
Distributed Trust Empowerment for Secure Offline
Communications

Endre Medhus Mæland, Sigmund Bernhard Berbom, Besmir Tola, Yuming Jiang
Department of Information Security and Communication Technology

NTNU, Norwegian University of Science and Technology

Abstract— Most of today’s digital communications over the
Internet rely on central entities, such as certificate authority
servers, to provide secure and authenticated communication.
In situations when the Internet is unavailable due to lack of
reception in remote areas, natural disasters destroying network
infrastructure, or congestion due to large amounts of traffic,
these central entities may not be available. This causes secure
communication, even among users in the vicinity of each other,
to become a challenge. This paper contributes with a solution
that enables peers within the vicinity to communicate securely
without a connection to the Internet backbone. The solution
operates on the Wi-Fi infrastructure mode and exploits a private
distributed ledger to ensure a trusted authorization among users
without a third party. Moreover, the solution enables users to set
up secure communication channels using mutual authentication
for exchanging data securely. Finally, the solution is validated
through a proof of concept application and extensive experiments
aiming at optimizing system parameters and investigating the
performance of the application are carried out. The results from
these measurements indicate that the solution performs well on
small to medium-scale networks.

Index Terms—Decentralized Authentication, Distributed
Ledger Technology, Device-to-Device Communication, Peer-to-
Peer Network, mTLS, Mobile Social Network.

I. INTRODUCTION

The use of certificates and private/public key pairs is a
common way to provide authentication over the Internet
[1]. Certificates enable end users to be authenticated from
a centralized Certification Authority (CA), a trusted third
party, in order to retrieve service [2]. However, the process
of authentication is challenged in situations where there is
a lack of Internet access or backbone connectivity. In case
natural disasters, power outages, or human-caused accidents
impact the Internet infrastructure, end users will not be able to
retrieve authentication and consequently use a secure service,
or establish secure communication.

Although the Internet may be unavailable due to disaster
impacts, mobile-equipped end users can still establish network
connectivity within the range of their mobile radios. Almost
all modern mobile devices are equipped with Wi-Fi radios
and this technology can be exploited for re-establishing con-
nectivity in a Peer-to-peer (P2P) fashion for offline commu-
nication. However, the lack of a trusted third party will still
prevent the users from establishing and providing secure and
authenticated communication. Wi-Fi can provide authentica-
tion through WPA-Enterprise [3]. However, WPA-Enterprise
requires an authentication server, such as a RADIUS server,

for establishing user identities but if the server is not available
due to Internet connectivity issues, Wi-Fi cannot provide
authentication. Furthermore, in a scenario without access to the
Internet, the users in the vicinity will not be able to establish
a secure communication channel due to the lack of a central
unit orchestrating the communication. As a result, additional
security mechanisms need to be built on upper layers to enable
data confidentiality, integrity and authenticity.

A distributed authentication mechanism can solve the issue
of a CA not being available on the network by allowing
benign nodes to agree on an immutable record of authenti-
cation material, despite the existence of malicious nodes. To
achieve such an agreement, Distributed Ledger Technologies
(DLTs) can be utilized [4]. However, most public DLTs
have resource-consuming security mechanisms tailored for
financial transactions. Transaction are typically secured by
consensus mechanisms such as Proof-of-Work (POW) and
Proof-of-Stake (POS), requiring large amount of resources or
financial transactions [5]. Therefore, these consensus mecha-
nisms are unsuitable for resource-scarce mobile devices when
exchanging authentication material. The mutual authentication
in mutual Transport Layer Security (mTLS) [6] allows all
parties to be authenticated, and the protocol also provides
data encryption. Furthermore, using symmetric encryption
combined with mTLS can improve connection establishment
times compared to only using mTLS.

