
Adaptive Stress Testing of Situational Aw
areness for an Autonom

ous Passenger Ferry
Johan Bakken Sørensen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

Johan Bakken Sørensen

Adaptive Stress Testing of Situational
Awareness for an Autonomous
Passenger Ferry

Master’s thesis in Engineering and ICT
Supervisor: Øyvind Smogeli
Co-supervisor: Erik Wilthil and Børge Rokseth
June 2022M

as
te

r’s
 th

es
is

Johan Bakken Sørensen

Adaptive Stress Testing of Situational
Awareness for an Autonomous
Passenger Ferry

Master’s thesis in Engineering and ICT
Supervisor: Øyvind Smogeli
Co-supervisor: Erik Wilthil and Børge Rokseth
June 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Marine Technology

NTNU Trondheim
Norwegian University of Science and Technology
Department of Marine Technology

MASTER OF TECHNOLOGY THESIS DEFINITION (30 SP)

Name of the candidate: Johan Bakken Sørensen

Field of study: Marine Cybernetics

Thesis title (Norwegian): Adaptiv Stress-testing av Situasjonsforståelsen til en Autonom
Passasjerferge

Thesis title (English): Adaptive Stress Testing of Situational Awareness for an Autonomous
Passenger Ferry

Background

The Zeabuz autonomous mobility system for passenger transport is a complex, software intensive system
subject to an unpredictable operating environment. This makes formal safety proofs practically impossible.
Instead, one needs to resort to statistical considerations in the safety argumentation. In other words, there is a
need to argue – based on the accumulated experience from testing, verification and validation activities – that
the system is sufficiently safe. To solve these issues, a systematic and effective way of designing, running, and
evaluating simulation scenarios that together give sufficient confidence in the safety is needed. The thesis shall
employ, adapt and extend a method called adaptive stress testing (AST) to find likely failure events of the
autonomy system with focus on the sitational awareness system using reinforcement learning (RL). The AST
method has previously been used to validate aircraft collision avoidance systems, which is a similar problem.

Scope of work

x Review related litterature regarding AST and other existing methods for testing, verification and
validation of autonomous systems.

x Discuss how the method can be deployed for testing of the situational awareness of an autonomous
passenger ferry.

x Design and implement an AST system and connect this to a appropriate situational awareness test
environment, including system under test and simulator.

x Perform initial simulations with the AST system and identify the method’s potential for finding
likely failure events in situational awareness.

x Compare and contrast to existing approaches, and discuss strengths and weaknesses based on the
simulation results.

Specifications
The student shall at startup provide a maximum 2-page week plan of work for the entire project period, with main
activities and milestones. This should be updated on a monthly basis in agreement with supervisor.
Every weekend throughout the project period, the candidate shall send a status email to the supervisor and co-advisors,
providing two brief bulleted lists: 1) work done recent week, and 2) work planned to be done next week.
The scope of work may prove to be larger than initially anticipated. By the approval from the supervisor, described topics
may be deleted or reduced in extent without consequences with regard to grading.
The candidate shall present personal contribution to the resolution of problems within the scope of work. Theories and
conclusions should be based on mathematical derivations and logic reasoning identifying the steps in the deduction.
The report shall be organized in a logical structure to give a clear exposition of background, problem/research statement,
design/method, analysis, and results. The text should be brief and to the point, with a clear language. Rigorous
mathematical deductions and illustrating figures are preferred over lengthy textual descriptions. The report shall have
font size 11 pts., and it is not expected to be longer than 70 A4-pages, 100 B5-pages, from introduction to conclusion,
unless otherwise agreed. It shall be written in English (preferably US) and contain the elements: Title page, project
definition, preface (incl. description of help, resources, and internal and external factors that have affected the project
process), acknowledgement, abstract, list of symbols and acronyms, table of contents, introduction (project
background/motivation, objectives, scope and delimitations, and contributions), technical background and literature
review, problem formulation or research question(s), method/design/development, results and analysis, conclusions with
recommendations for further work, references, and optional appendices. Figures, tables, and equations shall be
numerated. The contribution of the candidate shall be clearly and explicitly described, and material taken from other
sources shall be clearly identified. Work from other sources shall be properly acknowledged using quotations and a

NTNU Faculty of Engineering Science and Technology
Norwegian University of Science and Technology Department of Marine Technology

2

Harvard citation style (e.g. natbib Latex package). The work is expected to be conducted in an honest and ethical manner,
without any sort of plagiarism and misconduct, which is taken very seriously by the university and will result in
consequences. NTNU can use the results freely in research and teaching by proper referencing, unless otherwise agreed.
The thesis shall be submitted with an electronic copy to the main supervisor and department according to NTNU
administrative procedures. The final revised version of this thesis definition shall be included after the title page.
Computer code, pictures, videos, data, etc., shall be included electronically with the report.

Start date: 15 January, 2022 Due date: 11 June 2022

Supervisor: Professor Øyvind Smogeli, NTNU/Zeabuz
Co-advisor(s): Dr. Erik Wilthil, Zeabuz
 Associate Professor Børge Rokseth, NTNU

 Trondheim 08.06.2022

 Professor Øyvind Smogeli

Preface

This master thesis present research which is the result of individual work performed by the author
in the period from January to June of 2022 at the Department of Marine Technology (IMT) at
the Norwegian University of Science and Technology (NTNU). The work has been supervised by
Professor Øyvind Smogeli (NTNU/Zeabuz), and the co-supervisors Dr. Erik Wilthil (Zeabuz) and
Associate Professor Børge Rokseth (NTNU).

The project scope is defined in collaboration with Zeabuz and parts of the presented solutions
originates from discussion with Zeabuz and the supervisors. The theoretical and practical work
are solely done by the author. The master thesis is an extension of the project thesis delivered
in December 2021. Hence, certain parts of this thesis are expanded or edited versions of the
equivalent parts of the project thesis. In addition, it has to be mentioned that parts of the theory
and discussion presented are also provided as a paper written together with Nicolai Brummenæs
in the course TMR06 - Marine Autonomous Systems.

i

Acknowledgments

I am grateful for the support from my supervisor Øyvind Smogeli og co-supervisors Erik Wilthil
and Børge Rokseth. I would also express my acknowledgement to Zeabuz for defining the project
scope, discussions about the proposed method and technical support. Finally, I would like to
thank the entire Adaptive Stress Testing research group at NTNU/Zeabuz and specifically Nicolai
Brummenæs for the collaboration.

ii

Abstract

Maritime Autonomous Surface Ships (MASS) introduces a new level of complexity to maritime
control systems. Zeabuz is a start-up company from NTNU working with MASS, aiming to deploy
autonomous urban passenger ferries as an alternative mean of transport. Deployment and devel-
opment of such ferries require thorough testing, verification and validation in order to argue that
the autonomy system is safe. Adaptive Stress Testing (AST) as proposed in this thesis is a method
that can be applied to this challenge. The method uses reinforcement learning to search for failure
events while maximizing the likelihood of the failure. Previously this has shown promising results
in the automotive and aerospace industry.

The master thesis contributes to improved safety and validation for autonomous passenger fer-
ries, such that it can be argued that the autonomy system is su�ciently safe. The thesis reviews
literature regarding AST and other existing methods for testing, verification and validation of
autonomous systems, comparing and contrasting the method with existing approaches. Further-
more, through a set of case studies the thesis presents a discussion on how AST can be deployed
for testing of the situational awareness. In order to investigate the method’s potential for finding
likely failure events in situational awareness, firstly an AST system using the Monte Carlo Tree
Search Method (MCTS) method is designed and implemented. Secondly, this AST system is con-
nected to an appropriate test environment, consisting of a system under test and an environment
simulator. The system under test is a situational awareness system. This system is furthermore
an implementation of the probabilistic data association filter (PDAF) target tracking algorithm
with the M/N extension for track existence. The environment simulator is an implementation of a
multi-target tracking simulator. The complete test system, consisting of the AST implementation,
the system under test and the environment simulator, is developed by the author. Initial simula-
tions are performed with the test system, providing verification through qualitative analyses that
AST is able to find common failure events in target tracking. The performance of the search using
MCTS is further validated by running a Monte Carlo Search (MCS) in parallel. The results yield
that the success rate of the MCTS algorithm is significantly higher than when running a random
search using the MCS algorithm. In addition, a new control method using seed actions to control
a single process of the simulator is proposed and tested. In previous applications seed actions have
been used to control all the stochastic process in the simulator through the global random num-
ber generator. However, the new method creates a random number generator designated for the
stochastic process of interest, making it possible to use open loop control to control the sampling of
the process without requiring access to the simulator state. The proposed method performs better
than the regular open loop global control method in some of the cases. However, for some other
cases the method did not perform as well as the global control option. Hence, further research is
required to determine the potential of the proposed control method. Generally, the AST method
yields promising results for the situational awareness application. However, there are some aspects
of the method that have to be further evaluated. These aspects are mainly related to evaluating
the method’s ability to find unforeseen failure events and how to design generalized test metrics
for that purpose.

iii

Table of Contents

Preface i

Acknowledgments ii

Abstract iii

List of Figures vii

List of Tables xi

1 Introduction 1

1.1 Background . 1

1.2 Research Question and Scope of Work . 2

1.3 Research Method . 3

1.4 Main Contributions . 3

1.5 Thesis Outline . 3

2 Autonomy Systems 5

2.1 Autonomy . 5

2.2 Autonomy Systems - A High Level Perspective . 5

2.3 Autonomous Surface Vessel Architecture . 6

2.4 Assurance of Autonomous Systems . 7

2.4.1 Assurance . 7

2.4.2 Testing, Verfication and Validation . 9

3 Reinforcement Learning 14

3.1 Background Theory - Sequential Decision Making 15

3.1.1 Markov Decision Process . 15

3.1.2 Policy . 15

3.1.3 Model-Free vs. Model-Based Methods . 16

iv

3.1.4 Exploration vs. Exploitation . 16

3.1.5 Partially Observable Environment . 17

3.2 Reinforcement Learning using Monte Carlo Tree Search 17

3.2.1 Selection . 18

3.2.2 Expansion . 18

3.2.3 Simulation . 19

3.2.4 Backpropagation . 19

3.2.5 Progressive Widening . 20

4 Test Method - Adaptive Stress Testing 22

4.1 Fully Observable Environment . 23

4.2 Partially Observable Environment . 24

5 Test Environment - Situational Awareness Algorithms and Simulator Setup 25

5.1 Situational Awareness - Target Tracking Algorithms 25

5.1.1 Target Tracking Assumptions . 26

5.1.2 Probabilistic Data Association Filter (PDAF) 26

5.1.3 Extension to Track Existence: M/N Logic 29

5.2 Simulator Design and Setup - Simulating Moving Targets 30

5.2.1 Simulator Components . 30

5.2.2 Control Options . 34

6 Case Studies - Adaptive Stress Testing of Situational Awareness 39

6.1 Scientific Approach - Verification and Validation of the Test Method 39

6.1.1 Phase 1 - Low Fidelity Test Environment 40

6.1.2 Phase 2 - High Fidelity Test Environment 42

6.2 Requirements Formulation . 43

6.2.1 Environment Simulator . 43

6.2.2 System Under Test . 44

6.2.3 Test Method . 44

6.2.4 Test System Integration . 45

6.2.5 Parameter Tuning . 46

6.2.6 Method of Control . 46

6.3 Case Studies . 47

6.3.1 Verification Case 1: Qualitative Analysis of Seed-Action Control 47

6.3.2 Verification Case 2: Qualitative Analysis of Adaptive Stress Testing of State
Estimation . 50

v

6.3.3 Verification Case 3: Qualitative Analysis of Adaptive Stress Testing of Single-
target Tracking . 61

6.3.4 Verification Case 4: Qualitative Analysis of Adaptive Stress Testing of Track
Initiation . 67

6.3.5 Verification Case 5: Qualitative Analysis of Adaptive Stress Testing of Track
Termination . 71

6.3.6 Verification Case 6: Qualitative Analysis of Adaptive Stress Testing of Track-
ing Multiple Targets . 76

6.3.7 Validation Case: Quantitative Analysis of Adaptive Stress Testing of Situa-
tional Awareness . 85

6.4 Discussion . 86

7 Conclusions and Further Work 88

7.1 Conclusions . 88

7.2 Further Work . 89

Bibliography 90

vi

List of Figures

2.1 General Control System Architecture for an Autonomous Marine Vessel 6

2.2 High Level Autonomy System Architecture for a Marine Surface Vessel 6

2.3 Illustration of the dilemma of technical vs. perceived safety. The figure was pre-
sented in the specialization course TMR06 at NTNU. 8

2.4 Illustration of the dilemma of balancing safety and performance. The figure was
presented in the specialization course TMR06 at NTNU. 9

2.5 Existing methods in verification and validation of complex control systems. The
x-axis shows the level of exhaustiveness and the y-axis shows the level of scalability.
The red arrow denoting where the AST method is positioned on the plot. The figure
is an edited version of the figure presented in [1]. 10

2.6 Illustration of the concept of ”the long tail of the probability distribution”. The
x-axis represents the probability of an event occurring, and the y-axis represents
the number of hours a system is in operation. The figure was presented in the
specialization course TMR06 at NTNU. 12

2.7 Illustration of In-the-Loop-Testing. The figure consists of sub-figures that were
presented in the specialization course TMR06 at NTNU. 12

3.1 Main idea of RL methods. 14

3.2 Generalized MCTS flow diagram. 17

3.3 Example of the selection step in a search tree where there are 2 available actions in
all nodes . 18

3.4 Example of the expansion step in a search tree where there are 2 available actions
in all nodes . 19

3.5 Example of the simulation step in a search tree where there are 2 available actions
in all nodes . 19

3.6 Example of the backpropagation step in a search tree where there are 2 available
actions in all nodes . 20

4.1 High level sketch of the problem formulation. The search for the most likely failure
path is formulated as a RL problem. The agent chooses likely disturbances such
that the simulated environment is as challenging as possible for the system under
test. This sketch is from [2]. 22

5.1 Block diagram for the PDAF algorithm. 26

5.2 Proposed simulator setup for complete multi-target simulation. 31

vii

5.3 Proposed simulator setup for using closed loop control in a complete multi-target
simulation. The red lines represents the outputted states of the di↵erent simulator
components which together makes up the simulator state. 36

5.4 Proposed simulator setup for using open loop control in a complete multi-target
simulation. 37

5.5 Proposed simulator setup for using open loop local control in a complete multi-target
simulation. 38

6.1 Complete development cycle with phase 1, validation and verification in a low fidelity
test environment, and phase 2, validation and verification in a high fidelity test
environment. 40

6.2 Development cycle . 41

6.3 Di↵erent ways of applying the test method. Blue represents the test method devel-
opers systems, yellow represents the industrial systems, and green represents third
parties. 42

6.4 Proposed AST setup using seed-actions in open loop control to test the PDAF target
tracking algorithm. 45

6.5 Proposed AST setup using seed-actions in open loop control to test the PDAF target
tracking algorithm, including the critic module and the interactions between each
component. 45

6.6 Illustration of the state estimation simulator used in this case. 49

6.7 The target trajectory and measurements presented in (a) and (b) originates from
running two simulations after each other, both setting the seed of the global random
number generator to be 91. The target trajectory and measurement presented in
(c) originates from a simulation simular to (a) and (b), but re-seeding the global
random number generator at time t = 50 with seed = 120000. 50

6.8 The target trajectory and measurements presented in (a) and (b) originates from
running two simulations after each other, both setting the seed of the Local random
number generator for the target dynamics to be seed = 33. The target trajectory
and measurement presented in (c) originates from a simulation similar to (a) and
(b), but re-seeding the Local random number generator for the target dynamics at
time t = 50 with seed = 1. 50

6.9 (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for state estimation case 1. The area shaded gray is
the outside of the surveillance area. (b) shows a zoomed in version of the same plot.
Triangle denotes the initial state and the cross denotes the final state of the track. 55

6.10 NEES time series plot with the 95% confidence interval for state estimation case 1. 56

6.11 Estimation error time series for respectively x and y-position for state estimation
case 1. 56

6.12 (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for state estimation case 2. The area shaded gray is
the outside of the surveillance area. (b) shows a zoomed in version of the same plot.
Triangle denotes the initial state and the cross denotes the final state of the track. 57

6.13 Estimation error time series for respectively x and y-position for state estimation
case 2. 58

6.14 NEES time series plot with the 95% confidence interval for state estimation case 2. 58

viii

6.15 (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for state estimation case 3. The area shaded gray is
the outside of the surveillance area. (b) shows a zoomed in version of the same plot.
Triangle denotes the initial state and the cross denotes the final state of the track. 59

6.16 Estimation error time series for respectively x and y-position for state estimation
case 3. 60

6.17 NEES time series plot with the 95% confidence interval for state estimation case 3. 60

6.18 Illustration of the single-target simulator used in this case. 63

6.19 (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for single-target tracking case 1. The area shaded
gray is the outside of the surveillance area. (b) shows a zoomed in version of the
same plot. Triangle denotes the initial state and the cross denotes the final state
of the track. Clutter measurements are included for each simulation step where the
true target state is not inside the validation gate. 64

6.20 (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for single-target tracking case 2. The area shaded
gray is the outside of the surveillance area. (b) shows a zoomed in version of the
same plot. Triangle denotes the initial state and the cross denotes the final state of
the track. Clutter measurements are included for each simulation step where track
loss is detected. 66

6.21 Illustration of the single-target simulator with termination of targets used in this case. 68

6.22 (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for track initiation case 1. The area shaded gray is
the outside of the surveillance area. (b) shows a zoomed in version of the same plot.
Triangle denotes the initial state and the cross denotes the final state of the track.
Clutter measurements are included for each simulation step. 70

6.23 (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for track initiation case 2. The area shaded gray is
the outside of the surveillance area. (b) shows a zoomed in version of the same plot.
Triangle denotes the initial state and the cross denotes the final state of the track.
Clutter measurements are included for each simulation step. 70

6.24 (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for track termination case 1. The area shaded gray
is the outside of the surveillance area. (b) shows a zoomed in version of the same
plot. Triangle denotes the initial state and the cross denotes the final state of the
track. Clutter measurements are included for each simulation step 74

6.25 (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for track termination case 2. The area shaded gray
is the outside of the surveillance area. (b) shows a zoomed in version of the same
plot. Triangle denotes the initial state and the cross denotes the final state of the
track. Clutter measurements are included for each simulation step 75

6.26 (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for track termination case 2. The area shaded gray
is the outside of the surveillance area. (b) shows a zoomed in version of the same
plot. Triangle denotes the initial state and the cross denotes the final state of the
track. Clutter measurements are included for each simulation step. 76

ix

6.27 (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for Multi-target case 1. (b) shows a zoomed in
version of the same plot. The area shaded gray is the outside of the surveillance
area. Triangle denotes the initial state and the cross denotes the final state of the
track. Clutter measurements are included for each simulation step. 80

6.28 (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for Multi-target case 2. (b) shows a zoomed in
version of the same plot. The area shaded gray is the outside of the surveillance
area. Triangle denotes the initial state and the cross denotes the final state of the
track. Clutter measurements are included for each simulation step. 81

6.29 (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for Multi-target case 3. (b) shows a zoomed in
version of the same plot. The area shaded gray is the outside of the surveillance
area. Triangle denotes the initial state and the cross denotes the final state of the
track. Clutter measurements are included for each simulation step. 82

6.30 (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for Multi-target case 4. (b) shows a zoomed in
version of the same plot. The area shaded gray is the outside of the surveillance
area. Triangle denotes the initial state and the cross denotes the final state of the
track. Clutter measurements are included for each simulation step. 82

6.31 (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for Multi-target case 5. (b-f) shows zoomed in
versions of the same plot. The area shaded gray is the outside of the surveillance
area. Triangle denotes the initial state and the cross denotes the final state of the
track. Clutter measurements are included for each simulation step. 84

x

List of Tables

6.1 Simulator parameter values for the Seed-Action Control verification case. The pa-
rameters are explained in Chapter 5. 49

6.2 In addition to test metrics and failure thresholds for failure detection, the table
present possible failure events in target tracking. 52

6.3 Simulator parameter values for the state estimation verification case. The parame-
ters are explained in Chapter 5. 53

6.4 Target tracker parameter values for the state estimation verification case. The pa-
rameters are explained in Chapter 5. 54

6.5 AST parameter values for the state estimation verification case. The parameters
are explained in Chapter 3 and 4. 54

6.6 Critic Configuration . 54

6.7 State Estimation Performance Measures for state estimation case 1. 57

6.8 State Estimation Performance Measures for state estimation case 2. 59

6.9 State estimation performance measures for state estimation case 3. 61

6.10 test metrics and failure thresholds for failure detection, when searching for events
related to track loss. 62

6.11 Simulator parameter values for the single-target verification case. The parameters
are explained in Chapter 5. 63

6.12 Target tracker parameter values for the single-target verification case. The param-
eters are explained in Chapter 5. 63

6.13 Simulator parameter values for the single-target verification case. The parameters
are explained in Chapter 5. 64

6.14 Critic Configuration, Nsteps denotes the number of consecutive steps where the loss
condition is not met, and nsteps denotes limit of the consecutive number of steps for
the scenario to be considered a failure event e. 64

6.15 State estimation performance metrics for single-target tracking case 1 65

6.16 State estimation performance metric for single-target tracking case 2 66

6.17 Test metrics and failure thresholds for failure detection, when searching for events
related to track initiation. 67

6.18 Simulator parameter values for the track initiation verification case. The parameters
are explained in Chapter 5. Slow initiation, failing to initiate and clutter tracks refers
to respectively failure event 1, 2 and 3 described in the previous paragraph. . . . 68

xi

6.19 Target tracker parameter values for the track initiation verification case. The pa-
rameters are explained in Chapter 5. 69

6.20 Simulator parameter values for the track initiation verification case. The parameters
are explained in Chapter 5. 69

6.21 Critic Configuration, Nsteps denotes the number of consecutive steps from the target
is initiated, and nsteps denotes limit of steps without initiation before the scenario
is to be considered a failure event e. 69

6.22 Test metrics and failure thresholds for failure detection, when searching for events
related to track termination. 72

6.23 Simulator parameter values for the track termination verification case. The param-
eters are explained in Chapter 5. 72

6.24 Target tracker parameter values for the track termination verification case. The
parameters are explained in Chapter 5. 73

6.25 Simulator parameter values for the track termination verification case. The param-
eters are explained in Chapter 5. 73

6.26 Critic Configuration, Nsteps denotes the number of consecutive steps from the tar-
get is terminated, and nsteps denotes limit of steps without termination before the
scenario is to be considered a failure event e. 73

6.27 Test metrics and failure thresholds for failure detection, when searching for failure
events in a multi target scenario. 77

6.28 Simulator parameter values for the mulit-target verification case. The parameters
are explained in Chapter 5. 78

6.29 Target tracker parameter values for the multi-target verification case. The parame-
ters are explained in Chapter 5. 79

6.30 Simulator parameter values for the single-target verification case. The parameters
are explained in Chapter 5. 79

6.31 Critic Configuration for the multi-target case. 80

6.32 Success rate for every case running both MCS and MCTS using open loop global
control. The highest success rate for each case is marked with the color red. In
addition the success rates when running MCTS using open loop local control with
every stochastic process in the simulator are presented for each case. N.A. denotes
not applicable, which is the case when a simulator component is not used. 85

xii

Chapter 1

Introduction

The objective of this master thesis project is to evaluate the use of a new machine learning based
method, Adaptive Stress Testing (AST) in testing, verification and validation of Zeabuz�s au-
tonomous urban passenger ferries. The verification and validation of AST as simulation-based test
method for autonomous marine systems may provide a step forward in testing, verification and
validation of complex safety critical and cyber-physical systems. In order to narrow the task, this
project will mainly focus on testing of situational awareness. However, the method may be applied
to other parts of the autonomy system as well.

1.1 Background

Historically, cities have been built next to rivers, lakes, bays, fjords and harbors due to the water
being a beneficial arena for transportation. However, the use these waterways has been left largely
unused. Instead infrastructure as bridges and tunnels has been built to cross them. This has been
costly, non-scalable and inflexible solutions in addition to allowing combustion engine vehicles to
pollute the air of the cities. This is something the startup company Zeabuz is aiming to change.
Zeabuz�s objective is to develop and deploy autonomous urban passenger ferries. The ferries are
set to be emission free and to be operating in urban waters in order to provide a new mode of
e�cient transportation across city waterways. However, the autonomy system of the ferries is
composed of complex sub-systems driven by artificial intelligence, e.g. guidance, navigation and
control systems. In addition is the urban environment is unstructured with possible dense tra�c of
other ships and objects that may cause collisions. Therefore, in order to provide safety assurance
when deploying the autonomous ferries in an urban (or any) environment, it has to be argued
based on testing, verification, validation and accumulated experience, that the autonomy system
of these ferries are su�ciently safe.

The AST method presented for the first time in [3] is a method that may be used in such a testing
process. By collaborative research between the Norwegian Open AI Lab, NTNU and Zeabuz, the
goal is to study if AST may be used as state-of-the-art safety validation of autonomous marine
systems, such as Zeabuz�s autonomy system. AST is developed by researchers at NASA and
NASA�s research partners. It performs falsification, meaning it searches for error. The falsification
problem is modelled as a sequential decision making problem, requiring a simulator that works as
a Markov process with discrete time and continuous state. AST actively adapts the sampling of
paths (of simulator states) using the machine learning method Reinforcement Learning (RL) in
order to optimize for finding failure events and maximizing the path likelihood. The method can
be applied to both simulators with complete access to the simulator state and to simulators where
some or all of the simulator states are not accessible. In AST the system under test is considered
a black box. Hence, little to zero knowledge about the system is required. However, in order to
e�ciently design the optimal reward function for the AST agent, domain knowledge is beneficial.
This will become more clear later in this thesis.

1

1.2 Research Question and Scope of Work

The thesis reviews methods for testing, verification and validation of autonomous marine systems.
The aim is to contribute with an answer the following research question:

How is it possible to accumulate enough experience regarding safety and validation for
autonomous passenger ferries such that it can be argued that the autonomy system is
su�ciently safe?

This will be examined through the following more specific sub-questions:

1. What is the current state-of-the-art methods used in testing, verification and validation of
autonomous systems, and how does AST fit into this context?

