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Abstract

Shipping is a growing industry and is today responsible for over 90% of world trade[65].
Tight schedules while in port and long travelling distances are common aspects of trans-
portation, and hence efficiency is very important to maintain maximum profit. One of
the most important factors to maintain profitability is to reduce operational downtime.
Methods for predicting these events can be developed to prevent unwanted repairs and
shutdowns. Condition monitoring is a strategy which involves monitoring the condition
of physical components located on e.g. a vessel. If irregularities in vibration data or tem-
perature are discovered, condition-based maintenance can be performed on the relevant
components before the failure happens. This reduces the maintenance cost as well as in-
creases operational up-time. To predict future failures, three different modelling methods
are typically used. Data-driven modelling uses datasets and machine learning technology
to develop a model by either using classification or regression algorithms. Physics-based
modelling is a mathematical representation of an asset which uses common physical char-
acteristics to simulate its behaviour. An approach combining these two condition-based
methods is called hybrid modelling. A model gathering real-time data for monitoring the
condition of a physical asset is called a Digital Twin. A Digital Twin is a digital repres-
entation of an object. This technology is gradually getting more attention within several
industries. In this thesis, a data-driven model is developed to predict fuel oil consump-
tion per day for marine vessels, which directly correlates to the power output, a relevant
parameter in the context of machinery conditions. Several regression models have been
trained based on data from four of Gearbulk’s vessels. Data from a fifth vessel has been
used as test data to validate the accuracy of the model. A ranking of the ten best al-
gorithms showed a low Root Mean Squared Error (RMSE) for both the training and test
dataset. The results showed a clear correlation between fuel oil consumption per day and
the predictor parameters. The accuracy was higher on the test dataset which indicates a
potential overfitted model. This can however be solved by adjusting the data handling and
training method. The use of condition monitoring systems and digital twins are increas-
ing in popularity within the maritime industry, but the technology is not yet flawless. It is
important to understand how the technology works before it is implemented to maximise
its potential.
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Sammendrag

Shipping er en voksende industri og står for over 90% av verdenshandelen i dag[65].
Stramme tidsskjemaer i havn og lange reiseavstander er typisk innen transportering, og
derfor er effektivitet svært viktig for å opprettholde maksimal fortjeneste. En av de viktig-
ste faktorene for å opprettholde lønnsomheten er å redusere operasjonell nedetid. For å
forhindre uønskede reparasjoner og plutselig maskineristans, finnes det metoder for å
forutse disse hendelsene. Tilstandsovervåking er en strategi som innebærer å overvåke
tilstanden av fysiske komponenter plassert på et fartøy. Hvis uregelmessigheter i vibras-
jonsdata eller temperatur oppdages, kan tilstandsbasert vedlikehold utføres på relevante
komponenter før feilen skjer. Dette reduserer også vedlikeholdskostnadene og øker drift-
stiden. Tre forskjellige modelleringsmetoder blir ofte brukt for å forutse fremtidige feil.
Datadrevet modellering bruker datasett og maskinlæringsteknologi for å utvikle en modell
enten ved bruk av klassifiserings- eller regresjonsalgoritmer. Fysikkbasert modellering er
en matematisk representasjon av en gjenstand som bruker typiske fysiske egenskaper for
å simulere dens oppførsel. En kombinasjon av disse to tilstandsbaserte metodene kalles
hybrid modellering. En modell som samler sanntidsdata for overvåking av tilstanden til
en fysisk gjenstand kalles en Digital Tvilling. En Digital Tvilling er en digital repres-
entasjon av et fysisk objekt. I dag har denne teknologien har fått stadig mer oppmerksom-
het innenfor flere bransjer. I denne oppgaven er det blitt utviklet en datadrevet modell
for å forutsi fyringsoljeforbruk per dag for marine fartøyer, som direkte korrelerer med
kraftuttaket, en relevant parameter i sammenheng med maskinens tilstand. Flere regres-
jonsmodeller har blitt trent basert på data fra fire av Gearbulk’s fartøyer. Data fra et femte
fartøy har blitt brukt som test-data for å validere nøyaktigheten til modellen. En ranger-
ing av de ti beste algoritmene viste en lav Root Mean Squared Error (RMSE) for både
trening og test datasett. Resultatene indikerte en klar sammenheng mellom drivstoffor-
bruk per dag og prediktor parametrene. Nøyaktigheten var høyere på testdatasettet, noe
som indikerer en potensiell overtilpasset modell. Dette kan imidlertid løses ved å justere
datahåndteringen og treningsmetoden. Tilstandsovervåking og digitale tvillinger har økt
i popularitet innen den maritime industrien, men teknologien er enda ikke feilfri. Det
er viktig å forstå hvordan teknologien fungerer før den implementeres for å maksimere
potensialet.
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Preface

This thesis was written as a part of my master’s degree program at the Institute of Marine
Technology at the Norwegian University of Science and Technology. The idea behind
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1 Introduction

1.1 Marine industry

In the last few decades, the merchant fleet has seen a large growth in dead-weight tons
from 750M dwt in the year 2000, to around 2.1B dwt in 2021[75]. The main contributor to
this increase is oil tankers and bulk carriers. The cruise industry has also seen an increase
of over 700% since the year 1990 before Covid-19[78]. The industry took a big hit in 2020
during Covid-19 but has gradually been growing since. As a result of the ever-increasing
number of maritime vessels in operation, measures for increasing the safety of personnel,
customers and ship owners have become more important.

1.2 State-Of-The-Art - Maintenance Strategies

When working in the maritime industry, avoiding system failures is important. Vessels
like cruise ships often carry a large number of people which therefore increases the risk of
loss of human lives if there should be an accident. Examples are the passenger ferry MV

Doña Paz in 1987 which is often referred to as the deadliest peacetime maritime disaster in
history with 4386 deaths, and the cruise ferry MS Estonia which sank in the Baltic Sea in
1994 and claimed 852 lives[58][12]. It is not just the cruise industry which suffers when
exposed to a system failure. The shipping industry often relies on tight schedules, and
delays as a result of a failure can result in extensive expenses. Vessels such as container
vessels, bulk carriers and crude oil tankers often have cargo which can be more valuable
than the ship itself. Maintaining strategies to ensure a safe and low-risk environment at
sea is therefore substantially important in the maritime industry.
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Figure 1: Different failure patterns[1]

To prevent future incidents, different maintenance strategies are often implemented. The
reason behind this is to make sure the system keeps functioning well, while not being
interrupted in operation. The choice of strategy often depends on the equipment. This is
because some equipment can be replaced easily without much cost, and other elements
of a vessel can be very expensive to replace if a fault has been detected. It is therefore
important to know the system well before implementing a specific maintenance strategy.
Although there are several approaches, this section will mainly focus on three methods
commonly used today, Corrective maintenance (CM), Preventive maintenance (PM) and
Condition-based Maintenance (CbM) which is a type of Predictive maintenance (PdM).
The failure rate of components often follow different patterns such as the Bathtub Curve,
Wear out Curve, Fatigue Wear curve etc.. The most relevant maintenance strategy is hence
often dependent on the failure patterns. An overview of the different patterns is shown in
Figure 1.

Corrective maintenance, also known as Reactive maintenance or Run-To-Failure main-

tenance is a reactive approach where maintenance is only performed after equipment has
failed[27]. CM can in many situations be superior compared to other methods. Unlike
PM and PdM, CM is mainly used when the cost of equipment is substantially low relative
to the maintenance cost. If the probability of failure for a component does not increase
over time, such as the constant failure rate curve and Infant Mortality curve in Figure 1,
CM can be a suitable approach where maximising the lifetime of a component is eco-
nomically beneficial. This often applies to components with low criticality and does not

2



directly affect the performance or safety of the operation. In ship operation, CM can often
be non-practical since this requires spare parts on-board which takes up space for poten-
tial cargo or other economical-gaining factors. Maintenance on light bulbs is a common
example where CM is used.

Preventive maintenance is a proactive, systematic- and routine-based strategy where the
goal is to lower the maintenance cost, increase the lifespan and reduce the downtime of an
asset. This schedule-based approach is one of the most common practices in the shipping
industry today[66]. The maintenance itself consists of regular inspections performed by
the personnel. In addition to inspections, activities such as lubrication, cleaning and reas-
sembling of equipment also play a big part in this strategy. The time between maintenance
is determined based on the manufacturers’ recommendations, reliability- and Mean Time
Before Failure (MTBF) analysis, and previous experience. This approach is not always
time fixed as various assets have different characteristics regarding failure rate. Compon-
ents which follow an age-related failure pattern such as the wear-out-, bathtub- and fatigue
wear curve from Figure 1 are often most benefited when performing PM. The reason is
that components are dealt with before the probability of failure becomes too high.

The last maintenance strategy is predictive maintenance. This proactive approach is a
relatively new concept where data from sensors are used to monitor the condition of as-
sets. The data are supplied in real-time and used to accurately predict when an asset will
require maintenance, in addition to prevent equipment failure[76]. CbM which is a type
of PdM also uses real-time data gathered from sensors placed on real assets in a sys-
tem. The purpose is to get information on when the system needs maintenance and then
fix the problem before it happens, which helps reduce unplanned downtime and labour
hours[20]. There are several advantages related to implementing CbM. The Mean Time
Between Maintenance (MTBM) increases since the maintenance only takes place when
it is needed, unlike traditional PM. This reduces resources used on unnecessary work,
saves time and thus reduces cost. Since monitoring of the asset happens simultaneously
as the asset is working, interruptions in production are lowered as a result of not having
to perform a shutdown for inspection. An obvious disadvantage to such a system is the
immense technical knowledge required to operate it.