A previous work addressing authentication in offline net-
works proposes a system where users receive authentication
material when an Internet connection is available [7]. If the
user loses the Internet connection, the authentication material
could still be used. However, this solution does not support
offline registrations, hence preventing new users to be au-
thenticated after the loss of Internet connection. [8] improves
this solution by using peer signed certificates to allow offline
registration. The peer signed certificates establish a trust chain
where users vouch for each other. In this solution, it is difficult
to draw a clear line to what point in the chain a user is
no longer trusted. In [9], the authors propose a blockchain-
based solution for decentralized authentication of IoT devices.
The proposal is based on the public blockchain Ethereum
and envisions the creation of specific trusted zones, called
Bubbles, where IoT devices within the zone establish a level
of trust. The trust is confined within each zone and inter-zone
authentication and trust is left for future work. However, as
also identified by the authors, the solution presents several



open issues related to the use of a public DLT. The solution
is associated with economic cost, is unsuited for real-time
applications, and requires an initialization phase with a node
assuming the role of a certification authority. Such solution is
infeasible for use cases with high user mobility. Henceforth,
a problem yet to be solved is how to efficiently authenticate
users in a mobile offline environment where users are able to
register offline, establish a secure communication path, and
have a clear separation between trusted and untrusted users.

This paper aims to design, implement, and validate a
solution for application layer security in offline networks. The
proposed solution exploits Wi-Fi Infrastructure mode as the
technology for offline communication, mTLS in combination
with a symmetric key solution to provide mutual authentication
and encrypted data exchange among peers, and implements
a private distributed ledger and a consensus mechanism to
agree on users’ authentication material. A proof-of-concept
instant messaging application has been developed to validate
the solution and the implementation source code is publicly
available1. An extensive experimental campaign on real equip-
ment has been performed for optimizing the system parameters
and analyzing its performance and security features.

The remainder of the paper is structured as follows: Section
II illustrates the proposed system architecture for enabling
secure and trustworthy communication over Wi-Fi Infrastruc-
ture mode. The implementation on a real testbed of smart
devices running the Android OS is presented in Section III.
Successively, the validation of the security adopted in the
architecture and the analysis of the experimental results are
presented in Section IV. Finally, Section V concludes the
paper.

II. PROPOSED SOLUTION

This section illustrates how the proposed solution enables
authenticated and secure communication.

A. Overall Architecture

Figure 1 illustrates the high-level architecture of the pro-
posed solution.

Going bottom-up, the first layer is the wireless connection
layer. This layer exploits Wi-Fi in infrastructure mode and
is responsible for handling wireless connections, including
both unicast and multicast transmissions utilized for ledger
management and the actual service. This layer can also be
built on other technologies but we chose Wi-Fi given the wide
adoption of Wi-Fi radios in mobile devices.

The second layer is responsible for handling identities and
enabling authentication. This layer consists of the ledger and
the consensus mechanism. The ledger contains authentication
material for all users in the network. By having all users agree
on the ledger’s content, the responsibility of authenticating
users is moved from a single entity to the network as a whole.
This layer is further discussed in the following sections.

The third layer is responsible for enabling secure communi-
cation. The first time two users connect, an mTLS connection

1Will be disclosed at a later time.

Fig. 1: High-level architecture of the solution.

will be established with the authentication material found in
the ledger. During this connection, the users will negotiate a
symmetric key using the Diffie-Hellman key exchange [10]
to be used the next time they communicate. From the next
time these users connect, they will establish a TCP connection
secured with AES in Galois/Counter Mode (GCM) [11]. Using
symmetric keys reduces the time to establish the connection.
To improve the security of the symmetric keys, DH- and
symmetric ratchets are used [12].

B. Distributed Authentication

This subsection describes how a ledger is used to achieve
distributed authentication.

1) Ledger Entry: The ledger consists of Ledger Entries
(LEs), where one LE represents one user in the network. When
new users want to join a network, they have to create a valid
LE and distribute it. Each LE contains an X.509 certificate
[13] and an IP address. The certificate can be signed by a CA
or by the users themselves. To obtain a CA-signed certificate,
the user has to sign up to the system while the application is
online using a password and an email address as the username.
The email address must be verified before receiving the CA-
signed certificate. Whether the certificate is CA- or self-signed
plays an important role in the consensus mechanism. This is
further described in Section II-B3.

2) Joining the ledger: When a new device connects to a
network, it first joins a predefined multicast group to which
all users attached to the network are listening. Secondly, it
broadcasts a request for the ledger to all the users in this group.
If the user does not receive any responses within α seconds,
the user assumes there are no other users in the network. The



Fig. 2: Multicast message exchange when a new user joins
the network.

user will then proceed to create its own LE, which at this point
will make up the ledger. The value of α is further discussed
in Section IV-A6.

Figure 2 illustrates the process of a new user joining an
already established network. The last CA-signed user to join
the ledger will respond by sending a full ledger, while the
others will send the hash of their ledger. If there are no CA-
signed users in the network, the last user to join the network
will send the full ledger. The new user will use these responses
to select the correct ledger according to the criteria described
in Section II-B3.

