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Abstract

This master thesis presents alternative methods for wave load compensation in dynamic positioning
(DP) operations, where stable and robust conventional feedback DP controllers typically are used. Such
DP feedback control laws, compensates slowly-varying second order wave loads through the integral
action. The problem is that these mechanisms are subject to changes caused by low-frequency (and
possible mid-frequency) contributions, which are forcing an offset in DP stationkeeping accuracy. In
addition, feedback mechanisms requires such offsets to be induced before the control law can mobilize
any counteractions, making the control system less reactive to disturbances. Therefore, this thesis aims
to find better strategies for eliminating offsets due to slowly varying second order wave loads.

A background study and literature review have been performed, in order to gain fundamental knowledge
on relevant topics; that is, hydrodynamical theory in terms of wave models and loads, sea state estimation,
relevant instruments for wave load estimation, DP control systems in general, and information on C/S
Arctic Drillship in the Marine Cybernetics Laboratory.

In order to test different control strategies, a high-fidelity simulator in six degrees of freedom have been
developed and implemented, such that relevant sensor measurements and wave loads are provided. The
simulator is based on parameters from the physical model vessel C/S Arctic Drillship, such that the
implemented control systems can be tested directly on the physical model vessel in MC-Lab. However,
the latter have not been performed due to external factors.

Five control strategies have been presented, including a DP-observer estimate as feedforward compensa-
tion, direct integral action in DP PID-control, acceleration feedforward compensation, adaptive control
using the internal model principle, and a spectrum-based method. The two first were considered as con-
ventional DP feedback controllers, and were used as baseline to compare the effectiveness against the
other developed methods.

A performance analysis was submitted, based on results from the control systems applied to the high-
fidelity simulator. In order to compare the results as fairly as possible, much time was put into tuning
the control laws. Consequently, only surge direction was tuned properly enough to be part of the anal-
ysis. The performance was evaluated and compared based on key performance indicators, in terms of
positioning performance and thrust effort.

Results showed that the adaptive control method, using the internal model principle, was able to counter-
act the second order wave loads well in a long term perspective, while on a short term, the adaption was
unable to match the conventional controllers, and the overall thrust effort was significantly higher than the
conventional feedback controllers. The acceleration feedforward held, in general, the best performance
in both a long term and short term period, by providing an aggressive response to all accelerations.
However, mean-drift loads were not successfully compensated, since these lead to zero acceleration.
Moreover, the latter method showed tendencies to be sensitive towards uncertain measurements. Finally,
a spectrum based method, utilizing a wave spectrum estimate to compensate mean-drift loads, was im-
plemented. However, the algorithm was too time-consuming for the control system, but alternatives to
overcome the issue were discussed.

Taken into consideration that only surge direction was analyzed, there are reasons to believe that there
exists better strategies for wave load compensation, than the conventional feedback mechanisms.
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Sammendrag

Denne masteroppgaven presenterer alternative metoder for bølgelastkompensasjon i dynamiske posisjoner-
ing (DP) av marine fartøy, der stabile og robuste konvensjonelle kontrollere med tilbakekopling vanligvis
brukes. Slike tilbakekoplinger kompenserer saktevarierende andreordens bølgebelaster gjennom inte-
gralvirkning. Problemet er at disse mekanismene er gjenstand for endringer, forårsaket av lavfrekvente
(og muligigens mellom-frekvente) bidrag, som tvinger fram et posisjonsavvik. I tillegg krever mekanis-
mer med slik tilbakekopling at slike avvik induseres før kontrollsystemet kan mobilisere motkrefter.
Dette gjør kontrollsystemet mindre reaktivt overfor forstyrrelser. Derfor har denne oppgaven som mål å
finne bedre strategier for å eliminere forskyvninger på grunn av sakte varierende andreordens bølgelaster.

Det er utført en bakgrunnsstudie og litteratur-gjennomgang, for å få grunnleggende kunnskap om rel-
evante tema; det vil si hydrodynamisk teori som angår bølgemodeller og laster, sjøtilstandsestimering,
relevante instrumenter for sjøtilstandsestimering, kontrollsystemer for DP generelt, og informasjon om
C/S Arctic Drillship i MC-Lab.

For å teste ulike kontrollstrategier er det utviklet og implementert en naturtro simulator i seks frihets-
grader, som også gir realistiske sensormålinger og bølgelaster. Simulatoren er basert på parametere fra
det fysiske modellfartøyet C/S Arctic Drillship, slik at de implementerte kontrollsystemene kan testes
direkte på det fysiske modellfartøyet i MC-Lab. Sistnevnte har imidlertid ikke blitt utført på grunn av
ytre faktorer.

Fem kontrollstrategier er presentert, deriblandt et DP-observer estimat som feedforward kompensasjon,
direkte integral virkning i en PID kontroller, akselerasjons-feedforward kompensasjon, adaptiv kontroll
ved bruk av et intern modell prinsipp, samt en spektrum-basert metode. De to første ble betraktet som
konvensjonelle kontrollere med tilbakkompling, og ble brukt til å sammenligne ytelsen mot de andre
utviklede metodene.

Det ble gjort en analyse av metodene, basert på resultater simulatoren. For å sammenligne resultatene så
rettferdig som mulig, ble det brukt mye tid på å tune kontrollerne. Følgelig ble bare jag-retningen godt
nok justert til å være en del av analysen. Ytelsen ble evaluert og sammenlignet basert på to indikatorer;
hvor god posisjoneringen var og hvor mye arbeidskraft som kreves.

Resultatene viste at den adaptive metoden, ved bruk av den interne modellen, var i stand til å motvirke
andre ordens bølgelaster i et langsiktig perspektiv, mens tilpasningen på kort sikt ikke var i stand til
å matche de konvensjonelle kontrollerene. Den totale arbeidsytelsen var betydelig høyere enn de kon-
vensjonelle kontrollerne på både lang og kort sikt. Akselerasjon-tilbakekoplingen viste seg å være den
generelt beste både på lang og kort sikt, ved å gi en aggressiv respons på alle akselerasjoner. Imidlertid
egnet metoden seg dårlig til å motvirke gjennomsnittlige bølgedriftlaster, da disse ikke induserer ak-
selerasjoner. I tillegg viste sistnevnte metode tendenser til å være sensitiv mot usikkerhet i målinger.
Til slutt ble den spektrum-baserte metoden implementert. Den benyttet et bølgespektrum-estimat for å
kompensere gjennomsnittlige bølgedriftlaster. Algoritmen var imidlertid for tidkrevende for kontrollsys-
temet, men alternativer for å løse problemet ble diskutert.

Tatt i betraktning at kun jag-retning ble analysert, er det grunn til å tro at det finnes bedre strategier for
kompensasjon av bølgelaster, enn de konvensjonelle tilbakekoblings-mekanismene.
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Chapter 1
Introduction

1.1 Motivation

For dynamic positioning (DP) operations in ocean waves, the DP control system must compensate the
hydrodynamic wave-drift loads. This is conventionally done by feedback control, where slowly-varying
second order wave loads are compensated through the integral action of the DP feedback control law.
Typically, these feedback mechanisms are subject to changes caused by low-frequency (and possibly
mid-frequency) contributions, which are forcing an offset in DP stationkeeping accuracy. In addition,
feedback mechanisms requires such offsets to be induced before counteractions can be carried out. This
delay the process of counteractions, and decreases the system’s capability of stationkeeping accuracy,
making it less effective against slowly-varying loads.

Conventional feedback control methods have been proved to be stable and robust in a large range of sea
states, and is therefore the state-of-the-art method for wave load compensation. However, there exists
methods more effective compensation in other applications; for instance, feedforward mechanisms for
wind load compensation. Other strategies may include mathematical models describing the oncoming
disturbance, using this in either adaptive control or feedforward mechanisms.

If better strategies for compensating second order wave loads more efficiently can be achieved, it could
lead to larger weather windows in DP operations; and consequently, savings in terms of costs and emis-
sions would be significant.
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1.2 Objectives

This master thesis includes several objectives, where the first is to gain relevant knowledge and back-
ground theory within the fields of hydrodynamic wave theory, methods for estimation of sea state param-
eters, instruments needed for sea state estimation, and DP control systems in general. Gaining relevant
information about the C/S Arctic Drillship (CSAD) and the Marine Cybernetics Laboratory (MC-Lab)
was also part of the background study. This is presented in Chapter 2, where some parts were done in
the preproject study by the author in Brørby (2021).

The second objective is to develop and implement a high-fidelity simulator in six degrees of freedom,
providing relevant sensor measurements, and realistic wave loads for a DP control system to compensate
for. The simulator is based on the CSAD model and implemented with its parameters prepared by Bjørnø
(2016).

The third objective is to develop and possibly implement different strategies for wave load compensation;
in particular, second order wave loads. This includes a DP-observer estimate as feedforward compensa-
tion, direct integral action in DP PID control, acceleration feedforward compensation, adaptive control
using the internal model principle, and a spectrum-based method. Both the second and third objective
are presented in Chapter 4.

A fourth objective is to carry out a performance analysis of the designed control strategies from the
previous objective. The analysis is based on simulations done with the high-fidelity simulator. Com-
parisons and discussions are made in order to investigate whether the proposed strategies can challenge
state-of-the-art DP control systems. This is presented in Chapter 5.

1.3 Scope and Delimitations

The design presented in this thesis is based on a case study on CSAD, which is the largest model in
the MC-Lab fleet at the moment. It is in a relatively good condition, and is well suited for dynamic
positioning.

Based on simulations, the most promising strategies were supposed to be tested in a physical case study
on CSAD in MC-Lab. Due to problems connecting to the vessel’s actuators, this was impracticable.
Hence, the thesis is discussing and concluding based on results from simulations only.

Due to time-consuming work, the implemented DP controllers are only properly tuned in surge direction,
hence results and analysis presented in this master thesis is only considering one direction. Consequently,
waves propagating along the vessel’s surge axis is the only wave-direction that is considered.

The scope of the thesis is about compensating wave loads; therefore, disturbances due to wind and current
is not considered.
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1.4 Contributions

1.4 Contributions

The contributions of this master thesis are focused on methods for wave load compensation in DP control
systems. Extensive work have been done, and we summarize:

• A high-fidelity simulator in six degrees of freedom is implemented, including modules for sensor
measurements and wave loads. All implementations are done by the author, while parameters and
data used in the implementations are inherited from earlier work in Bjørnø (2016). Frameworks
like the Robot Operating System, numpy, etc. are assumed to be fundamental for the implementa-
tions, and the author is of course not taking credits for these.

• Five control methods are implemented, including two self designed methods; that is, an adaptive
control law, and a wave spectrum-based method. The latter was first proposed by the author in
the project thesis (Brørby, 2021), and is improved here. A third method including acceleration
feedforward is earlier presented by Kjerstad and Skjetne (2016), but whether the method has been
applied for suppressing slowly-varying loads in earlier work, is unknown to the author.

• Experimental verification, performance analysis and comparisons of the control methods are done,
based on simulations from the high-fidelity simulator.
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Chapter 2
Background and Literature Review

This chapter presents relevant and necessary background theory, to make a foundation for understanding
the work presented in the following chapters. A literature review on relevant studies and work is also
presented. Parts of this chapter were done in the preproject in Brørby (2021), and are here reproduced
and extended for this master thesis.

2.1 Wave Models and Loads

A surface vessel operating at sea will encounter different sea states that will induce wave loads, affecting
the vessel’s motions. This section encompasses how waves can be modelled, and how a surface vessel is
affected by the wave induced loads. The theory in this section is mainly taken from Faltinsen (1999) and
OrcaFlex (2021), with support from some other references.

2.1.1 Wave Models

Sea states are often divided into two categories: short crested and long-crested waves. long-crested
waves are defined as waves that propagates from one direction, while short crested waves are a sum
of long-crested wave components that propagates from multiple directions. long-crested sea states can
either be regular or irregular. The natural sea state in oceans is irregular, but it will often be convenient to
apply regular wave theory before examining irregular sea states. Irregular waves are more complicated
in many ways, and the hydrodynamic effects that follows are less explored and difficult to describe with
mathematical models.

Equation (2.1a) shows how irregular long-crested waves can be modelled as a sum of N different regular
waves, in the time domain. ζaj is the wave amplitude, ωj is the wave frequency, kj is the wave number
defined by ω2

j = gkj , according to the dispersion relation, and ε is the phase angle between 0 and 2π. The
same sea state can also be modelled based on a wave spectrum. Given the energy of a wave component in
(2.2), we can rewrite the model as in (2.1b). Here, S(ωj) is the wave spectrum as a function of frequency,
and ∆ω is the constant difference between successive frequencies.
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ζ(x, t) =
N∑
j=1

ζajsin(ωjt− kjx+ εj) (2.1a)

=

N∑
j=1

√
2S(ωj)∆ωsin(ωjt− kjx+ εj) (2.1b)

1

2
ζ2aj = S(ωj)∆ω (2.2)

Figure 2.1 illustrates the connection between the time domain and the frequency domain. It shows how
different frequencies represented by a spectrum adds up, giving a wave elevation in the time domain. The
area under the graph of S(ω) for a given frequency interval, express the total energy for the corresponding
wave component.

Figure 2.1: Connection between representation of time domain and frequency domain of long-crested waves.
Courtesy of (Faltinsen, 1999, chap. 2).

Significant wave height Hs and peak frequency ωp can be provided by a spectrum, like the standardized
Joint North Sea Wave Project (JONSWAP) spectrum Figure 2.2. That is obtained from a Rayleigh
distribution of wave components (Faltinsen, 1999, chap. 2). The γ parameter determines how sharp the
peak shape is. A value of γ = 3.3 was determined by Hasselmann et al. (1973) from data collected in
the North Sea, and therefore often used when modelling sea states. This parameter is also what makes
the JONSWAP spectrum different from the Pierson-Moskowitz spectrum. (2.3) describes the JONSWAP
spectrum, where α defines the spectrum shape in the high frequency range, and the variance is defined
by (2.4).
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Figure 2.2: JONSWAP spectrum with different values for γ. Courtesy of Shiach (2008).

S(ω) = α
g2

ω5
exp

[
− 5

4

(
ωp

ω

)4]
γ
exp

[
− 1

2

(
ω−ωp
σωp

)2]
(2.3)

σ =

{
σa for ω ≤ ωp

σb for ω > ωp

(2.4)

2.1.2 Wave Loads

Second order wave loads are smaller than first order wave loads, but second order loads are proportional
to the square of the wave amplitude. This implies that second order wave loads are very important for
large sea states (Sørensen, 2011).

Wave loads acting on a vessel can be expressed as a sum of first order, second order and higher order
terms. The first order terms are often called wave-frequency (WF) loads. The induced motion from WF
loads are observed as an oscillatory motion with a zero mean. These are motions that are typically filtered
in a dynamic positioning system. Therefore, first order terms are not considered in detail in this thesis.
The second-order terms are called wave-drift forces, and are observed as slowly-varying components that
have a non-zero mean (Fossen, 2021, chap. 10). An illustration of this is presented in Figure 2.3. Higher
order effects are outside the scope for this thesis and will not be further discussed.
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Figure 2.3: Superposition of wave frequency and wave-drift. Courtesy of Torsetnes et al. (2005).