3



Table 1: A comparison between four commonly used maintenance strategies

Maintenance strategy Pros Cons

Corrective
maintenance (CM)

- Less planning required
- Lower short-term costs
- Simplified process
- Asset is not critical

- Highly unpredictable
- Downtime due to interrupted
operations
- Increased cost of maintenance
- Reduces safety

Preventive
maintenance (PM)

- Less unplanned downtime
- Increased equipment lifespan
- Efficient with well-trained personnel
- Safer work environment

- More labor-intensive
(need more staff)
- Expensive upfront cost
- Potential for over-maintenance
through unnecessary maintenance

Condition based
maintenace (CbM)

- Maintenance work is only performed when
needed
- Fewer unplanned downtime events
- Improved prioritization of maintenance time

- High cost of installation, training
and maintenance
- Sometimes difficult to choose
correct sensor equipment

Predictive
maintenance (PdM)

- Maintenance needed is predicted
- Reduces maximum amount of downtime
- Improved automation of maintenance tasks

- Expensive to implement and
maintain
- Time- intensive

1.3 Condition monitoring in the maritime industry

In the last decades, there has been a transition from typically corrective maintenance,
where maintenance is done when a system fails or brakes down, to predictive condition
monitoring [Figure 2]. PdM defines a lifetime of a component or system, and assumes an
increased failure rate after it’s ”worn out”. Estimating the Remaining Useful Life (RUL)
can sometimes be challenging since failure sometimes can be random, and not strictly
time-based. The reason is often different elements which can affect the asset such as
temperatures, external forces etc. This can typically be observed in PM where performing
scheduled maintenance can result in unnecessary expenses or high costs. This is mostly
due to maintenance being done either too early or too late. A study done by Nowlan
and Heap on aircraft equipment showed a significant difference in the amount of age-
related and random failures with 89% being random[1]. Failures encountered on marine
vessels, more specifically submariners, followed a similar distribution at 71% for random
events, according to the SUBMEPP study done by the US Navy[5]. Since preventive
maintenance often relies on age-related failures, a condition-based approach would be the
best alternative. Predicting when a system most likely fails will save significant costs and
prevent unplanned maintenance. Based on the statistics mentioned above, predictive and
condition-based monitoring have a huge potential in the marine industry.
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Figure 2: Development in maintenance strategies[43]

The current development of CbM within the marine industry varies greatly. Factors such
as the age of the vessel, available equipment and ship type often correlate to the technical
monitoring system found on board. Implementation of CbM on older ships can often
become quite costly since various parts most likely will require adjustments/replacements
to better function with sensors.

It is important to know which parameters to monitor on an asset when implementing
CbM. Since the implementation of such a system can be relatively expensive, choosing
the relevant assets which have a critical impact on the system is crucial. Sensors can
measure parameters such as vibration, temperature, pressure and strain.

The main contributor to maritime-related incidents is machinery failure, which often leads
to propulsion failure. Components such as bearings, gears and propellers are often mon-
itored because of their criticality to the propulsion system. Condition-based monitoring
such as vibration analysis on machinery is one of the most common methods used today
on ships. This involves among other things misalignment and imbalance detection and is
usually applied for rotating machinery. Oil analysis for wear detection, overheating and
contamination of marine machinery is also a common monitoring technique. Data monit-
oring is usually processed locally on vessels, but systems which allow remote monitoring
of sensor data from shore are getting more and more common. This allows the data to be
handled by the ship owner or CbM service providers. The advantage of sending real-time
data to shore is the opportunity to process data which requires high computational power.
The downside is however the increase in latency[43].

1.4 Condition based methods

There are primarily two model approaches used in CbM today; Physics-based Modelling
(PbM) and Data-driven Modelling (DdM). PbM, also known as a model-based approach
is a mathematical representation of an asset which uses physical characteristics such as
mass, torque, momentum and energy equations to simulate its behaviour[41]. Based on
the correlation between the simulation and the actual physical measurements, changing
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the model accordingly will make it possible to diagnose the component. The advantage
of using PbM is the opportunity to predict outside the range of existing data and predict
future events. Physics-based monitoring is therefore a good way to model when lacking
data, and hence suitable for e.g. newly developed equipment[16]. Physics such as fluid
mechanics calculations are often highly computationally intensive and therefore often
expensive to run. Calculations requiring much computational power can often be slow and
dependent on verification methods to be adjusted to fit real-time data. Another limitation
concerning PbM is the detailed physical knowledge required of the components. Physics-
based modelling of bearings and gear fault propagation are common within the maritime
industry[61]. These faults are often a result of a crack growth which contributes to the
degradation of the object. Measuring the crack size in a piece of operating machinery can
be difficult, thus research has proposed various methods to relate this size to measurable
vibration parameters.

DdM is based on computer science, statistics and data science and uses data gathered from
previous failures to recognise and learn failure patterns using methods such as machine
learning, clustering and neural networks. The quality of the model heavily depends on
the quantity and quality of the gathered data. Machine learning algorithms in condition
monitoring can e.g. be used to predict future machinery breakdowns through learning
from condition parameter patterns gathered from previous faults. An article published in
2010 showed how it was possible to develop a simulation model of a crankshaft, using
limited amount of data to make it agree with measurements, and then train a neural net-
work based on responses simulated for different levels of combustion fault in different
cylinders. The trained neural network was 100% accurate when recognising actual com-
bustion faults, and was also able to identify faulty cylinders as well as a good estimate of
the fault severity[24].

Figure 3: Illustration of different model approaches[6]

A relatively new and popular method is combining both physics-based and data-driven
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modelling to a so-called Hybrid model or Hybrid machine learning. This approach uses
advanced knowledge about the physical world combined with data science[25]. Data-
driven modelling is used to speed up the processing time experienced in physics-based
simulation, but lacks accuracy and is heavily dependent on high quality data. Hybrid ML
solves this problem by improving the accuracy of DdM by using gathered synthetic data
from physics-based simulation for training. Hybrid models can also be used to create
what is called a Digital Twin. This is further discussed in Section 1.5. An illustration of
the different condition monitoring approaches is shown in Figure 3.

1.5 Concept of a digital twin

A brief definition of a digital twin, according to IBM:

“A digital twin is a virtual representation of an object or system that spans its lifecycle,

is updated from real-time data, and uses simulation, machine learning and reasoning to

help decision-making.”[8]

This means that the main goal when implementing a digital twin is to gain knowledge
about a physical object or system through a highly complex virtual model (the twin). The
model is built on real-time data gathered from a real asset for accurate testing and meas-
urements. An example of a digital twin could be a digital representation of an offshore oil
platform. Through information and data from sensors and other physical assets, engineers
and operators are not only able to understand how the product is performing, but also how
it will perform in the future through different scenarios and conditions. This is crucial
since the information can help reduce future expenses connected to major accidents and
other undesirable scenarios.

Figure 4: Main steps of digital twin development[36]
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There are mainly three steps when developing a digital twin. The first step is to measure
data from a physical asset. This is done by first installing sensors on the asset to be mon-
itored[36]. The sensor has to be calibrated, efficient, and placed in optimal areas on the
object. The second step is to choose an optimal model for analysing the gathered sensor
data. This can either be based on physical-based modelling or data-driven modelling. A
combination of these two called hybrid modelling is also possible. The theory and prac-
tices behind each approach are presented in Section 1.3. The third and final step evaluates
the output data to determine the RUL and fault prediction. Analysing the data requires
a comprehensive understanding of the entire system. An illustration of the main steps is
shown in Figure 4.

A good example of an industry which has come a long way regarding digital twin tech-
nology is aviation. Since carrying passengers at high velocity and altitude is a risk with
potentially severe consequences, safety management plays a central role. Engineers and
scientists are using Internet of Things (IoT), location and sensor data to simulate how an
aeroplane would behave and react in different weather conditions and scenarios[44].

Figure 5: Fictional illustration of a digital twin[56]

1.5.1 Digital twins in maritime applications

Today, the world of technology and engineering is moving towards a more digitalised
world where tools such as IoT and artificial intelligence are getting more common when
solving problems. As mentioned earlier, the state-of-the-art concerning digital twin im-
plementation varies highly between different industries. The marine industry has a lot to
learn from aviation, but several companies such as DNV-GL, MPA Shipping and SINTEF
have invested time and resources in condition monitoring through digital twin techno-
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logy[26]. A project called The Open Simulation Platform Joint Industry Project (OSP)
was founded in 2018 and aimed to create an open-source initiative for co-simulation of
marine equipment, systems and entire ships[57][55]. The project was developed as a col-
laboration between DNV GL, Kongsberg Maritime, the Norwegian University of Science
and Technology (NTNU) and SINTEF Ocean. The OSP uses digital twins based on large
sets of interconnected models and components.