All messages regarding the ledger are sent using UDP
multicast. If the user has not received the full ledger that won
the voting, the user will randomly pick one of the users who
sent the hash of the winning ledger and request the full ledger.
If the user does not receive the full ledger within β seconds,
this process is repeated until the full ledger is received. The
value of β is further discussed in Section IV-A5.

After receiving the ledger, the user can create and broadcast
its own LE. The username used by the new user cannot already
exist in the ledger unless the new user can obtain a CA-signed
certificate with that username. If so, the LE with the CA-signed
certificate will replace the one with the self-signed certificate,
and the old user will no longer exist in the ledger.

3) Consensus in the ledger: When a new user joins the
network, a voting is initiated to agree upon and distribute the
ledger to the new user. As shown in Figure 2, all users send
a full ledger or a hash of their ledger. These messages are
interpreted as votes for the validation of the correct ledger
by the new user. The messages have to be signed, and their
certificate must be included to ensure that each user can
vote only once. A malicious user could generate many fake
users with self-signed certificates, corrupt the ledger with
fake entries, and drive the consensus. This would enable a
Sybil attack [14] whose consequences would be a Denial of
Service (DoS). To mitigate this, votes from users with CA-
signed certificates are given priority. This is because CA-
signed certificates contain usernames, i.e., email addresses,
that have to be validated online thus making the process
of impersonation much harder. As a result, the following
restrictive criteria, with a decreasing priority, must be met
before a user accepts a ledger:

1) If at least two CA-certified users distribute the same
ledger or corresponding hash, and they make up more

Fig. 3: LE of new user 1 is not included in the ledger from
request 2, and is therefore lost after new user 1 has registered.

than 50% of the CA-certified users in the ledger, that
ledger will be accepted, given the full ledger has been
received.

2) If β seconds have passed from the time the ledger was
requested and at least one CA-certified user has re-
sponded with the ledger, either full or hashed, the ledger
with most votes from CA-certified users is accepted.

3) If β seconds have passed from the ledger was requested
and no CA-certified users have responded with the
ledger, the ledger with most votes will be accepted.

β has to be set so that users can expect to have received
all the votes within that time. This value is discussed in
Section IV-A. Note that the above criteria are not exclusive
of each other. Priority is given to CA-signed users, however,
self-signed users are considered in some scenarios to ensure
the service is available even though no CA-signed users
are present. This may pose a risk in scenarios without CA-
signed users, but the risk will decrease as the number of user
increases.

4) Synchronizing the ledger: When a new user joins the
network, all users can listen to the following voting process
because all messages are broadcast. They can therefore see
which ledger is correct by comparing responses, in the same
way as the user joining. Hence, users with an incorrect ledger
can update their ledger. If the accepted ledger has LEs that
does not exist in the user’s ledger, they are added. If a
user’s ledger holds any LEs that do not exist in the accepted
ledger, those LEs are not removed. This mechanism combats
a possible ledger rollback attack, further mentioned in Section
II-B5, and ensures no LEs are lost. Figure 3 shows how a
LE could potentially have been lost if two users joined at the
same time.

An LE conflict means that two LEs with different certificates
have the same username. If there are conflicting LEs between
the accepted ledger and the ledger held by a user, the users
will update their ledger as long as the conflicting LE they hold
does not have a CA-signed certificate.

5) Mitigating attacks: There are several security mecha-
nisms added to the proposed solution to mitigate various types
of security attacks.

If a valid vote in one voting process could also be valid in
another voting, a malicious actor could exploit this to execute



Fig. 4: If one ledger request falls within the time window
where a request is dropped, another will fall outside it.

a replay attack. To mitigate this, every voting has a unique
nonce where all messages related to this vote have to contain
this nonce. Because the messages are signed, and an attacker
cannot forge a signature, there is no way for them to obtain
a valid response signed by another user, and the attack is
prevented from occurring.

An extension to the above attack is a ledger rollback where
an attacker stores both the request for the ledger and its
responses. As a result, the ledger could be reset to a previous
state by replaying these messages later, potentially removing
users from the ledger. To avoid this from happening, LEs are
not removed from the ledger even when they are not a part of
the accepted ledger.

