
Authentication and Encryption in
Janus-Based Wireless Underwater
Communications

Branislav Petrović

Submission date: June 2022
Supervisor: Colin Boyd, NTNU IIK
Co-supervisor: Bálint Zoltán Téglásy, NTNU ITK

Norwegian University of Science and Technology
Department of Information Security and Communication Technology

Title:
Authentication and Encryption in Janus-Based
Wireless Underwater Communications

Student: Branislav Petrović

Problem description:

Wireless underwater communications most commonly utilize acoustic waves
as a signal carrier due to their superior robustness and range compared to radio
waves or other transmission media in this environment. But, usage of acoustic waves
introduces constraints as well, such as a low data rate and high packet loss. In addition,
most information sent using acoustic waves under water today is unencrypted and
unauthenticated, and it is assumed that all nodes in underwater communication
networks are friendly. With the increasing exploration and development of underwater
environments for economic benefit, environment preservation and research, there is
an increased need for data protection among marine operators in this field, since the
underwater threat landscape is rapidly broadening with new kinds of attacks, such
as eavesdropping, routing attacks, and data tampering.

To overcome these problems, in this thesis, we shall propose security schemes
integrated with the first standard for wireless acoustic underwater communication,
Janus. The aim is to counteract the threats, bearing in mind the limitations of the
acoustic communication channels. Novel schemes based on symmetric cryptography
will be investigated, ultimately aiming to provide a way for underwater nodes to
exchange authenticated and encrypted information. The outcome of this research will
be a contribution to increasing the security of the emerging Internet of Underwater
Things and its interoperability with the communication environment above the sea
surface.

Date approved: 18.02.2022
Supervisor: Colin Boyd, NTNU IIK
Cosupervisor: Bálint Zoltán Téglásy, NTNU ITK

Abstract

Wireless underwater communications commonly utilize acoustic waves due
to their superior robustness and range compared to radio waves or other
transmission media. But usage of acoustic waves still suffers from high
packet loss and it provides a low data rate. In addition, most information
sent using acoustic waves under water today is unencrypted and not
authenticated. With the development of underwater environments, there
is an increased need for data protection among marine operators, since
the underwater threat landscape is rapidly broadening with new kinds of
attacks, such as eavesdropping, routing attacks, and data tampering.

To overcome these problems, in this thesis, we propose two security
schemes integrated with the first standard for acoustic underwater com-
munication, Janus. The aim is to counteract the threats, bearing in mind
the limitations of the acoustic communication channels. The proposed
schemes are based on symmetric cryptography. We base the work in
this thesis on the first solution for mutual cryptographic authentication
among underwater devices, proposed by Téglásy et al. The ultimate goal
is to provide a way for underwater nodes to exchange authenticated and
encrypted information.

We include a security analysis of the proposed security schemes based
on a review of the general underwater threat landscape and general secu-
rity requirements of underwater acoustic communication. The analysis
shows that the schemes provide a high level of security against attacks on
the proposed protocols and against tampering with the communication
channel.

We simulate the proposed schemes by incorporating them in the
existing implementation of Janus and the Underwater Acoustic Network
(UAN) library of the Network Simulator 3 (NS3) network simulator. From
the simulations, we show that the authentication protocols based on the
proposed schemes complete within an acceptable time frame relative to
the general communication requirements.

Sammendrag

Trådløs undervannskommunikasjon finner vanligvis sted ved hjelp av
akustiske bølger på grunn av deres overlegne robusthet og rekkevidde
sammenlignet med radiobølger eller andre kommunikasjonsmedier. Men
akustiske bølger lider fortsatt av høyt pakketap og de gir en lav datahas-
tighet. I tillegg er det meste av informasjon sendt ved hjelp av akustiske
bølger under vann i dag ukryptert og ikke autentisert. Med den stadige
utviklingen av undervannsmiljøer i dag, er det et økt behov for databe-
skyttelse blant marine operatører, siden trussellandskapet under vann
utvides raskt med nye typer angrep, som avlytting, rutingangrep og
tukling av data.

For å overvinne disse problemene foreslår vi i denne oppgaven to
sikkerhetsløsninger integrert med den første standarden for akustisk un-
dervannskommunikasjon, Janus. Målet er å motvirke truslene, med tanke
på begrensningene til de akustiske kommunikasjonskanalene. De foreslåtte
løsningene er basert på symmetrisk kryptografi. Vi baserer arbeidet i
denne oppgaven på den første løsningen for gjensidig kryptografisk auten-
tisering blant undervannsutstyr, foreslått av Téglásy m. fl. Det endelige
målet er å muliggjøre det for undervannsnoder å utveksle autentisert og
kryptert informasjon.

Vi inkluderer en sikkerhetsanalyse av de foreslåtte sikkerhetsløsningene
basert på en gjennomgang av det generelle trussellandskapet under vann,
samt generelle sikkerhetskrav til akustisk undervannskommunikasjon.
Analysen viser at løsningene gir høy sikkerhet mot angrep på de foreslåtte
protokollene og mot tukling med kommunikasjonskanalen.

Vi simulerer de foreslåtte løsningene ved å inkorporere dem i den
eksisterende implementeringen av Janus og biblioteket for akustiske un-
dervannsnettverk til nettverkssimulatoren NS3. Simuleringene viser at
autentiseringsprotokollene basert på de foreslåtte ordningene fullføres
innen en akseptabel tidsramme i forhold til de generelle kommunikasjons-
kravene.

Preface

This thesis serves as the final work in my 2-year Master of Science program
in Communication Technology (MSTCNNS) at the Norwegian University
of Science and Technology (NTNU).

I would like to thank my supervisor, Colin Boyd, and my co-supervisor,
Bálint Zoltán Téglásy for many valuable discussions and feedback, both
during and outside scheduled meetings, as well as much relevant and
useful material that proved valuable in the execution of this project.

Thanks also to professors Sokratis Katsikas and John Potter for
additional input and feedback, as well as to Emil Wengle, for kindly
lending real acoustic modems for investigating how the proposed security
schemes would eventually be implemented in the future work.

Contents

List of Figures xi

List of Tables xiii

List of Algorithms xv

List of Symbols xvii

List of Acronyms xix

1 Introduction 1
1.1 Motivation . 1
1.2 Main Challenges . 2
1.3 Research Questions and Objectives 3
1.4 Contributions of the Thesis . 3
1.5 Outline of the Thesis . 4

2 Background 5
2.1 Transmission Media . 5
2.2 General Operation of Underwater Acoustic Networks 6
2.3 Janus . 7
2.4 Threat Landscape . 8

2.4.1 Jamming . 10
2.4.2 Wormhole Attack . 10
2.4.3 Sybil Attack . 12

2.5 Security Requirements in Underwater Communication 12
2.5.1 Authentication of origin and entity authentication 12
2.5.2 Confidentiality . 14
2.5.3 Integrity . 14
2.5.4 Availability . 14

2.6 Fundamentals of Symmetric Ciphers 14
2.6.1 Block Ciphers . 15
2.6.2 Stream Ciphers . 15

vii

2.6.3 Modes of Operation for Block Ciphers 15
2.6.4 Substitution-Permutation Networks (SPNs) 18

2.7 Authenticated Encryption . 19
2.8 State of The Art of Underwater Security 20

2.8.1 Authentication of Underwater Assets 20
2.8.2 Encryption for Janus with Venilia 23

2.9 Other Related Work . 27

3 Authenticated Encryption Schemes for Janus 29
3.1 Authenticated Encryption with CCM 29

3.1.1 Generation of the MAC Tag 31
3.1.2 Encryption . 33
3.1.3 Choice of Length of the MAC Tag for Janus 34
3.1.4 Argumentation for the Use of CCM with Janus 34
3.1.5 Application in Janus-based Communication 40

3.2 Authenticated Encryption with AEGIS 46
3.2.1 State Update . 47
3.2.2 Initialization . 47
3.2.3 Processing of the Associated Data 48
3.2.4 Encryption . 48
3.2.5 Finalization . 48
3.2.6 Argumentation for the Use of AEGIS with Janus 49
3.2.7 Application in Janus-Based Communication 50

3.3 Summary of the AEAD Schemes . 51

4 Security Analysis of the Proposed AE Solutions 55
4.1 Spoofing . 55

4.1.1 ACK Spoofing . 56
4.2 Tampering . 56

4.2.1 Nonce and IV Modification 57
4.2.2 Modification of the Associated Data and the Ciphertext . . . 61
4.2.3 Modification of the CRC . 61

4.3 Repudiation . 62
4.3.1 Denial of Protocol Participation through Flag Manipulation . 62

4.4 Information Disclosure . 63
4.4.1 Disclosure of Information on the Channel 63
4.4.2 Disclosure of Locally Stored Information 63

4.5 Denial of Service (DoS) . 64
4.6 Elevation of Privilege . 64
4.7 Summary of the Security Analysis 64

5 Methodology 65

5.1 Design Cycle and Empirical Cycle 65
5.2 Summary of the Methodology . 67

6 Experimental Work, Results, and Discussion 69
6.1 Experimental Work . 69

6.1.1 Experimental Setup . 69
6.1.2 Implementation of the Security Algorithms 72
6.1.3 Work with Acoustic Modems 73

6.2 Results . 74
6.3 Discussion . 76

6.3.1 The Cases Without Noise . 79
6.3.2 The Cases With Noise . 80

7 Conclusion and Future Work 83
7.1 Answers to the Research Questions 83
7.2 Future Work . 84

References 85

Appendices
A TUBcipher 89

B Simulation Scripts 93

List of Figures

2.1 An example of a UAN with a stationary base and mobile devices. Source:
[Evo18]. 7

2.2 The Replay Attack set up by Jamming in UANs. Adapted from [Dom11]. 11
2.3 The Wormhole Attack in UANs. Adapted from [Dom11]. 11
2.4 The Sybil Attack in UANs. Adapted from [Dom11]. 13
2.5 General overview of a block cipher. Adapted from [Sta17]. 15
2.6 General overview of a stream cipher. Adapted from [Sta17]. 16
2.7 Overview of ECB mode encryption. Adapted from [Jea16]. 16
2.8 Overview of CBC mode encryption. Adapted from [Jea16]. 17
2.9 Overview of CTR mode encryption. Adapted from [Jea16]. 18
2.10 Two rounds of an SPN. First, the round key is applied, before the substi-

tution S and the permutation. The use of a new round key indicates the
start of a new round. Adapted from [Jea16]. 19

2.11 The protocol for identification of friend or foe with timestamps. Adapted
from [TWPK]. 21

2.12 The encrypted portion of the ADB in the Venilia scheme. Source: [HH21a]. 24
2.13 Transmission and reception processing of Venilia. Source: [HH21a]. . . . 25

3.1 Overview of CCM used to process a Janus baseline packet. AD must be
formatted for CBC-MAC, and P must be formatted for both CBC-MAC
and CTR encryption. The final ciphertext is C||CT . Adapted from [Jea16]. 31

3.2 Comparisons of minimum MAC tag length for the CBC-MAC algorithm. 35
3.3 CCM used in the authentication protocol, without the usage of cargo

packets. 43
3.4 CCM used in the authentication protocol, with the usage of cargo packets. 45
3.5 Format of cargo packets used in the authentication protocol, processed

by CCM. A consists of the Janus header, the first byte of the ADB, and
the flags. N is partitioned into both the baseline packet and the cargo,
while C consists of all other values, except the CRC. 45

3.6 AEGIS used in the authentication protocol, without the usage of cargo
packets. 52

3.7 AEGIS used in the authentication protocol, with the usage of cargo packets. 53

xi

4.1 An attacker D sends a spoofed ACK flag to A, causing A to continue
sending messages through an unreliable channel. 57

4.2 After enough messages sent with the same nonce or IV under one key, the
authentication tag and ciphertext become predictable. 59

4.3 A malicious node D intercepts the first nonce or IV i, then jams the
communication, such that the next message does not reach B, while also
intercepting the next message. It then replays Ni or IVi. 60

5.1 The stages in the design cycle. Adapted from [Wie14]. 66
5.2 The stages in the empirical cycle. Adapted from [Wie14]. 67

6.1 The pipeline of processes simulated in NS3. The circles represent time-
consuming processes, while the rectangles represent intermediate values.
The figure shows the process of sending data in one direction only. . . . 72

6.2 The setup for in-air testing of the acoustic modems. 75
6.3 Round-trip times of the authentication protocols, using CCM and AEGIS,

with and without cargo packets for both algorithms. The RC5-based
solution by Téglásy et al. is included for comparison. 76

6.4 Comparison of RTTs for the CCM-based protocols with and without
cargo, with varying levels of noise. 77

6.5 Comparison of RTTs for the AEGIS-based protocols with and without
cargo, with varying levels of noise. 78

6.6 RTTs for the protocol by Téglásy et al., with varying levels of noise. . . 79

A.1 A round of TUBcipher consisting of a keyed XOR, linear diffusion, keyed
permutation, and fixed substitution. Source: [HH21b]. 89

List of Tables

2.1 Physical transmission media for underwater communication. Adapted
from [TWPK]. 6

2.2 The bit allocation table of a Janus baseline packet. Adapted from
[PAG+14]. 9

2.3 Structure of a Janus packet. 9
2.4 An example lookup table with MMSIs, long-term keys, and session keys

on device A. Messages encrypted with KnD, KnF , and KnG have been
received. The network consists of 7 devices, including A. 22

3.1 Formatting of block B0 in Counter Mode with Cipher Block Chain-
ing (CBC)-Message Authentication Code (CBC-MAC) (CCM). Source:
[Dwo04]. 31

3.2 Formatting of the flag octet of block B0 in CCM. Source: [Dwo04]. . . . 32
3.3 Formatting of the counter blocks Ctri in CCM. Source: [Dwo04]. 33
3.4 Formatting of the flag octet of counter block Ctri in CCM. Source: [Dwo04]. 33

6.1 Output of the creation of an empty Janus packet 71
6.2 Output of the creation of a Janus packet containing MMSIA in encrypted

form, in the CCM-based protocol. 73
6.3 The processing times of the security algorithms. 76

xiii

List of Algorithms

B.1 The packet generation for the cargo-less CCM-based protocol, incor-
porated into the Janus simulation. 94

B.2 The packet generation for the CCM-based protocol with cargo, incor-
porated into the Janus simulation. 100

B.3 The protocol simulation of the cargo-less CCM-based protocol in NS3. 103
B.4 The protocol simulation of the CCM-based protocol with cargo, in

NS3. 121

xv

List of Symbols

⊕ Bitwise XOR.

& Bitwise AND.

|| String concatenation.

|X| The bit length of an element X.

⌈X⌉ The ceiling function applied to the number X.
Results in the next integer greater than X.

xvii

List of Acronyms

ACK Acknowledgement.

ADB Application Data Block.

AE Authenticated Encryption.

AEAD Authenticated Encryption with Associated Data.

AES Advanced Encryption Standard.

AI Artificial Intelligence.

AIS Automatic Identification System.

AUV Autonomous Underwater Vehicle.

BGP Border Gateway Protocol.

C2 Command and Control.

CAESAR Competition for Authenticated Encryption: Security, Applicability, and
Robustness.

CBC Cipher Block Chaining.

CBC-MAC CBC-Message Authentication Code.

CCM Counter Mode with CBC-MAC.

CCMP CCM Protocol.

CRC Cyclic Redundancy Check.

CTR Counter.

DoS Denial of Service.

ECB Electronic Code Book.

xix

ECDH Elliptic Curve Diffie-Hellman.

GCM Galois/Counter Mode.

GF Galois Field.

IoT Internet of Things.

IoUT Internet of Underwater Things.

IV Initialization Vector.

KDF Key Derivation Function.

LSB Least Significant Bit.

MAC Message Authentication Code.

MitM Man in the Middle.

MMPE Monterrey Miami Parabolic Equation.

MMSI Maritime Mobile Service Identity.

MSB Most Significant Bit.

NIST National Institute of Standards and Technology.

NS3 Network Simulator 3.

NTNU Norwegian University of Science and Technology.

OCB Offset Code Book Mode.

OSPF Open Shortest Path First.

PKI Public Key Infrastructure.

PRF Pseudo-Random Function.

PRP Pseudo-Random Permutation.

RBG Random Bit Generator.

ROS Robot Operating System.

RSN Robust Security Network.

RTT Round-Trip Time.

SDM Software Defined Modem.

SHA Secure Hash Algorithm.

SPN Substitution-Permutation Network.

SYN Synchronization.

TCP Transmission Control Protocol.

