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Abstract

Address clustering breaks the pseudonymity of cryptocurrencies by
linking multiple addresses controlled by one user to one entity. In this
thesis, we analyze existing clustering heuristics based on common-input-
ownership and one-time change addresses for Bitcoin transactions. We
propose new heuristics based on an optimal combination of properties
and implement them with Graphsense Cryptoanalytics platform, Python,
and MongoDB on two data sets with real transactions from the Bitcoin
blockchain. Our proposed heuristics aim to achieve adequate reduction
ratios, while evading false positive results by using strict properties for
defining OTC addresses and not including transactions with coin mixing
characteristics in the clustering.

Graphsense Cryptoanalytics platform’s built-in clustering method
is the standard common-input-ownership heuristic which includes all
transactions when performing address clustering. Our redefined common-
input-ownership heuristic combined with our fairly strict OTC address
heuristic achieves 71.30% of the address reduction ratio, but with a
definite lower occurrence of false positive results. The experimental
results make a strong case for Graphsense to change its address clustering
method and switch to our variation, which provides more reliable results.

We also looked into methods for clustering transactions obfuscated
by coin mixing strategies, mainly for shared CoinJoin transactions. Our
proposed clustering heuristics can be applied to sub-transactions detected
by linking the sums of input and output values in CoinJoin transactions.
A method for achieving this is discussed, but no experimentation was
conducted due to the complexity of the problem.





Sammendrag

Ved å gruppere flere kryptovaluta-adresser til en bruker basert på
informasjon som er tilgjengelig på blokkjeden er anonymiteten for transak-
sjoner svært sårbar. I denne masteroppgaven undersøker vi eksisterende
heuristikker for adressegruppering basert på felles eierskap av input-
adresser og på å finne OTC-adresser – adresser generert for å motta
vekslepenger i transaksjoner. Vi foreslår nye heuristikker basert på en
optimal kombinasjon av eksisterende heuristikker og andre egenskaper,
og implementer dem med Cryptoasset Analytics Platform, Python, og
MongoDB. Vi bruker to datasett med ekte transaksjoner fra Bitcoin sin
blokkjede for å teste heuristikkene. Våre foreslåtte heuristikker er laget
med mål om å oppnå tilstrekkelige reduksjonsforhold og unngå falske
positive resultater. Dette blir oppnådd ved å bruke strenge krav for hva
som definerer en OTC-adresse, og ved å ikke inkludere transaksjoner med
egenskaper tilhørende coin mixing transaksjoner.

Cryptoasset Analytics Platform har en innebygget grupperingsmetode.
Denne er en standard heuristikk for felles eierskap av input adresser,
som inkluderer alle transaksjoner når adressegruppering blir utført. Vår
redefinerte felles input eierskap heuristikken kombinert med vår strenge
OTC-addresse heuristikk oppnår 71.30% av adressereduksjonsforholdet,
men med en utvilsomt lavere forekomst av falsk-positive resultater. De
eksperimentelle resultatene argumenterer for at Graphsense burde endre
sin adressegrupperingsmetode til vår foreslåtte variant, som gir mer
pålitelige resultater.

Vi har også sett på metoder for å gruppere transaksjoner obfuskert av
coin mixing-strategier, hovedsakelig CoinJoin-transaksjoner. Vår foreslåtte
grupperingsheuristikk kan brukes på deltransaksjoner avdekket av å
studere summene som overføres i input- og outputverdiene. En metode
for å utføre dette er diskutert, men ikke eksperimentert med på grunn av
problemets kompleksitet.
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Chapter

1Introduction

1.1 About Bitcoin

Bitcoin is the first-ever decentralized cryptocurrency, introduced by Satoshi Nakamoto
in 2008 [1]. It is currently the most used cryptocurrency in the world [5]. Bitcoin was
the first payment system to use a fully decentralized architecture, where distributed
systems (or miners) are used to confirm payments.

Decentralization is achieved through the use of public ledgers in the form of
blockchains [5]. The blockchain is distributed across a network of nodes running the
cryptocurrency’s client to ensure a secure and decentralized record of transactions [6].
Transactions are confirmed by so-called miners - nodes that collaborate in adding
blocks to the blockchain through proof-of-work [7]. This is achieved by forming a
mining pool and combining the hardware e�ort of each miner to solve computationally
hard problems. A mining reward in the form of currency is awarded and split among
the participants of the mining pool to give an incentive to mine [5]. A cryptocurrency
network will usually consist of several mining pools which compete against each other
in solving problems [5].

A Bitcoin transaction always contains a number of input and output addresses,
equivalent to the transaction’s sender(s) and receiver(s). A user can control multiple
addresses [8]. Each address stores a given Bitcoin value, and each input address
will correspond to an output address from a previous transaction [9] (see section
3.1 for more details). The addresses do not correspond directly with a user identity;
they are pseudonyms generated by a user’s private key, otherwise known as Bitcoin
addresses. However, it is considered impossible to retrieve a user’s private key from
a public Bitcoin address [10].

An address does not correspond directly with a user’s identity. However, because
all the transactions are available on public ledgers, Bitcoin’s is pseudonymous [2]. An
input address in a Bitcoin transaction always corresponds to the address of an output

1



2 1. INTRODUCTION

from a previous transaction. This, along with the availability of transactions on public
ledgers, make it easy to figure out transactional interactions between public Bitcoin
addresses. This possibility has raised many questions regarding Bitcoin’s anonymity.
Later in this thesis, we show that it is possible to perform deanonymization techniques
based on address clustering. This allows us to link multiple Bitcoin addresses to one
user by inspecting transaction history and relating addresses to each other.

1.2 Motivation

The trustworthiness of the Bitcoin protocol has been questioned for a long time due
to its pseudo-anonymity, and the potential to perform deanonymization attacks based
on publicly available information on the blockchain [11]. Furthermore, the popularity
of Bitcoin has exploded in the last decade, reflected in both the number of monthly
transactions [12] and the significantly higher value as a currency since its release.
However, the price of Bitcoin remains very volatile. Since starting this master thesis
in January 2022, the price has decreased roughly 50% (as of June 2022).

The anonymity of Bitcoin has been an issue since its release and was even
questioned in Satoshi Nakamoto’s original Bitcoin paper, stating that further work
on Bitcoin’s anonymity was essential [1]. A few deanonymization attacks have also
been proven possible. The most prominent ones involve relating addresses to one
common entity, detecting anomalies, and eavesdropping on network tra�c [13, 7, 14].

In response to the anonymity problem of Bitcoin, several privacy-focused cryp-
tocurrencies have emerged, most notably Zcash and Monero. Zcash is an imple-
mentation of Bitcoin and was forked o� the Bitcoin codebase in 2015 [3]. Zcash
uses zero-knowledge proofs, a method for verifying information without revealing
the actual information itself [15]. This way, transactions can be verified by anyone
without revealing any transactional data [3]. Monero is another privacy-focused
cryptocurrency that solves the traceability issues of Bitcoin by obfuscating addresses
and amounts using ring signatures [3]. Nevertheless, attacks on Zcash and Monero
have been proven possible through network analysis (see section 1.4.2).

Several anonymity-enhancing properties have also been proposed for Bitcoin,
mainly coin mixing services. These services operate externally from Bitcoin and work
without requiring changes to the Bitcoin core protocol [16]. Coin mixers obfuscate
addresses and amounts within transactions (see section 3.3.2 for more details).

With more anonymity properties being implemented in cryptocurrencies, there
is a bigger need than ever to investigate their potential socio-economic e�ects.
The most dire consequence of increased anonymity is the use of cryptocurrencies
in criminal activities such as money laundering, ransomware/scams/frauds, drug
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tra�cking, or even financing terrorism [4]. As shown in Figure 1.1, the volume
of cryptocurrency used for illicit transactions is quite significant. Therefore, it is
important to understand the potential market value of various tools to help detect such
crimes. Deanonymization tools for public blockchains help law enforcement agencies
to investigate illegal financial activities involving cryptocurrencies. For example, in
2020, the International Revenue Service (IRS) published a bounty of $625.000 for
producing relevant results for investigations of the privacy-focused cryptocurrencies
Monero and Lightning [17]. This bounty was awarded to the blockchain analytics
firms Chainanalysis and Integra FEC, for tracing illegal activities within these
cryptocurrencies [18].

Figure 1.1: Volume of cryptocurrencies used in illicit transactions [4]

1.3 Methodology

Our work in this thesis was conducted using GraphSense Cryptoasset Analytics
Platform. This open-source tool provides an interface for running advanced analytics
on several cryptocurrencies. Graphsense performs address clustering on transactions
using the standard common-input-ownership heuristic (see section 3.2.1). By using
the built-in methods of Graphsense’s semi-public demo API, we tested and analyzed
existing clustering methods to find possible improvements in our proposed address
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clustering heuristics. However, we also realized that coin mixing could pose a massive
problem for address clustering.

In many cases, coin mixing strategies influence the clustering results that can be
achieved. Therefore, we opted to try and exclude coin mixed transactions from our
clustering (See chapter 3 for more details). This is feasible because most transactions
do not use coin mixers [16]. However, the di�culty of performing deanonymization
techniques on coin mixing transactions was considered and studied, as discussed in
section 3.3.3.

1.4 Related work

In this thesis, we have explored a few specific deanonymization methods in Bitcoin
in the form of address clustering. However, this is only one of many ways to perform
deanonymization in Bitcoin and other cryptocurrencies. Since the Bitcoin blockchain
is public, it is possible to create transaction graphs based on the transaction history
available. This is known as graph analysis [19]. It is also possible to engage in the
Bitcoin network and analyze IP tra�c that the Bitcoin nodes broadcast [7]. Anomaly
detection techniques on a dataset of Bitcoin transactions is also possible [14]. We
briefly touch upon these strategies in this section.

1.4.1 Transaction graph analysis

A transaction graph illustrates the flow of cryptocurrency value between all Bitcoin
addresses on a blockchain. It is based entirely on the history of available transactions.
It can be used to analyze the transactional relationship between a selection of
participants over time [20]. By constructing graphs of the transaction history, graph
learning along with address reduction heuristics can be used to analyze them [19].
With a transaction graph, it is possible to study certain aspects of vertexes, such as
degree, currency amount accumulated on the address, holding time of currency, series
of active usage timestamps, and influx and e�ux of the currencies of an address [19].
Furthermore, learning about the participants’ behavior makes it possible to identify
addresses belonging to large organizations. Such addresses, in most cases, have a
very high vertex degree [19].

Reid and Harrigan [20] analyzed an alleged Bitcoin theft of 25,000 BTC, which
took place in 2011. At the time, 25,000 BTC was worth roughly half a million dollars.
With the help of transaction graphs and shortest path analysis between vertices, they
could trace the flow of the stolen Bitcoin. They eventually figured out that the flow
initially split between addresses would later merge, validating the likelihood of these
addresses belonging to a single user [20].
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1.4.2 Deanonymization based on network analysis

Biryukov, Khovratovich, and Pustogarov [7] show that it is possible to set up a
Bitcoin core node and participate in the Bitcoin network as a passive eavesdropper.
This is a feasible method for deanonymization for identifying the public IP addresses
behind the participants by their established connection to the Bitcoin network.
However, the attacker must maintain a connection to all participants in a network, as
long as they are eavesdropping. Reid and Harrigan [20] also claimed that analyzing
several public keys used simultaneously might reveal common ownership. This
was later proven possible by Fanti and Viswanath [21], who showed a weakness
in the transaction broadcasting protocol performed by participants in the Bitcoin
network. By conducting a timestamp analysis on the network tra�c broadcasted
from a transaction, IP addresses can be linked to the pseudonyms used on the public
blockchain. Biryukov and Tikhomirov [3] also proved that such timing attacks are
possible on privacy-focused cryptocurrencies such as Zcash and Monero. Many Bitcoin
users have resorted to using the anonymizing service Tor as a preventive measure
against such attacks. However, Biryukov and Pustogarov [22] proved that this service
enables new attacks that even a low-resource attacker can exploit. Attackers can act
like a Man in the Middle and gain complete control of the information flows of all
users who choose to use Bitcoin over Tor. This means both being able to learn their
IP addresses, as well as stopping or delaying transactions and blocks [22].

1.4.3 Detecting fraudulent transactions with the K-means
algorithm

The K-means algorithm is a heuristic method used to solve part of the NP-hard
problem of clustering a number of data points into K clusters. It makes use of
Euclidean distances, which is a mathematical measure for the di�erence between
data points. In a cluster, this distance is to be minimized [14].
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It is also possible to execute this algorithm on Bitcoin transactions by taking into
account the following [14]:

1. Mean node degree of users transacted with

2. Variance of node degree of users transacted with

3. Mean transaction amount

4. Variance of transaction amount

Hirshman, Huang, and Macke [14] were able to run an implementation of the K-
means algorithm on real Bitcoin transactions and detect users that behaved di�erently
from the rest. These users performed transactions that did suggest some sort of
money laundering scheme. However, there was no way to know for sure. A weakness
with the K-means algorithm is that it usually requires a lot of data pre-processing
and a-priori knowledge of the type of data to be analyzed. Having already defined
data that points toward money laundering cases helps label future hypothetic money
laundering cases [14]. In a later study by Monamo, Marivate, and Twala, [23], it is
proven that higher accuracy detection of fraudulent transactions is possible by using
labeled data from previously known cases. They also use a trimmed version of the
K-means algorithm, which removes the most extreme values from the dataset and
creates more representative clusters. A-priori knowledge of the optimal number of
K clusters is also advantageous. Figuring this out is tedious and requires thorough
studies and familiarity with the dataset. However, in 2020 a method of finding the
optimal K value on a dataset was proposed by Sinaga, and Yang [24]. This method
involves performing the algorithm in several iterations by initially creating a few but
large clusters. In the later iterations, clustering is done within the clusters created
during the earlier iterations [24].

1.5 Scope of the thesis

The scope of deanonymization of cryptocurrencies is enormous. We do not have the
means to cover all aspects of this in this thesis. We have decided to focus only on
Bitcoin because it is the most popular cryptocurrency worldwide. We do not cover
any aspects related to other cryptocurrencies in the main part of this thesis. We
only cover particular deanonymization techniques related to addressing clustering
and reducing the number of possible entities. We do not cover any deanonymization
methods mentioned in section 1.4. We also cover some anonymity enhancements
related to Bitcoin, mainly coin mixing strategies, as well as methods of working
around them.
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1.6 Ethical concerns

There is a much sought-after need to investigate illicit transactions within cryp-
tocurrencies. However, since maintaining a high level of privacy is crucial for the
stability and longevity of cryptocurrencies, one must consider the balance between
maintaining users’ privacy and hindering illegal activities, as both cannot be ful-
filled simultaneously. In this thesis, we propose a few alternate ways to perform
deanonymization on Bitcoin transactions and share new ideas for working against
anonymity-enhancing techniques such as coin mixing. We discourage malicious use
of our proposed ideas, as it can potentially violate the privacy of Bitcoin users. The
transactions analyzed in this thesis are real transactions, but we do not attempt
to reveal any real identities. We also do not provide any information on specific
transactions, only which blocks they belong to.
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2Tools and technology

2.1 GraphSense Cryptoasset Analytics Platform

Graphsense [25] is a digital tool used for investigations of monetary flows and for
running advanced customized analytics on cryptocurrency data gathered from public
blockchains [26].

Graphsense was originally part of TITANIUM, a project run from May 1, 2017,
to April 30, 2020, by a team of research organizations, industry partners, and law
enforcement agencies [27]. The EU Commission funded TITANIUM with a total
budget of 5 million euros to provide law enforcement agencies with tools capable of
creating court-proof evidence of illicit activity involving cryptocurrencies [28]. When
the project ended, six software tools had been developed, Graphsense being one of
them. The Australian Institute of Technology (AIT) further developed Graphsense
with funding from the Austrian Research Promotion Agency’s KIRAS program
KRYPTOMONITOR [29].