MPA Singapore has recently joined the digital twin trend[18]. They signed a Memor-
andum of Understanding (MoU) with Keppel Marine and Deepwater Technology (KM-
DTech) and TCOMS to develop a digital twin of a tugboat to simulate its behaviour in sev-
eral scenarios as well as use data analytical tools for improving its control and response.
An ongoing study called HealthProp aims to improve safety in Arctic and Antarctic oper-
ations by developing a digital twin for intelligent predictive monitoring of the propulsion
system drive line of ships. This project, founded by MarTERA, started in 2020 and is
scheduled for completion by August 2023[53][10]. The objects monitored include power
generation, propeller and components such as shafts, bearings and gears.

There are several applications where a digital twin can help maritime safety and increase
both efficiency and operability. Within shipping, areas such as fleet management, port
efficiency and optimisation of the end-to-end supply chain are likely to be benefited. As
shipping companies often serve multiple customers simultaneously, optimisation of the
fleet in terms of e.g. cargo carrying capacity serves an important part[60]. Historical data
and predictions of business transactions can help decision-making through the detection of
trade patterns. Fleet optimisation could also help make decisions based on unpredictable
factors such as weather conditions. A port optimisation model can address questions such
as how many berths are needed for the port to be most effective.

Offshore wind is today a rapidly growing industry, and several companies including Equi-
nor have invested in floating offshore wind farms[30]. The main reason for downtime
within the offshore wind industry is related to the drivetrain[40]. As a result, condition
monitoring and digital twin implementation on the wind turbine saves maintenance costs
and optimises operational uptime. This can typically be done by modelling gear loads and
load responses. The turbine model can monitor stress and fatigue in real-time, detect de-
gradation and further estimate RUL. Fedem Technology is a company which since 2016
has developed a digital twin of a wind turbine located in northern Norway[81]. Figure 6
illustrates how the real wind turbine interacts with its digital twin.
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Figure 6: Digital twin of a wind turbine[81]

1.6 Previous incidents

This section will cover two cases of previous incidents within the cruise industry which
share several similarities. The reasoning behind this is to discuss if condition monitoring
would have been relevant for preventing these incidents from happening. A little sum-
mary of each incident, as well as possible CbM solutions, are presented in the following
subchapters.

1.6.1 Viking Sky

On March 23, 2019, the cruise ship Viking Sky suffered an engine shutdown in Hustad-
vika between Kristiansund and Molde, just outside the coast of Norway, and was forced
to make an emergency stop[17]. The potential consequences were high as the vessel con-
taining over 1300 people almost ran aground. A helicopter rescue mission was launched
which lasted for several hours in extreme weather conditions. This incident quickly got
attention from the media worldwide and the question about what caused it arose. In-
vestigations have concluded that there were several causes why the engine experienced
a shutdown. Sjøfartsdirektoratet published a press release explaining the main findings
in the cause of accident investigation[68]. The engine shutdown was a direct result of
low oil pressure. The big waves most likely caused the oil tank to move in such a way
which stopped the supply to the lubricating oil pump. The amount of lube oil in the
tank was within the limit before the voyage, but this did not account for extreme weather
conditions.
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Condition monitoring technology could most likely have predicted the outcome of this
disaster. If sensors were installed within the oil tank to measure the oil level in different
sea states, a trained model could have warned the captain about the result of exposing the
cruise ship to harsh weather conditions. This is only one example of how this technology
can help decision-making.

Figure 7: Viking Sky in rough weather conditions[31]

1.6.2 MS Kong Harald

MS Kong Harald suffered a similar incident in the same area in August 2021. The
Hurtigruten ship, containing 236 passengers and 70 crew members, was scheduled to
sail from Kristiansund to Molde through Hustadvika but suffered a power shutdown of
the ship’s port engine shortly after departure. As repairs were underway, the starboard
engine also suffered a shutdown which meant that the ship lost all propulsion power[64].
The vessel began drifting towards the coast but was fortunately stopped by deploying an
anchor. This gave the crew enough time to restore the engine power. The initial shutdown
was caused by a leak of cooling fluid to the engine, according to officials. It was also
discovered that the reason behind the second shutdown was because of a failure of its fuel
supply system, mainly caused by wear and tear.

As mentioned in Section 1.3, installing sensors which can measure parameters such as
vibration, temperature, pressure and strain is crucial when monitoring the condition of an
asset. Since the second shutdown was caused by wear and tear, predictive maintenance
could have most likely prevented the incident from happening. These incidents are a good
reminder of the potential danger when operating in rough weather conditions often found
in such areas.
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Figure 8: MS Kong Harald after anchoring[39]

1.7 Research Motivation

With regards to the operation of a vessel, maintaining up-time is crucial when trying to
be competitive in the industry. This is especially important in the cruise and shipping
industry due to strict schedules and deadlines. As mentioned in Section 1.3 condition
monitoring contributes to decreasing downtime and is gradually getting more attention
within the maritime industry. Today downtime is often connected to failures or routine-
based maintenance.

Irregularities and abnormal conditions in the machinery are often the deciding factors
when talking about the cause of a system shutdown or a basic mechanical failure. The
key is to track these irregularities before it happens, through condition monitoring. As
discussed in Section 1.4 there are mainly three ways to analyse and predict these para-
meters. Data-driven modelling uses data to train and develop a mathematical model for
predicting values. Another approach is to develop a physical-driven model which uses
physical characteristics to simulate its behaviour. The last model combines these two into
a hybrid model.

Vessels are often operating in various conditions. Bad weather at sea is not something un-
usual, and commercial ships are usually built to sustain a broad spectre of environmental
conditions such as wave heights and wind speeds. Since these parameters highly vary
over time, the condition of equipment onboard will also change correspondingly. Devel-
oping data-driven models based on data collected from different vessels in operation will
help predict early faults by observing and discovering unusual behaviour in data plots
when testing new data with the constructed model. A research paper published in 2011
showed a direct correlation between fuel oil consumption and engine power[11]. Since
irregularities in power output can be a highly possible factor for a system shutdown, the
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indication of abnormality in fuel consumption can be used to predict if a failure will soon
be happening.

Various studies within the condition monitoring field have mentioned how environmental
conditions affect machinery. Although, developing a model to predict machinery beha-
viour as a function of fuel consumption anomalies on marine bulk carriers is yet to be
done. Implementation of a data-driven model like this could be useful for future marine
operations to forecast the condition of a vessel and improve decision making like e.g.
deciding if a vessel should be taking on a voyage in rough sea conditions.

As condition monitoring and digital twin technology gradually increase in popularity,
rules and guidelines become important to define. The reason for this is to make sure that
every stakeholder in the industry, such as different shipping companies, insurance com-
panies, manufacturers and others has the same standard and understanding of what digital
twin technology is and how it works. Some of the views and thoughts on DT technology
and condition monitoring among maritime companies are discussed in Section 5.

1.8 Thesis objective

The objective of this thesis is to study failures related to ship accidents and incidents.
A data-driven model will further be trained and implemented, using machine learning
technology and data from vessels. The relevant parameters used in the model to predict
certain behaviours and characteristics of the ship will be defined in Section 3. The main
goal of the thesis is to answer the following question;

Is it possible to predict accidents based on anomalies in machinery measurements?

This question is going to be answered through modelling and analysis of ship behaviour.
The analysis involves developing a standard model to identify irregularities in the con-
dition of the vessel through data-driven modelling. The model is going to use historical
data from five different cargo vessels to be able to predict fuel oil consumption. Fuel oil
consumption as mentioned earlier has a direct correlation to power output. Irregularities
in power output can indicate malfunction and failures in the machinery on a ship.

1.9 Thesis outline

In the introduction chapter, a study on different types of maintenance strategies is done.
The State-Of-The-Art of maintenance strategies are presented and CbM is introduced
as the future of maintenance. Typical condition monitoring strategies in the maritime
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industry and how it helps reduce incidents are discussed. In Section 1.4 three different
condition based methods are introduced. The characteristics behind data-driven, physics-
based and hybrid-based modelling are also discussed.

In Section 1.5 the concept of a digital twin is presented. The typical steps required for
developing a digital twin are shown, and examples of where it is already in use within
various industries today are also discussed. The state-of-the-art of DT-technology within
the maritime industry is presented and examples of ongoing projects which use this tech-
nology intending to improve safety are also mentioned. Short summaries of the Viking
Sky incident as well as the MS Kong Harald incident are presented to give the reader
an indication of typical failures where condition monitoring could have been a deciding
factor. The motivation for this thesis is described under Section 1.7.

Section 2 introduces the fundamentals of supervised and unsupervised machine learning.
The chapter will include some examples of common algorithms as well as a discussion
about the pros and cons of each method. This machine learning theory will work as
a basis for the result chapter in Section 4. Knowing the theory and technical aspects
of data-driven machine learning is important to understand the background behind the
result. The chapter called Case Study introduces the vessels which the data used in the
thesis are retrieved from. This includes five general cargo ships owned by the shipping
company Gearbulk. Data of the machinery installed onboard are shortly defined. The
most common operational areas are illustrated and typical weather conditions at sea are
mentioned. The modelling approach which describes the approach step by step will also
be presented in this chapter.

In Section 3 each parameter retrieved from the dataset as well as the parameters used as
predictors in the model will be defined. Section 4 contains the machine learning results
and compares all the different algorithms in terms of accuracy and efficiency. Plots of
predicted versus true responses as well as residuals are shown for both the training and
test datasets.