Every request for the ledger broadcast in the network
triggers a response from the other users. All the users in the
network then handle these responses. Therefore, flooding the
network with requests will cause an increase in computational
load on the devices, potentially leading to a DoS attack. To
combat this attack, a user will drop requests received within γ
seconds after responding to a request for the ledger. The choice
of the parameter γ is discussed in Section IV-A7. Multicast
packets are transmitted multiple times to avoid packet loss.
As long as γ is less than the time between the first and last
request transmission, dropping these packets will not lead to
requests not getting a response, as also shown in Figure 4.

C. Secure communication path

The first time two users connect, they establish an mTLS
connection using the authentication material found in the
ledger. During this connection, the peers negotiate a symmetric
key to be used for the next connection. The second time two
peers communicate, they use a pure TCP connection with
AES for encryption. Every time they communicate, the peers
negotiate a key they will use the next time they communicate.

Diffie-Hellman (DH) key exchange is used to negotiate the
symmetric keys. By introducing DH-ratchet, this process gets
faster as two messages are needed the first time two users
communicate, while only one message is required from there
on. The process is illustrated in Figure 5. The first DH key
exchange between two users initiates a DH-ratchet where one

Fig. 5: DH-ratchet

user’s private key and the other user’s public key are used to
calculate a shared DH secret. From the second time the two
users interact, only one user updates their key pair to generate
the new symmetric key. Therefore, only one key is sent, and
only one message is required to update the symmetric key.
The users renegotiate the symmetric key every time they set
up a new connection.

If an attacker can break one of the symmetric keys, they
will be able to read all messages within that conversation.
By introducing double ratchets, this problem is reduced to
a backward secrecy problem. Double ratchets use a key
derivation function (KDF) on every key after use to ensure
a key is only used once. Hence, it is not possible to find an
old key given a new one, but it is possible to find a new
key given an old one. Using double ratchets and DH-ratchets
provides forward secrecy within a conversation and forward-
and backward secrecy between conversations [12].

Fig. 6: Application overview.

III. PROOF-OF-CONCEPT IMPLEMENTATION

In order to validate the proposed solution, the system has
been implemented in a proof-of-concept Instant Messaging
application. The application consists of the six components,
shown in Figure 6.



Fig. 7: Voting handler flowchart.

A. Authentication components

The multicast client and server are responsible for sending
messages related to the ledger. The multicast server is im-
plemented as an Android Service while the client is a Kotlin
class. Both are initiated when the application starts.

The voting handler is responsible for handling the process
related to achieving consensus on the ledger. For every new
voting, the application initiates a new voting handler. The
voting handler ensures the votes are in the correct format,
counts votes, selects the correct ledger, and is responsible for
updating the ledger after a finished voting.

When a new vote is received by the multicast server, it
checks if there exists a voting handler for that nonce, and if
so, forwards it to the correct handler. Figure 7 shows how
a new vote is processed by the voting handler. The process
ensures the vote is related to an existing voting, that a user
does not vote multiple times, and ensures the vote is in the
correct format.

The ledger module contains the ledger itself and methods
for updating it and creating new LEs. The application updates
the information in the ledger after every voting.

B. Messaging components

When the application starts, it initiates a unicast server.
The unicast server listens for incoming requests to set up
unicast communication. The server opens a new port for every
new connection request, allowing the application to support
receiving messages from multiple devices simultaneously. De-
pending on the available authentication material, an mTLS
over TCP or pure TCP connection is established.

When the user starts a chat, the application initiates a unicast
client. The unicast client sends a connection request to its
peer’s unicast server and establishes a connection. After a
unicast connection is established, both server and client send
and receive messages.

C. Activities

Android divides applications into different interfaces called
activities. The proof-of-concept application consists of two
primary activities: the main and the chat activity.

(a) Main Activity. (b) Chat Activity.

Fig. 8: Android Application Activities.

Figure 8(a) shows the main activity interface. The interface
displays the content of the ledger as a list of users. Each list
entry displays the username, IP address, and a colored dot
indicating if the user’s certificate is self-signed (yellow) or
CA-signed (green). The application will initiate a chat with a
peer when the user taps a list entry. The application does not
limit the users’ ability to connect to other users based on their
certificate type. The users themselves have to decide whether
or not to trust a user with a self-signed certificate.

When a connection between two peers has been initiated,
the chat activity shown in Figure 8(b) starts. In this activity,
the users can read and send messages.