Graphsense provides a graph-centric perspective on cryptocurrency transactions,
indicating the flow of currency between addresses over time [12]. While Graphsense
supports multiple major cryptocurrencies such as Bitcoin, Bitcoin Cash, Litecoin,
Zcash, and Ethereum [30], this thesis only focuses on Bitcoin. Through a REST-
API, Graphsense o�ers data on all transactions ever performed and address sets -
collections of Bitcoin addresses that are likely controlled by the same real-world entity
[26]. The address sets are computed using address clustering methods and stored in
the Graphsense database as entities. Graphsense currently applies the common-input-
ownership heuristic exclusively for address clustering [26]. This heuristic assumes
that input addresses used in the same transactions are controlled by one user [31].
This heuristic, along with its weaknesses and limitations, is explored in detail later
in this thesis.

By contacting the Graphsense team [32], we got access to the semi-public Graph-

9
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Sense demo through an API key. The number of requests was initially restricted to
1,000 per hour due to limited server capacity. However, the number was temporarily
increased to 10,000 per hour during the final weeks of research. The communication
with the Graphsense team is displayed in Appendix A.

The challenges of Graphsense remain in the growing volume, velocity, and seman-
tically poor nature of the digital currency transaction data [12]. For example, Bitcoin
alone processes around 250,000 transactions every day [33], causing scalability issues
for crypto-analytics platforms such as Graphsense.

2.2 Virtual Machine

Through the Openstack (SkyHiGh) platform at NTNU [34], a Virtual Machine (VM)
with 128GB RAM and 16 processor cores was assigned to this project. The request
submitted to NTNU for Openstack resources is shown in Appendix B. The VM was
accessed by linking it to the public part of an SSH key pair generated on our personal
machines. Initially, the intention was to run the Graphsense projects on the VM.
However, it was unnecessary as the Graphsense demo API, hosted on even more
powerful hardware components [25], became available. So instead, the VM was used
for running clustering algorithms and storing transactions and other relevant data
on a MongoDB database.

2.3 MongoDB

MongoDB is a NoSQL database program that stores data in BSON format [35].
BSON stands for Binary JSON and is a binary serialization of JSON-like documents,
allowing faster parsing, which results in faster querying and storage of data [36]. The
MongoDB program was hosted on the VM, with one database containing multiple
collections. Each collection contains one document for each entry, where an ’_id’
field is used as a unique primary key for each document.

2.3.1 Robo 3T

Robo 3T is a lightweight, open-source Graphical User Interface (GUI) for MongoDB,
used to visualize and interact with collections and documents [37]. Robo 3T was
used in this project for simple operations such as renaming and deleting collections,
executing simple queries, and inspecting the relevant documents, as seen in Figure
2.1.
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Figure 2.1: Visualization of a MongoDB document based on a query - a Bitcoin
transaction with an equal number of inputs and outputs

2.4 Python

The Python programming language was chosen for this project. Python 3.9 [38] was
used, with Visual Studio Code [39] as Integrated Development Environment (IDE).
Python was chosen because of its high readability and ability to perform complex
tasks with minimal code; it also has an extensive selection of packages and libraries
which are applicable to this project.

2.4.1 Packages

Packages were installed using Pip [40], the standard package manager for Python, in
a virtual environment. The following packages are the most relevant for this project.

Graphsense Python Client [41]: A Python interface for interacting with the
Graphsense REST API and performing cryptocurrency analytics.

matplotlib [42]: A library for creating visualizations in Python, used for creating
plots and graphs in this thesis.

pymongo [43]: A tool for working with mongoDB in Python.

dotenv [44]: A module that allows environment variables to be specified in a “.env”
(dot-env) file.
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2.4.2 Version control - git

Git [45] was used for collaboration and version control. It was also beneficial for
accessing scripts from the VM. Github was used for hosting the git repository.

2.5 Data sets

For clustering and analytics, two datasets were used. First, a collection of transactions
from various parts of Bitcoin’s history was assembled. Then, a script was created
to retrieve these transactions and relevant data from Graphsense and store it in
MongoDB for easy accessibility. The Bitcoin blockchain [46] consists of over 700,000
immutable chronologically ordered blocks, each containing a varying number of
transactions [47]. For each 100,000th block, the surrounding blocks containing 10,000
transactions were included in the data set.

This resulted in data set 1 : 73,798 transactions, ≥10,000 from each ≥100,000
block:

Figure 2.2: Transactions in data set 1. Total number of transactions is 73,798

– Block ≥100,000 (Dec. 2010): block 98,827 - block 101,174 (2348 blocks)

– Block ≥200,000 (Sep. 2012): block 199,962 - block 200,039 (78 blocks)

– Block ≥300,000 (May 2014): block 299,980 - block 300,021 (42 blocks)

– Block ≥400,000 (Feb. 2016): block 399,998 - block 400,003 (6 blocks)
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– Block ≥500,000 (Dec. 2017): block 499,999 - block 500,002 (4 blocks)

– Block ≥600,000 (Oct. 2019): block 599,998 - block 600,002 (5 blocks)

– Block ≥700,000 (Sep. 2021): block 699,993 - block 700,008 (16 blocks)

The number of Bitcoin transactions processed by the blockchain daily has been
steadily increasing up to around 250,000 in 2021 [48]. While data set 1 has a
relatively small sample size, it contains a collection of transactions from di�erent
parts of Bitcoin history, which is interesting when reviewing analytics performed on
it. Therefore, the second data set contains a larger number of sequential transactions
- all transactions performed on one specific date.

February 1, 2022 was chosen as the date, resulting in data set 2 : 271,146
transactions from block 721,253 to block 721,406.

– (Feb. 1, 2022): block 721,253 - block 721,406 (144 blocks)

The scripts for generating the data sets are explored in detail in section 4.2.
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3Theory background

3.1 The structure of Bitcoin transactions

3.1.1 Bitcoin Client

Bitcoin clients are software implementations of the Bitcoin protocol, each having a
complete copy of the blockchain [49]. Bitcoin clients are responsible for private key
generation and verification and broadcasting of transactions. The Bitcoin system
runs on a peer-to-peer network where each node is a device running a Bitcoin client
[50].

3.1.2 Bitcoin Wallet

Bitcoin Wallets are lightweight software used to store private keys, giving users access
to the keys that can be used to sign a transaction and spend available Bitcoins (BTC)
[9].

3.1.3 Outputs

Outputs are the instructions for spending Bitcoin, containing a recipient address and
a value. A transaction can have multiple outputs with arbitrary values set by the
transaction’s sender, but the total output value cannot exceed the combined value of
the inputs [9].

3.1.4 Inputs

Inputs are references to unspent outputs [9]. As illustrated in Figure 3.1, the input of
each transaction is linked to the output received from another transaction, resulting
in the input having the same value and address as the referenced output. As Bitcoin
input values can only be divided by being spent [31], the total input value (minus
the transaction fee) must be spent in a transaction. If a sender wants to spend less
in a transaction than the input value, the remaining value must be sent back to the

15
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sender in the form of a change output. Transaction T4 in Figure 3.1 is an example of
this, where the sender has 0.5 BTC to spend, but he only wants to send 0.3 BTC to
AddrF . 0.02 BTC is spent as a fee, and 0.18 is sent back to the sender on AddrG

(which the sender also controls). More about this in section 3.2.2.

3.1.5 Transaction fees

A transaction fee is a compensation value that is included in most transactions. It is
given to miners who perform the work to confirm transactions on the public blockchain
[9]. Lager fees result in a bigger incentive for a miner to include the transaction in a
block, while a small fee might result in a delayed transaction. Mathematically, the
transaction fee is the di�erence between the input and output values, as shown in
Figure 3.1.

Figure 3.1: Bitcoin transactions including fees
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3.2 Bitcoin Address clustering

Address clustering is the process of linking multiple addresses controlled by one user
to one entity based on information from the blockchain [31]. Controlling an address is
the ability to use this address as an input in a Bitcoin transaction, which is achieved
by having access to the address’s corresponding private key. Address clustering can,
in many cases, have false positive or false negative results, defined as the following
[13]:

False positive Include addresses that are not controlled by the same user in the
same cluster.

False negative Not include addresses controlled by the same user in the cluster.

From a legal perspective, a false positive case means that an algorithm falsely
claims that two addresses belong to the same entity. On the other hand, a false
negative case is when the algorithm misses identifying that two di�erent addresses
belong to the same entity.

3.2.1 Common-input-ownership

Figure 3.2: Common-
input-ownership

One of the core methods for address clustering is the
common-input-ownership heuristic (also called multi-
input heuristic or co-spent heuristic). If one transaction
has multiple input addresses, it can be assumed that they
all belong to the same user [31].

A sender using an input address is required to have
access to its corresponding private key and can therefore
be considered the owner of the address. As addresses
are reused, the number of entities can be reduced sig-
nificantly. For example, if you have two transactions T1
and T2 with input addresses AddrA, AddrB and AddrA,
AddrC respectively, not only are the input addresses in
the individual transactions linked, but they also share the input address AddrA. In
other words, all of the addresses can be linked to the same entity in this case. This
is illustrated in Figure 3.2.

Existing heuristics

Heuristic 1.1 (Nakamoto, Satoshi) If two or more addresses are inputs of the
same transaction, then all these addresses are controlled by the same user.
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This is the original common-input-ownership heuristic, and the one used by
Graphsense for its address clustering (see section 2.1). This heuristic has always been
a known privacy issue in Bitcoin. It was first mentioned in the Bitcoin whitepaper
[1] released three months prior to the first release of Bitcoin (version 0.1). In this
paper, it is stated that linking input addresses of multi-input transactions is said to
always be true. This fact has later become obsolete as coin mixing services such as
CoinJoin, designed to break this heuristic, have been released [13]. These services
obfuscate transactions by combining multiple transactions into one joint transaction,
resulting in a transaction with multiple input addresses owned by di�erent users [51].
This leads to joining the cluster of two di�erent users who have only participated in
one joint transaction. This clustering method is therefore considered a false positive,
leading to alternative heuristics being proposed to not involve these transactions in
the clustering.

Heuristic 1.2 (Ermilov et al.) If two or more addresses are inputs of the same
transaction with one output, then all these addresses are controlled by the
same user.

Ermilov et al. [52] restricts the original heuristic by only involving transactions
with one output, as a large number of multi-output transactions are joint transactions
created by coin mixing. As shown in Figure 3.3, only ≥ 16% of the transactions in
data set 1 fulfill this requirement, and only ≥ 26% of these are transactions with
multiple inputs. Using Heuristic 1.2, input addresses will be linked with a much
lower chance of including mixed transactions but with a significantly lower address
reduction ratio.

(a) Number of outputs for transaction in
data set 1.

(b) Single-output transactions with mul-
tiple inputs.

Figure 3.3: Occurrences of transactions with multiple inputs and one output.
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Our proposed heuristic

Excluding multiple-output transactions is a valid approach for minimizing the number
of wrongfully linked addresses due to coin mixing. However, it will greatly impact
the number of address reductions that can be done. As shown in Figure 3.3a, most
Bitcoin transactions have two outputs. One of these outputs will, in many cases, be
a change output [13] - and not a product of coin mixing. These transactions have
only one actual receiver, as the other output is received by the sender itself. Because
of this, the following heuristic is proposed:

Heuristic 1.3 (our proposed heuristic) If two or more addresses are inputs of
the same transaction with one or two outputs, then all these addresses are
controlled by the same user. If the transaction has two outputs, one of these
must be a change output for the assumption to be valid.

Finding the change address of a transaction, or even knowing if there is one, is
not trivial. There are several proposed heuristics to address this challenge, but none
of them are entirely accurate. Our approach is to check for a self-change address and
use our proposed OTC heuristic 2.4, explored in section 3.2.2.

3.2.2 One-time Change Address

The Change Output

Figure 3.4: The change output

As explained in section 3.1.4, an input is a ref-
erence to an unspent output from a previously
received transaction. However, the entire value
must be spent in the transaction not to lose
the remaining value in transaction fees. For a
Bitcoin transaction to be valid, the sum of in-
put values must be equal to or higher than the
sum of output values. Therefore, if one wants
to spend less BTC in a transaction than the
value of the referenced output minus the fee, an
additional output must be created, where the
output address is one controlled by the sender -
this is the change output. If no change output
is used, the remaining value of the input will
be spent as a fee, as shown in transaction T1
in Figure 3.4.

The value for the change output in the trans-
action sent back to the sender is the change
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value, and the respective address is the change address. When conducting a trans-
action where change is required, the user could create a separate output for the
remaining value and specify their own address as the output address. The address can
be the same as the input address (self-change address) or a di�erent one controlled
by the sender. If this is not done manually by the user, a change output is created
by the Bitcoin client with a generated address [13]. This address is now controlled
by the user and is meant to be used only once as an input later. This is known as
the One-Time Change (OTC) Address. Both variations of the change output are
illustrated in transaction T2 and T3 in Figure 3.4.

Example scenario: Bob receives a payment from Alice of 2 BTC; Alice creates
a transaction with an output with a value of 2 BTC and Bob’s address as the output
address. Change is not accounted for in this example.

1 T1 =

2 Inputs :

3 I1: { Address : AddrAlice , Value : 2 }

4 Outputs :

5 O1: { Address : AddrBob , Value : 2 }

Bob now has 2 BTC. He wants to share this with Carol, so he uses a Bitcoin
client to create a new transaction with an output value of 1 BTC and Carol’s address
as the output address. However, Bob cannot set 1 BTC as input for this transaction
since he must spend the entirety of the output sent from Alice. Therefore, the input
must be the same as the output in Alice’s transaction T1(O1) = T2(I1) Bob uses 2
BTC as the input value and creates two outputs of 1 BTC - one for Alice and one
for himself. Bob has two options when creating this transaction. The first is to use
a self-change address, where he specifies his own address and remaining value as a
change output in the transaction.

1 T2 self - change =

2 Inputs :

3 I1: { Address : AddrBob , Value : 2 }

4 Outputs :

5 O1: { Address : AddrCarol , Value : 1 }

6 O2: { Address : AddrBob , Value : 1 }

This is a viable option; Bob receives the change value of 1 BTC back to his
own address. However, now he has to use this same address as input for his next
transaction as well, which promotes address reuse, which is not advisable [1]. He
could also choose another address he controls that is not already included in the
transaction as the change output address, but this quickly becomes tedious and
chaotic when conducting multiple transactions. As mentioned, when the sum of the
output values is lower than the value of the input minus the fee (which in this case
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is zero), the Bitcoin client generates an OTC output. This is done automatically,
and when Bob creates a transaction like this,

1 T2 lower output value =

2 Inputs :

3 I1: { Address : AddrBob , Value : 2 }

4 Outputs :

5 O1: { Address : AddrCarol , Value : 1 }

the Bitcoin client will automatically generate this transaction:

1 T2 OTC =

2 Inputs :

3 I1: { Address : AddrBob , Value : 2 }

4 Outputs :

5 O1: { Address : AddrCarol , Value : 1 }

6 O2: { Address : AddrOT C , Value : 1 }

where the OTC address (AddrOT C), now controlled by Bob, is di�erent from his
original address and contains 1 BTC in value. He can now use this OTC output as
an input in a new transaction.

Finding the OTC address

Using OTC addresses is the most common way of handling change, as it is done
automatically and is considered safer in terms of privacy [13]. A self-change address
will be linked to the user with the common-input-ownership heuristic. A user-specified
change address is indistinguishable from an automatically generated OTC address if
done correctly. The focus will therefore be on finding the OTC address.

