows an example of a general Rayleigh damping profile. Because the modal
mass- and stiffness matrices are diagonal, this creates a diagonal damping matrix. The
result is a MDOF system essentially being broken down into a series of SDOF-systems

that is possible to solve separately.

C=aM + K (2.13)
——Mass proportional damping  ——Stiffness proportional damping ——Rayleigh damping
wr
w

Figure 2.6: General rayleigh damping curve

a and [ are coefficients that are found by use of the estimated modal damping ratios. By
substituting C,, with the linear combination in equation (2.13), and keeping in mind that
w2 = K/M, we get:

¢c. 0,  a
Ccritical B 2ann - 2wn

G = + gwn (2.14)

13
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Using two different measured damping ratios at two different natural frequencies, this
becomes a system of equations with two equations and two unknowns, which leads to the

following expressions:

o 2wmwn(<mwn - anm)
“= w? — w2
/8 - Q(ann - mem)
- w2 — w2

(2.15)

When combining the expressions in (2.15) and (2.13), the Rayleigh damping matrix can
be found. If multiple identified modes and damping ratios found, a different approach
can used, such as optimizing across the entire set, e.g. choosing an « and 3 that that
minimizes the root mean squared error (RMS) between the Rayleigh curve and measured

values.

2.3 Operational Modal Analysis

The process of determining the modal properties of a structure in normal operation,
operational modal analysis (OMA), is a subfield in structural dynamics that allows engineers
to estimate important structural properties such as natural frequencies, mode shapes
and the associated modal damping ratios. In OMA the excitation force is assumed to
be stochastic and white-noise like, unlike experimental modal analysis (EMA), where the
input load is known and defined, for instance when a building is forced to vibrate with a

shaking contraption.

Central to all OMA-related tasks is the collection, processing and analysis of data. Typically
this is done by installing accelerometers in different locations of a structure and logging
the acceleration response. This data is then processed and analysed to determine the

dynamic properties.

2.3.1 Data Pre-processing

Real world signal data is messy or noisy, i.e. it is subject to many sources of noise that
disturb the signal. This noise can be physical, e.g. vibrations from people moving around,
from machines such as HVAC systems and the like; or it can be digital, such as electric or

magnetic noise disturbing the sensors directly or the cables that connect them.

For the digital sampling of the analog signal, an analog filter must be applied prior to the
analog-to-digital conversion [28]. This is usually installed on the actual hardware that

does the monitoring and logging.

14
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In order to achieve meaningful and efficient calculations, proper digital signal processing
(DSP), is necessary. In DSP a series of steps pre-processing of the raw signal data are
performed to prepare the data for analysis. Which steps are needed, and the appropriate
parameters involved will depend on the signal data and which type of analysis the engineer

plans to perform.

Down Sampling In OMA, signals are typically over-sampled, which means that the
sampling rate is much higher than what is strictly necessary for the analysis in question.
While this does increase the storage space required for the raw data as well as requiring
some extra pre-processing steps to handle larger files, over-sampling does have some
advantages. Firstly, high quality data at high sampling rates is available in case it is
needed in the future. More importantly, when pre-processing the data with digital down-
sampling, there is less noise in the resulting data than it would have been if sampled at

the lower rate directly [28].

Down-sampling is a process that applies some function to the raw data which converts the
raw-data into processed signal data sampled into a lower sampling rate. This increases
computational speed and reduces memory usage compared to the initial over-sampled data.
As long as the downsampled rate is high enough to sufficiently cover the frequency-range
of interest, there will be little to no impact on the accuracy of the analysis done on the
data [29]. A well-known "law" in digital signal theory is known as the Nyquist’s theorem,
and it states that for any process with a given frequency f, a minimum digital sampling

rate of 2f is required to properly describe said process [28].

Aliasing

The process of down-sampling is not as straight

True signal

Aliasing Aliased signal
set. Doing so would cause higher frequency com- | os{* i
0.6-! ¢
ponents to be interpreted as spurious lower fre- | o4/
02/ i
e
-0.2-|

forward as picking every n-th point in the data

Amplitude

quency components, a phenomenon commonly

known as aliasing [28]. These spurious frequency | ¢

0.6
0.8

-1+ ; T T : T ; T
0 0.2 0.4 0.6 0.8 1 12 1.4

signal and would thus compromise the quality of Time [sec]

components are indistinguishable from the real

the analysis. So, prior to down-sampling, there Figure 2.7: How aliasing can occur when
should be applied a digital filter function that qown sampling [29]
can remove all frequencies that can cause alias-

ing.

After passing the signal through anti-aliasing filters, it is then passed through a decimation

15
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function, the most common of which being the polyphase quadrature filtering. This function
is extensively used in all kinds of signal processing involving compression, such as audio
processing. The method involves subdividing the signal spectrum into multiple sub-bands
which are handled independently and the outputs are summed to yield the down-sampled

(or up-sampled if needed) signal [30].

Frequency filtering

For the digital filtering and preparation of signal data, various digital frequency filters
exists, and most DSP-frameworks have built in functions for the different filtering tasks.
See Figure 2.8 for an illustration of the frequency response of some common filtering

functions.

Prior to down-sampling, to combat the aforementioned aliasing-problem, a low-pass
filtering function is applied to remove high frequency components. In accordance with
the Nyquist-theorem, at least the frequencies that are 50% of the target down-sample
rate should be filtered out. In practice however, it is recommended to keep the filter limit
comfortably below the Nyquist frequency: fnyquist = %, e.g. 0.8 fnyquist- In other words,
for a signal down-sampled from 400Hz to 20Hz, processes with frequency up to approx.

().8% = 8Hz can be analysed with reasonable accuracy.
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Figure 2.8: Common band-pass filter types

16



Lundvall & Monsas 2. THEORY

As can be observed Figure 2.8, the elliptic and Chebyshev filters have quite noticable side-
effects in the spectrum, where different frequencies receive different levels of amplification
in a rippling fashion rather than having a smooth decay. Furthermore, with the exception
of chebyshev type II, they also do not have a maximum amplitude across the frequency
band of interest (known as the passband). For OMA, this is especially undesirable as the

ripples could interfere with the frequency peaks associated with modes.

The Butterworth filter however, has a flat maximum amplitude across nearly the entire
passband, and a smooth decay above the cut-off frequency, which makes this filter ideal for
OMA purposes. The Butterworth filter can be designed with a higher order, which would
create a sharper decay, see Figure 2.9. As can be observed in the figure, the amplitude
decay will start at some distance to the chosen cut off frequency, depending on the order
of filter chosen. This should be taken into account when choosing both cut off frequency

and filter order, to ensure that the filter does not affect the frequencies of interest.

Butterworth filter frequency response

0 — n=1
— n=5
— n=10
-5 — n=20
o
2 -10
[}
kel
2
=)
£-15
-20
_25 T
10° 10! 102
Frequency [Hz]
(a) Frequency response Butterworth filters of different orders
) 2 Hz and 20 Hz ) 2 Hz and 40 Hz
01 0
-2 -2

After 16 Hz low-pass filter After 16 Hz low-pass filter

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
TI[s] T[s]

(b) Frequency components closer to the (¢) Frequency components far above the

cutoff survive to a small extent cut-off are removed entirely

Figure 2.9: Different butterfilter orders and the effects of a 5th order forward-backward (effective

10th order) filter on two different frequency components
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Normally, bandpass-filtering induces a phase shift in the filtered signal, while the general
shape and amplitude is preserved [29] . In the context of FDD, depending on the severity of
the phase shift, it can lead to significantly negative consequences on the accuracy analysis.
This happens when either end of the filtered signal is included in the analysis, causing

spurious frequency components to appear. This can be negated in one of two ways.

One option is to truncate the ends of the filtered signal in order to exclude them from the
analysis. The other method is to pass the same filtering function in both directions by first
applying the filter like normal, and then flipping the signal and apply the filter once again.
This filtering procedure removes the phase-shift in the signal and essentially doubles the
order of the filter. See Figure 2.10 for an illustration of the phase shift phenomenon and

remedy.

= Actual process
.- ','I —— Noisy signal
h

AL
i) iy

—— Noisy signal
—— Forward only filter

—— Forward-backward filter

| AT

Figure 2.10: Comparison of forward-only and forward-backward filtering

It is not usually necessary to remove low frequency components with a high-pass filter,
when performing OMA, but it is possible and not uncommon to apply a filter like this as

well.
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Detrending

A spurious trend is when a time-series’ mean is trending away from the mean of the
physical process being measured. This will distort the spectral estimate of the process by
magnifying the lower frequencies [29]. Tt is therefore important to remove any such trend

from the signal.

To detrend a signal a low order regression of the signal, such as a line, is used:

Ldetrended,i = Ltrended,i — mia (216)

where m is the slope of the regression line y = mi + ¢, and x is the signal in question.

Figure 2.11: Detrending of a signal with a spurious trend
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Offsets

A signal offset is when the signal mean is different to the mean of the underlying process
that was measured. Depending on the type of analysis which is to be performed on the
data, it might be necessary to remove any offsets. In other words: when considering
zero-centered processes such as structural acceleration, it is important that the signal data

also oscillates about zero.

For zero-centered processes a discrete signal s with a measurement offset can be easily

removed by subtracting the mean of the signal, as illustrated in figure 2.12

Figure 2.12: Zero-centering of a signal with an initial offset

1 N
T zero—centered,i — Lof fset,i — N Z Tof fset,i (217)
0

20



Lundvall & Monsas 2. THEORY

2.3.2 Natural Frequencies by Peak Picking

A structure subjected to ambient white noise excitation

will respond strongly near its natural frequencies [29]. G

Through this phenomenon, natural frequencies can - 32 J\

be determined by analysing the power spectral density % wig ! }\ WW
(PSD), of the response. The value of the PSD at a given g 1?; / MWMWA
frequency is related to how much the frequency compo- E 115 " 16

nent contributes to the total signal [31]. When plotting 122 \M/

the PSD over the frequency range, this is known as a oo N ]
periodogram. The modes and associated frequencies Frequency [Hz]

will appear as local peaks on the periodogram, and can _ . .
Figure 2.13: Signal periodogram

be visually determined by the engineer performing the with two clear natural frequency

analysis. peaks [29]

By inspection of the periodogram in figure 2.13, two clear natural frequency peaks at 1.3
Hz and 1.7 Hz can be identified. There might be natural frequencies at 2.5Hz and 4.4Hz

as well, but further analysis is needed to determine the less pronounced peaks [29].

Discrete Fourier Transform

The discrete Fourier transform (DFT) of a signal is the frequency domain decomposition
of the time series. It is used to give an estimate of the real PSD of the signal by taking
the square absolute of the DFT.

For discrete signals x = [xg, x1...2x_1], the discrete fourier transform X = [Xg, X7...Xn_1],

is given by [32]:

—127

1 N-1
Xp=— > zexp ¥ (2.18)
Nn=0

The resulting fourier transform of the signal will have a frequency resolution of df = fﬁ For
example, a fourier transform of a 20Hz signal with 1000 data points will have a frequency
resolution of df = 20mHz

Windowing

For finite signals, the DFT introduces errors because each end of the signal ends abruptly,
which the DFT interprets as spurious frequency components known as leakage [28]. To
combat this effect, a windowing function is applied to the signal. This reduces the influence

of the signal’s ends on the result when computing the DFT, while the middle of the signal
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is given more influence. The most common of these windowing functions is know as a

Hamming window [33].

W (n) = 0.54 — 0.46005(27r%) (2.19)

The Hamming window W is applied to the finite time series before computing the filtered
DFT, A:

1 N- —i2jn
=5 Z )exp N (2.20)

To compensate for the reduction of amplitude by the windows, a correction factor, U, is

applied to the filtered DFT, A, and gives a filtered periodogram I:

I(fa) = (1]|A|2, (2.21)

where

frequency f, =n/N,n=0,1...N

U=> W)

J=0

For a sufficiently long time series, the resulting DFT yields a reasonably accurate estimate
of the frequency composition [29].