Consider first a surface vessel in a regular sea state. Even though regular waves form a sinusoidal
propagation, it is not only oscillatory WF motions which are observed as vessel motions. Wave-drift
motions are present as well. A surface vessel in regular waves will experience vertical body motions.
If there exists relative vertical motions between the wave surface and the vessel, this will lead to some
of the body being part-time out of water and part-time in water. This causes a non-zero pressure that
will induce a non-zero mean load (Faltinsen, 1999, chap. 5). Therefore, a non-zero mean load is present
whenever the wet surface is varying along the vessel’s hull; hence, both roll, pitch, and heave motions
will induce such loads.

Now consider a regular sea state where the incoming wave’s length is much longer than the characteristic
length of the vessel. Assume that the relative vertical motion is zero and the wet surface can be considered
constant. Then the vertical motion can no longer contribute to wave-drift motions, but still wave-drift
motions are observed. Long waves tend to have higher amplitude than shorter waves. Since second
order effects are proportional to the square of wave amplitude (Faltinsen, 1999, chap. 5), there will be a
significant contribution to wave-drift loads in long waves. In addition, viscous effects may dominate for
long waves since particle velocity for long waves are large compared to particle acceleration. That is,
viscous terms are proportional to the square of particle velocity (Faltinsen, 1999, chap. 5).

With that being said, linear wave theory applies only to small waves, since kinematics above the mean
surface level is not encountered for. Therefore, linear theory will not be able to estimate the velocity
potential above mean water level. Linear wave theory implies equal absolute value of velocity at wave
crests and trough (with opposite directions), but in reality the crest velocity is higher. In addition, larger
waves will in reality not have a sinusoidal form, but a more narrow form at the wave crest. Therefore,
the theory needs to be stretched to cover these velocities. There are several approaches that either will
overestimate or underestimate the actual velocity potential (OrcaFlex). DNV have published a standard
DNVGL-RP-E306 where a recommended practice for these estimates are stated (DNV, 2010).

Now consider an irregular sea state. In second order wave loads, there are pairs of wave elements that
contribute. Let the wave element pair have frequencies ω1 and ω2. The contribution of these pairs are
divided in two types: sum-frequency loads and difference-frequency loads. The sum-frequency loads
have a frequency equal to the sum of the wave component’s frequencies (ω1 + ω2). Therefore, the
sum-frequency can be significantly high, and potentially much higher than the wave frequency itself (Or-
caFlex, 2021). This is an important contribution for systems that has high natural frequency properties,
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2.1 Wave Models and Loads

such as tension-leg platforms, due to high stiffness in the tension-legs (Xie et al., 2020). This is not
relevant for the natural frequencies in surge, sway, and yaw in a DP system; thus, the sum frequencies
have no physical meaning for this purpose.

Difference-frequency loads have frequency equal to the difference of the wave component’s frequency
(ω1 − ω2). If ω1 = ω2 the difference frequency becomes zero, which gives a constant contribution.
Adding up all the constant contributions, constitute the mean-drift load. The mean-drift load induces a
constant offset of a DP vessel. If the pair frequencies are almost equal, a low frequency load is exited,
which is observed as a slowly-varying wave-drift load. Finally, ω1 ≪ ω2 represents a high frequency
contribution, but these are in general negligible (OrcaFlex, 2021). Consequently, the second order wave
loads are only considered as a sum of a mean wave-drift component and a slowly-varying component for
the rest of the thesis.

Second order wave loads can be expressed by second order transfer functions, which can be considered as
matrices dependent of wave frequencies and independent of wave amplitudes. These functions are also
known as quadratic transfer functions (QTF). Off-diagonal terms in the QTF represent the difference-
frequencies ω1 − ω2 and ω2 − ω1. The diagonal elements represent the frequency pairs, where ω1 = ω2

i.e., the constant contributions to second order loads. This is why the mean wave-drift load in direction i
can be expressed by (2.5), where T is the diagonal of the QTF, and Aj is the amplitude of the j-th wave
element (Faltinsen, 1999, chap. 5).

F̄i =

N∑
j=1

A2
jT (ωj) ; i = {1, ..., 6} (2.5)

Slow-drift excitation loads can be written as a large double sum which is computational tiring (Faltin-
sen, 1999, chap. 5), but an approximation of the QTF constitute (2.6), which is known as the Newman
approximation.

FSV
i = 2

( N∑
j=1

AjT
1
2 (ωj)cos(ωjt+ εj)

)2

(2.6)

If (2.6) was written out, one could see that the load from each wave component in (2.6) will vary over
time with cos(ωjt+ ε)2. This can be rewritten as 1

2(cos(2ωjt+ 2ε) + 1). The constant term represents
the mean-drift, and the cosine term represent the non-physical sum-frequencies. This means that the
Newman approximation includes effects that have nothing to do with slowly-varying loads (Faltinsen,
1999, chap. 5).

Mean-drift load is a constant force contribution in higher order loads when the vessel has obtained a
stationary response in a stationary sea state with infinite duration. What does this mean? In a regular sea
state, it is intuitive to understand that a sea state is stationary when sinusoidal motions are obtained. An
irregular sea state is stationary when collected data are sufficient to describe the sea state. By experience,
it has been seen that 20 minutes is typically long enough to express the statistical properties of a sea state,
and short enough for the conditions to be unchanged (Larsen et al., 2019). Therefore, it is also common
to define the duration of a sea state to be 20 minutes.
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2.2 Sea State Estimation

Sea state estimates can be provided from different online and offline methods. The topic of sea state
estimation have been widely explored in the last 15-20 years (Nielsen, 2017). This section encompasses
a literature review on sea state estimation. Wave measurements that are of interest for this thesis must be
useful for wave load estimation in real-time, and possibly for prediction. Therefore, online methods are
mostly considered.

2.2.1 Online Methods

Most model-based methods are based on mathematically relating vessel motions to the sea state. This
is known as the wave buoy analogy (Nielsen, 2017). Most commonly, the mathematical model that
is in use is the RAO operator, which is an a priori known transfer function. Nielsen (2017) assumes
perfect knowledge of this transfer function from several ships with different RAOs. An individual sea
state estimate is then calculated for each ship. The final estimate is then obtained by weighting the
individual estimates due to different RAOs. The sea state direction is accordingly detected by comparing
predefined wave spectrum candidates. This method is offline in terms of the predefined information
about the transfer functions. The same method for detecting wave direction was used in Brodtkorb et al.
(2018a), together with the spectral calculation method from Brodtkorb et al. (2018b). The provided
algorithm resulted in a computationally efficient online method. While several studies tend to show
good performance using the wave buoy analogy, Nielsen (2017) states that there are limitations related
to the theory as a ship acts like a lowpass filter; thus, vessel motions can not reflect the whole frequency
domain. However, this might not be an issue if the estimates only is needed for use by the vessel itself
(Nielsen, 2017).

Many published studies on sea state estimation presents online methods. However, most published meth-
ods can at best be considered as online methods, since it takes time to perform the optimizations and
calculations. Ren et al. (2021) have proposed a near real-time version of the wave buoy analogy, where
an L1 optimization algorithm gives a more robust optimization. Desmars (2020) predicts the wave field
around a marine structure in real-time with measurements from an optical sensor. The prediction is
achieved by fitting known wave models to the observed measurements.

Use of radar measurements is a field of increasing interest within wave parameter estimation (Giron-
Sierra, 2010). Li et al. (2020) uses a high-frequency surface wave radar to collect dynamic parameters of
the ocean surface. Halstensen et al. (2020) have developed a wave reconstruction and prediction system
called RIMARC for forecasting waves in real time, for the next minutes. This is applied for prediction
of vessel motions.

2.2.2 Offline Methods

Fast Fourier transform (FFT) is a common way to express a function as a sum of periodic data com-
ponents (Numpy FFT [software]). This can be utilized to express a short term prediction of the wave
behavior. In the wave energy industry, a number of studies investigates the use of FFT in short term pre-
diction of wave behavior (Halliday et al., 2011; Elwood et al., 2010; Conde and Gato, 2008). However,
FFT requires typically 30 minutes with collected data to give reasonable results, which is not suited for
real-time estimations (Fossen, 2021, chap. 13).
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2.3 Sensors and Instruments

In order to make a sea state estimate, measurements have to be provided in some way or another. There
are several relevant sensors and instruments for this purpose. This section presents some of them.

2.3.1 Radar

Marine radars are usually x-band radars, used for monitoring surrounding ship traffic and for supporting
the navigation systems when the view is restricted. However, the range of use is increasing, and wave
parameters can also be stated by different tuning and configuration (Bell, 1999; Giron-Sierra, 2010).
There are also S-band radars, but X-band radars are more suitable for detecting wave parameters, due to
the higher resolution (Dankert and Rosenthal, 2004; Dankert et al., 2005).

Halstensen et al. (2020) have developed RIMARC, which is a system for estimating the next minutes
wave parameters and vessel motion with use of an X-band radar. The research showed promising results,
which has resulted in the new project RAIDER.

Use of wave radars tends to involve an issue with back scattered echo from the ocean surface and radio
frequency interference (Li et al., 2020).

A radar is a rotating antenna transmitting microwaves throughout the surroundings and detecting the
reflected waves. The reflection makes an image of the surroundings. As the radar is a physical rotating
component, the update frequency is relatively slow. This will affect how the radar detects wave param-
eters, which introduces the problem of shadowing. Shadowing is when the radar is unable to detect the
water surface due to higher waves covering the field of view (FOV). This can, for instance, happen at the
time when the vessel is at the bottom of a wave. Therefore, it is important that the location of the radar is
as high as possible. Retrieving the significant wave height from an x-band radar is therefore a challenge,
but there are methods for dealing with these issues (Wei et al., 2017).

2.3.2 Pressure Measuring

The direct pressure method presented in Faltinsen (1999, chap. 5) is applied in Quadvlieg et al. (2011),
where an improved DP system was developed. Pressure sensors were mounted below the water line,
distributed along the hull. Quadvlieg et al. (2011) states that the challenges with these sensors are to
select a sensor where the accuracy is high enough to detect the pressure variations of interest. Therefore,
these sensors are more suited for full scale experiments than for models.

2.3.3 Inertial Measurement Unit

An inertial measurement unit (IMU) is a composition of two sensors: three axis-accelerometer, and
attitude rate sensor (ARS) or gyroscopes. This provides a measurement of 6 DOFs. IMUs are commonly
used in an inertial navigation system (INS) (Fossen, 2021, chap. 14). Combining a global navigation
satellite system (GNSS) with the INS system provides the vessel position, velocity, attitude, and possibly
the accelerations (Bryne, 2017). In Kjerstad and Skjetne (2016), a full state estimate of the acceleration
vector in 6 DOFs was obtained and further used to compensate for rapidly changing ice loads, where the
acceleration was used as a feedforward term in the control law. The reconstructed acceleration vector
was developed by utilizing the distribution of four IMUs located such that at least one of them was in
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a different plane than the other. Fu et al. (2011) used the same configuration to estimate the directional
wave spectra by utilizing the phase difference in the distributed IMUs.

2.3.4 Wave Buoy

Wave buoys are a common way of measuring wave parameters, including wave direction. They are often
used for local wave forecasting as they have a fixed, permanent location. The measurements are usually
provided by IMUs, estimating the wave parameters. Using these measurements for a DP operation in
real-time would require a connection to the operational vessel. However, marine operations are often
located where such local forecasts are unavailable (Nielsen, 2008), and installing wave buoys for short
time operations would be too expensive. Hence, wave buoys are not well suited for providing measure-
ments of onsite wave parameters. However, there are examples where the wave buoy analogy is applied
to a ship’s motions (Nielsen, 2008).

2.3.5 Wave Height Sensors

Wave height sensors or wave poles uses two parallel rods, which acts as an electric conduction meter.
Quadvlieg et al. (2011) propose that such sensors can be mounted on a ship to measure relative wave
height with respect to the water line in calm water. For model experiments in a water tank, multiple
wave poles can instead be placed throughout the tank. This is a well-used method in experimental setups
for measuring wave height. Although, for a full scale real-life scenario, use of these sensors can be
problematic since salt water will cause corrosion and large environmental forces may impact the device.

2.4 DP Control Systems

A DP vessel is defined as a unit or a vessel which automatically maintains its position (fixed location
or predetermined track) exclusively by means of thruster force (MSC/CIRC. 645). DP-vessels have
implemented a DP-system that consists of three sub systems (power system, thruster system, and DP
control system), where the DP control system is the subsystem that is responsible for controlling the
position of the vessel (MSC/CIRC. 645).

Most DP control system are based on the same principal design methods, as illustrated in Figure 2.4.
Details on each module are outlined in Sørensen (2011).

The control objective for a DP control system is the same either if the DP-vessel are following a pre-
determined track or a fixed location. That is, the vessel states should converge towards a reference
signal. Mathematically, we can describe this by (2.7), where η̃ and ν̃ are defined as the error between the
respective state, and its desired state.

η̃(t) := η(t)− ηd −→ 0 as t −→ 0 (2.7a)

ν̃(t) := ν(t)− νd −→ 0 as t −→ 0 (2.7b)
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Figure 2.4: DP control system. Courtesy of Sørensen (2011).

A typical topology for a DP control system can be seen in Figure 2.5. It shows how the DP controller
(named DPC 21) interfaces the wind sensors, motion reference units (MRU), heading reference (gyro),
human operator interface, and position reference systems (DGPS and HiPAP) with the thruster setpoints.
For more details, see Breivik et al. (2015).

Figure 2.5: Typical topology for a DP control system. Courtesy of Kongsberg Maritime.
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2.4.1 Modelling of DP Vessels

A mathematical model of a vessel in DP can often be divided in two categories: a simplified control
design model (CDM), and a high-fidelity simulation (verification) model. The former describes only
the essential dynamics for the control design. The other describes more accurately the real dynamics of
the plant; that is, a more complex model that describes the actual process. This also includes process
disturbances, sensor models, actuator models, power plant, etc.

When dealing with the control system for marine surface vessels in DP operations, only 3 degrees of
freedom (DOF) are considered; that is, surge, sway, and yaw. Then the kinematics are described by
(2.8), where ν = col(u, v, r) is expressed in the body frame and η = col(x, y, ψ) is expressed in the
North-East-Down frame (NED).

η̇ = RT (ψ)ν , where R(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (2.8)

The low-frequency (LF) dynamics are generally expressed by (2.9)(Fossen, 2002), where M ∈ R3×3,
the inertia matrix including added mass, is assumed constant. CRB(ν) ∈ R3×3 and CA(νr) ∈ R3×3 are
the Coriolis and centripetal matrix of the rigid body and added mass, respectively. νr := ν − νc ∈ R3

is the relative velocity when current is present. D(νr) ∈ R3 is the linear and nonlinear damping matrix,
G(η) ∈ R3 is the generalized restoring force vector. Finally, τwind, τwave2, τmoor, τthr ∈ R3 are loads
due to wind, second order wave loads, mooring system and thruster system, respectively.

η̇ = R(ψ)ν (2.9a)

Mν̇ + CRB(ν)ν + CA(νr)νr +D(νr)νr +G(η) = τwind + τwave2 + τmoor + τice + τthr (2.9b)

However, in DP it is sufficient to use the simplified dynamics in (2.10) as CDM, as clarified in Sørensen
(2011). Here, the mooring and restoring forces are simplified by GmoR

T (ψ)η. τc is the commanded
control input vector, and b is the bias vector.