Analyzing a transaction and distinguishing which output is for change and which
is for spending is not easy. Finding the OTC addresses is more complicated than
linking the inputs using the common-input-ownership heuristic. Not all transactions
have change addresses (if the entirety of the value is spent), and some transactions
can be mixed transactions with shared senders (explained in section 3.3.2)

Having a reliable way of distinguishing the change output from transactions,
with as few false positives and, even more importantly, as few false negatives as
possible, could have a significant impact on the privacy of Bitcoin. These addresses
are often reused as inputs in later transactions, possibly in combination with other
input addresses. By having a heuristic for finding the OTC address, combined
with the common-input-ownership heuristic, the number of addresses can be reduced
substantially and be a big factor in the process of deanonymizing Bitcoin transactions.
This is explored further in section 3.2.3.
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Existing heuristics

In this section, three existing heuristics for finding the OTC address are analyzed
and used to propose a new one. All the heuristics share the following four properties:

(1) This is the first appearance of the one-time change output address O(AddrOT C)
on the blockchain

(2) The transaction is not a coin generation
(3) There is no address among the outputs that also appears in the inputs (self-

change address)
(4) The transaction has exactly two outputs

Because the OTC address is automatically generated from the Bitcoin client, this
is the first appearance of this address (1). Excluding transactions with self-change
addresses (3) is done because there is no need for an OTC address in these cases,
and the address will be clustered with the common-input-ownership heuristic. Only
including transactions with two outputs (4) is adequate and makes it easier to
determine the OTC address. This is because ≥ 90% of transactions have either one or
two outputs, as seen in Figure 3.3a. The reason for this is that transactions generated
by consumer wallets always have one or two outputs [53]. Additional properties are
mainly based on determining that the other output is not a change output. These
properties vary, as more limiting factors will result in a lower occurrence of false
positives but also a higher occurrence of false negatives.

Heuristic 2.1 (Meiklejohn et al.)
(1) This is the first appearance of the one-time change output address

OOT C(Addr) on the blockchain
(2) The transaction is not a coin generation
(3) There is no address among the outputs that also appears in the inputs

(self-change address)
(4) The transaction has exactly two outputs
(5) This is not the first appearance of the other output address Oother(Addr)

on the blockchain

Meiklejohn et al. [31] defines heuristic 2.1, where in addition to the properties
mentioned, the address which is not the OTC address must have been used as either
an input or output in a previous transaction for the assumption of the OTC address
to be valid. This is based on the fact that the OTC address is generated for the
specific transaction. Therefore, it is possible only for the other address to already
exist on the blockchain.
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Heuristic 2.2 (Zhang et al.)
(1) This is the first appearance of the one-time change output address

OOT C(Addr) on the blockchain

(2) The transaction is not a coin generation

(3) There is no address among the outputs that also appears in the inputs
(self-change address)

(4) The transaction has exactly two outputs

(5) Only the other output address Oother(Addr) is reused as an output address
in some later transaction

In response to Heuristic 2.1, Zhang et al. [13] proposes an alternative way of
determining non-change addresses. Instead of only looking at previous use of the
output addresses to determine this, their proposed heuristic checks for reuse of these
addresses as outputs in later transactions (5). The OTC address should only be
referenced once as an input address - so if an address is reused as an output in later
transactions, it is not an OTC address. This approach contributes positively to the
ratio of address reduction when combined with Heuristic 2.1 but could also lead to a
higher degree of false positive results [13].

Heuristic 2.3 (Ermilov et al.)
(1) This is the first appearance of the one-time change output address

OOT C(Addr) on the blockchain

(2) The transaction is not a coin generation

(3) There is no address among the outputs that also appears in the inputs
(self-change address)

(4) The transaction has exactly two outputs

(5) This is not the first appearance of the other output address Oother(Addr)
on the blockchain

(6) The number of inputs in transaction is not equal to two

(7) Oother(Addr) has not been OTC addressed in previous transactions

(8) The decimal representation of the change value OOT C(V alue) has more
than 4 digits after the dot

Ermilov et al.’s [52] approach to finding the OTC address goes in a di�erent
direction than Heuristic 2.2. Instead of trying to include more transactions in the
results, possibly resulting in more false positives, this heuristic limits heuristic 2.1
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by adding multiple factors, resulting in less positive results, both false and true.
However, the number of false negatives will be significantly reduced.

Not including transactions with two inputs (6) is a property for excluding mixed
transactions in the cluster. The number of outputs is two, and having the same
number of inputs as outputs will often be caused by the transaction being a result
of coin mixing [52]; therefore, there will be no change address that can be linked to
one user. As seen in Figure 3.5, ≥ 15% of the transactions in data set 1 have two
inputs. Another new factor in this heuristic is (7) to check if the other output has
been OTC addressed in any previous transactions. An OTC address is not reused,
and eliminating these cases will reduce the number of false positives. A very limiting
property in this heuristic is the determination of the validity of the OTC output
based on if the value has more than four digits after the dot (8). This property is
especially restrictive when analyzing transactions done early in the lifespan of Bitcoin
and can result in many false negatives. Because earlier transactions involved much
larger values due to the value of Bitcoin as a currency being much lower than it is
today, these transactions often had much higher input values with a few decimals,
leading to the change output value having the same property.

Figure 3.5: Number of inputs for transaction in data set 1
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Our proposed Heuristic

Considering the three existing heuristics for determining the OTC address, an ideal
heuristic that can achieve the optimal ratio of false positives and false negatives is
proposed. This is also the heuristics used to determine if a transaction has an OTC
address in H1.3.

Getting the lowest ratio of false negative results is already the purpose of Zhang et
al. [13], who does combine the existing heuristic (H2.1) with his variation (H2.2) in an
OR fashion. This approach will be referred to as H2.1+H2.2. However, as H2.1+H2.2
produces a significant amount of false positive results, the proposed heuristic adds
two additional properties to H2.1+H2.2. Of the three additional properties of H2.3,
only property (7) was included - the output address, which is not the change address,
has not been used as an OTC address in any previous transactions. Property (8) is
excluded because it leads to many false negative results, and property (6) because it
will exclude too many multi-input transactions, which has a considerable impact on
H1.3.

The Optimal Change Heuristic is included in our proposed heuristic, defined as
the following [53]:

Optimal Change Heuristic (Nick, Jonas David) The one-time change value
OOT C(V alue) is smaller than any of the inputs.

If the change value is higher than any of the input values, then the input would
not be necessary for the transaction and would only result in additional transaction
fees [51].

These additional properties should reduce the number of false positives consider-
ably while maintaining a su�cient address reduction ratio. Our proposed heuristic is
defined as the following.

Heuristic 2.4 (our proposed heuristic)

(1) This is the first appearance of the one-time change output address
OOT C(Addr) on the blockchain

(2) The transaction is not a coin generation

(3) There is no address among the outputs that also appears in the inputs
(self-change address)

(4) The transaction has exactly two outputs
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(5) This is not the first appearance of the other output address Oother(Addr)
on the blockchain OR only the other output address Oother(Addr) is
reused as an output address in some later transaction

(6) Oother(Addr) has not been OTC addressed in previous transactions

(7) The one-time change value OOT C(V alue) is smaller than any of the inputs.

3.2.3 Combination of common-input-ownership heuristic and
OTC heuristic

Figure 3.6: Combi-
nation of common-input-
ownership and OTC

The impact of finding the change address of a transaction
becomes clear when evaluating it in combination with the
common-input-ownership heuristic. Finding the change
addresses of transactions only adds one additional address
to the entity’s cluster. However, if these addresses reside
in di�erent clusters created by a common-input-ownership
heuristic, it could lead to the joining of clusters. As
illustrated in Figure 3.6, because the output address used
as a change address in T1 is reused as an input address in
T2, all of the input addresses can be linked to the same
cluster, even though the transactions share no common-
input addresses.

3.3 Di�culties in performing address clustering

This section will discuss methods that make it harder to perform address clustering
on transactions. The intentions of our proposed heuristics in section 3.2 are to
skip these transactions when performing clustering. This was the best approach for
avoiding false positive results, as most Bitcoin transactions are conducted without
the use of obfuscation techniques [54]. Only anonymity enhancements conducted
on the original Bitcoin protocol are discussed in this section, not forks of Bitcoin or
other cryptocurrencies with enhanced privacy like Zcash.

3.3.1 Unique key pairs

As stated in the original Bitcoin paper, a new key pair should be used for each new
transaction to prevent them from being linked to a common owner [1]. Many Bitcoin
users follow this recommendation, which is visible in the number of new addresses
generated each month compared to the number of transactions [12].
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3.3.2 Coin mixing

Coin mixing is a common strategy used in cryptocurrency transactions to enhance
anonymity, creating challenges for the clustering heuristics discussed in section 3.2.
A coin mixer will obfuscate cryptocurrency transactions in a way that complicates
tracing the flow of payments on the blockchain. Coin mixing is possible on any
cryptocurrency with a public ledger [55]. Because of the e�ectiveness of coin mixing
and the way it enhances anonymity, there have been discussions of potentially
implementing certain coin mixers directly on top of the Bitcoin core [8]. This change
has not been implemented, and the volume of mixed transactions is still small.
Therefore, regular address clustering algorithms are still e�ective on the vast majority
of Bitcoin transactions.

There are two kinds of coin mixers, centralized and decentralized [55]:

Centralized mixer Also known as tumblers, centralized mixers are single entity
mixing servers that receive deposits from multiple participants and either return
or forward the value from a di�erent participant’s address disassociated from
the sender’s original address [55]. This is illustrated in Figure 3.7. Some mixers
will also add delays or split the original value into separate transactions to make
the mixing harder to detect [56, 16]. A mixing server will typically take a mixing
fee of around 1-3% of the total Bitcoin value [57]. A concern with centralized
mixers is that they break the decentralization of Bitcoin transactions and learn
about the relation between the input and output addresses [58]. There is also no
guarantee that the service returns the value to the participant. Therefore, the
anonymity and reliability of such mixers heavily rely on the assumption that the
mixer does not log or reveal information about address relations and lawfully
returns the original value [58]. These types of mixing services are provided by
coin mixing companies such as Blender.io, ChipMixer, and FoxMixer [59].

Decentralized mixer Based on protocols like CoinJoin [55], decentralized mixers
create combined transactions with multiple users participating using one or
more input addresses. The output addresses and output values are shu�ed,
obfuscating the details of the transactions, making them very di�cult to
distinguish from one another [8]. The CoinJoin protocol is explored further in
section 3.3.3.

3.3.3 CoinJoin

CoinJoin is an open-source coin mixing protocol proposed in 2013 by Gregory Maxwell
[8]. As opposed to centralized mixing servers, CoinJoin is a decentralized, trustless
mixing protocol that does not require a third-party entity. CoinJoin is built on the
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Figure 3.7: Illustration of a centralized coin mixing scheme

principle of combining multiple transactions into a single combined transaction [8].
By being a decentralized protocol, CoinJoin eludes the main issues of using single
entity centralized mixing servers - revealing sensitive information to a third party,
and trusting the service with proper handling of the funds.

Figure 3.8: Illustration of the concept behind CoinJoin

Figure 3.8 illustrates how CoinJoin works. Transaction 1 and transaction 2
are separate transactions, vulnerable to the change address heuristics described in
section 3.2.2. Combining them into a CoinJoin transaction makes it much harder
to distinguish these transactions, especially when the set of participants is large.
Participants can use chat services to plan the details of CoinJoin transactions before
it is conducted [8]. A concern with this method is that participants will learn the
other participants’ address relations and reveal them to the chat service. This is why
CoinShu�e was proposed in 2014, which uses ring signatures to hide amounts and
addresses from other participants [58]. Participants can also perform DoS attacks
against CoinJoin transactions, i.e., by refusing to sign the transaction or spending
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the input before the transaction is completed. However, excluding such participants
in future transactions solves this problem [8].

Identifying CoinJoin transactions

There are some key characteristics of CoinJoin transactions compared to regular
transactions, the most obvious being multiple inputs and outputs. However, a multi-
input/output transaction is not necessarily the result of CoinJoin, as this could
be the case in any regular transaction. CoinJoin transactions do, however, have
specific characteristics regarding the individual amounts transferred to each address
[60]. As a result, the sums of the respective input and output subsets will usually
correspond with each other and is considered a significant weakness of both CoinJoin
and CoinShu�e [61].

Figure 3.9: Example of sub-transactions within a CoinJoin transaction

Looking at Figure 3.9, Mapping #1 represents what looks like a regular transaction,
with a total value of 100 BTC transmitted. Looking closer at the individual input and
output values however, it is observed that the sum of inputs i1 and i2 are equivalent
to the sum of outputs o1 and o2. This way, i1 and i2 can be grouped with o1 and
o2 as a sub-transaction [60]. The same can be done for i3, i4, o3 and o4. Finding
sub-transactions in this manner makes a strong case for a transaction being the
product of CoinJoin. It is, however, impossible to know how many sub-transactions
are in a CoinJoin transaction, because some sub-transactions may also be owned by
the same user. However, one output address will never be part of more than one
sub-transaction [60].

The first part of identifying sub-transactions is finding the subset sums of the
inputs and outputs, which is an NP-complete problem [62]. The number of possible
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subset sums is 2N , where N is the number of addresses in one CoinJoin transaction
[63].

Algorithm 3.1 is an approach written in Python to find all possible subset sums
in a list of values. This algorithm must be run on the set of inputs and outputs
individually; then, the respective sums are compared. Even though the algorithm is
NP-complete, it may be feasible to run this algorithm on a large set of transactions.
This is because the asymptotic running time depends only on the number of addresses,
which in most cases are too few to create a bottleneck with a significant delay. Also,
this algorithm does not consider transaction fee, which is often low and split equally
among the participants. However, this is impossible to determine. These issues are
discussed more in section 6.4.

Algorithm 3.1: Find all possible subset sums in a list of values

1 def subsetSums ( values ):

2 n = len( values )

3 possible_sums = []

4
5 total_subsets = 2**n

6
7 for i in range (1, total_subsets ):

8 Sum = 0

9 sum_indexes = []

10 # Consider binary representation of current
11 # i to decide which elements to pick .
12 for j in range (n):

13 if ((i & (1 << j)) != 0):

14 print ( values [j])

15 sum_indexes . append (j)

16 Sum += values [j]

17 possible_sums . append ([Sum , sum_indexes ])

18 return possible_sums
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4Implementation details

4.1 Initial setup

4.1.1 Python

The Python workspace was set up with a virtual environment and environmental
variables. As the virtual environment was used to create an isolated environment,
only the packages explicitly needed for this project were installed. The virtual
environment was set up and activated with the following commands:

$ python3 -m venv myvenv
$ . myvenv/bin/activate

Environmental variables were used to hide sensitive data on Github, such as the
Graphsense API key and MongoDB connect URI. It was also very beneficial when
executing the scripts on the Virtual Machine, where a di�erent MongoDB connect
URI with "localhost" as the hostname had to be used. The environmental variables
were placed in a .env file (not pushed to Github) and accessed using python-dotenv,
as shown in Algorithm 4.1.

Algorithm 4.1: Accessing the API key’s environmental variable

1 from dotenv import load_dotenv

2 import os

3
4 load_dotenv (’.env ’)

5
6 api_key = os. environ .get(" api_key ")

31
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4.1.2 Graphsense

The clustering heuristics discussed in section 3.2 were implemented using the Graph-
sense Python Client, which was installed via pip and set up by following the setup
procedure from the client’s documentation [41]. The Graphsense Python client
interacts with the Graphsense REST API.

The Graphsense Python Client consists of eight API classes: AddressesApi,
BlocksApi, BulkApi, EntitiesApi, GeneralApi, RatesApi, TagsApi, TxsApi

An example of how the client with an API class is imported, configured, and used
to perform a simple request is shown in Algorithm 4.2.