2. Can AST be used in order to perform state-of-the-art safety validation of the situational
awareness in autonomous urban passenger ferries?

These questions will be addressed through the following thesis objectives:

• Provide an introduction to autonomy, presenting a high level overview of autonomous marine
systems and a more detailed overview of the system architecture of an autonomous marine
surface vessel.

• Present the assurance problem of autonomous systems, including a review of related work
regarding methods for testing, verification and validation of autonomous systems.

• Provide necessary background theory regarding RL, and present the AST test method as a
method working in a fully and partially observable environment.

• Provide a detailed description of situational awareness using the Probabilistic Data Associ-
ation (PDA) target tracking algorithm, which is implemented and acts as system under test
for this project.

• Present a detailed description of the environment simulator proposed and implemented for
this project.

• Propose appropriate methods for AST to control the implemented environment simulator.

• Create a complete test system by implementing and integrating the AST test method with
the implemented environment simulator and system under test.

• Present an overview of the scientific approach for designing a set of case studies with the
objective of verification and validation of AST as a test method for autonomous systems,
with the main focus on situational awareness.

• Provide an requirements formulation for a set of case studies, including the required technical
setup, tuning strategy and control objective.

• Present a set of case case studies, including case study description and setup for performing
comprehensive simulations with the objective for verification and validation of AST as a test
method. In addition the results of the simulations shall be presented and discussed

• Provide a discussion of the case study results in context of the thesis research question.

• Evaluate and propose further work.

2

1.3 Research Method

The thesis applies quantitative and qualitative research methods in order to contribute with an
answer to the thesis research question. This includes a review of relevant literature, proposing an
appropriate test environment, defining case studies for evaluating the proposed test method with
scientific approach, requirements formulation, theoretical analyses and numerical simulations The
review of literature is perform with a qualitative approach. Theory is presented on autonomy,
assurance, RL, AST, situational awareness using target tracking algorithms, target tracking sim-
ulator design and simulator control methods. The case studies are defined in order to provide a
context for contribution with an answer to the research question. The case studies includes a set
of qualitative analyses in addition to a quantitative analysis of the AST method.

1.4 Main Contributions

This master thesis project is contributing to the search of new methods for evaluating safety of
autonomous marine systems, with emphasis on the situational awareness of autonomous surface
vessels. In addition to reviewing related work and presenting relevant theory regarding autonomy
systems, target tracking algorithms, RL and AST, the contributions include:

• Proposing and implementing a multi-target tracking simulator.

• Proposing and testing a new control option, open loop local control, for AST to manipulate
simulations in order to find likely failure events.

• Implementing the PDAF target tracking algorithm with the M/N extension for tracking
multiple targets.

• Implementing the AST method using the Monte Carlo Tree Search (MCTS) algorithm.

• Applying AST in the context of autonomous marine systems, state estimation and target
tracking algorithms used in situational awareness.

• Discussing how the AST method can be deployed for testing of the situational awareness of
an autonomous passenger ferry through a set of case studies.

• Using simulation results to verify and validate that AST can be used to find likely failures of
target tracking algorithms used in the situational awareness of autonomous marine surface
vessels.

1.5 Thesis Outline

The chapters of the thesis are structured as following:

Chapter 2 provides an introduction to autonomy systems and a description of the architecture
of an autonomous marine surface vessel, such as the Zeabuz system. In addition, the assurance of
autonomous systems problem is presented, including related work regarding testing, verification
and validation of autonomous systems.

Chapter 3 presents the background theory regarding RL, which the AST method is based on.
In addition the MCTS algorithm used by AST to find likely failures of the PDAF algorithm is
presented, with an added modification of progressive widening to make the algorithm perform
when the action space is large.

Chapter 4 provides the fundamental theory about the AST problem formulation. Two cases are
discussed, AST in a fully observable environment and AST in a partially observable environment.

3

Chapter 5 presents first an in depth description of the PDAF target tracking algorithm acting
as system under test. Second, a description of the simulator components of the proposed and
implemented simulator is presented. Lastly, the di↵erent options for AST to control the simulator
is presented, including a new proposed method for control.

Chapter 6 presents first the scientific approach in this thesis for evaluating AST as a test method.
Secondly, a requirements formulation for the case studies performed is presented. Thirdly, the case
studies including case study design, results and discussion are presented. Finally, the results are
discussed in context of the thesis objectives.

Chapter 7 provides the conclusions of the project and proposes further work.

4

Chapter 2

Autonomy Systems

The objective of this chapter is to introduce some background theory about autonomy, provide a
high level overview of an autonomy system similar to the Zeabuz system architecture and present
the assurance of autonomous systems problem. This chapter is an extended and edited version of
a chapter from the project thesis, [4].

2.1 Autonomy

The word autonomous is inherited from ancient Greece combining the words ”auto”, meaning self,
and ”nomos” meaning law according to [5]. Hence, an autonomous agent is a self governing agent.
In this sense an autonomous agent can be anything that is self governing, e.g. an autonomous coun-
try or an autonomous vehicle. In the industrial setting autonomy systems are considered to be
deliberative control systems designed to perform complex tasks in domains with high uncertainty.
According to [6] an autonomous system should be able to plan and re-plan its mission subject
to mission objective, risk exposure and any operational and environmental constraints that may
happen as the operation goes. In addition, the system should be learning, adapting and improving
based on accumulated experience. Autonomy systems are often confused with automation sys-
tems. Automation systems are significantly less complex, and are only set to perform well-defined
tasks without human intervention. This is referred to as reactive control. When an automatic
system might fail, an autonomous system can still perform due to their intelligent and adaptive
functionality.

Autonomous systems are expected to produce tangible benefits to the society through increased
sustainability and safety, reduced costs, and improved scalability and flexibility. Autonomy systems
may enable new functions and markets, make it possible to operate in complex, harsh and remote
environments, in addition to remove human error as a safety concern. Operationally it is expected
that autonomy systems will lead to safer and less costly operations. Unmanned systems may also
be smaller and cost less to build. The business sectors that are currently driving the development
of advanced autonomy systems are aerospace, robotics, marine robotics, automotive and shipping
industry.

2.2 Autonomy Systems - A High Level Perspective

High level of autonomy is achieved when reactive and deliberative control are combined. Figure 2.1
shows how marine autonomy systems can be divided into three layers, mission planning, guidance
and optimization, and control execution. The mission planning layer uses deliberative control
to define the mission objective and use inference to perform planning. Additionally re-planning
is performed if necessary when receiving new information from other autonomy control layers.
The guidance and optimization layer determines a desired path and a desired velocity, rotation

5

and acceleration along that path. This is referred to as guidance, [7]. The guidance has to be
optimized with subject to the situational awareness and energy management of the system. The
control execution layer performs pure reactive control in order for the system to act.

Figure 2.1: General Control System Architecture for an Autonomous Marine Vessel

Cyber-physical autonomous systems may be divided into four modules, reason and deliberate,
sense, model, plan and act. The reasoning and deliberation module corresponds to the mission
planning layer mentioned above. The sense, model and plan modules combined are equivalent to
the guidance and optimization layer, and the act module is corresponding to the control execution
layer. This is further specified for an autonomous marine surface vessel equivalent to the Zeabuz�s
autonomy system in Figure 2.2.

2.3 Autonomous Surface Vessel Architecture

Figure 2.2: High Level Autonomy System Architecture for a Marine Surface Vessel

The modules in the Autonomous surface vessel presented in Figure 2.2 are as following:

Supervisory Control: The supervisory control system sets the mission objective, carries out
planning and re-planning, performs online risk management, evaluates the integrity of the actuators
and performs self diagnostics when necessary. This corresponds to the reasoning and deliberation
module of the vessel.

Perception Sensors: These are sensors used by the situational awareness in order to keep track
of the vessel�s surroundings. Typically, these sensors are radar, infrared (IR), images (RGB) and
Lidar.

Object Detection: Combined with the perception sensors the object detection does make up the
sense module for the surface vessel. The object detection analyzes all of the resolution cells of the
sensor measurements in order to decide whether the measurement origins from a physical object
or measurement clutter.

Situational Awareness: The situational awareness role is to keep track of the vessel�s sur-
roundings. This is done using sensor fusion algorithms for target tracking and projection in order

6

to keep track of detected objects. This corresponds to the model component of the guidance and
optimization layer described in the previous section.

Motion Planning: Based on the mission objective, and the situational awareness the motion
planner does determine what path the vessel should follow and at what speed, rotation and ac-
celeration the vessel should have along the path. This corresponds to guidance and is the plan
module of the surface vessel.

Control System: The control system consist of the motion control and actuator control for the
surface vessel. Based on the output of the motion planner, traditional sensors used for inertial
navigation and online risk management done in the supervisory control, the system does carry out
motion control which creates the control input for the actuator control which makes the system
physically act. The control system corresponds to the act module for the surface vessel. In addition
the actuator control system does provide feedback to the supervisory control in order to analyze
the integrity of the actuators and perform self diagnostics.

Naviagtion Sensors: This is traditional sensors used for inertial navigation in marine control sys-
tems. These sensors could typically be Automatic Identification System (AIS), Global Navigation
Satellite System (GNSS) and Inertial Measurement Unit (IMU).

2.4 Assurance of Autonomous Systems

The objective of this Section is to present the term assurance and discuss it in context of au-
tonomous systems. Section 2.4.1 will give an introduction to assurance. The theory is gathered
from lectures given in ”TMR06 - Autonomous Marine Systems”, which is a specialization course
for master students at the Department of Marine Technology at NTNU. In addition, Section 2.4.2
presents related work regarding validation and verification, which are important concepts in assur-
ance of complex systems.

2.4.1 Assurance

When deciding whether an autonomy system is ready for launch or not, assurance is a commonly
used term. There exists di↵erent ways of defining assurance. [8] defines assurance in the following
manner:

”Grounds for justified confidence that a claim has been or will be achieved”

Whereas a claim could be about any quality which stakeholders value. This could be safety,
sustainability, e↵ectiveness or e�ciency. Det Norske Veritas (DNV) provides a similar definition:

”Grounds for justified confidence that systems, products and processes work safely,
e↵ectively and e�ciently”

Considering these definitions it becomes clear that assurance consists of multiple dimensions. These
dimensions could be safety, security, rules and regulations, ethics and societal impacts, environ-
mental impacts and stakeholder expectations. Having this is mind, some challenges arises when
considering assurance of autonomous systems. First, autonomous systems are complex systems
made to handle unstructured environments and unpredictable scenarios, making the system less
mechanical and deterministic compared to a traditional control system. Second, the control system
of an autonomous vessel is a software intensive system consisting of a set of interacting components.
It is important to mention that in such a system is safety an emergent system property, meaning
that system failure may occur due to interactions between the system components, and not only
through failure of a single component. This makes it harder to conclude that an autonomous
system is safe, since it is hard to model the interactions between the components of the system
and the system behaviour. Third, human operators are well trained in reacting to unpredictable

7

situations and may find creative solutions to problems quickly. Hence, a key problem when creat-
ing autonomous systems is to figure out how the system should act in unforeseen situations, and
knowing that the system can handle the situation in a safe manner. With all these considerations
in mind, building trust in a software intensive autonomous system may be a hard task to solve.
The thesis will mainly focus on the safety aspect of the system. When considering the safety, there
are especially three factors that has to be taken into account, technical safety, perceived safety and
system performance. This will be further discussed in the next paragraphs.

Technical vs. Perceived Safety

Technical safety is related to how safe the technological system actually is, and is assessed through
comprehensive testing and analysis to understand the behavior of the system in di↵erent situations.
Whereas perceived safety takes into concern whether the system feels safe for the user. Reaching
high level of technical safety is important to prevent losses. On the other hand, reaching high
level of perceived safety is important to build public trust, and inspire to confidence in the system
among all stakeholders. This dimension is especially important considering commercialization,
since a potential customer will not use a system that the user does not perceive as safe. Hence,
considering that achieving technical safety is a technical problem, covered by comprehensive testing,
and perceived safety is a problem related to subjective experiences, achieving high perceived safety
may be considered a harder problem to solve. The dilemma of technical safety vs. perceived safety
is illustrated in Figure 2.3. It can be observed that Zeabuz aims to achieve both high technical
and perceived safety. However, this thesis will have a technical focus, not taking perceived safety
into the considerations.

Figure 2.3: Illustration of the dilemma of technical vs. perceived safety. The figure was presented
in the specialization course TMR06 at NTNU.

Balancing Safety vs. Performance

In addition to considering safety concerns regarding autonomous systems, it also important to
take into account the performance dimension, such as high precision in target tracking. Depending
on how a system is designed, it may score high on safety, but very low on performance, or vice
versa. Both situations are unfortunate. In a worst case scenario a system may be unsafe and have
poor performance. Usefulness may also be used as a term for explaining performance. Figure 2.4
presents di↵erent examples for how safety and performance have been balanced. The lower left
corner shows a flamethrower drone, which would be considered as highly unsafe and with a low
degree of usefulness. With increased safety, the cars imaged in the top left corner are autonomous
vehicles that decides to stay parked in order to guarantee safety. Parked cars cannot be considered

8

useful. Hence, the cars scores low on performance. The bottom right corner shows a image of an
autonomous car developed by a company called Uber. The imaged car was responsible for a deadly
accident, where the car hit a pedestrian. In reports in the aftermath of the accident, it has come to
light that the car was tuned for high performance, reducing it capabilities to act safely. This was
done in order to avoid the car stopping all the time, by making it abstain from perceiving (for the
most of the time) normal tra�c situations as dangerous. Hence, finding a balance between safety
and performance is a key problem with autonomous vehicles. It can be observed that Zeabuz aims
to be in the top right corner, where the levels of safety and performance are high. This dilemma may
be taken into further considerations when using AST to test algorithms for situational awareness
using di↵erent tuning values.

Figure 2.4: Illustration of the dilemma of balancing safety and performance. The figure was
presented in the specialization course TMR06 at NTNU.

2.4.2 Testing, Verfication and Validation

Assurance of autonomous systems is achieved by testing, validation , verification and certification of
the system. This thesis will mainly focus on testing, verification and validation of complex control
systems. Verification and validation are formulations that often are confused for each other. In
order to avoid this the following definitions provided in [9] are used in this thesis:

Verification The process of evaluation software to determine whether the products of a given
development phase satisfy the conditions imposed at the beginning of that phase.

Validation The process of evaluating software during or at the end of the development process
to determine whether it satisfies specified requirements.

Considering these definitions, the key di↵erence between verification and validation is what phase
of the development process the formulations covers. Verification focuses on determining if the
product is being built right, whereas validation focuses on determining if the right product is
being developed. Methods for verification and validation of complex embedded control systems
are under development. The same methods may be customized for autonomous systems. See [10]
for an overview of traditional and advanced modeling, testing, and verification techniques. In [1]

9

is Figure 2.5, based on a similar figure from [10], presented, providing an overview of existing
methods for verification and validation of complex control systems, and where they are placed on
the scales of exhaustiveness and scalability. These terms are described further in the next section.
In addition is a red arrow added denoting where the AST method is positioned relative to the
other methods. The AST method is as mentioned a simulation-based falsification method. Hence,
the method is positioned in the same place as other falsification methods.

Figure 2.5: Existing methods in verification and validation of complex control systems. The x-axis
shows the level of exhaustiveness and the y-axis shows the level of scalability. The red arrow
denoting where the AST method is positioned on the plot. The figure is an edited version of the
figure presented in [1].

It can be observed that testing, verification and validation of safety critical systems, such as
Zeabuz�s autonomy system, can be separated into three broad categories. The first category is
analytical methods, the second category is formal verification through formal safety proofs, and
the third category is simulation-based testing. Traditionally the main focus has been on formal
and simulation-based methods. Hence, these methods are main focus of the following sections.

Formal Methods

Formal verification constructs a mathematical model of the system and rigorously proves or ex-
haustively checks whether a safety property holds, [11]. In order for the system properties to be
mathematically modeled, a formal framework for modeling has to be provided. In [12] Linear
Temporal Logic was presented as a framework for formal logic in temporal computer programs.
Probabilistic model checking (PMC) is a formal method used in verification. The method verifies
system properties over stochastic models with discrete states, i.e. Markov Chains. Probabilistic
Model Checking exhaustively evaluates properties over all states and paths with respect to proba-
bilistic constraints. It has previously been used in verification of aircraft collision avoidance systems
in [13]. The search space can be reduced by pruning infeasible paths as presented in [14]. Other
formal methods as Automatic Theorem Proving (ATP) and Hybrid Systems Theorem Proving
(HSTP) as presented in respectfully [15] and [16] have also been used in verification of safety crit-
ical systems before. Recently, related work regarding the use of formal methods in verification of

10

marine autonomous systems have been published. In [17] the marine tra�c rules from the Conven-
tion on the International Regulations for Preventing Collisions at Sea (COLREGS) are formalized
using temporal logic, laying the groundwork for applying formal methods in the context of collision
avoidance in marine tra�c. [18] investigates how Formal Methods (FMs) can be used to design
and verify maritime control systems for safe and e↵ective Maritime Autonomous Surface Ships.
In [1] is research regarding automatic simulation-based testing of autonomous ships using Gaus-
sian processes and temporal logic presented. However, a key drawback of formal methods such as
PMC, ATP and HSTP is the exhaustiveness of the methods. In this context exhaustiveness means
providing verification by exhausting all possibilities. This means that every possible combination
of states in the system has to be evaluated through brute force. Exhaustiveness may be beneficial
if the system complexity is low, but large exhaustiveness implies low scalability. Hence, the formal
methods are placed in the Figure 2.5 where the Exhaustiveness is high and the scalability is low.
In this context scalability refers to real systems consisting of di↵erent interconnected sub-control
systems configured for the particular application, e.g. a ship. In the case of autonomous sys-
tems where the search space is vast and complex are formal safety proofs practically impossible.
However, formal proofs may be used in some sub-parts of the system where the search space is
smaller.

Simulation-Based Methods

Since formal verification is not feasible in the case of autonomous systems, statistical considerations
have to be made in the safety argumentation. This is demonstrated well by Figure 2.6 presenting
the concept of ”the long tail of the probability distribution”. The key idea behind this concept
is that through performing operations with a system over a longer time period, the risk of an
specific event occurring is decreased due to the fact that if an event will happen, then it will most
likely happen at some time step of that period of time. Hence, if an autonomous passenger ferry
has been in operation for billions of hours and a specific event hasn’t occurred, then the risk of
that event occurring is mitigated through experience. However, the risk for that event does still
exist. This remaining risk is called residual risk, and is the risk represented by the long tail of
the probability distribution. In this case, simulation-based testing is necessary to acquire enough
data through many operational hours, such that safety is statistically demonstrated by moving the
residual risk further to the right. Physical testing is not considered, since it would require a wast
amount financing in order to keep the system in operation for long enough time. In addition, it
wouldn’t be possible to have the system in operation before it is approved to be so, which requires
that it is tested, verified, validated and certificated. Simulations does also have the benefit of
running scenarios representing hours of operation in just a few seconds, making the time frame for
achieving low residual risk significantly shorter.

11

Figure 2.6: Illustration of the concept of ”the long tail of the probability distribution”. The x-axis
represents the probability of an event occurring, and the y-axis represents the number of hours a
system is in operation. The figure was presented in the specialization course TMR06 at NTNU.

Simulation-based testing refers usually to the usage of a Digital Twin (DT) of a cyber-physical sys-
tem with its operating environment. In-the-Loop testing are well know previously used approaches
for simulation based testing. This includes Hardware-In-the-Loop (HIL), Software-In-the-Loop
(SIL), Model-In-the-Loop (MIL) and Process-In-the-Loop testing. HIL, SIL and MIL testing are
illustrated in Figure 2.7.

(a) Real System (b) HIL

(c) SIL (d) MIL

Figure 2.7: Illustration of In-the-Loop-Testing. The figure consists of sub-figures that were pre-
sented in the specialization course TMR06 at NTNU.

HIL testing is carried out by connecting simulated equipment to the actual physical control system
consisting of hardware and software. The simulated equipment provides a simulated measurement
to the physical control system, which produces control signals that are fed back to the simulator.
In [19] a clarification of what HIL testing is and how independent third party HIL testing can be
applied to safety critical control system software on drilling ships and rigs are presented. In addition

12

the reasons why third party HIL testing is an important contribution to technical safety, reliability
and profitability of o↵shore operations are presented. [20] present an overview of experiences from
HIL testing of dynamic positioning systems and power management systems. SIL testing works
in the same fashion as HIL, but the physical control system is replaced by a virtualized control
system, where the hardware is virtualized. SIL testing is equivalent to performing tests on a DT.
MIL testing is quite similar to SIL testing. The di↵erence is that instead of having to simulate the
hardware of the physical control system, the entire control system is simulated as a whole using a
mathematical model. MIL testing is equivalent to testing a DT where the control system behavior
is mathematically modeled.

When working with In-the-Loop testing the objective is typically to design simulations scenarios
that are set to be as demanding as possible for the the control system under test. Then, the
objective is to make the system fail. This is known as falsification. Previously, falsification has
been done manually or by sampling simulator states. However, sampling does not optimize for
failures, and therefore it may take a vast number of simulations before a sequence of sampled states
leads to system failure. The falsification tool S-TaLiRo presented in [21] deals with this by applying
optimization algorithms such as simulated annealing and the Nelder-Mead method. The problem
of such algorithms is that they does not take into account the temporal relationship between the
variables that are to be optimized. Hence, global optimization algorithms struggles with finding
the sequence of events that lead to failure events. Considering this, [22] presents another approach
using rapidly-exploring random trees (RRT) to optimize the problem when it is considered a path
planning problem. However, RRT struggles when the parameters in the state space are of mixed
types or scales, since it struggles to choose a good distance metric. In addition the RRT method
requires full access to the simulator state, which is not provided in all simulators.

Adaptive Stress Testing - Previous Work AST is a relatively new method, and has yet to be
applied to marine systems. However, in other industries the method has demonstrated promising
results. This is especially the case of the aerospace industry and to some degree the automotive
industry. In [3] the method is applied in stress testing of air collision avoidance systems using the
Monte Carlo Tree Search (MCTS) algorithm to identify flight trajectories that are likely to lead
to near mid-air collisions (NMAC). The AST algorithm using the MCTS algorithm manages to
find failure scenarios more e�ciently than a regular MCTS algorithm. Introducing new software
systems may add new failure modes that older robustly tested systems does not have. Then,
it would be beneficial to stress test the new and the old system against each other in order to
find failures in the new system. Di↵erential AST (DAST) is an extension of AST used to find
failures in a system relative to a baseline system. This was done in [23], where the next generation
Airborne Collision Avoidance System (ACAS X) was tested against the system it is set to replace,
Tra�c Alert and Collision Avoidance System (TCAS). The DAST algorithm was successfully
able to find a set of interesting NMACs. AST has also been applied in testing of autonomous
vehicles. [24] presents MCTS and Deep Reinforcement Learning (DRL) AST solvers applied to
a scenario where an autonomous vehicle approaches a cross walk. The DRL solver was able to
find more likely failure scenarios than the MCTS solver with fewer simulator calls. However, this
method did have its drawbacks. The problem was that the DRL solver used a feed-forward neural
network with a discretized space of possible initial conditions. The system was not treated as a
black box, since it is required to analyze the internal state of the system, leading to considerable
implementation complexities. Secondly, a new instance of the solver were needed to be run for
each initial condition, increasing the computational complexity and disregarding the underlying
relationship between similar initial conditions. Both problems was solved in [25] by implementing
a recurrent neural network taking as input a set of initial conditions from a continuous space. The
approach enabled robust and e�cient failure detection since the solution was able to generalize
across the entire space of initial conditions. The solver demonstrated to yield solutions to problems
that previously was considered intractable. AST has also been applied to testing and validation
of image-based neural network controllers in [26], trajectory planning systems in [27], trajectory
predictions in flight management systems in [28] and in a financial environment testing fraud
detection systems in [29]. Generally, the application of AST seems to be quite flexible, being able
to find likely failure events in di↵erent systems acting in di↵erent environments.

13

Chapter 3

Reinforcement Learning

The objective of this chapter is to provide an introduction to Reinforcement Learning (RL) and
present the algorithm that will act as solver in the AST system. The theory presented is an edited
version of the equivalent chapter in the project thesis, [4]. First, some background theory regarding
sequential decision making problems and RL from Chapter 17 and 21 in [30] will be presented.
Then, the Monte Carlo Tree Search algorithm described in [31] will be presented.

Figure 3.1: Main idea of RL methods.

RL is a branch of Machine Learning (ML) that don’t fit in the typical taxonomy of ML, where all
methods are divided into two main categories, supervised and unsupervised learning. Supervised
and unsupervised learning algorithms do typically require large amounts of data. Hence, they are
algorithms that learns aposteriori of gathering data. In addition they do not make actions in the
environment in order to gather the data. RL methods are designed to learn while acting with the
environment. This is well described in Figure 3.1. The RL agent takes some action a, which a↵ects
the environment, the agent observes the state s of the environment and gather some reward r for
the action induced change of the environment state. This carries on as the agent tries new actions,
observing the environment and gathering rewards. The most simple example to explain this, is
thinking about how a puppy learns from interacting with the world. When training puppies to
become obedient, RL is a common approach. E.g. giving a puppy a treat (reward) every time the
puppy does something good, and punishing the puppy with not giving treats when it behaves badly.
Doing this over time the puppy starts to understand what actions leads to treats and what actions
does not lead to treats, and by that learns how to behave in the world. In this case the puppy is the
RL agent and the rewards are treats. The next sections of this chapter will provide an introduction
to how sequential decision making problems are mathematically formulated, and how RL can be
used to solve such problems. This includes presenting a mathematical framework for sequential
decision making problems, defining what a policy is, explaining the di↵erence between model-free
vs. model-based methods and taking a look at the dilemma of exploration vs. exploitation.

14

3.1 Background Theory - Sequential Decision Making

Consider the problem where the objective is to create a plan for how to reach a goal state from
some initial state. For each state in-between the initial state and the goal state, including the
initial state, there are some actions available. There is uncertainty associated with each action,
meaning that applying an action in a state is not predictably tied to reaching another state. This
is a sequential decision making problem, and can be mathematically modeled as a Markov Decision
Process (MDP).