Welch’s Method

Welch’s method is a technique for estimation of the PSD of finite signals in which the
signal is divided into multiple overlapping segments. A windowing function is applied, and
the DFT is computed for each of the segments. The estimate of the process PSD, P is

then computed as the ensemble average of the segment periodograms I [34]:

K
fn) = Z (2.22)
where K is the is number of segments.

In addition to yielding less noisy periodogram estimates, Welch’s method also gives a more
uniform distribution of influence from the signal on the DFT computation, giving more

accurate estimates of the PSD.
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2.3.3 Frequency Domain Decomposition

Frequency domain decomposition or FDD, is performed by studying the the estimate of
the PSD matrix of the output signal for a process. Since this is an OMA-based technique,
the input does not need to be known, but is assumed to be a stationary white-noise-like

excitation.

The general idea of FDD is that around a structure’s natural frequencies, its motion is
dominated by a single vibration mode, namely the mode associated with the natural
frequency at hand. By studying small frequency ranges around the frequency peaks, it is

possible to compute estimates of mode shapes and damping ratios of single modes.
Consider the general relationship for a stochastic input-output process.
[ny] = [4] [éqq] [A]Hv (2.23)
where
[G,,] is the output PSD,
[qu} is the input PSD, and
[A] = [a1,az...] is the mode shape matrix.

Here, only the left hand side is known. This is the ouptut PSD-estimate computed from

in situ measurements. ny can be broken down by single value decomposition or SVD,

giving
Gy ()] = [UH[E:][Vi), (2.24)
where
U] = [wir, wiz ... ] and [V] = [u;1, usn . . . ] are the left and right singular matrices

[X] contains scalar values along its diagonal

For an n-channel signal, [¥] is an n X n X m matrix, where m is the number of points
per channel in the original PSD. Each step along the diagonal represent one higher
order of spectral analysis. If the first element along the diagonal is extracted, {o;} =
X111, 201,29 - - - Bp,1,m) - This gives a one-dimensional vector with length m. This vector
is equivalent to the first order spectrum of the multi-channel signal data, ie. the modal

spectrum for a MDOF system.
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Identified modes

1.990
1.635
1.303

f[Hz]

Figure 2.14: Plot of the 1st order modal spectrum {o;}, with first 3 modes identified

In FDD theory, u; and v approximate the mode shapes near mode-peaks in the frequency

domain [29]. Equation (2.24) then becomes:

[Gyy(@)] = {owa Hurm Hum ', w— wy (2.25)

Then, a narrow range around the mode peaks must be defined. This is commonly done
with the MAC-criterion:

: TORLICAL:
AC(H{u; 5 ki) = ~ ~ ) AC )y + :
MACWus A0 = o e iy SAC <l @26)

Initially starting at a given mode peak, we "walk" up the frequency range, continually
computing MAC-values between the mode shape at the given frequency and the mode
shape at the mode peak. As mode shape-estimates drift further apart with different
frequencies, the MAC-value (starting at 1) will be gradually lower as the gap widens.
When the MAC-value falls below some rejection threshold chosen by the user, the upper
bound for the frequency range is found. The process is equivalent for finding the lower
bound. In FDD, the rejection threshold is usually set to around 0.8 [29]. The user must
also inspect the computed frequency ranges to confirm that the frequency sub-ranges are

appropriately sized, and adjust the rejection threshold if necessary.
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It is not strictly necessary to use the MAC criterion to define the range. In fact, any
scheme that yields a reasonably sized range around the peak; wide enough to include ample
information, and narrow enough that other modes or the noise floor does not appear in

the range will do.

Ranges around identified mode peaks

1.2 13 14 15 16 1.7 1.8 1.9 2 2.1 2.2
f[Hz]

Figure 2.15: By the MAC-criterion, narrow ranges around identified modes is defined

An inverse Fourier transform (IFT) of the vector {0} for the sub-interval found around
mode k, will approximately yield an auto-correlation function for a SDOF system. This
auto-correlation function will, for a small range of time-offsets near 0, have a decaying

function envelope [35].

Extracting the peaks of the auto-correlation functions in this initial range, can be done
by defining some appropriate rejection criteria. One convenient approach is to normalize
the auto-correlation function such that it swings between 0 and 1, and then include all
the peaks from the first until the envelope drops below a threshold, for example 0.4. This
threshold can be tweaked up or down to better fit the data at hand.

After finding the peaks to include in the analysis, see Figure 2.16, the logarithmic decrement

is computed on said peaks [35]:
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Figure 2.16: Normalized auto-correlation around mode peaks. Red rings mark the peaks that

comply with a user-specified criteria.

5, = EZ”CZ)’ (2.27)

where ry and r; are the 1st and k-th peak of the correlation function respectively.

Computing the logarithmic decrement for different numbers of included peaks yield the

d-vector {6} = {dg,01...0n}.

Manipulating (2.27), gives the function Y = kdy + 2in(|rx|), which, when plotted against
k, should approximate a straight line for processes with fairly constant damping ratios
[35], see Figure 2.17. The slope of a linear regression on this function is the estimated

average logarithmic decrement ¢ for the mode.

Finally, using 4, the damping ratio estimate é can then be computed with the formula
[35]:

N>
I

_ 2.28
02 4 472 ( )
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Figure 2.17: Plot of the logarithmic decrement estimate Y = kdy + 2in(|r|), along with the

linear regression lines and computed damping ratios by (2.28).

2.4 Finite Element Modeling

Finite element modeling is a numerical analysis method that is widely used in different
engineering fields such as electromagnetism, machine- and structural design. The approach
of the method is to subdivide the geometry of the structure into finite elements, and assign-
ing them 'material properties’ by the use of shape functions. The shape functions describe
the behaviour of the elements, and should enforce both compatibility and equilibrium for

a successful result [36].

When applying loading and boundary conditions to the structure, this approach will lead

to an approximation of how the structure behaves in real life.

The two main considerations when developing a finite element model is what type of
elements to use, and how to subdivide the geometry into finite elements, also known as
meshing. In order to obtain an accurate solution, it is crucial that the engineer has a
thorough understanding of the expected behaviour of the system, to be able to assess the

quality of the results [36].
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2.4.1 Meshing

When meshing a structure, there is always a choice between the accuracy of the solution
and how long computation time is available. A very dense mesh leads to a more accurate
solution, but this also causes the CPU cost to become very high. A compromise between
the two is to have a relatively dense mesh where there are high stress gradients, and a
coarser mesh where the stress levels are more constant [36]. When refining the mesh in
this way, it is important to use gradual transitions in element size, as sudden changes in

the mesh can cause an ill-conditioned stiffness matrix, which is very difficult to solve.

In the finite element method, there are also errors related to the individual finite elements
that are important to be aware of. The behaviour of each element is described by
displacement interpolation polynomials, and these sometimes cause errors to occur when
the polynomials chosen cannot accurately represent the actual behaviour of the material

described [37].

One such error is called parasitic shear, and is caused by incomplete interpolation poly-
nomials. This causes false normal strains to appear in the shear strain expressions, and
is difficult to avoid when using a standard formulation technique. The solution is to use
reduced numerical integration when solving the system. However, this may lead to what
is called spurious zero-energy modes, or hourglass-modes. This is because the reduced
integration removes the strain-modeling terms that belong in the strain energy expression,
which leads to what appears to be extra rigid body modes [37]. These spurious modes
leads to a singularity in the stiffness matrix, making it impossible to invert, which is why
these modes should be avoided [38].

The final source of error related to individual elements is shear locking, which dominates
in elements where the thickness is small compared to the width and height. The elements
ability to represent the condition of zero transverse shear strains decreases when the
thickness does, which affects the elements ability to retain a sufficient amount of element
DOFs to represent all the deformation modes. Shear locking occurs when the only solution
that satisfies the zero transverse shear strains condition is the one that implies zero nodal

displacements altogether [39].

2.4.2 Shell Elements

The choice of what element-type to use in the modeling of a structure is dependent on
what type of loading and stress distribution the elements are exposed to. In the case of
a CLT- structure that consists mainly of massive wall- and floor plates, a good choice is
to use shell elements. These are capable of carrying loads both in- and out of plane, and

has a small thickness compared to the height and width of the elements, which fits the
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characteristics of the CLT-plates.

Figure 2.18: A conventional shell ele- Figure 2.19: A continuum shell ele-

ment with four nodes. ment with eight nodes.

In Abaqus, there is a choice between conventional stress/displacement shell elements and
continuum shell elements. The conventional shells are defined by a reference plane with
four nodes, and are assigned thickness from its’ section. The continuum shells on the other
hand, discretize the entire 3D body with eight nodes, but cannot represent the rotational
DOFs [40]. Because the conventional shells have less nodes, the computation time is

shorter, which makes them preferable as long as they provide sufficient accuracy.

The simplest form of the conventional shell elements is the S4 element in Abaqus. This is
a very robust general purpose element, and can be used as both a thick- and thin plate
element. It also has the advantage that it is resistant to both transverse shear locking and

unconstrained hourglass modes [41].
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3 Data Analysis

This section presents how the data analysis was performed and the choices taken both in the
pre- and post-processing of the data, as well as in the frequency domain decomposition, in
order to obtain the natural frequencies, mode shapes and damping ratios of the two buildings

studied. See Figure 3.1 for a breakdown of the pre-processing of the datarecords.

It would have been possible to use existing software to apply the following techniques, but
these programs are often expensive and does not allow direct control of the steps in the
procedure. As an alternative, original scripts was developed using the theory presented in
subsection 2.3. The scripts along with the MATLAB modules, are included in the digital
appendix.

In this chapter, the following naming convention is used:
o Time record: the original 6 hr signal data records
o Time series: smaller partitions of the time records treated independently

o (Time) segment: smaller partitions of a time series, strictly in the context of
computation of PSD by Welch’s method.

Original 6hr time records at 400 Hz

Low pass filter, detrend, zero-center and downsampling to 20 or 40 Hz

120 or 60m time
series

Welch’s method

Figure 3.1: Flowchart of the data pre-processing and breakdown
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3.1 Pre-processing

For the purpose of pre-processing of raw measurement data, a python script preprocess.py
was prepared. The script relies heavily on the DSP-library scipy.signal 1.8.0 [30], as
well as the math library numpy 1.22 [42]. In addition, 3rd party libraries nptmds 1.4.0
[43] and scipy.io 1.8.0 [30] were used for handling the various file formats in relation to
opening and saving data. The most important functions used for processing of the data

are summarized below:

e scipy.signal
— butter(), creates the butterworth filtering parameters
— sosfiltfilt(), applies the two sided digital filter to the data
— decimate(), downsamples the data
— detrend(), removes any spurious trend in the data if it exists

e numpy
— mean(), used to compute the mean of the signals for the purpose of zero-centering

In an attempt to reduce the risk of systemic errors introduced by possible unfortunate
choices of record length or decimation factors, four different sets of pre-processed data
were produced on the same raw-data. Two different time series lengths of 60min and

120min, and two different down-sampled frequencies of 20Hz and 40Hz were chosen.

Prior to the down-sampling, all of the data was passed through a 5th order two-sided
butterworth low pass filter at a frequency of 0.4 fiownsampicd, i€. at 8Hz and 16Hz for the
20Hz and 40Hz data respectively. While decimate() does contain an anti-aliasing filter,
manually applying a low pass filter prior to decimation provides greater control and a

more powerful anti-aliasing of the data.

Next, the filtered data was down-sampled (decimated). It is not recommended to decimate
with factors larger than 13 [30], and thus, for the files to be decimated from 400Hz down
to 20Hz, this was done by decimating them twice, first at 2x and then at 10x.
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3.2 FDD

For performing the FDD algorithm, a MATLAB module FDD.m and a script FDDscript.m
was created. No external libraries were used, but functions inside the Digital signal

processing toolbozx [44] in MATLAB r2021a were used extensively.