In this model, a lot of simplifications have been done. These simplifications have to be compensated
for, since they lead to unmodelled dynamics. The bias represents this, and can be modelled as a Markov
process like in (2.10c).

η̇ = R(ψ)ν (2.10a)

Mν̇ = −Dν +RT (ψ)b−GmoR
T (ψ)η + τc (2.10b)

ḃ = −T−1
b b+ Ebwb (2.10c)

The bias tends to be significant as it covers both unmodelled dynamics and slowly-varying environmental
loads. Therefore, the bias term is sometimes used as a feedforward term in the control law (Sørensen,
2011). If the vessel is exposed to ice loads, these forces should be modelled explicitly, since ice loads
are rapidly varying with large magnitudes. Several ice models are presented in Nguyen et al. (2009).

WF induced motions are often modelled as a damped harmonic oscillator, like (2.11), where ξ ∈ R6

is the WF induced dynamics. Aw ∈ R6, Ew ∈ R6×3, and Cw ∈ R3 are constant matrices containing
information about the sea states. y is the position measurement containing the sum of LF and WF
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motions, and some measurement noise vy. As WF loads are oscillating with zero mean, this will cause
wear and tear of actuators, and waste fuel if they are compensated for. In addition, these motions may
have a frequency higher than the system’s bandwidth. Only higher order wave loads should therefore
be compensated; that is, the wave-drift loads as described in section 2.1.2. Sørensen (2011) divides
these into three contributions; mean, slowly-varying (difference-frequencies) and rapidly varying (sum-
frequencies). This coincides with the theory presented in section 2.1.2. For normal DP operations, the
rapidly varying can be neglected (Sørensen, 2011). A method for wave filtering is presented in (Fossen,
2021, chap. 13).

ξ̇ = Awξ + Ewωw (2.11a)

y = η + Cwξ + vy (2.11b)

2.4.2 Feedback Control

DP controllers are often multi-input multi-output (MIMO) PID-controllers. They depend on a feedback
signal that is provided by the estimated LF position and velocity. Such control laws can be mathemati-
cally described by (2.12), where η̃ and ν̃ depend on feedback from the measured states. Kp,Kd,Ki ∈ R3

are positive injection gains for the proportional, derivative, and integral terms, respectively. Under ideal
conditions, it would be sufficient with only proportional- and derivative terms, in order to satisfy the
control objective. However, integral action is needed to compensate for slowly-varying (and constant)
environmental loads (Sørensen, 2018).

τc = −KpR
T (ψ)η̃ −Kdν̃ −KiR

T (ψ)

∫ t

0
η̃dt (2.12)

As these types of controllers are model-based, and simplifications limit the model, there will be some
modelling errors. This contributes to unmodelled dynamics in the bias term from (2.10c).

These controllers are often tuned in accordance with (Fossen, 2021, chap. 15), which ensures stability
and robustness, and therefore makes PID-controllers the state-of-the-art systems in motion control (Wang
and Nie, 2012).

Alternatives to integral action are presented in Værnø et al. (2019), where three controllers for bias com-
pensation (including slowly-varying loads and unmodelled dynamics) were compared to the conventional
PID-controller. One method was using the bias estimate provided from the DP-observer directly as a
feedforward term, together with a PD-control law. This method is used later in this thesis as a baseline
for comparisons. The other methods in Værnø et al. (2019) included a wave filtered estimate of the bias,
and finally a separate bias observer for a more accurate estimate of the bias. Results showed the latter to
be most satisfying.

A downside of using feedback-mechanisms, is that the system will have to perform unnecessary work as
the disturbances already have induced a motion before the control law execute counteractions (Kjerstad
et al., 2011). This motivates feedforward control.

2.4.3 Feedforward Control

Since the integral action in a conventional PID-controller only covers slowly-varying loads, it is often
necessary to add a feedforward term to the control law for counteracting rapidly changing loads.
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The most common feedforward in DP-systems is wind feedforward. This requires measurements of wind
speed and direction for estimating wind induced loads acting on the vessel. These estimates are then used
to counteract the rapidly changing wind loads instantaneous (Sørensen, 2018).

An ideal controller would have the quality of rejecting disturbances entirely, and some feedforward
controllers are close to having this ability. However, many feedforward controllers require predefined
knowledge of the environmental disturbances, and such models are rarely simple enough to be modelled
mathematically.

With that being said, Kjerstad and Skjetne (2016) have applied acceleration measurements in order to
counteract ice loads by acceleration feedforward. The results showed good performance even for un-
modelled dynamics. Ice loads are typically very large and dominating, as well as being rapidly varying
(Nguyen et al., 2009). Kjerstad and Skjetne (2016) presents the use of four IMUs that provides a recon-
structed acceleration vector in 6 DOFs. This replaces the integral action and enables almost immediate
counteraction against ice loads and unmodelled dynamics.

Traditionally, a DP control system’s control objective is to follow a reference signal for position and ve-
locity states, by measuring the corresponding states. Acceleration measurements are typically not being
used (Kjerstad and Skjetne, 2016). The reason for this is the problems that come with the use of these
measurements. First of all, the measurements do not provide direct measures of the dynamic accelera-
tion of the vessel. The second problem is to remove the gravitational component from the measurement,
since this will affect linear acceleration in roll and pitch. The last is that acceleration measurements
contains high levels of noise, bias, and nonlinearities. Kjerstad et al. (2011); Kjerstad and Skjetne (2016)
addresses these challenges and proposes methods for dealing with them. Note that this constitutes the
background for one of the proposed strategies later in this thesis.

2.4.4 Internal Model Principle

As seen in section 2.1.2, slowly-varying disturbances, in terms of second order wave loads, can be de-
scribed as sums of oscillating components with different frequencies. These oscillating contributions are
typically not known, and subject to randomness. However, if the disturbance can be modelled mathe-
matically by an internal model, other strategies for disturbance rejection can be applied. This is known
as the internal model principle (Francis and Wonham, 1976). Espı́ndola-López et al. (2016) have pro-
posed a self-tuning controller utilizing the internal model principle in terms of Fourier series describing
disturbances, with the mentioned characteristics. The disturbance is described as a sum of multiple oscil-
lating terms with different frequencies ωi and magnitudes. The control input was expressed as in (2.13),
where a0, an, and bn are coefficients defining the magnitude of each oscillating element. These magni-
tudes were tuned by a neural network, learning the disturbance’s behavior, and adapting the magnitudes
based on state feedback. The results showed some promising indications of reducing the influence of ran-
dom disturbance, and suppressing errors caused by unmodelled dynamics and deterministic uncertainties
(Espı́ndola-López et al., 2016).

u(t) =
a0
2

+
N∑

n=1

ancos(ωit) + bnsin(ωit) (2.13)

The reader should be aware that one of the control strategies proposed in this master thesis is motivated
by the method in Espı́ndola-López et al. (2016).
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2.5 MC-Lab and C/S Arctic Drillship

C/S Arctic Drillship (CSAD) is a model vessel made by Bjørnø (2016) and is now a part of the fleet in
Marine Cybernetics Teaching Laboratory (MC-Lab) at the Norwegian University of Science and Tech-
nology (NTNU). This was originally a 1 : 90 model scale of an arctic drillship, but the full scale was
never built. CSAD is the largest model in the MC-Lab fleet as of today, with the dimensions presented
in table Table 2.1.

Figure 2.6: CSAD in the MC-Lab. Courtesy of Bjørnø (2016).

The vessel is operated by six azimuth thrusters, and the control system runs on a Raspberry Pi, which
is accessed through the local network by secure shell (SSH). Through SSH, the control system can
communicate with external systems in the ROS environment. All equipment is powered by six batteries,
or optionally land power. Details about the system and mathematical modelling can be read in Bjørnø
(2016); Bjørnø et al. (2017).

During the period of the preproject in Brørby (2021), the moon pool was sealed, and four new IMUs
were installed, which provide measurements through ROS. In addition, the original CompactRIO-9024
from 2016 have been replaced with a Raspberry Pi in 2021.

Table 2.1: CSAD dimensions. Courtesy of Bjørnø (2016).

Description Data [m]
Length over all (L) 2.578

Breadth (B) 0.440
Depth (D) 0.211

Design draft (T) 0.133

The MC-Lab is made for testing marine motion control systems, and has multiple instruments, rendering
this possible. The laboratory has a water tank with a wave generator for making both regular and irregular
sea sates. It consists of a flap that is 6m wide, and has the following capacity (MC-Lab, 2021):

• Regular waves: H < 0.25 m, T = 0.3 - 3 s.

• Irregular waves Hs < 0.15 m, T = 0.6 - 1.5 s.

• Available Spectrum: JONSWAP, Pierson-Moskowitz, Bretschneider, ISSC, ITTC.

• Control update rate = 10 Hz.

• Number of wave gauge on paddle = 4
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• Stroke length on actuator = 590 mm.

• Speed limit = 1.2 m/s.

The dimensions of the water tank are L×B ×D = 40m× 6.45m× 1.5m. This makes the tank suitable
for small scale model vessels.

In order to imitate a full scale global navigation satellite system (GNSS), Qualisys is installed. This is
a real-time system providing position and attitude measurements in 6 DOFs, which is made available to
the control systems through the Robot Operating System (ROS) environment. Qualisys consists of three
Oqus cameras and the Qualisys Track Manager System (QTM) (MC-Lab, 2021). For Qualisys to be able
to detect a vessel, four reflective spheres are distributed along the deck. Three of these four have to be
visible for two Oqus cameras; otherwise no detection can be made.

For more details about the MC-Lab, see MC-Lab (2021); Bjørnø (2016).
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Chapter 3
Problem Formulation

This master thesis addresses control systems for wave load compensation in dynamic positioning oper-
ations. Marine vessels are subject to various disturbances during such operations, on which wave loads
makes a huge contributor. DP control systems must compensate the hydrodynamic wave-drift part of
these loads, which are done through integral action in a feedback mechanism. This method of wave-drift
compensation is subject to changes caused by low-frequency (and possibly mid-frequency) contributions,
which are observed as an offset. Therefore, the research question in this master thesis is about whether
there exists better strategies for eliminating such offsets.

The control objective is to control η(t) → 0 and ν(t) → 0, while the vessel is exposed to disturbances
d(t), in terms of wave loads. These wave loads are assumed to be bounded such that
max{∥ d(t) ∥, ∥ ḋ(t) ∥} <∞.

Five control methods are designed and discussed. Two of the proposals are feedback mechanisms that
are commonly used today. The others are methods which are, to the author’s knowledge, not applied to
marine DP operations yet. The most promising proposals are implemented and tested. In order to test
the methods in realistic conditions, a case study of the model vessel CSAD is considered. The original
agenda of the thesis, was to decide on some promising control methods and test them through simula-
tions. After which, the simulation results should have given a qualified indication of what controllers to
test further in a physical test case in MC-Lab. Unfortunately, problems with the physical model made it
impossible to run physical tests. Thus, only simulations have been made, and further physical test are
left for further work.

To fulfill a complete control system, an observer, and a thrust allocation algorithm are required. The
thesis is not diving deep into the thrust allocation, apart from where the discussion requires such consid-
erations.

A high-fidelity simulator in 6 degrees of freedom (DOF) is developed. Sensor measurements are sim-
ulated and suited to meet the requirements for all control methods presented in this thesis. A realistic
environmental load module, containing first order wave loads and second order wave loads, are also
implemented. Wind and current loads are not considered.

Finally, a performance analysis of the proposed controller designs are performed. The agenda for the
performance analysis, is to find sea states that provoke weaknesses in the conventional DP controllers;
and accordingly, investigate the response of the other controllers in the same sea state. All methods are
tested on the same groundings, in terms of model parameters and conditions, such that comparisons are
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made as fairly as possible. The comparisons are based on two key performance indicators (KPIs); that
is, positioning performance and thrust effort.

Even though the thesis aims to consider as high-fidelity cases as possible, some simplifications had to be
made due to various reasons. These are specified where relevance occur.
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Chapter 4
System Design and Implementation

This section describes the design and implementation of all contributions to this master thesis. First, a
general overview of the system design is described. Secondly, a brief description of the 6 DOF simu-
lator is given, including sensor simulation and wave load simulation. Then, observer design and thrust
allocation is described, followed by the design of five different strategies for wave load compensation
in DP-operations. Some of the designs in this chapter are taken from specified references, others are
designed by the author. All implementations mentioned in this chapter are done by the author if not
otherwise is specified. The source code is attached in the digital appendix.

4.1 Design Overview

The design of the implemented system, as a whole, is made such that the control system can be tested
on both a virtual and a physical vessel, in this case the CSAD. The idea was to make a platform that
enables switching between simulation and physical tests without rewriting or modifying the source code.
Therefore, the simulator had to be able to communicate with the control system in the same way as the
physical vessel requires. In theory, the simulation and physical test can be launched simultaneously, but
this will probably require the system to run on multiple threads.

The physical vessel uses the Robot Operating System (ROS) as a framework for communication between
modules within the system. Hence, the rest of the system design was also implemented within the ROS
framework. ROS uses nodes that communicate by publishing and subscribing messages on specified
topics. That way, ROS enables full access to all signals for all nodes that subscribes to that specified topic.
This is also useful for monitoring signals in real-time, as well as for debugging purposes. Figure 4.1
showing how the system is connecting nodes to each other, where the names on each arrow is the name
of the topic, and the direction of the arrow indicates what node that is subscribing to the topic, and where
the topic is published from. The circles indicate nodes. Note that Figure 4.1 is only an example. The
structure depends on what control strategy that is used.

How the modules are connected is more explainable by considering Figure 4.2, where the environmental
load module, marine vessel module, and a control system module are separated. The simulator consists
of the two modules; marine vessel module, and environmental load module. The marine vessel module
includes a sensor module for representing IMU, GNSS and wave measurements. The light gray field in
Figure 4.2 (”6 DOF simulator”) is the part that needs to be exchanged with the physical vessel if physical
tests are desired.

21



Chapter 4. System Design and Implementation

Figure 4.1: Graph describing nodes and the connected topics.

All nodes are running on the same sampling frequency; 50 Hz. This is possible to change, but different
frequencies have been tried out. 50 Hz was chosen because of time-consuming calculations within
the source code, especially in the environmental load module, and some control methods. Ideally, the
sensor module should have been running on higher frequencies than the other nodes. For instance, IMU
measurements are typically at 100-200 Hz. As addressed in Brørby (2021); Park et al. (2020), using ROS
introduces issues with high communication rates, and is therefore not really suited for real-time control
systems (Park et al., 2020). Different frequencies of the nodes individually were tried out, but due to the
way the system is designed, significant loss of data occurred. To fix this, a more extensive change in the
implementations have to be done. Therefore, this is not prioritized in this thesis.

In Bjørnø (2016), the system parameters for the 6DOF vessel model were calculated using ShipX Vessel
Responses Plug-In (VERES) (Sintef, 2022). The data was further converted from ShipX files to MAT-
LAB by using MSS Toolbox (Fossen and Perez, 2022). A complete overview of available parameters are
listed in Fossen and Perez (2022), and the relevant parameters for the simulator are listed in Table 4.1. In
Bjørnø (2016), a simulator was implemented in MATLAB and Simulink. And could have been used in
this thesis. However, since the physical vessel’s control system was running on Python, it was decided
that a new simulator in Python was needed, for the seamless switch between simulations and physical
tests.