Algorithm 4.2: Graphsense python client example - transactions for block with
height 500,000

1 import graphsense

2 from graphsense .api import blocks_api

3 import os

4
5 api_key = os. environ .get(" api_key ")

6 configuration =

graphsense . Configuration (host=" https :// api. graphsense .info")

7 configuration . api_key [" api_key "] = api_key

8
9 api_client = graphsense . ApiClient ( configuration )

10
11 blocks_api = blocks_api . BlocksApi ( api_client )

12
13 transactions_for_block = blocks_api . list_block_txs (’btc ’, 500000)

As mentioned in section 2.1, the API was limited to 1,000 requests per hour,
severely a�ecting the runtime. A workaround for this was discovered by using the bulk
request feature of the API, which could perform an arbitrary number of sub-requests
in one big request, mitigating the impact on the request limit. As the bulk requests
have a response time proportional to the number of sub-requests done, the number
of requests included in the bulk requests was adjusted accordingly to reach 1,000
requests per hour. There are no regulations in Graphsense’s terms of use regarding
the use of bulk requests in this manner [64]. However, due to their limited server
capacity, we were subsequently excluded from using this feature. By contacting the
Graphsense team and promising to use the feature more sparingly, we were re-granted
access, and future bulk requests were executed with a maximum of 50 sub-requests.
Later Graphsense updated its platform to include all sub-requests of a bulk request
in the request ratio. However, at this time, our request limit was already temporarily
increased to 10,000.
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4.1.3 Virtual Machine

The Virtual Machine running Ubuntu 20.04.3 was accessed with SSH and used for
running scripts and storing data in a MongoDB database. The scripts were pulled
from a Github repository and executed without hangups using the nohup linux
command [65]. The nohup command, shown below, allows commands to be executed
without being interrupted when closing the remote connection.

$ nohup python -u aggregate_outputs.py &> log.out &

MongoDB

A MongoDB database was set up and hosted on the VM, which led to extremely low
response time when inserting documents and executing queries compared to using
a hosting service. The PyMongo package was used in Python to interact with the
database. An example of querying and inserting documents using PyMongo is shown
in Algorithm 4.3.

Algorithm 4.3: Pymongo example - query for transactions with multiple inputs
and insert into a new collection

1 import pymongo

2 from dotenv import load_dotenv

3 import os

4
5 load_dotenv (’.env ’)

6
7 connectURI = os. environ [" connectURI "]

8 client = pymongo . MongoClient ( connectURI )

9
10 db = client [" master "]

11 collection_1 = db[’transactions ’]

12 collection_2 = db[’transactions_multiple_inputs ’]

13
14 transactions_with_multiple_inputs = collection_1 .find ({ " $expr ": {

"$gt": [{" $size ": " $inputs "}, 1]}})

15 collection_2 . insert_many ( transactions )

4.2 Data sets

As discussed in section 2.5, two data sets were used; data set 1 with a selection of
≥ 10, 000 transactions from various parts of Bitcoin’s history, and data set 2 with a
larger set of transactions from an arbitrary date - February 1, 2022.

For both data sets, a list of relevant blocks was found. Then all the transactions
of the blocks were retrieved using Graphsense REST API via the Graphsense Python
Client and inserted into the MongoDB database. The complete script for generating
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the data sets is shown in Appendix C.1, while the most significant implementations
are covered in this section.

The combined number of blocks for both data sets is 2,643, with a total of 344,944
transactions. All the transactions for one block were retrieved from Graphsense
using a single request, resulting in a runtime of under 3 hours when conducting
1,000 requests per hour. However, as the inputs and outputs were not included in
this request, they had to be requested separately and subsequently included in the
transactions. Therefore, two requests had to be performed for each transaction; one
for the inputs and one for the outputs. With 344,944 transactions, this would mean a
total of almost 700,000 requests, leading to a runtime of over 29 days. A workaround
using bulk requests was implemented where the inputs or outputs of 50 transactions
were retrieved in each request, as shown in Algorithm 4.4. Fortunately, this was
implemented and executed before each sub-request in a bulk request impacted the
hourly request limit, enabling a reduced runtime of 33 hours. One problem with
this approach was that the bulk requests returned a list of inputs or outputs for
50 di�erent transactions, which then had to be distinguished and inserted into the
correct transaction.

Algorithm 4.4: Get all transactions from a block with inputs and outputs

1 def get_io ( tx_hashes , io):

2 io_list = []

3 i = 0

4 while i < len( tx_hashes ):

5 try:

6 body = {

7 " tx_hash ": tx_hashes [i:i+50] , "io": io}

8 io_list . extend ( bulk_api . bulk_json (

9 ’btc ’, ’get_tx_io ’, 1, body , async_req =True).get ())

10 except graphsense . ApiException as e:

11 # Request limit exceeded
12 if (e. status == 429):

13 sleep (int(e. headers ["Retry - After "]) + 60)

14 continue
15 else :

16 raise e

17 i += 50

18 return io_list

19 def get_transactions_from_block_with_io ( block_height ):

20 transactions = blocks_api . list_block_txs (’btc ’, block_height )

21 tx_hashes = [ transaction [" tx_hash "] for transaction in
transactions ]

22 inputs = get_io ( tx_hashes , " inputs ")

23 outputs = get_io ( tx_hashes , " outputs ")

24 return format_transactions ( transactions , inputs , outputs )
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4.2.1 Data set 1

For data set 1, intervals of blocks from every 100,000 blocks on the Bitcoin blockchain
were used, with the condition that they were the nearest blocks containing at least
10,000 transactions in total.

Algorithm 4.5 takes a block height as input and expands a list containing the
surrounding blocks until the total transaction count reaches at least 10,000. The
list of relevant block heights is subsequently sorted and returned. This algorithm
was used on block heights [100000, 200000, ..., 700000] in which all the transactions
for each block were retrieved using the Blocks_api.list_txs method and Algorithm
4.4 before being inserted into a MongoDb collection using Pymongo’s insert_many
method.

Algorithm 4.5: Given a block height, find surrounding blocks to reach desired
number of transactions

1 def get_list_of_surrounding_blocks_for_number_of_transactions (

block_height , number_of_transactions ):

2 current_number_of_transactions = 0

3 current_block_height = block_height

4 blocks = []

5 increment = 1

6 while current_number_of_transactions < number_of_transactions :

7 blocks . append ( current_block_height )

8 number_of_transactions_in_block = blocks_api . get_block (’btc ’,

current_block_height )[" no_txs "]

9 current_number_of_transactions +=

number_of_transactions_in_block

10 current_block_height = block_height + increment

11 increment = -increment if increment > 0 else -increment + 1

12 return sorted ( blocks )

4.2.2 Data set 2

For data set 2, all the blocks for a given time interval were required. Given that
the Bitcoin blocks are chronologically ordered [47], only the first and last block
processed in the time interval had to be discovered to get a list of all the blocks in
between. However, finding the first and last blocks of the interval was not trivial, as
the Graphsense API has no endpoint for getting a block closest to a given timestamp.

Graphsense’s BlocksApi had an endpoint for getting some data for a given block
height; blocks_api.get_block. This data included the timestamp for a given block.
Since all blocks were sorted chronologically, a variation of the binary search algorithm
[66] was implemented to find the relevant block. Algorithm 4.6 takes a timestamp,
a minimum block height (zero), a maximum block height (the height of the latest
Bitcoin block in Graphsense), and an ensuing condition as inputs. A recursive
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approach to binary search is used to return the closest block processed before or
after the given timestamp based on the ensuing condition.

Algorithm 4.6 was used with the ensuing condition set to True for the start date
and False for the end date, resulting in a start_block and an end_block, which are
used to generate a list of all the block heights in the time interval.

Algorithm 4.6: Find the Bitcoin block closest to a given timestamp

1 def find_block_by_timestamp_binary_search ( min_block_height ,

max_block_height , timestamp , ensuing ):

2 if max_block_height >= min_block_height :

3 mid_block_height = ( max_block_height + min_block_height ) // 2

4 mid_block = blocks_api . get_block (’btc ’, mid_block_height )

5 if mid_block [’timestamp ’] == timestamp :

6 return mid_block_height

7 elif mid_block [’timestamp ’] > timestamp :

8 return
find_block_by_timestamp_binary_search ( min_block_height ,

mid_block_height - 1, timestamp , ensuing )

9 else :

10 return
find_block_by_timestamp_binary_search ( mid_block_height

+ 1, max_block_height , timestamp , ensuing )

11 else :

12 if ensuing :

13 return min_block_height

14 else :

15 return max_block_height

4.3 Common-input-ownership heuristics

The common-input-ownership heuristics discussed in section 3.2.1 were implemented
using two algorithms that had to be executed in sequence. The complete script is
shown in Appendix C.2.

Slow runtime was an issue when executing these algorithms on the data sets. As
the list of entities and the number of addresses in each entity’s cluster grew, the
query time got significantly higher. However, by creating a MongoDB multikey index
[67] for each address_cluster array, the total runtime was reduced by over 60 percent.

Algorithm 4.7 was used on transactions where the conditions for assuming a shared
owner of the inputs were met. For Heuristic 1.1, this is the case for all transactions.
However, for Heuristic 1.2 and Heuristic 2.3, this is based on the number of outputs
and the occurrences of a change address in the transactions, detailed in section 3.2.1.
Algorithm 4.7 populates an empty collection with entities from a list of transactions.
The algorithm iterates through all the transactions and checks for an existing entity



4.3. COMMON-INPUT-OWNERSHIP HEURISTICS 37

containing one or more input addresses of a transaction. If an entity is found, the
additional input addresses are linked to the entity. If not, a new one is created.

Algorithm 4.7: Create entities with shared input addresses from a list of
transactions

1 def common_input_address_clustering ( transactions , entities_collection ):

2 entities_collection . create_index (" address_cluster ")

3 for transaction in tqdm( transactions ):

4 input_addresses = get_addresses ( transaction [" inputs "])

5 existing_entity = False

6 for index , address in enumerate ( input_addresses ):

7 # Try to find entity with address in cluster
8 entity_with_shared_input_address =

entities_collection . find_one ({" address_cluster ":

address })

9 if entity_with_shared_input_address :

10 existing_entity = True

11 entity_id = entity_with_shared_input_address [’_id ’]

12 entities_collection . update_one ({ ’_id ’: entity_id }, {

13 ’$addToSet ’: { ’address_cluster ’: { ’$each ’:

input_addresses }},

14 ’$push ’: {’tx_hashes ’: transaction [" tx_hash "]}})

15 input_addresses = input_addresses [ index +1:]

16 # check for existing entitites with any of the input
addresses in cluster and combine them with this
one

17 for input_address in input_addresses :

18 exiting_entity_shared_address =

entities_collection . find_one ({"$and":

[{" address_cluster ": input_address }, {"_id":

{"$ne":

entity_with_shared_input_address [’_id ’]}}]})

19 if exiting_entity_shared_address :

20 entities_collection . update_one ({ ’_id ’:

entity_id }, {

21 ’$addToSet ’: { ’address_cluster ’: {

’$each ’:

exiting_entity_shared_address [

" address_cluster "]}} ,

22 ’$push ’: {’tx_hashes ’: { ’$each ’:

exiting_entity_shared_address [

" tx_hashes " ]}}})

23 entities_collection . delete_one ({"_id":

exiting_entity_shared_address ["_id"]})

24 break
25 if not existing_entity and len( input_addresses ) > 0:

26 entities_collection . insert_one ({" address_cluster ":

list ( dict . fromkeys ( input_addresses )), " tx_hashes ":

[ transaction [" tx_hash "]]})

For heuristic 1.2 and 2.3, the transactions that do not meet the conditions are
assumed to have one entity for each input address. For these transactions, Algorithm
4.8 is run subsequent to Algorithm 4.7. An entity is then created for each input
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address that is not part of an existing entity.

Algorithm 4.8: Create entities for each input address from a list of transactions

1 def individual_input_address_clustering ( transactions ,

entities_collection ):

2 entities_collection . create_index (" address_cluster ")

3 for transaction in tqdm( transactions ):

4 input_addresses = get_addresses ( transaction [" inputs "])

5 for input_address in input_addresses :

6 if not entities_collection . find_one ({" address_cluster ":

input_address }):

7 entities_collection . insert_one ({" address_cluster ":

[ input_address ], " tx_hashes ":

[ transaction [" tx_hash "]]})

4.4 One-time change address heuristics

The four OTC heuristics discussed in section 3.2.2 were implemented using several
algorithms developed through trial and error to minimize the number of requests
made to the Graphsense API. The most significant parts of the implementation are
covered in this section; the complete script is shown in Appendix C.3.

The execution order of the algorithms is determined by which inputs they require
and the number of requests they make to the Graphsense API. Some algorithms
require information returned by other algorithms, such as the determined OTC
address candidate; these have to be executed late in the implementation, regardless
of their request limit consumption.

4.4.1 Coin generation and the number of inputs and outputs

Properties (2) the transaction is not a coin generation, (4) the transaction has exactly
two outputs and H2.3(6) the number of inputs in the transaction is not equal to two
are all based on information already included in the transaction data retrieved from
the data set. These properties are the first to be checked because if they are false,
the transaction can be determined not to have an OTC address without using any of
the request limits. The implementation of this approach is shown in Algorithm 4.9.
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Algorithm 4.9: Coin generation, number of inputs and number of outputs

1 def is_coin_generation ( transaction ):

2 return transaction [’coinbase ’]

3
4 def has_two_outputs ( transaction ):

5 return len( transaction [" outputs "]) == 2

6
7 def has_two_inputs ( transaction ):

8 return len( transaction [" inputs "]) == 2

4.4.2 Occurrence of self-change address

Algorithm 4.10 determines the occurrence of a self-change address in a transaction
by iterating through all the output addresses and checking for a matching address in
the input addresses. Because this information is already included in the transaction
from the data set collection, this does not perform any requests to the Graphsense
API either.

Algorithm 4.10: Check for self-change address in the transaction

1 def has_self_change_address ( transaction ):

2 input_addresses = get_addresses ( transaction [" inputs "])

3 output_addresses = get_addresses ( transaction [" outputs "])

4 for output_address in output_addresses :

5 if output_address in input_addresses :

6 return True

7 return False

4.4.3 Address reused as output

Since OTC addresses are only to be used once as an output, Algorithm 4.11 was
implemented to check that this was the case for the OTC address but not for the
other output address - the condition for Heuristic 2.2. The algorithm finds the
last transaction where the address is used as an output; it then checks if it is the
same transaction or not. Graphsense’s Addresses_api.list_address_txs function is
used in the implementation to retrieve a list of all the transactions in which an
address has been involved; this had to be done using multiple requests. The list
returned from Graphsense is in reverse chronological order. However, the transactions
where the address has been used as an input are listed before the transactions where
it has been used as output. Therefore, the algorithm must first request all the
address’s input transactions before requesting its output transactions. Algorithm
4.11 does this by skipping all transactions until an output transaction is found and
then using binary search on the newest part of the list to find the address’s last
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output transaction. The transaction hash of this transaction is then compared with
the original transaction hash. For addresses involved in thousands of transactions,
this was extremely demanding on our request limit and created a bottleneck when
executing the implementation of the heuristics. If Graphsense’s API were to have a
parameter for this function, where the transactions the address has been involved in
could be filtered based on if it was part of the inputs or outputs, the execution time
could be significantly reduced. Several variations of Algorithm 4.11 were tested, but
this implementation performed the best.