TKIP Temporal Key Integrity Protocol.

TUBcipher Tiny Underwater Block Cipher.

UAN Underwater Acoustic Network.

USBL Ultra Short Baseline.

UWCN Underwater Communication Network.

UWSN Underwater Wireless Sensor Network.

WEP Wired Equivalent Privacy.

WiFi Wireless Fidelity.

WLAN Wireless Local Area Network.

WPA Wireless Fidelity (WiFi) Protected Access.

WUCaN Wireless Underwater Communication and Networking.

XOR Exclusive OR.

Chapter1Introduction

Wireless underwater communication networks are rapidly increasing in quantity
and there exist several types of underwater networks that serve different purposes.
For example, Underwater Wireless Sensor Networks (UWSNs) consist of resource-
constrained devices that are used for monitoring of underwater environments and
infrastructure, and mostly send small amounts of data to a few destinations. Another
kind of network consists of more advanced devices, such as Autonomous Underwater
Vehicles (AUVs), that are not stationary and engage in more complex missions, such
as reconnaissance for an organization with a stationary base. Communication and
interoperability among the different network types may also be needed in certain
operations. However, development of underwater communication standards is at an
early stage. Currently, few standardized solutions for underwater communication
exist and not all are available for public use. The currently most established digital
underwater communication standard is Janus [PAG+14], a physical-layer, acoustic
standard that is robust and makes interoperability among maritime operators possible.
However, Janus by itself provides no security mechanism, neither in the form of
encryption or authentication. On the other hand, the threat landscape related to
this kind of communication has developed substantially in the recent years1.

In this introductory chapter, the motivation for the work in this project is
explained and the main challenges are presented. Then, the research questions and
objectives are listed and the contributions of the thesis are explained. Finally, the
outline of the whole thesis is given.

1.1 Motivation

The proliferation of underwater communication means is encouraging devices to
transmit steadily increasing amounts of data for different purposes and for different
operators. Typical examples of data transferred in Underwater Communication

1This threat landscape is presented thoroughly in Section 2.4

1

2 1. INTRODUCTION

Networks (UWCNs) are meteorological and geophysical readings, mission-critical
Command and Control (C2) and signal messages, as well as information about
classified military operations. Some of this data is regarded sensitive, as attackers
with an interest to disrupt operators’ underwater missions can obtain information
that should be kept secret, or perform other manipulations. With the increased
amount of such sensitive data exchanged under water, strong security mechanisms
that protect the confidentiality and integrity of the data are a natural need. As the
Janus standard already serves as a basis for wireless underwater communication,
in this thesis, we focus on adding security mechanisms to it, thereby contributing
to the establishment of a standard by which marine operators can share the same
waters and cooperate. Which security mechanisms should be added and how they
should function depends on what relationships the communicating parties have to
each other, what data they need to exchange, and the capabilities of the adversaries
that can disrupt the communication. Authentication of messages and entities is
an important requirement, in addition to encryption, since not only confidentiality,
but also integrity of data is to be ensured. If authentication and encryption are
implemented separately, they may be too slow for providing security in underwater
communication. An alternative approach is to use so-called authenticated encryption,
which is a more efficient mechanism that provides both integrity and confidentiality.
Therefore, in this thesis, we focus primarily on this approach to providing both
integrity and confidentiality of data exchanged in Janus-based communication.

1.2 Main Challenges

The main constraints for providing security features under water are the following:

– Low data rate: A much lower data rate can be achieved with acoustic
underwater communication than with radio waves above the sea surface. This
causes significant delays in data transmission, which increases the time spent
by security protocols.

– High packet loss: High packet loss in comparison to air interfaces is caused
by attenuation and fading when transmitting through water, as well as by
Denial of Service (DoS), as a consequence of, for example, jamming. This can
prevent security protocols from completing successfully, resulting in reduced
availability.

The above constraints make the use of many standardized encryption and authen-
tication schemes infeasible due to their complexity and scale. Even solutions from
other resource-constrained areas, such as the Internet of Things (IoT) above water
would add a significant overhead to the communication. Therefore, authenticated

1.3. RESEARCH QUESTIONS AND OBJECTIVES 3

encryption mechanisms used under water must be computationally inexpensive and
reduce the communication overhead to a minimum. Thus, designing such mechanisms
is an extremely challenging task, which requires both technical compromises and a
thorough theoretical security analysis of the proposed solutions.

1.3 Research Questions and Objectives

Bearing in mind the motivation and main challenges exposed above, we define the
following research questions for this thesis.

RQ1: How can authenticated encryption mechanisms be applied in Janus-based
underwater communication to provide integrity and confidentiality of data?

RQ2: How can the underwater authenticated encryption schemes (ref. RQ1) be made
to complete reliably within a required time?

RQ3: What level of security do the proposed schemes provide in relation to the
underwater threat landscape?

To answer the research questions, the following objectives are pursued:

OBJ1: Identify and apply suitable Authenticated Encryption with Associated Data
(AEAD) schemes for use with Janus.

OBJ2: Implement the chosen schemes into the Janus simulation and simulate them
together with Janus.

OBJ3: Measure the time needed for the chosen schemes to complete in the simulated
environment, with and without noise.

OBJ4: Make an overview of the underwater threat landscape and identify vulnerabilities
of the chosen schemes in relation to the threat landscape.

1.4 Contributions of the Thesis

The main contribution of this thesis is the incorporation of two authenticated
encryption schemes, CCM [WHF02] and AEGIS [WP13], in Janus. This involved
numerous technical interventions in the original specifications of CCM and AEGIS.
However, the core functionality of these algorithms has been kept, such that they
provide their original levels of security. This is the first time that such AEAD schemes
have been proposed for use with this standard. We have defined authentication
protocols utilizing these schemes in Janus, both with and without so-called cargo
packets. In addition, we have performed comparative analysis of security, performance,
and scalability of the new proposed solutions and the original solution proposed by
Téglásy et al. [TWPK]. Ultimately, this thesis lays the ground for future investigation
of the suitability of authenticated encryption and other security mechanisms in Janus-
based underwater communication.

4 1. INTRODUCTION

1.5 Outline of the Thesis

The thesis is structured as follows: Chapter 2 gives an overview of both general
and Janus-based underwater communication, as well as the threats posed to such
communication. It also discusses what security properties are needed with respect
to the threat landscape and presents related work that has been done in this area.
Chapter 3 presents CCM and AEGIS in detail, gives arguments in favor of their use for
our purpose and explains how they can be incorporated into Janus. Chapter 4 analyzes
the security of the schemes proposed in Chapter 3 with respect to the reviewed
underwater threat landscape. Chapter 5 gives an overview of the methodology of the
work conducted in the thesis with respect to design science and traditional science.
Chapter 6 describes how the experimental work in the thesis was conducted and it
presents and discusses the results obtained through this work. Chapter 7 concludes
the thesis and discusses how the work can be continued and further improved.

Chapter2Background

In this chapter, background material needed to understand the authentication proto-
cols presented in subsequent chapters, is presented. First, a description of underwater
communication is provided, which discusses possible transmission media, general
operation of UANs, as well as the Janus standard. Then, general threats to under-
water communication and the corresponding security requirements are discussed.
Afterwards, an introduction to cryptographic concepts, such as Authenticated En-
cryption (AE), Substitution-Permutation Networks (SPNs), and block cipher modes
of operation, is given. Finally, the state of the art of the work on underwater security,
as well as other related work is presented.

2.1 Transmission Media

Even though sound is the most widespread transmission medium for underwater
communication, it is not the only available option in this environment. The fact that
acoustic waves are the least susceptible to attenuation by water particles makes them
the most widespread option with the greatest potential for application in standards.
The biggest drawback of this medium is the extremely low data rate that it provides
compared to other media.

Electromagnetic radio waves that are used in the Internet above the sea surface
can also be used to transmit data underwater, as shown by Lloret et al. [LSAR12].
In this work, the 2.4 GHz band from the IEEE 802.11b/g standards is submerged
in freshwater to transmit data at 11 Mbps. Radio waves would be the preferred
option for the development of a bridge interface between the Internet and underwater
networks. However, as shown by Lloret et al., even though much higher data rates
can be achieved with this medium compared to acoustics, only communication at
extremely close range can be achieved without severe attenuation in water, with
packet loss increasing drastically above a distance of only 15 cm.

Another possible medium are free-space optical waves, that are normally used in

5

6 2. BACKGROUND

Table 2.1: Physical transmission media for underwater communication. Adapted
from [TWPK].

Medium Data rate Maximum range without data loss
Electromagnetic 11 Mbps 15 cm

Free-space optical 500 Mbps 150 m
Acoustic 80 bps 10 km

optical fibres, but propagating directly through water instead of a cable. Wang et al.
[WLLX19] have achieved a data rate of 500 Mbps at a distance of 146 m through
clean freshwater under laboratory conditions using laser diodes with a wavelength of
520 nm. While this medium provides a very high data rate, the optical waves are
still highly attenuated by water, and fading occurs after a relatively short distance,
causing data loss and a decreased data rate. This can be seen in the same work by
Wang et al., where an increase of the distance by approximately 30 m led to a drop
in the data rate to 100 Mbps.

A summary of the properties of the different transmission media is shown in
Table 2.1 (Téglásy et al. [TWPK]). Ultimately, acoustic communication stands out
as the medium that provides the only acceptable range and reliability for practical use
outside laboratory conditions. For this reason, there is much more research conducted
on the propagation of sound through water, sound modulation, etc., than electromag-
netic or optical waves, and the use of acoustics is much more widespread in current
UWCNs. This has an effect on the overall nature of underwater communications.
The low data rate of acoustic waves makes it infeasible to exchange large amounts
of data under water, meaning that devices are limited to communicating specific
kinds of messages that are mostly used for mission-critical signalling. This provokes
the need to carefully specify the purpose and meaning of all data transferred under
water, and to thoughtfully choose the algorithms for networking and cryptography
that are to be deployed.

2.2 General Operation of Underwater Acoustic Networks

A unique characteristic of UANs is the long propagation time of acoustic signals
among devices, caused by the speed of sound through water. Because of this, a
major feature of such networks is the possibility to determine the distance among
devices and their positions relative to each other, based on the propagation time of
the exchanged acoustic signals. Because of the lack of underwater infrastructure,
such as large-scale servers with many clients found in the Internet, this is the only
way of obtaining an overview of the status and positions of vessels in underwater
networks. Typically, a transceiver mounted on a stationary base, such as an oil valve

2.3. JANUS 7

Figure 2.1: An example of a UAN with a stationary base and mobile devices.
Source: [Evo18].

or a large ship, sends interrogation signals to underwater devices in the area. The
underwater devices are equipped with transponders that detect the interrogations
and respond with their own acoustic signals. Based on the time of propagation of
these signals, the operation center on the base can calculate the positions of the
underwater devices and process any information they send back. An example of a
UAN in the form of an Ultra Short Baseline (USBL) positioning system (EvoLogics
[Evo18]) is shown in Figure 2.1.

2.3 Janus

As the first digital underwater communication standard, the aim of Janus is to
provide the means for different maritime operators to communicate and cooperate,
regardless of the developer of their digital coding technologies. Before the publication
of Janus in 2014, underwater communication capabilities were manufacturer-specific,
with no universal standard by which operators supplied by different manufacturers

8 2. BACKGROUND

could communicate. This would be an ever-increasing problem since the range of
devices employed in underwater assets is broadening, creating a more heterogeneous
communication environment. With the development of battery technology, processing
and memory capabilities, as well as control theory and Artificial Intelligence (AI),
there are many kinds of devices that can be employed for many different kinds of
underwater operations. Janus provides the means to perform Wireless Underwater
Communication and Networking (WUCaN) among devices with different purposes
and by different manufacturers, to allow for a wider range and scale of operations
that can be performed on underwater missions.

The Janus standard allows for a bandwidth of 80 bps and a range of 10 km (see
Table 2.1). The baseline packet is 64 bits long. It is shown in Table 2.2. 34 of
these bits (bits 23 to 56) are reserved for user data, and are called the Application
Data Block (ADB). The rest of the packet consists of communication overhead that
specifies different communication properties. The very limited amount of user data
that can be transmitted in a packet makes Janus best suited towards communication
with small data exchanges, such as C2 and status messages. If larger amounts of
data are to be sent, it must be either distributed into several packets or be sent as
a cargo immediately following a packet. If several packets are used, the additional
overhead must be encoded and modulated for each packet, resulting in additional
use of computing resources and increased latency. If a cargo is specified, the channel
is reserved during the transmission of the cargo and no other communication is to
happen on the network while it is being transmitted.

A cargo packet can be specified by setting the Schedule flag (bit 6) to 1 and the
first bit of the ADB (bit 23) to 0 in the baseline packet. This way, any kind of user
data can be sent in addition to the data in the ADB. The time to be reserved for the
cargo is indicated by the subsequent 7 bits in the ADB (bits 24 to 30). Thus, the
maximum amount of time that the channel can be reserved is obtained by setting
these bits to a value of 127 (11111112). This will reserve the channel for 10 minutes,
allowing to send a total cargo of 48000 bits. The structure of a baseline packet with
optional cargo, with an indication of how many bits each field takes, is shown in
Table 2.3.

2.4 Threat Landscape

The threats to underwater acoustic communication are similar to those faced by
radio communication above the sea surface. In both cases, wireless transmission
with physical waves is used, making it possible to use similar techniques to disrupt
the propagation of the waves and, thereby, also the communication. In addition,
routing protocols that forward packets based on channel quality and the possibility
to reach adjacent nodes, are also in use in underwater networks. These protocols

2.4. THREAT LANDSCAPE 9

Table 2.2: The bit allocation table of a Janus baseline packet. Adapted from
[PAG+14].

Bits Descriptor Values Comments

1 - 4 Version 0011 Unsigned 4 bit integer.
Current version is 3.

5 Mobility flag 0=static, 1=mobile Indicates nature of the
transmitting platform.

6 Schedule flag 0=off, 1=on
If On (1), the first bit in the
ADB indicates whether time

reservation or a repeat interval is used.
7 Tx/Rx Flag 0=Tx-only, 1=Tx/Rx Transmit/Receive capability.

8 Forward capability 0=no, 1=yes Used for routing and Delay
Tolerant Networking.

9-16 Class user i.d. [00000000 : 11111111]
Allows 256 classes of users, mostly

individual nations. Class 17 indicates
use of Venilia.

17-22 Application Type [000000 : 111111] Allows 64 different types of
message per user i.d. class.

23-56 Application Data Block Determined by user 34-bit payload.

57-64 8-bit Checksum
8-bit CRC run on the previous 56 bits

with polynomial
p(x) = x8 + x2 + x + 1; init = 0.

Table 2.3: Structure of a Janus packet.
Version
number

Mobility
flag

Schedule
flag

TX/Rx Forward
capability

Class
user i.d.

4 1 1 1 1 8

Application
type

Repeat Reservation
time

Application
data block

CRC Optional
cargo

6 1 7 26 8 n ≤ 48000

are equivalent to, for instance, Open Shortest Path First (OSPF) and the Border
Gateway Protocol (BGP), used in the Internet today. Protocols of this kind can be
manipulated by malicious users to cause disruptions in networks.

Ghannadrezaii and Bousquet [GB18] classify threats to underwater communication
into three main categories:

– Eavesdropping: Eavesdropping is generally a passive attack in which an
adversary intercepts data over a channel and tries to recover the information
from it. In wireless radio communication above the sea surface, the interception
is done by tuning a receiver to frequencies used for communication. This kind
of interception is also fully possible under water, in which case the adversary
would overhear the acoustic spectrum instead of the electromagnetic one.

– Routing attacks: Routing attacks are attacks against routing protocols, the
kind of which is mentioned above. In these attacks, a malicious user selectively

10 2. BACKGROUND

directs packets via alternative routes, thereby disrupting network traffic. This
can lead to the creation of routing loops or wormholes. An example of such an
attack is described in Section 2.4.2.

– Data tampering: Data tampering involves attacks that consist of changing
the contents of a packet as it is forwarded over the network. This can be
done, for example, by a malicious node in the network that has intercepted the
packet by eavesdropping. The node can then flip arbitrary bits in the packet
and change the packet’s information. This way, an attack that involves data
injection, such as a replay attack with nonce reuse, can be initiated.

Domingo [Dom11] gives an overview of threats to WUCaN, possible counteractions
of them, and open research areas related to security in this environment. Three
major attacks that fall under the categories above are the jamming, wormhole, and
Sybil attacks.