3.1.1 Markov Decision Process

In order to mathematically define a MDP it is assumed that the state s is always known. This
is the case of a fully observable environment. Knowing this it is possible to model a sequential
decision making problem as a MDP using the following 5-tuple of variables,

• S: S = [s0, s1, ...], which is the set of all states

• A: A(s) = [a0, a1, ...], which is all available actions in state s

• T : T (s, a) = p(s0|s, a), which is the probability of reaching state s0 from state s doing action
a. This is called the Transition Model.

• R: R(s, a), which is a reward associated to reaching state s when executing action a. This is
called the reward function.

• �: � 2 [0, 1], which is a discount factor to deal with the fact that an immediate reward is
considered better than a later reward, and to deal with the concern regarding infinite sums
of rewards when dealing with a infinite horizon.

3.1.2 Policy

The solution of an MDP is called a policy. Policy is defined as an contingency plan for what action
to do in each state. A policy is denoted by ⇡. The following expressions should give a clear picture
of how a policy works:

⇡ = {s0 7! a0 7! s1 7! a1.... 7! sgoal} (3.1)

Where the agent starting in state so performs som action ao according to the policy, and the state
transitions to s1 where the agent executes action a1 according to the policy. This carries on until
the agent reaches the goal state sgoal. The optimal solution of an MDP is the one that yields an
optimal policy, which is the policy that has the highest expected utility. The optimal policy for
an MDP is denoted by ⇡⇤ and the utility of a policy is defined as the discounted sum of received
rewards,

U⇡(s) = E

" 1X

t=0

�tR(st)

#
(3.2)

Then, the optimal policy starting in state s is given as the policy which maximizes the utility in
state s:

⇡⇤
s = argmax

⇡
(U⇡(s)) (3.3)

Then, the optimal action in state s is given by:

15

⇡⇤(s) = argmax
a2A(s)

X

s0

p(s0|s, a)U⇡(s0) (3.4)

3.1.3 Model-Free vs. Model-Based Methods

There are two categories of methods that can be used in the search of an optimal policy. One
category is the model-based solution, which is used when the transition model and the rewards are
known a priori. Then, the solution can be found using dynamic programming (DP) algorithms,
such as Value Iteration or Policy Iteration. However, the transition model and the rewards are not
always known. Then, a model-free solution has to be found. This can be done using indirect RL
where the agent indirectly solves the problem by systematic sampling of the environment creating
an estimate of the transition model and the rewards, before applying DP algorithms to find the
optimal policy. This is typically done by maximizing the utility function expressed by the Bellman
equation:

U(s) = R(s) + � max
a2A(s)

X

s0

p(s0|s, a)U⇡(s0) (3.5)

All the equation variables are mentioned in the previous section. Direct RL is another approach
where the optimal policy is found by directly estimating utilities for actions without estimating the
transition model. This is typically done by learning a utility function of actions and states rather
than a utility function of only states. Then, the optimal policy is the path of actions which yields
the highest estimated utility. The action-utility function are directly related to the state utility
function:

U(s) = max
a2A(s)

Q(s, a) (3.6)

The di↵erence between using a Q-value function rather than the regular Bellman equation, is that
by using a method called Temporal Di↵erence (TD) learning the agent does not need the transition
model. The Q-value function is expressed by:

Q(s, a) = R(s) + �
X

s0

p(s0|s, a)max
a0

Q(s0, a0) (3.7)

The transition model is still present, but using TD learning the Q-function can be estimated with
the following update rule:

Q(s, a) � Q(s, a) + ↵(R(s) + �max
a0

Q(s0, a0)�Q(s, a)) (3.8)

Where ↵ 2 [0, 1] is the learning rate, which determines how much the Q-values are updated. Using
this TD update rule is referred to as Q-learning. There exists other variations of this update rule.
State-Action-Reward-State-Action (SARSA) is a method which uses TD learning, but does not
include the max operator that Q-learning uses.

3.1.4 Exploration vs. Exploitation

RL algorithms are as previously mentioned model-free methods that can be used in the search of an
optimal policy. They rely on performing random actions exploring the environment such that they
can learn the true model of the environment. However, doing only this would require the agent to
search a wast space containing all combinations of all possible actions. This would be equivalent
to a brute force approach, and would not be very e�cient. To make the search faster, the agent
may narrow down the search by following a greedy policy to some chosen point in the search.
The greedy policy would be the current optimal policy. After the chosen point, the agent starts
exploring new actions that have not been executed along that path before. This way the agent
exploits locally optimal policies while exploring the search space. It is important that the agent
is able to balance exploration, performing random actions, and exploitation, performing actions in
the action space that currently yields the highest utility. The trade-o↵ between exploration and
exploitation is typically done by performing random actions some fraction ✏ of the time, and the

16

rest of the time 1� ✏ executing the greedy policy. It is also possible to use a exploration function
designated to determine what actions to perform next. This will be further discussed in the Section
3.2 regarding RL using MCTS.

3.1.5 Partially Observable Environment

To this point it has been assumed that the environment state is always known, but there are
cases where it is not know. This is in the case of a Partially Observable Markov Decision Process
(POMDP). In a POMDP a sensor model may to be introduced. The sensor model is a measure
for how likely the observation z of the state s are

P (z|s) (3.9)

Using the sensor model combined with the observations, state estimation/filtering methods may
be used deal with the uncertainty. Other methods dealing with partial observability will be further
discussed in Section 4.2.

3.2 Reinforcement Learning using Monte Carlo Tree Search

MCTS is a heuristic search algorithm used in RL. The description of MCTS in this section is
based on [31] unless otherwise is specified. Principles of RL are combined with a classic tree search
implementation to create a probabilistic driven search algorithm. The algorithm being heuristic
means it uses a heuristic function pointing it in the right direction making it faster and able to
handle greater problems than a normal tree search algorithm such as Depth-first-search. MCTS
builds a search tree incrementally while focusing on the most important areas, causing the tree to
be asymmetrical. The nodes of the tree represents the MDP states. The edges between the parent
and child nodes represents the actions performed in the parent node to reach the child node.

Figure 3.2: Generalized MCTS flow diagram.

The algorithm starts in the root node, which is the initial state s0 of the MDP. From there on the
the four core steps of MCTS is performed, Selection, Expansion, Simulation and Backpropagation.
The flow of the algorithm using these steps are illustrated Figure 3.2. Additionally it is possible
to implement a method called Progressive Widening (PW), to handle large and even continuous
action spaces.

17

3.2.1 Selection

Selection is the step where the algorithm chooses which child node to go to next. Starting in with
only s0 the first child node chosen is s0. When the tree has grown the next child node is chosen
according to two criteria, is the node a leaf and what is the Upper Confidence Bound (UCB).
Generally, a node is a leaf if all actions available for the state that the node represents has been
executed previously. Leaf nodes are chosen preferably to all other nodes in order to evaluate all
immediate available actions as they are considered more important than later actions. When there
are no leaf nodes at the current level of the tree, the next child node s0 is selected by choosing
the node yielding highest UCB value. According to [32] the UCB value may be calculated for all
nodes while running the MCTS algorithm according to:

UCB =
wi

ni
+ c

r
lnNi

ni
(3.10)

Where UCB stands for Upper Confidence Bound, wi is the number of times a ”win” is achieved
from the node, ni is the number of times the node has been considered in simulations, Ni is the
number of times the parent node has been considered in simulations, and c is the exploration
parameter. Subscript i is used to denote simulations after the i’th ”move”. The term ”move”
comes from the application of MCTS in games, where a complete MCTS search is performed for
each move made. The same can be said for the term ”win”, where the objective of the search
is finding a game winning strategy. The UCB handles the exploration vs. exploitation trade-o↵.
The first term of the expression is the success rate of the node implying that nodes with high rate
of success is preferred. Hence, the algorithm is encouraged exploitation making greedy choices.
The second term is related to how often the node has been visited, decreasing for each time the
node has been visited. This term is added to make ensure that the algorithm performs exploration
in order to not get stuck in a local optimum. The c value is chosen according to how much the
exploration should be weighted in the search. The selection step maximizing UCB values at each
level of the tree is performed until a leaf node is reached. The selection step is illustrated in Figure
3.3

Figure 3.3: Example of the selection step in a search tree where there are 2 available actions in all
nodes

3.2.2 Expansion

The expansion step is performed when the selection step is done and a leaf node has been reached.
If a child of the leaf node has been visited before, the algorithm performs a complete set of
random actions until a goal/terminal state is reached. These actions may lead to the same state
as they previously has done or new unexplored states due to the stochastic properties of MDPs.
If none of the child nodes has been visited before, the algorithm executes randomly one of the
available actions, reaching a new child node s⇤. The Value of the node is initialized and set to
zero, Value(s⇤) = 0, and the count of number of visits is set to ni = 1. Figure 3.4 illustrates how
the expansion step is performed.

18

Figure 3.4: Example of the expansion step in a search tree where there are 2 available actions in
all nodes

3.2.3 Simulation

The simulation step is executed by continuing to perform random actions until a terminal/goal
state is reached. In the goal state a specified reward is collected. The reward may be given by
a reward function designed for the specific problem that MCTS is applied to. Reward function
design for AST is presented in Chapter 4. Figure 3.5 provides a illustration for how the simulation
step is executed.

Figure 3.5: Example of the simulation step in a search tree where there are 2 available actions in
all nodes

3.2.4 Backpropagation

The backpropagation step is done by following reversing the path following in the tree and updating
the visit count ni(sp) = ni(sp)+1 for each parent node sp, and by updating the value of the parent

19

nodes by adding the reward r collected in the terminal state:

Value(sp) = Value(sp) + r (3.11)

The backpropgation step is illustrated in Figure 3.6

Figure 3.6: Example of the backpropagation step in a search tree where there are 2 available actions
in all nodes

This value update is the simplest way to represent values in the nodes. Another approach is by
estimating Q-values as explained in Section 3.1.3. When the backpropagation step is finished,
the current state is the initial state s0. Then, the algorithm may continue searching for better
policies if the predetermined terminal time of MCTS is not yet reached. If, the terminal time is
reached, the algorithm returns the optimal policy found, and depending on the implementation it
may execute the policy. In a game the agent would execute the first action or move of the policy
and then start a running the MCTS search again when receiving information about the opponents
actions.

3.2.5 Progressive Widening

In some cases the action space may be continuous or very large, possibly infinite. When action
spaces are large, random sampling is not su�cient when trying to revisit states, making the quality
of the value estimates poor. In those cases modifications has to be done to the MCTS algorithm.
For AST [2] suggest that Progressive Widening (PW) may be used to deal with this. PW forces
the search to revisit existing nodes and allows for exploration creating new nodes when the number
of visits increases, progressively widening the tree. It is used to avoid exploding branching factor
of the tree. Asymptotically the MCTS search will converge to the optimal solution using PW. The
key idea is to limit the number of actions available from each node. Consider the case where there
are N available actions from a state s:

A(s) = [a1, a2, ..., aN] (3.12)

Using PW the number of actions is limited to K < N actions

A(s) = [a1, a2, ..., aK] (3.13)

20

where actions in range of K + 1 to N are left out. The K is calculated according to

K = Ct↵ (3.14)

Where t is the current simulation time step, and C and ↵ are tuning parameters.

21

Chapter 4

Test Method - Adaptive Stress
Testing

This chapter will present how finding the likely path to failure events using Adaptive Stress Testing
is modeled as a MDP. The entire chapter is based on the work presented in [2]. The theory presented
in this chapter is an edited version of the theory presented in the equivalent chapter in the project
thesis, [4].

Figure 4.1: High level sketch of the problem formulation. The search for the most likely failure
path is formulated as a RL problem. The agent chooses likely disturbances such that the simulated
environment is as challenging as possible for the system under test. This sketch is from [2].

In order to formulate the problem consider the sketch in Figure 4.1. The simulator S contains a
system under test M and a simulated environment ✏ that the system is acting in. The RL agent
A applies some disturbance x based on the simulator state s and a reward r. The disturbance x is
sampled from the likelihood distribution p(x|s) and is chosen in order to make the environment ✏
as challenging as possible for the system under test. Then, the AST objective is for the RL agent
to find the most likely path to an failure event. Assuming that the simulation is episodic it is
set to terminate at tend when the system under test reaches a failure state or when the maximum
simulation time tmax has passed. The solution to this problem is expressed by multiplying the
maximum likelihood at each time step under the constraint that a failure event occurs during the
simulation:

max
x0:tend

tend�1Y

t=0

p(xt|st) (4.1)

22

under the constraint of:

stend 2 E (4.2)

Where stend is a terminal state and E is the set of failure events. Put into words this means that
the solution is the set of disturbances that maximizes the likelihood with the constraint that the
terminal state is an failure event.

4.1 Fully Observable Environment

In order to find a solution as the one expressed by (4.1) and (4.2), the problem has to be modeled
as an MDP. In this section the case of an fully observable environment is considered. The modeling
is done as following:

• The MDP state of the problem is set to the simulator state s.

• The MDP action of the problem is applying a disturbance x in state s.

• The MDP transition model is to be found by the RL agent when optimizing (4.1) under the
constraint of (4.2).

• The MDP reward function is designed in order to help the RL agent with the optimization.

• The MDP � is chosen to be � = 1, since the number of time steps is finite.

The reward function is the key to an correct and e�cient solution to the AST problem. The
function must be designed such that the RL agent chooses likely disturbances and is encouraged
to look for failure events. Having this in mind [2] presented the following reward function:

R(s, x) =

8
<

:

RE , if s is terminal and s 2 E
�d, if s is terminal and s 62 E
log(p(x|s)), Otherwise

(4.3)

The RL agent receives a positive reward RE for reaching a failure state, encouraging it to seek
for failure events. When the agent reaches a terminal state that is not a failure state the agent
receives a negative reward �d. This can either be some distance metric describing how far away the
terminal state was from a failure state, or some random number set high enough for the algorithm
to converge. When the RL algorithm haven�t reached a terminal state yet, it receives a reward
according to the log likelihood of the disturbance. In order to show that this is an optimal reward
function, the sum of the received rewards in a single simulation run is calculated:

R =
tend�1X

t=0

rt =
tend�1X

t=0

R(st, xt) (4.4)

Where subscript t denotes at time t. Then, inserting the rewards yields:

R =
Ptend�1

t=0 log(p(x|s)) +
⇢

RE , if s is terminal and s 2 E
�d, if s is terminal and s 62 E

=
Qtend�1

t=0 p(x|s) +
⇢

RE , if s is terminal and s 2 E
�d, if s is terminal and s 62 E

(4.5)

Then, the sum is maximized:

max
x0:tend

R = max
x0:tend

tend�1Y

t=0

p(x|s) +RE (4.6)

Equation (4.6) yields a solution on the same form as the desired solution expressed by (4.1) under
the constraint of (4.2). Hence, maximizing the accumulated rewards using the proposed reward
function will yield a solution to the initial MDP problem, where the objective was finding the path
to likely failure events.

23

4.2 Partially Observable Environment

The AST formulation presented in Section 4.1 assumes that the RL agent has complete access
to the simulator state, meaning that the MDP environment is fully observable. However, not all
simulators provides full access or access at all to the simulator state. Hence, an AST formulation
for partially observable environments must be defined. Previously in Section 3.1.5 the use of
state estimation methods were proposed for dealing with POMDPs. However, when the simulator
provides no access to the simulator state at all or a sensor model doesn’t exist, state estimation
cannot be applied. Instead new solutions has to be sought for. In the case of AST this has
previously been done by the use of seed-actions. Rather than sampling a disturbance directly, the
agent sample a pseudorandom seed x̄ that are used in initialization of all random processes in the
simulator. The seed is a integer vector used in initialization of a pseudorandom number generator.
Assuming that all random processes in the simulator are derived from the same pseudorandom
number generator and seed, the agent is able to manipulate all random processes in the simulation
by setting the seed. It is assumed that the simulator samples disturbances x in state s by itself
according to the likelihood distribution:

x ⇠ p(x|s) (4.7)

Assuming all random processes is deterministic given the seed, the likelihood p(x|s) of the sampled
disturbance x is then also deterministic given the seed. Then, the sample x is deterministically
tied to the seed x̄. However, the agent still requires the distance metric d and the log-likelihood
⇢ in the reward function presented in (4.8). In addition the simulator must notify the agent when
a failure event e and terminal state t are reached. This must be provided by the simulator. How
this is done, is further explained in Chapter 5 and Chapter 6.

R(⇢, e, d, ⌧) =

8
<

:

RE , if ⌧ ^ e
�d, if ⌧ ^ ¬e
⇢, Otherwise

(4.8)

24

Chapter 5

Test Environment - Situational
Awareness Algorithms and
Simulator Setup

The objective of this chapter is to is to present the test environment where AST�s capability
to find likely failure events in situational awareness will be evaluated. Situational awareness is
generated by keeping track of the environment surrounding the autonomous vessel. This is as
mentioned achieved by performing target tracking and projection. The test environment consists
of the system under test and the simulated environment. Hence, in this case the test environment is
a target tracking algorithm connected to a target tracking simulator. The first section will present
the target tracking algorithm acting as system under test in this thesis. The second section will
describe the simulator design, and di↵erent options for AST to control the simulations. The theory
regarding the tracking algorithm presented and the simulator design is an edited and expanded
version of the theory presented in the project thesis, [4].

5.1 Situational Awareness - Target Tracking Algorithms

Target tracking is related to traditional state estimation/filtering algorithms, but with one main
di↵erence. When using state estimators such as the Kalman filter (KF) for linear problems and
Extended Kalman Filter (EKF) for non-linear problems, the system only receives one measurement
at each time step, and that measurement does only belong to one object. E.g. the GPS measure-
ment for a ship does only belong to that ship. In target tracking, the system may receive several
measurements. Therefore, it is important that the algorithm is able to determine which measure-
ment can be associated with an object or target, and hence, should be used. In addition, there
may exist multiple targets that the algorithm have to detect and track. Therefore, it is common to
distinguish between single-target and multi-target tracking. The typical standard assumption for
target tracking is that the target of interest generates at most one measurement at each timestep.
If the target does not generate a measurement, a misdetection has occurred in the autonomy sys-
tem�s object detection algorithm. Additional measurements may be generated by other targets or
clutter. Clutter is generated by false alarms in the object detection algorithm. This section will
present the underlying assumptions of target tracking. In addition, the two tracking algorithms
that will act as system under test, will be presented. This entire section, including the paragraph
above, is based on Chapter 7 in [33]. For further details about the theory presented, [33] is highly
recommended reading material.

25

5.1.1 Target Tracking Assumptions

When designing target tracking algorithms, a set of assumptions has to be made in order to make
the problem manageable. This thesis will focus mainly on single-target assumptions, and what
modifications is necessary to make these work for tracking multiple targets.

Single-target Assumptions

The main objective of a Bayesian single-target tracking algorithm is to estimate the predicted
probability distribution pk|k�1(xk) = p(xk|Z1:k�1), which represents the prediction of the target
state xk given all previously received measurements Z1:k�1. In addition, the goal is to estimate
the posterior distribution pk(xk|Z1:k), which is used to estimate the target state xk by updating
the prediction based on information provided by the current measurement Zk. In order to create
models for these distributions, the following assumptions are made:

1. At time step k�1 one and only one target exists in the surveillance region, with state vector
xk�1.

2. The prior density of xk�1 is given as pk�1(xk).

3. The state vector of the target evolves from time step k�1 to k according to a Markov model
of the form fx(xk|xk�1).

4. A measurement from the target is detected by probability PD

5. If a measurement from a target exists, then it is related to xk according to the likelihood of
the form fz(zk|xk).

6. An unkown number �k measurements originate from clutter, where the discrete-valued ran-
dom variable �k is distributed according to µ(�).

7. If z is a clutter measurement, then it is distributed according to a pdf c(z), independently of
all other measurements.

5.1.2 Probabilistic Data Association Filter (PDAF)

Figure 5.1: Block diagram for the PDAF algo-
rithm.

The purpose of this section is to become famil-
iar with one of the systems under test by pro-
viding a description of the PDAF target track-
ing algorithm. It is further assumed that the
reader is familiar with linear algebra, e.g. the
transpose or the identity matrix. Figure 5.1
provides a block diagram representing the flow
of the PDAF algorithm. It can be observed
that the algorithm consists of seven main steps,
EKF State Prediction, EKF Measurement Pre-
diction, Measurement Gate, Calculate Associa-
tion Probabilities, Event Conditional Measure-
ment Update, Gaussian Mixture Model and
Mixture Reduction.

EKF State Prediction

The EKF State Prediction step is the same pre-
diction step performed by the EKF state esti-
mation algorithm. The prediction done by a

26

regular KF algorithm is performed by assuming that the process dynamics may be represented by
a linear model such as the one presented in (5.1). The EKF does not assume that the process
model linear is linear, and must therefore handle this by linearization. However, for the sake of
simplicity the process model is assumed to be linear, such that the EKF State Prediction step is
actually the KF State Prediction step.

xk = Fxk�1 + vk, where vk ⇠ N(0, Q) (5.1)

Where x 2 R4 is the state vector, F 2 R4 ⇥R4 is the transition matrix, v 2 R4 the process noise
vector and Q 2 R4 ⇥R4 is the process noise covariance matrix. Subscript is used to express the
time. Assuming that the targets maintains constant velocity F and Q may be represented by the
expression in (5.2). The choice of the F and Q matrix is furthered explained in Section 5.2, where
the simulator design is presented.

F =

I2x2 TI2x2
02x2 I2x2

�
and Q =

"
T 3

3 I2x2
T 2

2 I2x2
T 2

2 I2x2 TI2x2

#
�2
a (5.2)

Where T is the time step and �a is a measure for how much acceleration the target is expected to
undergo. The state prediction x̂k|k�1 is then given by:

x̂k|k�1 = Fx̂k�1 (5.3)

Where x̂k�1 2 R4 is the estimated state at previous time step. The output of the prediction step
is a multivariate Gaussian distribution. Hence, the predicted covariance has to be caluclated as
well. The covariance prediction Pk|k�1 is given by the following equation:

Pk|k�1 = FPk�1F
T +Q (5.4)

Where Pk�1 2 R4⇥R4 is the estimated covariance from the previous time step. Then, the output
of the EKF State Prediction step is given by the following multivariate Gaussian distribution:

N(x̂k|k�1, Pk|k�1) (5.5)

EKF Measurement Prediction

The EKF Measurement Prediction step is carried out by predicting what the measurement should
be based on the predicted state. The same assumption about linearity that was made for the EKF
State Prediction step is made for this step. Then, the measurement prediction can be based on
the following linear model:

zk = Hxk + w where wk ⇠ N(0, R) (5.6)

Where zk 2 R2 is the measurement vector, H is the measurement matrix, xk is as for the prediction
step the state vector, w 2 R2 is the measurement noise vector and R 2 R2⇥R2 is the measurement
noise covariance. The H and R matrices are typically given as:

H =
⇥
I2x2 02x2

⇤

and
R = �2

zI2x2 (5.7)

Where �z is the expected measurement noise standard deviation. The measurement prediction is
then given by the following equation:

ẑk|k�1 = Hx̂k|k�1 (5.8)

Where ẑk|k�1 is the measurement prediction and x̂k|k�1 is the expected value of the EKF State
Prediction. The output of the measurement prediction is a multivariate Gaussian. Hence, the
measurement covariance has to be predicted as well:

Sk|k�1 = HPk|k�1H
T +R (5.9)

Where Sk|k�1 2 R2 is the predicted measurement covariance and Pk|k�1 2 R2 ⇥R2 is the process
covariance predicted by the EKF State Prediction step. The resulting multivariate Gaussian is
then:

N(ẑk|k�1, Sk|k�1) (5.10)

27

Measurement Gate

The Measurement Gate step is where the algorithm determines which measurements at the given
time step should be considered as target measurements or clutter measurements. This is done by
creating a validation gate G which only accepts measurements within g standard deviations around
the measurement prediction ẑk|k�1 according to the predicted measurement covariance Sk|k�1. The
resulting gated measurements are then represented by:

zgk =
n
8z 2 zk which satisfies (z � zk|k�1)

TS�1
k|k�1(z � zk|k�1) g2

o
(5.11)

Calculate Association Probabilities

There exist several models for calculating the association probabilities. The PDAF used in this
study use the di↵use model, where the probability of the cardinality of number of clutter measure-
ments is assumed to be uniformly distributed. This means that the number of clutter measurements
is given equal probability for all numbers. It is generally hard to find the exact association proba-
bilities for the gated measurements, but it is possible to find values proportional to the association
probabilities. Hence, instead of probabilities, association weights are calculated. The association
weight for the i’th measurement in zk is given by:

�i
k = Pr{ak = i|z1:k} /

⇢ mk
Vk

1�PDPG
PD

, if i = 0
N(zik; ẑk|k�1, Sk|k�1), if i > 0

(5.12)

Where ak = 0 means that no measurement is generated by the target, and ak = mk indicates that
measurement mk originates form the target. Hence, i = 0 indicates that the algorithm gates none
of the measurements believing no measurement originates from the target, and i > 0 indicates that
the algorithm believe one of the measurements originates form the target. mk is the total number
of gated measurements at time k, and Vk is referred to as the gate volume. mk/Vk takes the role of
the clutter density, when it is not known a priori. PG is the probability that the true measurement
is inside the gate and PD the detection probability.

Event Conditional Measurement Update

In order to update the estimate with information gathered from the measurements, the event con-
ditional posterior distribution has to be found. Measurement zak

k represents the ak’th measurement
that is considered by the algorithm to possibly originate from the target. The event conditional
posterior distribution for each such measurement is given by the following multivariate Gaussian
distribution:

P (x̂k|ak, z1:k) = N(xk; x̂
ak
k , P ak

k) (5.13)

where the mean vector and covariance matrix is given by the following expressions:

x̂ak
k = x̂k|k�1 +Wk(z

ak
k � x̂k|k�1) (5.14)

P ak
k = (I �WkH)Pk|k�1 (5.15)

Wk = Pk|k�1H
TS�1

k|k�1 (5.16)

Where x̂k|k�1 2 R4 and Pk|k�1 2 R4⇥R4 are the predicted state and process covariance given from
the EKF State Prediction step. x̂k|k�1 and Sk|k�1 are the predicted measurement and measurement
covariance from the EKF Measurement Prediction step. Wk 2 R4 ⇥R4 is known as the Kalman
Gain. The case where ak = 0 does also have to be considered, then the posterior is given by:

p(x̂k|ak, z1:k) = pk|k�1(xk�1) (5.17)

This is the same distribution outputted from the EKF State Prediction step, meaning that no
measurement update is performed. If this carry on for multiple time steps, it is equivalent to dead
reckoning, which means that only the process model predictor is used in estimation.