D. Ledger design parameters

The system must achieve a consensus on the ledger content
to enable authentication. The ledger distribution can be chal-
lenged by the use of unreliable access and transport layers,
i.e., wireless channel and UDP. Henceforth, the following
parameters are used to tune mechanisms on the application
layer that have been added to address the eventual packet loss:
i) number of transmissions; ii) time between transmissions; iii)
fragment size; and iv) time between fragments. A description
of each of the parameters is provided below, while tests used
for optimizing the value of each parameter can be found in
Section IV.

i) Number of transmissions: All messages used for ledger
management are sent multiple times to reduce packet loss
through redundancy.

ii) Time between transmissions: The time between transmis-
sions is defined as the time from sending the last fragment of
the ledger in one transmission until sending the first fragment
of the ledger in the subsequent transmission. Increasing this
parameter may reduce the probability that the same factor,
e.g., propagation conditions, will affect multiple transmissions.
However, too much time between packets will increase the



time it takes to sign up, potentially affecting the user experi-
ence.

iii) Fragment size: When a sufficiently large ledger is sent,
the message is divided into several fragments. In the proof-
of-concept application, one fragment holds n LEs. Every
fragment must be received for the ledger to be counted as
a vote. When the size of each fragment is reduced, the packet
loss is also reduced as found in [15]. However, with smaller
fragments the number of fragments that has to be successfully
received increases.

iv) Time between fragments When a ledger is fragmented,
the time between fragments may affect the packet loss simi-
larly to the time between transmissions.

IV. RESULTS

This section describes the test conducted to evaluate the
ledger parameter values and assess the security and perfor-
mance of the proof of concept application.

A. Optimizing parameters

Specific tests have been conducted for optimizing the pa-
rameters identified in Section III. In the tests, one user sends
a pre-programmed ledger to another user, and the messages
sent and received are recorded. The tests only regard message
loss, so there is no need for multiple peers to vote for a correct
ledger. Each ledger is seen as one message, although it is
transmitted in fragments to reduce message loss, with each
fragment containing 1 LE. Therefore, a ledger is considered
lost if one or more fragments are not received. That is because
the entire ledger will have to be received in order for it to be
considered a vote. The tests have been conducted using two
Samsung Galaxy S21 5G phones and a Netgear Nighthawk M2
wireless router. The optimal value of each parameter has been
found by varying its value, while keeping the parameters fixed.
The fixed parameters’ values are chosen to be near-optimal,
based on a smaller sample of the performed tests.

The test environment of the following tests is constructed
to have a large message loss to increase the statistical signifi-
cance. As the number of ledger entries in the pre-programmed
ledger negatively affects the message loss, the number of LEs
is chosen so that the message loss will be near 50% for what
is believed to be the optimal value for the tested parameter.
Such message loss will increase the statistical significance of
the results compared to a very high or very low message loss.
The test environment is designed solely to investigate the near-
optimal values for the parameters tested and does not represent
how the system will perform outside of the test environment.
The latter is investigated in more detail in Section IV-B.

1) Number of transmissions: Figure 9 shows how the
message loss is affected by the number of transmissions of
the same packet. The requests for ledgers messages are sent in
one fragment while the full ledger contains 100 LEs, and with
a fragmentation size of 1, it is delivered in 100 fragments.
As expected, the message loss decreases as the number of
transmissions increases for the full ledgers. However, the
message loss for small packets, here represented by request

Fig. 9: Number of transmissions.

(a) Time between transmissions. (b) Fragment size.

Fig. 10: Impact on the message loss as a result of varying
time between transmissions and fragment size.

messages for the ledger, increases with a higher number
of transmissions. Most of the messages sent in the system,
including hashes of ledgers, consist of one packet, so the
message loss of small messages is very important, even though
the message loss for larger ledgers is also of significance.
Choosing 4 transmissions achieves a low message loss of
the important small messages while achieving an acceptable
message loss of the larger messages, i.e., full ledgers.

2) Time between transmissions: Figure 10(a) shows how
the message loss is affected by the time between transmissions.
Increasing the time between transmissions will decrease the
message loss until 400 ms. That is because what causes pack-
ets to be lost in one transmission might be gone before the next
one. From 400 ms and upwards, the message loss increases
with more time between transmissions. This indicates that
the advantage of stretching out the transmissions in time is
reduced for values larger than 400 ms.