Table 4.1: Extract from available system values for 6DOF vessel module.

Parameter Structure Content
MRB 6x6 double Rigid body system inertia matrix

A 6x6x47 double Added mass 6DOF for 47 frequencies
B 6x6x47 double Potential + viscous damping 6DOF for 47 frequencies
C 6x6x47 double Restoring forces 6DOF for 47 frequencies

freqs 1x47 double Frequencies defined for system parameters
headings 1x36 double Headings defined for the system parameters
velocities 0 Valid forward speeds for systems parameters

forceRAO 1x1 struct
Transfer function from wave amplitude to first order wave loads,

containing amplitude, phase and frequencies

motionRAO 1x1 struct
Transfer function from wave amplitude to first order wave induced motions,

containing amplitude, phase and frequencies
driftfrc 1x1 struct Diagonal of QTF, containing amplitude and frequencies
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Figure 4.2: Block diagram of the implemented system, showing how the submodules are connected.

4.2 Simulator Design

This section describes how the 6 DOF high-fidelity simulator is implemented. A guide on how to run the
simulator is attached in Appendix A.

4.2.1 Marine Vessel Module

A 6 DOF high-fidelity simulator has been implemented. The simulator is based on the VERES database
that were calculated in Bjørnø (2016). The values are used to express the vessel’s motions in (4.1),
where η = col(x, y, z, ϕ, θ, ψ) ∈ R6 is the pose in the NED frame, and ν = col(u, v, w, p, q, r) ∈ R6

is the velocities in the body-fixed frame. τwave ∈ R6 which is the wave induced loads expressed in the
body-fixed frame. b ∈ R6 is the bias in NED frame describing modelling errors and slowly-varying
disturbances (except the slowly-varying wave loads), described as a Markov process, where Tb is a time
constant, and wb is some white noise. The mass matrix M ∈ R6×6, the damping matrix D ∈ R6×6,
and a matrix holding the restoring forces coefficients C ∈ R6×6, are all given by the VERES database.
The transformation matrix J(η) ∈ R6×6 is defined in (4.2), where c and s is short for cos(·) and sin(·),
respectively.

η̇ = J(η)ν (4.1a)

ḃ = −T−1
b b(t) + Ebwb (4.1b)

Mν̇ = −Dν − CJ(η)T η + J(η)T b(t) + τwave + τthr (4.1c)
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J(η) =

[
R(η) 03×3

03×3 T (η)

]
(4.2a)

T (η) =

1 sϕtθ cϕtϕ
0 cϕ −sϕ
0 sϕ/cθ cϕ/cθ

 (4.2b)

R(η) =

cψcθ −sψcϕ+ cψsθsϕ sψsϕ+ cψcϕsθ
sψcθ cψcϕ+ sϕsθsψ −cψsϕ+ sθsψcϕ
−sθ cθsϕ cθcϕ

 (4.2c)

The matrices M , D, and C are defined for 47 different wave frequency in the range of [0.2094, 9.364].
This allows the vessel module to be dependent on the relevant sea state. Note that the matrices are defined
for zero speed only. Hence, the matrices define a zero-speed model.

Since the VERES data only is defined for some specific frequencies and headings, it was necessary to
find the values that corresponds to these valid frequencies. This can either be done by finding the closest
value or performing an interpolation between two known values. The latter will be more accurate, but
increase the number of frequency components that are considered. However, the VERES calculations are
not accurate, and since the system already holds a lot of errors in terms of modelling and simplifications,
it was concluded that the first option was sufficient.

Thruster Dynamics

The capacity of the real-world actuators are limited, consequently the maneuvering properties are limited.
Therefore, in order to obtain a high-fidelity behavior of the simulated vessel, some limitations on the
control inputs needs to be applied. The objective of the thruster dynamics is to saturate and limit the
rate of actuator set points coming from the thrust-allocation, and then convert the actuator outputs into
generalized forces in the body frame. Finally, generalized loads can be applied in the equation of motion
(4.1c). Table 4.2 shows an overview of the actuator restrictions.

Table 4.2: Actuator properties for CSAD. Courtesy of Bjørnø et al. (2017)

Parameter Value
Propeller diameter 0.03 [m]

Max torque 0.0015 [Nm]
Max thrust 1.5 [N]

Max shaft speed 94.9 [RPS]
Steering speed 114 [deg/s]

CSAD is equipped with a total of six actuators. All are azimuth thrusters, and the configuration can be
seen in Figure 4.3. For azimuth thrusters, actuator set points include both the angle αi and thrust ui. In
fact, it is the shaft speed ni that controls the thrust ui, and therefore ni is the parameter that needs to be
limited.

The thrust force Ti produced by each actuator is calculated by (4.3) (Fossen, 2021, chap. 9), where ρ
is the water density, D is the diameter of the propeller, KiT is a thrust coefficient. uiy and uix are the
decomposed thrust set points in the body frame. αi is defined as zero when the force vector is pointing
in the vessel’s surge direction, and positive clockwise.
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Ti = ρD4KiT | ni | ni (4.3a)

ni = sgn(ui)
√
| ui | (4.3b)

ui =
√
u2ix + u2ix (4.3c)

αi = arctan(
uiy
uix

) (4.3d)

For a surface vessel with azimuth thrusters, (4.4) can be used to convert the actuator thrust loads into
generalized loads in the body frame (Fossen, 2021, chap. 9). Here, τ = col(X,Y,N) is a vector holding
forces and moments in the horizontal plane, and l = col(lx, ly) is the position vector of the azimuth’s
location expressed in body frame.

τi =

 Ticos(α)
Tisin(αi)

lixTisin(αi)− liyTicos(αi)

 (4.4)

Figure 4.3 shows some red zones for which the direction of the jet from one actuator will affect the flow of
water into another actuator. The turbulent flows that occur, in this case, will affect the thrust significantly.
However, these turbulent effects are not considered in the simulations, because of the complexity of such
hydrodynamic simulations.

Figure 4.3: Dimensions and constraints of CSAD’s actuators. Courtesy of Bjørnø et al. (2017)

4.2.2 Sensor Sub-Module

When designing a high-fidelity simulator, there has to be realistic sensor simulations as well. For the
purpose of wave load compensation and the control strategies presented in this thesis, three sensors are
required: Global Navigation Satellite System (GNSS), Inertial Measurement Unit (IMU), and a wave
sensor providing wave elevation measurements.

GNSS Measurements

In this thesis, it was assumed that positions and velocities are given by the GNSS system. This is because
the physical model will obtain these states from the odometry system in MC-Lab, which hereafter will
be referred to as the GNSS. The odometry system is described in section 2.5.

Strictly speaking, the GNSS submodule and the calculation of vessel motions, is implemented as the
same module in the source code. That is because the odometry system in MC-Lab provides the same
states which are provided by the equations in (4.1a) and (4.1c).
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Figure 4.4: Configuration of the IMU locations on CSAD. Courtesy of Brørby (2021)

In the ROS network (Figure 4.1) these messages are published on the topic “/qualisys/Body 1/odom”.

IMU Measurements

By containing accelerometers, gyroscopes, and magnetometers, an IMU measurement can provide useful
information in applications for motion-control. In this thesis, only accelerometer measurements were
considered. The physical model vessel is equipped with four IMUs distributed as shown in Figure 4.4.
The reason for this particular configuration is later explained in section 4.5.3.

From the equations of motions in (4.1), we have access to the velocities and position in 6 DOFs in the
body frame. Hence, we also have access to the true 6 DOF acceleration vector expressed in the body
frame. However, we want to simulate the linear acceleration measurements expressed in the sensor frame.
Since the simulator provides 6 DOF calculations, it is possible to calculate the motion of an arbitrary
point on the vessel. Assuming that the sensor frame is aligned with the body frame, the acceleration
measurements, am = col(ax, ay, az), can be modelled as in Batista et al. (2011). This is shown in (4.5a),
where am ∈ R3 is the sensor output, and al ∈ R3 the linear acceleration at the location where the sensor
is located. ω = col(p, q, r) is the body’s angular velocities relative to NED frame, ν = col(u, v, w) is
the linear velocity of the body, g ∈ R3 is the gravitational component in the body frame. b ∈ R3 is a
sensor bias, and w ∈ R3 is sensor noise.

Since the sensors are not located in the body’s origin (CO), the linear acceleration al must depend on the
distance between CO and the sensor frame’s origin, l = col(lx, ly, lz). If we express this lever arm as a
distance vector in the body frame, the linear acceleration al can be described by (4.5b). Here, aco, α ∈ R3

is the linear acceleration and angular acceleration in CO, respectively.

It has to be noted that the simulations assumes that the sensor frame is aligned with the body frame.
However, this is not the case for the physical model. Therefore, a transformation of the measurements
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has to be done if the signals should correspond to the physical case. This is left for further work.

The gravitational component g will have an impact on the linear accelerations in roll and pitch. This can
be modelled as in (4.5c).

am = al + ω × ν + g + b+ w (4.5a)

al = aco + α× l + ω × (ω × l) (4.5b)

ġ = −ω × g (4.5c)

Drifting measurements are a characteristic inconvenience for acceleration measurements. This is mod-
elled by a random walk process of the bias b. That is, ḃ = wb, where wb is some noise.

In the ROS network (Figure 4.1), the measurements from the four sensors are published on the topic
“/imu1”, “/imu2”, “/imu3”, “/imu4”. In the physical setup, the IMU measurements also include gyro-
scope measurements, but is not being used in this thesis.

Wave Measurements

This submodule is closely related to the environmental load module described later in section 4.2.3. Fig-
ure 4.5 shows how the wave elevation is both part of the environmental load module (blue sections) and
the marine vessel module (green sections). Strictly speaking, the sensor submodule is calling the envi-
ronmental module for information about the sea state’s wave elevation, and publishes the measurement
from the sensor submodule.

Sea state parameters Tp, Hs, and β are defined by the user before starting the simulator. How this is done
is explained in Appendix A. The simulations are only defined for long-crested waves, both regular and
irregular sea states.

To describe how the wave measurements are produced, recall (2.1b) from section 2.1.1, which describes
wave elevation for long-crested waves:

ζ(x, t) =

N∑
j=1

√
2S(ωj)∆ωsin(ωjt− kjx+ εj)

where ζ is the wave elevation relative to the surface. When starting the simulator, the environmental load
module is initialized with a predefined wave spectrum S(ω) for some defined range of wave frequencies
[12ωp, 2ωp], where ωp is the sea state’s peak frequency. The distribution of wave frequencies ωj within
the mentioned frequency domain, are defined by ∆ω = (2ωp − 1

2ωp)/N , where N denotes the number
of frequency components.

Note that (2.1b) is expressed for all locations x, which is the distance from the defined origin of mea-
surements. That is, the body frame’s CO. If, for instance, the wave measurements were provided from a
wave radar, the point of measure would be in front of the vessel. That way, by setting x to some measure
distance, more realistic measurements can be provided. Note that the measurement then assumes the
wave number k is given for an infinitely large water depth. Also note that the MC-Lab has no way of
providing wave measurements to the physical vessel. Therefore, control systems, depending on these
measurements, can only be tested with simulations as of today.

Wave elevation measurements are published to the topic “/waveElevation” in the ROS network.
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4.2.3 Environmental Load Module

As implied in the problem formulation in Chapter 3, only wave induced loads are considered in the
environmental load module. Hence, the purpose of the module, is to generate wave loads in terms of the
three contributions stated in section 2.1.2; that is, first order, mean-drift, and slowly-varying loads. The
loads generated are dependent on wave parameters defined by a user input, in terms of peak period Tp,
significant wave height Hs, and propagation angle β expressed in NED frame. Since this is where the
information of the sea state is generated, the wave measurements also had to be provided by this module,
and not by the sensor module. However, the wave measurement is published from the sensor submodule,
as described in section 4.2.2.

The reader is encouraged to give attention to Figure 4.5 while reading this section. Blue regions and
blocks are members of the environmental load module, while green implies affiliation to the marine
vessel module.

Figure 4.5: Flowchart of environmental load module.

The module simulates wave loads, expressed in body frame, and are calculated by utilizing the transfer
functions provided by the VERES database. The parameters used from the database in this module is:

• First order load RAO, for describing first order wave loads. A transfer function from wave ampli-
tude to first order wave loads. Called “forceRAO” in the VERES database.
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• Diagonal of the QTF, for describing the mean-drift load and the slowly-varying loads. A transfer
function from wave amplitudes to mean-drift loads. Called “driftfrc” in the VERES database.

The mentioned values are presented in 6 DOFs, and are defined for 47 different wave frequencies in the
range of [0.2094, 9.364], and for 36 different headings in the range of [0, 2π). This makes it possible to
express wave induced loads in a wide range of conditions.

In order to test various cases, this module provides the user to choose between regular and irregular
sea states. However, only long-crested waves can be considered; that is, only unidirectional waves are
simulated. For irregular sea states, a wave spectrum is generated when initializing the module. From this
generation, a set of wave amplitudes, frequencies, and phases are saved for generating wave loads in real
time. The JONSWAP spectrum presented in section 2.1.1 is used. Parameters for the spectrum are listed
in Table 4.3.

Table 4.3: Extract from available system values for 6DOF vessel module.

Parameter Value
α 0.0081
γ 3.3
σa 0.07
σb 0.09

Wave induced loads will affect the vessel’s heading, even if the wave direction is along the body’s surge
direction. This is due to unmodelled dynamics and imperfect values from VERES. Since the transfer
functions depends on heading, this module have to be updated with the new heading for each iteration,
as showed in Figure 4.5.

As already mentioned, the VERES database are only defined for specific headings and frequencies.
Therefore, a search for the closest valid condition is performed to find the corresponding values from
the database. Since there are a lot of uncertainties in terms of unmodelled dynamics and imperfect
hydrodynamic calculations by VERES, it was considered unnecessary to make an interpolation between
the values.

The wave amplitudes Ak are associated to the wave spectrum S(ωk) by (4.6), where ωmin and ωmax

are defining the range where the major part of the energy is located in the spectrum (Faltinsen, 1999,
chap. 5). Faltinsen (1999, chap. 5) states that we should let N −→ ∞, ωmin −→ 0 and ωmax −→ ∞,
such that the area under the spectrum becomes an integral. However, choosing a finite large N will
affect the calculation time drastically when simulating irregular sea states. Hence, a trade-off between
completeness of the sea state and run time are introduced. Therefore, the number of wave elements N
should be chosen wisely. In this simulator, it is by default N = 25, but the user is free to redefine it.

In addition, the signal will repeat itself after a period of 2πN/(ωmax −ωmin) (Faltinsen, 1999, chap. 5).
In order to avoid this, the frequencies ωj are chosen randomly in each sub interval ∆ωj .

A2
k

2
= S(ωk)∆ω = S(ωk)

ωmax − ωmin

N
(4.6)

The first order wave loads are calculated by utilizing the force RAO from VERES. The RAO provided
from the VERES values contains both force amplitudes, and the phase angle between the wave and the
wave induced force acting on the vessel. The usage of the transfer function is taken from Fossen (2021,
chap. 10) and presented in (4.7), for all 6 DOFs (i = 1, ..., 6). The formula is a sum over N wave
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components. Here, Hi is the force RAO depending on the wave frequency ωk and the wave direction β
expressed in body frame. S(ωk) is the spectrum as earlier described. The first order loads oscillate with
time t, at the frequency of ωk and a phase delay of ∠Hi(ωk, β)+εk, where ∠Hi denotes the phase angle
of the load relative to the incoming wave. εk is the phase angle of the wave element between 0 and 2π.