The most important built-ins used in the prepared MATLAB module are:

cpsd(), for computing the cross-spectral PSD-matrix
o svd(), for computing the SVD of the cross-spectral matrix
o ifft(), for computing the autocorrelation function from the SVD

« findpeaks(), to identify the peaks of the auto-correlation function for the purpose of

computing the logarithmic decrement
o polyfit(), for linear regression of the delta array,

The pre-processed data consisting of a series of 6hr recordings were divided into multiple,
shorter time-series. Various sources gives different recommendations regarding length of

time series in connection with OMA. As a good rule of thumb, a recommended minimum

10

if damping ¢ is 1% and the 1st fundamental mode f,,;,, is 1Hz.

time series length of T > [28], which would suggest a time series T, of 1000 seconds

When using Welch’s method for the PSD calculation however, the use of longer time
series allow for taking the ensemble average of several sub-segments without sacrificing
frequency-resolution in the PSD-estimate. This has the advantage that it leads to more
stable and accurate results. In conclusion, it is often advantageous to use longer time series
than the recommended minimum, especially when using the FDD-algorith for damping

estimations.

In order to investigate the validity of the chosen time series length, the OMA analysis was
performed on the entire dataset with two different choices of time series length, namely 60
and 120 minutes. In the end, a time segment of % was chosen in the computation of the
PSD. With a 50% overlap, this yielded 19 segments over which the ensemble average is

taken.
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3.3 Post-processing

By defining a convenient ratio for modal

AmpModepeak

excitation such as S = a

AmpNoisefloo'r ’
threshold can be set to quickly filter out
data points that come from time seg-

100 ¢
ments deemed to be of too low excitation

to yield reliable results (see Figure 3.2). signal

. . 107 []]
After inspecting the scatter plots of the i I

results in Figure 5.3 and Figure 5.8, a (i ‘! |
-8 |
threshold of S > 20 was chosen. 10

After the aforementioned signal ampli-

tude threshold-filtering, some sporadic 0 2 4 6 8 10
f [Hz]

data points with obviously false damp-
ing ratio estimates might remain. These Figure 3.2: Signal to noise amplitude. In this plot,
are handled by excluding the estimates modes 1, 2, 3 have a ratio of approx. 100

outside of the [5 95]th percentile range.
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4 Modeling

This section describes the choices taken and methods used when developing the finite
element model. The software used to build the parametric models of the two buildings is
Simulia Abaqus 2019, along with Python version 2.7 and Microsoft Fzcel. The parameters
and information used to build the model is stored in an Excel workbook, which serves
as a convenient way to store/modify the necessary parameters. The scripts and excel

workbooks are made available in the digital appendix.

The scripts and input files are written and structured with recyclability in mind, and
should be reasonably easy to understand and use in other projects. Adding or modifying
the functionalities of the model is should be somewhat simple for someone with experience

in python programming and Abaqus.

(a) SML3 (b) SML5

Figure 4.1: Screen shots of the two models. The color grey indicates concrete elements, the red
indicates steel, while the yellow indicates CLT. The darker the shade, the thicker the section.
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4.1 Defining the Geometry

SML3 and SML5 are quite simple and regular in their design:
o Rectangular floor plans

» Facades are flat planes, with the exception of an overhang (supported by columns)

on the ground floors

o Windows and openings, while they do alternate rotations and placements slightly,

follow a regular grid

o The bearing walls follow an orthogonal grid and the pattern is repeated every storey,

with exception of the concrete walls in the first few storeys
o The structural system is almost entirely comprised of CLT

The floors were assumed to have a rigid diaphragm effect, which means that they have
a rigid body motion and does not deform during loading. For low frequency modes this

should be a valid assumption [45].

Due to the simple geometry, modeling the walls were done by defining the start and end
point in terms of which axes these points lie on. The next step is defining the target
width of elements. CLT walls were given a target maximum width of 2500mm, as this
is essentially the maximum width that is usually transported on Norwegian roads. The
script then computed the width necessary to cover the entire span of the wall with an

integer number of parts. Finally, the array of wall parts was constructed.

Concrete walls were modeled as one single element from start to finish, as it was assumed

that site-cast concrete is used for these buildings, as opposed to pre-cast concrete.

The walls and floors then have openings such as doors and windows cut out from their
geometry. The openings were positioned in accordance with drawings and plans made

available for this thesis’ work as accurately as possible.

4.2 Connections

The interactions between elements in Abaqus can be defined in several different ways.
In this thesis the connections were modeled using discrete connectors spaced at some
interval. This is a component in Abaqus that uses discrete springs and damper dashpots,
which when combined into a single element is called connectors. They provide a realistic
modeling of connections, as well as giving direct control of the stiffness in a given direction

for a set of connectors. This allows the analysis to discuss parameters such as ’stiffness
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per unit length’ along a joint, which is easier to convert to a physical parameter than the

reduced thicknesses from the previous models.

To ease the modeling process, connectors were used for both the concrete and the CLT
storeys. To account for the fact that the concrete walls are continuous, and not plates
connected by discrete fasteners like the CLT walls, the connectors in the concrete walls

were given infinite stiffness.

4.2.1 Stiffness Ratios in Connections

The connector stiffnesses were defined as a ratio of the stiffness of the elements they connect,
instead of manipulating the numerical values directly because this is more convenient. For
this to work it is necessary to find a representative stiffness value for a CLT-plate. To do
this, all connectors related to the same section type were grouped together and given the
same stiffness values. The geometry of the panels are taken into account by defining a
characteristic height and width of a cross section by using the average height and width of
all plates with the cross section in question. Because all the storeys are 3000m tall, and
all the CLT-walls have a target width of 2500mm, the characteristic sizes were not very

disparate between different cross-sections.

: mg DEWDEOI 0 o0 0 0 07 [
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Figure 4.2: The origin equations used for computing the stiffness of connectors [46]

The basis of the equations used for the calculations of the stiffness of connectors are shown

in figure 4.2, where

Des = Eo,mean - N

D77 = Eomean * Iy

Dg7 = D76 =0

Dgs = 0.75 - Gomean * Beit

Along a joint between two CLT-panels, the following equations were used to control the
stiffness values of a single connector (see Figure 4.3 for an illustration of what &k, and

refer to):
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EO,mean,CLT * lk * h”

ki, = ASR (4.1)

dk * Nconnectors

GO,mean,CLT *0.75 % lk * h

ki = SSR , (4.2)

dk: * Nconnectors
where

« ASR (axial stiffness ratio) and SSR (sliding stiffness ratio) are the chosen stiffness

ratios perpendicular and parallel to the joint respectively
o Eomean,crr and Eg mean,crr are the representative stiffness properties of CLT plates

o [, is the length of a characteristic joint for a given cross section (in this model:

approx. 3m for vertical joints and 2.5m for horizontal joints

e dj, is the depth of the panel in the plane in the direction perpendicular to the joint,
ie. for a joint along the top edge of a plate, this would be the height of the panel

e h and h are the total thickness of a plate and the total thickness of lamellas parallel

with the force, respectively

* Neonnectors 1S the number of connectors along the joint

Connectof_
N
\ k)
~ —

ki

Figure 4.3: Illustration of the stiffness directions of a single connector. Multiple connectors are

spaced evenly along joints.
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Using the following values:
e Eomean = 11000 MPa

o Gomean = 690 MPa

height par = 3000 mm, widthepq,=2500 mm

ASR =SSR =1

, a set of stiffness values for a single connector associated with a given section type was
estimated, as presented in Table 4.1. Manipulating ASR or SSR will simply scale the
associated stiffnesses to be used. Note that this table uses fixed values for height s, and
widthepq,, while the approach used in the modeling script computes the actual characteristic
values for these. However, as the storeys are all 3000mm tall and the target width for
the walls is set to 2500mm, the actual difference from the values in Table 4.1 and the

computed values used in the model is relatively small.

Table 4.1: Estimated stiffness of a single connector. (One connector every 300mm)

Along top/bot  Along sides

Section | Ayert  Prnor ki ki ki k|
180-7Ply | 120 60 | 122 222 8625 72000 10 162
160-7Ply | 120 40 | 122222 7667 48 000 9 033
150-7Ply | 110 40 | 112 037 7 118 48 000 8 468
140-7Ply 80 60 | 81481 6708 72000 7904
130-7Ply | 100 30 | 101 852 6229 36 000 7 339
120-7Ply 90 30| 91667 5750 36000 6775
100-7Ply 80 20| 81481 4792 24000 5645

80-7Ply 60 20| 61111 3883 24000 4516

This approach ensures that one value for ASR and one for SSR controls the stiffness
of every connector in the model, while each joint is still related to the stiffness of the
CLT-plates they attach.
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Impact on Effective Stiffness from Discretization of Connections

In reality, the connections between CLT-plates
are held together by a combination of contact-
friction in between the plates and discrete fasten-
ers such as screws, hold-downs or angle brackets.
For physical CLT-panels, compressive forces are
transferred by the contact-force between abutting
elements. Contact forces are very difficult and
expensive to model in FEM [47]. Therefore, in
the modeling approach used in this thesis, the

contact-force must also be transmitted with con-

Figure 4.4: The CLT plate studied, here

with 5 discrete boundary conditions

nectors. However, this leads to a loss of stiffness
in the connection due to stress concentrations
in the zones near the boundaries. A higher density of connectors reduce this effect but

increases modeling complexity and cost.

On the other hand, in reality, the tensile stress in connections are entirely captured with
connectors. Again, because of stress distributions near joints, increasing connector density
beyond the real connector density would give an increase in apparent stiffness for the same

reasons.
In short:

o An excessively high density of connectors will overestimate tensile stiffness in joints

and have a high computational cost

e An excessively low density of connectors will underestimate compressive stiffness in

joints but have a low computational cost

For these reasons, a compromise between cost and accuracy for both compressive and

tensile forces is desired, ideally with a reasonably realistic density of connectors.

To investigate this effect, a simple test was executed in Abaqus CAE. A 323 m? CLT-plate
shown in figure 4.4, was modeled by the same principles as the ones in SML3 and SML5:
a 54 shell element with an orthotropic section material called CLT 160:5Ply, equivalent to
the one used in the actual model. A shell edge load with magnitude 10kN was applied
along the top edge, and several different constellations of boundary conditions were applied
to inspect the influence of the boundary conditions on the deformations of the plate. The

results are displayed in table 4.2.

Figure 4.5 displays how increasing the number of discrete boundary conditions makes the

displacements converge towards the continuous solution, as is expected. At 17 discrete
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points, the error between the two solutions is 0.01, which indicates that it is possible to
approximate the continuous joints in the real structure with discrete fasteners without

disturbing the stress distribution too much.

Table 4.2: Influence of discrete vs. continuous boundary conditions on the deformation.

Boundary condition | Displacement [mm)]
Continuous 305,60
2 discrete points 758,40
3 discrete points 476,90
5 discrete points 366,10
9 discrete points 328,30
17 discrete points 308,70
32 discrete points 305,70

INFLUENCE OF DISCRETIZATION

—e— Discretized boundary conditions Continous boundary condition

800,00
700,00
600,00
500,00

400,00

DEFORMATION [MM]

300,00
200,00

100,00

0 5 10 15 20 25 30 35
#DISCRETE BCS

Figure 4.5: Graph displaying the influence of discretization on the displacements compared to

a continuous boundary condition.

From the results of this investigation, a connector density of ¢/c 300mm was chosen,
equivalent to 11 discrete points in Table 4.2, resulting only a minor drop in compressive

stiffness, while keeping a realistic connector density.

4.2.2 Damping in Connections

Damping in connections is implemented by defining two global viscous damping param-
eters, one for axial deformation in connections and one for sliding deformation in the

connections.

The viscous damping values, unlike the stiffness distribution in connectors, does not take
the cross-sections the connector is attached to into consideration, and is not scaled with

the stiffness of the connector either.
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4.3 Foundation

Both SML3 and SML5 are built directly on bed-rock, with the first two floors having solid

concrete load-bearing walls.