Algorithm 4.11: Check if an output is reused as an output in a later transaction

1 def get_latest_output_transaction_binary_search ( transactions , low ,

high):

2 if high >= low:

3 mid = (high + low) // 2

4 if transactions [mid ]. value . value > 0 and
transactions [mid -1]. value . value < 0:

5 return transactions [mid ][" tx_hash "]

6 elif transactions [mid ]. value . value > 0:

7 return get_latest_output_transaction_binary_search (

transactions , low , mid - 1)

8 else :

9 return get_latest_output_transaction_binary_search (

transactions , mid +1, high)

10 else :

11 return False

12
13 def is_used_as_output_later (address , current_transaction_tx_hash ):

14 response = addresses_api . list_address_txs (

15 ’btc ’, address , pagesize =500)

16 if response [" address_txs " ][0][ " tx_hash "] ==

current_transaction_tx_hash :

17 return False

18 while response :

19 transactions = response [" address_txs "]

20 if transactions [ -1]. value . value > 0:

21 return get_latest_output_transaction_binary_search (

transactions , 0, len( transactions ) -1) !=

current_transaction_tx_hash

22 response = addresses_api . list_address_txs (’btc ’, address ,

page= response [’next_page ’], pagesize =500)

4.4.4 Number of digits in OTC value

Algorithm 4.12 checks if an OTC value has more than four digits after the dot by
converting the value of the transaction, which is in satoshi, to BTC.

BTC = satoshi ú 10≠8
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The value is then converted to a string and split at the decimal point. The length
of the latter part of the string is then checked.

Algorithm 4.12: Check if the decimal representation of the OTC value has more
than four digits after the dot

1 def value_has_more_than_four_digits_after_dot ( value ):

2 value = ’{0:.8 f}’. format ( value * 10**( -8)). strip ("0")

3 number_of_decimals = len( value . split (".")[1])

4 return number_of_decimals > 4

4.4.5 Optimal change heuristic

To check if the optimal change heuristic is valid for a transaction, Algorithm 4.13
compares the OTC value with all the input values and returns False if any of the
input values are smaller than the change value.

Algorithm 4.13: Optimal change heuristic

1 def otc_value_is_smaller_than_all_input_values ( otc_value , inputs ):

2 input_values = [inp[" value "][" value "] for inp in inputs ]

3 for input_value in input_values :

4 if input_value < otc_value :

5 return False

6 return True

4.4.6 Determining the OTC output

Determining which of the two outputs is the OTC output and which is not was done
by checking for the properties in the heuristics that defined the OTC address - if it
was its first appearance (Heuristics 2.1, 2.3 and 2.4) or if it was the only address not
reused as an output (Heuristics 2.2 and 2.4). The implementation of this is shown
in Algorithm 4.14. This enabled the algorithms used on the data specifically for
the OTC output or the other output to be executed, as this information was now
available.
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Algorithm 4.14: Determining the OTC output

1 is_first_transaction_of_output_address_1 =

get_first_transaction_hash ( output_1 [" address " ][0]) ==

transaction [’tx_hash ’]

2 is_first_transaction_of_output_address_2 =

get_first_transaction_hash ( output_2 [" address " ][0]) ==

transaction [’tx_hash ’]

3
4 # (1) This is the first appearance of the OTC address ;
5 if is_first_transaction_of_output_address_1 ==

is_first_transaction_of_output_address_2 == False :

6 return otc_data

7
8 # (5) This is not the first appearance of the other output address

OR only the other output address is reused as an output
address in some later transaction

9 elif is_first_transaction_of_output_address_1 ==

is_first_transaction_of_output_address_2 == True:

10 output_1_used_later =

is_used_as_output_later ( output_1 [" address "][0] ,

transaction [" tx_hash "])

11 output_2_used_later =

is_used_as_output_later ( output_2 [" address "][0] ,

transaction [" tx_hash "])

12 if output_1_used_later == output_2_used_later :

13 return otc_data

14 else :

15 if output_1_used_later :

16 otc_output = output_2

17 other_output = output_1

18 elif output_2_used_later :

19 otc_output = output_1

20 other_output = output_2

21 else :

22 if is_first_transaction_of_output_address_1 :

23 otc_output = output_1

24 other_output = output_2

25 elif is_first_transaction_of_output_address_2 :

26 otc_output = output_2

27 other_output = output_1

4.5 Combination of common-input-ownership heuristic and

OTC heuristic

If a change output is discovered in a transaction, this can be used to combine entities
when the address is reused. The implementation of this is shown in Algorithm 4.15,
which achieves this by finding other entities containing a change address found by
Heuristic 2.4 and combining them with the original ones.
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Algorithm 4.15: Reduce the clusters of the entities made with the common-
input-ownership heuristic using OTC addresses found with heuristic 2.4

1 def combine_entities_with_otc_address ( entities_collection ,

otc_collection ):

2 entities = entities_collection .find ({})

3 entities = [ entity for entity in entities ]

4 for entity in tqdm( entities ):

5 for tx_hash in entity [" tx_hashes "]:

6 otc = otc_collection . find_one ({"$and": [{" tx_hash ":

tx_hash }, {" heuristics .4": True }]})

7 if otc and otc[" otc_output "][" address "][0] not in
entity [" address_cluster "]:

8 entity_with_otc_address =

entities_collection . find_one ({" address_cluster ":

otc[" otc_output "][" address " ][0]})

9 if entity_with_otc_address and
entity_with_otc_address ["_id"] != entity ["_id"]:

10 entities_collection . update_one ({

11 ’_id ’: entity [’_id ’]

12 }, {

13 ’$addToSet ’: {

14 ’address_cluster ’: { ’$each ’:

entity_with_otc_address [

" address_cluster "]}

15 },

16 ’$push ’: {

17 ’tx_hashes ’: { ’$each ’:

entity_with_otc_address [" tx_hashes "]}

18 }

19 })

20 entities_collection . delete_one ({"_id":

entity_with_otc_address ["_id"]})

4.6 Testing

Unit testing was conducted on several algorithms using Python unittest package.
Testing was implemented late in the development process. However, it did, in fact,
expose flaws in the original implementation that had to be fixed. A small part of
the testing script is shown in Algorithm 4.16, where Algorithm 4.10 for checking if a
transaction has a self-change address is tested. The complete testing script is shown
in Appendix C.5.
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Algorithm 4.16: Unit testing on Algorithm 4.10

1 def test_has_self_change_address (self):

2 transaction = {

3 " inputs ": [ { " address " : [ " address1 " ] }, { " address " :

[ " address2 " ] } ],

4 " outputs ": [ { " address " : [ " address3 " ] }, { " address " :

[ " address1 " ] } ]

5 }

6 self. assertTrue ( has_self_change_address ( transaction ))

7
8 transaction = {

9 " inputs ": [ { " address " : [ " address1 " ] }, { " address " :

[ " address2 " ] } ],

10 " outputs ": [ { " address " : [ " address3 " ] }, { " address " :

[ " address4 " ] } ]

11 }

12 self. assertFalse ( has_self_change_address ( transaction ))
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The results from running the implementations covered in chapter 4 show the dif-
ferent address reduction ratios achieved by the entities created by the common-
input-ownership heuristics discussed in section 3.2.1, the number of OTC addresses
determined by the heuristics discussed in section 3.2.2, and the reduction ratio
achieved by combining them as discussed in section 3.2.3.

In this chapter, the heuristics are referred to in the following manner:

Common-input-ownership heuristics

H1.1 Heuristic 1.1 (Nakamoto, Satoshi) [1]
H1.2 Heuristic 1.2 (Ermilov et al.) [52]
H1.3 Heuristic 1.3 (our proposed heuristic)

One-time change address heuristics

H2.1 Heuristic 2.1 (Meiklejohn et al.) [31]
H2.2 Heuristic 2.2 (Zhang et al.) [13]
H2.3 Heuristic 2.3 (Ermilov et al.)] [52]
H2.4 Heuristic 2.4 (our proposed heuristic)

The reduction ratio is calculated by formula 5.1.

address_reduction = #original_addresses ≠ #entities

#original_addresses
(5.1)

#original_addresses is the combined number of unique input and output addresses,
and #entities is the number of entities created by the clustering heuristic. Each
output address not re-used as an input address is considered an entity unless H2.4 is
involved in linking the address to an entity.

45
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Generally, a higher reduction ratio value is better. However, the goal of combining
our proposed heuristics (H1.3 ◊ H2.4) is to reach a reduction ratio similar to the
one achieved by H1.1 - the clustering heuristic used by Graphsense. As discussed in
chapter 3, this approach has a lower occurrence of false positives. There is no way to
measure the ratio of false positives, but the properties of H1.3 ◊ H2.4 should ensure
a lower occurrence compared to H1.1.

Because of time constraints and our limited resource access to the Graphsense
API, the execution of all the heuristics for block ≥ 200, 000 did not completely finish,
so this data has been left out of the results.

5.1 Common-input-ownership heuristics

Figure 5.1: Reduction ratio of the common-input-ownership heuristics on data set
1

Figure 5.1 shows the di�erent reduction ratios achieved by the common-input-
ownership heuristics. It is clear that H1.1 performs best here when only taking the
address reduction ratio into consideration. However, unlike H1.1, H1.2 should have no
false positive results, and H1.3 should have no false positive results if we assume that
its OTC heuristic (H2.4) does not include any false negative OTC addresses. In block
100,000, all the transactions have either one or two outputs, and the performance of
H1.2 and H1.3 is almost on par with that of H1.1. Also, in the newest set of blocks,
≥ 700, 000, the performance is very good for both H1.2 and H1.3 compared to H1.1.
However, because H1.2 performs worse than H1.3 in all cases, H1.2 is not included in
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any more results. Additionally, H1.3 has reliable information about OTC addresses
that can be used to reduce the number of entities by combining them as they are
reused as inputs. More about this in section 5.3.

5.2 One-time change heuristics

Figure 5.2: Impact of OTC properties on data set 1

Figure 5.2 shows the impact of di�erent properties that can be used to reduce the
number of false positive results in an OTC heuristic. In this plot, the number of OTC
outputs found by H2.1+H2.2 is used as a baseline. This is part of the data that was
analyzed when creating our proposed heuristic (H2.4) for finding the OTC address.
As can be seen in the plot, limiting the valid transactions to those with two inputs
and using the optimal change heuristic are the most impactful properties in most
cases. The former was dropped from our proposed heuristic because it was considered
too broad of an assumption, and it would exclude many multi-input transactions
from H1.3. Assuming that an OTC output is only valid if the value has more than
four decimals after the dot was also determined to have too big of an impact without
providing enough value, this one was also excluded from H2.4. This can especially be
seen for block ≥ 100, 000, where almost all OTC outputs are deemed invalid based
on this assumption. This leaves us with the two properties used on H2.1+H2.2 for
H2.4, which were both considered to reduce the number of false positives without
excluding too many cases from the heuristic.
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Figure 5.3: Volume of transactions with OTC address found using di�erent heuristics
on data set 1. Total number of transactions: 63,783

Figure 5.3 shows the volume of OTC addresses found using the heuristics discussed
in section 3.2.2 on data set 1. H2.1+H2.2 has the highest number of false positives
and performs the best, but while H1.3 performs the worst, it does have the lowest
number of false positives. However, the number of false negatives is also the highest
for this heuristic - leading to the bad performance of the heuristic. Our proposed
heuristic (H2.4) performs as well as H2.1 and a little worse than H2.1+H2.2, but
with a definite lower number of false positives. Because of this, we consider H2.4 to
be the best heuristic for finding the OTC address.

5.3 Combination of common-input-ownership heuristic and

OTC heuristic

As explained in section 3.2.3, the OTC heuristics not only link output addresses to
the sender, but can also be used to combine clusters when the address is reused as
an input address. By adding H2.4 to H1.3 (H2.4 ◊ H1.3), similar, and in some cases,
even better reduction ratios are achieved than by H1.1. This is shown on data set 1
in Table 5.1, and visualized in Figure 5.4.

For block ≥ 100, 000, H1.3◊H2.4 has a 100% improved reduction ratio compared
to H1.1. There were fewer Bitcoin users for these transactions compared to the other
parts of the data sets, as shown by its number of unique addresses. The ≥ 10, 000
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Figure 5.4: Performance of address clustering heuristics on data set 1

transactions for Block 100,000 were performed over a longer period of time with
a higher prevalence of change address reuse, leading to a high occurrence of entity
combining. Additionally, no coin mixing services existed at the time. For the other
parts of the data set, the performance of H1.3 ◊ H2.4 compared with H1.1 varies.
However, the results are all favorable because of the emphasis on excluding false
positives in the clustering.

Table 5.1: Results of address clustering heuristics on data set 1

Block Unique addresses Entities Percent reduction
H1.1 H1.3 H1.3 ◊ H2.4 H1.1 H.3 H1.3 ◊ H2.4

≥100,000 12,644 9,777 10,230 6,899 22,67 19,09 45,44
≥300,000 36,212 25,927 33,534 30,627 28,40 7,40 15,42
≥400,000 31,536 22,149 27,571 25,625 29,77 12,57 18,74
≥500,000 34,008 27,354 31,117 27,216 19,57 8,50 19,97
≥600,000 25,646 20,269 23,678 21,805 20,97 7,67 14,98
≥700,000 59,160 39,626 46,411 44,284 33,02 21,55 25,15

5.3.1 Reduction over time

To see if similar results for H1.3 ◊ H2.4 on Block ≥ 100, 000 could be achieved for
newer blocks, the implementations were run on data set 2 with a higher number
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of consecutive transactions. Optimally, this data set should have included millions
of transactions conducted over several weeks, but that was not possible given our
limited resources and time frame. Data set 2 has all the transactions for one specific
date - 144 blocks containing 721,253 transactions conducted on Feb. 1, 2022. Block
≥ 100, 000 for data set 1 has 2348 blocks containing 10,072 transactions conducted
over 15 days. Nevertheless, the goal was to find a trend in how the reduction
ratio changed for the di�erent heuristics as more transactions were involved in the
clustering. The data set was divided into several subsets of (10000, 20000, ... 260000,
270000, 271253) transactions, where the heuristics were executed individually. The
results can be seen in Table 5.2, and is visualized in Figure 5.5.

Figure 5.5: Performance of address clustering heuristics on a growing volume of
transactions on data set 2

As shown in Figure 5.5, the heuristics follow almost the exact same pattern as
more transactions are analyzed. The performance of H1.3 ◊ H2.4 compared to H1.1
varies by a few percent with an average of 71.30%. Since these are the most recent
and relevant transactions for address clustering, we use this number as the conclusive
result for H1.3 ◊ H2.4 compared to H1.1. However, a bigger data set could achieve
more significant results. More about this in section 6.2.
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Table 5.2: Results of address clustering heuristics on a growing volume of transac-
tions on data set 2

Entities Percent reduction
Transactions Unique addresses H1.1 H1.3 H1.3 ◊ H2.4 H1.1 H1.3 H1.3 ◊ H2.4

10,000 56,687 37,990 43,952 42,174 32,98 22,47 25,60
20,000 112,261 70,674 87,301 83,575 37,04 22,23 25,55
30,000 171,908 103,830 131,051 125,680 39,60 23,77 26,89
40,000 260,852 139,029 183,474 176,495 46,70 29,66 32,34
50,000 322,214 185,528 234,751 225,991 42,42 27,14 29,86
60,000 391,632 222,581 280,249 269,958 43,17 28,44 31,07
70,000 440,253 248,541 317,508 305,049 43,55 27,88 30,71
80,000 488,815 278,888 353,258 338,753 42,95 27,73 30,70
90,000 534,208 308,062 388,214 371,500 42,33 27,33 30,46
100,000 572,302 335,814 420,055 401,189 41,32 26,60 29,90
110,000 618,732 363,562 459,597 438,315 41,24 25,72 29,16
120,000 665,536 390,456 491,747 467,640 41,33 26,11 29,73
130,000 714,702 420,809 531,503 505,088 41,12 25,63 29,33
140,000 769,384 455,323 574,698 545,901 40,82 25,30 29,05
150,000 813,986 484,936 608,207 577,136 40,42 25,28 29,10
160,000 871,795 520,889 654,264 621,087 40,25 24,95 28,76
170,000 914,244 552,345 690,564 655,490 39,58 24,47 28,30
180,000 954,890 582,845 726,380 689,411 38,96 23,93 27,80
190,000 994,868 614,514 762,297 723,419 38,23 23,38 27,28
200,000 1,034,265 645,478 797,510 756,622 37,59 22,89 26,84
210,000 1,073,340 673,758 832,256 789,478 37,23 22,46 26,45
220,000 1,110,999 700,404 862,695 817,543 36,96 22,35 26,41
230,000 1,155,028 729,017 899,420 852,240 36,88 22,13 26,21
240,000 1,195,073 756,727 933,170 883,166 36,68 21,92 26,10
250,000 1,234,012 785,755 966,759 914,864 36,33 21,66 25,86
260,000 1,273,598 812,382 998,201 585,647 36,21 21,62 25,90
270,000 1,324,651 841,130 1,035,998 605,966 36,50 21,79
271,146 1,330,897 844,353 1,040,132 607,953 36,56 21,85
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6.1 Di�culties in detecting centralized coin mixing

We have explored various possibilities in detecting CoinJoin transactions in section
3.3.3. Identifying such transactions is trivial because they always include multiple
inputs/outputs. Suppose they include sub-transactions as described in section
3.3.3. In that case, it is almost certainly a CoinJoin transaction, and a common
ownership behind the addresses in the sub-transaction [60]. However, the problem
becomes increasingly more di�cult if other types of coin mixing protocols are
considered. Despite the weaknesses of centralized coin mixers described in section
3.3.2, detecting such transactions is di�cult, due to the similarities they share with
regular transactions [55]. As mentioned in section 3.3.2, centralized mixers act as
intermediaries between any two parties in a transaction. They can receive and
forward transactions with any number of inputs/outputs [55].