Section 5 is where the results and relevance of the modelling are being discussed. How
the model performed and the potential for improvements is discussed. A few interviews
were done beforehand and includes their perception of digital twin technology from their
point of view. This is also presented in this chapter.

Section 6 is the last chapter and concludes the thesis with final thoughts and suggestions.
The contribution to the research community as well as factors for improvement for further
work is presented.
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2 Methodology

As mentioned in Section 1.4 there are mainly three types of modelling strategies; Physics-
based Modelling, Data-driven Modelling and hybrid modelling which is a combination of
these. A physics-based approach can for example be used on rotating machinery for con-
dition monitoring purposes to predict the Remaining Useful Life. This is done by review-
ing relevant failure modes and their degradation mechanisms. Typically failure modes
on gears are crack detection and length estimation and tooth breakage[21]. Scuffing and
pitting fatigue on bearing are also possible failure modes. Although physics-based mod-
elling is a useful strategy when modelling the condition of a vessel or machinery, the
method is not as relevant for the problem described in the thesis. Data-driven modelling
performs best when huge data sets are available for analysis. Since the objective is to pre-
dict failures based on abnormality and irregularities found in past data, this thesis focuses
on modelling using a data-driven approach.

2.1 Machine learning

Section 4 describes the development and training of a model with the purpose to predict
incidents based on abnormal behaviour in data. Since the model is data-driven, the ap-
proach is based on computational intelligence and machine-learning methods[69]. This
section will cover the fundamentals of machine learning. The goal is to give the reader a
general understanding.

Machine Learning (ML) is a term commonly used in computer science. Arthur Samuel,
a pioneer within machine learning, famously defined machine learning in 1959 as

“The field of study that gives computers the ability to learn without explicitly being pro-

grammed”[63].

ML is usually separated in two subcategories,

• Unsupervised machine learning

• Supervised machine learning

What differentiates one from the other is based on how learning is received and how
feedback on the learning is given to the system being developed[72]. Generally, models
which use supervised learning are trained with labelled data, which means that the model
will learn and become more precise over time. On the other hand, unsupervised learning
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uses pattern recognition to find and recognise patterns in data which are unlabelled. Each
of the methods is described in detail below.

2.1.1 Unsupervised machine learning

Unsupervised machine learning is where models are not supervised using a training data-
set. Instead of using labelled data, the model itself discovers hidden patterns and insights
from the given data[38]. The goal is to find the underlying structure of a dataset and
gather the data in groups based on similarities and common characteristics. The dataset is
then presented in a compressed format. Unsupervised learning algorithms can be grouped
into two categories: clustering and association. Some common and popular unsupervised
learning algorithms are K-means clustering, hierarchical clustering and neural networks.
This machine learning strategy is often preferred when solving more complex tasks and
when labelled data is difficult to gather. The drawback is the potentially less accurate
result as input data is not labelled. The K-means algorithm is illustrated in Figure 9. In
this illustration, K=2 clusters are chosen and two different centroids are randomly placed
on two data points. All the other data points are assigned to the closest cluster centroid.
The centroids are then placed based in the centre of their assigned data points. These
steps repeat until the two centroids have successfully divided the dataset into two groups
(clusters).

Figure 9: K-means algorithm[59]
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2.1.2 Supervised machine learning

Supervised ML uses labelled datasets to train the model for a specific output. The system
is adjusting existing data to predict the outcome. The purpose is to compare the actual
output with the output learned by the algorithm to find errors and modify the model ac-
cordingly. An example of supervised ML is training a model for animal recognition. The
strategy is done by showing the algorithm a data set of various animal pictures and la-
belling them correctly. The model will then find the patterns for the different labels and
use this as a basis when deciding if an illustration is for example a cat or a dog. After the
model is trained, a new set of pictures the model has not previously observed are inserted
for validation to calculate the accuracy. If the animal suggestion is false, the model is
then modified. A basic illustration of supervised learning concerning geometrical figures
is shown in Figure 10.

Figure 10: Example of supervised learning with geometrical figures[37]

There are several approaches within supervised learning strategy. K-nearest neighbour,
Gaussian Process Regression (GPR), decision trees, linear regression and neural net-

works are some of the most common algorithms. Some of the more relevant methods will
be further described and discussed in Section 2.2.

2.1.3 Importance of model fitting

Several different factors determine whether a model is good or bad. The accuracy and
versatility of a model are not only reflected in a single correlation score such as the Coef-
ficient of determination (r2), but also in the ability to accurately predict new data which is
fed into the model, also called test data. A model which correlates perfectly with current
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data but fails when new data are inserted is called an overfitted model. The definition of
overfitting is defined by Oxford as;

“The production of an analysis which corresponds too closely or exactly to a particular

set of data, and may therefore fail to fit additional data or predict future observations

reliably.”[47].

To counter overfitting, separating data from the original dataset before training the model
is a good approach. After the model has been trained, the separated data can then be
inserted into the model to test its ability to adapt to new data. Figure 11 illustrates three
different regression models on the same dataset. The graph in the middle has a good
correlation and is an example of a nice fitted model.

(a) Underfitted model (b) Good fitted model (c) Overfitted model

Figure 11: Examples of different fitted regression models

The figure to the left has almost no correlation and is underfitted. An underfitted model is
often unable to accurately capture the relationship between input and output parameters.
The error rate is high in the training set, as well as the unseen test set. Underfitting often
occurs when the model is oversimplified and the training time is low. Simple solutions
to avoid underfitting can be to decrease regularisation. Regularisation is normally used to
decrease the variance with a model by applying a penalty to the input parameters with the
larger coefficients[29]. Reducing regularisation results in higher complexity and variation
in the model which means more successful training.

Another way to avoid underfitting is to increase the duration of model training. Introdu-
cing more features to the model will also increase the complexity, hence yielding better
training results. Lastly removing noise from the data will also help avoid underfitting.
Figure 12 is fairly similar to Figure 11 but illustrates classification rather than regression.
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Figure 12: Figure of underfitted, fitted and an overfitted classification model[28]

The last graph shows what an overfitted model could look like. Every single data point is
located on the dotted line and external test data will almost certainly differ from the line,
which makes it a less ideal model. There are some strategies to avoid overfitting when
training a model. Increasing the amount of training data can increase the model accuracy
by giving more opportunities to analyse the dominant relationship between the input and
output variables. This works best when the data inserted into the model is clean, which
means a well-filtered dataset that is optimised to create a good model. Unlike underfitting,
decreasing the number of features will simplify the model and further reduce the risk of
overfitting. Inserting data noise can also help avoid overfitting. Data noise is meaningless
data which makes the data harder to fit, thus harder to overfit.

2.1.4 K-fold Cross Validation

K-fold Cross Validation is a powerful measure for the prevention of overfitting. The k

stands for the number of groups the given data sample is divided into. The procedure for
this strategy is rather simple[14];

1. Mix the training set randomly

2. Divide the training set into k parts

3. (a) Select one of the k parts as the test data set

(b) Use the rest of the parts as the training data set

(c) Insert the test data into the trained model and evaluate the result

(d) Give the model a score based on the result

4. Repeat the third step until every part has been used as the test data set

5. Calculate the average score of the k scores acquired

6. The average score is now the accuracy of the model
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This method is popular in the world of machine learning. The reason is that it is simple
to understand and it generally results in a less biased or less optimistic estimate of the
model, compared to other methods. Choosing a good k-value should be done carefully as
a poor k-value may result in a high model score variance and therefore a misconception
of the performance of the model. A common strategy for choosing the value of k is to
make sure that each group has enough data to be representative of the whole dataset. The
most popular k-value in machine learning is 10 as it has generally shown to be relatively
accurate at a low computational expense. A value of 5 is also commonly used, but this
will of course depend on the dataset as there is not a fixed correct answer to this decision.
Figure 13 describes how the procedure is performed.

Figure 13: The procedure of K-fold Cross Validation[71]

2.1.5 Root Mean Square Error

The Root Mean Squared Error (RMSE) is one of the most popular methods within su-
pervised learning applications and is used to evaluate the quality and accuracy of the
predictions done by the model. The RMSE value is calculated using Euclidean distance
and describes how far the predictions fall from measured true values[15]. To calculate the
RMSE, the difference between the predicted and observed value for the ith observation
on the dataset is calculated for each data point. The absolute value of the error is squared
and added together for each i and divided by the total sample size. The square root of this
value is the RMSE. The formula for RMSE is defined in Equation 1.

RMSE =

√
∑

N
i=1 ∥y(i)− ŷ(i)∥2

N
(1)

When experimenting with numerous different machine learning algorithms to find the
best fit for a model, having the RMSE value makes it substantially easier to choose the
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preferred model. Choosing the best model based on e.g. RMSE will be further discussed
in Section 4.

2.2 Machine learning algorithms

Various machine learning algorithms can be used when developing a model. The best
performing algorithms often vary and are often highly dependent on the dataset used. In
this chapter different popular supervised machine learning algorithms are introduced and
discussed.