2.4.1 Jamming

A common tampering attack in UANs is jamming. Generally, UANs are more
vulnerable to jamming and interference than their radio-based counterparts above the
sea surface. This is due to the narrow acoustic frequency bands, which range from a
few to a few hundreds of kHz. When jamming an underwater signal, an attacker would
install carriers on the signal path between legitimate network nodes and transmit
with the same frequency as the nodes (i.e., make noise). This causes interference with
the legitimate acoustic signal, which leads to the disruption of communication due
to packet loss. If the attacker in addition intercepts the messages that are dropped,
the messages can later be replayed to the receiving node with incorrect timestamps
or localization information, thereby causing a loss of synchronization of these values
among the network nodes. The jamming attack is shown in Figure 2.2.

2.4.2 Wormhole Attack

Another serious threat to underwater communication is the Wormhole attack. It is
performed by establishing an out-of-band connection between two legitimate nodes
that are many hops away from each other in a network. The added connection may
be created above the sea surface or through a wired link, such that the bandwidth
is much higher and the propagation delay is much lower than in ordinary acoustic
channels. This will cause routing protocols operating in a UAN to prefer this link
due to its higher quality. The consequence is that a false neighbour relationship will
be created between the legitimate nodes connected with the wormhole link deployed
by the attacker. Thus, the legitimate nodes may exchange critical data across the
wormhole link, giving the attacker the possibility to monitor, modify, or drop all
packets. The attack is shown in Figure 2.3.

2.4. THREAT LANDSCAPE 11

Figure 2.2: The Replay Attack set up by Jamming in UANs. Adapted from
[Dom11].

Figure 2.3: The Wormhole Attack in UANs. Adapted from [Dom11].

12 2. BACKGROUND

2.4.3 Sybil Attack

One possible attack in UWSNs, where data is forwarded with several hops to a
certain destination, is the Sybil attack. Here, a malicious network node that has
acquired multiple identities advertises the identities as valid, but nonexistent nodes.
Then, when a legitimate node tries to forward or send data across the network, for
example to a sink node, it may choose to send the data to the spoofed identities of
the malicious node. The malicious node then intercepts the data by overhearing it.
The attack is shown in Figure 2.4.

Many other kinds of attacks are possible, such as sinkhole attacks, acknowl-
edgement spoofing, hello flood attacks, and selective forwarding. Hence, if the
communication is not protected with appropriate security measures, it is extremely
vulnerable.

2.5 Security Requirements in Underwater Communication

With respect to the threat landscape presented in Section 2.4, the following basic
security properties are needed in UANs in general. The identification and definition
of the security requirements was done in the preparation project preceding this thesis
[PTB21]. The requirements have remained unchanged, and their presentation from
the project report is included below. The properties themselves are described by
Ryan et al. [RSG+00, p. 6-14] and in Recommendation X.800 by the International
Telecommunication Union (ITU) [TC91]. In addition to explaining the properties
themselves, we explain how they, if satisfied, provide protection against the specific
attacks described in Section 2.4.

2.5.1 Authentication of origin and entity authentication

Authentication is needed as proof that the data was sent by a legitimate sender.
It is essential in military and safety-critical applications of UWCNs. Two types of
authentication are authentication of origin and entity authentication. These types
are strongly related. Authentication of origin means that one should be certain that
a message that is claimed to be sent from a certain party is indeed sent from that
party. Entity authentication is the process of providing assurance about the identity
of a party interacting with a system (e.g., to access a resource). In other words,
authentication of origin is authentication of messages, while entity authentication is
the authentication of communicating parties while interacting with a system or with
each other. Both forms can be needed in UWCNs, depending on the application.
With respect to the threat landscape from Section 2.4, authentication of origin and
entities would protect against the Wormhole and Sybil attacks.

2.5. SECURITY REQUIREMENTS IN UNDERWATER COMMUNICATION 13

Figure 2.4: The Sybil Attack in UANs. Adapted from [Dom11].

14 2. BACKGROUND

2.5.2 Confidentiality

Confidentiality or secrecy means that information should not be available to unau-
thorized third parties. Typically, this is achieved with encryption, in which case it is
expected that an adversary will intercept and obtain messages between legitimate
parties and read meta-information, but it will not be possible to decrypt the message.
If there is a set of sensitive pieces of information to protect, then the confidentiality
property is not satisfied if an adversary discloses any of the pieces. This in general
means that the adversary should not obtain the decryption keys. C2 and surveil-
lance messages in mission-critical operations in UWCNs should be confidential and
therefore encrypted. Adversaries that intercept packets, for instance in Wormhole
attacks, may disclose confidential information if it is not encrypted.

2.5.3 Integrity

Integrity is strongly tied with authentication of origin in the sense that it is required
that the contents of the output message match that of the input message. It generally
means that data cannot be altered on the communication path, or that any alteration
will be noticed and corrected. Integrity is a property that directly addresses data
tampering attacks described in Section 2.4. As an example, there is a need for integrity
of information in underwater sensor applications for environmental preservation, such
as water quality monitoring.

2.5.4 Availability

Related to a protocol, availability means that it should be able to be relied upon
to achieve a certain goal. For example, in a key exchange protocol, one should be
certain that the key exchange will happen, and that messages will not be erased in
transmission by adversaries. Availability also means that data and services should
be available when needed, and be resistant against DoS attacks. Lack of availability
of this kind in UWCNs would especially affect time-critical aquatic exploration
applications such as prediction of sub-sea earthquakes.

2.6 Fundamentals of Symmetric Ciphers

In this section, we briefly explain block ciphers and their basic modes of operation,
as well as stream ciphers, since these structures constitute basic elements of the
mechanisms that provide confidentiality and integrity of data. In addition, SPNs
are explained as the basic round structures for modern block ciphers, such as the
Advanced Encryption Standard (AES).

2.6. FUNDAMENTALS OF SYMMETRIC CIPHERS 15

Figure 2.5: General overview of a block cipher. Adapted from [Sta17].

2.6.1 Block Ciphers

A block cipher is a cipher that treats a block of plaintext (i.e., a set of plaintext
symbols of a fixed size) as a whole and produces a ciphertext of equal length (see,
for example, [Sta17]). Typically, the size of a block is between 64 and 256 bits. Each
block is encrypted with the same key. The key is used both for encryption and
decryption, and both parties that exchange confidential data share the same key.
The basic concept of a block cipher is shown in Figure 2.5.

2.6.2 Stream Ciphers

In a stream cipher, the plaintext is encrypted one symbol at a time (typically, a bit
or a byte, etc.). For this, a keystream of the required length is used. As with block
ciphers, the keystream must be shared by all parties willing to exchange confidential
data, or they must be able to generate the same keystream given equal initialization
values, such as a generating key. The plaintext bits are XORed with the keystream
bits to produce the ciphertext bits, and the ciphertext bits are XORed with the same
keystream bits at the receiving side to re-obtain the plaintext bits. It is important
that the keystream has good randomness properties, such that it is infeasible to
predict future portions of the keystream based on previous ones. A general stream
cipher structure is shown in Figure 2.6.

2.6.3 Modes of Operation for Block Ciphers

Block ciphers can be specified to function in certain modes of operation, also called
confidentiality modes. Common confidentiality modes are specified in Special Publica-
tion 800-38A of the National Institute of Standards and Technology (NIST) [Dwo01].

16 2. BACKGROUND

Figure 2.6: General overview of a stream cipher. Adapted from [Sta17].

E

P0

K

C0

E

P1

K

C1

E

P2

K

C2

· · · · · · E

Pn

K

Cn

Figure 2.7: Overview of ECB mode encryption. Adapted from [Jea16].

The relevant modes for this thesis are the Electronic Code Book (ECB), Cipher Block
Chaining (CBC), and Counter (CTR) modes. They are described below.

ECB Mode

ECB is the basic mode for a block cipher. For a given key, a fixed ciphertext
block is assigned to each plaintext block, and all executions of the block cipher are
independent of each other. In other words, each ciphertext block is described as
Ci = EK(Pi) for 1 ≤ i ≤ n, where n is the number of blocks and E is the block
cipher in the forward direction. Similarly, the decryption process that reproduces
the plaintext blocks is described as Pi = E−1

K (Ci), where E−1 is the inverse block
cipher. A general overview of encryption in ECB mode is given in Figure 2.7.

CBC Mode

CBC mode involves combining plaintext blocks with previous ciphertext blocks. An
Initialization Vector (IV) is combined with the first plaintext block. The IV must be
unpredictable and each IV must only be used once with a given key. The plaintext
blocks are combined with previous ciphertext blocks by applying the Exclusive OR
(XOR) operation, before encrypting the resulting string with the block cipher in

2.6. FUNDAMENTALS OF SYMMETRIC CIPHERS 17

E

P0

K

C0

E

P1

K

C1

E

P2

K

C2

IV

· · · · · · E

Pn

K

Cn

· · · · · · E

Pn

K

Cn

Figure 2.8: Overview of CBC mode encryption. Adapted from [Jea16].

the forward direction. The same key is used to encrypt all blocks. Formally, each
ciphertext block can be represented as

Ci = EK(Pi ⊕ Ci−1), 1 ≤ i ≤ n, (2.1)

where n is the number of blocks. Similarly, the ciphertext is decrypted by executing
the block cipher in the inverse direction, starting from the first ciphertext block and
XORing it with the decryption of the next ciphertext block. The same IV that was
used in encryption is used to obtain the first plaintext block. Formally,

Pi = E−1
K (Ci) ⊕ Ci−1, 1 ≤ i ≤ n. (2.2)

A general overview of encryption in CBC mode is given in Figure 2.8. In CBC
mode, the block cipher remains a block cipher (it is not converted into a stream
cipher). Therefore, if the last block to be encrypted is incomplete, it must be padded
such that the entire block is occupied.

CTR Mode

A block cipher in CTR mode is a synchronous stream cipher, meaning that the
keystream is generated independently of the plaintext. It is generated by encrypting
successive values of a counter, concatenated with an initialization value, called a
nonce, N . For each block, each keystream bit is then XORed with its corresponding
plaintext bit, as shown in Figure 2.6. All counters must be unique in each sequence
of blocks that is processed. The keystream for the block i is generated as follows:

Oi = EK(N ||i), 1 ≤ i ≤ n, (2.3)

18 2. BACKGROUND

E

N || (i + 0)

C0

K

P0

E

N || (i + 1)

C1

K

P1

E

N || (i + 2)

C2

K

P2

· · · · · · E

N || (i + n)

Cn

K

Pn

Figure 2.9: Overview of CTR mode encryption. Adapted from [Jea16].

where n is the number of blocks. The keystream is then used to produce each
ciphertext block in this manner:

Ci = Oi ⊕ Pi. (2.4)

Similarly, decryption is done by generating the keystream blocks once more and
XORing them with the ciphertext bits:

Pi = Oi ⊕ Ci. (2.5)

It is worth noting that a block cipher in CTR mode operates only in the forward
direction for both encryption and decryption. A general overview of encryption in
CTR mode is illustrated in Figure 2.9.

2.6.4 Substitution-Permutation Networks (SPNs)

SPNs are a type of iterated cipher, which again are a type of product cipher, which
provide the basic properties of confusion and diffusion, proposed by Shannon [Sha49].
Confusion is achieved by substitution, which makes the relationship between the
key and the ciphertext as complex (nonlinear) as possible. Diffusion is achieved by
permutation, which dissipates the statistical properties of the plaintext across the
ciphertext. In modern SPNs, these stages are performed multiple times, in rounds.

Generally, a plaintext block in an SPN is split into smaller blocks. If the original
block length is n, then the block should be split into m smaller blocks of length
l, such that n = lm. First, the round key corresponding to the current round is
XORed with the entire original block. The substitution stage is then performed by
substituting each smaller block of length l by another block of equal length. This is

2.7. AUTHENTICATED ENCRYPTION 19

S

S

S

S

S

S

S

S

Ki

Ki+1

Figure 2.10: Two rounds of an SPN. First, the round key is applied, before the
substitution S and the permutation. The use of a new round key indicates the start
of a new round. Adapted from [Jea16].

usually done by looking up each block and its corresponding substitution in a table,
normally called an S-box. The blocks are usually binary strings, so the substitution
function is the mapping {0, 1}l → {0, 1}l. The permutation stage then follows, which
transposes all sub-blocks of the original block among themselves. It is thus the
mapping {1, 2, ..., n} → {1, 2, ..., n}. After this stage, the next round follows under
the next round key. A general overview of an SPN is shown in Figure 2.10.

2.7 Authenticated Encryption

Authenticated encryption is a type of construction that combines separate algorithms
that independently provide encryption and authentication into one. Algorithms
that typically provide encryption are ciphers, which are generally distinguished
as block ciphers and stream ciphers. A method of providing authentication is a
Message Authentication Code (MAC), which ensures that a message originated from
a legitimate party and has not been tampered with during transmission.

Wu and Preneel [WP13] present three ways of combining authentication and
encryption algorithms. Firstly, a block cipher may be used in a special mode of
operation and adapted to encrypt a message and produce a MAC tag in the same
operation. The second presented method is to use a stream cipher, where the
keystream is split into two parts: one part for encryption and one for authentication.
Finally, a dedicated authenticated encryption algorithm may be utilized, which uses

20 2. BACKGROUND

a message to update the state of a cipher (either a block cipher or a stream cipher).
This approach is generally considered the most efficient, as it involves designing
algorithms specifically for authenticated encryption and it does not require large
adaptations of independent authentication and encryption algorithms. In this thesis,
we focus on the first and the third option, namely a mode of operation for a block
cipher (CCM) and a dedicated algorithm (AEGIS).

2.8 State of The Art of Underwater Security

In this section, we review the status of solutions that provide integrity and confi-
dentiality in underwater communication. Most notably, we present the first ever
authentication solution for this environment, proposed by Téglásy et al., on which
we base our solutions. Also, we present an encryption scheme made specifically for
Janus, Venilia.

2.8.1 Authentication of Underwater Assets

The first proposal for an authentication procedure based on Janus is given by Téglásy
et al. [TWPK]. Here, two devices, initially unknown to each other, first identify each
other as friend or foe by determining whether they possess the same pre-shared key.
They achieve this by exchanging a timestamp TS, a clock accuracy descriptor CD,
and two Synchronization (SYN) and Acknowledgement (ACK) flags in the ADB of the
Janus packet. The timestamp and the clock accuracy descriptor are encrypted with
the 32-bit block version of the RC5 cipher [Riv95] using a pre-shared long-term key Kn

of at least 128 bits in length. The flags are not encrypted. The authentication is based
on the validity of the timestamps exchanged by the devices and the assumption that
the sending device would be unable to encrypt the message without Kn. Assuming
that the devices’ clocks were synchronized during the exchange of Kn at the start of
the mission, a device checks if the timestamp it received is within the expected bounds
compared to the mission duration. The expected bounds are adjusted according to
possible deviations in clock synchronisation between the devices and the expected
maximum distance that a message can travel. If the timestamp is valid, the receiver
sends its own timestamp and clock accuracy descriptor back to the originating device,
encrypted with the same key Kn. The timestamps also allow the performance of
ranging i.e., determining the distance between the authenticating devices. This
is done by comparing the timestamps that are exchanged and performing simple
calculations based on the speed of sound. Thus, the general properties of a UAN,
as described in Section 2.2, are achieved. The protocol for recognition of friendly
devices is shown in Figure 2.11.

To protect the communication in the case of compromise of Kn, the exchanged
values are later used to compute a session key KAB with a custom Key Derivation

2.8. STATE OF THE ART OF UNDERWATER SECURITY 21

Figure 2.11: The protocol for identification of friend or foe with timestamps.
Adapted from [TWPK].

Function (KDF). The KDF also utilizes RC5, albeit with a block size of 128 bits,
to produce a 256-bit ciphertext. KAB allows communication to remain secure if
Kn is compromised after the establishment of KAB since subsequent messages will
be encrypted with KAB instead of Kn. It is also infeasible for attackers to obtain
previous session keys if they obtain Kn and they have not eavesdropped on previous
runs of the protocol. Since KAB is derived from a timestamp, a new timestamp sent
by an attacker to a legitimate node as an authentication attempt will result in a
different key due to the passing of time and, thus, a different timestamp.