The number of transmissions has to be considered when
analyzing the test results. While 400 ms is the optimal time
between transmissions for four transmissions, according to
these results, that might not be the case for another number
of transmissions. With four transmissions, 400 ms between
each transmission will stretch the transmission out to 1200
ms in total. The total stretch in time will be lower for fewer
transmissions, and the optimal value for the time between
transmissions might be higher.

3) Ledger fragment size: Figure 10(b) shows the test results
for message loss for different fragment sizes. The figure shows
that the message loss is lowest for a fragment size of 4 LEs.

4) Time between fragments: Figure 11(a) shows how the
message loss is affected by the time between fragments. As
shown, message loss decreases from 0ms to 5ms between



(a) Time between fragments. (b) Median time to receive full
ledgers of length n.

Fig. 11: Impact on the message loss as a result of varying time
between fragments and the number of ledger entries’ effect on
time to receive ledger.

fragments. However, for values higher than 5ms, the message
loss increases with the time between fragments. Based on these
results, 5ms has been chosen as the optimal value.

5) Accept ledger timer: The time, β, a user waits before
accepting a ledger according to consensus criteria 2 and 3
should be chosen to ensures that most voting messages are
received before selecting a ledger. Figure 11(b) shows the
median time it takes to receive a full ledger of length n, which
is the largest voting message for ledgers of size. n. This value
is used to decide β. In reality, the users would receive several
hashes in addition to the full ledger. Because all the messages
are handled in the same thread on the device, many hashes
would increase the time it takes to handle the responses, and
should be considered when choosing the value of the timer.

If the value of β is set too low, a ledger might be accepted
while a vote is still missing. As all legitimate users will most
likely vote for the same ledger, one vote missing will not affect
the system for large ledgers. If the value is too large, the user
will have to wait longer before they can join the network.

By setting the value of β to 4000ms, full ledgers as large
as 90 LEs are most likely to be received and the time is not
expected to reduce the user experience.

6) Alone in network timer: The time, α, a new user waits
before concluding they are alone in the network should be
chosen to give other users time to respond to the new user.
As described in Section IV-A1 each packet is sent four times.
The time between each transmission is chosen to be 400ms,
as also observed in Section IV-A2. Therefore, the total time
it takes from the first to the last transmission is 1200ms. That
is the case for both the ledger request and its responses. If
all but the last transmission is lost, it will take 2400ms plus
the transmission time from the user sends the request until it
receives a response. Hence, the user should wait 2500ms from
the request is sent until the user concludes that they are alone
in the network.

7) Idle time after request: To avoid a DoS attack by request
flooding, a user waits γ seconds after responding to a request
before the user will respond to new requests. The value for
the idle time should be chosen to avoid all transmissions of a
request from a legitimate user falling into this window.

(a) Sign up time. (b) mTLS establishment times.

(c) TCP establishment times.

Fig. 12: Time required to sign up and establish mTLS and
TCP connections.

Each request is transmitted four times with 400ms between
each transmission, as discussed in Sections IV-A1 and IV-A2.
The total time from the first to the last transmission is 900ms.
At least two transmissions should always fall outside this
window to increase the likelihood of receiving legitimate
requests. The idle time must be less than 600ms to ensure
that. Therefore the idle time, γ, is chosen to be 590ms.

B. Performance

This section presents the results from testing the applica-
tions’ performance.

1) Sign up time: To use the application, the user signs up
by creating an LE. For users without an existing certificate,
this includes checking that the username is available, checking
if the device has an Internet connection, and generating keys
and certificates.

The test starts when the user has typed in the username and
presses the sign-up button and finishes when the LE has been
generated. Figure 12(a) shows the results from 100 tests using
two different Samsung devices, Galaxy s21 and Galaxy a71.

On average, the Samsung Galaxy s21 used 393ms for sign-
up, while the Samsung Galaxy a71 used 1136ms. The worst
test runs resulted in test times of over 2s, which is a noticeable
amount of time.

The difference in results between the phones is partly due
to the difference in clock speed between the phones [16] [17].
The volatility in test times is related to the variability in the
time it takes to ping the Google open DNS to check the
Internet availability.