28

Gaussian Mixture Model

The Gaussian found in the Event Conditional Measurement Update step are in this step combined
into a mixture model:

mkX

i=0

�i
kN(x̂ak

k , P ak
k) (5.18)

At this point the Gaussian mixture model act as the prior for the next time step of the algorithm.

Mixture Reduction

The algorithm assumes that the prior distribution is a single Gaussian. Hence, the Gaussian
mixture model violates this assumption. This is handled by reducing the mixture to a single
Gaussian using moment matching. Moment matching means that a new Gaussian with the same
mean and covariance as the mixture is created. Hence, the expectation value and the covariance
matrix of the mixture have to be calculated. The expectation is easily calculated using the linearity
of expectations:

x̂k = �0
kxk|k�1 +

mkX

i=1

�i
kx̂

i
k (5.19)

The covariance matrix calculation is trickier. First, the ”spread-of-innovations” or external covari-
ance term has to be calculated:

P̃k = Wk

"
mkX

i=1

�i
k⌫

i
k(⌫

i
k)

T � ⌫k⌫
T
k

#
WT

k (5.20)

Where the innovations are given as ⌫k = zik �Hx̂k and ⌫ik = zik �Hx̂i
k, all other parameters are

previously mentioned. The internal covariance is given by:

Pk,internal = Pk|k�1 � (1� �0
k)WkSk|k�1W

T
k (5.21)

The total covariance of the Gaussian mixture is calculated by adding the internal and external
covariance:

Pk = Pk,internal + P̃k (5.22)

The output of the PDAF filter is represented by the following single mulitvariate Gaussian distri-
bution:

N(x̂k, Pk) (5.23)

This distribution is also the prior distribution that acts as input for the EKF State Prediction in
the first step of the algorithm, meaning that the algorithm is a recursive algorithm.

5.1.3 Extension to Track Existence: M/N Logic

The PDA algorithm does not take into account that tracks are not initialized a priori. Generally,
the tracking algorithm should autonomously determine whether a sequence of measurements are
likely to originate from a target or clutter. Then, if the measurements are considered to belong to
a target, the algorithm should establish a track. There exist di↵erent ways of handling this. The
simplest approach would be to count the number of times the validation gate contains a detection
over a limited time interval. If measurements are repeatedly gated over the interval, it is likely
that they originate from a target.

This approach is the core idea behind the M/N Logic track initialization method. The tracker
initiates a tentative track when receiving two measurements that are close to each other. How close
the measurements have to be in order to create such a track could be determined by calculations
using expected maximal speed and measurement noise. The track is then propagated through the
tracking algorithm (in this case the PDA) for a maximum N time steps. Then, if the tracker gates
M of these N steps, the track is confirmed and established, otherwise the track is terminated.

29

The methodology described so far handles initiation of tracks, but not termination. The target of a
confirmed track may disappear for the tracker. This could be due to the target moving outside the
region of interest, because it dissolves, because it becomes invisible or simply due to poor tracking
resulting in track loss. Then, it is beneficial to terminate the track, since multiple invalid tracks
may confuse the algorithm. This confusion might rise due to the validation gate of a lost track that
may quickly grow, making a simple single-target scenario become a complex multi-target scenario.
Hence, termination should be handled by the tracking system.

The simplest approach in track termination is the M/N Logic. Then, the algorithm keeps track of
the number of time steps where measurements are gated similar to when initiating the track. If
the algorithm gates measurements in less than M of the last N time steps, the track is terminated.

5.2 Simulator Design and Setup - Simulating Moving Tar-
gets

The objective of this section is to provide a general description of the simulator setup used in the
case studies presented later in this thesis. The first section will provide a general description of the
simulator components of a multi-target simulator. What specific components and modifications
that are included in the di↵erent case studies will be presented in the respective case study sections.
In the second section the control options for the AST algorithm is presented. Using di↵erent ways
to control the simulations, AST can modify the simulated environment such that the target tracking
algorithms struggles to detect and track targets.

5.2.1 Simulator Components

Chapter 2 provides a general description of an autonomous marine surface vessel. The situational
awareness uses sensor fusion algorithms for target tracking and projection in order to keep track of
the vessels surroundings. In the previous section a detailed description of underlying assumptions in
target tracking in addition to the PDAF target tracking algorithm used in this project is presented.
Tracking algorithms use input from perception sensors and traditional navigation sensors. The
input are measurements that may consist of noise and clutter. In order to use AST to find likely
failure events in the situational awareness, these measurements have to be simulated. Hence, the
simulator must create targets and simulate their dynamics. In addition the simulator must be able
to add noise to the target states and clutter measurements in order to mimic real measurements
realistically. For this thesis an open sea simulator with a fixed frame is considered. This is done
in order to illuminate considerations that has to be made when land has to be considered a part
of the measurements and to avoid taking into consideration that the surface vessel is moving while
tracking. Figure 5.2 presents the simulator setup used in this thesis. This section will present the
di↵erent components of the simulator setup. The entire section is based on theory presented in
[33].

30

Figure 5.2: Proposed simulator setup for complete multi-target simulation.

Target Arrival Process

Targets are modeled to arrive in the simulation frame according to a Poisson Point Process. First,
the number of targets at a given time k is sampled from the following distribution:

P (N = n) =
⇤n
a

n!
e�⇤a (5.24)

Where N is the random variable and n is the realization of n. ⇤a is the expected value of N . When
the number of targets have been chosen, the initial position for each target is drawn i.i.d from a
uniform distribution over the simulation frame. Then, the output of the target arrival component
is the set of initial states xak

k for arriving targets at time k. Where superscript ak denotes the set
of arriving targets.

Target Derparture Process

Targets may departure the simulation frame or disappear from the measurements. This selection
is done as a Bernoulli trial, which is a trial where the outcome is either ”success” or ”failure” with
the same probability of ”success” each time. The Bernoulli trial i performed by sampling from
a Bernoulli distribution. The sampling yields a boolean value deciding whether a target should
be killed or not. The Bernoulli distribution where r is the probability for a target to be killed is
presented in [33]:

p(X = x) =

(
1� r , if x = 0

r , if x = 1
(5.25)

The Bernoulli trial may in practice be done by sampling a value p from the uniform distribution
over the range of [0, 1]:

p ⇠ U[0,1] (5.26)

Then, if the sampled value p is above a decision threshold pd, which is the probability of departure,
the target is deleted. The output of the departure component is then the set of departing targets
dk.

Continuous Time Target Dynamics

The continuous time target dynamics are modeled according as a nearly constant velocity (CV)
model:

ẋ = Ax+Gn (5.27)

31

The A and G matrices are defined as:

A =

02x2 I2x2
02x2 02x2

�
and G =

02x2
I2x2

�
(5.28)

x is the target state vector consisting of position and velocity, n is the process noise given by

n ⇠ N(0, D�(t� ⌧)), where D =

�2
a 0
0 �2

a

�
(5.29)

Where �a is a measure for how much acceleration the target is expected to undergo. �(t � ⌧) is
the Dirac delta function, where ⌧ is a short time interval ⌧ = tk � tk�1.

Discrete Time Target Dynamics

To practicably be able to implement the CV dynamics, the CV model has to be discretized. This
is done according to the following expression:

xk+1 = Fxk + vk+1 (5.30)

Where x is the state vector, F is the transition matrix and v the process noise vector. Subscript
is used to express the time. F and vk is given by the following equations:

F = eA(tk+1�tk) (5.31)

vk+1 =

Z tk+1

tk

eA(tk�⌧)Gn(⌧) d⌧ (5.32)

The process noise inherits whiteness from the continuous time model, such that vk ⇠ N(0, Q).
Hence, vk is properly represented by its covariance matrix Q. Using fixed discretization time
T = tk+1 � tk results in the following expression for the covariance matrix Q:

Q =

Z T

0
e(T�⌧)AGDGe(T�⌧)AT

d⌧ (5.33)

This integral may be evaluated using approximations or using a closed-form solution when tech-
niques for evalutating the matrix exponential is available. The closed form solution is given by
Van Loan’s formula:

exp

✓
�A GDGT

0 AT

�
T

◆
=

⇥ v2
0 v1

�
and Q = v1v2 (5.34)

The matrix exponential indicates that a complete solution is not yet achieved. The evaluation
of matrix exponentials is not necessarily supported by all programming languages, and generally
the evaluation would be slow. Hence, if possible, it would be favorable to evaluate the matrix
exponential in terms of elementary functions. This is the case for the CV model, where all terms
of order 4 and higher becomes zero in the series expansion. Hence, it can be represented by 3rd
order expansion. The solutions for F and Q is given by:

F =

I2x2 TI2x2
02x2 I2x2

�
and Q =

"
T 3

3 I2x2
T 2

2 I2x2
T 2

2 I2x2 TI2x2

#
�2
a (5.35)

The target state vector xk is then sampled according to:

xk+1 ⇠ N(Fxk, Q) (5.36)

Let superscript Tk denote the set of existing targets at time k, then the resulting output from the
target dynamics component is the set of true target states xTk

k+1 at time step t = k + 1.

32

Target Manager

The target manager is the component that manages the targets at each time step. The main
objective of this component is to merge the set of existing target states x

Tk�1

k from the previous
time step with the set of initial target states xak

k for the arriving targets at the current time step.
In addition the target manager removes the set of departing targets dk from the set of targets.
The output of the target manager component is then the updated set of target states xTk

k at time
step k.

Generating Measurements

When the simulator for the targets and their behaviour are finished, the measurements originating
from the targets must be generated. This is done by transforming the target states into measure-
ments using a linear measurement model:

zk = Hxk + wk, where wk ⇠ N(0, R) (5.37)

The R matrix is the measurement covariance matrix, and is set by:

R = �2
zI2x2 (5.38)

Where �z is the expected measurement standard deviation. The target state vector is x, and the
measurement matrix is given as:

H =
⇥
I2x2 02x2

⇤

The measurement zk then sampled according to:

zk ⇠ N(Hxk, R) (5.39)

Let superscript Tk denote the set of targets at time k, then the resulting output from the measure-
ment generation component is the set of measurements zTk

k belonging to existing targets.

Target Mis-detection:

In reality the radar (or any other measurement device) may not detect all existing targets. Hence,
there is some probability assigned to detection of targets. This probability is considered to be
constant for every time step. Then, only a certain number measurements of all targets should
appear in the measurements. This is done by randomly selecting targets to not include, such that
the number of target measurements divided by total number of targets is equal to the detection
probability, PD. This selection is done in the same manner as target departure is handled. Through
a Bernoulli trial it is determined whether a target should be deleted generating a mis-detection or
kept generating a detection. Hence, the output of the detection component is the set of detected
measurements zDk

k at time k. Superscript Dk denotes the reduced set of measurements where all
elements are detected measurements.

Generating Clutter Measurements

Clutter measurements are modeled to arrive in the simulation frame according to a Poisson Point
Process. First, the number of clutter measurements n at a given time k is sampled from the Poisson
distribution:

n ⇠ poisson(⇤) =
⇤n
c

n!
e�⇤c (5.40)

Where ⇤c is the expected number of clutter measurements at each time step. When the number
of targets have been chosen, the initial position for each target is drawn i.i.d from a uniform
distribution over the surveillance area:

zck,ik ⇠ U[xmin,xmax] (5.41)

33

Then, the output from the clutter generation component is the set of all clutter measurements zCk
k

at time k, where Ck denotes the set of all clutter measurements at the time step. When the sets
clutter measurements and detection measurements are generated, the input to the target tracker
is the two sets merged into a single set of measurements zk.

The log-likelihood

In addition to generate the simulations, the simulator must return the likelihood or log-likelihood
of each simulation step, since this is a simulator requirement for AST. The whole simulator step
from target dynamics to clutter measurement generation should be manipulated by the AST agent
in order to disturb the PDAF algorithm. Hence, the simulator should return the log-likelihood of
all the samples done in the simulator. Assuming independence between all the distributions used
in a single time step, the log-likelihood for each simulator step is then given by the sum of the
log-likelihood for each sample:

log⇢ = log(poisson(N = |ak|,⇤|ak|)) +
P|ak|

i=1 logU(x
ak,i
k =x

ak,i
k ;[xlow,xhigh])

+
P|xT

k |
i=1 logU(Ri

a=ria;[0,1])

+
P|xT

k |
i=1 logN(XT,i

k = xT,i
k ;FxT,i

k�1, Q
T,i)

+
P|zT

k |
i=1 logN(Zi

k = zik;Hxi
k, R

i)

+
P|zT

k |
i=1 logU(Ri

d=rid;[0,1])

+log(poisson(N = |zCk
k |;⇤|Ck|)) +

P|zCk
k |

i=1 logU(Zc,i
k =zc,i

k ;[xk��,xk+�])

(5.42)

Where the first two sums are related to target arrival, the second to target departure, the third to
target dynamics, the fourth to measurement generation, the fifth to detection and the last two are
related to generation of clutter measurements.

5.2.2 Control Options

In previous applications of AST using the MCTS algorithm there have been two main options for
how AST is allowed to control the simulated environment. These options are open loop global
control and closed loop local control. In this thesis the terms local and global refers to whether
AST controls a single stochastic process or all stochastic processes in the simulator. In [34] closed
loop control is defined as when control is injected into the simulation in real time. For open loop
control the control actions has to be set ahead of the simulation run, or indirectly in real time
through seed-actions. The last option of open loop control will be explained further in the next
sections. The selection of control approach defines the action space for the RL agent. However, in
this project a third approach for control is proposed. This new approach benefits from the local
control option which closed loop local control exploits, and from the black box property of open
loop global control. Hence, the third method of control is named open loop local control. The
local control approach may be beneficial since controlling a single parameter reduces the search
space. Combining local control with open loop control, this can be done in a less intrusive manner
than when using closed loop control, since open loop does not require access to the simulator
state. Local control is also interesting scientifically and educationally, since it allows for freezing
all the processes that are not controlled, making it possible to study how di↵erent processes a↵ects
performance of the system under test. E.g. it is possible to set the target trajectory to be the
same through the entire search, while AST determines how the target measurements are distributed
along the path. In the next sections the di↵erent control options will be presented in detail. What
specific methods of control for each specific case study is presented in the respective case studies.

34

Closed Loop Local Control

For closed loop control the AST agent may apply disturbances to the system under test for each
time step of the simulation. The RL learning agent can then adapt its strategy in real time, such
that failure events are found fast and e�cient. This requires direct access to the simulator state.
Hence, in this case the system under test is only considered as a semi black box. When testing
target tracking algorithms this must be made possible by letting the AST agent manipulate and
create new measurements. Figure 5.3 presents an illustration for how this can be done by allowing
the agent to perform the sampling of the stochastic processes in the simulator. The following
processes may be sampled:

1. Manipulating the arrival process by:

• Sampling the number of targets to arrive.

• Sampling the initial position of the arrived targets.

2. Manipulating the departure process by sampling whether to kill or not to kill a target.

3. Manipulating the target dynamics by sampling of the process noise a↵ecting the ground truth
state transitions, [xk�1 �! xk].

4. Manipulating the measurements zk by sampling of measurement noise.

5. Manipulating the detection of targets by sampling whether to include or not include a mea-
surement in the input to the tracker.

6. Manipulate the clutter generation process by:

• Sampling the number of clutter measurements to generate.

• Sampling the position of the clutter measurements.

When using AST the agent may be allowed to perform all the six mentioned control options at
the same time, or one by one, or combinations of them. However, not all search RL algorithms
have support for selecting multiple actions at a single time step, which is the case of the MCTS
algorithm used in this project. Having this in mind, the search in this project is limited to only
use one of the mentioned options at the same time. Hence, the name local control. The key benefit
of this type of control when using AST is that manipulation of specific parts of the simulated
environment may isolate and uncover specific failure modes. This is beneficial when the system
under test is complex and the number of possible failures is large. Having access to the simulator
state will also allow for using more advanced RL algorithms, such as solvers using Deep Neural
Networks to estimate the Q-value function. In addition as mentioned earlier, using local control
makes it possible to freeze certain parts of the simulation, making it possible to examine how
di↵erent processes influences the performance of the system under test. When the control strategy
has been chosen, the agent would have to balance maximizing the likelihood of each sample, by
sampling values close to the mean of each distribution, and creating disturbances the system under
test find hard by sampling further away from the the mean.

35

Figure 5.3: Proposed simulator setup for using closed loop control in a complete multi-target
simulation. The red lines represents the outputted states of the di↵erent simulator components
which together makes up the simulator state.

Open Loop Global Control

Open loop control is typically used in the case of a partially observable environment, where the
agent does not have access to the simulator state at each time step or any time step. The lack of
access to the simulator state may be due to how the system is designed and/or even due to the
simulator state being classified information. Hence, the agent must then do necessary modifications
to the simulator before each simulation run or indirectly during the simulation run. This works
typically well when the simulator run is based on a configuration file. Then, the approach used for
partially observable environments in [2] presented in Section 4.2 should in theory work. The AST
agent does then only partially have access to the simulator, and instead of applying disturbances
directly at each time step, the agent set the pseudo-random seed that is used to initialize the
global pseudo-random number generator (RNG) of the simulator. The RNG is used in all the
sampling done of the random processes of the simulator. Hence, setting the seed at each time step
would re-initialize the RNG and continuously change the sampling, creating disturbances without
accessing the simulator state. How the open loop strategy can be used with the proposed simulator
is presented in Figure 5.4. Considering a very complex simulator with many di↵erent stochastic
functions, seed action disturbances would work well. Then, it wouldn’t be necessary to create a
interface for every function such that the AST agent can manipulate it. This is a key argument
for using open loop control with seed action, since it would make the leap from testing only a the
situational awareness module of a system to testing multiple modules combined easier. However,
the open loop option does not benefit from the isolation of di↵erent failure modes that the closed
loop option is able to do.

36

Figure 5.4: Proposed simulator setup for using open loop control in a complete multi-target simu-
lation.

Open Loop Local Control

The key idea of the open loop local control option proposed for this master thesis project is to
combine the benefits of the regular closed loop and open loop options. This option would then
have the same ability to manipulate specific processes of the simulator isolating di↵erent failure
modes, and at the same time maintain the black box property of the open loop option. The only
requirement for this method of control, is a interface giving access to a separate RNG for the
specific process that is to be controlled. This RNG would then have to be used rather than the
global one when sampling is done in the isolated process. Figure 5.5 provides an illustration of the
open loop local control option for the simulator used in this case. The local control option for the
described simulator would allow AST to be able to:

1. Manipulate the arrival process by:

• Setting a new seed for the RNG used when sampling the number of targets to arrive.

• Setting a new seed for the RNG used when sampling the initial position of the arrived
targets.

2. Manipulate the departure process by setting a new seed for the RNG used when sampling
whether to kill or not to kill a target.

3. Manipulate the target dynamics by setting a new seed for the RNG used when sampling of
the process noise a↵ecting the ground truth state transitions, [xk�1 �! xk].

4. Manipulate the measurements zk by setting a new seed for the RNG used when sampling of
measurement noise.

37

5. Manipulate the detection of targets by setting a new seed for the RNG used when sampling
whether to include or not include a measurement in the input to the tracker.

6. Manipulate the clutter generation process by:

• Setting a new seed for the RNG used when sampling the number of clutter measurements
to generate.

• Setting a new seed for the RNG used when sampling the position of the clutter mea-
surements.

The AST agent may be allowed to perform all the six mentioned open loop local control options
at the same time with separate RNGs or a shared one. Using a shared RNG would be equivalent
to the open loop option. The AST agent may also be able to use one by one, or combinations of
local control options. This would mean that the Agent is able to do manipulations equivalent to
what the agent could do with the closed loop option without accessing the simulator state. When
the control strategy has been chosen, the agent would as for closed loop control have to balance
maximizing the likelihood of each sample and creating disturbances for the system under test.

Figure 5.5: Proposed simulator setup for using open loop local control in a complete multi-target
simulation.

38

Chapter 6

Case Studies - Adaptive Stress
Testing of Situational Awareness

The objective of this chapter is to perform a set of case studies in order to evaluate AST as a
method for finding likely failure scenarios in the situational awareness of an autonomous marine
surface vessel. In addition the new open loop local control method proposed Section 5.2 will be
tested and evaluated. First, the scientific approach for evaluating the test method is presented.
Second, the requirements formulations for the case studies are presented. Then, the specific case
studies and the results of the case studies are presented.

6.1 Scientific Approach - Verification and Validation of the
Test Method

With the goal of performing e↵ective and thorough evaluation of AST as test method, the scientific
approach in this master thesis project has evolved throughout the project while accumulating
experience. The core idea behind the final approach is that AST as a test method have to go
through the same procedures of verification and validation as the system that AST is intended to
test. Generally, before using the method as a tool for verification and validation of an autonomy
system, it is important to verify that the method does what it is intended to do and validate that
it does so e↵ectively. Before diving into the approach for doing this, a set of definitions have to be
presented:

Test Method The test method is the method that will be used to test the system under test, and
is the method that is to be tested and evaluated in this context. This term was briefly introduced
when presenting AST as a test method in Chapter 4.

System Under Test The system under test is the system which the test method is to evaluate.
In this case, the system under test is the PDAF target tracking algorithm presented in Chapter 5.

Environment Simulator The environment simulator is the component which has the role of
generating input for the system under test. In this case, the environment simulator is a target
tracking simulator, which was presented in Chapter 5.

Test Environment The test environment is the combination of the system under test and the
environment simulator. The test environment with system under test and environment simulator
is a mentioned described in detail in Chapter 5.

39

Test System The test system is the complete test setup consisting of both the test method and
the test environment.

Having these definitions in mind, it was considered strategical to evaluate the test method through
two main phases, comprehensive testing in a low fidelity test environment and further testing in
a high fidelity test environment. The complete evaluation process, consisting of phase 1 and 2, is
presented in Figure 6.1. This thesis will cover work related to the first phase. In the next sections
the two phases will be further explained.

Figure 6.1: Complete development cycle with phase 1, validation and verification in a low fidelity
test environment, and phase 2, validation and verification in a high fidelity test environment.

6.1.1 Phase 1 - Low Fidelity Test Environment

In the first phase, the test method is as mentioned to be tested and evaluated in a low fidelity
test environment. The test environment is developed and managed by the same developer (the
author) which implements the test method. This was considered beneficial at this stage since
the developer would have complete control over and insight into the test environment, making
thorough testing more manageable than when using a high fidelity test environment, which the
test method developer is not familiar with. Having complete control of the complete test system
would also make rapid prototyping easier.

40

Figure 6.2: Development cycle

The general development strategy for this phase consists of cycles with feature specification, imple-
mentation, tuning, verification and validation. This is illustrated in Figure 6.2. More specifically
the process is as following:

1. Feature Specification: Key features of the product are specified.

2. Development: With specifications as input, an implementation is developed.

3. Tuning: If applicable, values for the tuning parameters of the implementation are set.

4. Verification: Through a qualitative analysis the implementation is verified if it meets its
specification requirements.

5. Validation: Through a quantitative analysis the implementation is validated if it satisfies
its performance requirements.

The steps above gives an description for what the next step is in the development process if
the implementation passes all tests. However, it is also important to determine what to do if it
does not pass one of the tests. Hence, if the implementation fails in the verification step, the
developer should go back and develop a new implementation if it is considered likely that the
implementation is erroneous. It is also possible to change the values of the tuning parameters of
the implementation. In addition, if the implementation fails in the validation step, new features
for improved performance could be determined. Then, the implementation has to go through
the same steps again before it can be validated. The second option if the implementation is not
validated, is to change the values of the tuning parameters in order to improve performance. In
addition it may be considered beneficial to go through the entire loop of specification, development,
tuning, verification and validation several times in order to verify and validate the implementation
in iterations as it becomes more and more sophisticated. It is important to distinguish between the
development of the test method and the test environment, when going through this cycle. In this
project, the test environment was developed simultaneously with the test method when extensions
of the test environment was required.

41

The presented development cycle is inspired by Agile development strategies, which focuses on it-
erative development and early continuous delivery of valuable software. This means in general that
having a functional product early, which can be improved in later iterations of the development
cycle, is considered better than developing the complete envisioned product from the start. This
cycle of development and testing, verification and validation, may be considered to be an iterative
cycle of test driven development, which is an Agile development strategy. The key benefit of this
strategy is the possibility of continuous evaluation of the product. In test driven development the
developer creates tests which the implementation has to pass before the developer starts imple-
menting the product. The key idea behind such a development strategy is that after each cycle, if
all tests has been passed, the product is at a stage where it reaches some minimum requirements
for being ready for launch. This is referred to as a Minimum Viable Product. For further theory
regarding Agile development see [35].

6.1.2 Phase 2 - High Fidelity Test Environment

The second proposed phase has a more industrial focus, where the testing and evaluation of the
method is done in a high fidelity test environment, validating that the method is useful for testing
of an industrial system. In this context, there are a set of variations for how the test environment
may be constructed. In order to clarify this see Figure 6.3 for an illustration of di↵erent ways the
test method can be applied to test an industrial system. The test system developed in phase 1
is the system where the test method developer has implemented the complete test environment
consisting of simulator and system under test, which is on the top of the figure. The test method
and environment are in that case integrated without need for an interface. The next approach
is the test method applied in a industrial test environment, where it must exist an interface
between the test environment and the test method. The third approach is using the test method
developers environment simulator to test the industrial system under test. Then, there must exist
an interface connecting the simulator with the system under test. The last approach is when an
independent third party simulator is used. Then, the test method must be connected to the third
party simulator through an interface, and the simulator must be connected to the industrial system
under test through an additional interface. The three last approaches may be considered to be
using a high fidelity test environment compared to the first approach, since for two of the cases the
simulator is of higher fidelity than in the first case and the system under test is of higher fidelity
in all of the cases.

Figure 6.3: Di↵erent ways of applying the test method. Blue represents the test method developers
systems, yellow represents the industrial systems, and green represents third parties.