As one device may derive session keys with many other devices, it is necessary to
create a mapping of the derived session keys to their corresponding device identities.
This is achieved with a shared lookup table at each device, containing all other
devices’ identities with their corresponding long-term keys. When a device receives a
message that is encrypted with a certain long-term key, it will attempt to decrypt
the message with the long-term keys in its lookup table, sequentially. If one of the
keys yields a successful decryption, the key that yielded the decryption is used with
the KDF to derive a session key, and the session key is stored along with the identity
and the long-term key in the table. The identity has the form of a Maritime Mobile
Service Identity (MMSI), which is a standard format in the Automatic Identification
System (AIS), used for tracking ships above the sea surface. The length of the MMSI

22 2. BACKGROUND

Table 2.4: An example lookup table with MMSIs, long-term keys, and session keys
on device A. Messages encrypted with KnD, KnF , and KnG have been received. The
network consists of 7 devices, including A.

MMSIB KnB

MMSIC KnC

MMSID KnD KAD

MMSIE KnE

MMSIF KnF KAF

MMSIG KnG KAG

is 30 bits. An example of a lookup table of this kind is shown in Table 2.4.

Limitations

Although this protocol provides authentication, encryption, and key establishment,
it has certain limitations. They are outlined below. The protocols that are proposed
in this thesis aim to address these limitations.

Timestamp forgery and replay Authentication of messages that relies solely on
the validity of timestamps is vulnerable since timestamps can be forged by an attacker
relatively simply. If attackers obtain the long-term key of one or more devices in the
network and those long-term keys have not yet been used to derive corresponding
session keys, the attackers can send their own TS and CD values to a legitimate
device as an authentication attempt. TS and CD do not require any secret values to
generate and, as such, they can be generated by any device with an onboard clock.
As long as the attackers used a valid Kn to encrypt their message, they will be able to
successfully establish a session key with a valid device. Moreover, if attackers obtain
Kn before the protocol is run, they are able to decrypt any message that is encrypted
with Kn, as well as to derive KAB. Another concern is replay of timestamps. In
this protocol, protection against replay of earlier messages is achieved by validating
the timestamps in the messages such that, if the timestamps in the message of
an attacker differ from those in the legitimate messages, the attacker’s message is
rejected. However, an attacker can relatively simply forge the correct timestamp by
observing when the messages in the legitimate protocol are transmitted and recording
the time at that moment. Since the acceptance of timestamps at legitimate devices
is adjusted to allow errors caused by currents, clock drift, encryption, and decryption
delays, there is a possibility that the forged timestamp will be accepted as legitimate.
Thus, stronger protection against replay attacks is needed. Generally, this can be
provided by a counter, such as a nonce.

2.8. STATE OF THE ART OF UNDERWATER SECURITY 23

Limited forward secrecy After the establishment of KAB , messages encrypted
under it remain secure even if attackers possess Kn. However, this is only true
if the attackers have not eavesdropped on or intercepted any previous messages.
If previous protocol runs with messages encrypted with Kn are eavesdropped and
stored, compromise of Kn at any point in time will give attackers the possibility to
decrypt the messages and calculate previous session keys that depend on Kn. They
can then decrypt all messages exchanged under the session keys as well. Hence, in
this case, forward secrecy is not achieved.

Limited encryption strength RC5 was chosen because of its security provided
by a long key and its relatively simple software implementation. However, Biryukov
et al. [BK98] show that, with partial differential cryptanalysis, it is possible to derive
all 25 subkeys for the 12 rounds of the 32-bit block version of RC5, with 244 chosen
plaintexts. It is not likely that this amount of messages will be encrypted under
the same key in underwater communication, which makes such attacks infeasible.
However, employing a stronger encryption algorithm would also eliminate even the
theoretical possibility of such an attack. In addition, the usage of an IV is avoided
due to the high packet loss in the underwater environment and the added bandwidth
consumption necessary to transmit it. This implies that the cipher is used in ECB
mode, which is generally regarded insecure. Especially since RC5 is used in the
protocol with a block size of 32 bits, statistical attacks on each block may be possible.

Limited scalability The lookup table stored on each device requires substantial
storage space and memory to store, read, and write to. Additionally, attempting
to decrypt a received message with all long-term keys consumes large amounts
of time and computational resources, resulting in poor performance, especially in
resource-constrained devices, such as sensors. Especially if each long-term key is 2040
bits long, which is the maximum length allowed by RC5, the process of attempting
decryption with each key, deriving the session key, and storing the session key in the
correct location in the table is very long. In the worst case that the correct key is
the last in the table, this method becomes infeasible. If large networks with many
devices are to be supported by an authentication protocol of this kind, the scalability
and performance must be improved, ideally decreasing the size of lookup tables and
computational complexity to a minimum.

2.8.2 Encryption for Janus with Venilia

The recently published subclass of Janus, Venilia [HH21a], specifies an encryption
scheme for Janus packets using the custom-made Tiny Underwater Block Cipher
(TUBcipher) [HH21b]. Venilia is defined as Janus class 17, meaning that any packet
with the Class user i.d. bits (bits 9 to 16 in Table 2.2) set to 17 (000100012) is

24 2. BACKGROUND

Figure 2.12: The encrypted portion of the ADB in the Venilia scheme. Source:
[HH21a].

processed in the Venilia scheme. These packets also have the Schedule flag set to 0,
as Venilia does not define cargo packets and channel reservation.

Venilia processing

27 of the 34 bits in the Janus ADB are encrypted. These 27 bits consist of an 8-bit
message (so-called pre-canned message), a source address and destination address of 7
bits each, and an additional 5-bit Cyclic Redundancy Check (CRC). The remaining 7
bits in the ADB house a 5-bit IV and a 2-bit epoch identifier, both of which are used
as input to the TUBcipher. The structure of the ADB can be seen in Figure 2.12.

The 8-bit message field allows for 256 unique messages to be processed. These
messages must be stored in a pre-shared code book that is stored on all devices in a
network. As each message has a specific, predefined meaning, a device must look up
the message in the table upon reception and decryption.

The source and destination addresses are used to indicate the identities of the
sender and receiver, respectively. The source address provides assurance that the
message originated from a legitimate node in the network, and shows which node
sent the message. The destination address indicates which node the message was des-
ignated for, meaning that the receiving node should reject a packet if the destination
ID field does not match its own address. This usage of addresses implies that the
total amount of 128 possible addresses must also be stored locally on each network
node to allow for the validation of received source address fields. However, this is
not explicitly stated in the Venilia specification.

The 5-bit inner CRC has the purpose of detecting decryption errors. It is thus

2.8. STATE OF THE ART OF UNDERWATER SECURITY 25

Figure 2.13: Transmission and reception processing of Venilia. Source: [HH21a].

solely meant for decryption verification by the receiver and it does not provide
additional error correction for the Janus packet itself. It is calculated over the
preceding 22 bits in the encrypted field with the polynomial:

p(x) = x5 + x4 + x2 + 1. (2.6)

The process of packing and encrypting a Janus ADB portion with Venilia, trans-
mitting it with the Janus standard, and unpacking and decrypting the message is
shown in Figure 2.13. The user is required to provide the message, node addresses,
IV, key, and epoch duration. After concatenating the plaintext, generating the CRC,
obtaining the current epoch, and encrypting, the resulting ciphertext is packed into
the ADB. The ADB is then incorporated into a conventional Janus baseline packet,
which is modulated and transmitted independently of Venilia. Upon reception, the
receiving device also requires the epoch duration and key as input. The epoch is
deduced by the epoch identifier transmitted in the packet. The ciphertext is then
decrypted, before the CRC is validated. If the CRC is valid, the plaintext is obtained,
otherwise, an error occurs.

TUBcipher

The TUBcipher performs the encryption and decryption operations in the Venilia
scheme. It is defined in [HH21b]. A description of the operation of TUBcipher

26 2. BACKGROUND

according to [HH21b] is given in Appendix A.

Limitations of Venilia

Although it would be desirable to use Venilia for our purposes and take the work of
already established Janus security further, this system (Venilia and the TUBcipher)
has certain limitations that make it unsuitable for our needs. This is especially the
case if entity authentication is to be done with MMSIs. The limitations are outlined
below.

Limited communication capabilities: A drawback of Venilia is that its operation
is restricted to 8-bit C2 and status messages, which are stored in a predefined code
book at each device in a communication network. Thus, there is a mere total
of 256 messages that can be sent confidentially, which reduces the flexibility of
communication. Additionally, the message code book would require the necessary
storage space on each device, as well as a lookup mechanism to find the received
message and make further operational processing decisions. This consumes time
and energy. The fact that Venilia does not define the use of cargo packets further
restricts its communication capabilities. Consequently, if 30-bit MMSIs are going to
be used for entity authentication, Venilia cannot be used.

No authentication: Another problem is that it is assumed that authentication has
already taken place before the use of Venilia and that all keys, code books, and clocks
are synchronised locally before commencing communication. If authentication has
not previously taken place, then there are many kinds of attacks that can be launched
against the communication among devices, mostly using Man in the Middle (MitM)
attacks. Therefore, there is a need to determine whether a potential counterpart
in communication is a friend or foe. This can be achieved with an authentication
scheme.

Short block size: The block size of 27 bits makes statistical frequency analysis
by adversaries possible. The fact that the IV is only used for key derivation and
not in the encryption process, implies that the TUBcipher is used in ECB mode.
This makes statistical attacks an even more serious threat. We note that the key
management of Venilia provides certain protection against such attacks. By including
the epoch as input to the KDF, the linearity of the encryption is decreased, thereby
reducing the success rate of frequency analysis attacks. Moreover, the length of 1
byte of every message that is transmitted is a vulnerability in itself due to ciphertext
scarcity. If the aim of attackers is only to obtain the C2 message that is included in
the 27-bit ciphertext, they can do so by trying a maximum of only 28 combinations,
without performing any cryptanalysis.

2.9. OTHER RELATED WORK 27

2.9 Other Related Work

Most current research of wireless underwater security considers encryption and au-
thentication schemes based on symmetric cryptography and pre-shared information,
as this is the only model that is realizable with today’s physical underwater infras-
tructure. Nevertheless, methods based on public key cryptography that would be
applicable in a hypothetical underwater Public Key Infrastructure (PKI) have also
been proposed.

ECDH and AES

An approach using public key cryptography is described in [GB18]. Here, key
establishment between nodes in an underwater network is performed using the Elliptic
Curve Diffie-Hellman (ECDH) key exchange protocol [HL15]. After two nodes have
established an identical key each, they then encrypt subsequent communications
with a symmetric encryption algorithm, such as the AES. This scheme permits
secure underwater machine-to-machine communication between the acoustic nodes
in underwater networks. However, it assumes the existence of an underwater PKI,
which is not specified. Also it is stated that some overhead may still be necessary in
the form of message padding if a message is shorter than 128 bits, which is the block
size used by AES. This implies that AES is used in either ECB mode or CBC mode,
although the mode of operation itself is not specified. Due to the low bandwidth
requirements of Janus, the need of this amount of padding may add a significant
delay to the transfer of messages.

Physical Layer Security

An authentication method that does not use cryptographic techniques, but rather the
statistical features of the underwater communication channel, is presented by Diamant
et al. [DCT19]. This method is based on cooperative authentication, meaning that
several network nodes are involved in determining the authenticity of a received
packet. More specifically, a controller node (also called a sink) authenticates a packet
from a sender node with the help of several trusted nodes. The feature distribution
of the channel is derived from the received packets at the trusted nodes and the sink
uses this distribution to distinguish packets sent from legitimate nodes and attackers.
However, schemes based solely on the properties of the physical communication
channel may not be secure enough and, therefore, classical cryptographic solutions
may be needed in this environment as well.

Custom Cipher

An encryption algorithm based on a block cipher for general UANs is described by
Peng et al. [PDLL16]. The algorithm utilizes 64-bit blocks, 8 rounds of encryption,

28 2. BACKGROUND

and 32-bit subkeys for each round. It makes use of a logistic map to provide
substitution and thereby reduces the computational cost of encryption compared to
the cost of a traditional S-box. Generally, it only employs simple operations, such
as XOR and bit shifting, resulting in increased speed and reduced storage space,
but also security implications due to a smaller key size than other standardized
algorithms. In addition, the algorithm only provides confidentiality of messages,
without details of an authentication scheme.

Chapter3Authenticated Encryption Schemes
for Janus

In this chapter, we present the AEAD schemes we have identified as potentially
suitable for usage with Janus, namely CCM and AEGIS. One of the contributions
of this thesis, which we expose here, is to specify the adaptations of their original
descriptions for use with Janus, both with and without cargo packets. We give
argumentation for their suitability in this environment, based on their efficiency
and security properties. Specifically, both algorithms provide the necessary security
requirements outlined in Section 2.5 with little computational and communication
overhead. We also define enhancements of the authentication protocol by Téglásy et
al. [TWPK], described in Section 2.8.1, using both algorithms.

3.1 Authenticated Encryption with CCM

Given the security and bandwidth requirements, a potentially suitable algorithm
for providing assurance of the confidentiality and the integrity of Janus data is the
CCM mode of operation for block ciphers, proposed by Whiting et al. [WHF02] and
standardized as Special Publication 38-C of the NIST [Dwo04]. The CTR mode it
applies for encryption allows for the avoidance of transmitting complete blocks of
the underlying block cipher. Even though the data must be padded for partitioning
into complete blocks, this happens locally on a device, and complete blocks do not
need to be transmitted. The only additional overhead in the data that is sent are
the nonce and the MAC tag. It is therefore a good option for our needs as it is a
standard that provides a high level of security, and the Janus baseline packet and
cargo can be formatted as input to the CBC-MAC and encryption algorithms.

According to [Dwo04], CCM is only defined for block ciphers with a block size of
128 bits. Currently, the only approved cipher by NIST is AES. There are three inputs
to the CCM algorithm: the plaintext P (also called the payload) to be authenticated
and encrypted, the associated data AD that will only be authenticated and not
encrypted, and a nonce N , which is a unique value associated to the other two

29

30 3. AUTHENTICATED ENCRYPTION SCHEMES FOR JANUS

inputs. Typically, the payload consists of user data that needs to be confidential and
authentic, while the associated data are packet headers that are also authentic, but
remain not encrypted for the proper functioning of routing mechanisms in networks.
In our case, the payload consists of the ADB in the Janus baseline packet and optional
cargo. If cargo is not used, the associated data is the 22-bit preamble before the
ADB, and the two 1-bit flags. If cargo is used, the first byte of the ADB is added to
the associated data. The nonce can be a random number or any value that is unique
under a given key. CCM defines two major operations: generation-encryption, in
which the MAC tag is generated and the payload and the MAC tag are encrypted,
and decryption-verification, where the payload and MAC tag are decrypted and the
MAC tag is verified.

We consider the example where only the 64-bit baseline Janus packet is to be
processed by CCM. The length of the secret key Kn will be at least 128 bits, as
described in [TWPK]. The MAC tag T should, by the specification, have a length
of at least 4 bytes (32 bits) to prevent forgery attacks. The octet length of N , n,
should, by the specification, be at least 7. The total length of AD is 30 bits, while
the length of P is 34 bits.

Bearing in mind the discussion above, the variables defined by CCM for use in
Janus that we have chosen are the following:

– Klen: the key length in bits, in our case at least 128.
– Tlen: the length of the tag in bits, in our case 32.
– Nlen : the length of the nonce in bits, in our case 64 (see the explanation in

Section 3.1.5).
– ADlen: the length of the associated data in bits, in our case 24.
– Plen: the length of the payload in bits, in our case 34 (per packet).
– t: the length of the tag in bytes, in our case 4.
– n: the length of the nonce in bytes, in our case 8.
– a: the length of the associated data in bytes, in our case 3.
– p: the length of the payload in bytes, in our case 5 (Plen padded with 6 bits).
– q: the length in bytes of Q, which is the bit string representation of p. Calculated

as 15 − n, in our case 15 − 8 = 7.

If cargo is used, ADlen will increase to 32 bits in each packet, as the first byte of the
ADB will specify the cargo properties and thereby be regarded as meta-information.

Below, we give the details of the CCM algorithm as described in [Dwo04], with
the use of the variable values specified above. A general overview of the CCM mode
of operation for a Janus baseline packet is shown in Figure 3.1.

3.1. AUTHENTICATED ENCRYPTION WITH CCM 31

EK EK EK

B0 AD P

EK EK

C CT

ctr1 ctr0
32

T

B0 = Flags1||N ||Q

ctri = Flags2||N ||i

Figure 3.1: Overview of CCM used to process a Janus baseline packet. AD must
be formatted for CBC-MAC, and P must be formatted for both CBC-MAC and
CTR encryption. The final ciphertext is C||CT . Adapted from [Jea16].