The bedrock upon which the concrete walls are cast is thought to have sufficient stiffness
and strength that the foundation can be modeled by translationally locking the nodes of

the concrete walls that are in contact with the bedrock.

As the terrain is slightly sloped, the concrete walls in 1. and 2. floor are partly submerged
under some back-filled soil. This puts a slight ground-spring action on the below-terrain
wall area. However, as the stiffness contribution from the abutting soil is massively dwarfed
by the structural stiffness of the concrete walls, this will have no significant effect on the

overall stiffness of the structure, and is for that reason neglected from the model.

4.4 Mass

In their thesis, Lervik & Kristiansen performed fairly detailed estimates of the mass of
SML3 and SML5, lumped by storeys [17], see Figure 4.6. To preserve some degree of
comparability and to avoid doing double-work, these calculations serve as the basis for

mass distributions in this thesis’ models.
Two different mass configurations were tested:

o Mass configuration 1, where the dead mass from outer wall cladding, windows and so

on, is smeared across outer walls. The rest of the dead mass is smeared across floors.
o Mass configuration 2, where dead mass is only smeared across floors

See Appendix A for the calculations for dead mass distribution. The result from the mass
calculations were added as non structural mass distributed evenly across the area of the
respective parts. Then, as there was some slack in some of the area estimates in the
calculations, the dead-mass inputs were evenly adjusted until the exact target total mass

was reached.
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Total mass =2639.3 t
x=13m

y=Tm

Zz=81m

Level mass
=180.4t

=143.3t

=144.61

=145.Tt

=146.6 t

=395.4t

=484.51t

_II:I

=03.61

111 1 1 L

(a) SML3

Total mass = 2400.0 t
Xx=12m

y=Tm
Z=81lm

Level mass

=102.8t1

=137.1¢

=138.8t1

=138.7t

=139.6¢

=139.8¢

= 140.7 t

=426.81

=520.2t

=423.7t

T

L IT T

=91.8¢

(b) SML5

Figure 4.6: Mass distributions as calculated by Lervik & Kristiansen [17]
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4.5 Loads

As the goal is to find the modal properties, only the global gravitational load of 981073

is necessary. No other external loads or ground springs are included in the model.

4.6 Materials

The following assumptions are made for the material properties:
o All timber-elements are comprised of Nordic spruce boards with C24 quality
o Concrete elements are cast with B45 quality
Table 4.3: Material properties used in the model

Density E1 E2 E3 V19 V13 Va3 G12 G13 G23
[kg/m? [MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

C24 ‘ 420 11000 370 370 0.5 0.6 0.6 690 690 50

(a) Timber properties used in the model [48]

Eomean  Gomean
[MPa]  [MPa]
CLT with | 11000 690
C24 only

(b) Timber properties used in the model for the purpose of computing the connector stiffnesses [5]

Density E v
[kg/m?]  [MPa]
B45 \ 2300 34000 0.2

(c) Concrete properties used in the model [49]

Density E v
[kg/m?®  [MPa]
5355 ‘ 7850 210000 0.3

(d) Steel properties used in the model [50]
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4.7 Analysis Steps

To extract the modal properties of the model in Abaqus, both a modal frequency- and
complex frequency step was used in addition to the required initial step. The modal
frequency step extracts the natural frequencies and mode shapes of the undamped structure
by solving the eigenvalue problem presented in section 2.2.2, by use of the Lanczos method.
After this, the complex frequency step, which is a subspace projection method, uses the
extracted eigenmodes as a subspace to find the complex natural frequencies and mode
shapes. This step is necessary to include the effects of damping in the analysis, and to

find the damping ratios of the structure.

4.8 Meshing

Before optimizing the model, a preliminary series of analyses were performed in order
to determine appropriate mesh density, that is, the minimum mesh density that yields
sufficiently accurate modal estimates. As the 3 fundamental modes are the most important
for the context of this analysis, the impact of varying mesh densities was evaluated by the

effect it had on these modes.

A sample configuration of the connector-model of SML3 was used. Note that as this step
was performed before performing any type of analysis, the parameters were chosen prior
to settling on the actual parameters used in the model, and were not the same as the ones

used in the analyses.
 An initial connector density of ¢/c 500mm was chosen
o Mass configuration 1 as per 4.4

o Mass and stiffness properties similar to that of C30 Nordic spruce for the timber

elements and B35 for the concrete elements
o Quadrilateral elements with reduced integration
o A single global mesh density

A more sophisticated approach to meshing, such as defining zones around sharp changes
in geometry (doors and windows in this context), as well as around the bounding edges of
instances would allow a more efficient usage of computing power and memory. This could

improve the quality of the mesh within the computing budget at hand.

In a crude attempt to improve mesh efficiency, it was briefly investigated whether it would
be beneficial to increase mesh density for instances that had any cut-outs in its geometry,

while keeping the mesh for instances with virgin geometry at the coarser base mesh.
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However, the improvement of this approach seemed to be negligible. So, for simplicity’s

sake, a single global mesh size for the entire model was chosen.
—B-fl —o—f2 ——1{3

30%

20%

10%

0%

0 100 400 500 600
-10 %

Relative error vs f_i(100)

-20 %
Global element size [mm]

Figure 4.7: Investigation regarding choice of mesh density

The results from the densest mesh is assumed to yield an accurate solution. It is however
not strictly possible confirm if the results at 100 yield accurate results. For smaller and
less complex problems, this could be investigated by increasing the mesh density further,
once the converges to some value it is reasonable to assume a correct solution. In this case,
however, the limitations of the hardware available in this thesis prevent any denser mesh

from being feasible.

So, for this model a global mesh size of 300 was chosen, as that mesh size gives reasonably
inexpensive computations, while yielding seemingly accurate results for the frequencies of

modes of interest.
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4.9 Parameter Optimization

A parameter optimization was performed in order to optimize the model parameters so
that the modal properties match the results obtained from the physical structures. In

general, there are 3 main targets to hit:
o Modal frequency
o Mode shape as evaluated by the MAC-criterion
o Damping ratio

A compliance measure is proposed in (4.3), that makes it possible to weight each mode.
It also allows for optimization of an arbitrary number of modes, where it is possible to

prioritize the modes and values of the highest interest.

y . Z(XFEJ;,i*tht,i)g * W
teh =1 4.3
atc S (4.3)

Xreu, and X4 ,; might be the modal frequencies or the damping ratios of the system,
while the subscript denotes the numerical and experimental results respectively. w; is the
weight applied to a specific mode, and the subindices 7 indicates which mode it is related

to. A match of 1 indicates a perfect fit.

As mentioned in 2.2.2, the mode shapes are influenced by the distribution of stiffness and
mass, rather than the global sum. From subsection 4.2, it is clear that there are only
two modeling parameters adjustable in the optimization process; the sliding- and axial
stiffness ratios in connections. When adjusting these ratios, it is the scale of stiffness in
the connections that changes, not the distribution. This means that it is unnecessary to
optimize the model based on the mode shapes (or the MAC-values), because they aren’t

affected much anyway.

In the case of the buildings in evaluated in this thesis the higher modes are barely excited,
and only the three fundamental modes yielded meaningful experimental results. This led

to the decision to optimize for these three modes, with equal weighting.

4.9.1 Frequency Optimization

First, the models were optimized for frequency compliance. It is possible to optimize
for the frequencies without including damping because of the relationship in equation
(2.12) seeing as the frequency shift in weakly damped systems such as SML3 and SMLS5 is
negligible.
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The frequency optimization procedure was done by performing a series of trials, varying
ASR and SSR with regular intervals, and storing the results for each trial. The data from
the initial trials was then fed into a MATLAB script ParameterstudyPlot.m. A 4th
degree polynomial surface interpolation function was generated, on which the peak value
and thus the estimated optimized set of ASR - SSR values is estimated.

4.9.2 Damping Optimization

Secondly, once the optimized connector stiffness values have been determined, a brief

damping influence experiment was performed.

Several trials with different combinations of viscous damping values in the axial and sliding

direction for connectors were performed, in which:
o ..stiffness and mass properties are held constant

e ...no damping apart from the damping in the connectors are added to the model.
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5 Results

5.1 Empirical Results

In the following section, all the results from the FDD procedure is presented. This is only a
presentation of the actual results, as they are further discussed in section 6. The techniques

used and the choices taken when performing the FDD is presented in section 3.
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5.1.1 SML3

Frequencies

Table 5.1 shows the seven first natural frequencies, or modal frequencies, of SML3. The
first three frequencies were computed by averaging the frequency output from the FDD

calculations, whereas the remaining higher modes are estimated from the 24hr PSD in

Figure 5.1.
Power spectral density SML3
T T T
2.014
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1.314
? l ‘ 6.406
| |
| |
\“ | 4.881 6.042
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N
A
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Figure 5.1: Estimate power spectral density of SML3, computed over a 24hr time-record.

Y-scale is logarithmic.

Table 5.1: SML3: Modal frequencies. The modes 1-3 are taken from the FDD analysis, whereas

modes 4-7 comes from peak picking on a periodogram

Mode | Frequency [Hz|
1 1.301
1.634
1.988
4.881
5.581
6.042
6.406

N O Ol = W N
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Mode Shapes

Table 5.2: SML3: Computed mode shapes by FDD, grouped by sensors

Mode Al A2 A3 A4
X y Z X y z X y z X y z
-0.02 -0.07 1.00 | 0.00 0.04 0.79] 0.00 0.05 0.72| 0.00 0.05 0.30
0.97 0.16 -0.01 | 1.00 -0.09 0.05| 095 -0.07 0.06 | 0.52 -0.07 0.03
0.10 0.09 -0.94 |-0.17 0.07 1.00|-0.16 0.08 0.95]|-0.08 0.09 047
Table 5.3: SML3: Computed mode shapes by FDD, grouped by axes
Mode X Y Z
Al A2 A3 A4 Al A2 A3 A4 Al A2 A3 A4
-0.02 0.00 0.00 0.00|-0.07 0.04 0.05 0.05] 1.00 0.79 0.72 0.30
0.97 1.00 095 0.52] 016 -0.09 -0.07 -0.07|-0.01 0.05 0.06 0.03
0.10 -0.17 -0.16 -0.08 | 0.09 0.07 0.08 0.09 | -0.94 1.00 0.95 047

(a) Mode 1

(b) Mode 2

Jo)

(¢) Mode 3

Figure 5.2: SML3: Computed mode shapes by FDD, plots
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Damping Ratios

Table 5.4: SML3: Damping ratios from FDD, N is the number of datapoints that passed the

mode excitation threshold of 20

Mode 1
25%

20%

1.5%

Damping ratio

1.0% sl

0.5%

Mode 2
25%

20%

1.5%

Damping ratio

1.0%

0.5%

Mode 3
25%

20%

1.5%

Damping ratio

1.0%

0.5%

Mode | ¢ Coos  Coo9s  O¢ N

2]
1.536 1.446 1.621 0.156 | 4072
1.438 1.362 1.510 0.134 | 3987
1.617 1.527 1.693 0.144 | 4114

O SML3-20Hz-60min.csv X SML3-20Hz-120min.csv O SML3-40Hz-60min.csv % SML3-40Hz-120min.csv ~ emmmmCutoff

oo
< oo
Xxﬁgj >>on ><1:\XD 0O 0 oo
o oo X X ix X
- >@D)Z-\D )
2 ngggjmé " oahp
XX gtbngx xo k0 Ox
Xg XBoR0 X X
% @n oo FFJDDD o
oo
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Amp_signal / Amp_noisefloor

O SML3-20Hz-60min.csv X SML3-20Hz-120min.csv O SML3-40Hz-60min.csv % SML3-40Hz-120min.csv ~ emmmmCutoff

Amp_signal / Amp_noisefloor

O SML3-20Hz-60min.csv X SML3-20Hz-120min.csv O SML3-40Hz-60min.csv % SML3-40Hz-120min.csv  emmmmCutoff

m TngiPB o
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Amp_signal / Amp_noisefloor