42

The validation of the implementation is done as a two step process. The first step is the qualitative
validation in the high fidelity test environment. This means that the implementation is tested for
its qualities in the new test environment, which is the same qualities that were verified in the
qualitative verification in the low fidelity test environment in phase 1. In addition the end user (or
customer) may specify new qualities that the implementation has to be tested for. If the end user
is satisfied with the results of the qualitative analysis, the implementation is ready for the second
validation step of phase 2, which is a quantitative analysis of the implementation. In this step the
implementation is validated if it meets its performance requirements in terms of key performance
indicators. This could be comparing the performance of the implementation with existing methods
and baseline values. In the case that the implementation is not validated in one of the two validation
steps, new specifications may be formulated in order to improve the performance of the method, or
the parameter tuning may be improved. In both cases the implementation should go through the
same evaluation steps as previously before being validated in the phase 2 validation steps. This
is considered beneficial since initial testing and integration of the implementation in a low fidelity
test environment would reduce the complexity of the task significantly. In the case that the method
is validated in both of the phase 2 validation steps, the validation process may additionally have
produced interesting failure scenarios, which may be useful knowledge for the end user.

6.2 Requirements Formulation

The objective of this Section is to provide a formulation of the requirements for applying AST
to find likely failure events in the situational awareness of an autonomous surface vessel. The
specifications of how the requirements are fulfilled are partially introduced in this section for the
components which are common for all of the case studies. How the remaining requirements are
met are specified in each case study.

6.2.1 Environment Simulator

Having a environment simulator is a key requirement when applying a simulation-based test
method. The environment simulator is as previously explained the environment which the test
method is to manipulate in order to evaluate the system under test.

Design

Chapter 5 provided a description of the di↵erent components of the multi-target simulator designed
and developed for this project. In the di↵erent cases presented in next section, di↵erent components
of the simulator are used to search for specified scenarios. Hence, the simulator setup may di↵er
from case to case. Therefore, the simulator setup will be presented in each individual case.

Implementation

The simulator developed for this project, consisting of all components described in Chapter 5, is
implemented in Python. Toolkits such as Scipy, see [36], and Numpy, see [37], was used to handle
the stochastic processes and calculations in the simulator.

AST Simulator Requirements

In addition to generating target tracking scenarios, the simulator must fulfill a set of requirements
in order to make it possible for the AST method function as specified in Chapter 4. These require-
ments are related to the reward function. More specifically the requirements are as following:

• Detection of failure events e

43

• Calculation of distance d from failure

• Notifying when a terminal state ⌧ is reached

• Calculation of the log-likelihood ⇢ of the simulation scenario

Calculation of the log-likelihood was discussed in Chapter 5 when describing the simulator design.
The rest of the requirements are fulfilled in di↵erent manners in the di↵erent case studies. Hence,
this is presented in each individual case study.

6.2.2 System Under Test

The system under test is as mentioned the system which the test method is to manipulate. Hence,
having a system under test is crucial for evaluating the test method. In this case the system
under test is a target tracking algorithm which may be used in the situational awareness of an
autonomous surface vessel.

Design

The system under test in this master thesis project is the PDAF algorithm described in detail
in Chapter 5. During the di↵erent case studies the di↵erent qualities of the algorithm is tested.
While doing this, certain components of the system under test are not used. How this is done is
explained in each respective case study.

Implementation

In this project the PDAF target tracking algorithm is implemented in Python, similar to the
simulator implementation. For the PDAF implementation, the Scipy, see [36], and Numpy, see
[37], toolkits are used in the same manner as in the simulator to handle calculations and stochastic
processes.

6.2.3 Test Method

Design

The test method is in this case is the AST algorithm, which is to be verified and validated. The
AST method implemented in this project follows the design presented in Chapter 4. By running
a MCTS implementation using progressive widening, such as the method presented in Section 3.2,
AST searches for likely failure events in target tracking.

Implementation

There exist di↵erent libraries with AST implementations. This includes two Julia implementations,
the POMDPStressTesting.jl toolbox, see [38], and the AdaStress.jl package developed by NASA,
see [39]. In addition, there exists an Python implementation by the Stanford Intelligent Systems
Lab, see [40]. However, in this project it was considered beneficial to create an implementation
which would not require an interface to connect the AST method to the test environment. In
addition, creating an implementation would provide insight to the inner workings of the method
and facilitate for rapid prototyping. Hence, an AST implementation integrated with the test
environment was developed. The implementation was created using a MCTS implementation by
[41].

44

6.2.4 Test System Integration

According to the high level AST setup described in Figure 4.1 in Chapter 4, the AST setup for this
case study should be equivalent to the setup presented in Figure 6.4. With the control strategy
presented in the previous section, the AST agent sets the simulator seed X̄k at time step k. Then,
a simulator step is performed, and the log-likelihood ⇢k and the distance from failure dk at time k
are returned in addition to two boolean values defining if a failure or terminal event has occurred.

Figure 6.4: Proposed AST setup using seed-actions in open loop control to test the PDAF target
tracking algorithm.

However, this AST integration does not provide a description of how the Environment Simulator
and the PDAF Target Tracker interacts, or how the required parameters, (⇢k, dk, e, ⌧) for the
reward function at time k are derived. How failure events e, distance metrics d and terminal
events ⌧ may be defined is as mentioned presented in each respective case study. Introducing a
module named Critic, the outputs from the Environment Simulator and the PDAF Target Tracker
are mapped to values for the reward function parameters. The log-likelihood ⇢ is calculated by the
environment simulator. The complete AST integration is presented in Figure 6.5.

Figure 6.5: Proposed AST setup using seed-actions in open loop control to test the PDAF target
tracking algorithm, including the critic module and the interactions between each component.

Each module is initialized with their respective configuration. The configuration includes initial
values and tuning values. How these are set will be presented in each respective case studies. When
all modules have been initialized, the MCTS search can begin. The MCTS-PW algorithm selects
a seed X̄k at the current time step k. The seed initializes all random processes in the environment
simulator in the case of the global control option and a specific stochastic process in the case of
the local control option. The environment simulator generates the ground truth states xTk

k for

45

all targets in the simulation, the measurements zk and the log-likelihood of the measurements
⇢k for time step k according to the simulator described in Chapter 5. The measurements are
fed to the PDAF Target Tracking algorithm, which calculates the state estimates vector x̂k, the
predicted measurement ẑk, the estimated covariance Pk and the predicted innovation covariance
Sk for each track. The Critic takes the output from the PDAF module, and the ground truth
states xTk

k and the true target measurements zTk
k from the environment simulator, calculating the

distance dk from error at time k. In addition the Critic determines if a failure event or terminal
event has occurred, returning respectively the booleans e and ⌧ . The reward function receives the
output from the Critic in addition to the log-likelihood ⇢k of the simulation at time k from the
Environment Simulator and returns the reward for time step k. Then, the MCTS-PW algorithm
selects a new seed X̄k+1 for time k + 1 and the entire process is repeated. This is done for a fixed
amount of steps, before the AST algorithm returns the most likely failure event.

6.2.5 Parameter Tuning

In the complete test system consisting of environment simulator, system under test and test
method, there are several parameters which have to be tuned when running the di↵erent case
studies. The general tuning strategy for the complete test system is as following:

• Tuning of corresponding simulator and tracker parameters is done through the following
procedure:

1. First, the corresponding parameters are set to be equal and realistic values, being the
case of perfect tuning.

2. Second, if the AST algorithm struggles to find failures with equal values in the simulator
and tracker, the parameter values for the simulator are adjusted slightly. Then, the
tuning of the tracker shouldn’t be perfect anymore, and the probability of error should
increase.

• Tuning of not corresponding simulator and tracker parameters is done through the following
procedure:

1. Initially, the parameters of the tracker that does not correspond to the parameters of
the simulator will be tuned for maximization of performance. This is done by running
di↵erent simulations while tuning the tracker.

2. Second, if the AST algorithm struggles to find failures, the tuning of the tracker may
be adjusted slightly, such that the probability of error increases.

• The AST implementation is tuned in order to maximize the performance of the search.

• The Critic parameters was set by deciding what kind of failure event is tested, and for that
failure event deciding the appropriate failure threshold and distance metric.

In addition, it is important to mention that the implemented test environment, including system
under test and environment simulator, is designed such that it handles metrics of all scales. This
means that if the x-position is given as a number, then the number may represent centimetres,
metres, kilometres etc. This is the case for all of the parameters of the system. Time is handled
in the same manner, where a number may represent the increment of any time interval. E.g. time
t = 1 may represent a second, a minute or an hour. The key point is that the metrics does not
matter in the case studies as long as they all follows the same scale. Hence, results are not denoted
with metrics in the case studies.

6.2.6 Method of Control

Before running the simulations of the case studies, it is necessary decide which control option to the
AST implementation should use. In Chapter 5 the di↵erent control options were explained in detail.

46

The options were open loop global or local control, and closed loop local control. Each control
option has its benefits, making the selection of which to use a qualitative choice. In this master
thesis project a key objective is to test, verify and validate the open loop local control option,
in addition to the main objective of testing, verifying and validating the AST method applied to
target tracking. The local control option has it�s benefit that it makes it possible to isolate a single
process of the simulator, reducing the search space and making it possible to study the influence
of a single process on the system under test. However, as mentioned in Chapter 2, safety is an
emergent system property, meaning that the interaction between the di↵erent components of the
system may itself introduce errors. Hence, manipulating a single process, while keeping all other
processes frozen, does not test for such errors. It is possible to control all processes in the simulator
using local control. This would require selecting a seed-action for every process at each time step.
However, the MCTS algorithm used as RL solver in this project is only able select one action at
every time step while maintaining its performance. In multi-action scenarios, the branching factor
of the algorithm becomes intractable large, making the search ine�cient. Hence, using MCTS and
local control require only controlling a single process. It is possible to apply algorithms which
has support for multi-action control. Such a method could be Evolutionary MCTS (EMCTS) as
presented in [42], or the extension of EMCTS, Flexible Horizon EMCTS (FH-EMCTS) as presented
in [43]. However, it was considered beneficial to keep the main focus on the global control option
with regular MCTS when verifying and validating AST as a test method. For each AST search with
global control a parallel search is done with local control such that the local control option may
be evaluated against the global control option in the quantitative validation case. The verification
of the open loop local control method is done in the first case study together with the verification
of the open loop global control method.

6.3 Case Studies

In this section are the design and results for six case studies presented. The cases are as following:

1. Verification Cases:

(a) Qualitative analysis of seed-action control.

(b) Qualitative analysis of adaptive stress testing of state estimation.

(c) Qualitative analysis of adaptive stress testing of single-target tracking.

(d) Qualitative analysis of adaptive stress testing of track initiation.

(e) Qualitative analysis of adaptive stress testing of track termination.

(f) Qualitative analysis of adaptive stress testing of tracking multiple targets.

2. Validation Case: Quantitative Analysis of Adaptive Stress Testing of Situational Awareness

The first five of the cases are verification cases where qualitative analyses are performed with the
goal to verify that AST is able to find common errors in target tracking algorithms. For each case
the complexity of the simulation increases as the AST implementation is further developed in order
to handle more complex simulation scenarios produced by the test environment which increases
in complexity during development. In addition to the verification cases, a last validation case is
performed, where the AST results using both open loop control options are compared to a Monte
Carlo Search (MCS), which is a search performing random actions. This is done to validate the
e�ciency and usefulness of the search. Hence, the cases represents a set of iterations through the
development cycle presented in Figure 6.2.

6.3.1 Verification Case 1: Qualitative Analysis of Seed-Action Control

The objective of this case is to provide verification that using open loop control with seed-actions
works as described in Chapter 5. First a set of feature specifications and verification requirements
are presented. Then, the simulator setup and parameter values of the case are presented. Lastly,
the results of the verification procedure are presented.

47

Feature Specifications and Verification Requirements

The goal is to evaluate both local and global closed loop control through a qualitative analysis.
First the following feature specifications are made:

1. Seed-Action Open Loop Global Control should be able to manipulate target tracking simu-
lations in a deterministic manner.

2. Seed-Action Open Loop Local Control should be able to manipulate target tracking simula-
tions in a deterministic manner.

In order to simplify this verification process, the simulator used is a state estimation simulator. This
is a target tracking simulator limited to generating a single target trajectory and measurements
which exclusively belong to the target. Setting up such a simulation is simply done by tuning.
This will be further discussed later in this Section. After the simulator is set up accordingly, the
objective is to demonstrate that the following conditions are met:

1. Open Loop Global Control:

(a) Running a simulation with the same seed initialization of the global random number
generator should return the same trajectory and measurement distribution every time
in order to ensure determinism.

(b) Resetting the global random number generator with a new seed after n time steps should
return a trajectory and measurement distribution equal to the initial simulation, but
with a di↵erent trajectory and measurement distribution after the n�th time step.

2. Open Loop Local Control:

(a) Running a simulation with the same seed initialization of the Local random number
generator for the target dynamics should return the same trajectory and measurement
distribution every time in order to ensure determinism.

(b) Resetting the Local random number generator for the target dynamics with a new seed
after n time steps should return a trajectory and measurement distribution equal to the
initial simulation, but with a di↵erent trajectory and measurement distribution after
the n�th time step.

Simulator Setup

The simulator in this case is as mentioned set up to produce state estimation simulations consisting
of only a single target and measurements originating from that target. How this is done is illustrated
in Figure 6.6. The target arrival and departure modules are tuned such that they do not create
new targets or delete existing ones. In addition the detection component is tuned such that all
measurements are detected. The clutter generation component is limited such that it does not
create a single clutter measurement. This is also done by tuning. All the components which
are limited by the tuning are faded. Hence, the resulting output of the simulator is the output
created by the simulator components enclosed by the box denoted State Estimation Simulator.
The parameter values for the simulator are presented in the next section.

48

Figure 6.6: Illustration of the state estimation simulator used in this case.

Parameter Values

The parameter values relevant for this case study are presented in Table 6.1. In this case only
the simulator parameters are relevant, since the tracking algorithm and the AST implementation
were not used. By setting the detection probability PD = 1.0, the expected number of clutter
measurements ⇤c = 0.0 and arriving targets ⇤a = 0.0, and the probability of departure to be
Pd = 0.0, the simulator was limited to produce state estimation scenarios in the manner described
in the previous section. The other parameters are tuned such that the simulator produces realistic
state estimation scenarios.

tterminal xinit Ts �a �z PD ⇤c ⇤a Pd Surveillance Area
100 [0, 0, 0, 0] 2 0.2 5 1.0 0 0.0 0.0 x[min,max] = y[min,max] = [�150, 150]

Table 6.1: Simulator parameter values for the Seed-Action Control verification case. The parame-
ters are explained in Chapter 5.

Results and Discussion

In the next paragraphs the results of verification of respectively open loop global and local control
are presented.

Verification of Open Loop Global Control In Figure 6.7 presents the results of testing the
two conditions for verification of Open Loop Global Control. It can be observed that running
simulations with the same seed initialization returns the same target trajectory and measurement
distribution. Hence, the first condition related to the determinism of the control option is met.
Through visual inspection of the track where the seed was changed in the middle of the simulation,
it can be observed that the trajectory of the target was the same until the re-seeding, and di↵erent
after. Evaluating the distribution of the measurements are harder, since the measurements of the
new trajectory mixes with the old. However, through close examination it is observed that they
were the same in the first half of the simulation. Hence, the second condition is met, which implies
that the open loop global control option is verified according to its specifications.

49

(a) (b) (c)

Figure 6.7: The target trajectory and measurements presented in (a) and (b) originates from
running two simulations after each other, both setting the seed of the global random number
generator to be 91. The target trajectory and measurement presented in (c) originates from a
simulation simular to (a) and (b), but re-seeding the global random number generator at time
t = 50 with seed = 120000.

Verification of Open Loop Local Control Performing the same procedure for the local ran-
dom number generator for the target dynamics as was done for the global resulted in the results
presented in Figure 6.8. Running simulations with the same seed initialization resulted in the same
result every time. Changing the seed in the middle of the simulation altered the trajectory slightly
after the time step of re-seeding. Hence, the open loop local control option was verified according
to its specifications.

(a) (b) (c)

Figure 6.8: The target trajectory and measurements presented in (a) and (b) originates from
running two simulations after each other, both setting the seed of the Local random number
generator for the target dynamics to be seed = 33. The target trajectory and measurement
presented in (c) originates from a simulation similar to (a) and (b), but re-seeding the Local
random number generator for the target dynamics at time t = 50 with seed = 1.

6.3.2 Verification Case 2: Qualitative Analysis of Adaptive Stress Test-
ing of State Estimation

Feature Specifications and Verification Requirements

This case has as primary goal to verify that AST is able to find failure events related to some
common errors in state estimation, which is a key component of target tracking. The errors of
interest in this case are related to filtering consistency, which is presented in detail in the next
section. The filtering consistency of a tracker is determined by examining five conditions, where
two of these conditions will be tested in this case. For this case study the feature specification is
that AST should be able to find common failure events in state estimation related to poor tuning of
the PDA filter, which is further specified by evaluating whether AST is able to find events where:

50

1. The estimation error of the filter is large.

2. The filter show signs of being overconfident.

3. The filter show signs of being underconfident.

The specifications are verified through the following meeting the following conditions:

1. When manipulating a state estimation simulation the AST implementation should be able
to find scenarios where the PDA filter yields relatively large estimation error.

2. When manipulating a state estimation simulation the AST implementation should be able
to find scenarios where the PDA filter show tendencies where the estimates is drifting away
from the true target state, which is the case of being overconfident.

3. When manipulating a state estimation simulation the AST implementation should be able
to find scenarios where the PDA filter show tendencies where the estimates are noisy and
mostly follows the measurements, which is the case of being underconfident.

Simulator Setup

In order to isolate the state estimation task form the other key components of target tracking,
the simulations are run without clutter measurements, mis-detections, target arrival and target
departure, which is equivalent to the state estimation simulator described in the previous case
study. The simulations are set up in the same manner, by adjusting the tuning parameters. See
Figure 6.6 in the previous case for an illustration of the simulator setup.

AST Simulator Requirements

The objective of this section is to discuss how the simulator for this case study should fulfill the
AST requirements mentioned in Section 6.2.1. The case study presented in this section is similar
to the case study presented in the project thesis. Hence, the theory presented in this section is
based on the work presented in the project thesis, [4]. This will include definition of failure events
and suitable distance metrics, in addition to defining what a terminal state is. Table 6.2 provides
a compact description of possible failure events in the state estimation component of the tracking
algorithm. For each failure event a test and distance metric are proposed. In order to detect a
failure event it is proposed that the test metric may be compared to some failure threshold. The
failure threshold may be set to be an upper, lower or both upper and lower threshold. In order
for the AST agent to know when a failure event has occurred, the simulator must implement one
of the proposed test metrics and return e if the metric indicates failure and ¬e otherwise. It is
also worth to mention that it may not make sense to test for failure in every time step of the
tracking algorithm. The result over time is more interesting, since the algorithm may use multiple
time steps to correct for errors. Hence, the evaluation of the results should be done at given time
intervals or even only at the end of the simulation. The terminal event column defines when a
terminal event has occurred. Termination is set to the happen when the simulation has reached
its end t = tend for all events.

51

Failure Event Test Metric Failure Detection Distance (d) From Failure Terminal Event

Biased Estimation RMSE RMSE � RMSEthr max(RMSEthr �RMSE, 0) t = tend

Estimation Error Magnitude ✏ ✏l,thr � ✏ or ✏ � ✏u,thr max(✏� ✏l,thr, 0) or max(✏u,thr � ✏, 0)

✏%above ✏%above � ✏%above,thr max(✏%above,thr � ✏%above, 0) t = tend

✏%below ✏%below � ✏%below,thr max(✏%below,thr � ✏%below, 0)

Biased Innovation ⌫ ⌫ � ⌫thr max(⌫thr � ⌫, 0) t = tend

Innovation Magnitude ✏⌫ ✏⌫ l,thr � ✏⌫ or ✏⌫ � ✏⌫u,thr max(✏⌫ � ✏⌫ l,thr, 0) or max(✏⌫u,thr � ✏⌫ , 0)

✏⌫%above ✏⌫%above � ✏⌫%above,thr max(⌫%above,thr � ⌫%above, 0) t = tend

✏⌫%below ✏⌫%below � ✏⌫%below,thr max(⌫%below,thr � ⌫%below, 0)

Table 6.2: In addition to test metrics and failure thresholds for failure detection, the table present
possible failure events in target tracking.

The four failure events in the table are related to the filtering consistency of the target tracking
algorithm. Filtering in this context is referred to as state estimation. According to [33] filtering
consistency is determined by the following five conditions:

1. The state errors should be acceptable as zero mean.

2. The state errors should have magnitude commensurate with the state covariance yielded by
the filter.

3. The innovations should be acceptable as zero mean.

4. The innovations should have magnitude commensurate with the innovation covariance yielded
by the filter.

5. The innovations should be acceptable as white.

If one of the conditions is not met, the tracker is considered inconsistent. This case is setup such
that AST will search for failures related to condition 1 and 2. The following paragraphs will present
di↵erent test metrics which are related to the conditions.

Filter Consistency Condition 1: The state errors may be tested by comparing the Root Mean
Square Error, RMSE, of the position component of the state estimate to a threshold RMSEthr.
The position error at time k, �xk, is the di↵erence between estimated target position x̂k and the
true target position xk:

�xk = x̂k � xk (6.1)

Where �xk, x̂k, xk 2 R2. For a simulation run with N timesteps, starting at t = 0, terminating
at t = tend, with ground truth state xk and state estimate x̂k at time k, the RMSE is calculated
according to:

RMSE =

vuut 1

N

t=tendX

t=0

�xT
k �xk (6.2)

Filter Consistency Condition 2: Using the estimation error for position �xt and the esti-
mated covariance Pt, condition 2 can be evaluated using the Normalized Estimation Error Squared
(NEES) for postion. The NEES value for position at time k is given by:

✏k = �xT
k P

�1
k �xk (6.3)

Suppose that x 2 Rd, then ✏k will be a �2 distributed random variable with d degrees of freedom.
In the case of NEES for position d = 2. Adding together a set of N �2 distributed random variables
such as ✏k, a new �2 distributed random variable with Nd degrees of freedom is created. This
implies that the average NEES should behave as a scaled �2 distribution equivalent to a Gamma
distribution:

f(x) =
1

�(k)✓k
xk�1e�

x
✓ (6.4)

52

Where the scale parameter is ✓ = 2/N and the shape parameter is k = Nd/2. For such a
distribution it is possible to construct a confidence interval between the ↵ and 1 � ↵ quantile.
Typically a 95% confidence interval is created with ↵ = 0.025. The upper and lower limit of the
confidence interval might be used as a test metric, to evaluate if the average NEES (ANEES) ✏
values are reasonable. This is the first proposed test metric for condition 2 in Table 6.2. Then,
a failure event may be defined as when the ANEES value is outside the confidence interval. The
same limits may be used as a guideline to evaluate the time series of NEES values. By counting
the number of time steps the NEES values were below, inside or above the confidence interval, it
is possible to calculate the fraction of NEES values below, inside and above. These fractions may
serve as test metrics for condition 2 as well. In Table 6.2 it is proposed that the fraction above
✏%above and below ✏%above the confidence interval compared to some threshold might serve as test
metrics. The use of ANEES and NEES values when interpreting filtering results are quite useful.
Values above the confidence interval indicates a overconfident filter, trusting its process model too
much. When the ANEES and NEES values are below the confidence interval, the filter relies on
the measurements to much, creating a jagged estimate.

Filter Consistency Condition 3: The innovation may be tested by evaluating the innovation
mean ⌫̄. The innovation ⌫k at time k is the di↵erence between the predicted measurement zpred,k
and the actual measurement zk:

⌫k = zk � zpred,k (6.5)

Where ⌫k, zk, zpred,k 2 R2.

Filter Consistency Condition 4: The innovation magnitude can be tested in a quite similar
manner as condition 2. Instead of calculating NEES, the Normalized Innovation Squared (NIS)
may be calculated. Which at time k using the innovation ⌫k and the innovation covariance S�1

k
yielded by the filter, is calculated by:

✏⌫k = ⌫Tk S
�1
k ⌫k (6.6)

Then, a confidence interval for the Average NIS (ANIS) may be calculated in the same manner
as for ANEES. The confidence interval as a test metric is included in Table 6.2, comparing the
ANIS value ✏⌫ against the upper ✏⌫u,thr and the lower ✏⌫u,thr limit. In the same way as for the
NEES values, the fraction of NEES value below, inside and above the confidence interval may be
calculated and used as test metrics. This possibility is also included in Table 6.2.

Filter Consistency Condition 5: The whiteness of the innovations may be tested by applying
whiteness tests. However, this will not be covered.

Parameter Values

Environment Simulator Parameters The simulator parameters for this case presented in
Table 6.3 are set to the same values as in the previous case, since both cases were state estimation
cases.

tterminal xinit Ts �a �z PD ⇤c ⇤a Pd Surveillance Area
100 [0, 0, 0, 0] 2 0.2 5 1.0 0 0.0 0.0 x[min,max] = y[min,max] = [�150, 150]

Table 6.3: Simulator parameter values for the state estimation verification case. The parameters
are explained in Chapter 5.

System Under Test Parameters The parameters of the PDAF algorithm were according to
the tuning strategy set to correspond with the parameter values of the environment simulator.
The probability of detection PD and the gating probability PG were both set to one, making
the algorithm gate all measurements. Since no clutter measurements are generated, only a single

53

measurement will be gated at each time step. This would make Gaussian mixture reduction
component of the algorithm neglected, making the PDAF implementation correspond to a Kalman
Filter, which is a pure state estimation algorithm. The parameter values of the tracker can be
observed in Table. 6.4

�a �z PD PG Clutter Density Ts
0.2 5 1.0 1.0 0 2

Table 6.4: Target tracker parameter values for the state estimation verification case. The param-
eters are explained in Chapter 5.

The M/N logic track initiation parameters are not included in this case, since the track is initiated
manually in the beginning of each simulation run to start the track from the initial state of the
target, and the simulator is set up to not produce or terminate targets.

Test Method Parameters The AST parameters were as mentioned set to maximize the per-
formance of the MCTS search. This was done through trial and error, resulting in the values
presented in Table 6.13. The number of iterations was chosen to be a large number in order to give
AST su�cient time to make the MCTS search converge. In addition running a large amount of
iterations were necessary to provide statistical proof for the validation case. The UCB weight was
set balancing exploration and exploitation, which is a dilemma described in Chapter 3. The same
consideration was necessary to be made when selecting the constants for progressive widening,
which determines how many actions are available for the MCTS algorithm. By lowering the UCB
constant and lowering the number of available actions slightly in a set of iterations, the algorithm
reached a balancing point where it was able to find failure events while still allowing for exploration.
In addition to all the mentioned parameters two new parameters for weighting of the likelihood
and the failure distance in the reward function were created. This was done in order to ensure
that the order of magnitude of the two metrics were comparable, making the reward function
balance the search of likely events and failure events. The search for failure was considered most
important. Hence, the failure weight was set high enough to make the distance from failure d the
most dominant component.