Table 3.1: Formatting of block B0 in CCM. Source: [Dwo04].

Octet number 0 1...15 − q 16 − q...15
Contents Flags N Q

3.1.1 Generation of the MAC Tag

Before the MAC tag T can be generated, N , AD, and P need to be formatted such
that they can be represented as 16-byte blocks B0, B1, ..., Br, which will be the input
to the CBC-MAC algorithm.

Formatting of the Control Information and the Nonce

The control information and the nonce N are represented in the first block, B0. B0
consists of a flag octet, followed by N , followed by Q. The formatting of B0 is shown
in Table 3.1.

The flag octet of B0 is formatted as shown in Table 3.2. Here, t is the octet
length of the MAC tag T and q is the octet length of Q. Bits 5, 4, and 3 consist of
the 3-bit representation of the value (t − 2)/2. If we set t = 4, which is our choice
for Janus, this value will be (4 − 2)/2 = 1 = 0012. Similarly, bits 2, 1, and 0 are
the 3-bit representation of q − 1. If q = 7 (our Janus case), then their value will be
7 − 1 = 6 = 1102. The Reserved bit should by definition be set to 0. The Adata bit
shall be set to 1 if there is associated data to authenticate, and 0 otherwise. Since

32 3. AUTHENTICATED ENCRYPTION SCHEMES FOR JANUS

Table 3.2: Formatting of the flag octet of block B0 in CCM. Source: [Dwo04].

Bit number 7 6 5 4 3 2 1 0
Contents Reserved Adata [(t − 2)/2]3 [q − 1]3

there usually is such data with Janus communication, it will be set to 1. With the
values given, the flag octet will be 010011102.

Following the flag octet, the octets 1...15 − q = 1...15 − 7 = 1...8 are taken up by
N .

The last 7 bytes of B0 consist of Q, whose value is [p]8q. With p = 5 and q = 7,
Q = 0001012 = 510. The
large amount of leading 0-bits is necessary to fill the last portion of block B0. This
has no impact on the security that is provided and the computational overhead is
negligible.

Formatting of the Associated Data

B0 is followed by the associated data, which is partitioned into the blocks
B1, B2, ..., Bu, where u is an integer that depends on the size of AD. AD is encoded
depending on its octet length, a. According to [Dwo04], if 0 < a < 216 − 28, a is
encoded as [a]16, i.e., two bytes. In the case of Janus without cargo, ADlen = 24,
hence, 3 bytes are needed to represent it with a. Thus, a is encoded with two bytes as
00000000000000112. This string is concatenated with the actual 24-bit value of AD

and the resulting string is padded with 0-bits such that the string can be partitioned
into the 16-byte blocks B1, B2, ...Bu. In our case, u = 1, and the associated data can
be represented in a single block, B1.

Formatting of the Payload

The payload follows after the associated data blocks, and it is partitioned into the
blocks Bu+1, Bu+2, ..., Br, where r = u +

⌈
p
16

⌉
= 1 +

⌈ 5
16

⌉
= 1 + 1 = 2. Hence, the

payload fits into one block, B2, with its 5 bytes padded with 0-bits to a length of 16
bytes.

Application of CBC to Generate the MAC Tag

After the formatting procedure, the blocks B0, B1, and B2 are input to the CBC-
MAC algorithm. The algorithm employs AES in CBC mode over the formatted
blocks to produce the MAC tag T of length Tlen, which is chosen in advance. In our
case it is 32 bits. The algorithm is as follows:

1. Set the initial block Y0 = AESKn
(B0).

3.1. AUTHENTICATED ENCRYPTION WITH CCM 33

Table 3.3: Formatting of the counter blocks Ctri in CCM. Source: [Dwo04].

Octet number 0 1...15 − q 16 − q...15
Contents Flags N [i]8q

Table 3.4: Formatting of the flag octet of counter block Ctri in CCM. Source:
[Dwo04].

Bit number 7 6 5 4 3 2 1 0
Contents Reserved Reserved 0 0 0 [q − 1]3

2. For i = 1 to r, do Yi = AESKn
(Bi ⊕ Yi−1).

3. Set T = MSBTlen
(Yr) = MSB32(Yr).

After the execution of the algorithm, T consists of the 32 Most Significant Bits
(MSBs) of the last block in the CBC process, Yr.

3.1.2 Encryption

The encryption in CTR mode relies on a counter generation function, which generates
the 16-byte counter blocks Ctr0, Ctr1, ..., Ctrm to be encrypted. Like the blocks used
as input to the CBC-MAC algorithm, the counter blocks also require formatting.

Formatting of the Counter Blocks

Each counter block, Ctri is formatted as shown in Table 3.3. The values of N and
q are the same as for the MAC tag generation. In the last portion of a block, the
counter i is represented as q octets.

The formatting of the Flags octet is as shown in Table 3.4. This octet is identical
in all blocks Ctri. The Reserved bits shall by the specification be set to 0 and the
value [q − 1]3 is the same as the one derived during the formatting of the Flags octet
in block B0.

Application of CTR to Produce the Ciphertext

The number of counter blocks is determined as m =
⌈

Plen

128
⌉
. Since P is the 34-bit

Janus ADB, m =
⌈
0.27

⌉
= 1. Thus, there will be two counter blocks used for

encrypting P and T , Ctr0 and Ctr1. The encryption algorithm in concrete Janus
form is as follows:

1. For j = 0 to m, do Sj = AESKn(Ctrj).
2. Set S = S1||S2||...||Sm = S1.
3. Return C = (P ⊕MSBPlen

(S))||(T ⊕MSBTlen
(S0)) = (P ⊕MSB34(S1))||(T ⊕

MSB32(S0)).

34 3. AUTHENTICATED ENCRYPTION SCHEMES FOR JANUS

The counter blocks Ctrj are encrypted to produce the keystream blocks Sj . There
will again be two such blocks, S0 and S1, both 16 bytes long. The MAC tag is
encrypted by applying the XOR operation on the 32 MSBs of S0 and T , and the
payload is encrypted by the same operation on the 34 MSBs of S1 and P . The
resulting two strings are concatenated to produce the final ciphertext C.

3.1.3 Choice of Length of the MAC Tag for Janus

Appendix A in NIST SP 800-38B [Dwo05] provides guidance for the choice of length
of the authentication tag in the CBC-MAC algorithm. It is stated that if Tlen is
chosen to be less than 64, careful analysis should be done of the risks implied by
accepting an inauthentic message and that the number of tag verification failures
before retiring the key should be restricted sufficiently. The formula given for the
derivation of the tag length is shown below.

Tlen ≥ log2

(
MaxInvalids

Risk

)
(3.1)

In the formula (3.1), MaxInvalids refers to the maximum allowed number of
verification failures of the MAC tag before retiring the key for generation and
verification, while Risk is the highest acceptable probability for an inauthentic
message to pass the verification process.

Following this guidance, a comparison of values of Tlen with varying values of
MaxInvalids and Risk is shown in Figure 3.2. We observe that a longer tag provokes
a lower Risk value and vice versa, while a shorter tag gives the need to reduce the
value of MaxInvalids due to the higher probability of successfully forging a valid tag.
If we choose a desirable value of Risk to be 2−12 with Tlen = 32, the corresponding
value of MaxInvalids is 220. In other words, we allow for 220 unsuccessful forgery
attempts before retiring the key. Since the limited communication capabilities of
Janus make it infeasible to launch this number of forgery attempts under the same
key, we conclude that a tag length of 32 bits with a limit of 220 authentication failures
is an acceptable combination.

3.1.4 Argumentation for the Use of CCM with Janus

We decided to use CCM first and foremost due to its familiarity as a mode of
operation for AEAD and its long-lasting and widespread use in Wireless Local Area
Networks (WLANs). Despite the age of the algorithm, very few practical attacks
against both its confidentiality and authenticity have been developed, meaning that
it still provides a high level of security. Another argument for its usage in underwater

3.1. AUTHENTICATED ENCRYPTION WITH CCM 35

(a) MaxInvalids as a function of the MAC tag length, with varying values of Risk.

(b) Risk as a function of the MAC tag length, with varying values of MaxInvalids.

Figure 3.2: Comparisons of minimum MAC tag length for the CBC-MAC algorithm.

36 3. AUTHENTICATED ENCRYPTION SCHEMES FOR JANUS

networks is its ability to partially encrypt a message, while authenticating both the
encrypted and unencrypted parts. Since the Janus packets in our authentication
protocol have messages of this form (i.e., it is possible to format the Janus header as
associated data, while only encrypting the ADB), formatting our messages for the
structure of CCM is relatively simple. Following are details of the general usage of
CCM, and its security properties.

Historical Context and Alternative Algorithms

CCM was standardized by NIST in 2003 and it is still widely used today. It became
part of the 800-38 series of NIST special publications after it was submitted in a
public contest for block cipher modes of operation. It was selected because it served
the important need to improve the encryption, data integrity, and header integrity
algorithms in IEEE 802.11 WiFi networks. The algorithms it replaced were RC4
for encryption and Michael [Fer02] for integrity, used in the previous iteration of
the WiFi security architecture, WiFi Protected Access (WPA). The next iteration,
called WPA2, instead used CCM, as well as the Robust Security Network (RSN)
protocol for establishing secure communication over IEEE 802.11 networks. WPA2
became the final draft of the IEEE 802.11i standard, an overview of which is given
by, for instance, Chaplin et al. [CQP+05]. In addition to CCM (known as CCM
Protocol (CCMP) in the context of WiFi), two other data confidentiality algorithms
are defined in IEEE 802.11i, namely Wired Equivalent Privacy (WEP) and Temporal
Key Integrity Protocol (TKIP). These were used in older systems and were also
replaced by CCM. Naturally, CCM provides the strongest confidentiality of the three,
as numerous vulnerabilities have been found in the older algorithms. A security
analysis of IEEE 802.11i, including an analysis of these algorithms is given by He
and Mitchell [HM05].

The major competitor to CCM is Galois/Counter Mode (GCM), which is also
standardized by NIST as SP 800-38D [Dwo07]. Like CCM, it is also a mode of
operation for AES that provides AEAD, and it is also used in WPA2. It realizes
confidentiality by encrypting a message with AES in CTR mode, where the initial
counter block is created by incrementing a block generated from the IV. Subsequent
counter values are obtained by incrementing the counter value modulo 32. The
authentication, unlike CCM, is achieved with a keyed hash function, called GHASH.
It utilizes multiplication by a fixed subkey, which is generated by encrypting the first
block with AES. The multiplication takes place in a Galois Field GF (2128). GHASH
is used to compress an encoding of the associated data and the ciphertext to produce
an authentication tag.

GCM has certain advantages over CCM. For instance, CCM cannot be processed
in a pipeline or in parallel because CBC-MAC cannot be executed in parallel processes.

3.1. AUTHENTICATED ENCRYPTION WITH CCM 37

For this reason, GCM, especially with software pre-computation, where time is traded
for memory, is generally faster than CCM. Another advantage of GCM is that it can
be used online, i.e., messages can be processed in real time while they are generated or
transmitted. On the contrary, CCM requires that the whole message to be processed
is known in advance. An advantage of CCM is that it is very easy to implement, both
in hardware and software, as it does not involve polynomial multiplications. The
multiplication over GF (2128) in GCM is more challenging to implement and requires
additional hardware or software pre-computation. The software pre-computation can
also reduce the performance of GCM if used too frequently, as it must be done for
each subkey in GHASH. A performance comparison of different versions of CCM and
GCM is given by Szalachowski et al. [SKK10], where the standard version of CCM
is shown to consume less memory and perform initialization in fewer cycles than the
equivalent version of GCM.

In terms of security, CCM is provably secure, as discussed below, while GCM,
despite also having a security proof [MV04], is shown by Ferguson [Fer05] to have
weaknesses. For instance, the IV in GCM is required to be at least 96 bits long,
otherwise, IV collisions are possible. This can be inconvenient, since such a long
IV can be expensive for small devices, and it can increase bandwidth consumption,
which is a crucial drawback in our underwater applications. Ferguson also shows
that GCM provides less security of authentication than expected, when a short
authentication tag is used. Again, since our aim is to use tags that are as short
as possible, CCM provides better assurance against forgery attacks. Finally, key
forgery attacks are also possible against GCM due to the linear behavior of the
authentication function. It relies on multiplications by a constant and squaring,
which are both linear operations. For this reason, nonce reuse attacks (to which both
CCM and GCM are vulnerable) are much more effective against GCM, since the
attacks often lead to the possibility of obtaining the authentication key. Vanhoef
and Piessens [VP17] demonstrate the effects of nonce reuse against both algorithms
in the context of IEEE 802.11 authentication.

General Properties

Jonsson [Jon03] provides a formal analysis of CCM with the conclusion that a high
level of confidentiality and authenticity is provided in line with other standardised
modes of operation for authenticated encryption, such as GCM or Offset Code Book
Mode (OCB). The following attractive properties of CCM are listed:

1. A specific mechanism that handles parts of messages that are only to be
authenticated and not encrypted is provided by default, which is very convenient
for use with Janus. This is done without additional ciphertext overhead,
something that requires enhancements in many other authenticated encryption
modes.

38 3. AUTHENTICATED ENCRYPTION SCHEMES FOR JANUS

2. AES is used only in the forward direction for encryption and its inverse is
never used. This is the case in both the generation-encryption and decryption-
verification operations. This contributes to the reduction of the code size of
implementations of CCM, which improves the efficiency of implementation in
Janus.

3. The CTR and CBC-MAC algorithms are widely deployed and have been in use
for a long time, meaning that CCM is based on well known and established
technology. Comprehensive documentation of the algorithms is widely available,
which helps to avoid implementation faults. Existing implementations are also
highly optimized.

4. All intellectual property rights have been released to the public domain, making
CCM freely available for any purpose.

Authenticity Analysis

Regarding authenticity, Jonsson [Jon03] states that it is hard to extract any nontrivial
information about the input blocks Bi and the output blocks Yi of the CBC-MAC
algorithm, even if all the plaintexts of a message exchange are known. Because of
this, if an attacker modifies any previous encrypted messages, the effects on the
encrypted MAC tag will be unpredictable. Thus, any attempt to forge the tag must
utilize a unique sequence of blocks B0, B1, ...Br. This means that it is hard for an
attacker to guess a valid MAC tag with a probability higher than 2−Tlen .

For an encryption query Q = (N, AD, P), the number of applications of the
underlying encryption algorithm (in our case AES), lQ, is expressed as

lQ =
⌈

|f(N, AD, P)| + |P |
128

⌉
+ 1, (3.2)

where f is the formatting function used to generate the input blocks B0, B1, ...Br.

For a forgery attempt with an encrypted message C∗, Q = (N∗, AD∗, C∗), the
number of applications of AES to decrypt C∗ and check whether C∗ is valid is given
as

lQ∗ =
⌈

|f(N∗, AD∗, P ∗)| + |C∗|
128

⌉
+ 1. (3.3)

The sum of AES applications for all encryption queries and all forgery attempts
is then given as

3.1. AUTHENTICATED ENCRYPTION WITH CCM 39

lE =
∑

i

lQi and lF =
∑

i

lQ∗
i
, (3.4)

respectively.

To successfully forge a MAC tag, the goal of an attacker A is to distinguish the
output of the CBC-MAC algorithm from that of a Pseudo-Random Function (PRF)
and, since AES is a block cipher, a Pseudo-Random Permutation (PRP). For this,
distinguishers B and B′ are used, respectively. Regarding the indistinguishability
from a PRF, the advantage of A over the authenticity of CCM in terms of the PRF
is upper-bounded by

Advauth
CCM (A) ≤ Advprf

AES(B) + qF · 2−Tlen + (lE + lF)2 · 2−128−1, (3.5)

where qF is the number of forgery attempts.

Similarly, the upper bound of the advantage of A in terms of the PRP is given as

Advauth
CCM (A) ≤ Advprp

AES(B′) + qF · 2−Tlen + (lE + lF)2 · 2−128. (3.6)

Since the attacker can only guess valid input blocks, the most effective attacks
against authenticity are based on finding collisions among forgery attempts and valid
tags. Thus, the security proof is related to the birthday paradox, which states that
collisions Xi = Xj are likely to be found among l random strings X1, ..., Xl of length
128 (the block size of AES) if l is approximately 2 128

2 . This can also be seen from
the term of the form c · l2 · 2−128, where c is a constant.