Figure 5.3: SML3: Damping ratio estimates from FDD, plotted against signal-to-noise ratio
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Mode 1

B SML3-20Hz-60min.csv M SML3-40Hz-60min.csv  ® SML3-20Hz-120min.csv ' SML3-40Hz-120min.csv

Damping ratio
&
®

Mode 2

M SML3-20Hz-60min.csv M SML3-40Hz-60min.csv ® SML3-20Hz-120min.csv 7 SML3-40Hz-120min.csv

3.0%
25%
2.0% . : R
Lo + + +

1.0% i i 3 N

0.5%

Damping ratio

0.0%

Mode 3

B SML3-20Hz-60min.csv M SML3-40Hz-60min.csv  ® SML3-20Hz-120min.csv ' SML3-40Hz-120min.csv

3.0%

25% N "

- +++ |

1.0%

Damping ratio

0.5%

0.0%

Figure 5.4: SML3: Box plot of damping ratio estimates, comparing the different pre-processing

routines
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Rayleigh damping approximation

Table 5.5: SML3: Rayleigh damping coefficients

Opt. for mode 1 Opt. for mode 1 Compromise
and 2 and 3

e 0.0278 0.0217 0.0214

I5; 0.0072 0.0108 0.0105

MSE [%] 0.1170 0.0617 0.0507

® Measured values
——Rayleigh damping optimized for mode 1 & 2
——Rayleigh damping optimized for mode 1 & 3
Compromise

3.0%

2.5%

wr 2.0%

15%

1.0%
f [Hz]

Figure 5.5: SML3: Rayleigh approximation of damping behaviour
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5.1.2 SML5

Frequencies

Power spectral density SML5
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I
i
& 2.425
| \L [| 72936
| /
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Figure 5.6: Estimate power spectral density of SML5, computed over a 24hr time-record.

Y-scale is logarithmic.

Table 5.6 shows the identified modal frequency estimates computed by averaging the

frequency output from the FDD calculations.

Table 5.6: SML5: Modal frequencies

Mode

Frequency [Hz]

1
2
3

2.150
2.443
2.924
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Mode Shapes

Table 5.7: SML5: Computed mode shapes by FDD, grouped by sensors

Mode Al A2 A3 A4
X y z X y z X y z X y z
0.07 081 -0.01| 0.10 1.00 0.09| 0.07 086 0.09| 0.01 0.10 0.01
0.95> -0.22 -0.03| 1.00 0.00 0.01| 090 0.01 -0.01| 0.11 -0.01 0.00
0.39 1.00 -0.03|-0.09 -0.63 -0.06|-0.07 -0.55 -0.06 |-0.01 -0.05 -0.01
Table 5.8: SML5: Computed mode shapes by FDD, grouped by axes
Mode X Y /
Al A2 A3 A4 Al A2 A3 A4 Al A2 A3 A4
-0.02 0.00 0.05 0.79| 0.00 -0.07 0.05 0.72 | 0.00 0.04 1.00 0.30
0.97 052 -0.07 0.05| 1.00 0.16 -0.07 0.06 | 0.95 -0.09 -0.01 0.03
0.10 -0.08 0.08 1.00 |-0.17 0.09 0.09 0.95|-0.16 0.07 -0.94 047

(a) Mode 1

(b) Mode 2

(¢) Mode 3

Figure 5.7: SML5: Computed mode shapes by FDD, plots
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Damping Ratios

Table 5.9: SML5: Damping ratios from FDD, N is the number of datapoints that passed the

mode excitation threshold of 20

Mode 1
25%

20%

ing ratio

1.5%

Damp

1.0%

0.5%

Mode 2
25%

20%

ing ratio

15%

Damp

1.0%

0.5%

Mode 3
25%

~
o
X

ing ratio

1.5%

Damp

1.0%

0.5%

Mode ¢

Co.05 Co.95 a¢ N
(%]

1.450 1.122 1.857 0.170 | 1477
1.365 0.827 1.626 0.167 | 553

No results 56

O SML5-20Hz-60min.csv X SML5-40Hz-120min.csv 0 SML5-20Hz-120min.csv % SML5-40Hz-60min.csv ~ emmmmCutoff

150 200

Amp_signal / Amp_noisefloor

O SML5-20Hz-60min.csv X SML5-40Hz-120min.csv 0 SML5-20Hz-120min.csv % SML5-40Hz-60min.csv
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Figure 5.8: SML5: Damping ratio estimates from FDD, plotted against signal-to-noise ratio
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3.0%

25%

2.0%

15%
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Damping ratio

05%

0.0%
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Damping ratio
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Damping ratio
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2

Mode 1
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Figure 5.9: SML5: Box plot of damping ratio estimates, comparing the different pre-processing

routines
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Rayleigh damping approximation

Table 5.10: SML5: Rayleigh damping coefficients

Opt. for mode 1
and 2

e 0.0278

B 0.0072

® Measured values

——Rayleigh damping optimized for mode 1 & 2

3.0%
25%

wr2.0% Mode 2

Mode 1
1.5%
1.0%
0 1 2 3 4 5
f [Hz]

Figure 5.10: SML5: Rayleigh approximation of damping behaviour
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5.2 Modeling Results

5.2.1 SML 3

(a) Mode 1 (b) Mode 2 (c) Mode 3

Figure 5.11: The first three mode shapes of SML3

Figure 5.11 shows the first three mode shapes as calculated by Abaqus. Inspection of the
plots, along with probing directional displacements and stress values leads to the following

qualitative interpretation of the modal results:
e Mode 1: A blend of linear shear and 1st order bending about weak axis
e Mode 2: Mostly linear shear about strong axis

e Mode 3: Torsional rotation
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Frequency Optimization

The frequency optimization was performed for the two different mass configurations as

described in subsection 4.9, and the results are presented in Table 5.11 and Figure 5.14.

The values called "Match” in Table 5.11 is calculated from the match criterion in equation

(4.3). A comprehensive list of all frequency optimization trial runs can be found in

Appendix B.

Table 5.11: SML3: Parametric models optimized for frequencies

Description | ASR SSR fi MAC, fa MAC, f3 MACs | Match
[Hz] [Hz] [Hz]
Target 1.301 1.634 1.988
Mass conf. 1 | 3.46 11.05| 1.296 0.989 1.686 0.882 1.942 0.873 | 0.9772
Mass conf. 2 | 3.96 10.64 | 1.296 0.990 1.675 0.890 1.965 0.877 | 0.9841

SML3 - Mass configuration 1

1.05 /

1.05

[3.48, 10.99, 0.97

¢ Trials
* Estimated peak

 Trials
* Estimated peak

Figure 5.12: SML3: Stiffness parameter optimization
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Damping Optimization

The damping optimization was performed like described in subsection 4.9, and the match
criterion used for calculating the ’Match’-value in Table 5.14 is given in equation (4.3). A

comprehensive list of all damping optimization trial runs can be found in Appendix C.

Table 5.12: SML3: Damping optimized model, all damping is limited to viscous damping in

connectors
Description | Axial damping Sliding damping | (; (o (3 | Match
m’r]7\1] S %
Target 1.54 144 1.6
Optimized model 13000 200 1.51 1.55 1.58 | 0.9527
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5.2.2 SML 5

(a) Mode 1 (b) Mode 2 (c) Mode 3

Figure 5.13: The first three mode shapes of SML5

Figure 5.13 shows the first 3 computed mode shapes of SML5. As expected, they are very

similar in nature to SML3:
e Mode 1: A blend of linear shear and 1st order bending about weak axis
e Mode 2: Mostly linear shear about strong axis

e Mode 3: Torsional rotation
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Frequency Optimization

The frequency optimization was performed for the two different mass configurations as
described in subsection 4.9, and the results are presented in Table 5.13 and Figure 5.14.
The values called "Match” in Table 5.13 is calculated from the match criterion in equation

(4.3). A comprehensive list of all frequency optimization trial runs can be found in
Appendix B.

Table 5.13: SML5: Parametric models optimized for frequencies

Description | ASR SSR | f; MAC, fa MAC, f3 MACs | Match
[Hz] [Hz] [Hz]

Target 2.150 2.443 2.924
Mass conf. 1 | 2.00 4.00 | 2.162 0.962 2.526 0.981 2.767 0.936 | 0.9633
Mass conf. 2 | 2.00 4.00 | 2.156 0.961 2.532 0.981 2.818 0.934 | 0.9704

SMLS5 - Mass configuration 1

e Trials
® Estimated peak
1.05

Match

SSR 2 ASR

SMLS - Mass configuration 2

¢ Trials
* Estimated peak

Match

Figure 5.14: SML5: Stiffness parameter optimization
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Damping Optimization

The damping optimization was performed like described in subsection 4.9, and the match
criterion used for calculating the ’Match’-value in Table 5.14 is given in equation (4.3). A

comprehensive list of all damping optimization trial runs can be found in Appendix C.

Table 5.14: SML5: Damping optimized model, all damping is limited to viscous damping in

connectors
Description | Axial damping Sliding damping | (; (o (3 | Match
m’r]7\1] S %
Target 1.45 1.37 777
Optimized model 675 114 1.45 1.37 2.35 | 0.997
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6 Discussion

6.1 Analysis of Measurements

When analyzing the experimental data with the FDD-method, only the lower modes
yielded satisfactory results. Observing the periodograms in Figure 5.1 and Figure 5.6, tall
and dominant peaks are observed for the first 3 modes, whereas higher modes are less
pronounced for SML3, and outside of the plot range for SML5. Based on these results, it
is reasonable to conclude that the structures’ dynamic behaviour under normal operating
conditions are dominated by the first three modes. This applies to both SML3 and SML5,
which is to be expected, considering their similar shape, structural system and location.
The results achieved for SML3 are relatively good. Natural frequencies, mode shapes and
damping ratios for all 3 dominant modes are found with satisfactory accuracy. For SML5
however, the results are of significantly poorer quality compared to SML3: Only the mode
1 yields satisfactory results for damping ratios, mode 2 gives uncertain estimates, and the

results for mode 3 are so poor that they practically are of no value at all.

The poor quality of the data-analysis results for SML5’s damping ratios is thought to
be due to the structure’s dimensions and layout. As the first three floors have bearing
walls comprised of concrete walls of 200mm and 250mm thickness, SML5 is essentially
equivalent to a 7-story CLT-building. With a cross-section of roughly 14m x 25m, this
gives a height-to-width ratio of approximately 1.5 and 0.8 for the weak and strong axes
respectively, which is not particularly slender in the context of structural dynamics. This
stubbiness likely means the building simply does not get significant modal excitation

during normal operation in ambient wind conditions.

The assumed explanation for SML5’s issues with quality of results suggests that instru-
menting CLT structures that are as stubby as SML5 might be a waste of time if the goal
is to determine damping ratios by means of OMA. However, it may be possible to use an
experimental modal analysis (EMA) to determine the damping ratios of shorter buildings
like SML5, but this has not been attempted on either SML3 or SML5. The estimation
of mode frequencies and mode shapes does not require the same quality of data as the

damping ratios, and these values are therefore significantly more reliable.
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6.1.1 Comparison of Pre-processing Schemes

Analysing the plots in Figure 5.3, Figure 5.4, Figure 5.8, and Figure 5.9, it is clear that

there is not much difference between the different pre-processing schemes.

There seems to be little to no benefit from choosing a higher down-sampled frequency.
This is likely due to both sets having a frequency comfortably above the modes of interest.
Choosing a higher than necessary down-sampled frequencies do not seem to meaningfully

increase quality of results.

The choice of time series length does have a impact. While the benefit is small, there are
clearly fewer outliers and in general, a tighter box plot. This strongly suggests that there

is some merit in choosing longer time series, when performing the FDD-analysis.