N.O. Iterations UCB Constant c PW Constant c PW Constant ↵ Likelihood Weight Failure Weight

1000 0.1 2 0.25 1 1e4

Table 6.5: AST parameter values for the state estimation verification case. The parameters are
explained in Chapter 3 and 4.

Critic Parameters The Critic parameters were set based on the definitions of failure, RMSE
failure and NEES failure, which were described in previous section. First, the PDAF tracker is
tested for RMSE failure according to Table 6.2 and the value for the position RMSE threshold is
presented in Table 6.14. Second, the PDAF algorithm is tested for NEES failure in to cases by
comparing the fraction of NEES values above and below the confidence interval to threshold values
presented in Table 6.14. See Section 6.2.1 for further details about the parameters.

Case Failure Threshold Distance Metric

RMSE Failure RMSEthr = 9 d = max(9 - RMSE, 0)

NEES Failure 1 ✏%above = 40% d = max(0.4 - ✏%above, 0)

NEES Failure 2 ✏%below = 40% d = max(0.4 - ✏%below, 0)

Table 6.6: Critic Configuration

54

Results and Discussion

In the next paragraphs the are the results of verification of AST�s ability to find some specified
failure events in state estimation presented.

Filtering Consistency Condition 1 The first AST run was done in order to find likely errors
related to filtering consistency condition 1, which is that the state errors should be acceptable as
zero mean. Hence, as mentioned RMSE for position was chosen as test metric. Initially, a search
using RMSE threshold of RMSE > 10 was performed. However, the method didn’t find any
failure events with that high RMSE. The highest RMSE returned was slightly above 9. Hence,
the threshold was lowered to 9 in order to push the limits of the AST search. After 1000 MCTS
iterations the track presented in Figure 6.9 was outputted from the algorithm:

(a) (b)

Figure 6.9: (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for state estimation case 1. The area shaded gray is the outside of
the surveillance area. (b) shows a zoomed in version of the same plot. Triangle denotes the initial
state and the cross denotes the final state of the track.

It can be observed that the target performs a sharp turn in the beginning of the simulation before
the path straightens out for the rest of the simulation. The measurements are in the beginning
mostly distributed on the outside of the curve, before changing side of the target trajectory when
the target starts to make a slight turn in the middle of the simulation. This makes the PDAF
track relatively smooth, with the track staying at the same side of the target trajectory as the
measurements through the whole simulation. This is a quite realistic scenario, since the track
follows the measurements pretty closely, and the variance of the measurements seems to be quite
low, making the track smooth. Such a smooth track is typical for a overconfident filter, which
relies more on its process model rather than measurements.

55

Figure 6.10: NEES time series plot with the 95% confidence interval for state estimation case 1.

Looking at the NEES plot in Figure 6.10 the suspicion of the filter being overconfident is strength-
ened. The NEES values are above the confidence interval in a large fraction of the simulation, with
58.54% of the values being above. Taking a look at the results in Table 6.7, it can be observed
that the ANEES value was above the confidence interval strengthening the hypothesis of the filter
being overconfident. However, since the track mostly follows the measurements, this is most likely
not the case. The true cause of error in this case is most likely the distribution of measurements,
and if the target continued to move inside the surveillance area, the tracker would most likely not
struggle to estimate the state with NEES values of such a magnitude.

Figure 6.11: Estimation error time series for respectively x and y-position for state estimation case
1.

By examining Figure 6.11 it can be observed that the estimation error for the x-position acts quite
similar to a sinusoidal curve, meaning that the errors would cancel each other out when calculating
the mean error. Hence, this is in line with the first filtering consistency condition. In the plot
of the estimation error for y-position it can be observed that the errors would cancel each other
out in the same manner when calculating the mean error as for the x-position. Hence, it can’t
be said that the tracker failed the first filtering condition in this case, since the estimation error
on average is approximately zero. This is most likely due to using RMSE as test metric. When
computing the RMSE the error is squared, making the minus sign for negative error disappear.
Hence, using RMSE as test metric may not have been the best choice for testing this condition.
Using the estimation errors or the mean estimation error would probably be a better choice. The
position RMSE for track can be observed in Table 6.7. Even though the event found does not
make the filter fail according to the condition, the algorithm was able to e↵ectively find a likely
event related to high position RMSE, verifying that the algorithm can find such events. Hence,
further testing is required to test the first filtering consistency condition, but the algorithm shows
promising results implying that this should be possible. Regarding the requirement specified in
the beginning of the case section, which stated that AST should be able to find events where the

56

estimation error is relatively large, the method is verified.

Metric Value

RMSE Position 9.25
RMSE Velocity 1.35

ANEES 9.4
ANEES 95% Confidence Interval [0.051, 7.378]

NEES Fractions
Above CI 0.59
Below CI 0.0
Inside CI 0.41

Table 6.7: State Estimation Performance Measures for state estimation case 1.

Filtering Consistency Condition 2: Overconfident State Estimation The second AST
run was done in order to find likely errors related to filtering consistency condition 2, which is
that the state errors should have magnitude commensurate with the state covariance yielded by
the filter. Hence, as mentioned the NEES fraction above the 95% confidence interval for position
was chosen as test metric. Initially, a search using a threshold with a fraction of 20% above the
confidence interval was performed. However, when running the Monte Carlo Search in parallel it
became clear that this was an error which was too easy to find. Hence, the threshold was increased
to 40%. After 1000 MCTS iterations the track presented in Figure 6.12 was outputted from the
algorithm:

(a) (b)

Figure 6.12: (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for state estimation case 2. The area shaded gray is the outside of
the surveillance area. (b) shows a zoomed in version of the same plot. Triangle denotes the initial
state and the cross denotes the final state of the track.

Similar to the previous case it can be observed that the track stayed on the same side of the target
trajectory as the majority of the measurements. The main di↵erence which can be observed in this
case, was that the variance of the measurement distribution was much higher, making the estimate
more jagged. After the turn made in the beginning of the trajectory, the track seems to stay on
one side of the trajectory and slightly moving farther away from it. This may be an indication of
drift. However, considering that the track seems to follow the measurements it may not be the
case.

57

Figure 6.13: Estimation error time series for respectively x and y-position for state estimation case
2.

Studying the estimation error plot in Figure 6.13 The drift tendency can also be observed in the
estimation error of the x-position. In the period after the turn is made, the estimation error for
x-position seems to grow throughout the simulation.

Figure 6.14: NEES time series plot with the 95% confidence interval for state estimation case 2.

In Figure 6.14 the NEES values are plottet together with the 95% confidence interval. It can be
observed that from the middle of the simulation and out, a significant amount of the NEES values
are above the confidence interval resulting in a fraction above of 51.43 %. However, in the end
of the simulation the NEES values becomes lower making more of them be inside the confidence
interval. Table 6.8 presents som key performance metrics, including ANEES result, the limits of
the 95% confidence interval, RMSE for position and velocity. Observing the ANEES value and
comparing it to the limits of the confidence interval, it can be observed that the ANEES value is
inside the limits. This may indicate that the event found may not be the result of an overconfident
filter. However, the AST method did successfully find an event with the specified test metric and
threshold, which may be used as an argument to say that the method is verified for this case. The
requirements initially made in the beginning of this case section, did state that AST should be able
to find events where the PDA estimate shows indication of drift, which AST was able to. Hence,
for that requirement the implementation is verified.

58

Metric Value

RMSE Position 7.31
RMSE Velocity 1.18

ANEES 5.81
ANEES 95% Confidence Interval [0.051, 7.378]

NEES Fractions
Above CI 0.31
Below CI 0.0
Inside CI 0.69

Table 6.8: State Estimation Performance Measures for state estimation case 2.

Filtering Consistency Condition 2: Underconfident State Estimation The third AST
run was done in order to find likely errors related to filtering consistency condition 2, which is
that the state errors should have magnitude commensurate with the state covariance yielded by
the filter. Hence, as mentioned the NEES fraction below the 95% confidence interval for position
was chosen as test metric. Initially, a search using a threshold with a fraction of 20% below
the confidence interval was performed. However, examining the results, it became clear that the
magnitude of that error was not large enough for the AST search to perform at its best. Hence,
the threshold was increased to 40%. After 1000 MCTS iterations the track presented in Figure
6.15 was outputted from the algorithm:

(a) (b)

Figure 6.15: (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for state estimation case 3. The area shaded gray is the outside of
the surveillance area. (b) shows a zoomed in version of the same plot. Triangle denotes the initial
state and the cross denotes the final state of the track.

The result of the final simulation in this case yielded a significant more jagged track than in the two
previous simulation runs. The measurements was distributed with pretty large variance around
the target trajectory, which may be a more realistic scenario than the two scenarios found by
AST in the previous sections. The filter follows the measurements closest to the target trajectory,
implying that the state estimate is not too bad. However, the estimate follows the measurement
a bit too closely, implying that the process noise covariance could have been lowered a bit making
the estimate more smooth.

59

Figure 6.16: Estimation error time series for respectively x and y-position for state estimation case
3.

In Figure 6.16 it can be observed that the estimation error mostly oscillated around zero with a
relatively high frequency and low magnitude for both x and x-position. Which is typical for low
NEES values.

Figure 6.17: NEES time series plot with the 95% confidence interval for state estimation case 3.

Figure 6.17 presents the plot of the NEES values through the simulation. It may be hard to see
visually in this plot, but when zooming in it can be observed that the NEES values was pretty
low throughout the most of the simulation with a fraction of 40% under the confidence interval.
However, looking at the ANEES value in Table 6.9, the higher NEES values of the simulation seems
to compensate for the low ones, making the ANEES value stay inside the confidence interval.
Considering these results and the third requirement for verification of the test method in this
case, which was that AST should find events where the estimate is noisy and mostly follows the
measurements, the method is verified. Hence, the method was considered verified for all of the
state estimation requirements in tested for in this case study. Further evaluation is recommended
to ensure that the method is able to find all failure event described in this case.

60

Metric Value

RMSE Position 2.6
RMSE Velocity 0.573

ANEES 0.70
ANEES 95% Confidence Interval [0.051, 7.378]

NEES Fractions
Above CI 0.0
Below CI 0.4
Inside CI 0.6

Table 6.9: State estimation performance measures for state estimation case 3.

6.3.3 Verification Case 3: Qualitative Analysis of Adaptive Stress Test-
ing of Single-target Tracking

The objective of this case study is to provide verification that AST may be used to find some
specified common failure events in single-target tracking. This is done by testing a set of conditions
presented in the first paragraph. The choice of test metrics and other AST requirements are
presented in the second paragraph. In addition are the simulator setup and parameter values of
the case presented.

Feature Specifications and Verification Requirements

This case is an extension of the state estimation case to a single-target case, where tracker has to
deal with clutter and mis-detections. Since the state estimation case covers some elements of filter
consistency, it is considered beneficial to focus on track loss in this case. Track loss is when the
tracking algorithm loses track of target and the estimation drift away from the target state. This
is a more common failure event in single(and multi)-target tracking than in state estimation due to
the presence of clutter measurements and mis-detections. Hence, the formal specifications, which
is to be verified is related to ASTs ability to find failure events in single-target tracking where
track loss occurs. More specifically the goal is to demonstrate that the method can find scenarios
where:

1. The estimation error continues to grow from a time step and through the rest of the simula-
tion.

2. The estimation error exceeds a threshold at a specific time step and never goes below that
threshold throughout the rest of the simulation.

These specifications are verified through the following conditions:

1. When manipulating a single-target simulation the AST implementation should be able to
find scenarios where the true target state is not inside the PDAF validation gate through n
consecutive steps.

2. When manipulating a single-target simulation the AST implementation should be able to
find scenarios where the estimation error exceeds a minimum distance d through n time
consecutive steps.

AST Simulator Requirements

The objective of this paragraph is to discuss how the simulator for this case study should fulfill
the AST requirements mentioned in section 6.2.1. This will include definition of failure events and
suitable distance metrics and defining what a terminal state is. The events searched for in this

61

case are related to the concept of track loss, which was mentioned in the previous section. Table
6.10 presents the failure definitions, test metrics and the terminal event condition used in this case.
The termination is set to happen when the simulation has reached its end t = tend. The failure
detection conditions and test metrics are further specified in the next paragraphs.

Failure Event Test Metric Failure Detection Distance (d) From Failure Terminal Event

Track Loss Validation Gate Condition nsteps,dm>g2 � nthresh max(nthresh � nsteps,dm>g2 , 0) t = tend

Euclidean Distance Condition nsteps,de>g2 � nthresh max(nthresh � nsteps,de>g2 , 0) t = tend

Table 6.10: test metrics and failure thresholds for failure detection, when searching for events
related to track loss.

Validation Gate Condition: Track Loss failure has occurred when the true target state is
not inside the validation gate for a sequence of consecutive nthresh steps. Mathematically this is
formalized as the Mahalanobis distance between the position component of the target state xpos

k
and the predicted measurement Gaussian N(ẑk|k�1, Sk|k�1) being below the validation gate size
squared g over nthresh consecutive time steps:

e =
n
if dm = (xpos

k � ẑk|k�1)
TS�1

k|k�1(x
pos
k � ẑk|k�1) > g2 for nthresh consecutive time steps

o

(6.7)
The distance from failure is then determined by:

d = max(nthresh � nsteps,dm>g2 , 0) (6.8)

Where nsteps,dm>g2 is the the number of consecutive steps where the condition does not hold.

Euclidean Distance Condition: Track Loss failure has occurred when the euclidean distance
between the target position and the predicted measurement exceeds a specified threshold g2 for a
sequence of consecutive nthresh steps:

e =
�
if de = (xpos

k � ẑk|k�1)
T (xpos

k � ẑk|k�1) g2 for nthresh consecutive time steps

(6.9)

The distance from failure is then determined by:

d = max(nthresh � nsteps,d2>g2 , 0) (6.10)

Where nsteps,d2>g2 is the the number of consecutive steps where the condition does not hold.

Simulator Setup

The simulator in this case is as mentioned set up to produce single-target simulations consisting of
only a single target, detected measurements originating from that target and clutter measurements.
How this is done is illustrated in Figure 6.18. The target arrival and departure modules are tuned
such that they do not create new targets or delete existing ones. All the components which are
limited by the tuning are faded. Hence, the resulting output of the simulator is the output created
by the simulator components enclosed by the box denoted Single-target Simulator. The parameter
values for the simulator are presented in the next section.

62

Figure 6.18: Illustration of the single-target simulator used in this case.

Parameter Values

Environment Simulator Parameters The simulator parameters for this case presented in
Table 6.11 are set to the same values as in the previous case for the parameters related to state
estimation. The parameters related to target tracking are adjusted in order for the simulator to
generate realistic single-target scenarios. This is done by adjusting the detection probability to be
PD = 0.8 and the expected number of clutter measurements at each time step to be ⇤c = 5. This
number could probably be higher, but it was su�cient enough for AST to find some interesting
scenarios. The expected number of arriving targets is still set to zero, in addition to the departure
probability being set to zero. This is done since the goal is to evaluate a single-target scenario
without initiation and termination. In addition the starting point is changed for no specific reason.

tterminal xinit Ts �a �z PD ⇤c ⇤a Pd Surveillance Area
100 [�75,�75, 0, 0] 2 0.2 5 0.8 5 0.0 0.0 x[min,max] = y[min,max] = [�150, 150]

Table 6.11: Simulator parameter values for the single-target verification case. The parameters are
explained in Chapter 5.

System Under Test Parameters The parameters of the PDAF algorithm was according to
the tuning strategy set to correspond with the parameter values of the environment simulator,
similar to in the previous case. The main di↵erence from the previous case is that the probability
of detection is set to PD = 0.8 and the gating probability is set to PG = 0.8. The clutter density
was set to 5/(3002), which corresponds to the number of expected clutter measurements created
by the simulator at each time step divided by the surveillance area. The parameter values of the
tracker can be observed in Table 6.29

�a �z PD PG Clutter Density Ts
0.2 5 0.8 0.8 5/(3002) 2

Table 6.12: Target tracker parameter values for the single-target verification case. The parameters
are explained in Chapter 5.

Test Method Parameters The AST parameters was set to be equal to the parameters of the
previous case, since the performance of the implementation seemed to work well in this case as
well.

63

N.O. Iterations UCB Constant c PW Constant c PW Constant ↵ Likelihood Weight Failure Weight

1000 0.1 2 0.25 1 1e4

Table 6.13: Simulator parameter values for the single-target verification case. The parameters are
explained in Chapter 5.

Critic Parameters In this case the Critic parameters is set based on the failures that is searched
for, which is determined track loss condition 1 and 2. First, the PDAF tracker is tested for track
loss using the validation gate condition, which is condition 1. Second, the tracker is tested for track
loss according to the condition based on euclidean distance, which is condition 2. See Section 6.2.1
for further details about the parameters.

Case Failure Threshold Distance Metric

Validation Gate Loss Condition nsteps = 9 d = max(9 - Nsteps, 0)

Euclidean Distance Loss Condition nsteps = 15 d = max(15 - Nsteps, 0)

Table 6.14: Critic Configuration, Nsteps denotes the number of consecutive steps where the loss
condition is not met, and nsteps denotes limit of the consecutive number of steps for the scenario
to be considered a failure event e.

Results and Discussion

Validation Gate Loss Condition The first AST run in this case was done in order to find
likely errors related to the first track loss condition using the validation gate. This means that
if the PDAF does not gate the true target state in nsteps consecutive steps a failure event has
occurred. After 1000 MCTS iterations the track presented in Figure 6.19 was outputted from the
algorithm:

(a) (b)

Figure 6.19: (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for single-target tracking case 1. The area shaded gray is the
outside of the surveillance area. (b) shows a zoomed in version of the same plot. Triangle denotes
the initial state and the cross denotes the final state of the track. Clutter measurements are
included for each simulation step where the true target state is not inside the validation gate.

It can be observed that the track drifts o↵ at the in the beginning of the simulation, and never
follows the true target trajectory. The reason for this happening might be that in the beginning of
the simulation clutter measurements are generated close to the true target measurements, making

64

the track drift o↵ and gate more clutter measurements. In Table 6.15 some key performance
indicators are presented. It can be observed that the RMSE was significantly higher than when
running the state estimation case. The same can be said for the ANEES value and the fraction
of NEES values above the confidence interval. According to the validation gate loss condition the
validation gate failed to gate the true target state in 14 consecutive steps. Observing the track,
it would be expected that the number of steps with track loss was more than 14, since the track
is o↵ the entire simulation and never leaves the surveillance area. In Chapter 5 when describing
the validation gate, it is mentioned that the Mahalanobis distance between the measurement and
the predicted measurement was used in the gating condition, see (5.11). However, the trouble of
using this distance metric is that when the covariance estimate for the predicted measurement is
poor, the covariance matrix may cancel out large di↵erences between the predicted measurement
and for this case the target state. Hence, the filter gates the target state even though the estimate
is far o↵. Noticing this e↵ect is the main reason for using the euclidean distance in the next AST
run. However, even though the validation gate condition doesn’t capture the complete essence of
track loss, it was a good enough test metric to find a track loss scenario. The test method did pass
the first requirement for verification of the test method�s ability to find scenarios related to track
loss, where the true target state is not inside the PDAF validation gate through n consecutive time
steps. Hence, the method is verified in this case.

Metric Value

RMSE Position 75.6
RMSE Velocity 3.36

GOSPA 49.03
Loss 14

ANEES 16.88
ANEES 95% Confidence Interval [0.051, 7.378]

NEES Fractions
Above CI 1.0
Below CI 0.0
Inside CI 0.0

Table 6.15: State estimation performance metrics for single-target tracking case 1

Euclidean Distance Loss Condition The second AST run in this case was done in order to
find likely errors related to the second track loss condition using the euclidean distance condition.
This means that if euclidean distance between the PDAF estimate and the true target state is
larger than a specified threshold for nsteps consecutive steps, a failure event has occurred. After
1000 MCTS iterations the track presented in Figure 6.20 was outputted from the algorithm:

65

(a) (b)

Figure 6.20: (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for single-target tracking case 2. The area shaded gray is the
outside of the surveillance area. (b) shows a zoomed in version of the same plot. Triangle denotes
the initial state and the cross denotes the final state of the track. Clutter measurements are
included for each simulation step where track loss is detected.

The result of this case is similar to the one of the previous, where it can be observed that the track
drifts o↵ at the in the beginning of the simulation, and never follows the true target trajectory.
In the same manner as for the validation gate condition the reason for this happening might be
that in the beginning of the simulation clutter measurements are generated close to the true target
measurements, making the track drift o↵ and gate more clutter measurements. However, the main
di↵erence in this case is that the number of steps recorded with track loss in this case was 34,
which was significantly higher than for the previous case. However, examining the track it can be
observed that the number of steps with loss should be approximate the same as for the previous
case, meaning that the Euclidean distance condition did capture this in a better manner than the
validation gate condition. The reason why it is not recorded track loss after 42 time steps is that
the track is terminated due to leaving the surveillance area. For this case the RMSE and ANEES
values even higher than for the previous case. This can be observed in Table 6.16. Hence, using the
second track loss condition may be better when searching for track loss scenarios than using the
first condition. Considering the results the test method meets the second verification requirement
for this case study. Hence, the method’s ability to find likely events with track loss is verified.

Metric Value

RMSE Position 117.46
RMSE Velocity 5.14

GOSPA 40.1
Loss 18

ANEES 211.67
ANEES 95% Confidence Interval [0.051, 7.378]

NEES Fractions
Above CI 1.0
Below CI 0.0
Inside CI 0.0

Table 6.16: State estimation performance metric for single-target tracking case 2

66

6.3.4 Verification Case 4: Qualitative Analysis of Adaptive Stress Test-
ing of Track Initiation

The objective of this case study is to provide verification that AST is able to find failure events in
target tracking related to track initiation. This is done by defining a set of specifications which is
verified by a set of presented conditions.

Feature Specifications and Verification Requirements

The feature specifications to be verified in this case study are related to track initiation, which is a
key component of target tracking. The simulation is set up by not initializing the PDAF algorithm
with the prior distribution of the target state, and by using the M/N logic presented in Chapter
5 to handle the track initiation. More specifically the specifications are that AST should be able
to find common failure events in track initiation related to:

1. Slow initiation of tracks.

2. Failing to initiate tracks.

The specifications are verified in this case study through the following conditions:

1. When manipulating a single-target simulation the AST implementation should be able to
find scenarios the PDAF algorithm with the M/N extension for track initiation struggles to
initiate the track quickly.

2. When manipulating a single-target simulation the AST implementation should be able to find
scenarios the PDAF algorithm with the M/N extension for track initiation fails to initiate
the track.

AST Simulator Requirements

The objective of this section is to present how the simulator for this case study should fulfill the
AST requirements mentioned in Section 6.2.1. This will include definition of failure events and
suitable distance metrics and defining what a terminal state is. The events searched for in this case
are related to the concept of track initiation, which was mentioned in the paragraph above. Table
6.17 presents the failure events search for in this case, in addition to failure detection conditions
and test metrics. The events and metrics are further specified in the next paragraphs.

Failure Event Test Metric Failure Detection Distance (d) From Failure Terminal Event

Slow Initiation Steps Before Initiation nsteps � nthresh max(nthresh � nsteps, 0) t = tend

Initiation Failure N.O. Targets vs. Tracks (t = tend) ntargets � ntracks and xi
t 2 [�150, 150] max(ntracks, 0) t = tend

Table 6.17: Test metrics and failure thresholds for failure detection, when searching for events
related to track initiation.

Slow Initiation: Slow track initiation failure has occurred when the number of steps nsteps from
the target is initiated to the track is initiated exceeds a specified threshold ntresh:

e = {nsteps > nthresh} (6.11)

The distance from failure is then determined by:

d = max(nthresh � nsteps, 0) (6.12)

Initiation Failure: Failing to initiate has occurred when the number of tracks n at the simulation
end is less than the number of targets N inside the surveillance area [�150, 150] at the simulation

67

end:
e =

�
ntargets > ntracks and xi

t 2 [�150, 150]

(6.13)

Where xi
t denotes element i of the state vector xt, and i 2 [0, 1], meaning that only the position is

considered. The distance from failure is then determined by:

d =

⇢
max((ntracks + 1)� ntargets, 0), if xi

t 2 [�150, 150] ^ t = tend
1, if xi

t 62 [�150, 150] ^ t = tend
(6.14)

However, in this single-target simulation it is only necessary to detect whether there exist an track
or not in the entire simulation. The decision rule is then:

e = {1 > ntracks} (6.15)

Where ntracks is the number of tracks through the whole simulation. The distance from failure is
then determined by:

d = max(ntracks, 0) (6.16)

In addition is the termination is set to happen when the simulation has reached its end t = tend.

Simulator Setup

The simulator setup in this case is similar to the setup of the previous case, but with target
departure added when testing the second condition regarding failing to initiate. The reason that
this is done is that the tracker will be tested for failing to initiate tracks before they departure.
See Figure 6.21 for an illustration of this setup.

Figure 6.21: Illustration of the single-target simulator with termination of targets used in this case.

Tuning Values

Environment Simulator Parameters The simulator parameters for this case presented in
Table 6.18 are set to the same values as in the previous case, with the exception of the departure
probability for when testing the second failure condition.

Case tterminal xinit Ts �a �z PD ⇤c ⇤a Pd Surveillance Area

Slow Initiation 100 [�75,�75, 0, 0] 2 0.2 5 0.8 5 0.0 0.0 x[min,max] = y[min,max] = [�150, 150]
Failing to Initiate 100 [�75,�75, 0, 0] 2 0.2 5 0.8 5 0.0 5e-3 x[min,max] = y[min,max] = [�150, 150]

Table 6.18: Simulator parameter values for the track initiation verification case. The parameters are
explained in Chapter 5. Slow initiation, failing to initiate and clutter tracks refers to respectively
failure event 1, 2 and 3 described in the previous paragraph.