2.2.1 Linear Regression

Linear regression is a simple way to identify the relationship between a dependent vari-
able, also called the response, and one or more independent variables, commonly called
predictors[35]. Each type of linear regression seeks to plot a straight line of best fit. A
process using multiple predictors is referred to as multiple linear regression, and a process
with only one predictor is referred to as simple linear regression. These models are often
fitted using the least-squares approach. A mathematical representation of a simple linear
regression algorithm is shown in Equation 2 and a multi-linear regression algorithm is
shown in Equation 3.

y = β0 +β1X1 + ε (2)

y = β0 +β1X1 + ...+βnXn + ε (3)

The variable y represents the predicted value of the dependent variable. β0 is the value
of y when all other parameters are equal to 0. The term β1X1 represents the regression
coefficient of the first independent variable X1. In other words, β1 is the weight of the
variable X1. n is the number of independent variables and ε represents the error in the
model. This is the variation of the estimated y.
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Figure 14: Figure of simple linear regression[54]

The advantage of linear regression modelling is its simplicity. The algorithm is computa-
tionally efficient with fast speed and generally has a relatively interpretable output. Des-
pite this, it can become too simple for more complex modelling problems. The assump-
tions for linearity do make it sensitive to outliers and homoscedasticity is assumed[42].

2.2.2 Gaussian Process Regression

Gaussian Process Regression (GPR) is a nonparametric, Bayesian approach to regression
and is becoming increasingly more popular and common in the machine learning soci-
ety[62]. The algorithm uses probability distributions over all possible values rather than
learning exact values for every parameter in a function, which differs from many other
supervised learning methods. The algorithm is nonparametric which means not limited
by a specific functional form. Instead of probability distribution calculation of parameters
from a function, GPR calculates the probability distribution of all permissible functions
which fit the data.

The GPR models are kernel-based probabilistic models with a finite collection of random
variables with a multivariate distribution[80]. A kernel (or covariance function) defines
the behaviour of the function which is modelled, and thus important to choose wisely to
get an accurate model. The covariance function is a measure for the correlation of two
states, x and x′[79]. This is shown in Equation 4.

k(x,x′) = k(||x− x′||) = k(r) (4)

An overview of some of the different kernels used in GPR and their expression are shown
in Table 2 with further explanations of variables.
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Table 2: Different covariance functions for Gaussian process modelling[79]

Kernel Mathematical expression
Constant k = σ0

2

Linear klin(x,x′) = xT x′+ c
Polynomal kpoly(x,x′) = (xT x′+σ0

2)p

Squared exponential kSE(r) = exp(− r2

2l2 )

γ - exponential kγ(r) = exp(−( r
l )

γ) for 0 < γ ≤ 2
Rational quadric kRQ(r) = (1+ r2

2αl2 )
−α

Power kp(r) =−rp

Matern - 5/2 k
(
xi,x j

)
= σ2

f

(
1+

√
5r

σl
+ 5r2

3σ2
l

)
exp

(
−

√
5r

σl

)

• σ2
0 = hyperparameter

• c = constant

• l = lengthscale

• p = polynomial degree

• α = relative weighting of large-scale and small-scale variations

Gaussian processes are fully specified by its mean m(xi) and the covariance function
k(xi,x j), and hence defined in Equation 5.

f (xi)∼ GP(m(xi),k(xi,x j)) (5)

GPR is often a preferred model strategy when dealing with smaller datasets because of
their well-tuned smoothing and remail computationally affordable. Gaussian processes
can also be optimised exactly, given the values of the hyperparameters, which are also
valid for other kernel methods. With the use of kernels, the method can be highly ver-
satile in handling various data structures. A drawback is often a high computational time
compared to the alternatives.

2.2.3 Support Vector Machine

Support Vector Machine (SVM) is a supervised machine learning technique mainly di-
vided in two categories, Support Vector Classification (SVC) and Support Vector Regres-
sion (SVR)[32][9]. It was first developed by Vapnik in 1995 and is based on statistical
learning theory[19]. Just like Gaussian Process Regression, SVM also operates with ker-
nels. The algorithm is used for recognising subtle patterns in complex datasets. It uses
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a high-dimensional feature space. The main method in SVC is finding an optimal hyper-
plane which separates two classes. A hyperplane is generally a linear decision boundary
that differentiates classes in SVM. This operates as a line in two dimensions and as a
plane in three dimensions.

To find the desired hyperplane, the norms from the vector w need to be minimised. A
norm is referred to the length of a vector. This measure is the same as maximising the
margin between two classes, which is the distance between the hyperplane and the optimal
hyperplane and normally never contains any data points. The closest data points to the
hyperplane are called support vectors[50].

As for SVR the method is to construct a hyperplane which is positioned as close to most
of the data points as possible. This means choosing a hyperplane with small norms while
also minimising the sum of the distance between the hyperplane and the data points[74].
Figure 15 shows an illustration of the two different SVM methods. The figure to the left
shows a non-linear SVR model and the right-hand model is an example of SVC. The
dotted line represents the hyperplane and the green lines show the tolerable error.

Figure 15: Illustration of a linear SVC and a non-linear SVR model[52]

To achieve a good model in SVM, tuning parameters are important. One of the relevant
parameters are the regularisation (also referred as c) parameter. This tells how important
avoiding misclassifications on each training set are. It is the relation between model
complexity and empirical error. A large value often results in an overfitted model, and
when the value is small, the risk of underfitting the SVM increases.

Another parameter which is usually tuned is the gamma parameter. The parameter defines
how far the influence of a single training example reaches. With a high gamma, only
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points close to the separation line are considered. Increasing the gamma often results in
overfitting the SVM. A small gamma means including points far away from the separation
line. Instead of overfitting, decreasing the gamma leads to an underfitted model as more
points are considered. Figure 16 shows how low and high c and gamma parameters affect
the model.

The last relevant tuning parameter is the epsilon parameter. This parameter defines the
loss function that ignores the error. In SVR, epsilon gives a maximum allowed error for
the regression model.

(a) Difference between high and low c

(b) Difference between high and low gamma

Figure 16: Illustration showing high and low c and gamma parameter[67][51]

When comparing SVM to logistic regression, SVM is often preferable if the dataset is
small and complex. It even performs well with unstructured data. Implementation of
different kernel solution functions makes the model quite versatile when solving complex
problems. SVM also have good scaling of high dimensional data. A drawback of having
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a lot of potential kernel solution functions is having to choose as there can sometimes be
more than one good model. Similar to GPR time spent training can be relatively time-
consuming when using large datasets[3].

2.2.4 Artificial Neural Networks

Just like SVM and GPR, Artificial Neural Networks (ANN) are used for solving complex
non-linear relationships between features and targets. This method can be used in both su-
pervised and unsupervised learning. ANN is a biologically inspired computational model
and consists of hundreds of single units called artificial neurons connected with coeffi-
cients, or weights, which make up the neural structure[2]. It is a parameterised system
and does not gather its knowledge through programming, but instead detects patterns in
data and is trained through experience. A network of functions is used to translate a set of
data inputs into the desired output. The components of the model can be simplified into
three parts; an input layer, one or more hidden layers, and lastly an output layer. Figure 17
illustrates an example of a single-layered artificial neural network.

Figure 17: Example of a shallow neural network[4]

The input layer consists of nodes of information which is data used for model learning.
The hidden layer consists of a set of neurons and is the place where all computational
calculations on the input data happen. The output layer is where the conclusions and res-
ults of the model’s calculations lie. It is possible to have more than one output node if the
classification problem is non-binary[23]. A network consisting of only one hidden layer is
called a shallow neural network. This is the simplest form of a neural network. Examples
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of shallow networks are Narrow NN, Medium NN and Wide NN. Two or more hidden lay-
ers, such as bilayered NN and trilayered NN are often called deep neural networks. How
a neuron works concerning input and outputs is illustrated in Figure 18.

Figure 18: Mathematical model of an artificial neuron[22]

The mathematical expression is shown in Equation 6. xm is the input value from the input
layer, ωm is the weight of the input, φ is the activation function and b is a constant added
for better model fit. y represents the output.

y = ϕ

(
∑
m
(ωmxm)+b

)
(6)

2.3 Case Study

Figure 19: Plover Arrow[77]
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Vessel data from the company Gearbulk are processed and used when developing a data-
driven condition-based model. Gearbulk is an international shipping company, and to-
gether with its related companies, operates the world’s largest fleet of open hatch ves-
sels[33][34]. Their fleet consists of around 70 open hatch and other specialised and con-
ventional vessels. Gearbulk has a joint venture with G2 Ocean which operates the fleet.
The data used in the developing process of the model in this study is received from five
different vessels. The data are chosen over a 16-month period starting from the 1st of
January 2021 to the 4th of May 2022. An overview of each vessel is shown in Table 3.