2) Connection establishment time: The proof of concept
application uses a combination of asymmetric and symmetric
encryption to achieve a lower connection establishment time.
Two tests have been conducted to find the time it takes to
establish a connection, one for each type of connection. The
tests start when the user presses the LE of its peer and finish



Fig. 13: The time it takes to accept a ledger is affected by the
number of peers in the network.

when the connection is established. Figure 12(b) shows the
connection establishment times for mTLS, and Figure 12(c)
shows the connection establishment times for TCP.

The test results show that, on average, it takes 368ms to
establish a connection using mTLS and 243ms using TCP.
Even though establishing the pure TCP connection takes 34%
less time than mTLS, the difference can be negligible.

3) Ledger acceptance: Before a user can sign up for the
application, the user has to get the correct ledger or conclude
that the user is alone in the network. Therefore, the time for
accepting the ledger is an important performance metric. Tests
have been conducted to measure this.

The test starts when the user opens the application and
finishes when the application has accepted a ledger. The time
it takes to accept a ledger depends on the number of users with
CA-signed certificates, as described in the ledger acceptance
criteria introduced in Section II-B3.

Figure 13 shows how the time to accept the ledger is
affected by the number of users in the. Tests have been
conducted for a network with CA verified users and in a
network without any. The decreased time for more than one
CA verified user shows how the first acceptance increases
performance.

The probability that the n’th user joining the network
accepts a ledger containing the LEs of all the users that have
previously joined has been found to be 99% for up to 5 user.

4) Multicast packet loss: A test has been conducted to
measure message loss. The test measures how many full ledger
messages are lost during a voting. The test is conducted by
making one user send a variable-length ledger to another user
and recording if the message is lost. The tests have been
conducted with the optimal variables found in Section IV-A.

Figure 14 shows that the size of the ledger affects the
message loss negatively. Hence, the ledger size affects the
performance, as the user is more likely to have to request
the full ledger more times when the message loss is high.
In particular, we observe that up to 30 ledger entries, i.e.,
users in the same network, the packet loss is limited to
1.7% which means that the systems enables a fairly robust
ledger distribution for up to 30 users, i.e., small to medium-

Fig. 14: Effect of ledger size on the message loss.

Fig. 15: Wireshark capture of TLS traffic.

scale networks. Note that although the packet loss increases
significantly as the number of users increase, this is not an
upper bound on the network scalability as it simply indicates
that there is a higher probability that they would be required
to forward an additional full ledger request for reaching the
consensus.

C. Security

Packets have been captured with and analyzed with Wire-
shark [18] to verify that the instant messaging traffic is
encrypted. A computer was used as an AP to capture packets,
and all packets were routed through it and saved. This section
presents the security-related findings.

1) Message security: Figure 15 shows a Wireshark capture
of a data packet the first time two users communicate. As
expected, the packet payload is encrypted using TLS, and the
plaintext can not be read without knowledge of the encryption
key. In TLSv1.3 the version number gets the default value of
0x0303 - ”TLS 1.2”, as the version number field is not in use
[6]. Hence, Wireshark shows TLS 1.2 in the version field even
when TLSv1.3 is used. The protocol column shows the correct
protocol, which is TLSv1.3.

Figure 16 shows a Wireshark capture of a data packet the
second time two users communicate. The protocol column
shows that TCP is used as the transport layer protocol. The
payload is encrypted with AES on the application layer, and
the ciphertext is shown in the red box in Figure 16. The
encrypted payload while using TCP shows that the application
works as expected.

The multicast messages sent from the application are sent
in cleartext using UDP. Figure 17 shows a multicast message



Fig. 16: Wireshark capture of TCP traffic.

broadcasting a LE. The message data is not encrypted and
can be read by anyone listening to the multicast group. The
message has been signed with the sender’s private key.

Fig. 17: Wireshark capture of UDP traffic.

V. CONCLUSION

This paper presents a solution for authentication without a
central trusted unit using a distributed authentication scheme
and public and private cryptographic keys to provide secure
communication. The solution is divided into three independent
layers. The first layer presents a solution for setting up com-
munication between the peers relying on Wi-Fi infrastructure.
The second layer provides authentication by using a distributed
ledger. All users receive the authentication material needed
to authenticate their peers. The consensus mechanism ensures
that the network as a whole agrees upon a user’s identity and
thus the user’s authentication material. This solution relocates
the responsibility of authentication from one single trusted
unit to the whole network through cooperation between all
network participants. Finally, the third layer provides secure
communication relying on mTLS and symmetric encryption.
The application’s performance has been tested, and its en-
cryption confirmed. In addition, challenges regarding ledger
distribution have been identified and addressed through various
parameterized mechanisms.