τ iwave1 =
N∑
k=1

ρg | Hi(ωk, β) |
√
2S(ωk)∆ω · cos(ωkt+ ∠Hi(ωk, β) + εk) (4.7)

Mean-drift loads are simulated by (4.8), where Ti(ωk, β) is the diagonal element of the QTF for fre-
quency ωk.

τ imean =
N∑
k=1

ρg | Ti(ωk, β) | 2S(ωk)∆ω (4.8)

The slowly-varying wave loads are not as straight forward to simulate as the other contributions. Even
if there are several proposals for describing these loads in the literature, most methods are even very
time-consuming or does not describe the slowly-varying loads as a whole. OrcaFlex (2021) presents a
method (4.9a) that contains a double summation, which results in 2N calculations, which is a lot when
the calculations have to be done in real-time. The reason for the double summation, is that the difference
frequencies ωk−ωj and ωj −ωk of all wave frequencies are accounted for. It was decided to manipulate
this method in order to decrease the run-time, by shorten the inner summation to only cover half of these
combinations. By assuming that the full QTF is symmetric; that is, T (ωk − ωj) = T (ωj − ωk), we can
rewrite the summation to (4.9b). Note the upper limit of the inner sum.

τ isw =
N∑
k=1

N∑
j=1

Re{Ti(βk, βj , ωk, ωj)AkAj exp [i(ωk − ωj)t− (ϕk − ϕj)]} (4.9a)

= 2
N∑
k=1

k∑
j=1

Re{Ti(βk, βj , ωk, ωj)AkAj exp [i(ωk − ωj)t− (ϕk − ϕj)]} (4.9b)

Since only the QTF diagonal is available from VERES, we use an estimate for the off-diagonal terms
(4.10)(Faltinsen, 1999, chap. 5), and we get an estimate of the slowly-varying wave loads (4.11).

T̄i(βk, βj , ωk, ωj) =
1

2
(Ti(βk, βk, ωk, ωk) + Ti(βj , βj , ωj , ωj)) (4.10)

⇓

τ isw ≃ 2
N∑
k=1

k∑
j=1

Re{T̄i(βk, βj , ωk, ωj)AkAj exp [i(ωk − ωj)t− (ϕk − ϕj)]} (4.11)

Eventually, as shown in Figure 4.5, the three contributions τ iwave1, τ imean, and τ isw are added and used in
the equation of motions in the marine vessel module.

Note that the VERES database are offering a motion RAO as well (see Table 4.1). This could have been
used to simulate the corresponding wave induced vessel motion, instead of the wave loads. The reason
for not using motion RAO is that it only represents the first order wave loads. Consequently, second
order wave loads still need to be added (Fossen, 2021, chap. 10).
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4.3 Thrust Allocation

4.3 Thrust Allocation

There are several methods for solving the thrust allocation problem. In this case, a pseudoinverse algo-
rithm was used. The author considers the choice of allocation solver to not be conclusive for the scope
of this master thesis. Therefore, more details can be seen in Fossen (2021, chap. 9).

It should be noted that with a view to avoid thrust in the restricted zones (recall Figure 4.3 from sec-
tion 4.2.1), a constraint version of the pseudoinverse would have been a more reasonable choice. How-
ever, for the purpose of simulations, and the fact that thrust loss due to turbulent flow was neglected,
the simple version was implemented. On the other hand, for the physical test case, a constraint version
should be implemented in further work, as the turbulent effects can no longer be neglected.

4.4 Observer Design

In most DP operations for surface vessels, only surge, sway, and yaw motions from (4.1) are considered.
In order to estimate the LF position η, velocity ν, and bias b in 3 DOFs, the nonlinear observer (NLO)
from Fossen and Strand (1999) was selected. The observer model is presented in (4.12), where ˙̂η, ˙̂ν and
˙̂
b are estimates of the named states, respectively. ξ̂ ∈ R6 is the estimate of the first-order wave induced
dynamics, and Aw ∈ R6 is a matrix containing peak frequencies and damping ratios for the relevant sea
state. ỹ is the measurement error, and Cw = [03×3 I3×3] is simply a selection matrix. The matrices
L1 ∈ R6×3, L2, L3, and L4 are injection gains. L1 is used to tune the observer for proper wave-filtering.

˙̂
ξ = Awξ̂ + L1ỹ (4.12a)
˙̂η = R(ψ)ν̂ + L2ỹ (4.12b)
˙̂
b = L3ỹ (4.12c)

M ˙̂ν = −Dν̂ +R(ψ)T b̂+ τ + L4R(ψ)
T ỹ (4.12d)

ŷ = η̂ + Cwξ̂ (4.12e)

The reasons for using an observer with wave filtering, is stated in section 2.4.1. Since the objective of
this thesis is concentrated on second order wave loads, the filter renders the comparisons between the
controllers on the proper foundation; that is, compensation of wave induced motions due to second order
effects.

Note that using deterministic observers, like this, will constitute a small delay of the provided estimate,
due to integration of the states.

Fossen and Strand (1999) states that the NLO requires R(ψ) to be perfectly known. Which, in our case,
is a valid assumption as these measurements are either provided by the odometry system in MC-Lab or
signals from the simulation model. Both contains small levels of uncertainty.

4.4.1 Tuning

The method for tuning the observer gains L1 and L2 is presented in Fossen and Strand (1999), and
is optimized for good wave-filtering. It is possible to consider the gains L3 and L4 as an indication
of how reliable the design model is compared to the measurements. If the measurements contain high
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uncertainty, lower values should be used. If the design model has high uncertainty, higher values are
recommended. Therefore, a brute force approach is applied for the latter gains, with focus on good η and
ν estimates.

4.5 Control Design

This section aims to present the different control methods that are developed and implemented in the
thesis. How to launch and test the different controllers, are presented in Appendix A. The following
methods are presented:

• Method 1:
Bias estimate provided from the observer as direct compensation in a nominal control law.

• Method 2:
Integral action as direct compensation in a nominal control law.

• Method 3:
Acceleration feedforward term suppressing disturbances, added to a nominal control law.

• Method 4:
An adaptive controller, using a Fourier series as internal model for second order loads.

• Method 5:
A spectrum-based method, using estimates of the wave spectrum for supplying the integral action
in a nominal controller.

We consider the 3 DOF CDM in (4.13), where τ is the control input, and d(t) is the disturbance force, in
terms of wave loads. The rest is defined as in section 2.4.1.

η̇ = R(ψ)ν (4.13a)

Mν̇ = −Dν +R(ψ)T b(t) + τ + d(t) (4.13b)

4.5.1 Method 1: DP-Observer Estimate

The first method we consider is a PD control law, supplied by a bias term provided by the observer. The
method is taken from Lorı́a and Panteley (1999), where the separation principle is utilized; that is, if a
globally exponentially stable feedback controller can be made using the state estimates from a globally
exponentially convergent observer, the closed loop system will be globally asymptotically stable (Lorı́a
and Panteley, 1999).

We consider the observer presented in (4.12) from section 4.4, providing estimates of position, velocity,
and bias. The bias estimate from (4.12c) represents the disturbance and unmodelled dynamics. The
estimates are fed into the control law.

We propose a nominal control law (4.14), where η̃ := η̂ − ηd and ν̃ := ν̂ − νd are the error states. Kp,
Kd ∈ R3 are positive gains. τ ∈ R3 is the control input for surge, sway, and yaw.

τ = −KpR(ψ)
T η̃ −Kdν̃ −R(ψ)T b̂ (4.14)
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It is assumed that the two first terms in (4.14) are known to the reader as a nominal PD-controller. It is
the last term that is interesting in this context. The bias estimate is assumed to be represented in the NED
frame. Note that (4.12c) is dependent on the measurement error ỹ only, and no other parameters. Hence,
this is actually a feedback term, and following the effect of the direct bias compensation will contain a
delay equal to the delay that originates from the estimates.

This method is considered as the simplest control method in this thesis, and will be used as baseline
when comparing all methods.

4.5.2 Method 2: Direct Integral Action

The second method is the most common for DP operations (Sørensen, 2011). It constitutes the PD
controller with an integral term, and fulfills the controller known as the PID-controller. The idea of the
integral action is that the error is summarized over time. We define a new state z in (4.15b), such that z
is the integral of the position error from t = 0 to the current time.

τ = −KpR(ψ)
T η̃ −Kdν̃ −KiR(ψ)

T z (4.15a)

ż = η̂ − ηd(t) (4.15b)

Like Method 1, this is a model-based control design. Such control systems are popular, as they provide
stable and robust control (Fossen, 2021). However, they are not ideal for handling uncertainties in the
CDM, and disturbances have to induce positioning offset before the integral action can adapt the system.
This motivates the following methods.

4.5.3 Method 3: Acceleration Feedforward

Method 3 was originally presented in Kjerstad and Skjetne (2016). For the full control design, see Kjer-
stad and Skjetne (2016). Only the most essential details are presented here. The method utilize the (nor-
mally unused) acceleration measurements at marine surface vessels. The idea is to make a reconstruction
of the 6 DOF acceleration vector for the vessel in body frame, and utilize the fact that acceleration signals
holds values proportional to the forces acting on the vessel.

In order to achieve this, Kjerstad and Skjetne (2016) states some problems to overcome:

1. Sensors are typically not located in the body’s CO. Therefore, signals needs to be converted from
sensor frame to body frame.

2. The converted measurement from the previous item is not containing the angular accelerations.
These must be calculated by utilizing the lever arm from CO to the sensor frame.

3. To procure the full acceleration vector ν̇ from the previous points.

We assume that the accelerometers are aligned with the body frame, and sensor scale-factor, cross-
couplings, and misalignment errors are negligible (Kjerstad and Skjetne, 2016).

We also assume that signal for position p = col(x, y, z) and orientation Θ = col(ϕ, θ, ψ) in the NED
frame are measured. As well as angular velocities ω = col(p, q, r) in the body frame, and four accelera-
tion measurements am = col(ax, ay, az) in the sensor frame relative to the NED frame.
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Recall the model of acceleration measurements in (4.5) from section 4.2.1:

am = al + ω × ν + g + b+ w

al = aco + α× l + ω × (ω × l)

ġ = −ω × g

where all variables are defined as earlier.

Strictly speaking, the procedure for reconstructing the 6 DOF acceleration vector in CO is the opposite
of what we did in section 4.2.1 for simulating the acceleration measurements. However, now we make
the most of the distribution of the four sensors. From (4.5b), the linear acceleration vector (al) at the
sensor location point can be parameterized on matrix form as in (4.17), where I3×3 is the identity matrix,
S(l) and H(l) is defined by (4.18a) and (4.18b), respectively. ω̄ contains the cross product elements
ω̄ =

[
ω2
x ω2

y ω2
z ωxωy ωxωz ωyωz

]T .

al =
[
I3×3 S(l)T H(l)

] acoα
ω̄

 =:W (l)z (4.17)

S(l) =

 0 −lz ly
lz 0 −lx
−ly lx 0

 = −S(l)T (4.18a)

H(l) =

 0 −lx −lx ly lz 0
−ly 0 −ly lx 0 lz
−lz −lz 0 0 lx ly

 (4.18b)

Doing this for all four sensors with their respective locations l, we can compose these matrices, and get
(4.19), where ac ∈ R12, lc = col(l1, l2, l3, l4), and G(lc) ∈ R12×12.


al1
al2
al3
al4

 =


W (l1)
W (l2)
W (l3)
W (l4)

 z (4.19a)

⇕
ac = G(lc)z (4.19b)

Now, assume that the configuration of the acceleration sensors are strategically placed in accordance
with Zappa et al. (2001), where at least one sensor is not co-planar to the other three (see illustration
Figure 4.6). Consequently, G(lc) is nonsingular; hence, it can be inverted. Then, by substituting (4.19)
into (4.5a), we obtain (4.20), where amc ∈ R12 is the composed acceleration measurement vector from
four measurements.

G−1amc = z +G−1


ω × ν + g + b1 + w1

ω × ν + g + b2 + w2

ω × ν + g + b3 + w3

ω × ν + g + b4 + w4

 (4.20)
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Figure 4.6: A possible setup for accelerometers for obtaining full state acceleration vector. Courtesy of Kjerstad
and Skjetne (2016)

Consequently, the two first problems have been solved. To deal with the third problem, a state observer
have to be made. This is because the gravitational component g needs to be removed from the signals,
and sensor bias have to be accounted for. Kjerstad and Skjetne (2016) propose the observer in (4.21),
where pν is the position p transformed to the body frame. ν = col(u, v, w) is here redefined to only
contain the linear velocity in body frame. amc is the acceleration measurement vector from (4.20). bl
and bω is the bias from the linear and rotational acceleration that arise with the transformation in (4.20).
B1, B2 ∈ R3×12 is selection matrices for the linear dynamic acceleration and angular acceleration,
respectively.

ṗν = −S(ω(t))pν + ν (4.21a)

ν̇ = −S(ω(t))ν − bl − g +B1G
−1amc (4.21b)

ġ = −S(ω(t))g (4.21c)

ḃl = 0 (4.21d)

ω̇ = bw +B2G
−1amc (4.21e)

ḃω = 0 (4.21f)

Consequently, (4.21) constitutes a full state observer; hence, the control law can be designed. Let the con-
trol law be divided in a nominal term Γ and a term ∆ for compensating the disturbance. To achieve dis-
turbance rejection by acceleration feedforward, the control law (4.22) is proposed (Kjerstad and Skjetne,
2016).

τ = Γ−∆ (4.22)

In this master thesis, we choose the nominal control law that is similar to the previous methods, but
without the terms for disturbance compensation; namely, the PD-controller in (4.23). Here, η̃ and ν̃ is
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the error states of the surge, sway, and yaw position and velocity, respectively. All provided by the state
observer in (4.21).

Γ = −KpR(ψ)
T η̃ −Kdν̃ (4.23)

Since the acceleration measurements contains high levels of noise, a filtered acceleration signal should
be used. Kjerstad and Skjetne (2016) suggests (4.24), where µ is a tuning gain for how accurate the
disturbance is followed by ∆, and ρ(η, ν) is a function representing the nonlinear dynamics in the CDM
(4.13).

∆̇ = µ(Ma(t)− Γ− ρ(η, ν)) (4.24)

The method is presented as a block diagram in Figure 4.7.

Figure 4.7: Block diagram of the acceleration feedforward method.

4.5.4 Method 4: Adaptive Fourier Series

Method 4 is based on the internal model principle, where a mathematical model for the disturbance is
defined. An adaptive control law is designed to adapt parameters in the internal model, and to compensate
for the true disturbance.

Consider the CDM in (4.13), and let d(t) ∈ R3 describe the disturbance as a sum of the slowly-varying
loads and the mean-drift loads, in surge, sway and yaw.