Figure 6.1 illustrates how users can mask their ownership of the Bitcoin value by
using a centralized mixing service. User 1 sends 1.0 BTC to an arbitrary coin mixing
server. This server later returns 0.99 BTC to the sender from the output address
of User 2’s transaction of 1.99 BTC. The 0.99 BTC returned to User 1 looks like it
originated from User 2 when the Bitcoin values were only obfuscated in a way that
made them appear on di�erent addresses.

The main problem with mixing transactions in the way described in Figure
6.1 is that they are hard to detect by simply looking at the public blockchain. A
more reliable way to detect them involves tracing network tra�c as described in
section 1.4.2. Furthermore, mixing servers usually have a large volume of incoming
and outgoing network tra�c. Therefore, identifying their IP addresses should be a
feasible task [7]. For example, suppose the IP addresses of mixing servers can be
identified. In that case, this server’s incoming and outgoing transactions are labeled
as mixed transactions. This can be used with other deanonymization methods, such
as matching transactions having this label with other transactions of similar values.

53
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Figure 6.1: Example of a mixing transaction through a centralized mixing server

6.2 Analyzing a larger quantity of transactions

In this thesis, Graphsense is used for fetching transactions and other relevant data
for performing address clustering. Since the number of transactions used for analyses
was limited to 73,798 for data set 1 and 271,146 for data set 2, the number of
possible reductions were restricted. The number of transactions did not provide
enough data for exploiting all the privacy weaknesses promoted by address reuse.
Using a data set containing millions of transactions conducted over several weeks
could show a more significant di�erence in the heuristic’s performance over time,
possibly making an even stronger case for the validity of our proposed heuristics.
This could have been achieved by running the Graphsense demo locally or getting
access to perform an unlimited amount of requests per hour to the remote Graphsense
API we were provided. Additionally, as mentioned in section 4.4.3, Graphsense’s
Addresses_api.list_address_txs function’s lack of parameters for filtering an address’s
transaction based on if it had been used as an output address or input address caused
a bottleneck when executing our implementation. Improving this functionality
would have severely reduced the number of required requests and the runtime. An
alternative way of accessing the blockchain’s data is to run our own Bitcoin client.
The client contains the entire blockchain, with a size of roughly 410 GB [68]. However,
by doing this, we would have had to implement our own variations of the functions
provided by Graphsense that we utilized for fetching relevant data for transactions,
blocks, and addresses.
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6.3 Combining clustering with direct deanonymization

techniques

We have proposed a few methods of address clustering in this thesis. It is possible
to achieve significant reductions on the set of possible entities by studying part of
the Bitcoin blockchain alone, with the help of Graphsense. Other deanonymization
methods are mentioned briefly in section 1.4. These can be used in conjunction with
address clustering techniques.

A considerable problem with studying many transactions at once is that many
of them will be insignificant and not help us discover criminal activities. Achieving
reductions on possible entities based on seemingly ordinary user transactions grants
us nothing other than compromising the privacy of innocent users. The K-means
algorithm discussed in section 1.4.3 can be used in this context to di�erentiate
between clusters in the Bitcoin blockchain. Suppose we can di�erentiate between
"good" and "bad" clusters of transactions before analyzing addresses. In that case,
much time can be saved by not analyzing transactions that are less important.

We can also set up a Bitcoin core node of our own and participate in the Bitcoin
network as a passive eavesdropper [7]. By analyzing the network packets transmitted
by the participants in the network, it is possible to link Bitcoin addresses to IP
addresses. However, this is only possible with a maintained connection to each
participant in the network. For example, it is impossible to trace the IP addresses
of transactions that have been performed in the past. Nonetheless, it is a feasible
method for potentially linking more addresses to an identity outside the scope of
address clustering.

Transaction graph analysis is mentioned in section 1.4.1 as a viable method of
tracing flows that have been made between certain participants in the Bitcoin network.
Such graphs, however, tend to get very large, making analysis di�cult. However,
address clustering heuristics helps tremendously with graph analysis because several
vertices can be grouped into one. Furthermore, vertex grouping can also be done
with network analysis, as mentioned in the previous paragraph.

6.4 The CoinJoin sub-transaction problem

Algorithm 3.1 proposed in section 3.3.3 can be used for analyzing the input and
output values of a CoinJoin transaction, and find sub-transactions within. In practice,
it can be included alongside the common ownership and OTC heuristics proposed
in section 3.2, to perform clustering on transactions with several inputs/outputs.
However, since the algorithm is NP-complete, it can delay the clustering processes
significantly. The asymptotic run time of Algorithm 3.1 is O(2N ), which means that
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the run time will double for each new element. It is likely better to run this algorithm
exclusively on a selection of transactions instead.

Since roughly a quarter of all illicit payments in Bitcoin are done with the use
of coin mixing [55], it might be better to execute this algorithm conservatively, i.e.,
executing the algorithm exclusively on large transactions or those suspected to be
mixed with CoinJoin. Our analysis can be restricted to be within transactions that
are of a specific input/output size or higher (Figure 3.3a and 3.5 tell us that these
transactions do not make up a large quantity, and as a result running them should
not be slow).

A similar issue was explored by Atlas in 2014 [69]. They created a tool written
in php called CoinJoin Sudoku, which analyses sums within CoinJoin transactions,
similar to what Algorithm 3.1 does. Due to the ine�ciencies and slowness of their
tool, they could only test it on a few selected transactions on the blockchain. They
were able to group roughly 69% of the inputs with 53% of the output addresses,
and they established a 100% common ownership between the found addresses [69].
This result is good because there are likely no false positives; however, quite a few
remaining inputs did not get matched in groups. The transaction fees likely skew
the output values, making them harder to be matched together in groups.

Transaction fees are not considered in Algorithm 3.1. In the CoinShu�e protocol
[58] proposed by Ru�ng, Sanchez, and Kate, it is suggested that the transaction fee
µ is spent equally among the participants. Each output value should therefore be
reduced by µ/N , where N is the number of participants. Let us assume that the
transaction fee is spent equally in every CoinJoin transaction. In that case, it is
straightforward to consider transaction fees when the output values can be adjusted
relative to the transaction fee. However, this is not realistic in practice because,
in a CoinJoin transaction, each participant agrees on the output values before the
transaction occurs [8]. The transaction fee can therefore be unevenly distributed
among the participants, and is almost impossible to di�erentiate.

Here are a few proposed ideas on how to handle transaction fees in a CoinJoin
transaction:

If the transaction fee is small This is the simplest case to handle because the
transaction fee is likely small compared to all input and output values. Therefore,
the transaction fee can be a margin of error when calculating the subset sums
of the output values. This could result in false positives, but with a small
likelihood due to the low value of the transaction fee.

Finding sub-transactions first In the case of Atlas [69], sub-transactions are
found without considering the transaction fees. This means that it is still
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possible to find sub-transactions, likely because there are output values not
reduced by the transaction fee. Once there are no more groups to find, one can
start using the transaction fee as a margin of error. This can generate a lot of
false positives if the transaction fee is large.

There is also one edge-case transaction on which it is impossible to perform
address clustering, namely perfect CoinJoin transactions [69]. Figure 6.2 shows an
example of a perfect CoinJoin transaction, where three participants transact 1.01
BTC to other participants with a transaction fee of 0.03 BTC evenly split evenly
among the output addresses. Because all the inputs are identical, and the outputs are
identical, the amounts reveal no information on which 1.01 BTC inputs correspond
to which 1 BTC outputs. Therefore, the chance of co-ownership of each address is
one out of three [69]. Such transactions are sporadic but could be very dangerous if
performed with large amounts and many participants.

Figure 6.2: Example of a perfect CoinJoin transaction
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Bitcoin is by many considered to be an anonymous form of digital payment. However,
its degree of anonymity is not as prevalent as it may seem. The pseudo-anonymous
nature of Bitcoin transactions which are publicly available on the blockchain enables
the use of deanonymization techniques that can be used to reveal the identities of
users. Regardless, there has been increased activity in using cryptocurrencies for
illicit transactions. Therefore, we analyzed deanonymization techniques that can
be beneficial for law-enforcement agencies to investigate criminal activity involving
cryptocurrency transactions.

This thesis focuses on deanonymization techniques for Bitcoin transactions based
on address clustering, implemented using the Graphsense Cryptoasset Analytics plat-
form. This platform’s built-in address clustering method has significant weaknesses
that we have analyzed and improved. Our proposed clustering heuristics are based on
excluding transactions obfuscated by coin mixing and including clustering properties
enabled by reliably finding one-time change addresses for transactions. By using the
heuristics proposed in section 3.2 and comparing their performance to existing ones,
we have achieved similar reductions on the address sets, but with less false positive
results. We have also shown that many of the transactions obfuscated by coin mixing
that we have chosen to exclude in our clustering heuristics can be analyzed and
dissected to be used for clustering. Based on our research, we recommend Graphsense
consider changing their clustering technique to our variation, which is more robust
and reliable.

In the context of this thesis work, coin mixing strategies are still a considerable
concern. During our research, a few weaknesses were discovered with the CoinJoin
protocol in particular, which can be exploited to achieve address clustering results.
We proposed a few methods of doing this in practice. However, due to the complexity
of this problem, we did not perform any tests on real transactions. This should be
explored in more detail in future work.
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70 B. REQUEST FOR RESOURCES IN OPENSTACK

Appendix

BRequest for resources in Openstack

Ønske om ressurser i Openstack

Beskriv ditt ressursbehov

Beskriv prosjektet kort Masteroppgave i kommunikasonsteknologi, skal kjøre et
eksisterende prosjekt som krever god maskinvare.

https://graphsense.info/documentation.html

Tilhørighet Forskning/undervisning IIK (SkyHiGh)

Trengs ressursene ifm arbeid i
et spesifikt emne, oppgi
emnekode

TTM4905

Estimert antall CPU-kjerner 16

Estimert mengde RAM (GB) 128

Estimert lagringsplass (GB) 256

Hvilken type ressurs trenger du? Én ferdiginstallert maskin

Hvilket operativsystem? ubuntu

Hvis du trenger Linux, legg ved
den offentlige nøkkelen fra et
SSH-nøkkelpar du ønsker å
bruke for innlogging

ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABgQCyXoh6OP2Z8ljc9SWx
nsUoPeYM0WeBi13aMcIpxfKisYSknmooA4T3R49bMbPum1kv1wj
qF69ys51Haiy+rwK2FVFbOpWXeKtTuWQm1pYEFi+vAqSlok6n7w
kVafj8FwsTIOcT+EixFG62S+4WZi/eq97cDXj/z0fGmqRnSwLwjH86
SMz37v+Wc1V2bG5DmPev0ktI9jDMH53Hvwl/NFfl3V3TT6ukL1w/q
5LfRch9oBACV1azAo7bWBbVQkvtNYCpgIHUI5UT/CnBJV9Js8Sa
yw2hVxgDmN4ZuPD+q8QPmYOlsXiduHjrvuwQoCakMUsjW6TN3
q1waLDLDbO/+h5J0/8DCQUmCdlK1K4NRzthT+lhGNWkRbAOU1
SbDHSUirMRLiKmasjQOyqM+XXIafkK5AP3Cr13KJW7if/zYKI949
QSys6qniwR9OxSz8MIp2n0DNYo0EwKwhLAoMQ8wtK3j9J6fR6ffg
Z4mbrZjecH+dLAAgFComzHs9pNtaY/7s8=
haavarhu@stud.ntnu.no

Som standard åpnes det kun for
SSH/RDP/ICMP. Trenger du fler
åpne porter? Angi hvilke
(protokoll/port):

Hvor lenge trenger du
ressursene?

1. august 2022 00:00

Tjenestebeskrivelsen er lest og
forstått

Created at 7. februar 2022 12:18:15 by Håvard Hunshamar 1



Appendix

CImplementations

C.1 Populating data sets

1 import os

2 import graphsense

3 from dotenv import load_dotenv

4 from graphsense .api import blocks_api , general_api , bulk_api

5 import datetime

6 from time import sleep

7 import pymongo

8 from tqdm import tqdm

9
10 load_dotenv (’.env ’)

11
12 api_key = os. environ .get(" api_key ")

13 configuration =

graphsense . Configuration (host=" https :// api. graphsense .info")

14 configuration . api_key [" api_key "] = api_key

15 connectURI = os. environ [" connectURI "]

16 client = pymongo . MongoClient ( connectURI )

17
18 db = client [" master "]

19
20 api_client = graphsense . ApiClient ( configuration )

21 blocks_api = blocks_api . BlocksApi ( api_client )

22 general_api = general_api . GeneralApi ( api_client )

23 bulk_api = bulk_api . BulkApi ( api_client )

24
25 def get_io ( tx_hashes , io):

26 io_list = []

27 i = 0

28 while i < len( tx_hashes ):

29 try:

30 body = {

31 " tx_hash ": tx_hashes [i:i+50] , "io": io}

32 io_list . extend ( bulk_api . bulk_json (

33 ’btc ’, ’get_tx_io ’, 1, body , async_req =True).get ())

34 except graphsense . ApiException as e:
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35 # Request limit exceeded
36 if (e. status == 429):

37 sleep (int(e. headers ["Retry - After "]) + 60)

38 continue
39 else :

40 raise e

41 i += 50

42 return io_list

43
44 def format_input_output (puts):

45 formatted_puts = []

46 for put in puts:

47 if " _info " in put and put[" _info "] == "no�data":

48 continue
49 address = []

50 try:

51 address = [put[" address " ][0][ ""]]

52 except IndexError :

53 pass
54 formatted_puts . append ({" _request_tx_hash ":

put[" _request_tx_hash "], " address ": address , " value ":

{" fiat_values " : [{"code": "eur", " value ":

put[" value_eur "]}, {"code": "usd", " value ":

put[" value_usd "]}] , " value ": int(put[" value_value "]) }})

55 return formatted_puts

56
57 def format_value ( value ):