Table 3: List of vessels used for model development. Data are received from Gearbulk’s
homepage and MarineTraffic

Name Ship type LOA
[m]

Breadth
[m]

Engine
[kW] DWT Built

year
Plover
Arrow

OPEN HATCH GANTRY
CRANE (OHGC) 199.7 32.2 11 520 55 459 mt 1997

Swift
Arrow

TOTALLY ENCLOSED
FORESTRY CARRIERS (TEFC) 185 30.4 9 378 42 276 mt 1992

Corella
Arrow

OPEN HATCH GANTRY
CRANE (OHGC) 225 32.27 12 577 72 863 mt 2009

Weaver
Arrow

OPEN HATCH GANTRY
CRANE (OHGC) 199.7 32.2 11 520 55 402 mt 1998

Avocet
Arrow

OPEN HATCH JIB
CRANE (OHJC) 199.98 32.26 7 730 62 841 mt 2015

2.3.1 Machinery

All the vessels in the study use a two-stroke marine diesel engine with an in-line cylinder
configuration. Diesel engines are often sorted in three categories, slow (< 300 RPM),
medium (300 - 900 RPM) and high speed (> 900 RPM)[46]. The rotational speed at the
maximum continuous output power of all the machinery used in this thesis has a range
between 90 to 130 RPM. They are therefore considered slow-speed engines. There are
several advantages of having a two-stroke main propulsion engine compared to a four-
stroke. The running cost of operating a vessel is often reduced as a result of the ability
to burn low-grade fuel oil[7]. The thermal and engine efficiency of two-stroke engines
are often much better. This type also has a higher power-to-weight ratio and is, therefore,
able to carry more weight and cargo. Some other factors are the increased reliability while
operating and less required maintenance. The fuel type used in the vessels is either Heavy
Fuel Oil (HFO) or Marine Diesel Oil (MDO). The machinery data from each vessel are
shown in Section A.
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2.3.2 Geographical areas

The vessels mentioned in Table 3 are used for bulk transport and are in service all around
the world. The dataset used in the model contains data from all around the world, which
gives the model a relatively general and versatile field of application. As Figure 20 illus-
trates, the majority of the ports visited are located in Asia, Oceania and South America,
but various other ports are also included. The heatmap is generated from Maply which is
an application for visualising and analysing location-based data[48]. This map is based
on the port destinations found in the dataset, independently of the specific vessel. Each
port has been given a weighting based on the number of visits.

Figure 20: Heat map showing port activity by the vessels from January 2021 to May 2022

Figure 21 illustrates the frequency of port visits for each country. As observed, Japan,
Australia, China, South Korea and Brazil represent the majority of the visits.
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Figure 21: Number of port visits sorted by country between January 2021 and May 2022

2.3.3 Weather conditions

As mentioned, the vessels operate in all kinds of sea conditions and are built to sustain
rough weather conditions. A study from 2020 on historical wave data showed a Signific-
ant wave height (Hs) ranging between 2-3.5 meters in the Pacific ocean and 1-2.5 meters
in the Atlantic ocean, between the year 1979 and 2014[70]. Big waves and high wind
speeds are often direct factors to wear and tear on offshore ships and structures. The
weather data collected from the dataset in this study are based on the wind and waves
measured while sailing. Different wave heights and wind speeds are categorised accord-
ing to the Beaufort scale. The scale ranges from 0 to 12 for wind force, 0 to 9 for the sea
force and describes the weather condition in form of wind speed and wave height. The
Beaufort scale is defined in Table 4 under Section 3.1.

2.3.4 Modelling approach

The goal of the thesis is to make a model which can predict machinery failure. There
are various measurable parameters which can indicate a probability of failure, and two of
the most relevant variables are main engine power and auxiliary power. As mentioned in
Section 1.7, there is a direct correlation between power and fuel oil consumption[11]. As
a result, the model will be constructed to predict fuel oil consumption per day since the
dataset provided by Gearbulk does not include power consumption.

A dataset containing four of the five vessels is then exported to Matlab as a formatted
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excel file. Data cleaning is performed to remove data which have a negative influence on
the model. Handling missing data values are also important as not having data sometimes
counts as a value of zero, which can heavily influence the model. To assure a versatile
and well-fitted model, the dataset from vessel no. 5 is excluded from the model training
and used for later testing.

The training of the dataset is performed by an in-built application in Matlab called Regres-

sion Learner. This is a tool which lets you explore data, select features, specify validation
schemes, optimise hyperparameters and so on without writing any code. After importing
the training dataset to Regression Learner, the response parameter is chosen from the data-
set which in this setting is fuel oil consumption per day. As mentioned in Section 2.1.4,
avoiding overfitting during model training is important. K-fold is performed with five
cross-validation folds. The K-fold strategy is not to be confused with excluding vessel
no. 5, as K-fold is only for testing the model made from vessels 1 to 4.

A set of relevant parameters from the dataset are chosen as predictors. The method used
for determining the best predictors is called Feature Selection. The goal of this method is
to mainly remove non-informative or redundant predictors from the model[45]. Feature
selection can either be performed using algorithms such as MRMR and F Test or simply
iterate between several combinations of predictors from the dataset and compare the res-
ults to find the best group. The last method is the approach used in this thesis. When
all relevant features are selected, plots representing the fuel oil consumption per day as a
function of each feature are generated.

To train the model, the user has to choose a fitting algorithm. There are over 20 algorithms
in Regression Learner, and the main methods include Linear Regression Models, Regres-
sion Trees, Support Vector Machine (SVM), Gaussian Process Regression (GPR), Ker-
nel Approximation Regression, Ensembles of Trees and Neural Network. The chosen
approach was to train all the algorithms simultaneously and further choose a fitting al-
gorithm for testing. An overview of all algorithms used for training is listed below.

Linear Regression Models

Linear

Interactions linear

Robust linear

Stepwise linear

Regression Trees

Fine tree

Medium tree

Coarse tree

Support Vector Machines

Linear SVM

Quadratic SVM

Cubic SVM

Fine Gaussian SVM

Medium Gaussian SVM

Coarse Gaussian SVM
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Gaussian Process Regression

Squared Exponential GPR

Matern 5/2 GPR

Exponential GPR

Rational Quadratic GPR

Kernel Approximation Regression

SVM Kernel

Least Squares Regression Ker-
nel

Ensembles of Trees

Boosted Trees

Bagged Trees

Neural Network

Narrow Neural Network

Medium Neural Network

Wide Neural Network

Bilayered Neural Network

Trilayered Neural Network

After the training is done, a score which is used to check the fitting of a model is generated
and is usually called Root Mean Squared Error. The math behind RMSE is explained in
Section 2.1.5. This indicates the difference between the actual data and the regression line
and is referred to as the standard deviation of the prediction errors, also commonly called
residuals. A plot of predicted versus actual data, as well as residuals are made for each
algorithm. The training results include parameters such as Coefficient of determination,
predicting speed and model training time.

Lastly, the model is tested by inserting data from vessel number 5 which has not been
exposed to the model before. The results of the modelling are shown and discussed in
Section 4. A figure illustrating the approach explained in this section is shown in Fig-
ure 22.

Rawdata
of

Vessel 1-
5 

Cleaning
of data

Data of vessel 5
(test data)

Model training
using data from

vessel 1 - 4

Inserting
test data

into
model

Modelling process

Validation and 
rankings of  

different models
Analysis of validation

result and error
function

Figure 22: Figure of the modelling process
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3 Data collection

The data used in this thesis are collected from the shipping company Gearbulk and involve
data from five of their vessels. As mentioned in Section 2.3, the period of the data is from
January 2021 to May 2022. The data are tracked by sensors and observations. A report
containing all the data is referred to as a Noon report and is a data sheet prepared by the
ship’s chief engineer once each day at noon local time.

The dataset used in this thesis contains over 20 parameters and has over 1400 data points/measurements
quite evenly spread between all five vessels. A list of the most important parameters are
shown below, and their value is valid for the specific interval between the measurements.

• Vessel name

• Destination

• Sailing time [days]

• Speed [knots]

• Miles

• Fuel oil consumption

• Fuel oil consumption per day

• Miles per Metric Tons (MT) fuel

• RPM

• Average draft

• Trim of vessel

• Sea direction

• Sea force

• Wind direction

• Wind force

• Report date

• % Sulphur emissions

• Cargo in MT

When choosing the most relevant parameters, it is important to exclude data with no
relation to the response parameter. If the model tries to adjust itself based on irrelevant
data, it can result in a wrong correlation basis and ruin the purpose of the relevant data.
The parameters used to develop the model are defined in Section 3.1 and based on the
feature selection method described in Section 2.3.4.

3.1 Parameters

This chapter will introduce the different parameters used, as well as their relevance and
impact on the results of the model.
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3.1.1 Sailing time in days and miles

This parameter is defined as the amount of time between the data measurements where
the vessel is in operation. The value generally spans between 0 and 1 day, but some
of the values are 1.04 and 0.94 days which is a deviation of one hour due to changes
in time zones. This happens when the vessel either sails westbound or eastbound. The
miles parameter is defined as the distance in miles which have been sailed between each
measurement.

3.1.2 Fuel oil consumption per day

Fuel oil consumption per day is the amount of fuel oil consumed divided by the sailing
time. This is the parameter that the model will try to predict as it is closely related to
power output, which can indicate if there is something wrong with the machinery.

3.1.3 Miles per metric ton fuel

The number of miles covered per Metric Tons fuel is related to fuel efficiency. Large
and unusual fluctuations can indicate a malfunction in the machinery or other fuel-related
components on the vessel.

3.1.4 RPM

The RPM, also known as revolutions per minute, describes the speed of rotation in the
machinery. As mentioned earlier, the vessels in this case study operate with slow-speed
two-stroke engines and have maximum RPM values around 100 RPM ± 20 RPM.