We design an internal model for the disturbance, by assuming that the disturbance d(t) can be described
as a Fourier series of harmonic oscillating functions with N different frequencies. This can be written as
in (4.25), where ωn is the wave frequency of the n-th component, and a0i, ani, bni are unknown Fourier
coefficients, that we want to estimate. If we rewrite (4.25) to matrix form, we get (4.26), where the
regressor Φ(t) is a vector consisting of time-variant functions, and θ is an unknown vector containing the
Fourier coefficients. We assume θ to be constant, which is a reasonable assumption for a fully developped
sea state.

di(t) = ai0 +
N∑

n=1

anicos(ωnt) + bnisin(ωnt) ; i = 1, 2, 3 (4.25)
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di(t) =
[
1 cos(ω1t) sin(ω1t) . . . cos(ωN t) sin(ωN t)

]


a0i
a1i
b1i
...
aNi

bNi


(4.26a)

=: Φ(t)T θ (4.26b)

Note that the first term in (4.26) is a constant. That is, for representing the mean-drift load. Hence,
it is assumed that second order wave loads due to both difference-frequency effects and mean-drift are
represented in the internal model.

We use LgV-backstepping for the controller design, and we define two new states (4.27), where α ∈ R3

is a virtual controller to be defined later.

z1 = R(ψ)T (η − ηd(t)) (4.27a)

z2 = ν − α (4.27b)

Step 1:

We differentiate (4.27a) with respect to time and get:

ż1 = ṘT (ψ)(η − ηd(t)) +R(ψ)T (R(ψ)ν − η̇d(t))

= −S(r)z1 + z2 + α−R(ψ)T η̇d(t) (4.28)

where we have used that Ṙ(ψ) = R(ψ)S(r) and S(r) = −ST (r) =

0 −r 0
r 0 0
0 0 0

.

We assign a control Lyapunov function (CLF):

V1(z1) =
1

2
zT1 z1 (4.29)

where the time derivative is

V̇1 = zT1 ż1

= zT1 (−S(r)z1 + z2 + α−R(ψ)T η̇d(t))

= zT1 (z2 + α−R(ψ)T η̇d(t)) (4.30)

In order to cancel terms in (4.30), we choose the virtual control law:

α = −C1z1 +R(ψ)T η̇d(t) + α0 (4.31)

where C1 ∈ R3×3 is a positive tuning matrix, and α0 is a virtual control law for making (4.30) negative,
and will be assigned later in the design. Putting the control law (4.31) into (4.30) gives

V̇1 = −zT1 C1z1 + zT1 z2 + zT1 α0

≤ −zT1 C1z1 + κ1z
T
1 z1 +

1

4κ
zT2 z2 + zT1 α0 (4.32)
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In (4.32) we have used Young’s inequality; that is, aT b ≤ κaTa+ 1
4κb

T b for some constant κ > 0, where
a = z1 and b = z2. Then, by choosing the control law for α0:

α0 = −Kz1 (4.33)

where K = κI3. This results in the following:

V̇1 ≤ −zT1 C1z1 +
1

4κ
zT2 z2 (4.34)

ż1 = −S(r)z1 + z2 − (C1 +K)z1 (4.35)

Step 2:

Now, considering the z2-dynamics from (4.27b), where the time derivative is

Mż2 =Mν̇ −Mα̇

= −Dν +Φ(t)T θ + τ −Mα̇ (4.36)

We assign a new CLF for Step 2:

V2(z1, z2) = V1(z1) +
1

2
zT2 Mz2 (4.37)

Differentiating (4.37) gives

V̇2 = V̇1 + zT2 Mz2

≤ −zT1 C1z1 +
1

4κ
zT2 z2 + zT2 (−Dν +Φ(t)T θ + τ −Mα̇)

= −zT1 C1z1 +
1

4κ
zT2 z2 + zT2 (−Dz2 −Dα+Φ(t)T θ + τ −Mα̇) (4.38)

Let θ̂ be an estimate of θ, and let θ̃ = θ − θ̂ be the error state. Recall that θ is a constant vector. Hence,
the error dynamics becomes: ˙̃

θ = − ˙̂
θ.

Based on the terms in (4.38), we choose the control law

τ = −C2z2 +Dα+Mα̇− Φ(t)T θ̂ (4.39)

where C2 ∈ R3×3 is a positive tuning matrix. Note that we do not want to counteract the −Dz2 term in
(4.38), since it adds more stability to the system.

Putting the control law (4.39) into (4.38) gives

V̇2 ≤ −zT1 C1z1 − zT2 (C2 −
1

4κ
+D)z2 + zT2 Φ(t)

T θ̃ (4.40)

Mż2 = −(D + C2)z2 +Φ(t)T θ̃ (4.41)

For simplicity, we define C3 = C2 − 1
4κ +D.

Finally, we assign a last CLF in order to achieve an update law for the estimate θ̂:

V (z1, z2, η̃) = V2 +
1

2
θ̃TΓ−1θ̃ (4.42)
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where Γ ∈ R2N+1 is a tuning matrix, implying how fast the Fourier coefficients will be updated.

Differentiating (4.42) gives

V̇ = V̇2 + θ̃Γ−1 ˙̃θ

≤ −zT1 C1z1 − zT2 C3z2 + θ̃T (Φ(t)z2 − Γ−1 ˙̂θ) (4.43)

Then, in order to cancel the last term in (4.43), we choose the update law

˙̂
θ = ΓΦ(t)z2 (4.44)

which renders
V̇ ≤ −zT1 C1z1 − zT2 C3z2 ≤ 0 (4.45)

In other words, V̇ becomes negative semi-definite. Hence, by Lyapunov’s direct method, we can con-
clude that the equilibrium (z1, z2, θ̃) = 0 is UGS. In addition, according to LaSalle (1968) and Yoshizawa
(1966), (z1, z2) will converge to zero as time goes to infinity.

Note that this control method will not give guaranties for convergence of θ̃ −→ 0, only (z1, z2) −→ 0.
To achieve such guaranties, it is required that the preliminary assumptions holds, and that the CDM
is accurate enough. In addition, the true disturbance d(t) would have to be persistently exciting the
regressor Φ(t) (Anderson et al., 1986).

Also note that the frequencies ωn are equally distributed within the set [2π/20 2π/2], where N is a
natural number to decide the number of frequency components to consider in the Fourier series. A higher
value ofN gives a more accurate disturbance estimate, but will also increase the size of the matrices Φ(t)
and θ̂ with 2N + 1; hence, increase the calculation time. Tmin = 2 seconds and Tmax = 20 seconds is
chosen to cover a wide range of slowly-varying frequencies, but this may also be considered as tuning
parameters.

A block diagram of the method is presented in Figure 4.8.
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Figure 4.8: Block diagram from Method 4.

4.5.5 Method 5: Spectrum-Based Estimation

This method was first presented in the preproject written by the author (Brørby, 2021). The design is
here reproduced and improved for this master thesis. As mentioned in section 2.4, the bias b(t) tends to
be significant as it covers both unmodelled dynamics and slowly-varying environmental loads (Sørensen,
2011). In conventional PID-controllers, integral action is used to compensate for the bias in its entirety.
The idea of Method 5 is to relieve the integral action by extracting the mean-drift loads, and compensate
these in a separate term (see Figure 4.9). In order to do so, a strategy for estimating the mean-drift loads
is proposed, which is further used as a supplement to the conventional PID controller.

Figure 4.9: Block diagram of Method 5.
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Two main challenges must be overcome:

1. The current sea state needs to be estimated and modelled, based on wave measurements.

2. The mean-drift load must be estimated using the gained knowledge of the current sea state.

In Brørby (2021), some strategies were proposed to deal with the first challenge. Here, we choose to
estimate a wave spectrum based on historical data, gained online.

Assume that raw wave measurements are provided in terms of wave amplitudes Am from some sensor
with sampling time TA. Let Ā = [A1, A2, ..., AN ] ∈ RN be a vector holding the historical measurements
for N samples. A shift register holding the historical data for the wave measurements are defined in
(4.46), where the superscript + denotes the new value of position i of a total of N historical samples.

A0 = Am (4.46a)

A+
i = Ai−1 ; i = 1, ..., N (4.46b)

N+ = N + 1 (4.46c)

Let Ω be a vector containing the available frequencies provided by the VERES database. An estimate of
the wave spectrum (Ŝ0(ω)) and associated wave frequencies Ω̂, corresponding to the collected measure-
ments Ā, can be obtained by performing an FFT of Ā (Fossen, 2021, chap. 13). In the implementations,
Welch’s method is used to obtain a power spectral density of the sea state (Scipy FFT: Welch).

Let Tss be the period between each time a new estimate of the wave spectrum should be calculated, and
let S̄ = [Ŝ1(ω), ..., ŜM (ω)] be a vector holding the estimated spectrums for each period of T =M · Tss.
A shift register, carrying the M last estimated wave spectrums Ŝj(ω), can then be defined as in (4.47).
Figure 4.10 illustrates how the period of the estimates evolves.

S+
j (ω) = Sj−1(ω) ; j = {1, ...,M} (4.47a)

M+ =M + 1 (4.47b)

As stated in section 2.1.1, it is common to say that 20 minutes is enough to express the statistical prop-
erties for a sea state (Larsen et al., 2019). However, a sea state will also change with time, depending on
how long period a sea state is observed. If we consider shorter time periods isolated, we may observe
that the mean-drift will vary from one interval to another, and the actual sea state may not be represented.
On the other hand, considering a growing time span, will represent the current sea state more accurately,
as time grows. This motivates the choice of considering a growing time span for the wave spectrum esti-
mate (Figure 4.10), and also the final estimate, that is (4.48). Here γ is a weighting parameter, implying
how much the older estimates Ŝj(ω) should be weighted.

Ŝ(ω) =

∑M
j=1 γ

jŜj(ω)∑M
j=1 γ

j
; γ ∈ (0, 1] (4.48)

Note that choosing γ = 1 will weight all estimates equally, while lower values will make Ŝ(ω) depend
more on the newest estimates.
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Figure 4.10: Illustration of how to update the estimation of the wave spectrum.

A flowchart of the procedure of sea state estimation is presented in Figure 4.11.

Now that an estimate of the wave spectrum is provided, we can use this to calculate a mean-drift load
corresponding to the estimated sea state. Proposing (4.49), where T (ω) is the diagonal of the QTF, as
mentioned earlier. (4.49) is inspired by the mean-drift loads (2.5) from section 2.1.2.

τ̂mean = Â2 · T (ω) = 2Ŝ(ω) · T (ω)∆ω (4.49)

Note that, since the estimated spectrum Ŝ(ω) will vary over time, τ̂mean will be a slowly-varying load.
However, it is important to emphasize that this is not reflecting the slowly-varying loads due to difference-
frequencies.

We fulfill the control law in (4.50).

τ = −KpR(ψ)
T (η̂ − ηd(t))−Kd(ν̂ − νd(t))−KiR(ψ)

T z − τ̂mean (4.50a)

ż = η̂ − ηd(t) (4.50b)
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Figure 4.11: Flowchart of the sea state estimation for Method 5.
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Chapter 5
Results and Discussion

This chapter presents results from simulations, and a performance analysis of the designed methods that
was presented in Chapter 4.

First, some results addressing the high-fidelity simulator’s features are visited. Thereafter, results from
simulations providing a basis of the performance analysis are considered and discussed.

5.1 High-Fidelity Simulator

Since the scope of this master thesis is to develop DP control systems for wave loads compensation, it is
essential that the simulated wave loads are generated in a way that is realistic, and make the performance
analysis useful for real world cases.

Figure 5.1 showing the output of the slowly-varying loads only, with the corresponding wave elevation.
Since the output contains a lot of spiked samples, a red line showing the contour of the slowly-varying
loads is included. Note that the contour is used for illustrating purposes only, to give the reader an
intuition of how the slowly-varying component varies with time. It is not part of the output from the
generated wave loads.

The reason for the spiky output, comes from an issue with the modelling of second order wave loads,
which was presented in section 4.2.3. The issue was already addressed in section 2.1.2; sum-frequency
effects will be part of the mathematical expression of the slowly-varying wave loads. Sum-frequency
components results in high-frequency loads, which is what we observe in Figure 5.1. However, for a
surface vessel, such high-frequency loads will not have any physical impact, since the vessel acts as a
lowpass filter itself, and the high frequencies are not in the neighborhood of any natural frequencies in
the horizontal plane of the vessel motion.

Another observation from Figure 5.1 is that there are no indications in the wave elevation that should
imply the slowly-varying forces that occur. For instance; the swollen loads at about 270 sec, has no cor-
responding swells in the wave elevation measurements. This supports the statement that the correlation
between the wave elevation and the slowly-varying loads, are not a one-to-one correspondence, but a
consequence of the vessel’s vertical motions in the waves, and hydrodynamic effects.
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Figure 5.1: Generated slowly-varying loads from the environmental load module, with corresponding wave eleva-
tion.

5.2 Observer

The observer is essential for the control system to behave in a desirable way. Figure(s) 5.2 and 5.3
shows results from the tuned observer, in regular and irregular sea states respectively, in surge direction.
Note that first order motions are filtered in both sea states, but these motions are harder to observe in an
irregular sea state.

An important observation from Figure 5.3 is the delay that comes with the estimated states. The signal
will be delayed due to integration within the observer, and due to the time of the estimation itself. Recall
that all the ROS nodes are running on a sampling frequency of 50 Hz. If this frequency was higher,
the delay could have been shortened, but not eliminated totally. The delay will affect how the control
systems compensate disturbances, in terms of how fast they will be able to react; hence, the stability of
the controllers are also affected by the observer delay.
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Figure 5.2: η and ν in surge with corresponding estimates from the nonlinear observer, subject to regular waves.

Figure 5.3: η and ν in surge with corresponding estimates from the nonlinear observer, subject to irregular waves.

5.3 Control System Performance

A performance analysis of the designed methods are presented. Table 5.1 showing realistic sea states
that are scaled to the size of the model that we are considering (CSAD). The list was used to test the
controllers under realistic conditions. The standard of comparison is based on finding sea states that
provokes weaknesses in the conventional DP controllers; that is, Method(s) 1 and 2.

The control objective for the performance tests, was to control η(t) −→ 0 and ν(t) −→ 0. Due to
time-consuming work, only one DOF of the controllers was tuned properly for η and ν; that is, surge
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direction. Hence, only controlling the vessel in surge direction is considered in the performance analysis.
The consequences of this limitation are discussed later in section 5.3.6.

Table 5.1: Realistic combination of significant wave heights and peak periods: full scale (Price and Bishop, 1974)
and model scale (Slåttum, 2021).

Full Scale 1:90 Model Scale
Sea state Description Hs [m] Tp [s] Hs [m] Tp [s]

0 Calm (glissy) 0.0 - 0.0 -
1 Calm (reppled) 0.0 - 0.1 4.87 - 5.66 0.0 - 0.001 0.51 - 0.6
2 Smooth (wavelets) 0.1 - 0.5 5.66 - 6.76 0.001 - 0.006 0.6 - 0.71
3 Slight 0.5 - 1.25 6.76 - 7.95 0.006 - 0.014 0.71 - 0.84
4 Moderate 1.25 - 2.5 7.95 - 9.24 0.014 - 0.028 0.84 - 0.97
5 Rough 2.5 - 4.0 9.24 - 10.47 0.028 - 0.044 0.97 - 1.10
6 Very rough 4.0 - 6.0 10.47 - 11.86 0.044 - 0.067 1.10 - 1.25
7 High 6.0 - 9.0 11.86 - 13.66 0.067 - 0.1 1.25 - 1.44
8 Very high 9.0 - 14.0 13.66 - 16.11 0.1 - 0.156 1.44 - 1.70
>8 Phenomenal >14.0 >16.11 >0.156 >1.70

Method 1 was first tested in different sea states defined by Table 5.1. It was concluded that the controller
started to show some significant weaknesses related to the “Rough” sea state (level 5 in Table 5.1).
Therefore, the performance analysis is based on considerations of the same sea state.