58 return {" value ": int( value [" value "]) , " fiat_values ": [{"code":

fv["code"], " value ": fv[" value "]} for fv in
value [" fiat_values "]]}

59
60 def format_transactions ( transactions , inputs , outputs ):

61 formatted_transactions = []

62 inputs = format_input_output ( inputs )

63 outputs = format_input_output ( outputs )

64 for transaction in transactions :

65 fortmatted_transaction = {"_id": transaction [" tx_hash "],

" coinbase ": transaction [" coinbase "], " height ": None ,

" inputs ": [], " outputs ": [], " timestamp ":

transaction [" timestamp "], " total_input ": {},

" total_output ": {}, " tx_hash ": transaction [" tx_hash "],

" tx_type ": transaction [" tx_type "]}

66 fortmatted_transaction [" height "] =

transaction [" height "][" value "]

67 fortmatted_transaction [" total_input "] =

format_value ( transaction [" total_input "])

68 fortmatted_transaction [" total_output "] =

format_value ( transaction [" total_output "])

69 fortmatted_transaction [" inputs "] = [{i:inp[i] for i in inp if
i!= ’_request_tx_hash ’} for inp in inputs if
inp[" _request_tx_hash "] == transaction [" tx_hash "]]
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70 fortmatted_transaction [" outputs "] = [{i: output [i] for i in
output if i!= ’_request_tx_hash ’} for output in outputs if
output [" _request_tx_hash "] == transaction [" tx_hash "]]

71 formatted_transactions . append ( fortmatted_transaction )

72 return formatted_transactions

73
74 def get_transactions_from_block_with_io ( block_height ):

75 transactions = blocks_api . list_block_txs (’btc ’, block_height )

76 tx_hashes = [ transaction [" tx_hash "] for transaction in
transactions ]

77 inputs = get_io ( tx_hashes , " inputs ")

78 outputs = get_io ( tx_hashes , " outputs ")

79 return format_transactions ( transactions , inputs , outputs )

80
81 def get_list_of_surrounding_blocks_for_number_of_transactions (

block_height , number_of_transactions ):

82 current_number_of_transactions = 0

83 current_block_height = block_height

84 blocks = []

85 increment = 1

86 while current_number_of_transactions < number_of_transactions :

87 blocks . append ( current_block_height )

88 number_of_transactions_in_block = blocks_api . get_block (’btc ’,

current_block_height )[" no_txs "]

89 current_number_of_transactions +=

number_of_transactions_in_block

90 current_block_height = block_height + increment

91 increment = -increment if increment > 0 else -increment + 1

92 return sorted ( blocks )

93
94 def find_block_by_timestamp_binary_search ( min_block_height ,

max_block_height , timestamp , ensuing ):

95 if max_block_height >= min_block_height :

96 mid_block_height = ( max_block_height + min_block_height ) // 2

97 mid_block = blocks_api . get_block (’btc ’, mid_block_height )

98 if mid_block [’timestamp ’] == timestamp :

99 return mid_block_height

100 elif mid_block [’timestamp ’] > timestamp :

101 return
find_block_by_timestamp_binary_search ( min_block_height ,

mid_block_height - 1, timestamp , ensuing )

102 else :

103 return
find_block_by_timestamp_binary_search ( mid_block_height

+ 1, max_block_height , timestamp , ensuing )

104 else :

105 if ensuing :

106 return min_block_height

107 else :

108 return max_block_height

109
110 def create_data_set_1 ():
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111 data_set_1 = db[’data -set -1 ’]

112 graphsense_statistics = general_api . get_statistics ()

113 latest_block_height = [ statistic [’no_blocks ’] - 1 for statistic in
graphsense_statistics [’currencies ’] if statistic [’name ’] ==

’btc ’][0]

114 for block_height in range (100000 , latest_block_height , 100000) :

115 block_list =

get_list_of_surrounding_blocks_for_number_of_transactions (

block_height , 10000)

116 for block_height in tqdm( block_list ):

117 if data_set_1 . count_documents ({" height ": block_height }) ==

0:

118 transactions =

get_transactions_from_block_with_io ( block_height )

119 data_set_1 . insert_many ( transactions )

120
121 def create_data_set_2 ():

122 data_set_2 = db[’data -set -2 ’]

123 graphsense_statistics = general_api . get_statistics ()

124 latest_block_height = [ statistic [’no_blocks ’] - 1

125 for statistic in
graphsense_statistics [’currencies ’] if
statistic [’name ’] == ’btc ’][0]

126 print ( latest_block_height )

127 start_date = datetime . datetime (2022 , 2, 1). timestamp ()

128 end_date = datetime . datetime (2022 , 2, 3). timestamp ()

129 start_block = find_block_by_timestamp_binary_search (

130 0, latest_block_height , start_date , True)

131 end_block = find_block_by_timestamp_binary_search (

132 start_block , latest_block_height , end_date , False )

133 block_list = list ( range ( start_block , end_block +1))

134 for block_height in tqdm( block_list ):

135 if data_set_2 . count_documents ({" height ": block_height }) ==

0:

136 transactions =

get_transactions_from_block_with_io ( block_height )

137 data_set_2 . insert_many ( transactions )
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C.2 Common-input-ownership heuristics

1 import pymongo

2 import os

3 from dotenv import load_dotenv

4 from tqdm import tqdm

5
6 load_dotenv (’.env ’)

7
8 connectURI = os. environ [" connectURI "]

9 client = pymongo . MongoClient ( connectURI )

10 db = client [" master "]

11
12 def get_addresses (puts):

13 addresses = []

14 for put in puts:

15 try:

16 addresses . append (put[" address " ][0])

17 except IndexError as e:

18 continue
19 return addresses

20
21 def has_self_change_address (inputs , outputs ):

22 input_addresses = get_addresses ( inputs )

23 output_addresses = get_addresses ( outputs )

24 for output_address in output_addresses :

25 if output_address in input_addresses :

26 return True

27 return False

28
29 def common_input_address_clustering ( transactions , entities_collection ):

30 entities_collection . create_index (" address_cluster ")

31 for transaction in tqdm( transactions ):

32 input_addresses = get_addresses ( transaction [" inputs "])

33 existing_entity = False

34 for index , address in enumerate ( input_addresses ):

35 # Try to find entity with address in cluster
36 entity_with_shared_input_address =

entities_collection . find_one ({" address_cluster ":

address })

37 if entity_with_shared_input_address :

38 existing_entity = True

39 entity_id = entity_with_shared_input_address [’_id ’]

40 entities_collection . update_one ({ ’_id ’: entity_id }, {

41 ’$addToSet ’: { ’address_cluster ’: { ’$each ’:

input_addresses }},

42 ’$push ’: {’tx_hashes ’: transaction [" tx_hash "]}})

43 input_addresses = input_addresses [ index +1:]

44 # check for existing entitites with any of the input
addresses in cluster and combine them with this
one

45 for input_address in input_addresses :
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46 exiting_entity_shared_address =

entities_collection . find_one ({"$and":

[{" address_cluster ": input_address }, {"_id":

{"$ne":

entity_with_shared_input_address [’_id ’]}}]})

47 if exiting_entity_shared_address :

48 entities_collection . update_one ({ ’_id ’:

entity_id }, {

49 ’$addToSet ’: { ’address_cluster ’: {

’$each ’:

exiting_entity_shared_address [

" address_cluster "]}} ,

50 ’$push ’: {’tx_hashes ’: { ’$each ’:

exiting_entity_shared_address [

" tx_hashes " ]}}})

51 entities_collection . delete_one ({"_id":

exiting_entity_shared_address ["_id"]})

52 break
53 if not existing_entity and len( input_addresses ) > 0:

54 entities_collection . insert_one ({" address_cluster ":

list ( dict . fromkeys ( input_addresses )), " tx_hashes ":

[ transaction [" tx_hash "]]})

55
56 def individual_input_address_clustering ( transactions ,

entities_collection ):

57 entities_collection . create_index (" address_cluster ")

58 for transaction in tqdm( transactions ):

59 input_addresses = get_addresses ( transaction [" inputs "])

60 for input_address in input_addresses :

61 if not entities_collection . find_one ({" address_cluster ":

input_address }):

62 entities_collection . insert_one ({" address_cluster ":

[ input_address ], " tx_hashes ":

[ transaction [" tx_hash "]]})

63
64
65 def cursor_to_list ( cursor ):

66 return [item for item in cursor ]

67
68 def h1_1( transactions_collection , entities_collection ):

69 transactions_common_input =

cursor_to_list ( transactions_collection .find ({" coinbase ":

False }))

70 common_input_address_clustering ( transactions_common_input ,

entities_collection )

71
72 def h1_2( transactions_collection , entities_collection ):

73 # Find all transactions with one output , and cluster the inputs
74 transactions_common_input =

cursor_to_list ( transactions_collection .find ({ " outputs ": {

" $size ": 1}}))
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75 common_input_address_clustering ( transactions_common_input ,

entities_collection )

76
77 # Find transactions with more than one output and crate individual

clusters for each address
78 transactions_individual_input =

cursor_to_list ( transactions_collection .find ({ " $expr " : {

"$gt" : [{ " $size " : " $outputs " } , 1]}}) )

79 individual_input_address_clustering ( transactions_individual_input ,

entities_collection )

80
81
82 def h1_3( transactions_collection , entities_collection , otc_collection ):

83 # Find all transactions with one output
84 transactions_common_input =

cursor_to_list ( transactions_collection .find ({ " outputs ": {

" $size ": 1}}))

85
86 # Find all transactions with more than two outputs
87 transactions_individual_input =

cursor_to_list ( transactions_collection .find ({ " $expr " : {

"$gt" : [{ " $size " : " $outputs " } , 2]}}) )

88
89 # Find transactions with two outputs and check for change address

from otc_collection
90 transactions_two_outputs =

cursor_to_list ( transactions_collection .find ({ " outputs ": {

" $size ": 2}}))

91 for transaction in transactions_two_outputs :

92 if has_self_change_address ( transaction ) or
otc_collection . find_one ({"$and": [{" tx_hash ":

transaction [" tx_hash "]}, {" heuristics .4": True }]}):

93 transactions_common_input . append ( transaction )

94 else :

95 transactions_individual_input . append ( transaction )

96
97 common_input_address_clustering ( transactions_common_input ,

entities_collection )

98 individual_input_address_clustering ( transactions_individual_input ,

entities_collection )

99
100
101
102 transactions_collection = db[’data -set -2 ’]

103 entities_collection = db[’entities -data -set -2 ’]

104 otc_collection = db[’otc - addresses -data -set -2 ’]

105
106 h1_3( transactions_collection , entities_collection , otc_collection )
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C.3 One-time change address heuristics

1 import os

2 from time import sleep

3 import graphsense

4 import pymongo

5 from dotenv import load_dotenv

6 from graphsense .api import addresses_api , bulk_api , txs_api ,

entities_api

7 from tqdm import tqdm

8
9 load_dotenv (’.env ’)

10
11 api_key = os. environ .get(" api_key ")

12 configuration =

graphsense . Configuration (host=" https :// api. graphsense .info")

13 configuration . api_key [" api_key "] = api_key

14
15 api_client = graphsense . ApiClient ( configuration )

16
17 addresses_api = addresses_api . AddressesApi ( api_client )

18 bulk_api = bulk_api . BulkApi ( api_client )

19 txs_api = txs_api . TxsApi ( api_client )

20 entities_api = entities_api . EntitiesApi ( api_client )

21
22 connectURI = os. environ [" connectURI "]

23 client = pymongo . MongoClient ( connectURI )

24 db = client [" master "]

25
26 def is_coin_generation ( transaction ):

27 return transaction [’coinbase ’]

28
29 def has_two_outputs ( transaction ):

30 return len( transaction [" outputs "]) == 2

31
32 def has_two_inputs ( transaction ):

33 return len( transaction [" inputs "]) == 2

34
35 def get_addresses (puts , json= False ):

36 addresses = []

37 for put in puts:

38 try:

39 if json:

40 addresses . append (put[" address " ][0][ ""])

41 else :

42 addresses . append (put[" address " ][0])

43 except IndexError as e:

44 continue
45 return addresses

46
47 def has_self_change_address ( transaction ):

48 input_addresses = get_addresses ( transaction [" inputs "])

49 output_addresses = get_addresses ( transaction [" outputs "])
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50 for output_address in output_addresses :

51 if output_address in input_addresses :

52 return True

53 return False

54
55 def get_first_transaction_hash ( address ):

56 return addresses_api . get_address (’btc ’,

address )[" first_tx "][" tx_hash "]

57
58 def get_latest_output_transaction_binary_search ( transactions , low ,

high):

59 if high >= low:

60 mid = (high + low) // 2

61 if transactions [mid ]. value . value > 0 and
transactions [mid -1]. value . value < 0:

62 return transactions [mid ][" tx_hash "]

63 elif transactions [mid ]. value . value > 0:

64 return get_latest_output_transaction_binary_search (

transactions , low , mid - 1)

65 else :

66 return get_latest_output_transaction_binary_search (

transactions , mid +1, high)

67 else :

68 return False

69
70 def is_used_as_output_later (address , current_transaction_tx_hash ):

71 response = addresses_api . list_address_txs (

72 ’btc ’, address , pagesize =500)

73 if response [" address_txs " ][0][ " tx_hash "] ==

current_transaction_tx_hash :

74 return False

75 while response :

76 transactions = response [" address_txs "]

77 if transactions [ -1]. value . value > 0:

78 return get_latest_output_transaction_binary_search (

transactions , 0, len( transactions ) -1) !=

current_transaction_tx_hash

79 response = addresses_api . list_address_txs (’btc ’, address ,

page= response [’next_page ’], pagesize =500)

80
81 def value_has_more_than_four_digits_after_dot ( value ):

82 value = ’{0:.8 f}’. format ( value * 10**( -8)). strip ("0")

83 number_of_decimals = len( value . split (".")[1])

84 return number_of_decimals > 4

85
86 def otc_value_is_smaller_than_all_input_values ( otc_value , inputs ):

87 input_values = [inp[" value "][" value "] for inp in inputs ]

88 for input_value in input_values :

89 if input_value < otc_value :

90 return False

91 return True

92
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93 def has_not_been_otc_addressed_previously_h2_3 ( address ):

94 first_transaction_for_address_hash =

get_first_transaction_hash ( address )

95 transaction_data = txs_api . get_tx (’btc ’,

first_transaction_for_address_hash , include_io =True)

96 transaction = {" tx_hash ": transaction_data [" tx_hash "], " coinbase ":

transaction_data [" coinbase "], " outputs ":

transaction_data [" outputs "]. value , " inputs ":

transaction_data [" inputs "]. value }

97
98 if transaction [’coinbase ’]:

99 return True

100
101 if not has_two_outputs ( transaction ):

102 return True

103
104 if has_two_inputs ( transaction ):

105 return True

106
107 otc_output = [ output for output in transaction [" outputs "] if

output [" address "][0] == address ][0]

108 other_output = [ output for output in transaction [" outputs "] if
output [" address "][0] != address ][0]

109
110 if not value_has_more_than_four_digits_after_dot (

otc_output [" value "][" value "]):

111 return True

112
113 if has_self_change_address ( transaction ):

114 return True

115
116 first_transaction_for_other_address_hash =

get_first_transaction_hash ( other_output [" address " ][0])

117 return transaction [" tx_hash "] ==

first_transaction_for_other_address_hash

118
119 def has_not_been_otc_addressed_previously_h2_4 ( address ):

120 first_transaction_for_address_hash =

get_first_transaction_hash ( address )

121 transaction_data = txs_api . get_tx (’btc ’,

first_transaction_for_address_hash , include_io =True)

122 transaction = {" tx_hash ": transaction_data [" tx_hash "], " coinbase ":

transaction_data [" coinbase "], " outputs ":

transaction_data [" outputs "]. value , " inputs ":

transaction_data [" inputs "]. value }

123
124 if is_coin_generation ( transaction ):