3.1.5 Average draft and trim

The average draft of the vessel is directly correlated to the amount of cargo on board.
The trim of the vessel is defined as the difference between the forward and the aft draft.
Figure 23 shows a vessel with a difference in forward and aft draft, resulting in a trim. Dif-
ferent trims have an influence on the fuel consumption since viscous and drag resistance
are dependent on the underwater surface area.
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Figure 23: Figure showing a vessel with a trim[73]

3.1.6 Wind and sea force

Each vessel is exposed to different weather conditions in the form of wind and waves
when sailing across the oceans. The data describing the conditions are given in wind and

sea forces instead of knots and wave heights. The wind force ranges from 0 to 12 and the
sea force ranges from 0 to 9 on the Beaufort scale. Table 4 defines the different values for
the wind and sea forces[49].

Table 4: Table describing the wind force and sea state values, according to the Beaufort
scale[49]

Wind
force Description Wind

speed [knots]

Probable
wave

height [m]
Sea force

0 Calm <1 <0.1 0
1 Light Air 1 - 3 0.1 1
2 Light breeze 4 - 6 0.2 2
3 Gentle breeze 7 - 10 0.6 3
4 Moderate breeze 11 - 16 1.0 3 - 4
5 Fresh breeze 17 - 21 2.0 4
6 Strong breeze 22 - 27 3.0 5
7 Near gale 28 - 33 4.0 5 - 6
8 Gale 34 - 40 5.5 6 - 7
9 Strong gale 41 - 47 7.0 7

10 Storm 48 - 55 9.0 8
11 Violent storm 56 - 63 11.5 8
12 Hurricane >63 >14 9

3.1.7 Wind and sea direction

The wind and sea direction parameters are defined as values in a coordinate system and
range from 1 to 8. The values are relative to the vessels cruising direction. Figure 24
shows the different values relative to the direction of the vessel.
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Figure 24: Wind and sea directions

3.2 Data preparation

As mentioned in Section 2.1, clean data are important when preparing a dataset for train-
ing. If there are values which are either too big, too small or physically impossible, they
should be removed before the training algorithms are running. If the goal is to develop
a data-driven model based on a dataset, it is important to maximise the potential of the
data. If the goal is a well-performing and accurate model, handling the data correctly and
structured is a deciding factor. The process of data cleaning involves preparing a dataset
for analysis by filtering and removing data which is irrelevant to the model and/or has a
negative impact on the results.

Data cleaning as a process can sometimes be divided into three stages: screening, dia-
gnosis and editing[13]. The screening phase involves removing four types of abnormal-
ities: lack of data, outliers, strange patterns and unexpected analysis results. The goal
is to minimise the noise while also maximising the signal in the dataset by identifying
and removing errors. The diagnostic phase has a purpose of diagnose each data point
for incorrectness, missing data, true extreme, true normal or idiopathic (no explanation
found, but still suspect). It is also important to be aware of data which are either biolo-
gical or physically impossible. After the diagnostic phase is done, editing the remaining
data should be done. Each abnormal observation should be either corrected, removed or
remained unchanged. Impossible values should always either be corrected if a solution is
found, or removed.
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4 Results

This section will cover the results of the training and test dataset. The algorithms used for
training are compared, and plots showing the result of the best-fitted model are illustrated.

4.1 Training results

After the algorithms presented in Section 2.3.4 were trained, a list of all the results was
created. This list contains important data about each model and is used when determin-
ing the best model for predicting Fuel oil per day (FODay). An overview of the top 10
algorithms sorted by RMSE-value is shown in Table 5.

Table 5: Result of the 10 best algorithms sorted by RMSE

Algorithm name RMSE R-Squared Training time [s]
Matern 5/2 GPR 0.95256 0.98 55.04
Cubic SVM 0.96515 0.98 7.36
Trilayered Neural Network 1.0054 0.98 83.41
Wide Neural Network 1.085 0.98 73.51
Bilayered Neural Network 1.0924 0.97 75.43
Quadratic SVM 1.1471 0.97 4.14
Rational Quadratic GPR 1.1758 0.97 122.77
Squared Exponential GPR 1.3267 0.96 61.09
Medium Neural Network 1.3433 0.96 65.83
Exponential GPR 1.3623 0.96 48.12

The results are relatively close to each other with only about 0.4 difference in RMSE
value. Of all algorithms, the Matern 5/2 GPR seems to give the best result. This is also
the case in the R-squared value and all values are also substantially close to each other
with only 0.02 in difference from the highest to lowest value.

That being said, interesting information lies in the training time. The results show a big
difference in the time used for training. The Rational Quadratic GPR have the longest
training time of 122.77 seconds which is almost 30 times longer than the Quadratic SVM.
Whether a good model is dependent on efficiency, indicated by a low training time, is
debatable, but this thesis has evaluated the best models purely by the Root Mean Squared
Error. If the dataset contains a huge amount of data, a more efficient model would prob-
ably be preferred.

The result showing how the models perform when exposed to unseen data from vessel 5,
is presented in Table 6. The rankings differ from the previous table, but the Matern 5/2
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GPR still stays on top. When comparing the RMSE from the previous table to Table 6,
the values are lower.

Table 6: Result of the 10 best algorithms for test data, sorted by RMSE

Algorithm name RMSE
(test data)

R-Squared
(test data)

Matern 5/2 GPR 0.28486 0.98
Rational Quadratic GPR 0.35728 0.97
Bilayered Neural Network 0.42382 0.96
Trilayered Neural Network 0.44178 0.96
Cubic SVM 0.50402 0.95
Wide Neural Network 0.52356 0.94
Quadratic SVM 0.62718 0.92
Squared Exponential GPR 0.69372 0.90
Exponential GPR 0.69601 0.90
Medium Neural Network 0.77239 0.87

4.2 Model

The Matern 5/2 GPR has the best result in terms of fit. A common method to show the
fit of a model is a Predicted response versus the True response plot. A plot showing the
correlation for the Matern 5/2 GPR algorithm is shown in Figure 25. Since the purpose
of the model is to predict fuel consumption per day, this parameter is going to be defined
and referred to as the response.
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Figure 25: Predicted versus true fuel oil consumption per day, with Matern 5/2 GPR
Model

The straight line in the plot represents the optimum value where x = y, in other words
where the predicted is equal to the true response. Of all predicted plots, the highest error
value is 10.85 which is an error of 74%. Otherwise, the model has a generally good fit.

Figure 26 shows the residuals (errors) for the predicted and true responses separately. Re-
siduals are defined as Residual=Observed–Predicted for a specific response value. This
figure gives a better visualisation of the error values. A negative value means a prediction
value higher than the true value and vice versa. FODay is defined as fuel oil per day.

39



Figure 26: Validation residuals for true response

When testing the model with data from vessel 5, the Matern 5/2 GPR performs well. The
errors are almost negligible and lower than the training dataset. This is rather abnormal as
test errors often are close to the training error. This will further be discussed in Section 5.
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Figure 27: Predicted versus true fuel oil consumption per day, with Matern 5/2 GPR with
test data

Figure 27 shows the plot of the predicted response versus the true response of the test
data. Figure 28 is the error for each true response.

Figure 28: Validation residuals for true response, for the test set
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5 Discussion

When Condition-based Maintenance is performed, live data from sensors are often fed
into a model to give any indication if maintenance is needed. The key to hybrid mod-
elling is to utilise the advantages from both Data-driven Modelling and Physics-based
Modelling. The model developed in this thesis has only been using a data-driven machine
learning modelling approach. One of the advantages of DdM is that knowledge about the
underlying process is not needed. The model relies purely on data from measurements.
This approach is only viable if the data used is clean and at an acceptable quality level.
Good knowledge and understanding of the data are therefore required to separate relevant
from bad data.

In the model, abnormal data are used as an indication when predicting potential failures.
The purpose of the model is not to use data from failures in the machine learning training
phase, but rather to create a standard of how the machinery behaves under normal condi-
tions. When a correlation is found between the predictors and the response, in this case
fuel consumption per day, it is possible to define a safety boundary where data within the
boundary are considered normal. If data from another vessel are inserted into the model
and shows several abnormal errors outside the boundary, it could indicate unusual power
output which would most likely mean a fault in the machinery. Figure 29 is an example
of a boundary error set to a value of ∼ 14.

Figure 29: Figure showing an example of boundaries for the model with boundary error
of ∼ 14
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The results of the model presented in Section 4 show a very good fit and a low RMSE
which often defines the quality of a model. As mentioned, training time did not affect
the development phase in this case since the dataset was not at a very large scale. This is
something which should be considered if operating with more data points. Generally, the
Support Vector Machine algorithms were superior in training efficiency with only short
of six seconds on average. GPR and Neural Networks on the other hand were not as
efficient, with ∼ 72 and ∼ 74 seconds respectively in average training time.

Even though the RMSE score is within acceptable values, the score of the test dataset for
the best model is substantially lower at ∼ 0.285 compared to ∼ 0.953, which is also the
case for all other algorithms. This looks like a good result but means that the model is
better at predicting unknown data rather than known data. In a good model, the training
error is often slightly lower than the test error. A lower test error relative to the training
error can also be caused by an unreasonably high degree of regularisation. To resolve this
problem, reducing the number of free variables is a potential solution. Another reason
why the test error could be lower is the lack of hard-to-predict points in the test dataset,
which means a test set that only contains easy cases. This can be solved by collecting more
data from more vessels. Cross-validation (K-fold) was done on the training dataset but
did not include data from the test dataset (vessel 5). If the K-fold method were performed
on a dataset containing data from all vessels with a random portion being the test dataset,
this result could probably have been avoided. Changing the model hyperparameters to
better fit the data is also a potential solution.