The analysis presented above is from [Jon03] and is very general. In our par-
ticular case with Janus, the only specific factor that could influence the security
of authentication is the length of the authentication tag Tlen. We have already
explained previously (Section 3.1.3 and Figure 3.2) that the specific conditions that
hold in underwater communication (low bit rate) prevent exploiting the relatively
short MAC tag that we use with Janus. Therefore, there is no reason to believe
that the security of the CCM authentication procedure can be threatened in the
Janus-based implementation.

Confidentiality Analysis

With respect to confidentiality, the goal of an attacker would again be to distinguish
a ciphertext from a bit string chosen uniformly at random. The two given ways that

40 3. AUTHENTICATED ENCRYPTION SCHEMES FOR JANUS

this can be done is either that the attacker executes a birthday attack against the
CTR output blocks or that an anomaly occurs within the CBC-MAC computation,
such as an internal collision or a MAC tag that is identical to some CTR output
block. The lack of other possible attacks is due to the fact that N is required to be
fresh during the lifetime of a key, hence, the CTR input blocks Ctri and the first
block B0 of CBC-MAC are new. This will make a ciphertext strongly resemble a
random string, even if the attacker knows the plaintext.

The advantage of the adversary A over the privacy of CCM is, as for the authen-
ticity, upper-bounded by the advantage of a distinguisher B over the PRF of AES
and a distinguisher B′ over the PRP. For B, the bound is

Advpriv
CCM (A) ≤ Advprf

AES(B) + l2
E · 2−128−1, (3.7)

where lE is as defined above.

Similarly, for B′, the bound is

Advpriv
CCM (A) ≤ Advprp

AES(B′) + l2
E · 2−128. (3.8)

Again, as for the authenticity, the security proof is limited by the birthday paradox,
forcing the attacker to find collisions between valid ciphertext and pseudo-random
text.

The application in Janus does not change any parameters of CCM related to con-
fidentiality compared to the general definition. Therefore, the analysis above applies
directly to our Janus application without any changes. Thus, the confidentiality part
of CCM in Janus can be considered secure as long as the implementation is correct.

3.1.5 Application in Janus-based Communication

To perform both authentication of messages and entity authentication, regardless of
the security algorithm that is used, it is necessary to transmit the following values:

1. A 29-bit timestamp TS

2. A 3-bit clock accuracy descriptor CD

3. Two 1-bit SYN and ACK flags F

4. The MMSIs of both device A and B

These values must be sent by both devices, in each direction. The transmission
of both MMSIs allows the sending device to authenticate itself and to indicate which
device the message is designated for. Thus, the lookup table in the original version

3.1. AUTHENTICATED ENCRYPTION WITH CCM 41

by Téglásy et al. (Table 2.4) is reduced, as it is only necessary to store the MMSIs
of all devices in it, to allow for the verification of the received MMSIs. There is
no longer a need to store a long-term key Kn and session key KAB for each device.
This improves scalability, as the storage of the original lookup tables and the lookup
procedures would require much storage space and processing as the network grows.
For CCM, the required input elements at the receiving device are the nonce N , the
associated data AD, and the ciphertext C, which consists of the plaintext P and
MAC tag T , both encrypted. Hence, our goal is to partition the values used in the
authentication protocol into the format of CCM.

Regarding the application in Janus, CCM can be directly applied, using the
smallest recommended values of t, n, a, and p, such that the standardized levels of
confidentiality and authenticity are provided. However, the output of the processing
of a Janus baseline packet cannot itself fit into a single baseline packet due to the
need to transmit the nonce N and the MAC tag T in addition to the associated data
AD and the encrypted payload C. Instead, either a cargo must be specified or several
baseline packets must be used. Which option is better depends on several factors,
such as the scale of the network and the amount of data that the devices send on
average. Since the aim of Janus is to be an open standard, we believe that users with
different requirements may wish to use either option. Following are descriptions of
the incorporation of CCM into the protocol for authentication of underwater assets
defined by Téglásy et al. [TWPK] and described in Section 2.8.1, using both options.

Without Usage of Cargo

When cargo packets are not used, the values listed above, as well as the nonce and
authentication tag must be partitioned into five baseline packets. Below we propose
how this can be performed.

The Nonce N For CCM to function, N must have a length of at least 56 bits and
cannot fit into the 34-bit ADB entirely. However, a way to resolve this is to set an
initial length of N to 32 bits and then duplicate that value locally at each device to
produce a 64-bit string, which is a valid length for the generation-encryption and
decryption-verification operations. The entropy of N will in this case still be the
same as for a 32-bit string. However, a 32-bit string allows for N to be unique for 232

messages under the same key, which is a satisfactory amount for most applications.

The Associated Data AD Regarding the associated data, we assume that the
CRC does not need to be authenticated, as its sole purpose is to detect errors in
transmission. Thus, the consequences of accepting an inauthentic CRC are not
grave. On the other hand, F should be authenticated, as it provides relevant status
information in the protocol. Taking this into account, AD consists of the 22-bit

42 3. AUTHENTICATED ENCRYPTION SCHEMES FOR JANUS

Janus header (as shown in Table 2.2) and the two 1-bit flags, so it is 24 bits long. In
our case, the Janus header will remain the same for all CCM-related packets sent in
one direction that are part of the authentication protocol. This allows for the usage
of the Janus header of any packet to directly be included in AD, without the need
to fit AD in the ADB. Thus, the first baseline packet can be used to transport both
N and the 22 bits of AD that are contained in the Janus header. The two remaining
bits of AD (F) can either be transmitted in the same packet or in the next one. In
Figure 3.3, they are transmitted in the second packet.

The Timestamp TS and Clock Accuracy Descriptor CD The timestamp
and clock accuracy descriptor are used for the ranging functionality. These values
consist of 32 bits in total and can therefore fit in the ADB together with the flags F .
TS and CD can also directly be encrypted in the CTR mode of CCM such that a
32-bit ciphertext is produced. Hence, the second packet in the protocol is used to
transport TS and CD in encrypted form and F in plaintext.

The MMSIs The MMSIs have a length of 30 bits each and must be placed in
their respective baseline packets. Therefore, the third and fourth packets are used to
transport MMSIA and MMSIB .

The MAC tag T The authentication tag T is the final element that needs to be
transmitted. T is generated from N , AD, and P at the sending device from the
input blocks B0, B1, and B2, before it is encrypted together with P . Since there is
an entire baseline packet into which to place T , it is possible to set the size of T to 4
bytes and conveniently put it in the ADB.

The Final Packet With the transmission of T in the fifth packet, the transmission
of the necessary values for both authentication of messages and entity authentication,
authenticated and encrypted with CCM, is completed. The receiving device will
repeat the process with its own timestamp, clock accuracy descriptor, combination
of flags, and the MMSIs for its response. The complete protocol can be seen in
Figure 3.3. As each participant transmits five 64-bit baseline packets, the theoretical
delay will be 64 · 5/80 = 5s, in addition to the propagation delay of the acoustic
signals, which depends on the distance between the participants.

With Usage of Cargo

The usage of a cargo would allow for transmitting all the required data in a single
packet, thus avoiding the need to transmit AD and a CRC for every baseline
packet, which leads to reduced bandwidth consumption. However, the channel would
be reserved for the transmission of the cargo, preventing any other devices from
transmitting while the cargo is being transmitted.

3.1. AUTHENTICATED ENCRYPTION WITH CCM 43

Figure 3.3: CCM used in the authentication protocol, without the usage of cargo
packets.

44 3. AUTHENTICATED ENCRYPTION SCHEMES FOR JANUS

The specification of a cargo is done by a leading baseline packet with the Schedule
flag set to 1 and an appropriate amount of time reservation specified in the ADB.
These fields are shown in Table 2.2. AD again consists of the 22-bit Janus header
and F , but, additionally, the first byte of the ADB is considered as associated data,
as it provides meta-information about the packet. Since the first byte of the ADB
is used for the cargo specification, 26 bits are left in it for user data. Thus the
26 MSBs of N can be placed here, while the 6 Least Significant Bits (LSBs) are
transmitted as cargo. Following N , the encrypted payload is transmitted, consisting
of the ciphertexts of TS, CD, the two MMSIs, and T . The protocol can be seen in
Figure 3.4, while the packet format is shown in Figure 3.5.

For the case of one packet of this format, the total amount of data is 30 + 26 +
8 + 6 + 2 + 29 + 3 + 30 + 30 + 32 = 196 bits, with the cargo consisting of the last
132 bits. With the data rate of 80 bps provided by Janus, the theoretical encoding
time for the entire packet is 196/80 = 2.45 s. For the cargo alone, the encoding
time is 132/80 = 1.65 s. This means that at least 1.65 s of channel reservation time
must be specified in the first byte of the ADB. According to the lookup table for
channel reservation used by Janus, the minimum time that can be reserved with
the reservation bits in the ADB to accommodate this cargo length is 1.79142724 s,
corresponding to index 66 in the table. The bits are thus set to 1000010. Compared
to the encoding time for one baseline packet alone, 64/80 = 0.8 s, this packet format
does not impose a long additional delay.

Summary of the CCM-Based Scheme

Regardless of the increased amount of data that is transmitted, CCM offers much
more flexibility in terms of the kind and amount of data that can be transmitted
securely in comparison to, for instance, the Venilia scheme, which offers confidentiality
only for one predefined 8-bit message at a time and no authenticity.

In the previous sections, both cargo and cargo-less solutions are provided. As
mentioned previously, each version has advantages and disadvantages. The version
without cargo requires the transmission of more data due to repeated need to include
the Janus header and CRC. This leads to higher Round-Trip Times (RTTs) of the
protocol due to the need to encode and transmit more data. Additionally, this version
is more vulnerable to packet loss. On the other hand, when cargo is used, the RTT
decreases significantly, as well as the power consumption. However, when cargo is
not used, there is no need to reserve the channel at any point during the protocol.
This can be beneficial if other devices in the network are transmitting mission-critical
information which must have minimal delays. When using cargo, other devices would
have to wait until the cargo is transmitted until they can transmit themselves. It is
worth noting that the very short amount of channel reservation time that is needed

3.1. AUTHENTICATED ENCRYPTION WITH CCM 45

Figure 3.4: CCM used in the authentication protocol, with the usage of cargo
packets.

Figure 3.5: Format of cargo packets used in the authentication protocol, processed
by CCM. A consists of the Janus header, the first byte of the ADB, and the flags. N
is partitioned into both the baseline packet and the cargo, while C consists of all
other values, except the CRC.

46 3. AUTHENTICATED ENCRYPTION SCHEMES FOR JANUS

per packet may not pose a large obstacle, but it may still be considered depending
on the nature of the mission.

3.2 Authenticated Encryption with AEGIS

A potentially even more suitable algorithm for use with Janus than CCM is AEGIS,
proposed by Wu and Preneel [WP13]. Unlike CCM, which is a special mode of
operation for a block cipher, AEGIS is a dedicated authenticated encryption algorithm,
which also employs an underlying block cipher, but uses a message to update the
state of the cipher. As with CCM, AES is most commonly used as the underlying
block cipher and we also describe this version for our purposes.

There are three versions of AEGIS. AEGIS-128 uses a 128-bit key and 128-bit IV
and processes 16-byte message blocks with 5 AES round functions. AEGIS-128L also
uses a 128-bit key and 128-bit IV, but operates on 32-byte message blocks with 8
AES round functions. AEGIS-256 utilizes a 256-bit key and 256-bit IV, operates on
16-byte message blocks and uses 6 AES functions. For consistency with other relevant
solutions, such as Venilia, we focus on the 256-bit key version, namely AEGIS-256.
Note that, for the application in Janus, a shorter key could also be used, such as the
one in AEGIS-128. This would slightly improve the performance of the algorithm.

AEGIS-256 defines a state update function, which updates an internal state using
six rounds of AES. The main operations are the initialization, processing of the
associated data, encryption, and finalization. Each of the operations updates the
state and uses it to perform their respective tasks. The values of the variables used
in the operations, when applied with Janus, are the following:

– adlen: the length of the associated data in bits (24 without cargo and 32 with
cargo).

– msglen: the length of the plaintext and ciphertext in bits (34 bits per packet).
– const: a 32-byte constant set to: 00||01||01||02||03||05||08||0d||15||22||37||59||90

||e9||79||62||db||3d||18||55||6d||c2||2f ||f1||20||11||31||42||73||b5||28||dd.
– IV256: the 256-bit IV (obtained by repeating a 32-bit IV 8 times, similar to

the CCM case).
– K256: the 256-bit key.
– mi: a 16-byte data block.
– Si: the state at iteration i.
– t: the length of the authentication tag in bits (in our case 32).
– u: u =

⌈
adlen

128
⌉
.

– v: v =
⌈

msglen
128

⌉
.

Below, we give the details of the AEGIS algorithm as described in [WP13], with
the use of the variable values specified above.

3.2. AUTHENTICATED ENCRYPTION WITH AEGIS 47

3.2.1 State Update

The state Si in AEGIS-256 is a 96-byte variable which is updated for every 16-byte
message block mi that is processed. Si consists of 6 16-byte elements Si,j . In the
state update function Si+1 = StateUpdate(Si, mi), each element Si,j is updated
independently until the new state Si+1 is derived. The function is defined as follows:

Si+1,0 = AESRound(Si,5, Si,0 ⊕ mi)
Si+1,1 = AESRound(Si,0, Si,1)
Si+1,2 = AESRound(Si,1, Si,2)
Si+1,3 = AESRound(Si,2, Si,3)
Si+1,4 = AESRound(Si,3, Si,4)
Si+1,5 = AESRound(Si,4, Si,5)

Here, AESRound(A, B) represents one round of AES, where A is a 16-byte state
element and B is a 16-byte round key. The output is also a 16-byte state element.

3.2.2 Initialization

The initialization of AEGIS-256 consists of loading the 256-bit key and IV into the
state, before updating the state 16 times using the key and IV as message. The
whole initialization procedure is as follows:

1. The key and IV are loaded into the initial state S−16 combined with a predefined
32-byte constant, const:

S−16,0 = K256,0 ⊕ IV256,0

S−16,1 = K256,1 ⊕ IV256,1

S−16,2 = const1

S−16,3 = const0

S−16,4 = K256,0 ⊕ const0

S−16,5 = K256,1 ⊕ const1

Here, K256,0 and K256,1 are the first and second half of K256, respectively. The
same applies for const, where const0 is its first half and const1 is its second
half.

2. The message m to be used in the initialization is constructed as follows:
For i = −4 to −1:

m4i = K256,0

m4i+1 = K256,1

m4i+2 = K256,0 ⊕ IV256,0

m4i+3 = K256,1 ⊕ IV256,1

3. Finally, the state is updated 16 times, after which the initialization process is
completed.
For i = −16 to −1:

48 3. AUTHENTICATED ENCRYPTION SCHEMES FOR JANUS

Si+1 = StateUpdate(Si, mi)

3.2.3 Processing of the Associated Data

After initialization, the associated data AD is used to update the state. AD is
partitioned into 128-bit blocks, where the last block is padded with 0-bits if needed,
until it is 128 bits long. The StateUpdate function is called for every block as follows:
For i = 0 to

⌈
adlen

128
⌉

− 1:

Si+1 = StateUpdate(Si, ADi)

3.2.4 Encryption

The encryption takes place for each plaintext block, where 16-byte plaintext blocks
Pi are encrypted to ciphertext blocks Ci. As with the associated data, if the last
plaintext block is shorter than 128 bits, it is padded with 0-bits to a length of 128.
However, only the original plaintext, i. e., before padding, is encrypted. Thus, the
length of the ciphertext to be transmitted across the channel, is not affected. The
encryption occurs as follows:
For i = 0 to v − 1:

Ci = Pi ⊕ Su+i,1 ⊕ Su+i,4 ⊕ Su+i,5 ⊕ (Su+i,2&Su+i,3),

where u =
⌈

adlen
128

⌉
and v =

⌈
msglen

128
⌉
.

After producing one ciphertext block, the corresponding plaintext block is used
to update the state:

Su+i+1 = StateUpdate(Su+i, Pi).

3.2.5 Finalization

In the finalization stage, the authentication tag is constructed. The lengths of the
associated data and the message, adlen and msglen (both 64-bit integers), as well
as the values of u and v defined above, are used to further update the state. First, a
temporary value is derived as follows:

tmp = Su+v,3 ⊕ (adlen||msglen).

tmp is then used seven times to update the state:
For i = u + v to u + v + 6:

3.2. AUTHENTICATED ENCRYPTION WITH AEGIS 49

Si+1 = StateUpdate(Si, tmp).