125 return True

126
127 if has_self_change_address ( transaction ):

128 return True

129
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130 if not has_two_outputs ( transaction ):

131 return True

132
133 if has_two_inputs ( transaction ):

134 return True

135
136 otc_output = next ( output for output in transaction [" outputs "] if

output [" address "][0] == address )

137 if not otc_value_is_smaller_than_all_input_values (

otc_output [" value "][" value "], transaction [" inputs "]):

138 return True

139
140 other_output = next ( output for output in transaction [" outputs "]

if output [" address "][0] != address )

141 first_transaction_for_other_address_hash =

get_first_transaction_hash ( other_output [" address " ][0])

142
143 if transaction [" tx_hash "] !=

first_transaction_for_other_address_hash :

144 return False

145 return not is_used_as_output_later ( other_output [" address "][0] ,

transaction [’tx_hash ’]) or is_used_as_output_later (address ,

transaction [’tx_hash ’])

146
147 def h2_123 ( transaction ):

148 otc_data = {

149 " tx_hash ": transaction [" tx_hash "],

150 " block_height ": transaction [" height "],

151 " otc_output ": None ,

152 " other_output ": None ,

153 " heuristics ": {

154 "1": False ,

155 "2": False ,

156 "3": False

157 }

158 }

159
160 # (2) The transaction T is not a coin generation ;
161 if is_coin_generation ( transaction ):

162 return otc_data

163
164 # (4) The transaction T has exactly two outputs .
165 if not has_two_outputs ( transaction ):

166 return otc_data

167
168 # (3) There is no address among the outputs that also appears in

the inputs (self - change address );
169 if has_self_change_address ( transaction ):

170 return otc_data

171
172 # (1) This is the first appearance of the OTC address ;
173 output_1 = transaction [" outputs "][0]
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174 output_2 = transaction [" outputs "][1]

175 output_address_1_first_transaction =

get_first_transaction_hash ( output_1 [" address " ][0])

176 output_address_2_first_transaction =

get_first_transaction_hash ( output_2 [" address " ][0])

177
178 is_first_transaction_of_output_address_1 =

output_address_1_first_transaction == transaction [’tx_hash ’]

179 is_first_transaction_of_output_address_2 =

output_address_2_first_transaction == transaction [’tx_hash ’]

180
181 if is_first_transaction_of_output_address_1 ==

is_first_transaction_of_output_address_2 == False :

182 return otc_data

183
184 # (H2 .2 (5) ) Only the other output address is reused as an output

address in some later transaction
185 elif is_first_transaction_of_output_address_1 ==

is_first_transaction_of_output_address_2 == True:

186 output_1_used_later =

is_used_as_output_later ( output_1 [" address "][0] ,

transaction [" tx_hash "])

187 output_2_used_later =

is_used_as_output_later ( output_2 [" address "][0] ,

transaction [" tx_hash "])

188 if output_1_used_later != output_2_used_later :

189 if output_1_used_later :

190 otc_data [" otc_output "] = output_2

191 otc_data [" other_output "] = output_1

192 otc_data [" heuristics "]["2"] = True

193 elif output_2_used_later :

194 otc_data [" otc_output "] = output_1

195 otc_data [" other_output "] = output_2

196 otc_data [" heuristics "]["2"] = True

197
198 # (H2 .1 (5) and H2 .3 (5)) This is not the first appearance of the

other output address
199 else :

200 if is_first_transaction_of_output_address_1 :

201 otc_data [" otc_output "] = output_1

202 otc_data [" other_output "] = output_2

203 otc_data [" heuristics "]["1"] = True

204 elif is_first_transaction_of_output_address_2 :

205 otc_data [" otc_output "] = output_2

206 otc_data [" other_output "] = output_1

207 otc_data [" heuristics "]["1"] = True

208
209 if is_used_as_output_later (

otc_data [" other_output "][" address "][0] ,

transaction [" tx_hash "]) and not is_used_as_output_later (

otc_data [" otc_output "][" address "][0] ,

transaction [" tx_hash "]):
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210 otc_data [" heuristics "]["2"] = True

211
212 # (H2 .3 (6) ) The number of inputs in transaction T is not

equal to two .
213 if has_two_inputs ( transaction ):

214 return otc_data

215
216 # (H2 .3 (8) ) Decimal representation of the value for the OTC

address has more than 4 digits after the dot .
217 if not value_has_more_than_four_digits_after_dot (

otc_data [" otc_output "][" value "][" value "]):

218 return otc_data

219
220 # (H2 .3 (7) ) ~O has not been OTC addressed in previous

transactions
221 if has_not_been_otc_addressed_previously_h2_3 (

otc_data [" other_output "][" address " ][0]) :

222 otc_data [" heuristics "]["3"] = True

223 return otc_data

224
225 def h2_4( transaction ):

226 otc_data = {

227 " tx_hash ": transaction [" tx_hash "],

228 " block_height ": transaction [" height "],

229 " otc_output ": None ,

230 " other_output ": None ,

231 " heuristics ": {

232 "4": False

233 }

234 }

235
236 # (2) The transaction T is not a coin generation ;
237 if is_coin_generation ( transaction ):

238 return otc_data

239
240 # (4) The transaction T has exactly two outputs .
241 if not has_two_outputs ( transaction ):

242 return otc_data

243
244 # (3) There is no address among the outputs that also appears in

the inputs (self - change address );
245 if has_self_change_address ( transaction ):

246 return otc_data

247
248 output_1 = transaction [" outputs "][0]

249 output_2 = transaction [" outputs "][1]

250
251 is_first_transaction_of_output_address_1 =

get_first_transaction_hash ( output_1 [" address " ][0]) ==

transaction [’tx_hash ’]

252 is_first_transaction_of_output_address_2 =

get_first_transaction_hash ( output_2 [" address " ][0]) ==
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transaction [’tx_hash ’]

253
254 # (1) This is the first appearance of the OTC address ;
255 if is_first_transaction_of_output_address_1 ==

is_first_transaction_of_output_address_2 == False :

256 return otc_data

257
258 # (5) This is not the first appearance of the other output address

OR only the other output address is reused as an output
address in some later transaction

259 elif is_first_transaction_of_output_address_1 ==

is_first_transaction_of_output_address_2 == True:

260 output_1_used_later =

is_used_as_output_later ( output_1 [" address "][0] ,

transaction [" tx_hash "])

261 output_2_used_later =

is_used_as_output_later ( output_2 [" address "][0] ,

transaction [" tx_hash "])

262 if output_1_used_later == output_2_used_later :

263 return otc_data

264 else :

265 if output_1_used_later :

266 otc_output = output_2

267 other_output = output_1

268 elif output_2_used_later :

269 otc_output = output_1

270 other_output = output_2

271 else :

272 if is_first_transaction_of_output_address_1 :

273 otc_output = output_1

274 other_output = output_2

275 elif is_first_transaction_of_output_address_2 :

276 otc_output = output_2

277 other_output = output_1

278
279 # (6) The other output address has not been OTC addressed in

previous transactions
280 if not has_not_been_otc_addressed_previously_h2_4 (

other_output [" address " ][0]) :

281 return otc_data

282
283 # (7) The one - time change value is smaller than any of the inputs
284 if not otc_value_is_smaller_than_all_input_values (

otc_output [" value "][" value "], transaction [" inputs "]):

285 return otc_data

286
287 otc_data [" otc_output "] = otc_output

288 otc_data [" other_output "] = other_output

289 otc_data [" heuristics "]["4"] = True

290
291 return otc_data

292



C.3. ONE-TIME CHANGE ADDRESS HEURISTICS 85

293
294 def run_otc_heuristic ( heuristic_function , transactions_collection ,

otc_collection ):

295 transactions = transactions_collection .find ({})

296 transactions = [ transaction for transaction in transactions ]

297 for transaction in tqdm( transactions ):

298 if otc_collection . count_documents ({" tx_hash ":

transaction [" tx_hash "]}) == 0:

299 try:

300 otc_data = heuristic_function ( transaction )

301 except graphsense . ApiException as e:

302 print (" Exception �when� calling �

AddressesApi -> list_address_txs :",

303 e.status , e. reason )

304 continue
305 except IndexError as e:

306 print ("\ nException ,� probably � empty � address � array .�

tx_hash :", transaction [" tx_hash "])

307 continue
308 otc_collection . insert_one ( otc_data )

309
310 if __name__ == ’__main__ ’:

311 run_otc_heuristic (h2_123 , db[’data -set -1 ’],

db[’otc - addresses -data -set -1 ’])

312 run_otc_heuristic (h2_4 , db[’data -set -2 ’],

db[’otc - addresses -data -set -2 ’])
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C.4 Combination of the common-input-ownership heuristic

and OTC heuristic

1 import pymongo

2 import os

3 from dotenv import load_dotenv

4 from tqdm import tqdm

5
6 load_dotenv (’.env ’)

7
8 connectURI = os. environ [" connectURI "]

9 client = pymongo . MongoClient ( connectURI )

10 db = client [" master "]

11
12 def combine_entities_with_otc_address ( entities_collection ,

otc_collection ):

13 entities = entities_collection .find ({})

14 entities = [ entity for entity in entities ]

15 for entity in tqdm( entities ):

16 for tx_hash in entity [" tx_hashes "]:

17 otc = otc_collection . find_one ({"$and": [{" tx_hash ":

tx_hash }, {" heuristics .4": True }]})

18 if otc and otc[" otc_output "][" address "][0] not in
entity [" address_cluster "]:

19 entity_with_otc_address =

entities_collection . find_one ({" address_cluster ":

otc[" otc_output "][" address " ][0]})

20 if entity_with_otc_address and
entity_with_otc_address ["_id"] != entity ["_id"]:

21 entities_collection . update_one ({

22 ’_id ’: entity [’_id ’]

23 }, {

24 ’$addToSet ’: {

25 ’address_cluster ’: { ’$each ’:

entity_with_otc_address [

" address_cluster "]}

26 },

27 ’$push ’: {

28 ’tx_hashes ’: { ’$each ’:

entity_with_otc_address [" tx_hashes "]}

29 }

30 })

31 entities_collection . delete_one ({"_id":

entity_with_otc_address ["_id"]})

32
33 entities_collection = db[’entities -data -set -2 ’]

34 otc_collection = db[’otc - addresses -data -set -2 ’]

35
36 combine_entities_with_otc_address ( entities_collection , otc_collection )
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C.5 Testing

1 import unittest

2 from heuristics_otc import value_has_more_than_four_digits_after_dot ,

get_addresses , has_self_change_address ,

otc_value_is_smaller_than_all_input_values

3
4 class Test( unittest . TestCase ):

5 def test_value_has_more_than_four_decimals_after_dot (self):

6 self. assertFalse ( value_has_more_than_four_digits_after_dot (

123450000) )

7 self. assertFalse ( value_has_more_than_four_digits_after_dot (

100010000) )

8 self. assertTrue ( value_has_more_than_four_digits_after_dot (

123456000) )

9 self. assertFalse ( value_has_more_than_four_digits_after_dot (

100000000) )

10 self. assertTrue ( value_has_more_than_four_digits_after_dot (1000) )

11 self. assertFalse ( value_has_more_than_four_digits_after_dot (

10000) )

12 self. assertTrue ( value_has_more_than_four_digits_after_dot (1))

13 self. assertFalse ( value_has_more_than_four_digits_after_dot (0))

14
15 def test_get_addresses (self):

16 puts = [ { " address " : [ " address1 " ] } ]

17 self. assertEqual ( get_addresses (puts), [" address1 "])

18
19 puts = [ { " address " : [ " address1 " ] }, { " address " : [

" address2 " ] } ]

20 self. assertEqual ( get_addresses (puts), [" address1 ", " address2 "])

21
22 puts = [ { " address " : [ " address1 " ] }, { " address " : [] } ]

23 self. assertEqual ( get_addresses (puts), [" address1 "])

24
25 puts = [ { " address " : [] }, { " address " : [] } ]

26 self. assertEqual ( get_addresses (puts), [])

27
28 def test_get_addresses_json (self):

29 puts = [ { " address " : [{"" : " address1 " }] } ]

30 self. assertEqual ( get_addresses (puts , json=True), [" address1 "])

31
32 puts = [ { " address " : [{"" : " address1 " }] }, { " address " :

[{"" : " address2 " }] } ]

33 self. assertEqual ( get_addresses (puts , json=True), [" address1 ",

" address2 "])

34
35 puts = [ { " address " : [{"" : " address1 " }] }, { " address " :

[] } ]

36 self. assertEqual ( get_addresses (puts , json=True), [" address1 "])

37
38 puts = [ { " address " : [] }, { " address " : [] } ]

39 self. assertEqual ( get_addresses (puts , json=True), [])

40
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41 def test_has_self_change_address (self):

42 transaction = {

43 " inputs ": [ { " address " : [ " address1 " ] } ],

44 " outputs ": [ { " address " : [ " address1 " ] } ]

45 }

46 self. assertTrue ( has_self_change_address ( transaction ))

47
48 transaction = {

49 " inputs ": [ { " address " : [ " address1 " ] } ],

50 " outputs ": [ { " address " : [ " address2 " ] } ]

51 }

52 self. assertFalse ( has_self_change_address ( transaction ))

53
54 transaction = {

55 " inputs ": [ { " address " : [ " address1 " ] }, { " address " :

[ " address2 " ] } ],

56 " outputs ": [ { " address " : [ " address3 " ] }, { " address " :

[ " address1 " ] } ]

57 }

58 self. assertTrue ( has_self_change_address ( transaction ))

59
60 transaction = {

61 " inputs ": [ { " address " : [ " address1 " ] }, { " address " :

[ " address2 " ] } ],

62 " outputs ": [ { " address " : [ " address3 " ] }, { " address " :

[ " address4 " ] } ]

63 }

64 self. assertFalse ( has_self_change_address ( transaction ))

65
66 transaction = {

67 " inputs ": [ { " address " : [ " address1 " ] } ],

68 " outputs ": [ { " address " : [ " address1 " ] }, { " address " :

[ " address2 " ] } ]

69 }

70 self. assertTrue ( has_self_change_address ( transaction ))

71
72 transaction = {

73 " inputs ": [ { " address " : [ " address1 " ] }, { " address " :

[ " address2 " ] } ],

74 " outputs ": [ { " address " : [ " address3 " ] }, { " address " :

[ ] } ]

75 }

76 self. assertFalse ( has_self_change_address ( transaction ))

77
78 transaction = {

79 " inputs ": [ { " address " : [ ] } ],

80 " outputs ": [ { " address " : [ " address1 " ] }]

81 }

82 self. assertFalse ( has_self_change_address ( transaction ))

83
84 def test_otc_value_is_smaller_than_all_input_values (self):

85 inputs = [{" value ": {" value ": 100000000}}]
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86 self. assertTrue ( otc_value_is_smaller_than_all_input_values (999 ,

inputs ))

87
88 inputs = [{" value ": {" value ": 999}}]

89 self. assertFalse ( otc_value_is_smaller_than_all_input_values (

1000 , inputs ))

90
91 inputs = [{" value ": {" value ": 1000}} , {" value ": {" value ":

1001}} , ]

92 self. assertTrue ( otc_value_is_smaller_than_all_input_values (999 ,

inputs ))

93
94 inputs = [{" value ": {" value ": 999}} , {" value ": {" value ":

1001}} , ]

95 self. assertFalse ( otc_value_is_smaller_than_all_input_values (

1000 , inputs ))

96
97 inputs = [{" value ": {" value ": 1000}} , {" value ": {" value ":

2000}} , {" value ": {" value ": 998}} , {" value ": {" value ":

99912931299}} ,]

98 self. assertFalse ( otc_value_is_smaller_than_all_input_values (

999 , inputs ))
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