68

System Under Test Parameters The parameters of the PDAF algorithm was set in the same
manner as in the previous case, but with the additional parameters related to the M/N logic
for track initiation. M is as explained in Chapter 5 the required number of steps with gated
measurements of totally N time steps before the track is initiated. Initiation threshold is the
required threshold for euclidean distance a tentative track has to be from an existing track in order
for it to be initiated. This is done in order to avoid initiation of the same track several times. The
parameter values of the tracker can be observed in Table 6.19.

�a �z PD PG Clutter Density Ts M N Initiation Threshold
0.2 5 0.8 0.8 5/(3002) 2 4 5 1.0

Table 6.19: Target tracker parameter values for the track initiation verification case. The param-
eters are explained in Chapter 5.

Test Method Parameters The AST parameters was set to be equal to the parameters of the
previous cases, since the performance of the implementation seemed to work well in this case as
well. See Table 6.20 for the parameter values.

N.O. Iterations UCB Constant c PW Constant c PW Constant ↵ Likelihood Weight Failure Weight

1000 0.1 2 0.25 1 1e4

Table 6.20: Simulator parameter values for the track initiation verification case. The parameters
are explained in Chapter 5.

Critic Parameters In this case the Critic parameters was set based on what failures were
searched for, slow track initiation and failing to initiate. The parameter values are presented in
Table 6.21

Case Failure Threshold Distance Metric

Slow Initiation Condition nsteps = 15 d = max(15 - Nsteps, 0)

Initiation Failure Condition ntracks = 1 d = max(ntracks, 0)

Table 6.21: Critic Configuration, Nsteps denotes the number of consecutive steps from the target is
initiated, and nsteps denotes limit of steps without initiation before the scenario is to be considered
a failure event e.

Results and Discussion

Slow Initiation The first AST run in this case was done in order to find likely errors related
to slow initiation of tracks. This means that if the tracker haven’t initiated a track in nsteps from
a target has been initiated, a failure event e has occurred. After 1000 MCTS iterations the track
presented in Figure 6.22 was outputted from the algorithm:

69

(a) (b)

Figure 6.22: (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for track initiation case 1. The area shaded gray is the outside of
the surveillance area. (b) shows a zoomed in version of the same plot. Triangle denotes the initial
state and the cross denotes the final state of the track. Clutter measurements are included for each
simulation step.

The tracker struggles to initiate the target through 17 time steps. After the initiation the track
manages to follow the target until termination when leaving the surveillance area. Initiation after
17 time steps is a significantly slow initiation. In terms of the objective of the case, the result is
satisfying, ASTs ability to find scenarios with slow track initiation has been demonstrated. Hence,
the test method’s ability to find failure events regarding slow track initiation is verified.

Initiation Failure The second AST run in this case was done in order to find likely errors
related to failing to initiate tracks. This means that if the tracker doesn’t manage to initiate a
track before the track is terminated or the simulation run is over. After 1000 MCTS iterations the
track presented in Figure 6.23 was outputted from the algorithm:

(a) (b)

Figure 6.23: (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for track initiation case 2. The area shaded gray is the outside of
the surveillance area. (b) shows a zoomed in version of the same plot. Triangle denotes the initial
state and the cross denotes the final state of the track. Clutter measurements are included for each
simulation step.

70

It can be observed that the target terminates after 10 time steps, giving the tracker a relatively
short time frame to initiate the track. With a requirement of gating 4 measurements through 5
consecutive time steps, the tentative tracks are not made tracks in this case. Considering the short
trajectory and life time of the target, and the tracker configurations, this seems to be a realistic
failure scenario. Finding such a scenario was the goal of the simulation. Hence, the test method is
verified in terms of finding scenarios where the tracker is not able to initiate a track.

6.3.5 Verification Case 5: Qualitative Analysis of Adaptive Stress Test-
ing of Track Termination

The objective of this case study is to provide verification that AST is able to find failure events
related to track termination. First, are the feature specifications to be verified and their respective
conditions for verification presented. Second, how the AST simulator requirements are fulfilled is
presented. Then, the simulator setup and the parameter values are presented, before the results
are presented and discussed.

Feature Specifications and Verification Requirements

This case is very similar with the previous case of track initiation. The di↵erence is that in this
case the objective is to demonstrate that AST is able to find errors related to track termination
rather than initiation. The simulation is set up by initializing the PDAF algorithm with the prior
distribution of the state for a single target, and by using the M/N logic presented in Chapter 5
to handle the track termination. In addition the target may departure the simulation, making the
simulation contain zero targets at some point of the simulation. Then, the feature specifications
to be verified is ASTs ability to find failure events related to:

1. Slow termination of tracks.

2. Failing to terminate tracks.

3. Terminating tracks that still exists.

The specifications are verified through the following conditions:

1. When manipulating a single-target simulation the AST implementation should be able to
find scenarios the PDAF algorithm with the M/N extension for track termination struggles
to terminate the track quickly.

2. When manipulating a single-target simulation the AST implementation should be able to
find scenarios the PDAF algorithm with the M/N extension for track termination fails to
terminate the track of a departed target.

3. When manipulating a single-target simulation the AST implementation should be able to
find scenarios the PDAF algorithm with the M/N extension for track termination, terminates
tracks for existing targets.

AST Simulator Requirements

The objective of this section is to discuss how the simulator for this case study should fulfill the
AST requirements mentioned in Section 6.2.1. This will include definition of failure events and
suitable distance metrics and defining what a terminal state is. The events searched for in this case
are as mentioned related to the concept of track termination. The failure events searched for are
presented in Table 6.22, with specified failure detection conditions and test metrics. The events
and metrics are described in the next paragraphs.

71

Failure Event Test Metric Failure Detection Distance (d) From Failure Terminal Event

Slow Initiation Steps Before Termination nsteps � nthresh max(nthresh � nsteps, 0) t = tend

Failing to Terminate N.O. Targets vs. Tracks (t = tend) ntracks � ntargets max((ntargets + 1)� (ntracks), 0) t = tend

Terminating Tracks of Existing Targets N.O. Targets vs. Tracks (t = tend) ntargets � ntracks and xi
t 2 [�150, 150] dTET t = tend

Table 6.22: Test metrics and failure thresholds for failure detection, when searching for events
related to track termination.

Slow Termination: Slow track termination failure has occurred when the number of steps nsteps

from the target is terminated to the track is terminated exceeds a specified threshold:

e = {nsteps > nthresh} (6.17)

The distance from failure is then determined by:

d = max(nthresh � nsteps, 0) (6.18)

Failing to Terminate: Failure to terminate is defined to be when the number of tracks at the
simulation end exceeds the number of targets.

e = {ntracks > ntargets and t = tend} (6.19)

The distance from failure is then calculated according to

d = max((ntargets + 1)� (ntracks), 0) (6.20)

Terminating Existing Targets: When terminating existing targets which is inside the surveil-
lance area, an failure event has occurred. This is determined by examining the number of targets
ntargets and tracks ntracks inside the surveillance area [�150, 150] at the simulation end. Hence,
the failure event is determined by the following boolean condition:

e =
�
ntargets > ntracks and xi

t 2 [�150, 150]

(6.21)

Where xi
t denotes element i of the state vector xt, and i 2 [0, 1], meaning that only the position is

considered. The distance from failure is then determined by:

dTET =

⇢
max((ntracks + 1)� ntargets, 0), if xi

t 2 [�150, 150] ^ t = tend
1, if xi

t 62 [�150, 150] ^ t = tend
(6.22)

Simulator Setup

The simulator setup in this case is similar to the setup of the previous case. For testing of the first
two conditions mentioned above, the simulator is a single-target simulator with termination. For
the last case the simulator is a regular single-target simulator.

Tuning Values

Environment Simulator Parameters The simulator parameters for this case presented in
Table 6.23 are set to the same values as in the previous case when running a single-target simulator
with target departure, except for the last simulation run where the target is never departed.

Case Name tterminal xinit Ts �a �z PD ⇤c ⇤a Pd Surveillance Area

Slow Termination 100 [�75,�75, 0, 0] 2 0.2 5 0.8 5 0.0 5e-3 x[min,max] = y[min,max] = [�150, 150]
Failing to Terminate 100 [�75,�75, 0, 0] 2 0.2 5 0.8 5 0.0 5e-3 x[min,max] = y[min,max] = [�150, 150]

Terminating Tracks of Existing Targets 100 [�75,�75, 0, 0] 2 0.2 5 0.8 5 0.0 0 x[min,max] = y[min,max] = [�150, 150]

Table 6.23: Simulator parameter values for the track termination verification case. The parameters
are explained in Chapter 5.

72

System Under Test Parameters The parameter values of the tracker was set to be the same
as in the previous case. The values can be observed in Table 6.24.

�a �z PD PG Clutter Density Ts M N Initiation Threshold
0.2 5 0.8 0.8 5/(3002) 2 4 5 1.0

Table 6.24: Target tracker parameter values for the track termination verification case. The
parameters are explained in Chapter 5.

Test Method Parameters The AST parameters was set to be equal to the parameters of the
previous cases when searching for events related to termination failure and termination of tracks
for existing targets. This was done since the performance of the implementation seemed to work
well in these cases as well. However, for the case searching for events with slow termination, the
progressive widening constant ↵ was increased in order to make search space wider, making the
algorithm explore a larger variety of seed-actions. This means that the MCTS algorithm was tuned
to weight exploration more. The parameter values can be observed in 6.25.

Case Name N.O. Iterations UCB Constant c PW Constant c PW Constant ↵ Likelihood Weight Failure Weight

Slow Termination 1000 0.1 2 2/3 1 1e4

Failing to Terminate 1000 0.1 2 1/4 1 1e4

Terminating Tracks of Existing Targets 1000 0.1 2 1/4 1 1e4

Table 6.25: Simulator parameter values for the track termination verification case. The parameters
are explained in Chapter 5.

Critic Parameters In this case the Critic parameters was set based on what failures were
searched for, which was events related to termination of tracks. Table 6.26 presents the critic
parameters of this case.

Case Failure Threshold Distance Metric

Slow Termination nsteps = 7 d = max(7 - Nsteps, 0)

Failing to Terminate d=0 d = max((ntargets + 1)� (ntracks), 0)

Termination Tracks of Existing Targets d=0 d =

(
max((ntracks + 1)� ntargets, 0), if xi

t 2 [�150, 150] ^ t = tend

1, if xi
t 62 [�150, 150] ^ t = tend

Table 6.26: Critic Configuration, Nsteps denotes the number of consecutive steps from the target
is terminated, and nsteps denotes limit of steps without termination before the scenario is to be
considered a failure event e.

Results and Discussion

Slow Termination The AST run in this case was done in order to find likely errors related to
slow termination of tracks. This means that if the tracker haven’t terminated a track in nsteps

from a target has been terminated, a failure event e has occurred. After 1000 MCTS iterations
the track presented in Figure 6.24 was outputted from the algorithm:

73

(a) (b)

Figure 6.24: (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for track termination case 1. The area shaded gray is the outside
of the surveillance area. (b) shows a zoomed in version of the same plot. Triangle denotes the
initial state and the cross denotes the final state of the track. Clutter measurements are included
for each simulation step

It can be observed that the target exist for just a few time steps before it is departed. The detected
measurements originating from the target are distributed with relatively large variance, compared
to the target trajectory. However, the plot in Figure (b) of Figure 6.24 is significantly magnified
in compared to (a). This means that the track is relatively short in terms of the scale which the
simulator and tracker is tuned for. Further, it can be observed that the track outputted from
the AST implementation struggles to terminate in 8 time steps after the target has departed the
simulation. This is most likely due to the two clutter measurements in close proximity of the track.
Hence, the tracker does most likely gate the two clutter measurements a few time steps after the
departure of the target, making the M number of gated measurements at the time steps after the
departure increase, such that the M is greater than the lower threshold required for the track to
continue. Even though the tracker struggles to terminate the track quickly, the track is still short
relative to the surveillance are, implying that the failure may not be of high severity. However,
the key objective of this case was to verify that the AST implementation is able to find failures
where the PDAF algorithm with the M/N extension struggles to terminate the track quickly. This
objective was achieved in this simulation. Hence, the test method is verified according to its the
first track termination specification.

Failing to Terminate The AST run in this case was done in order to find likely events where
the tracker fails to terminate tracks. This means that if the tracker haven’t terminated a track in
in the entire simulation when the target has departed, a failure event e has occurred. After 1000
MCTS iterations the track presented in Figure 6.25 was outputted from the algorithm:

74

(a) (b)

Figure 6.25: (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for track termination case 2. The area shaded gray is the outside
of the surveillance area. (b) shows a zoomed in version of the same plot. Triangle denotes the
initial state and the cross denotes the final state of the track. Clutter measurements are included
for each simulation step

It can be observed that the target departures the simulation by leaving the surveillance area. The
track struggles to follow the target when the target get close to departure. This may be due to
the target not producing measurements for several time steps, when moving past x = �110. In
addition several clutter measurements are produced in close proximity of the target, making the
track drift of from the target and continue the gating more clutter measurements, resulting in failing
to terminate the track when the target departures the simulation. This is also a track loss scenario
similar to the results presented in the track loss case. In the track loss case it was mentioned that
a tracker algorithm dealing with track existence could avoid such failure by terminating the track
and initiating a new track following the target closer. However, in this case it was demonstrated
that such an error may occur with such a tracker as well. Further, the objective of this case was to
test the second verification condition, which states that the AST implementation should be able
to find scenarios where the PDAF algorithm with the M/N extension fails to terminate the track
of a departed target. This was the case. Hence, the test method’s ability to find events related to
termination failure was verified in this case.

Terminating Tracks for Existing Targets The AST run in this case was done in order to find
likely errors related to termination of tracks for existing targets. This means that if the tracker
terminates a track which never departures the simulation, a failure event e has occurred. After
1000 MCTS iterations the track presented in Figure 6.26 was outputted from the algorithm:

75

(a) (b)

Figure 6.26: (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for track termination case 2. The area shaded gray is the outside
of the surveillance area. (b) shows a zoomed in version of the same plot. Triangle denotes the
initial state and the cross denotes the final state of the track. Clutter measurements are included
for each simulation step.

It can be observed that the track terminates after a few time steps, while the target continues to
exist for the entire simulation. This result may be considered strange, since the track in the plot
is surrounded by measurements, which should imply that the validation gate should accept several
measurements, making the track continue. However, the plot does not provide a complete picture
of the simulation, since the measurements presented are the measurements generated through the
entire simulation. Hence, the measurements close to the track was probably generated at earlier
time steps, explaining why the track didn’t gate them. Looking very closely it can be observed
that a clutter measurement is generated close to the track, which may be the reason that the track
makes a U-turn. This may have made the track struggle to keep up with the target, which in turn
made the track not gate the target measurements. Further, the objective of this case was to test
the third verification condition for searching for termination failure. The condition state that the
AST implementation should be able to find scenarios where the PDAF algorithm with the M/N
extension terminates tracks for existing targets. This was demonstrated with the presented result.
Hence, the implementation was verified for this case.

6.3.6 Verification Case 6: Qualitative Analysis of Adaptive Stress Test-
ing of Tracking Multiple Targets

The objective of this case study is to provide verification that AST is able to find failure events in
target tracking when simulating and tracking multiple targets. First a set of feature specifications
are presented, in addition to a set of conditions for verifying the requirements. Then, the AST
simulator requirements and the simulator setup with parameter values are presented. Finally, the
results of the case are presented and discussed.

Feature Specifications and Verification Requirements

This case is an extension of all of the previous cases, where the tracker has to deal with the same
environment with the addition of the simulator generating multiple targets. The previous cases
covers di↵erent failure events when tracking a single target. This case will examine AST’s ability
to find some of the same type of errors, and maybe new ones, when applying a more general test
metric. Then, the feature specifications to be verified is AST’s ability to find failure events related
to some of the following phenomenons:

76

1. Track Loss

2. Track Initiation Failure:

(a) Slow initiation of tracks

(b) Failing to initiate tracks

3. Termination Failure:

(a) Slow termination of tracks

(b) Failing to terminate tracks

(c) Terminating tracks that still exists

The specifications are verified by meeting the following conditions, which are mentioned in previous
cases as well:

1. When manipulating a multi-target simulation the AST implementation should be able to
find scenarios where the PDAF track(s) drifts away from the target.

2. When manipulating a multi-target simulation the AST implementation should be able to find
scenarios where the PDAF tracking algorithm with the M/N extension for track existence
struggles to quickly initiate a track for an existing target.

3. When manipulating a multi-target simulation the AST implementation should be able to find
scenarios where the PDAF tracking algorithm with the M/N extension for track existence
fails to initiate a track for an existing target.

4. When manipulating a multi-target simulation the AST implementation should be able to find
scenarios where the PDAF tracking algorithm with the M/N extension for track existence
struggles to quickly terminate a track for a departed target.

5. When manipulating a multi-target simulation the AST implementation should be able to find
scenarios where the PDAF tracking algorithm with the M/N extension for track existence
terminates tracks for existing targets.

AST Simulator Requirements

The objective of this section is to discuss how the simulator for this case study should fulfill the AST
requirements mentioned in section 6.2.1. This will include definition of failure events and suitable
distance metrics and defining what a terminal state is. Table 6.27 presents the test metric, failure
definition, distance form failure and termination condition for this case.

Test Metric Failure Detection Distance (d) From Failure Terminal Event

GOSPA GOSPA � GOSPAthresh max(GOSPAthresh �GOSPA, 0) t = tend

Table 6.27: Test metrics and failure thresholds for failure detection, when searching for failure
events in a multi target scenario.

The events searched for in this case are as mentioned related to track loss, and track initiation and
termination. These are events searched for in previous cases. However, the test metrics used in the
previous cases are specified for tracking of single targets, and it may be proven di�cult to apply
them to a multi-target scenario. Hence, a test metric generalized for tracking of multiple targets
are sought for. For this case the Generalized Optimal Sub-pattern Assignment (GOSPA) metric
presented in [44]. GOSPA compares the number of tracks and targets, and classifies false tracks
(tracks not belonging to targets), undetected targets and matching tracks and targets. GOSPA is
calculated through the following procedure:

77

• Finding the optimal assignment between sets:

– Pairs of tracks and targets are left unassigned if the distance between the pairs exceeds
a specified limit d(x, y) > c. Unassigned elements are referred to false/missed targets.

– Otherwise the pairs are assigned.

• The cost of a assigned pair x and y is denoted by d(x, y).

• Unassigned elements are given the cost c
2 .

Then, the GOSPA value is expressed by:

GOSPA =

2

4min
�2�

0

@
X

(i,j)2�

d(xi, yi)
p +

cp

2

|X|� |�|+ |Y |� |�|

!1

A

3

5
1/p

(6.23)

where X is the set of targets, Y is the set of estimates and � is the set of possible assignments.
The parameter p is used to penalize outliers, meaning that larger value of p, the more the outliers
are penalized. For this case study the tuning parameters is set to p = 2 and c = 8. Simplified the
GOSPA express the following:

GOSPA = Localization Error +
c

2
(nmt � nft) (6.24)

where nmt refers to number of missed targets and nft refers to number of false targets.

Simulator Setup

For this case two di↵erent simulator setups are used. The firs setup is similar to the single-target
setup presented in Figure 6.18, but instead of only initializing a single-target, two targets are
initiated. This setup is used to create a simple multi-target scenario with less complexity than a
scenario with target arrival and departure. The second simulator setup is the complete multi-target
simulator described in Chapter 5, which has target arrival and departure in addition to the the
components of the first setup.

Parameter Values

Environment Simulator Parameters The simulator parameters for this case presented in
Table 6.28 are set to the same values as in some of the previous cases. For the first simulator setup
the parameter values are set to be the same as for the single-target tracking case, but with the
addition of an extra target, such that the initial target states are set to be x0,0 = [�75,�75, 0, 0]
for the first target, and x0,1 = [75, 75, 0, 0] for the second target. For the second simulator setup
the following extensions are made:

• The arrival density is set to be ⇤a = 5e� 2.

• The departure probability was set to be the same as for the track termination case where
the departure component was used, Pd = 5e� 3.

�

Simulator Setup tterminal xinit Ts �a �z PD ⇤c ⇤a Pd Surveillance Area
1 100 [�75,�75, 0, 0], 2 0.2 5 0.8 5 0 0 x[min,max] = y[min,max] = [�150, 150]

[75, 75, 0, 0]
2 100 None, 2 0.2 5 0.8 5 5e-2 5e-3 x[min,max] = y[min,max] = [�150, 150]

Table 6.28: Simulator parameter values for the mulit-target verification case. The parameters are
explained in Chapter 5.

78

System Under Test Parameters The parameters of the PDAF algorithm was according to
the tuning strategy set to correspond with the parameter values of the environment simulator,
similar to the previous cases. In order to isolate some of the failure modes from the previous cases,
the PDAF tracker is tested with and without the M/N initiation and termination extension in
some of the simulation runs with the first simulator setup. This is done in the following manner:

• PDAF tracking without the M/N extension, meaning the tracker is initiated with the initial
states of the targets and is not able to initiate/terminate tracks by itself.

• PDAF tracking with the M/N extension for track initiation, but not for track termination.
This means that the tracker has to initiate the tracks by itself and is not able to terminate
tracks by itself.

• PDAF tracking with the M/N extension for track termination, but not for track initiation.
This means that the tracker is initiated in the same way as for the first run and may terminate
the tracks by itself. However, it is not able to initiate tracks by itself.

• PDAF tracking with the M/N extension for track initiation and termination. This means
that the tracker handles both initiation and termination by itself.

When running simulations with the second setup, the tracker must handle initiation and termi-
nation by itself. The parameter values when doing this is the same as for the last simulation run
with the first setup. The parameter values of the tracker can be observed in Table 6.29. The first
four simulation runs are the runs for the first simulator setup, and the fifth is the simulation run
for the second simulator setup.

Simulation Run �a �z PD PG Clutter Density Ts M N Initiation Threshold Initiation Termination
1 0.2 5 0.8 0.8 5/(3002) 2 N.A. N.A. N.A. False False
2 0.2 5 0.8 0.8 5/(3002) 2 4 5 1.0 True False
3 0.2 5 0.8 0.8 5/(3002) 2 4 5 1.0 False True
4 0.2 5 0.8 0.8 5/(3002) 2 4 5 1.0 True True
5 0.2 5 0.8 0.8 5/(3002) 2 4 5 1.0 True True

Table 6.29: Target tracker parameter values for the multi-target verification case. The parameters
are explained in Chapter 5.

Test Method Parameters The AST parameters was set to be equal to the parameters of the
previous cases, except the slow termination case. This was done since the performance of the
implementation seemed to work well in this case as well. The parameter values of the test method
are presented in 6.30

N.O. Iterations UCB Constant c PW Constant c PW Constant ↵ Likelihood Weight Failure Weight

1000 0.1 2 0.25 1 1e4

Table 6.30: Simulator parameter values for the single-target verification case. The parameters are
explained in Chapter 5.

Critic Parameters In this case the Critic parameters is set based on the failures that is searched
for, which is determined by comparing the GOSPA value with a threshold. The threshold was set
di↵erently for the di↵erent simulation runs, since it was a significant di↵erence in the magnitude
of the GOSPA between the cases. See Section 6.2.1 for further details about the parameters. The
parameter values for the critic are presented in Table 6.31.

79

Simulation Run Failure Threshold Distance Metric

1 GOSPA = 65 d = max(65 - GOSPA, 0)

2 GOSPA = 65 d = max(65 - GOSPA, 0)

3 GOSPA = 50 d = max(50 - GOSPA, 0)

4 GOSPA = 55 d = max(55 - GOSPA, 0)

5 GOSPA = 90 d = max(90 - GOSPA, 0)

Table 6.31: Critic Configuration for the multi-target case.

Results and Discussion

PDAF Without Track initiation and Termination The first simulation run in this case was
done with the first of the presented simulator setups and the tracker used was the PDAF tracker
without the M/N extension. After 1000 MCTS iterations the following results was outputted from
the algorithm:

(a) (b)

Figure 6.27: (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for Multi-target case 1. (b) shows a zoomed in version of the same
plot. The area shaded gray is the outside of the surveillance area. Triangle denotes the initial
state and the cross denotes the final state of the track. Clutter measurements are included for each
simulation step.

It can be observed that two targets moves inside the surveillance area, and at some point are
relatively close to each other. The tracker seems to follow one of the targets relatively close. For
the other target the track drifts when the target makes a sudden turn. It can also be observed that
in the area of the turn, several clutter measurements are generated through the simulation. This
could be the reason of the drift. The drift is significantly high, which may categorize this scenario
as a track loss scenario. This is probably an event which would have been avoided when using
the M/N track existence extension, where the track may have been terminated during the drift
and initiated again after the turn of the target. However, the objective of this case was to find
similar failure events as in the previous cases, but with a more general test metric. Considering
verification condition 1, which state that the AST implementation should find scenarios where
the PDAF track drifts away from the target, the implementation using GOSPA as test metric is
verified.

PDAF With Initiation and Without Termination The second simulation run in this case
was done with the first of the presented simulator setups and the tracker used was the PDAF

80

tracker using the M/N extension for only initiation. The tracker was limited to not being able
to terminate tracks. After 1000 MCTS iterations the following results was outputted from the
algorithm:

(a) (b)

Figure 6.28: (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for Multi-target case 2. (b) shows a zoomed in version of the same
plot. The area shaded gray is the outside of the surveillance area. Triangle denotes the initial
state and the cross denotes the final state of the track. Clutter measurements are included for each
simulation step.

It can be observed that two targets moves insides the surveillance area during the simulation. The
tracker seems to following one of the targets quite good. However, for the second target the tracker
struggles after a few time steps, and the estimate starts to drift towards the other target. The
track is not terminated since the tracker is not allowed to do so. Then, a new track is initiated,
which starts to drift towards the other track as well. Finally, a second track is initiated, which
also drifts of from the target. Hence, one of the targets is not tracked for most of the simulation.
It can be observed that the drift of the tracks occurs in an area where the target does not produce
measurements and clutter measurements occurs, which may be the explanation for why the tracker
struggles. Further, the objective of this simulation run was to find some of the same errors searched
for in the previous case studies. In this case the failure is a track loss event which meets the first
verification condition, stating that the AST implementation should be able to find scenarios where
the PDAF track(s) drifts away from the target. Hence, the implementation is verified for this
mulit-target scenario.