REFERENCES

[1] I. E. T. F. (IETF). (2018) The transport layer security (TLS) protocol
version 1.3. [Online]. Available: https://datatracker.ietf.org/doc/html/
rfc8446#appendix-C.2

[2] Oracle. (2010) Certificate-based authentication. [Online]. Available:
https://docs.oracle.com/cd/E19575-01/820-2765/6nebir7eb/index.html

[3] “IEEE standard for information technology–telecommunications and
information exchange between systems - local and metropolitan area
networks–specific requirements - part 11: Wireless lan medium access
control (mac) and physical layer (phy) specifications,” IEEE Std 802.11-
2020 (Revision of IEEE Std 802.11-2016), pp. 1–4379, 2021.

[4] A. Sunyaev, Distributed Ledger Technology. Cham: Springer
International Publishing, 2020, pp. 265–299. [Online]. Available:
https://doi.org/10.1007/978-3-030-34957-8 9

[5] F. Saleh, “Blockchain without Waste: Proof-of-Stake,” The Review of
Financial Studies, vol. 34, no. 3, pp. 1156–1190, 07 2020. [Online].
Available: https://doi.org/10.1093/rfs/hhaa075

[6] E. Rescorla, “The transport layer security (TLS) protocol version 1.3,”
Internet Requests for Comments, IETF, RFC 8446, 8 2018. [Online].
Available: https://datatracker.ietf.org/doc/html/rfc8446

[7] Ø. Sigholt, B. Tola, and Y. Jiang, “Keeping connected when the
mobile social network goes offline,” in 2019 International conference
on wireless and mobile computing, networking and communications
(WiMob). IEEE, 2019, pp. 59–64.

[8] K. L. Skaug, E. B. Smebye, B. Tola, and Y. Jiang, “Keeping connected
in internet-isolated locations,” in 2022 Seventh International Conference
On Mobile And Secure Services (MobiSecServ). IEEE, 2022, pp. 1–7.

[9] M. T. Hammi, B. Hammi, P. Bellot, and A. Serhrouchni, “Bubbles of
trust: A decentralized blockchain-based authentication system for iot,”
Computers & Security, vol. 78, pp. 126–142, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404818300890

[10] U. Maurer and S. Wolf, “The diffie–hellman protocol,” in Designs, Codes
and Cryptography 19, 2000, p. 147–171.

[11] W. Stallings, Cryptography and Network Security: Principles and Prac-
tice, Global Edition. Pearson Education Limited, 2016.

[12] M. Marlinspike and T. Perrin, “The double ratchet algorithm,” Open
Whisper System, Tech. Rep., Nov. 2016.

[13] D. Cooper, S. Santesson, S. Farrel, S. Boeyen, R. Housley,
and T. Polk, “Internet x.509 public key infrastructure certificate
and certificate revocation list (crl) profile,” Internet Requests for
Comments, IETF, RFC 5280, 5 2008. [Online]. Available: https:
//datatracker.ietf.org/doc/html/rfc5280

[14] S. Aggarwal and N. Kumar, “Chapter twenty - attacks on blockchain,”
in The Blockchain Technology for Secure and Smart Applications
across Industry Verticals, ser. Advances in Computers, S. Aggarwal,
N. Kumar, and P. Raj, Eds. Elsevier, 2021, vol. 121, pp. 399–410.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0065245820300759

[15] J. Korhonen and Y. Wang, “Effect of packet size on loss rate and delay
in wireless links,” in IEEE Wireless Communications and Networking
Conference, 2005, vol. 3, 2005, pp. 1608–1613 Vol. 3.

[16] L. SAMSUNG ELECTRONICS CO. (2022) Specifications galaxy s21
fe — s21 — s21+ 5g. [Online]. Available: https://www.samsung.com/
no/smartphones/galaxy-s21-5g/specs/

[17] ——. (2022) Specifications galaxy s21 fe — s21 —
s21+ 5g. [Online]. Available: https://www.samsung.com/no/business/
smartphones/galaxy-a/galaxy-a71-a715-sm-a715fzkunee/

[18] Wireshark. (2022) Wireshark. [Online]. Available: https://www.
wireshark.org/