Video recordings from the experiments, from the preproject Brørby (2021), showed that waves with pe-
riods longer than one seconds resulted in wavelengths longer than the characteristic length of the vessel.
Figure 5.4 illustrates this. The videos from these experiments and corresponding force measurements are
included in the digital appendix. Recalling the theory from section 2.1.2, wave-drift loads for such wave
periods may be dominated by viscous effects. However, waves of this length are still causing relative
motions between the sea surface and the vessel hull.

Figure 5.4: Screenshot of video from experiments in Brørby (2021): CSAD in regular waves with wave period of
T = 1.10 seconds.
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5.3.1 Method 1: DP-Observer Bias Estimate

Figure 5.5 shows results for position (upper plot) and velocity (lower plot) in surge direction, from a
simulation where Method 1 was tested in a rough sea state. In the initial seconds, a large positioning
offset occurs. This is due to the sudden occurrence of the wave loads, which is handled by the PD-
regulator. After the sudden negative offset, the controller overshoots above the set point. This is due
to that the controller is tuned to be underdamped. Consequently, the sudden change in wave loads will
be compensated with high stiffness and not enough damping by the controller. This could have been
avoided by a higher derivative gain, providing more damping to the closed loop system.

It can be observed in Figure 5.5 that the surge position is containing a lot of oscillations which the
controller do not handle. These are motions induced by the first order wave loads, and are not meant to
be counteracted, but filtered by the observer in order to reduce wear and tear of the actuators. With that
being said, Figure 5.5 also shows that larger offsets due to slowly-varying loads are present as well. It
is these contributions that the bias estimate from the observer are supposed to counteract. However, this
assumes that the bias observer is tuned properly, and that it is able to model the bias quite accurate.

Figure 5.5: Surge response of Method 1. Sea state: Tp = 1.15, Hs = 0.06, β = 0.

In Figure 5.6, the desired control input is plotted above the set point for each actuator. The dashed line
in the lower plot represents the maximum thrust load that is achievable for one azimuth thruster; that
is, the saturation limit of each actuator. Note that the plots shows the output from the controller and
thrust allocation, respectively, and is not saturated. In the lower plot, one can see that the desired set
points are mostly below the saturation limit, except for a couple of peaks. This implies that the method
do not surpass the actuator’s thrust capacity, which means that the vessel is able to satisfy the desired
control input. At least in terms of magnitude. The actuator’s maximum shaft-speed rate will still limit
the bandwidth of the closed loop system
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Figure 5.6: Controller output τ in surge, and thrust allocation output ui for Method 1. Sea state: Tp = 1.15,
Hs = 0.06, β = 0.

Since the method utilize the bias estimate from Fossen and Strand (1999), which has shown to be robust
in terms of disturbances and unmodelled dynamics, Method 1 is a simple and robust strategy for wave
load compensation. However, it has some downsides. First and foremost, the controller performance
depend on how good the bias model in the observer is. If the model is inaccurate, the DP performance
will reflect this uncertainty. As stated earlier; bias in terms of unknown slowly-varying loads are hard
to model mathematically, since they contain a lot of randomness, and are often complex systems. In
addition, Method 1 depends on how good the CDM is. Since unmodelled dynamics are included in
the bias term, it should grow accordingly if the model parameters are uncertain. How uncertain the
model parameters are in this case remain unknown, but the fact that parameters comes from the VERES
database, which is calculated based on a digital 3D model of the vessel’s hull (and not experimental
data), we should assume that there are some significant uncertainties.

5.3.2 Method 2: Direct Integral Action

Considering Figure 5.7, we can see that the position plot is not that different from Method 2 in Figure 5.5.
Recall that both Method 1 and 2 contains PD controllers with similar tuning parameters, and that it is the
disturbance rejection terms which are distinct. Similarly to Method 1, there is an overshoot in the initial
seconds. This is as expected since the controller contains the exact same terms and gains as the PD-part
of the controller. Hence, too low damping could have been avoided by higher gains of the derivative
term, also here.
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Figure 5.7: Surge response of Method 2. Sea state: Tp = 1.15, Hs = 0.06, β = 0.

Similar to Method 1, the controller input is demanding loads from the actuator that is achievable in terms
of not surpassing the saturation limit. However, the mean thrust loads of the actuators are slightly lower
(0.0284 N) than it was for Method 1 (0.0328 N). This gives an indication of the fuel consumption that
the two methods will cause. A more in-depth discussion of this is given later in the chapter.

Figure 5.8: Controller output τ in surge, and thrust allocation output ui for Method 2. Sea state: Tp = 1.15,
Hs = 0.06, β = 0.

The difference between Method 1 and Method 2 is about how they handle disturbances. Method 2 sum-
marize the positioning error over time, while Method 1 uses the bias estimate from the observer; which is
depending on an estimated measurement ŷ. It is not easy to see how the two methods differs in the irreg-
ular sea state. Therefore, consider Figure 5.9, where the two methods are applied on a regular sea state.
Recall that for regular waves, the slowly-varying loads will be modelled as a mean-drift load. Hence,
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first order and mean-drift loads are the only contributions acting on the vessel in Figure 5.9. We can see
an obvious difference in the positioning response between approximately 8 seconds to 40 seconds. The
integral action responds way faster to the wave induced offset, than the direct bias compensation. With
that being said, the integral action is also consisting of some oscillating responses. This introduces a
trade-off when using integral action; higher integral action will more effectively compensate for distur-
bances, but a too high integral action produces oscillatory responses, and adds instability due to a phase
lag to the closed loop system. On the other hand; smaller integral gains will give an asymptotic stability
of the response, but that is after long time.

The direct bias compensation, on the other hand, is more equal to an overdamped system, as the distur-
bances are more slowly counteracted, when compared to the integral action.

Note that the small oscillations in Figure 5.9 are the filtered first order wave induced motions, which are
filtered in the observer.

Figure 5.9: Surge responses of Method(s) 1 and 2, compared in a regular sea state.

A downside of using integral action is the problem with integral windup, which may happen when a
sudden large offset occur. Then it would take time for the integral to remove this error from the total
sum of the integral. This is not the case for Figure(s) 5.7 and 5.8, but it may be a problem for higher sea
states, in transients, or wave trains.

Another downside with Method 2 is that, the estimated states provided by the observer, comes with a
delay due to integrations within the observer, and the signal processing itself (as seen in Figure 5.3). Due
to this, it is not achievable with an immediate counteraction when a sudden change in the environmental
loads occurs. This is in general an issue with feedback mechanisms, including Method 1 and 2; an offset
will have to be induced before any counteractions are carried out.

5.3.3 Method 3: Acceleration Feedforward

Figure 5.10 presents the surge response when the acceleration feedforward controller is applied. First
thing to notice, is the immediate response in the initial seconds. Since the sudden occurrence of the
experienced wave loads are proportional to the dynamic acceleration, the feedforward term is able to
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react quickly to the offset. In addition, the proportional term in the PD controller is providing stiffness
in the nominal controller. Consequently, an aggressive control response is provided.

We can see from Figure 5.10 that the velocity and position is oscillating more the first 150 seconds. At
this point, the sea state is not considered as steady state yet, and is still in the transient condition. This
is reflected by the control input from Figure 5.11, where we can see that the actuators are much more
active for the first 150 seconds, and the saturation limit umax is exceeded much more than the previous
methods. However, the control input seems to be relatively stable, while the mean of the actuator thrust
load (0.0357 N) is higher than for Method(s) 1 and 2.

Figure 5.10: Surge response of Method 3. Sea state: Tp = 1.15, Hs = 0.06, β = 0.

Figure 5.11: Controller output τ in surge, and thrust allocation output ui for Method 3. Sea state: Tp = 1.15,
Hs = 0.06, β = 0.
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Looking into how the method reacts to regular waves in Figure 5.12, an interesting observation emerges.
After approximately 72 seconds, a sudden jump in position is found. Since we are considering regular
waves, there is no rapidly varying loads that is inducing this response. If we look into the acceleration
measurements in Figure 5.12b, we can see that the measurements contains some sort of break at the same
time instance. It seems that this points out a disadvantage with using ROS for a real-time control system.
The break comes from a frozen node in the ROS environment holding the last value a bit longer than the
sampling period. This affects the integration of the velocity state, which further results in a phase lag for
a short period of time. Luckily, the nominal controller manage to rectify this as long as the contribution
from the acceleration feedforward is smaller than the nominal terms.

Another observation is the slowly-varying oscillation that is present in Figure 5.12a. Since there are no
slowly-varying loads acting on the vessel in the regular sea state simulation, this may be due to some
unmodelled dynamics which originates from the transformation of the sensor measurements.

(a) Surge position and velocity. (b) Acceleration measurements.

Figure 5.12: (a) Surge responses of Method(s) 1 and 3 in regular sea state. (b) Acceleration measurements
provided to controller in Method 3. Here, the noisy measurements are filtered, for illustrating purposes only.

One downside of Method 3 is clearly related to the sensitivity of the frozen ROS node. This is not
affecting Method(s) 1 and 2 to the same extent as for Method 3. The reason is that the acceleration
measurements are more affected by the frozen node than the nonlinear observer from Fossen and Strand
(1999) is. This shows a benefit of using a model-based observer; that is, if measurements are uncertain,
the observer can still estimate the states if frozen measurements occurs, by depending the estimates on
both measurements and the mathematical design model. For the state observer used in Method 3, the
estimates are dependent on measurements only, and no mathematical model. Hence, Method 3 is more
sensitive to uncertain measurement than the previous methods.

With that being said, Kjerstad and Skjetne (2016) states that the feedforward control law used in Method
3 is handling unmodelled and uncertain dynamics well; i.e., the model parameters in the CDM can
contain uncertainties and simplifications. However, this is not related to the mentioned signal issue.

A possible problem with using the acceleration measurements in a feedforward method for wave load
compensation could have been to separate first order wave loads from the second order wave loads.
Slowly-varying loads, induces small accelerations, while acceleration due to first order loads are much
higher, but the latter is not supposed to be compensated for. However, this is taken care of by the filtered
acceleration feedforward term. This is also supported by the observation in Figure 5.12, where the first
order wave induced motions are freely oscillating.

An important observation is the constant mean-drift loads induces no acceleration; hence, this is not
perceived by the acceleration signals. We can see this in Figure 5.12, where a stationary offset is not
compensated for. This shows a disadvantage by Method 3.
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5.3.4 Method 4: Adaptive Fourier Series

Results from using Method 4 are presented in Figure(s) 5.13 and 5.14. As we could expect, the response
is characterized by a lot of oscillating components. The reason for this is that the internal model, de-
scribing the estimated disturbance, is in fact a sum of multiple harmonic oscillating functions. As a
consequence, the control input in Figure 5.14 is oscillating with high magnitude in the initial seconds,
making Method 4 pushing the saturation limit of the actuators’ capacity.

Since Method 4 is an adaptive controller, it takes time for the estimated disturbance to adapt to the true
disturbance. For an adapting controller to deal with transients in the initial period of the sea state, is
therefore not possible. In addition, the true disturbance is subject to randomness, which can not be
predicted by a series of harmonic oscillating functions. With that being said, the sea state is assumed to
be steady state after the first transient period is passed. Therefore, there are reasons to believe that an
estimate of the slowly-varying loads should be achievable to estimate using the presented internal model.

Figure 5.13: Surge response of Method 2. Sea state: Tp = 1.15, Hs = 0.06, β = 0.
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Figure 5.14: Controller output τ in surge, and thrust allocation output ui for Method 4. Sea state: Tp = 1.15,
Hs = 0.06, β = 0.

Considering Figure 5.13, shows that there are tendencies of the controller output to converge to some
estimate of the slowly-varying loads, as the largest oscillations declines with time. We can investigate
this further by looking into the estimated disturbance with its corresponding Fourier coefficients. In
Figure 5.15, the estimated disturbance is plotted besides the plot of the corresponding Fourier coefficients
in θ̂. Figure 5.15b is presented such that the mean of the five lowest frequencies are represented by
the yellow plot (θ̂[1 : 5]), the next five are represented by the green plot (θ̂[6 : 11]), etc., and the
coefficient corresponding to the mean-drift load is plotted in blue. We can see that the largest oscillation
in Figure 5.15a declines quite fast in the first 400 seconds. This is supported by looking at the Fourier
coefficients that belong to the highest frequencies in Figure 5.15b. We can see that the coefficients for
the highest 2/3 of the frequency components converges towards zero, while the lowest frequencies are
the dominating frequency elements. These observations are very promising, as this coincides to the
hydrodynamical theory as the slowly-varying loads are observed as low frequencies, due to difference-
frequency effects. Therefore, Method 4 stands out as a promising control design for compensation of
second order wave loads.

(a) Estimated disturbance (b) Altering of estimated Fourier coefficients.

Figure 5.15: (a) Estimated disturbance provided by the internal disturbance model. (b) Corresponding Fourier
coefficients, presented as the mean of five coefficients. Yellow is the mean of the five lowest frequencies (θ̂[1 : 5]),
green is the next five(θ̂[6 : 11]), etc. Blue is the coefficient corresponding to the constant mean-drift load.
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Now, considering the response in a regular sea state in Figure 5.16, there seems to be an issue for the
update law of ˙̂

θ to identify the coefficient for the mean-drift load. Figure 5.16a shows that the position, in
steady state, have a stationary offset; even though Figure 5.16b shows that the coefficient for mean-drift
are adapting to some value.

(a) Estimated disturbance (b) Altering of estimated Fourier coefficients.

Figure 5.16: (a) Surge responses of Method(s) 1 and 4 in regular sea state. (b) Fourier coefficients, presented
as the mean of five coefficients. Yellow is the mean of the five lowest frequencies (θ̂[1 : 5]), green is the next
five(θ̂[6 : 11]), etc. Blue is the coefficient corresponding to the constant mean-drift load.

An alternative approach for Method 4 could have been to use the diagonal QTF as regressor, and adapt
coefficients to these transfer functions. Since we know that the QTF is proportional to the second order
loads, an internal disturbance model relying on this may have been closer to estimate the true slowly-
varying loads, than the Fourier series.

5.3.5 Method 5: Spectrum-Based Estimation

After the algorithm for Method 5 was implemented, initial tests were performed in order to validate if the
algorithm was able to run in the real-time simulation. It turns out to be an issue with the calculation time
of the sea state estimation. Table 5.2 shows the mean run time for one iteration for all methods. The run
time for Method 5 was calculated at the instance of when a new sea state estimation was provided. An
estimation taking 0.21 seconds is way too time-consuming when the control system runs at a frequency
of 50 Hz. Therefore, no results have been produced for this method.

With that being said, there exists solutions to overcome the run time problem. If the PID-controller
and the spectrum-based term runs on separate nodes providing asynchronous control inputs, the PID-
controller could have provided the control input continuously; and consequently, not stopped the control
process when a new estimate was provided. Then the spectrum-based part could calculate the mean-drift
estimate without delaying the whole process. Thus, there are reasons to believe that Method 5 is possible
to implement, and requested for further work.