6.2 Comparison of Empirical Results With Other Structures

Considering the measured base frequencies of the buildings and comparing them with
predicted frequencies using the proposed trend in Figure 1.2 [12], a remarkably close fit is
achieved. If one also considers that the concrete walls also have some degree of flexibility,
the "effective" height of the buildings in the table would be slightly taller than just the
height of the main CLT section. This slight increase in effective height would make the
predictions even closer to the empirical measurements. All in all, it is fair to say that the

base frequencies of both SML3 and SML5 are well within the expected range.

Table 6.1: Comparison of measured frequencies vs predicted frequencies by the trend proposed

by [12]
Building | Number of Effective Frmeas fest =46/h | Diff
CLT-storeys  CLT height
SML3 11 33m 1.301 Hz 1.394 Hz 6.92%
SML5 7 21m 2.150 Hz 2.190 Hz 1.86%

As for damping, when looking at the trend in Figure 1.2, the expected values are approxi-
mately 1.6% and 1.8% for mode 1 for SML3 and SML5 respectively. While SML3 has a
relatively good match with the expected value, the measured damping ratio for SML5 is
significantly lower than the expected value. This does not necessarily invalidate the mode
damping results for SML5; it could for instance be partly due to the increased effective
slenderness in mode 1, as discussed in 6.3.1. As the trend in the data set in Figure 1.2
suggests that taller, and in turn more slender, structures have lower damping ratios, the
increased "effective" height would lower the expected damping ratios somewhat. However,

keeping in mind the poor results for mode 3 and to some extent mode 2 for SML5, it is
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entirely possible that the correct explanation is that the computed damping ratio is off by

some amount.

6.3 Modeling

6.3.1 Comments on Mode Shapes

Mode 1 in both buildings have a computed mode shape that seems to be a blend of
bending and linear shear. A possible explanation is that the buildings have a quite high
effective slenderness about the weak axis. For both SML3 and SML5, the weak axis is
significantly less stiff than what the outer dimensions of the structures normally would
suggest. This is in part due to them both having a hallway running down the entire length
of the building, as can be seen on Figure 1.4. Only the outer walls span the entire width
of the building to create wide continuous shear walls. However, due to the large cutouts
in each end, these outer walls effectively have nearly the same stiffness as two shorter
separate shear walls. The result is a quite high apparent slenderness about the weak axis.
For this reason a larger amount of bending in the mode shape for mode 1 is to be expected
in both buildings.

Regarding mode 2, both buildings continuous shear walls running the entire length of the
buildings, not only in the outer walls, but also along the central hallways. Also keeping in
mind the rather low height-length ratio for both buildings, a shear dominated mode is to

be expected.

Mode 3 is a torsional mode, with rotation that increases roughly linearly with height
above the concrete sections. This is essentially what one would expect from the 1st
order rotational mode. One observation is that the centre of rotation for SML3 is shifted
slightly away from the centre of the geometry. There are two main sources of asymmetry
in the prepared model of SML3. First, the walls around the elevator shaft and main
stairway have increased cross sectional dimensions. One would expect that this would
attract the rotational centre towards the increased stiffness section. Second, the floors
have cutouts for the elevator and stairs, without the mass of these installations being
specifically compensated in these locations. As the floors in the model have quite high
amounts of smeared dead-weight due to the concrete screed, this would cause a shift in
mass centre in the same direction that the rotational centre has shifted. It would seem
that this shift in mass distribution has a much more powerful effect than the increased

stiffness around the elevator shaft.

SML5 was modeled without any cut outs in the floors, and there were no increased

cross-sections around shafts, and unsurprisingly, there is no rotational asymmetry for
SML5.
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6.3.2 The Modeling Approach

While the modeling approach yielded sensible results with relatively good compliance with
measured modal properties after parameter optimization, it made for a very cumbersome
modeling experience. Handling and navigating through the high number discrete parts
and connectors, is impractical, and thus this modelling approach is only practical in a

parametric approach with scripts.

Geometry creation, the process of creating wall and floor parts; cutting out windows;
doors and other openings; creating nodes to attach connectors to; and creating the
connectors themselves, is a very slow process in Abaqus, even when completely automated.
This may be because of a weakness in the Abaqus software, or it may just be unreasonable
to expect any-FEM software to swiftly do this amount of work in this way. A work-around
to this is to pre-generate the geometry and connections, and only changing the stiffness or
mass properties between runs. While this saves a massive amount of time per run, this
means that the model in its current implementation, is unfit for performing any parametric

model updating that involves multiple changes in geometry.

Running the FEM-analysis did not take unreasonably long. For SML3, with a mesh
element size of approx 300mm, this produces a mesh with around 220k elements. A
complete modal frequency analysis, along with post processing of the results, took around

2 minutes on a 4-core desktop computer from around 2015.

6.3.3 Modeling Floors as a Single, Continuous Part

As mentioned in 5.2.1 and 5.2.2, both buildings have a very slender weak axis, which
causes mode 1 to have a contribution from bending about the weak axis. Because the
floors are modeled as single part, this creates additional stiffness in the bending modes,
this effect is clearly visible from the bending of the floor part in ??Figure 5.13. This
stiffness contribution from the floor parts increases the computed natural frequency for

mode 1.

The widths of both SML3 and SML5 are relatively small (< 15m), and it is possible that
the floors are constructed using long CLT-floor elements spanning the entire width of the
building. This would make the single part floors a valid modeling approach as the 2nd
and 3rd modes are shear- and sliding dominated, and would not be affected by floors to

the same degree as mode 1.

Specific details of how the floors are constructed were not available during work for this
thesis, so it is difficult to conclude whether or not modeling the floors as a single part is

wrong or not. A possible approach to investigate the significance of this decision is to
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create a copy of the model with discrete floor parts spanning between the lengthwise walls,
and compare the results. Unfortunately there was not enough time to explore this further

in this thesis.

6.3.4 The Use of Connectors

Using discrete connectors to model the connections between elements creates a believable
model as the connectors to some degree represent the physical screws and brackets. In
addition to this, it opens the possibility of operating with a more physically compatible
values for the stiffness in connections; either as some stiffness per meter, or stiffness per

fastener.

The practicality of such an approach is enticing. A designing engineer could predetermine
some ASR and SSR that satisfy some modal criteria, and directly get the design stiffness
to be used CLT-joints in construction that would satisfy the criteria. The values related
to the sliding stiffness of connections are essentially directly transferable, but the axial
stiffness is transferable, because this stiffness value captures both the compressive contact
forces between the CLT-elements as well as the stiffness in the connectors themselves. This
is the reason for the high values for the resulting optimized stiffness value by multiplying
ASR with values in Table 4.1. The stiffness values are in the order of 100kN/mm per
connector which is without a doubt much higher than any normal type of fastener used

for joining CLT-elements.

6.3.5 Frequency Optimization

The parameter optimizations yield quite good results for both buildings, but the stiffness
ratios ASR and SSR are quite different between the buildings. This is somewhat bad news
regarding the predictive ability of the modeling approach proposed in this thesis. While
this does not necessarily invalidate a discrete connector-based modeling technique, it does
suggest that some refinement to the approach is needed, for instance coming up with a

better scheme for the way connector stiffness is computed and distributed.

An observation is that both buildings yielded (marginally) better closer matches for
frequency optimization when the non-structural mass was distributed only across floor
faces, as opposed to when estimated outer wall mass from cladding, windows etc. was
smeared across outer walls. This is surprising because one would expect that a finer control
of the distribution of non-structural mass would give more accurate results. It is difficult
to say whether this applies in general, but the experience from this thesis is at least that
it might not be worthwhile to spend time dividing non-structural mass between walls and

floors; gathering it per storey and smearing it across floors seems to work just fine.
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As can be observed in the list of trial runs in Appendix B, ASR is more powerful for
influencing mode 1, while SSR is more powerful for mode 2 and 3. This is thought to be
due to the bending contribution to the mode shape in mode 1. A bending of the structure
would induce compressive and tensile stress in the connectors between storeys, especially
along the outer walls running the length of the building. A higher axial stiffness ratio in
connectors would then increase the stiffness in this mode, whereas mode 2 and 3 would be

less affected, so this observation fits expectations.

6.3.6 Damping Optimization

As mentioned in 4.2.2, the damping values of connectors are globally constant across the
entire model, and do not scale with stiffness in connections of the cross sections they are
attached to. This means that lowering ASR and SSR will increase the modal damping
values, since a larger amount of structural deformation is happening in connectors, and thus

a larger amount of movement is subjected to the constant viscous damping effect.

Following the damping optimization, one would therefore expect significantly lower op-
timized viscous damping values in SML5, compared to SML3. This is because in the
frequency optimization process, lower optimized ASR and SSR was found for SML5
compared to SML3. This effect is indeed seen in the resulting optimized damping values.
One should note that since no result was found for mode 3 damping in SML5, only the

damping ratios mode 1 and 2 was included in the optimization for SML5.

Despite being very simple, the implementation using constant, global viscous damping
values might not be the most accurate nor elegant. Instead, a different approach defining
some percentage damping ratios, and letting a script compute which amount of viscous
or structural damping value to add to each set of connectors might be better. Future
refinement of the modeling approach using such a damping scheme could be worth looking

at, if a convenient solution can be found.
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7 Conclusions and Further Work

7.1 Conclusions

The ultimate goal for work done on this thesis was to obtain satisfactory estimates of the
natural frequencies, mode shapes and damping ratios of the two CLT-buildings SML3
and SML5 in Tromsg, as well as developing a parametric model in order to explore the

possibility of the modeling such structures using discrete parts and connectors.

7.1.1 Data analysis by FDD

The results of the frequency domain decomposition (FDD) analysis indicates that the first
three modes that dominates the behaviour of both buildings in operational conditions. The
higher modes were not excited enough in the measurements to be able to gain accurate
results, suggesting these modes are not particularly influential in the dynamic behaviour

of these buildings in normal conditions.

While frequencies and mode shapes estimates seem reasonably reliable, damping ratios
proved to be more tricky to extract, suggesting a higher demand for data quality and
degree of modal excitation for damping estimation by means FDD. As is hinted at in the
discussion, this might imply that instrumenting and measuring stubby buildings could

be a waste of time, at least when analysing for if trying to determine damping ratios by

FDD.

7.1.2 Modeling with discrete connectors

The modeling technique is able to represent the actual behaviour of the structure reasonably
well. The mode shape - compliance as measured by the MAC-values between measured
mode shapes and computed mode shapes is quite good, despite not having influencing
mode shapes this during model updating. After model updating 2 stiffness parameters
and 2 damping parameters, both models are able to reproduce frequencies, mode shapes

and damping for the first 3 modes reasonably well.

The predictive ability of the modeling approach as implemented in this thesis, might not
be particularly strong. This is hinted from the discrepancy in the optimized parameters for
the two models. Refinements to the implementations, especially related to how individual
connectors are assigned stiffness, are likely necessary for this approach to have practical

use in design.
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7.2 Further Work

7.2.1 Data analysis

The technique performed for analysis the data for modal property extraction is by no
means the only way to analyse the data. Other algorithms such as the time-domain
based Covariance based stochastic subspace identification, data driven stochastic subspace
identification and more exists. Other techniques might prove better suited for modal
extraction on the data, and might even yield reliable results for higher modes. Furthermore,
having results from various techniques will assist in proving (or disproving) the validity of

the results and the FDD-implementation used in this thesis.

In the original data collected by NTNU and made available for this thesis, there have
also been made wind measurements. This wind data has not analysed in any way during
this thesis. There is great potential for more statistical analysis of this data. Correlations
between the wind excitation, both amplitude and spectral composition, and structural

response comes to mind.

Higher quality modal property estimates, and likely also results for higher modes than the
first 3, can be achieved by performing shaker-experiments on the buildings. This would of
course incur extra costs for NTNU for re-instrumentation of the structures and mounting
shakers, but the data extracted will allow for a much greater understanding of the modal
behaviour of SML3 and SML5.