The last state will then be Su+v+7. The 16-byte elements of this state are XORed
with each other to generate a stream of bits for the authentication tag:

T ′ =
⊕5

i=0 Su+v+7,i.

The tag itself, T is chosen to be a desired amount of bits of T ′, starting from the
MSB. In the Janus application, we use the first 32 bits of T .

3.2.6 Argumentation for the Use of AEGIS with Janus

Below, we give argumentation for why we chose to include AEGIS as a way of
providing AEAD with Janus, in addition to CCM.

Historical Context and Alternative Algorithms

AEGIS was one of the winning submissions to the Competition for Authenticated
Encryption: Security, Applicability, and Robustness (CAESAR) for authenticated
encryption algorithms [Caesar]. CAESAR ran until 2019 and it had the purpose to
replace current AE schemes, most notably CCM and GCM. Hence, we believe that
an underwater solution based on AEGIS will keep underwater security schemes up to
date with their counterparts above water, even if CCM and GCM get discontinued
in WiFi networks and replaced by CAESAR candidates. In addition, AEGIS has
already been deployed in surface-based autonomous vehicles that apply the Robot
Operating System (ROS) [VSPF21]. Since the underwater environment has similar
devices and characteristics as ROS-based networks, we believe the application of
AEGIS under water is a natural next step.

There are three categories into which the CAESAR portfolio is organized, namely,
lightweight applications for resource-constrained environments, high performance
applications, and defense in depth. AEGIS was the winning candidate in the high
performance category due to its efficient use of the AES round function, which has
built-in hardware support by the Intel AES-NI instruction set. As a result, with such
hardware support, AEGIS is much faster than AES in both CTR and CBC mode,
which are both used in CCM.

As mentioned, AEGIS was not the winning candidate for resource-constrained
environments, which is one of the main characteristics of our underwater application.
Instead, the winning candidate in this category was ASCON [DEMS21]. However,
ASCON is suited for resource-constrained environments in the context of small

50 3. AUTHENTICATED ENCRYPTION SCHEMES FOR JANUS

devices with low processing power. Its main focus is not the reduction of bandwidth
consumption, which is our main goal. Although the reduction of computing resources
is desirable underwater (especially in sensors), many underwater devices, such as
AUVs are larger and usually have substantial processing power and memory. On such
devices, the efficiency of the AES round function usage of AEGIS can be utilized,
especially if hardware support for AES is provided. This in turn contributes to the
reduction of the total time used by the authentication protocol, as the generation-
encryption and decryption-verification operations are executed quickly.

Security Properties

Wu and Preneel [WP13] provide a security analysis of AEGIS in addition to its
specification. They name three requirements for the secure operation of AEGIS:

1. Each key K used for initialization must be generated uniformly at random.

2. An IV must not be used more than once during the lifetime of a key and each
key and IV pair must only be used with one size of the authentication tag T .

3. If the verification of the tag T fails, the decrypted plaintext and wrong T must
not be disclosed to the public.

If these three requirements are satisfied, it is claimed that the success probability
for a forgery of the MAC tag is n · 2−t, where n is the number of forgery attempts. If
a forgery attack is not successful, the state and key cannot be recovered faster than
exhaustive key search. For this reason, the recommended MAC tag length is at least
128 bits. However, to save bandwidth, we employ a 32-bit tag, as in the CCM-based
protocols. Since 232 forgery attempts are still infeasible to perform with the bit rate
limitations of Janus, we believe that this length provides adequate protection against
them.

3.2.7 Application in Janus-Based Communication

The protocol for authentication with AEGIS is very similar to the CCM version,
described in Section 3.1.5, both with and without Janus cargo packets. The same
values are transmitted in both schemes, resulting in an equal amount of bits. The
nonce N from CCM is denoted IV here, but these values serve a very similar purpose.
As with CCM, only a 32-bit IV is transmitted over the channel, and it is repeated 7
times at the receiving device to a length of 256 bits. The protocol without cargo can
be seen in Figure 3.6, while the version with cargo is shown in Figure 3.7.

3.3. SUMMARY OF THE AEAD SCHEMES 51

As with CCM, the use of cargo packets decreases the RTT of the protocol, but
reserves the channel for the transmission of the cargo. As discussed in Section 3.1.5,
this can be an obstacle in some network types.

3.3 Summary of the AEAD Schemes

In this chapter, two AEAD schemes for use in an authentication protocol based on
Janus, were presented. Both provide strong confidentiality and integrity of data, as
well as entity authentication, and the ranging functionality by Téglásy et al. Protocol
versions with and without cargo were showcased, and both schemes have very similar
communication protocols, resulting in practically identical bandwidth consumption.

Both CCM and AEGIS require a certain amount of processing and memory. For
example, with CCM, it is necessary to perform operations on three 16-byte blocks
for authentication and two 16-byte blocks for encryption. In the AEGIS solution,
all operations involve the state variable, which is 96 bytes long. Due to the efficient
usage of the AES round function of AEGIS, AEGIS has the potential to be the faster
algorithm of the two, resulting in decreased RTTs of the authentication. However,
since we are using AEGIS-256 and not AEGIS-128, a certain processing delay may
still be added to the total RTT. Such time characteristics are discussed further in
Section 6.2.

52 3. AUTHENTICATED ENCRYPTION SCHEMES FOR JANUS

Figure 3.6: AEGIS used in the authentication protocol, without the usage of cargo
packets.

3.3. SUMMARY OF THE AEAD SCHEMES 53

Figure 3.7: AEGIS used in the authentication protocol, with the usage of cargo
packets.

Chapter4Security Analysis of the Proposed
AE Solutions

In this chapter, we assess the level of security provided by the AE methods proposed
in Chapter 3. For the assessment, the STRIDE threat modelling scheme [SCO+18]
is used. A model generated with this approach provides an overview of the possible
ways that attackers can disrupt the communication among devices and cause harm,
as well as the level of protection that the security schemes provide against these
threats. The general threat landscape is assumed to be as described in Section 2.4.
STRIDE consists of determining the adversaries’ capabilities of performing spoofing,
tampering, repudiation, information disclosure, denial of service, and elevation of
privilege. Following are descriptions of how each of these goals would be achieved in
the underwater environment and the consequences they would have. Additionally,
we show how our solutions described in Chapter 3 mitigate these attacks.

4.1 Spoofing

Spoofing refers to impersonating something or someone else and it is a sign that
authentication is not provided. Normally, attackers would spoof the identity of a
legitimate node to successfully authenticate themselves to other legitimate nodes and
establish secure communication with them. This allows them to mount and execute
larger attacks.

In our authentication solutions, we claim that it is infeasible to spoof the identities
of legitimate nodes. In our threat model, we follow Kerckhoff’s principle and assume
that adversaries know all details about our cryptosystem, except the decryption
key. Based on this, it is difficult for adversaries to spoof the identities of any
legitimate nodes because all identities in the protocol are transmitted in encrypted
form. Therefore, if an attacker aims to transmit a spoofed identity in a legitimate
message, the identity must be encrypted. If a legitimate node receives an identity in
cleartext, the message will be ignored.

There are, however, attacks that adversaries can launch that do not involve

55

56 4. SECURITY ANALYSIS OF THE PROPOSED AE SOLUTIONS

spoofing of identities directly, but rather other data elements. One such attack is
ACK spoofing, described below.

4.1.1 ACK Spoofing

ACK spoofing is described in [Dom11] and mentioned in Section 2.4. In this attack,
an attacker sends illegitimate ACK messages through a low-quality channel that is
prone to packet and connectivity loss. This way, legitimate nodes that receive the
ACK messages will deem this channel to be reliable, when it is not. The consequence
is that they will continue to send data through this channel, resulting in increased
data loss and disruption of the communication.

A way to perform ACK spoofing in our solutions in Chapter 3 is to spoof F . F

consists of a SYN flag and an ACK flag, which indicate the status of the authentication
protocol. In the first stage of the protocol, when A sends its information to B,
SYN = 1 and ACK = 0. When B responds, it is still the case that SYN = 1, but
also, ACK = 1, to indicate that the previous message or messages were successfully
received. When A receives this acknowledgement, it will deem the channel reliable
and secure and will further use it to send messages to B after the authentication.
Using this fact, an attacker D can detect when A initiates the protocol by overhearing
it, then send spoofed ACK flags back to A, even if the channel is unreliable and A’s
messages were in fact lost on their way to B. A will then continue to send messages
through this channel, leading to more data loss. A conceptual view of this attack is
shown in Figure 4.1.

Although an attack like this is theoretically possible and relatively common in
UWCNs, it is not likely that it will affect our solutions. This is because D needs to
include many other data elements in addition to F in order to generate a legitimate
message in the protocol. A message with only the plaintext representation of F is
not a legitimate message in any protocol version and will therefore be ignored. For
instance, in the protocol versions without cargo, F is sent together with TS and CD

in encrypted form in packet 2. This means that D in addition needs to forge valid
TS and CD values and encrypt them with the secret key. In the versions with cargo,
D would need to obtain all data elements involved in the protocol for a message to
be accepted as authentic. Consequently, it is infeasible for an adversary to perform
this attack and our solutions provide strong protection against it.

4.2 Tampering

Tampering refers to modifying data or code in any environment. It affects the
integrity property. Generally, our solutions are more vulnerable to tampering than
spoofing, as attackers can intercept and modify data in the Janus packets as they

4.2. TAMPERING 57

Figure 4.1: An attacker D sends a spoofed ACK flag to A, causing A to continue
sending messages through an unreliable channel.

traverse the channel. Still, our solutions provide relatively strong protection against
tampering of intercepted messages on the channel due to the requirement of physical
access to a device and/or a faulty Random Bit Generator (RBG). The reasons for this
are explained later in this section. Tampering is also usually the basis for mounting
other kinds of attacks. For example, ACK spoofing, described in the previous section,
can also be performed by intercepting packets during propagation time and modifying
the F field. Following are descriptions of other possible tampering attacks.

4.2.1 Nonce and IV Modification

Since the nonce in CCM and IV in AEGIS are used in their respective generation-
encryption and decryption-verification processes, the tampering of them will cause
errors. These values are also sent in the clear in both algorithms, meaning that
adversaries that intercept them can easily change them to predictable values. They
can also inject previously recorded nonces and IVs, thereby forcing their reuse. Since
it is generally very important that such counter values are unique during the lifetime
of a key, this can potentially pose a serious threat.

As described in Section 3.1, in CCM, the nonce N is used during both the
generation-encryption and decryption-verification operations. In both cases, it is
used to generate the initial block B0 in the CBC-MAC algorithm (see Table 3.1), as
well as each counter block Ctri during the CTR mode encryption (see Table 3.3). In

58 4. SECURITY ANALYSIS OF THE PROPOSED AE SOLUTIONS

AEGIS, the IV is also used in both generation-encryption and decryption-verification.
It is used to initialize the state, which is later used for further processing.

Generation-Encryption

We first consider generation-encryption. In CBC-MAC, N is the only source of
unpredictability. In our protocol, the tag length t, the nonce length n, and the length
of Q are always the same, meaning that the uniqueness of B0 depends entirely of
N . Thus, if N is replayed, the effects will propagate until the last keystream block
Yr due to the CBC mode of operation. If N is repeated enough times, a certain
predictability of the value of T will be created, making it possible to forge a valid T

with less complexity than the birthday paradox, outlined in Section 3.1.4. In CTR
encryption, each Ctri consists of a set of flags, N , and an additional counter i for
every block. Both the flags and N are constant in all Ctri, while i is incremented for
each block. This means that, again, N makes each encryption procedure unique, as
the value of i is never random. Consequently, if N is repeated, the resulting counter
blocks and keystream will be predictable.

The case of AEGIS is similar. During initialization, the IV is the only unique
variable, as the key and the const0 and const1 variables are all constant. The state
after initialization is used to process the associated data, encrypt the plaintext, and
produce the MAC tag. Hence, a predictability caused by the reuse of an IV will
propagate through the entire process and potentially allow an attacker to recover
the state with statistical attacks.

A general overview of the effect of nonce or IV reuse is shown in Figure 4.2.

Attacks of this kind would greatly increase an adversary’s chance of breaking the
cryptosystem. However, this implies that the adversary manages to inject earlier
nonce values such that they are used in practice. In our CCM-based protocols, since
all values that are used as input to the generation-encryption process, namely, N ,
AD, and P , are generated locally on a device, there is no possibility that nonce reuse
can be forced by tampering with the communication channel. Similarly, the input
to AEGIS are the IV, AD, and P , which are generated locally. Therefore, reuse of
N or the IV can only be achieved if an adversary manages to physically capture a
device and inject N manually. Alternatively, the device can employ a faulty RBG,
such that collisions occur. We deem the probabilities of both these events small.
Thus, cryptanalysis based on nonce or IV reuse on the sending device is not a serious
threat.

4.2. TAMPERING 59

Figure 4.2: After enough messages sent with the same nonce or IV under one key,
the authentication tag and ciphertext become predictable.

Decryption-Verification

Next, we consider decryption-verification. It is more likely that N or the IV will
be replayed in decryption-verification because it is more feasible for an attacker to
inject these values into intercepted packets and forward the modified packets to the
designated receiver. The attack would be performed by combining eavesdropping
and jamming, as described in Section 2.4.1, or using a wormhole link, described in
Section 2.4.2. This way, the attacker could ensure that the intercepted message is
modified and that the legitimate message does not reach the receiving device. If no
cargo is used, the attacker would intercept and modify packet 1. If cargo packets are
used, an entire packet would be intercepted and the nonce or IV would be replaced
in it. Since the nonce and IV are transmitted in cleartext, the attacker does not
need the decryption key to successfully replace them in the intercepted data with
any value. The concept of this attack is shown in Figure 4.3.

In CCM, since N is used to generate the counter blocks Ctri and the first
authentication block B0 in the decryption-verification operation, the modification of
N will lead to the generation of different Ctri and Bi than what was generated by the

60 4. SECURITY ANALYSIS OF THE PROPOSED AE SOLUTIONS

Figure 4.3: A malicious node D intercepts the first nonce or IV i, then jams the
communication, such that the next message does not reach B, while also intercepting
the next message. It then replays Ni or IVi.

sending device. This will lead to the derivation of a different plaintext than the one
that was encrypted by the sending device, meaning that both the decrypted payload
and MAC tag will be different. It will also lead to the recomputation of a different
MAC tag with the CBC-MAC algorithm. The tag verification in CCM consists of
checking whether the decrypted tag from the received ciphertext equals the tag that
is recomputed using CBC-MAC. In our case, if a valid nonce N1 is replaced in transit
with another nonce N2, the decrypted tag that is derived from the ciphertext will
not equal the tag that is recomputed, even though the same invalid nonce N2 is used
in the decryption and the CBC-MAC recomputation. This is because the triplet
(N, AD, P) is used as input to the formatting function that produces the blocks Bi.
During decryption, the obtained payload P is different than the payload sent by the
originating device because a different nonce was used to generate the counter blocks
Ctri. Because of this, the wrong P is used to recompute T at the receiving end,
resulting in a mismatch between the decrypted T and the recomputed one. Hence,
the verification process will return the value INV ALID, and the authentication will
fail.

4.2. TAMPERING 61

AEGIS provides a similar functionality. The IV is used to initialize the state,
from which, ultimately, the MAC tag is derived. If the IV is changed in transit,
the reconstructed tag will be different from the one that was received and the
authentication will fail. Additionally, the decryption of the ciphertext will not result
in the original plaintext, as the state after initialization is used for decryption.

Consequently, the modification of N or the IV in transit in an MitM attack
is no major threat to our protocols. The design of the decryption-verification
operations in CCM and AEGIS take this attack into account and the attack triggers
an authentication failure. When the authentication fails, the received information is
dropped and no security properties are removed. Still, such attacks can cause longer
delays in the authentication procedures due to failed protocol runs and message
re-transmissions.

4.2.2 Modification of the Associated Data and the Ciphertext

In CCM, the modification of AD or C in transit will have the same effect as the
modification of N described above. Again, this is because both AD and P are input
to the CBC-MAC algorithm. If the designated device receives a different AD from
that which the originating device sent, the recomputed tag T will be different than
the one received, resulting in an authentication failure. Similarly, if C is modified, its
decryption will lead to a different P or T , or both. The tag that is then recomputed
cannot match the received one, and the authentication will again fail.

Similarly, the MAC tag reconstruction in AEGIS takes place after the state
updates done in the processing of AD and the decryption. Consequently, if AD or
C are modified in transit, the reconstructed T will be different than the one received.
If T itself is modified in transit, the authentication will also fail.