It should be noticed that the sea state estimation procedure will increase in time as the amount of his-
torical data increases with time. Therefore, one should consider deleting the oldest measurements after
some specified time.
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Table 5.2: Mean run time for each method. Time taken from state measurements are made available to the control
signal is generated and ready to be published. (* run time for Method 5 is taken for the instance of when a new sea
state estimate is provided.)

Controller Mean run time [s]
Method 1 0.00044
Method 2 0.00047
Method 3 0.00083
Method 4 0.00063
Method 5* 0.21

The idea of Method 5 is to relieve some of the integral action from the rest of the contributions, since
second order wave loads are large contributors to the bias. Consequently, the integral action will have
to deal with the slowly-varying loads and unmodelled dynamics. But the question is; after some of the
integral action is relieved from the mean-drift loads, is the integral action more suited to compensate the
slowly-varying loads? It is hard to tell without any results, but one should believe that integral wind-up
may be less problematic if such high values like the mean-drift loads are handled by some other term.
Then, the integral can respond better to changes in disturbance, and the time it takes to unwind the
built-up error may be reduced.

One should also be aware that creating an FFT frequency spectrum takes time; and consequently, it
results in back-dated information (Fossen, 2021, chap. 13). Therefore, the sea state estimates, which
are provided by Method 5, may not be good if the sea state changes often, and are rapidly changing its
conditions. Fossen (2021, chap. 13) says that FFT can yield a good estimate if the sea state parameters
are constant for typically 30 minutes.

One should also consider to use heave responses or acceleration measurements instead of wave elevation
measurements. Then the highest frequencies will not have to be considered since they are filtered by the
ship acting as a lowpass filter.

5.3.6 Tuning Aspects

Since four of five methods includes a nominal PD-controller with the same tuning parameters, the differ-
ence in performance results are not affected too much of the stiffness and damping characteristics of the
control systems. The tuning procedure was done in accordance with the tuning rules in (Fossen, 2021,
chap. 15). The exception is the adaptive controller in Method 4, which is designed by a LgV-backstepping
procedure. Consequently, there are more tuning parameters that have an impact on the performance. In
addition, these parameters are harder to tune compared to the conventional nominal controllers, as they
are less associated with a physical understanding. Therefore, it is hard to tell whether the control systems
are tuned equally good, and compared fairly. To decrease the impact of this source of error, a self-tuning
procedure could have been implemented, like the one in Værnø et al. (2019).

The limitation of considering surge direction only, may also constitute to some sources of error. Even if
the vessel is exposed to the wave loads from surge direction, the vessel will rotate due to uncertainties
in the transfer function from the VERES database, and due to unmodelled dynamics in the equation of
motions. When the results in this chapter were produced, this was taken care of by refusing rotational
and transverse motions. That way, the impact of poor tuning in sway and yaw were neglected.

Method 4 contains several tuning parameters; N , ωmin, and ωmax are directly linked to the disturbance
we want to suppress. N determines how many frequency components within the set [ωmin, ωmax] that we
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want the controller to adapt to. Since we want the controller to estimate the environmental disturbance in
terms of slowly-varying drift loads and mean-drift loads, we have to determine what frequency domain
that can be categorized as “slowly-varying”. Therefore, in order to determine these tuning parameters,
a closer study on the frequency domain should be prioritized in further work. If N is selected high,
the control law would be more capable of adapting the true disturbance. On the other hand, higher N
values will have an impact on the computational cost, as the regressor Φ(t) will increase its dimensions
by 2N + 1.

5.3.7 Comparative Analysis

In order to analyze the performance of the presented methods, a qualified comparison have to be inves-
tigated. In this analysis, we are interested in two factors particularly; the positioning accuracy when
subject to disturbances, and how much control effort it takes to achieve this.

Now, assume that all controllers are tuned equally good and optimized for good performance of η and ν.
In order to evaluate the closed-loop performance on an equal foundation, cost functions are used (5.1),
where Jc

η̃ and Jc
τ are the positioning performance and control effort meter factors, respectively. τ and η

are defined as in the CDM, t0 is the initial time, and T is the final time of the test run.

Jc
η̃ =

∫ T

t0

|η(t)− ηd|dt (5.1a)

Jc
τ =

∫ T

t0

|τ(t)|dt (5.1b)

Since the generated wave loads includes randomness, some simulations may have more harsh waves
than others. Therefore, the results presented here, are taken from a mean of three equally long runs; from
t0 = 0 to T = 1000.

Now consider Figure 5.17, where the cumulative cost function for positioning errors are normalized such
that the worst performing method for the whole test has a total score of 1. Pointing out the most remark-
able observation first; is that, the two “new” Method(s) 3 and 4 have a better positioning performance in
total than the conventional integral action and direct bias estimate controllers in Method(s) 1 and 2. In
fact, the cumulative error of Method 3 is only 60 percent of the same value for Method 2, while Method 4
constitutes just 80 percent of the cumulative positioning error. Method 1 is approximately 90 percent of
the value of Method 2. This is surprisingly good results for Method(s) 3 and 4, taken into consideration
that PID controllers are the state-of-the-art methods for DP operations.

If we look deeper into the cumulative error of Method 3, we see that the first 100 seconds forms the
highest amount of positioning error. This is reasonable as the sea state’s transient forces the vessel out of
position faster than the controller can react, due to limitations in the thruster dynamics, and the control
system’s bandwidth. When the sea state have reached its steady state, we can see that the gradient of the
graph is relatively small and not far from constant, compared to Method(s) 1 and 2. This is in accordance
with the results from the regular case in section 5.3.3, where we could see a stationary offset due to
mean-drift loads. In addition, there will always be some small offsets that the controller will not manage
to compensate for in irregular sea states.

Considering Method 4, we see that the transient is outstanding for the first seconds, also here. The
most interesting about the cumulative development of Method 4, is that the total error is even higher
than Method(s) 1 and 2 until about 420 seconds have passed. This illustrates clearly how the internal
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disturbance model adapts to the sea state, as the cumulative error becomes smaller than for Method(s) 1
and 2 after 600 seconds. This indicates that the adaptive controller perform significantly better after the
controller have gained some time to adapt to the sea state.

Figure 5.17: KPIs for positioning error Jc
η(t), for four wave compensation methods, normalized such that worst

performance, have a maximum value of 1 for the whole test.

In Figure 5.18, the cumulative control effort is plotted. The values are normalized the same way as in
Figure 5.17. Method 4 stands out as the clearly worst performing method in terms of control effort. This
is no surprise, as the initial period involves a lot of oscillating control inputs due to the estimated Fourier
series. Therefore, Method 4 will cause much more wear and tear of the actuators, compared to the other
Methods.

In contrast to the adaptive controller, Method 3 contends the conventional Method(s) 1 and 2, where the
latter is as much as 40 percent better than Method 4. For the acceleration feedforward making Method 3
a quite aggressive controller, it is remarkable that the control effort is relatively low.
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5.3 Control System Performance

Figure 5.18: KPIs for control effort Jc
τ (t), for four wave compensation methods, normalized such that worst

performance, have a maximum value of 1 for the whole test.

In order to investigate the performance at a shorter term, we consider the same tests, but now in two sub-
intervals; 0-500 seconds, and 500-1000 seconds. This means that the cumulative KPIs for the second
period are calculated from t0 = 500 to T = 1000, so the first 500 seconds is not accounted for. In
Table 5.3 the KPIs are listed for each sub-interval, where the results are normalized such that the worst
performing in each time interval has a maximum score of 100 points.

For the first 500 seconds, there is a clear distinction between the only feedforward controller (Method 3)
and the three feedback controllers (Method(s) 1, 2, 3). The positioning KPI are, already at this point, 32.7
percent better than Method 1. In the first 500 seconds for Method 4 on the other hand, the performance
is at the level with Method(s) 1 and 2, while the control effort for the latter is 50.1 percent better than
Method 4, which is noteworthy.

It is the last 500 seconds, things becomes really interesting, as Method 4 has started to converge its
disturbance estimate to some value. We see that the positioning error have become 42.5 percent better
than for Method 2 in the second period. This is a major improvement from the first 500 seconds. With
that being said, we can not ignore the fact that the control effort is between 10.9 and 20.3 percent worse
for Method 4 than the other methods. For Method 3 in the second period, the positioning performance is
56.4 percent better than Method 2, and approximately on the same level in control effort.
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Table 5.3: KPI results for two sub-intervals at 500 seconds.

Time 0 - 500 s 500 - 1000 s
Controller Jc

η̃ Jc
τ Jc

η̃ Jc
τ

Method 1 100.0 60.8 81.8 89.1
Method 2 95.5 49.9 100.0 82.2
Method 3 67.3 60.3 43.6 79.7
Method 4 97.1 100.0 57.5 100.0
Method 5 - - - -
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Chapter 6
Conclusion

This master thesis was backed up by a literature study, conducted to examine earlier and similar studies,
and relevant background theory. This has been fundamental for the author’s understanding of the prob-
lem in question, and for the knowledge needed to solve the problem, both in a control theoretical and
hydrodynamical perspective.

The high-fidelity simulator imitating the marine surface vessel CSAD in 6 DOFs was successfully imple-
mented, satisfying the need for credible sensor measurements, and wave induced loads in terms of both
first and seconds order loads. Since the physical tests at the MC-Lab were impracticable, the simulator
was vital for the analysis and verification of the designed control methods to be performed.

The environmental load module, providing wave loads, made it possible to test control systems in realistic
regular and irregular long-crested sea states. However, since especially this module contained were time-
consuming calculations, the simulator had to run on a lower update rate than desirable, making the control
system subject to signal-delays.

Five strategies for wave-drift load compensation were developed and discussed, where four of them were
successfully implemented. The five designs included:

• DP-observer bias estimate and feedforward compensation.

• Direct integral action in a DP PID-control law.

• Acceleration feedforward compensation of residual disturbance loads.

• An adaptive control law, estimating harmonic “residual loads” given by the internal model princi-
ple, using a Fourier series.

• Spectrum-based method, estimating mean drift loads.

The latter turned out to be too time-consuming for the proposed design, but possible solutions to over-
come the issues were discussed.

A performance analysis was worked out based on results from simulations with the high-fidelity simu-
lator, considering control in surge direction only. The analysis showed that the acceleration feedforward
designated as the overall best method compared to the other, in terms of positioning performance. That
was, both in shorter and longer periods of time. The positioning performance was 40 percent better than
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the worst performance when considering a DP operation with duration of 1000 seconds. It was also
on the same level as the conventional controllers in terms of control effort performance. However, the
method turned out to be sensitive to uncertain measurements, and struggled to compensate for the mean
drift loads. The adaptive control law showed tendencies to be better in positioning performance than the
conventional controllers, at least after long time. For a shorter time-span, the performance was outnum-
bered by the other Methods. However, the method required large amounts of control effort compared to
the other.

Taken into consideration that only surge direction was analyzed, there are reasons to believe that there
exists better strategies for eliminating second order wave induced motions. Utilizing acceleration mea-
surements, or estimating the disturbance by Fourier series seemed to be promising solutions.

6.1 Further Work

Suggestions for further work are:

• Properly tuning of the controllers in sway and yaw, such that performance analysis can be made
for all DOFs.

• Implement a spreading function in the environmental module, such that short crested waves can
be tested on the control laws.

• Make a separate ROS node for providing the sea state estimate of Method 5, such that the method
is less dependent on the time-consuming calculations in the estimations.

• Physical tests on the CSAD in MC-Lab, in order to see how the methods perform in a real world
scenario.

• Investigate whether the diagonal QTF can be used as a regressor in an adaptive control law.
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Appendix A - Guides

Guide - Installing CSAD Workspace

1. First, make sure that ROS Melodic is correctly installed. If not, it can be installed by following
the guide:
http://wiki.ros.org/melodic/Installation/Ubuntu
Note that ROS Melodic requires Ubuntu 18.04 as WSL for windows, and the following guides
depends on this.

2. Install the source code in the ROS environment.

3. Type in the following command lines:

$ cd csad_dp
$ catkin_make
$ source devel/setup.bash

Now the workspace should be correctly installed.

Guide - Running Simulations

For running simulations, the following has to be done:

1. In order to run a simulation you will first need to source the terminal for being able to run on
the ROS framework:

$ cd csad_dp
$ source /opt/ros/melodic/setup.bash

Note that if source /opt/ros/melodic/setup.bash is not written inside your .bashrc script, you
will either have to modify the file, or source the environment each time a new terminal is
created.

2. If the latest code is not built, you will have to do step 3. in Guide - Installing CSAD
Workspace, before being able to run simulations.

3. A master node needs to be set up, in order to communicate on the ros framework. Open a new
terminal and type in:
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$ roscore

4. There are several simulations available in this workspace. Each of them has it’s own launch
file. Each launch file has it’s own controller for wave load compensation. In other words;
all controllers presented in section 4.5 are available for simulations. Table 6.1 presents the
controllers with their respective launch files.
In order to run the simulation, type the following in a terminal:

$ roslaunch launch/<launcfile>

where <launchfile> should be the name of the preferred controller’s .launch file.

Table 6.1: Controller names with their respective launch files.

Controller .launch file
DP-observer bias estimate biasController-simulation.launch
Direct integral action integralAction-simulation.launch
Acceleration feedforward accFeedforward-simulation.launch
Adaptive fourier series adaptiveFourierSeries-simulation.launch
Spectrum-based estimation spectrumController-simulation.launch

5. To store the data from the simulations, it is recommended to use rosbags. There are a lot of
data available for recording. The node structure enables all signals within the control system
to be recorded. This is done by typing the following in a new terminal:

$ cd bags
$ rosbag record -O <fileName> -a

where <fileName> is the name of your rosbag. The flag -a means that you record all topics
available.
For more information on how to use rosbags, see:
http://wiki.ros.org/rosbag.

6. To change sea states, you will have to change the parameters in the source code simula-
tor node.py. In order to choose realistic sea states, see Table 5.1 in Chapter 5. There are also
possible to use the gain server feature, but this is not completely implemented as of today.
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Guide - Running Physical CSAD Setup

The control system presented in this thesis is made for compatibility with the physical setup for
CSAD. CSAD is equipped with a Raspberry Pi, running the controller algorithms. It is recom-
mended that all implementation is done on a local laptop, and then transfer a copy of the source
code onto the Raspberry Pi. This can be done by following these steps:

1. In order to save some time and transfer the source code faster, it is preferable to delete the
build folder and the devel folder first.

$ rm -r build
$ rm -r devel

2. Now, the source code needs to be copied through SSH from your local laptop to the Raspberry
pi (note that you need to be connected to the MC-lab wifi to manage this). This is done by
typing:

$ scp -r csad_dp_ws/ pi@192.168.0.123:˜

3. Log into the Raspberry Pi:

$ ssh pi@192.168.0.123

4. Build the code:

$ cd csad_dp
$ catkin_make
$ source devel/setup.bash

5. Check if you are able to access qualisys topics inside the Raspberry Pi:

$ rostopic list

If qualisys is running properly, it should publish messages on a topic named /qualisys/-
Body 1/odom. If you do not see this topic, you will have to export the ros master node from
outside the Pi:

$ exit
$ export ROS_MASTER_URI=http://192.168.0.123:11311

Now, enter the Rapsberry Pi again by recalling step 3.

6. The control system should now be ready, and launching can be done as described in step 4 in
Guide - Running Simulations. Note that there are other launch files for the physical setup.
Also note that the control system is tuned for simulations as of today.
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