7.2.2 Modeling

A possible next step in developing the modeling approach is refining the implementation,
such as coming up with different and hopefully improved schemes to control connector

stiffness and damping in connectors.
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APPENDIX A. MASS CONFIGURATION

A.1 Estimation of Outer Wall Dead Mass

IMPREGNERT TRE

n "

teipes mot massivire og ommraming
120-180mm MASSIVTRE

70mm FRITTSTAENDE
STALSTENDER

MED MINERALULL
DAMPAPEN VINDSPERRE
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13mm GIPS

GERIKT 10X58mm
NCS S 0502-Y

ISOLASJON
FORINGSBORD

NCS S 0502-Y

ELASTISK FUGEMASSE
MOT BUNNFLYLLINGSLIST

TO TRINKS TETTING
MOT KASSET

»

1230

200mm Rockwoll REDAIr
A 50,033 WimK)

48x198 TRERAMME

1

|- STAENDE TREKLEDNING

28x95mm TRYKKIMPREGNERT
| —— STAENDE LEKTER-LUFTESPALTE

MA GJBRES ETTER LEVERANDERS ANBEFALING

T TITTRRTTTATYNT

|———DAMPAPEN VINDSPERRE

36x48mm LIGGENDE LEKTER
MALES SVART PA UNDERSIDEN

- BESLAG RAL 7021 fall 1:5
—— TREKLEDNING 19X98

teip

30mm LUFTESPALTE

SANBEFALING FRA NORDAN

DEKSEL MA VIPPES UT ca 100mm F@R

DET KAN DRAS NED

ASFALTIMPREGNERT POR@S
. TREFIBERPLATE

ASFALT VINDTETT PLATE
LEGGES | MOT SCREENKASSE OVER HELE BREDDEMN
TILPASSES PA HOYDEN MELLOM STENDER OG
TOPPHARM, rd vasre lett!!

/

15mm trekledning
36x48 lekter cc 600
23x48 slgyfe cc 600
48x198 ramme + rockw

70mm isolasjon

13mm gips
Sum

6.0 kg/m?2
1.2 kg/m2
0.7 kg/m2
14.3 kg/m2
1.2 kg/m2
9.0 kg/m2
32.4 kg/m2
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A.2

A.2.1

A.2.2

SML3 Mass Calculations

Mass Configuration 1
Floor data Outerwall data
Width 1.39E+04 mm Outer wall area pr floor 2.35E+08 mm~2
Length 2.53E+04 mm Window area 5.50E+08 mm~3
Area_g 3.51E+08 mmA2 Window density 30 kg/m2
Cutout 1.84E+07 mm~2 Window mass 165 T
Area_n 3.32E+08 mmA2 Wall mass to distribute 3.90E-08 T/mm2
Structural mass from abaqus
. Mass to add Wall mass
Floor Floor mass Wall mass Total mass Lervikmass .
pr floor distributed
T T T T T T
14 22.3 36.1 180.4 144.3 9.15
13 22.3 27.6 51.0 143.3 92.35 9.15
12 22.3 29.7 52.1 144.6 92.5 9.15
11 223 29.9 53.0 145.7 92.75 9.15
10 223 314 53.7 146.6 92.9 9.15
9 22.3 31.4 54.5 146 91.55 9.15
8 22.3 32.9 56.6 149.3 92.7 9.15
7 22.3 35.7 58.1 151.4 93.35 9.15
6 22.3 35.8 58.8 150.4 91.6 9.15
5 22.3 37.2 60.7 153.1 92.4 9.15
4 22.3 39.6 62.0 155 93.05 9.15
3 191.0 39.7 320.7 398.4 77.7 9.15
2 191.0 219.7 380.6 484.5 103.9 9.15
1 159.5
Mass Configuration 2
Floor data
Width 1.39E+04 mm
Length 2.53E+04 mm
Area_g 3.51E+08 mm~2
Cutout 1.84E+07 mm~2
Area_n 3.32E+08 mm~2
Structural mass from abaqus
. Mass to add Wall mass
Floor Floor mass Wall mass Total mass Lervikmass o
pr floor distributed
T T T T T T
14 22.3 36.1 180.4 144.3 0.00
13 22.3 27.6 51.0 143.3 92.35 0.00
12 223 29.7 52.1 144.6 92.5 0.00
11 223 29.9 53.0 145.7 92.75 0.00
10 22.3 31.4 53.7 146.6 92.9 0.00
9 22.3 31.4 54.5 146 91.55 0.00
8 22.3 32.9 56.6 149.3 92.7 0.00
7 22.3 35.7 58.1 151.4 93.35 0.00
6 22.3 35.8 58.8 150.4 91.6 0.00
5 22.3 37.2 60.7 153.1 92.4 0.00
4 22.3 39.6 62.0 155 93.05 0.00
3 191.0 39.7 320.7 398.4 77.7 0.00
2 191.0 219.7 380.6 484.5 103.9 0.00
1 159.5

Mass pr area
floor
T/mmA2
4.1E-07
2.5E-07
2.5E-07
2.5E-07
2.5E-07
2.5E-07
2.5E-07
2.5E-07
2.5E-07
2.5E-07
2.5E-07
2.1E-07
2.9E-07

Mass pr area
floor
T/mm*2
4.3E-07
2.8E-07
2.8E-07
2.8E-07
2.8E-07
2.8E-07
2.8E-07
2.8E-07
2.8E-07
2.8E-07
2.8E-07
2.3E-07
3.1E-07
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A.3 SML5 Mass Calculations

A.3.1

A.3.2

Mass Configuration 1

Width
Length
Area_g
Cutout
Area_n

Floor

= P
o P

PR W s OO N W

Floor data

1.35E+04 mm
2.53E+04 mm
3.42E+08 mmA2
1.84E+07 mm~2
3.24E+08 mm~2

Outer wall area pr floor

Wall mass to distribute

Structural mass from abaqus

Floor mass Wall mass
T T

17.2
20.6 22.0
20.6 25.5
20.6 27.6
20.6 29.4
20.6 27.4
20.6 27.8
20.6 30.9
150.0 234.4
150.0 225.9
174.0

Total mass

.
28.2
44.4
47.2
49.1
49.0
48.2
50.0

153.3
380.2
350.0

Mass Configuration 2

Width
Length
Area_g
Cutout
Area_n

Floor

=
o =

B N W s U O 0w

Floor data
1.35E+04 mm
2.53E+04 mm
3.42E+08 mm~/2
1.84E+07 mm"2
3.24E+08 mm*2

Structural mass from abaqus

Floor mass

T
22.9
22.9
22.9
22.9
22.9
22.9
22.9
22.9
22.9

188.0
188.0

Wall mass

T

22.0
25.5
27.6
29.4
27.4
27.8
30.9
234.4
225.9
174.0

Total mass

T
33.9
46.7
49.5
51.4
51.3
50.5
52.3

155.6
253.1
388.0

Window area
Window density
Window mass

Lervikmass

T

102.8
137.1
138.8
138.7
139.6
139.8
140.7
426.8
520.2
423.7

Lervikmass

T

102.8
137.1
138.8
138.7
139.6
139.8
140.7
426.8
520.2
423.7

Outerwall data

2.33E+08 mm~2
3.40E+08 mm~3
30 kg/m2
10.19631 Tonne
3.62E-08 T/mm2

Mass to add
pr floor
T

74.57
92.75
91.65
89.6
90.6
91.6
90.75
273.55
140.05
73.75

Wall mass
distributed
T
8.43
8.43
8.43
8.43
8.43
8.43
8.43
8.43
8.43
8.43

Mass to add
pr floor
T

68.9
90.45
89.35

87.3

88.3

89.3
88.45

271.25
267.15
35.75

Wall mass
distributed
T
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Mass pr area
floor
T/mmA2
2.0E-07
2.6E-07
2.6E-07
2.5E-07
2.5E-07
2.6E-07
2.5E-07
8.2E-07
4.1E-07
2.0E-07

Mass pr area
floor
T/mmA2
2.1E-07
2.8E-07
2.8E-07
2.7E-07
2.7E-07
2.8E-07
2.7E-07
8.4E-07
8.3E-07
1.1E-07
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APPENDIX B. PARAMETER OPTIMIZATION RESULTS

B.1 SML3

B.1.1 Mass Configuration 1

Weight -> 1 0 1 0 1 0
Target->  1.301 1 1634 1 1.988 1
AxStiff| ~ | sIstiff |~ | f1 ~ MAC1 |~ |f2 ~ MAC2 |~ |f3 + | MAC3 | ~|Match |-
3.46  11.05 1.2959 0.98%4  1.6859 0.8820 1.9422 0.8727  0.9772
400  10.00 13065 0.9895 1.6833  0.8823  1.9379 0.8724  0.9772
3.00 1200 1.2836 0.9893 1.6854 0.8817 1.9429 0.8730  0.9763
3.00  11.00 1.2803 0.9893 16767 0.8817 1.9321 0.8728  0.9760
400 1100 13105 0.9896 1.6935 0.8823 1.9505 0.8725  0.9760
4.00 8.00 1.2960 0.9895 1.6571  0.8826 19056 0.8721  0.9746
3.00  10.00 1.2765 0.9893 1.6666 0.8817 19196 0.8727  0.9746
400  12.00 13140 09896 1.7024  0.8823  1.9615 0.8727  0.9740
6.00 8.00 13293 09897 1.6750 0.8836  1.9258  0.8720  0.9737
3.00 9.00 1.2719 0.9893 1.6549  0.8818 19049 0.8725  0.9716
6.00  10.00 1.3403 0.9898 17017 0.8832 1.9584  0.8722  0.9692
8.00 8.00 1.3476 0.9899 1.6848  0.8842 19368 0.8719  0.9688
8.00 6.00 1.3304 0.9898 1.6450 0.8853  1.8884 0.8718  0.9680
6.00 6.00 13126 0.9896 1.6357 0.8846 1.8777 0.8718  0.9676
6.00  12.00 1.3482 0.9898 17211 0.8830 1.9823 0.8724  0.9627
8.00  10.00 1.3590 0.9900 17116 0.8837 1.9697 0.8721  0.9620
2.00 12.00 1.2316 0.98%0 1.6553 0.8811 1.9108 0.8737  0.9612
4.00 6.00 1.2801 0.9894 1.6184  0.8835 1.8580 0.8719  0.9607
2.00  10.00 1.2251 0.98%0 1.6371 0.8809 1.8878 0.8734  0.9555
8.00  12.00 13671 0.9900 17312  0.8835 19937 0.8723  0.9548
2.00 8.00 12158 09890 1.6121 0.8809 1.8564 0.8729  0.9457
8.00 4,00 13005 09895 15786 0.8879  1.8081  (0.8718  0.9442
6.00 400 12835 09894 15698 0.8870 1.7978 0.8718  0.9398
4.00 400 12526 09892 15537 0.8856 1.7792  0.8717, 0.9297
2.00 6.00 1.2019 0.9889 1.5751 0.8813 1.8102  0.8725
2.00 400 11777 09888 15133 0.8829 1.7338  0.8720
8.00 2.00 1.2315 0.9885 1.4357 0.8948 1.6379 0.8724
6.00 2.00 1.2165 0.9885  1.4283 0.8937 1.6289  0.8722
4.00 2.00 11890 0.9884 14146 0.8918 1.6124  0.8720
2.00 2.00 11219 0.9881 1.3801 0.8879 15721 0.8718
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B.1.2 Mass Configuration 2