PDAF Without Initiation and With Termination The third simulation run in this case was
done with the first of the presented simulator setups and the tracker used was the PDAF tracker
using the M/N extension for only termination. The tracker was limited to not being able to initiate
tracks. After 1000 MCTS iterations the following results was outputted from the algorithm:

81

(a) (b)

Figure 6.29: (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for Multi-target case 3. (b) shows a zoomed in version of the same
plot. The area shaded gray is the outside of the surveillance area. Triangle denotes the initial
state and the cross denotes the final state of the track. Clutter measurements are included for each
simulation step.

It can be observed that two targets moves inside the surveillance area. For both of the targets,
the tracker terminates the manually initiated track in the beginning of the simulation. Hence, the
targets are not tracked after the first time steps. Considering the fifth condition for verification,
which states that the AST implementation should be able to find scenarios where the tracker
terminates tracks for existing target, the implementation is verified in terms of it’s ability to find
termination failure events related to termination of existing targets.

PDAF With initiation and termination The third simulation run in this case was done with
the first of the presented simulator setups and the tracker used was the PDAF tracker using the
M/N extension for both initiation and termination. After 1000 MCTS iterations the following
results was outputted from the algorithm:

(a) (b)

Figure 6.30: (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for Multi-target case 4. (b) shows a zoomed in version of the same
plot. The area shaded gray is the outside of the surveillance area. Triangle denotes the initial
state and the cross denotes the final state of the track. Clutter measurements are included for each
simulation step.

82

It can be observed that two targets moves inside the surveillance area. For one of the targets does
the tracker initiate two tracks, that it terminates in just a few time steps. After the two tracks are
terminated, the tracker does not initiate any new tracks. Hence, the target is for the most of the
time not tracked. This is similar to the previous simulation run. For the second target the same
type of failure occurs, but with the main di↵erence that the tracker manages to track the target
for a longer time. Hence, the AST implementation is verified for it’s ability to find scenarios where
the tracker terminates the track for a existing target. However, this failure would not have been
significant if it weren’t for the fact that the tracker struggles to initiate a new track for both of the
target after terminating the initial track(s). The tracker manages to initiate a track for the second
target, but terminates the track immediately. Hence, the scenario may be considered a failure
scenario where the tracker fails to initiate tracks for existing targets. Considering these results the
AST implementation is verified according to the verification requirement regarding finding failure
events where the tracker fails to initiate tracks.

PDAF M/N in a Complete Multi-target Simulation The fifth simulation run in this case
was done with the complete multi-target simulator and the tracker used was the PDAF tracker
using the M/N extension for both initiation and termination. After 1000 MCTS iterations the
following results was outputted from the algorithm:

(a) (b)

(c) (d)

83

(e) (f)

Figure 6.31: (a) shows the track x̂0:tend , target trajectory x0:tend and the measurements z0:tend

relative to the surveillance area for Multi-target case 5. (b-f) shows zoomed in versions of the same
plot. The area shaded gray is the outside of the surveillance area. Triangle denotes the initial
state and the cross denotes the final state of the track. Clutter measurements are included for each
simulation step.

It can be observed that through the simulation run are nine targets initiated and moves inside the
surveillance area. The results are examined one sub-figure at the time:

• Sub-figure (b): It can be observed that the tracker manages to track the target through half
of the target trajectory, before terminating the target. Hence, this is the case of termination
of existing targets.

• Sub-figure (c): It can be observed that this plot is a quite complex multi-target scenario,
but with close examination it can be observed that the following events occurs:

– Track loss event due to target interaction.

– Initiation of multiple tracks for a single target.

– Failing to initiate track for existing target.

• Sub-figure (d): It can be observed the track is initiated in the middle of the target trajec-
tory, and the track initiated starts to drift. Hence, the following failure events occurs:

– Track loss event due to mis-detections and clutter measurements.

– Slow initiation of track for existing target.

• Sub-figure (e): It can be observed that the tracker does not initiate any tracks following
the target. Hence, a failure scenario with initiation failure has occurred.

• Sub-figure (f): It can be observed that for two targets, the tracker initiates and terminates
tracks immediately, which in the previous simulation run was considered failing to initiate.

Considering all the failure events uncovered in this single simulation, the AST implementation
is verified for finding some likely failure events of the PDAF target tracker with the M/N track
existence extension when running a multi-target simulation. In addition, the did the method seem
to find a failure event not searched for in earlier cases, which is initiation of multiple tracks for the
same target. This would not have been considered a failure if one of the tracks was terminated
quickly. However, instead both of the tracks continued to exist following the target through the
simulation.

84

6.3.7 Validation Case: Quantitative Analysis of Adaptive Stress Testing
of Situational Awareness

This objective of this case is to validate the AST implementation. This is done by comparing the
success rate of AST with the success rate of a random search. The method is considered validated
if it meets it’s verification requirements for all of the cases with a significantly higher success rate
than when performing a random search. In addition is the proposed open loop local control results
compared to the results of using global control. This is done in order to determine if the use of
the new control option improves the performance of the search. The results are presented in Table
6.32.

Success Rate After 1000 Iterations

MCS MCTS

Case Global Global Target dynamics Measurement Generation Detection Clutter Generation Target Arrival Target Departure

State Estimation (RMSE > 9) 0.0% 49.1% 0.0% 39.8% N.A. N.A. N.A. N.A.

State Estimation (NEES Fraction Above CI > 0.4) 0.0% 72.2% 0.0% 31.3% N.A. N.A. N.A. N.A.

State Estimation (NEES Fraction Below CI > 0.4) 0.0% 35.3% 0.0% 28.9% N.A. N.A. N.A. N.A.

Single-target Tracking (Validation Gate Loss Condition) 1.2% 96.1% 91.5% 84.1% 0.8% 0.0% N.A. N.A.

Single-target Tracking (Euclidean Distance Loss Condition) 1.5% 97.3% 92.5% 88.6% 15.4% 0.0% N.A. N.A.

Track Initiation (Slow Initiation) 4.1% 97.0% 0.0% 98.2% 78.7% 0.1% N.A. N.A.

Track Initiation (Initiation Failure) 3.1% 93.2% 0.0% 0.0% 0.0% 0.0% N.A. 0.0%

Track Termination (Slow Termination) 0.0% 72.6% 0.0% 0.0% 0.0% 0.0% N.A. 94.7%

Track Termination (Failing to Terminate) 0.0% 74.4% 0.3% 44% 36.3% 18.1% N.A. 0.8%

Track Termination (Terminating Existing Tracks) 0.0% 18.1% 0.4% 0.0% 0.0% 0.0% N.A. N.A.

Multi-target Simulation (Without Track Existence) 0.0% 42.1% 0.0% 0.0% 0.0% 0.0% N.A. N.A.

Multi-target Simulation (With Track Initiation) 0.0% 60.3% 7.8% 0.0% 0.0% 0.0% N.A. N.A.

Multi-target Simulation (With Track Termination) 22.6% 95.8% 91.5% 100% 99.5% 98.4% N.A. N.A.

Multi-target Simulation (With Track Initiation/Termination) 0.0% 12.5% 28% 47.8% 22.7% 44.6% N.A. N.A.

Complete Multi-target Simulation (With Track Initiation/Termination) 0.0% 15.7% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0%

Table 6.32: Success rate for every case running both MCS and MCTS using open loop global
control. The highest success rate for each case is marked with the color red. In addition the
success rates when running MCTS using open loop local control with every stochastic process in
the simulator are presented for each case. N.A. denotes not applicable, which is the case when a
simulator component is not used.

It can be observed that the AST search using MCTS outperforms the MCS search with a signif-
icant margin in all of the case studies. With the failure thresholds set in these cases, the MCS
performance is low. This may imply that the MCS search may be classified as incapable of find-
ing failure events of such magnitude. The exception is in the third multi-target simulation case,
where the MCS search manages to find failures with an success rate of 22%. However, in that
case it may be argued that the failure threshold was set too low. This argument may be made
since the AST search managed to find errors of such magnitude at almost all the MCTS iterations
using global control and for all iterations when using local control of the measurement generation
process. The MCTS search results have demonstrated that the MCTS search is very e�cient in
finding failure events where the magnitude of the error is large. Hence, the AST implementation is
considered validated for the applications demonstrated in the verification case studies. According
to the scientific approach described earlier in this chapter, the implementation may at this stage be
passed forward to development phase 2. Then, the objective is as mentioned earlier to validate the
implementation in an industrial high fidelity test environment. The implementation would then
go through a qualitative analysis similar to the presented verification cases, before a quantitative
analysis similar to this validation case is performed. In addition, another option is that the im-
plementation at this stage is further extended with additional specifications, which would require
further iterations through the development cycle presented in Figure 6.2.

The secondary objective of this case was to compare the results of using the open loop global control
option with the open loop local control option. With this objective in mind it can be observed
that the global option did have the highest success rate in most of the case studies. However, in
three of the cases did the local control option outperform the global control option. This were the
three following cases:

• The multi-target simulation case where the targets were initialized prior to the simulations,
and the PDAF tracker with the M/N extension handling track initiation and termination.

• The multi-target simulation case where the targets were initialized prior to the simulations,
and the PDAF tracker with the M/N extension handling only track termination.

85

• The track termination case where the objective was to find likely failures related to slow
termination of tracks for departing targets.

For the two first cases, it the highest success rate occurred when controlling the process of sampling
of measurements. For the last case the highest success rate was achieved by controlling the target
departure process. Hence, the local control option did demonstrate to be better than the global
control option in some cases. However, the scope for testing this option in this thesis, is not large
enough to be conclusive about the e↵ectiveness of the method. At this stage the method shows
promise in some applications. Hence, further research is recommended in order to make a valid
conclusion about the usefulness of the method.

6.4 Discussion

In these case studies, an AST system has been designed and implemented through a set of iterations
through the development cycle presented in Figure 6.2. The development cycle is a part of the
scientific approach for evaluation of AST as a test method, and provides a proposal for how the
method should be tested and developed before it can be deployed for industrial testing of the
situational awareness of an autonomous passenger ferry. In addition to the AST system being
implemented, the test environment consisting of system under test and environment simulator has
been designed and developed in parallel with the test method. The objective of the test environment
development process has been to make the AST system subject of an increasingly more complex
test environment. For each iteration the AST implementation has been tested and evaluated,
resulting in the verification of the method’s abilities to find common failure events in target tracking
algorithms that may be used in situational awareness. Hence, the research has uncovered that the
method functions as specified when applied to testing of situational awareness. In addition, the
method has been evaluated by comparing it with the baseline value of a random search, which
resulted in AST outperforming the random search with a significant margin. Hence, the method
has demonstrated a high potential for finding likely failure events in situational awareness.

Even though the results presented appears to be promising, a key problem arises when applying
the method in the way it has been in some of the case studies. The problem arises due to the fact
that the test metrics used are specific for the events searched for in each individual case. This
simplifies the search by making it highly directed. Hence, from these cases it can be concluded
that the test method finds exactly what it searches for, but having the same problem with high
exhaustiveness as for formal verification methods. This is due to the fact that an individual test
metric has to be designed for each possible failure that exists, which may be infeasible. When
dealing with an autonomy system it is important that the test method is able to search for failure
events which the developer does not about in beforehand. Considering the problem of moving
the residual risk of ”the long tail of the probability distribution” further to the right, which was
described in Chapter 2, it is important to have a method that can find errors that have not been
thought of a priori. It is likely to believe that the residual risk is due to unpredictable scenarios.
Hence, being able to find such scenarios would be highly beneficial in order to provide statistical
evidence that the system is safe. In addition does the specific test metrics used in those cases not
work for testing the situational awareness in complex multi-target scenarios. This is due to the fact
that the test metrics requires knowledge about which exact target each track belongs to. Then,
the targets and tracks would have to be pairwise assigned through an data association algorithm.
Having these considerations in mind, more general test metrics and definitions of failure events
should be sought for. This was the main motivation for applying the more generalized test metric
GOSPA in the multi-target cases. The results demonstrated that using such a test metric may
result in finding the same type of failure events as when using metrics specified for certain types of
events. In addition, the method did find a failure event not defined or searched for in the previous
cases. Hence, the method did show promising results for finding failure events which have not been
explicitly defined a priori. This may be one of the most promising results presented in this thesis.
However, the scope of the research in this master thesis is not large enough to make conclusions
regarding the method’s ability to find new undefined failure events in target tracking algorithms
used in situational awareness. Hence, further research exploring the use of di↵erent generalized

86

test metrics should be performed in order to explore this topic further.

To deal with the high complexity of the failure definitions in target tracking, another approach
may be to apply the method on a higher system level. Then, AST could be used to find likely
failure events for e.g. the entire collision avoidance pipeline, including the object detection, situa-
tional awareness and motion planning components. AST would then rather create tra�c scenarios
that are inputted to the object detection component, which processes the scenarios and generates
measurements for the situational awareness. Then, the target tracking algorithm of the situational
awareness outputs a track to the motion planning algorithm, which decides what route the vessel
should follow. The failure definition would in this case be significantly simpler, by defining collision
with other objects as failure and using the distance from other objects as distance metric. This test
regime would also be beneficial due to testing the interaction between multiple system components.
This is a benefit due to safety being as earlier mentioned an emergent system property, meaning
that failures may arise due to interaction between di↵erent system components. The object detec-
tion, situational awareness and motion planning components may then be observed closely during
these simulations, making it possible to study how di↵erent failures occurs due to di↵erent inputs
and outputs from the di↵erent components. Then, it could also be possible to detect previously
unknown errors in the situational awareness without directly interacting with it.

87

Chapter 7

Conclusions and Further Work

7.1 Conclusions

The main objective of this master thesis project has been to evaluate the use of AST in testing,
verification and validation of Zeabuz’s autonomous urban passenger ferries. The goal has been to
provide a contribution to the following research question:

How is it possible to accumulate enough experience regarding safety and validation for
autonomous passenger ferries such that it can be argued that the autonomy system is
su�ciently safe?

The research question was further examined through the following sub-questions:

1. What is the current state-of-the-art methods used in testing, verification and validation of
autonomous systems, and how does AST fit into this context?

2. Can AST be used in order to perform state-of-the-art safety validation of the situational
awareness in autonomous urban passenger ferries?

The contribution to first sub-question was done through reviewing literature related to AST and
other methods of testing, verification and validation of autonomous systems. Generally, it has been
concluded in the literature that traditional formal methods aren’t su�cient in safety validation of
autonomous systems. Hence, informal methods such as simulation-based testing is also necessary in
order to provide safety proofs. However, previously applied simulation-based methods typically rely
on manually constructing cases where the system under test will fail. This makes it a tremendous
task to test an autonomous system. There exist methods for sampling of complete simulation cases
in order to make the system struggle. However, these methods aren’t as flexible as AST, as they
require complete access to the simulator. On the other hand AST maximizes the likelihood of
the failure, which no other method previously has done. The AST method has shown promising
results in the aerospace and automotive industry. Hence, the method has in theory and through
previous applications shown to be promising in terms of finding likely failure events in complex
control systems, such as collision avoidance systems. In addition, AST has demonstrated to be an
e�cient method for finding unpredictable scenarios resulting in unforeseen failure events. This has
been the key motivation for studying the method in for marine autonomous systems. Due to the
large number of possible scenarios that an autonomous system may encounter, it is not possible
to mitigate this risk completely. Hence, application of the AST method alone is not enough to
provide validation that an autonomous system is safe. Hence, a combination of formal and informal
testing, verification and validation methods are required to certify that the system is safe.

The contribution to the second sub-question has been done through a set of case studies. In the
case studies it has been discussed how the method may be deployed for testing of the situational

88

awareness of an autonomous passenger ferry. This includes how the test method itself may be veri-
fied and validated through a iterative development cycle, where the implementation of the method
was subject to a set of qualitative and quantitative analyses. Through the master project an AST
system has been implemented through a set of iterations of the described iterative development
cycle. Furthermore, the AST system has been connected to a situational awareness test environ-
ment developed in parallel with the AST system. The developed test environment consisted of
a PDAF target tracking algorithm with the M/N extension for track existence, which acted as
system under test. The test environment did also include a multi-target simulator, which acted
as environment simulator. In order to control the test environment a set of appropriate control
methods were proposed. One of the proposed methods was tested for the first time in this thesis,
yielding inconclusive results. Furthermore, the AST system has been subject of the developed test
environment and evaluated in a set of case studies. For each case the complexity of the simulation
did increase. The results did demonstrate that the AST system was able to find common failure
events in target tracking, which provided verification of the implementation. AST did find a case
with a failure event not predicted by the author. This result demonstrated the method’s potential
for finding unforeseen failure events. In addition, the quantitative results did demonstrate that the
AST implementation with MCTS was able to find failure events in a significantly more e�cient
manner than when running s random search. However, to say for sure that the AST method
can perform as well as or better than the current state-of-the-art methods for safety validation of
autonomous marine systems, further research is required.

7.2 Further Work

Considering the discussion in the case studies chapter, the following items are suggested for further
work:

• Perform comprehensive simulations using the proposed open loop local control method, in
order to verify and validate the control method.

• Perform research exploring generalized test metrics for defining failure events in target track-
ing algorithms used in situational awareness, and perform comprehensive simulations with
the explored test metrics in order to determine the method’s ability to find unforeseen failure
events in situational awareness.

• Perform further validation of AST as a test method through qualitative and quantitative
analyses of the implementation in a high fidelity test environment. This could be e.g. the
Zeabuz milliAmpere 2 (mA2) digital twin.

• Develop algorithmic extensions to AST in order to improve AST’s performance. This could be
using a search algorithm extended for selecting multiple actions at each time step, improving
the performance of the open loop local control method.

• Test the method in application on a higher system level, e.g. the complete collision avoidance
pipeline in the Zeabuz system.

• Test the use of Di↵erential Adaptive Stress Testing for evaluation of the performance of a
system under development relative to the performance of an established system.

89

Bibliography

[1] T. R. Torben, J. A. Glomsrud, T. A. Pedersen, I. B. Utne, and A. J. Sørensen, “Automatic
simulation-based testing of autonomous ships using gaussian processes and temporal logic,”
Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability,
vol. 0, no. 0, p. 1748006X211069277, 0.

[2] R. Lee, O. J. Mengshoel, A. Saksena, R. W. Gardner, D. Genin, J. Silbermann, M. Owen, and
M. J. Kochenderfer, “Adaptive stress testing: Finding likely failure events with reinforcement
learning,” Journal of Artificial Intelligence Research, 2020.

[3] R. Lee, M. J. Kochenderfer, O. J. Mengshoel, G. P. Brat, and M. P. Owen, “Adaptive stress
testing of airborne collision avoidance systems,” in 2015 IEEE/AIAA 34th Digital Avionics
Systems Conference (DASC), pp. 6C2–1–6C2–13, 2015.

[4] J. B. Sørensen, “Adaptive stress testing of situational awareness for an autonomous urban
passenger ferry.,” 2021.

[5] “Autonomy vocabulary defintion.” https://www.vocabulary.com/dictionary/autonomy.
Accessed: 12-11-2021.

[6] A. J. Sørensen, Marine Cybernetics, Towards Autonomous Marine Operations and Systems.
Department of Marine Technology, Norwegian University of Science and Technology, 2018.

[7] L. R. A. A. P. Grewal, Mohinder S.; Weill, “Global positioning systems, inertial navigation,
and integration,” Hoboken, New Jersey, USA: Wiley-Interscience, John Wiley Sons, Inc,
2007.

[8] “Ieee standard adoption of iso/iec 15026-3 – systems and software engineering – systems and
software assurance – part 3: System integrity levels,” IEEE Std 15026-3-2013, pp. 1–51, 2013.

[9] “Ieee standard glossary of software engineering terminology,” IEEE Std 610.12-1990, pp. 1–84,
1990.

[10] J. Kapinski, J. V. DeshmuKh, X. Jin, hisahiro ito, and K. Butts, “Simulation-based approaches
for verification of embedded control systems: An overview of traditional and advanced mod-
eling, testing, and verification techniques,” IEEE CONTROL SYSTEMS MAGAZINE, 2016.

[11] C. Kern and M. R. Greenstreet, “Formal verification in hardware design: A survey,” in ACM
Transactions on Design Automation of Electronic Systems (TODAES), p. 123–193, TODAES,
1999.

[12] A. Pnueli, “The temporal logic of programs,” Foundations of Computer Science, p. 46–57,
1977.

[13] R. W. Gardner, D. Genin, R. McDowell, C. Rou↵, A. Saksena, and A. Schmidt, “Probabilistic
model checking of the next-generation airborne collision avoidance system,” Digital Avionics
Systems Conference (DASC), 2016.

[14] J.-P. Katoen, “The probabilistic model checking landscape,” ACM/IEEE Symposium on Logic
in Computer Science, p. 31–45, 2016.

90

[15] J. H. Gallier, “Logic for computer science: Foundations of automatic theorem proving,”
Courier Dover Publications, 2015.

[16] J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, R. Gardner, A. Schmidt, E. Zawadzki, and
A. Platzer, “A formally verified hybrid system for the next-generation airborne collision
avoidance system,” International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), 2015.

[17] H. Krasowski and M. Altho↵, “Temporal logic formalization of marine tra�c rules,” in 2021
IEEE Intelligent Vehicles Symposium (IV), pp. 186–192, 2021.

[18] T. Torben, O. Smogeli, I. Utne, and A. Sørensen, “On formal methods for design and verifi-
cation of maritime autonomous surface ships,” 04 2022.

[19] O. Smogeli and T. Augustson, “Third party hil testing of safety critical control system software
on ships and rigs,” vol. 1, 07 2012.

[20] T. Johansen, A. Sørensen, O. Nordahl, O. Mo, and T. Fossen, “Experiences from hardware-
in-the-loop (hil) testing of dynamic positioning and power management systems,” 09 2007.

[21] Y. Annapureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-taliro: A tool for tempo-
ral logic falsification for hybrid systems,” International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, p. 254–257, 2011.

[22] D. T. D. A. K. J. J. X. . D. J. V. Dreossi, T., “E�cient guiding strategies for testing of temporal
properties of hybrid systems,” NASA Formal Methods Symposium, p. 127–142, 2015.

[23] R. Lee, O. Mengshoel, A. Saksena, R. Gardner, D. Genin, J. Brush, and M. J. Kochenderfer,
“Di↵erential adaptive stress testing of airborne collision avoidance systems,” in 2018 AIAA
Modeling and Simulation Technologies Conference, p. 1923, 2018.

[24] M. Koren, S. Alsaif, R. Lee, and M. J. Kochenderfer, “Adaptive stress testing for autonomous
vehicles,” in 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1–7, 2018.

[25] M. Koren and M. J. Kochenderfer, “E�cient autonomy validation in simulation with adaptive
stress testing,” in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 4178–
4183, 2019.

[26] K. D. Julian, R. Lee, and M. J. Kochenderfer, “Validation of image-based neural network
controllers through adaptive stress testing,” in 2020 IEEE 23rd International Conference on
Intelligent Transportation Systems (ITSC), pp. 1–7, 2020.

[27] R. Lee, J. Puig-Navarro, A. K. Agogino, D. Giannakoupoulou, O. J. Mengshoel, M. J. Kochen-
derfer, and B. D. Allen, “Adaptive stress testing of trajectory planning systems,” in AIAA
Scitech 2019 Forum, p. 1454, 2019.

[28] R. J. Moss, R. Lee, N. Visser, J. Hochwarth, J. G. Lopez, and M. J. Kochenderfer, “Adaptive
stress testing of trajectory predictions in flight management systems,” in 2020 AIAA/IEEE
39th Digital Avionics Systems Conference (DASC), pp. 1–10, IEEE, 2020.

[29] K. El-Awady, “Adaptive stress testing for adversarial learning in a financial environment,”
arXiv preprint arXiv:2107.03577, 2021.

[30] S. J. Russell and P. Norvig, Artificial Intelligence : a Modern Approach, third edition. Pearson
Education Limited, 2016.

[31] B. Wang, “Monte carlo tree search: An introduction.”

[32] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” vol. 2006, pp. 282–293, 09
2006.

[33] E. Brekke, Fundamentals of Sensor Fusion: Target tracking, navigation and SLAM. 2021.

[34] “Adaptive stress testing python toolbox documentation.” https://ast-toolbox.
readthedocs.io/en/latest/tutorial.html#introduction. Accessed: 14-11-2021.

91

[35] T. Dingsøyr, T. Dyb̊a, and N. Moe, “Agile software development: An introduction and
overview,” Agile Software Development, by Dingsøyr, Torgeir; Dyb̊a, Tore; Moe, Nils Brede,
ISBN 978-3-642-12574-4. Springer-Verlag Berlin Heidelberg, 2010, p. 1, vol. -1, p. 1, 04 2010.

[36] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wil-
son, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,
İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Hen-
riksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van
Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[37] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk,
M. Brett, A. Haldane, J. F. del Ŕıo, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming
with NumPy,” Nature, vol. 585, pp. 357–362, Sept. 2020.

[38] R. J. Moss, “POMDPStressTesting.jl: Adaptive stress testing for black-box systems,” Journal
of Open Source Software, vol. 6, no. 60, p. 2749, 2021.

[39] R. Lipkis and A. Agogino, “Adastress.jl.”

[40] M. Coren, A. Corso, R. Moss, and X. Ma, “Adaptivestresstestingtoolbox.py.”

[41] P. Sinclair and A. Prengere, “Mcts implementation.”

[42] H. Baier and P. I. Cowling, “Evolutionary mcts for multi-action adversarial games,” in 2018
IEEE Conference on Computational Intelligence and Games (CIG), pp. 1–8, 2018.

[43] H. Baier and P. I. Cowling, “Evolutionary mcts with flexible search horizon,” in AIIDE, 2018.

[44] A. S. Rahmathullah, Á. F. Garćıa-Fernández, and L. Svensson, “Generalized optimal sub-
pattern assignment metric,” CoRR, vol. abs/1601.05585, 2016.

92

Adaptive Stress Testing of Situational Aw
areness for an Autonom

ous Passenger Ferry
Johan Bakken Sørensen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

Johan Bakken Sørensen

Adaptive Stress Testing of Situational
Awareness for an Autonomous
Passenger Ferry

Master’s thesis in Engineering and ICT
Supervisor: Øyvind Smogeli
Co-supervisor: Erik Wilthil and Børge Rokseth
June 2022M

as
te

r’s
 th

es
is