The model is primarily fitted for cargo vessels. Vessels of other dimensions and different
machinery such as cruise ships will naturally react differently in different weather con-
ditions. Making a model which fits every vessel is almost impossible. Several models
should therefore be developed if the goal is to predict failures on different vessel types.

Since the feature parameter of this model is fuel oil per day, the results can also be used
for other applications. Reducing CO2 emissions within the shipping industry is an ongo-
ing topic, and as new rules and regulations are implemented, the race toward a greener
maritime industry is currently in progress. A model which can predict fuel oil consump-
tion can e.g. be used to find the most optimal sailing path concerning emissions. The
operator of the model can use weather conditions as input parameters to choose between
different routes to minimise resistance and also save time.
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5.1 Industry view on digital twins

Condition monitoring and digital twin implementation are gradually getting more popular
and are used by several companies within the maritime industry today. Since the digital

twin term often is used in different settings, the understanding and definition of this new
technology vary. This chapter discusses the view of digital twins from an industry point
of view and is based on interviews.

ABS (American Bureau of Shipping) is a class society which focuses primarily on the
safety of people, property and the environment within the maritime industry. According
to them the use of digital twins mostly depend on what you use it for and how it is used.
How digital twins are used is very dependent on the targeted outcome and therefore has
become a buzzword because there is no clear definition of what a digital twin is. A twin
does not need to be a typical finite element digital model, but can also be used in e.g. data
filing or documents because almost everything can have a digital copy of itself. ABS has
a goal to implement some kind of digital twin on all vessels within their fleet in the future.

One of the main benefits of transferring from calendar-based maintenance (typically pre-
ventive maintenance) to condition-based maintenance is the time saved. This is because
focusing on specific and critical parts rather than having to pay attention to the whole
vessel becomes possible. The time saved can instead be used on maintenance planning
instead of a sudden shutdown. Unplanned maintenance is often expensive and time-
consuming. While there are many benefits to digital twin implementation, it is also
important to be aware of the potential challenges. Installing sensors for real-time data
streaming is not cheap, and according to ABS, minimising the number of sensors without
losing accuracy is a deciding factor. It is important to not overdo it by installing an
unnecessary amount. Digital twins are often based on machine learning models, and
indications of problems are not always clearly discovered. Therefore, the reliance on
machine learning models should be tempered with empirical knowledge of experienced
engineers. Having an over-reliance on a technology still under development can poten-
tially have huge consequences. Moving in a step-by-step manner and understanding the
consequences involved when going into the digital age are important.

Gard is a marine insurance company which provides liability, property, and income insur-
ance to shipowners and operators. They have a rather conservative view of digital twin
technology compared to e.g. class societies. The cost of insurance for ship owners does
not depend on whether condition monitoring or a digital twin is already implemented,
but rather the performance of the ship. This is because having a digital twin does not in
itself guarantee good performance since the models vary and often need adjustments and
care. According to Gard, a clear drawback of digital twins is the lack of shared standards
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between companies. The result is different definitions and understandings of the term
which makes it difficult for insurance companies to operate. A benefit of remotely mon-
itoring the condition of vessels from shore is the reduced risk as a result of having less
crew onboard. If data are available for more people to analyse, the increased expertise in
ship operation and maintenance will most likely benefit most companies.
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6 Conclusion

Knowing the condition of the machinery and the vessel in general becomes important to
avoid unwanted situations like unexpected expenses and downtime becomes important.
Condition monitoring and digital twins might be the future of maritime operations and
could likely be the standard on all vessels in a few decades. The problem does not lie in the
technology itself, but rather in how we use it. The technological potential is substantial,
but it is very important to understand how this technology work to be able to enjoy benefits
and extract useful information.

Developing models to predict a ship’s behaviour is highly beneficial, but can also be
quite challenging. This thesis had the aim of developing a model for predicting potential
failures in the machinery based on anomalies in fuel consumption per day. A dataset
containing five somewhat different vessels owned by the shipping company Gearbulk was
used in the model development process. The data measurements ranged from January
2021 to May 2022 and contained weather conditions from all around the world, which
prevented the model from being too specific and less versatile.

When choosing the optimal modelling strategy, data-driven modelling was chosen since
the available dataset contained useful and relevant parameters for creating a model. Since
the objective of the model was to predict data, a supervised machine learning strategy
was preferable compared to an unsupervised approach. Constructing a clean dataset was
somewhat difficult as not all data points included every parameter needed in the model.
When deciding which machine learning algorithm to use, a regression analysis of the data
was done for over 20 different algorithms to find the best-fitted one. The Matern 5/2 GPR
model proved to have the best fit in both the training and test dataset.

The model showed a lower training accuracy compared to the test accuracy, which means
that the model needs further tweaks and adjustments before it can be fully used for fault
detection purposes. The origin of the error most likely comes from the test data being
another vessel, rather than training the model on data from all vessels. Although the
model did not produce the result desired, it still shows how data extracted from vessels
can be used to find a correlation between environmental conditions, fuel oil consumption
and machinery data.

The world is currently experiencing a digital revolution and technologies such as digital
twins and condition monitoring becomes increasingly popular within various industries.
The maritime industry has a lot to learn from aviation. However, a lot of research and on-
going projects within the maritime community are currently in process. One of the main
problems with the implementation of digital twin technology in the industry is the lack of
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a common understanding of what a digital twin is and a consensus of standards. Stand-
ardised quality assurance of digital twins is a step in the right direction if the industries
want to fully take advantage of the technology.

6.1 Contribution and further work

Even though the model is not based on hybrid modelling, it can be used as a basis for
further development toward a digital twin. As discussed in Section 5 the model showed
a clear correlation between ship parameters and fuel oil consumption. If the model is
adjusted as suggested, the result would most likely improve and the model could be used
as a fault detection tool. To develop a more accurate model, more data gathered over a
longer period should be included. More research towards feature selection would also
probably result in a better model fit as some predictors could be unnecessary and create
more harm than good

As mentioned in Section 5 a model predicting fuel oil consumption per day can also be
used for purposes other than fault detection. Fuel oil consumption has a direct correlation
to the amount of emissions, and can therefore be used to choose a more environmentally
friendly sailing route based on environmental condition data.
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[3] Berke Akkaya and Nurdan Çolakoğlu. ‘Comparison of Multi-class Classification
Algorithms on Early Diagnosis of Heart Diseases’. In: Sept. 2019.

[4] Mahamad Alam. ‘Codes in MATLAB for Training Artificial Neural Network using
Particle Swarm Optimization’. In: (Aug. 2016). DOI: 10.13140/RG.2.1.2579.3524.

[5] Timothy M. Allen. ‘U . S . Navy Analysis of Submarine Maintenance Data and the
Development of Age and Reliability Profiles ABSTRACT’. In: (2005).

[6] Dawn An, Joo Choi and Nam Kim. ‘Options for Prognostics Methods: A review
of data-driven and physics-based prognostics’. In: Collection of Technical Papers -

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Con-

ference (Apr. 2013). DOI: 10.2514/6.2013-1940.

[7] Anish. Why 2-stroke Engines are Used More commonly than 4-stroke on Ships?

URL: https://www.marineinsight.com/main-engine/why-2-stroke-engines-are-

used-more-commonly-than-4-stroke-on-ships/ (visited on 10/06/2022).

[8] Maggie Mae Armstrong. Cheat sheet: What is Digital Twin? URL: https://www.
ibm.com/blogs/ internet - of - things/ iot - cheat - sheet - digital - twin/ (visited on
14/12/2021).

[9] Debasish Basak, Srimanta Pal and Dipak Patranabis. ‘Support Vector Regression’.
In: Neural Information Processing – Letters and Reviews 11 (Nov. 2007).
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Appendix

A Engine data of case study vessels

Figure 30: Avocet Arrow engine data

I



Figure 31: Corella Arrow engine data

Figure 32: Plover Arrow engine data

II



Figure 33: Swift Arrow engine data

Figure 34: Weaver Arrow engine data
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B Plot of significant wave heights from 1979-2014

Figure 35: Historical data of the average significant wave heights from year 1979-2014
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IV



C Training results of 2nd to 10th best model

Figure 36: Predicted versus actual data, Cubic SVM

Figure 37: Training data of Cubic SVM

V



Figure 38: Predicted versus actual data, Trilayered Neural Network

Figure 39: Training data of Trilayered Neural Network

VI



Figure 40: Predicted versus actual data, Wide Neural Network

Figure 41: Training data of Wide Neural Network

VII



Figure 42: Predicted versus actual data, Bilayered Neural Network

Figure 43: Training data of Bilayered Neural Network

VIII



Figure 44: Predicted versus actual data, Quadric SVM

Figure 45: Training data of Quadric SVM

IX



Figure 46: Predicted versus actual data, Rational Quadric GPR

Figure 47: Training data of Rational Quadric GPR

X



Figure 48: Predicted versus actual data, Squared Exponential GPR

Figure 49: Training data of Squared Exponential GPR

XI



Figure 50: Predicted versus actual data, Medium Neural Network

Figure 51: Training data of Medium Neural Network

XII



Figure 52: Predicted versus actual data, Exponential GPR

Figure 53: Training data of Exponential GPR
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