Weight -> 1 0 1 0 1 0

Target->  1.301 1 1634 1 1.988 1
AxStiff| ~ | SIstiff |~ |f1 ~ MAC1 ~ f2 ~ MAC2 ~|f3 ~ | MAC3 |~ Match |-!
3.96  10.64 1.2956 0.9899 1.6745 0.8898  1.9652 0.8767  0.9841
3.90  10.80 12948 0.9899 1.6752 0.8898 1.9662  0.8767  0.9839
3.90 1070 12944  0.9899 1.6743  0.8898  1.9650 0.8767  0.9840
3.85  10.50 12924 0.9899 1.6716  0.8897 1.9617 0.8767  0.9842
400  10.00 1.2940 0.9899 1.6683 0.8899 1.9574 0.8766  0.9847
3.90 1020 12924  0.9899 1.6692  0.8898  1.9586  0.8766  0.9844
400  12.00 13014 0.9899 1.6872 0.8897 1.9812 0.8768  0.9811
6.00 8.00 13166 0.9901 1.6602  0.8915 1.9452  0.8763  0.9830
3.00 12.00 12713 0.9897 1.6704 0.8890 1.9624  0.8771  0.9801
6.00  10.00 13275 0.9902 1.6865 0.8909  1.9781  0.8765  0.9778
3.00 11.00 12680 0.9897 1.6618 0.8890 1.9515 0.8769  0.9794

8.00 8.00 1.3348 0.9903 1.6698 0.8921 1.9564 0.8763 0.9783
3.00 10.00 1.2642 0.9857 1.6518 0.8891 1.9339 0.8768 0.9774
4.00 8.00 1.2836 0.9839 1.6424 0.8904 1.9248 0.8764 0.9739

8.00 10.00 1.3460 0.9902 1.6964 0.8916 1.9895 0.8764 0.9702
6.00 12.00 1.3353 0.9902 1.7058 0.8907 2.0022 0.8766 0.9701

3.00 9.00 1.2597 0.9857 1.6401 0.8892 1.9241 0.8767 0.9738
8.00 6.00 1.3177 0.9902 1.6304 0.8933 1.9075 0.8761 0.9754
6.00 6.00 1.2000 0.9900 1.6211 0.8926 1.8966 0.8761 0.9731

8.00 12.00 1.3540 0.9904 1.7158 0.8913 2.0137 0.8766 0.9620
2.00 12.00 1.2198 0.9393 1.6405 0.8873 1.9300 0.8776 0.9602

4.00 6.00 1.2679 0.9838 1.6040 0.8913 1.8768 0.8762 0.9630
2.00 10.00 1.2133 0.9392 1.6225 0.8878 1.9068 0.8773 0.95432
2.00 8.00 1.2042 0.9893 1.5977 0.8880 1.8751 0.8770 0.9445
8.00 4.00 1.2881 0.9899 1.5645 0.8959 1.8265 0.8762 0.9467
6.00 4.00 1.2713 0.9838 1.5559 0.8951 1.8161 0.8761 0.9415

2.00 6.00 11904 0.9893 1.5611 0.8887 1.8285 0.8767  0.9278

4.00 4.00 1.2406 0.9896 1.5399 0.8936 1.7973 0.8761 0.9201
2.00 4.00 1.1664 0.9892 1.4999 0.8905 1.7513 0.8763
8.00 2.00 1.2199 0.9851 1.4230 0.9025 1.6548 0.8766
6.00 2.00 1.2050 0.9851 1.4156 0.9015 1.6456 0.58765
4.00 2.00 11777 0.9850 1.4020 0.8997 1.6289 0.8763
2.00 2.00 1.1112 0.9887 1.3679 0.8959 1.5882 0.8761
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B.2 SML5

B.2.1 Mass Configuration 1

Weight -» 1 0 1 0 1 0
Target->  2.150 1 2443 1 2924 1
AxStiff| | SIstiff |~ 1 + MAC1 |~ |f2 + MAC2 |~ |f3 + | MAC3 |~ |Match |-}
2.00 400 21624 09619 25256 0.9805 2.7673  0.9361  0.9633
2.11 423 21807 09612 25466 0.9807 2.7886  0.9343  0.9628
2.00 450 21811 09609 25589  0.9805  2.8013  0.9340  0.9625
1.50 450 2.1208 09605 25266 0.9792 2.7566  0.9372  0.9607
2.00 5.00 21982 0.9604 25879 0.9807  2.8343  0.9325  0.9593
3.00 400 22287 09617 25617 0.9818  2.8135 0.9319  0.9587
4.00 3.00 2.2056 0.9632 24890 0.9821 2.7348  0.9342  0.9583
5.00 3.00 2.2287 0.9632 25019 0.9826 2.7526  0.9329  0.9577
2.00 3.50 2.1362 0.9620 2.4841 0.9801 2.7160 0.9375  0.9576
3.00 3.00 21697 0.9630 24691  0.9814  2.7074  0.9362  0.9565
1.50 400 21017 09610 24933 0.9789 27187 0.9388  0.9558
1.00 600 2.0563 0.9587 25448 09772 2.7641  0.9390  0.9530
4.00 400 2.2668 0.9619 25827 0.9825 2.8425 0.9298  0.9517
2.00 6.00 2.2254 0.9598  2.6348 09810 2.8879  0.9302  0.9498
1.50 3.50 2.0786 0.9616 2.4533  0.9787 2.6735 0.9406  0.9469
2.00 3.00 21057 0.9627 24343 0.9799  2.6594  0.9397  0.9464
1.00 5.00 2.0337 09593 25004 0.9767 27140 0.9411  0.9463
5.00 400 22914 09620 2.5964  0.9829  2.8614  0.9284  0.9461
3.00 5.00 2.2688 09608 2.6262 0.9821  2.8874  0.9287  0.9457
4,00 5.00 2.3085 09610 2.6481 0.9828  2.9178  0.9265  0.9355
1.50 3.00 2.0499 0.9623 24045 0.9734  2.6182  0.9428  0.9333
1.00 400 2.0025 09603 24408 0.9762  2.6467 0.9439  0.9324
3.00 6.00 2.2980 0.9602 2.6742  0.9823  2.9425 0.9263  0.9323
5.00 5.00 2.3340 09611 2.6623  0.9832 2.9374 0.9251|  0.9283
5.00 2.00 21254 0.9651 2.3509 0.9822 2.5797 0.9396  0.9283

4.00 2.00 2.1046 0.9651 2.3392 0.9817 2.5637 0.9407
4.00 6.00 2.3389 0.9604 2.6967 0.9830 2.9737 0.9240
3.00 2.00 2.0721 0.9650 2.3212 0.9808 2.53%0 0.9426
5.00 6.00 2.3652 0.9605 2.7113 0.9834 2.9%40 0.9225
1.00 3.00 1.9560 0.9616 2.3550 0.9755 2.5503 0.9477
2.00 2.00 2.0151 0.9652 2.2903 0.9795 2.4988 0.9459
1.00 2.00 1.8781 0.9638 2.2177 0.9747 2.3965 0.9532
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B.2.2 Mass Configuration 2

Weight -> 1 0 1 0 1 0
Target-> 2,150 1 2443 1 2924 1
Axstiff| ~ | sIstiff |~ |1 ~ MAC1 |~ 2 ~ MAC2 |~/ f3 ~ | MAC3 |~ Match |-}
2.00 400 21560 09610 2.5318  0.9808  2.8183  0.9339  0.9704
2.24 3.86 21705  0.9613  2.5323  0.9811  2.8219  0.9334  0.9703
2.50 3.50 2.1706 0.9619 25120 0.9813  2.8010  0.9339  0.9702
1.50 450 21151 09601 2.5334  0.9798  2.8117  0.9351,  0.9678
4.00 3.00 22026 0.9629 24961  0.9824 2.7917 0.9331  0.9678
2.50 400 21959 0.9613 25533  0.9815  2.8488  0.9322|  0.9676
2.00 350 21317 0.9616 2.4910 0.9806 2.7712  0.9356  0.9674
2.00 450 21760 0.9605  2.5659  0.9809  2.8577  0.9325  0.9674
3.00 3.00 21662 0.9627 24761 0.9817 2.7634  0.9347  0.9671
5.00 3.00 22259 0.9630 25091  0.9828  2.8100 0.9320  0.9659
1.50 4.00 2.0963 09606 2.5000 0.9796 27733  0.9365  0.9643
2.50 3.00 21392 0.9626 24614 0.9812  2.7425  0.9359  0.9638
3.00 400 2.2246 09614 25688 0.9820 2.8710  0.9309  0.9627
2.00 5.00 21928 09601 25949 0.9810 2.8912  0.9312  0.9618
1.00 6.00 2.0492 0.9582 25512 0.9781 2.8181 0.9362  0.9573
2.00 3.00 21015 0.9623 24412  0.9804  2.7138  0.9376  0.9565
1.50 3.50 2.0735 0.9612 24600 0.9794 2.7273  0.9381  0.9559
4.00 400 22631 09616  2.5900 0.9826  2.9010  0.9292  0.9536
1.00 5.00 2.0270 09589 2.5069 0.9778 27673  0.9382  0.9523
2.00 6.00 2.2196 0.9594  2.6419  0.9812  2.9455  0.9292  0.9492
5.00 400 22880 0.9618 2.6038 0.9830 2.9205 0.9280  0.9469
3.00 5.00 2.2642 09605  2.6334  0.9822  2.9460 0.9281  0.9454
1.50 3.00 2.0451 0.9619 24112 0.9792  2.6713  0.9400  0.9422
1.00 400 19963 09598  2.4472 0.9774  2.6991  0.9407  0.9394
5.00 2.00 21237 0.9649 2.3579  0.9825 2.6344  0.9378  0.9390
4.00 2.00 2.1026 0.9648  2.3461  0.9821  2.6178  0.9383  0.9341
4.00 5.00 2.3043  0.9608  2.6555 0.9828  2.9773  0.9263  0.9340
3.00 6.00 2.2930 0.9599  2.6815  0.9824  3.0019  0.9260  0.9301
5.00 5.00 2.3302 0.9609 2.6698 0.9832  2.9976  0.9251,  0.9263
3.00 2.00 2.0697 0.9647  2.3280 0.9814  2.5923  0.9402 0.9259
4.00 6.00 2.3344  0.9601 2.7042  0.9830 3.0341  0.9241
1.00 3.00 19505 0.9612  2.3613  0.9769  2.6013  0.9440
2.00 2,00 2.0111 0.9644 2.2963  0.9800 2.5474  0.9429
5.00 6.00 23610 0.9602  2.7189  0.9833  3.0550  0.9229
1.00 2,00 1.8737 0.9634 22239  0.9764  2.4453  (.9489
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C.1 SML3
Weight -> 1 1 1
Target > 1.54 % 1.44 % 1.63 %

AxDam| ~ SIDamp - {1 - {2 - {3 +~ Match .!
13000 200 151% 155% 1.58% 0.9527
13000 150 1.48 % 1.49 % 1.52 % 0.9513
14000 100 1.57 % 1.53 % 1.54 % 0.9501
15000 100 1.68 % 1.63 % 1.64 % 0.9061
12000 400 1.48 % 1.68 % 1.80 % 0.8867
10000 500 1.31% 1.59 % 1.75% 0.8865
15000 200 1.72 % 1.75 % 1.79 %

15000 300 1.76 % 1.86 % 1.94 %
15000 400 1.81% 198% 2.10%
2000 1000 0.65 % 1.37 % 1.71 %
5000 500 0.76 % 1.09 % 1.25%
1000 1000 0.54 % 1.27 % 1.61 %
100 100 0.05% 0.13% 0.16%
0 0 0.00% 0.00% 0.00%
C.2 SML5
Weight -> 1 1 0
Target -> 1.45 % 1.37 % 1.50 %
AxDamj| -~ |SIDamp - |{1 + {2 + {3 - |Match |-
675 114 1.45 % 1.37 %
675 113 1.44 % 1.36 %
675 115 1.45 % 1.38 %
690 115 1.47 % 1.39 %
750 110 1.49 % 1.37 %
700 115 1.48 % 1.39%
200 100 1.46 % 1.31%
800 110 1.53% 1.40 % 2.38% 0.9573
900 100 1.55% 1.37 % 231% 0.9532
1000 100 1.64 % 1.41 % 2.39% 0.9065
100 100 0.83 % 0.95 %
0 0 0.00 % 0.00 %
1000 1000 8.29% 9.51 %
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