4.2.3 Modification of the CRC

In both the CCM and AEGIS-based solutions, the CRC is the only element that is
not part of N , the IV, AD, or C. Hence, it is not protected in any way. Adversaries
can therefore modify the CRC in transit and the modification will not get detected
by the security algorithms.

If the CRC is modified, the receiving device will interpret the packet it receives
as erroneous. It is up to the device to decide how many errors in the packet it is
willing to accept before the packet is dropped. The CRC is calculated by dividing
the polynomial generated from its preceding 56 bits in the baseline packet, with the
polynomial p(x) = x8 + x2 + x + 1, as shown in Table 2.2. Hence, the modification of
only a few bits may still be accepted by the receiving device. However, an adversary
that has intercepted a packet has the possibility to complement all 8 bits in the CRC,

62 4. SECURITY ANALYSIS OF THE PROPOSED AE SOLUTIONS

causing the packet to be rejected. In other words, an adversary that modifies the
CRC has the possibility to drop packets at will.

This kind of adversarial interference can lead to reduced availability, but it will
not result in the compromise of sensitive data. This is because the packets are simply
dropped by the designated receiver, and the adversary cannot extract the encrypted
information from the packet. Since this attack is very similar to jamming, similar
actions can be taken against it as they are taken against jamming attacks. According
to [Dom11], devices under such attacks should save their power and occasionally
transmit data to check if the attack is finished. In our case, the authentication
queries happen intermittently every 5 to 10 minutes. Hence, if one query fails due to
packet loss, another attempt will be made after a short time. The queries can be
repeated until the attack is over and the authentication succeeds.

4.3 Repudiation

Performing repudiation means to claim not to have performed an action or not to
be responsible for an event. As non-repudiation is a common security property that
must be satisfied by most systems, it is necessary to provide measures that prevent
entities from denying certain actions, or that minimize the harm caused by such
denial. According to the security services defined in [TC91], there are two types of
non-repudiation, namely, non-repudiation of origin and of destination. They define
that entities should not be able to deny sending or receiving a message, respectively.
In the authentication methods proposed in this thesis, such denial would be done by
the inclusion of incorrect MMSIs in messages. However, as described in Section 4.1,
this is infeasible to perform for adversaries. Nevertheless, there are theoretical ways
in which denial of participation in the authentication protocol might be performed,
as described below.

4.3.1 Denial of Protocol Participation through Flag Manipulation

By modifying F and setting the SYN flag to 0, a malicious device can claim that
it has not initiated the authentication protocol, even if the rest of the messages it
sends have the correct format according to the protocol specifications. This will
cause the device that receives these messages to not interpret them as part of the
protocol and, thus, not decrypt and verify the received data or issue a response.
Similarly, a malicious receiving device may claim not to have received any messages
by transmitting a response with the ACK flag set to 0 or not responding at all. In
other words, this kind of misuse of flags can create messages that are undefined in
the authentication protocols, thereby causing the authentication procedure to fail, or
otherwise disrupting the communication network.

4.4. INFORMATION DISCLOSURE 63

This attack is very similar to ACK spoofing, described in Section 4.1.1 above.
Hence, it is equally infeasible to perform, as an attacker willing to send illegitimate
values of F would need to obtain all other data elements in the protocol, as well as
Kn, in order to create valid messages. The attacker cannot intercept and modify
F in a message in transit either since F is included in the associated data AD. As
described in Section 4.2.2, this will result in an authentication failure. Consequently,
repudiation through flag manipulation is not a serious threat to our authentication
solutions.

4.4 Information Disclosure

Information disclosure involves exposing information to someone not authorized to see
it, and it is an attack against confidentiality. Generally, in large systems, information
disclosure occurs when confidential data in databases or on network connections gets
accessed by attackers and released to the public or otherwise misused. In our case,
the only data to access are the lookup tables of MMSIs on devices, which are not
regarded confidential, and the secret key. It is therefore important that the key is
kept secret. On the other hand, information sent in packets among devices may still
be disclosed if an attacker manages to bypass the encryption. In the case of CCM,
this would involve obtaining the keystream blocks Si by brute force or other forms
of cryptanalysis of AES. With AEGIS, it would involve recovering the secret key or
the internal state variable by the same means.

4.4.1 Disclosure of Information on the Channel

As discussed in Section 3.1.4, if adversaries are to bypass the confidentiality of CCM,
they must execute birthday attacks or find an internal collision in the CBC-MAC
computation. Similarly, as mentioned in Section 3.2.6, the state and key of AEGIS
cannot be recovered faster than exhaustive key search. As described in Section 4.2.1,
these properties rely on secure generation of nonces and IVs. If nonce and key pairs
are not reused in CCM, and IV and key pairs are not reused in AEGIS, there is little
risk of disclosure of confidential information from data sent across the communication
channel.

4.4.2 Disclosure of Locally Stored Information

A considerable threat of information disclosure arises if adversaries obtain an entire
device, such as an AUV, and access its onboard storage. Since the secret key is among
the data elements stored on the devices, this would give adversaries the possibility
to decrypt all intercepted data encrypted with that key, as well as to forge new
legitimate packets. A mitigation in this situation is more frequent renewal of the
pre-shared long-term key.

64 4. SECURITY ANALYSIS OF THE PROPOSED AE SOLUTIONS

4.5 Denial of Service (DoS)

DoS would eliminate the availability property, and it involves denying or degrading
service to users. According to [TWPK], a DoS may be caused through repeated re-
transmission of messages, as well as modification of ciphertexts and CRCs. In our case,
adversaries can also modify nonces, IVs, and the associated data, to provoke failed
authentications. These attacks are described in earlier sections of this chapter. An
attacker may also incapacitate a legitimate acoustic signal by jamming, as described
in Section 2.4.1.

As mentioned in Section 4.2.3, devices under DoS attacks should save their power
and wait until the attack is over. Generally, if an authentication attempt fails, another
will be made after maximally 10 minutes. Hence, there will be more opportunities to
perform the authentication successfully. Until this point, the devices that attempt
the authentication will not communicate with each other, as the packets exchanged
between them will be lost. Nevertheless, this will not lead to the compromise of
confidential data, making the consequences of the DoS sustainable.

4.6 Elevation of Privilege

Elevation of privilege is related to authorization and it involves not permitting some-
one to do something they are not authorized for. In the context of the authentication
protocols, legitimate devices should not perform other computations or transmit
other messages than what has been defined. Additionally, adversaries should not be
allowed to obtain the key, as this would provide them the privileges they need to
masquerade as legitimate devices and disrupt the network. If the key is compromised,
a key renewal should be considered, as mentioned above.

4.7 Summary of the Security Analysis

After performing the STRIDE-based analysis, we conclude that the authentication
methods proposed in this thesis provide a high level of protection against the majority
of attacks in the STRIDE categories. The only attacks that have a high chance
of breaking important security properties are those against which no protocol or
algorithm can provide protection, such as DoS or physical capture of devices.

Chapter5Methodology

This thesis fulfills design goals, but it also answers knowledge questions. The knowl-
edge questions are related to acoustic communications and the assessment and
modelling of various AE schemes for use with Janus. The design goals have been to
investigate which security properties are needed in the relevant communication sce-
narios, determine which solutions provide these properties, and design an appropriate
AE scheme based on the findings. As such, the objectives and research questions of
this thesis are related to both traditional science and design science.

5.1 Design Cycle and Empirical Cycle

Since it was not known in advance which AE scheme is appropriate and satisfies
all requirements, the research process was based on identifying schemes that show
promise, selecting candidates, and possibly adapting them to the Janus-based un-
derwater context. The process of designing an AE scheme and, thus, fulfilling the
design goals, took the form of a design or engineering cycle, as described by Wieringa
[Wie14], which divides the methodology into problem investigation, treatment design,
treatment validation, treatment implementation, and implementation evaluation. A
treatment in this context refers to the proposed AE scheme. Of these parts, we have
used only the first three, as the treatment implementation would assume that we
implement our designs in hardware. This is beyond the scope of this thesis. The
design cycle is shown in Figure 5.1.

In this thesis, the different stages of the design cycle consisted of the following:

1. Problem investigation: The investigation of the problem consisted of a
cryptographic analysis proposed by Téglásy et al., which lead to the discovery of
its limitations (Section 2.8.1). In addition, a review of the security requirements
of underwater communication was performed (Section 2.5), which identified

65

66 5. METHODOLOGY

Figure 5.1: The stages in the design cycle. Adapted from [Wie14].

authenticated encryption as the main mechanism that was required of the
security schemes that were to be proposed.

2. Treatment design: As the AEAD algorithms used in this thesis were already
implemented in other environments, the treatment design consisted of adapting
these algorithms to Janus and designing the protocols and packet formats that
were used. This included defining all computations related to the protocols,
such as the repetition of nonces and IVs at the receiving devices.

3. Treatment validation: The proposed schemes were validated by the security
analysis (Chapter 4), which analyzes to which extent the schemes satisfy the
security requirements. Additionally, it was determined that the new schemes
still allow the performance of ranging, which was one of the main functions of
the protocol by Téglásy et al.

The knowledge questions were answered in an empirical cycle, shown in Figure 5.2,
also described by Wieringa. The stages in this cycle are the following:

1. Research problem analysis: The research problem analysis consisted of
the threat landscape modelling and determination of the underwater security
requirements (Section 2.4 and Section 2.5).

2. Research and inference design: The conclusions were obtained by deter-
mining the appropriate AE schemes, implementing them, and measuring the
time needed for the authentication protocols to complete. Additionally, an
analysis of identified vulnerabilities and attacks on the protocols was performed
and the security level of the protocols was assessed (Chapter 4).

3. Validation and research execution: The experiments were performed as
defined in the research and inference design stage.

5.2. SUMMARY OF THE METHODOLOGY 67

Figure 5.2: The stages in the empirical cycle. Adapted from [Wie14].

4. Data analysis: The results of the simulations and security analysis were
assessed, presented, and discussed.

5.2 Summary of the Methodology

The methodology of the execution of this project involved both design science and
traditional science, as both design and knowledge questions were answered. The
design and investigation stages were performed by reviewing the threat landscape
and communication requirements, such that adequate security schemes could be
identified. Experiments were then conducted to answer the knowledge questions,
which were related to the time spent for authentication and the security provided in
the reviewed threat landscape. The experiments and results are discussed further in
the next chapter. Overall, the different stages of the methodology are connected by
a general need to secure the underwater authentication process. The analysis and
experiments conducted ensure trustworthy results.

Chapter6Experimental Work, Results, and
Discussion

In the experimental work in this thesis, the authentication protocols in Chapter 3
were simulated and their RTTs were measured in a simulation environment. The
computation time of CCM and AEGIS that takes place locally on the sending and
receiving devices was also measured in a simulator. This chapter describes how the
simulations were conducted, presents the results obtained in these simulations and
provides observations and comments on them.

6.1 Experimental Work

A simulation of underwater networks with authenticated encryption algorithms was
implemented in C and C++ using the UAN library of the NS3 network simulation
framework [NS3] and the existing implementation of Janus found on the Janus Wiki
[JanusWiki]. The source code of the simulation scripts is available in Appendix B.
The implementation and experiments were conducted in an Ubuntu-based 64-bit
Linux Mint virtual machine with two processor cores and 4096 MB of base memory.

6.1.1 Experimental Setup

The UAN library was used to simulate nodes in an underwater network that send
information to each other using acoustic waves. The nodes that were simulated
represent AUVs that would communicate in a similar manner in the real world. The
UAN library and the Janus simulation were originally implemented separately by
different authors, and we combined them to create an underwater network simulation
in which Janus packets are sent, thereby resembling communication with Janus as the
underlying standard. The Janus implementation by itself only simulates transmission
and reception at transmitting and receiving devices, respectively, without giving
information about the transmission channel itself and with no possibility to run
a simulation over time. A sound wave is modulated as per Janus specification,
which transmits a packet. The packet is stored in a file, which the receiving device
simulation reads and demodulates. To utilize the channel simulations and longer

69

70 6. EXPERIMENTAL WORK, RESULTS, AND DISCUSSION

simulation periods that are provided by NS3, the packet data produced by the Janus
simulation was stored into files, which were read into a simulation script in the UAN
library. The data was then used conventionally in the UAN library, using its built-in
packet objects to transmit the data across the simulated network.

Janus Packet Simulation

The Janus simulation allows for the creation of one packet at a time, where the packet
is first populated with data and modulated, before the resulting sound wave that
represents the packet is saved to a file. The file is then read and demodulated, and
the data is extracted and printed. The packet writing and reading are performed by
two different modules, called Janus Tx and Janus Rx, which represent a transmitting
and a receiving device, respectively. When working with the C implementation,
the Tx and Rx modules are called from the command line, for which examples are
provided in the Janus README document [Zap]. An example command for creating
a Janus packet with no application data is as follows:

janus-tx --pset-file janus-c-3.0.5/etc/parameter_sets.csv
--pset-id 1 --stream-driver-args /tmp/test_janus.wav --verbose 2

The output will contain information about the configuration options, the parame-
ter set, the output stream, the state, and the packet fields themselves. The packet
fields in the output alone for the command above are shown in Table 6.1. We observe
that all the fields from the bit allocation table of the Janus specification, Table 2.2,
are given, from the version number to the CRC. The binary representation of the
whole packet was saved to a text file, such that it could be read in a script in the
UAN simulation.

NS3 UAN Simulation

The UAN library of NS3 allows to simulate the sending of packets of arbitrary length
and content among underwater nodes over arbitrary periods of time. It provides
two propagation models for acoustic waves under water: an ideal channel model
with a high range and the Thorp model which describes the waves’ path loss over
time, thereby reducing the range of the signals. Compared to other propagation
models, such as the Monterrey Miami Parabolic Equation (MMPE) and Bellhop
models, the Thorp model is of low complexity, but also of relatively low accuracy.
This is because it only takes into consideration the general attenuation of sound
waves as they propagate through water particles and ignores factors such as water
temperature, salinity, wave activity, etc. [LM12]. On the documentation pages of
NS3, it is stated that a simulation environment using the much more accurate Bellhop

6.1. EXPERIMENTAL WORK 71

Table 6.1: Output of the creation of an empty Janus packet

Bytes (decimal) | 50| 16| 0| 0| 0| 0| 0| 85|
Bytes (hex) | 32| 10| 00| 00| 00| 00| 00| 55|

Fields (binary)
|0011|0|0|1|0|00010000|000000|

0000000000000000000000000000000000|
01010101|

Version Number (4 bits) 3
Mobility Flag (1 bit) 0
Schedule Flag (1 bit) 0
Tx/Rx Flag (1 bit) 0

Forwarding Capability (1 bit) 0
Class User Identifier (8 bits) 16 (NATO JANUS reference Implementation)

Application Type (6 bits) 0
Application Data (34 bits) 00

Cargo Size 0
CRC (8 bits) 85
CRC Validity 1

model is currently being implemented, but it has not been published. Consequently,
the Thorp approximation was used in our simulations.

Given the simplistic propagation model, the speed of sound is assumed to con-
stantly be 1500 m/s. The theoretical delay in the transmission of messages can then
be calculated as delay = distance

speed . Using a similar approximation, the series of events
shown in Figure 6.1 were simulated, where the propagation time increases propor-
tionally to the distance between the devices. However, as discussed in Section 6.3,
the simulated transmission delay is not exactly the same as the theoretical one.

Two main experiment scenarios were set up: in one scenario, only the range
limitations of the Thorp model were taken into account, while in the other, a noise of
varying degree was added to the communication channel. In the case without noise,
every attempted run of the protocols was successful and no packet loss occurred.
When noise was added, packets were dropped in transmission, simulating DoS attacks
and/or poor channel quality. As both CCM and AEGIS need all data correctly
transmitted to the receiving device for decryption-verification to take place, the
loss of a single packet would be enough for the protocols to fail. The probability
of packet loss was represented by a random integer, which determined when the
protocol would fail. On each protocol failure, 7 minutes were added to the total
protocol RTT, as the simulator was configured to run the protocol every 7 minutes.

72 6. EXPERIMENTAL WORK, RESULTS, AND DISCUSSION

Figure 6.1: The pipeline of processes simulated in NS3. The circles represent
time-consuming processes, while the rectangles represent intermediate values. The
figure shows the process of sending data in one direction only.

Generally, the protocols would be run every 5 to 10 minutes in the real world, making
this simulation a nearly average case. The packet loss probability was varied from 0.1
to 0.9, resulting in different numbers of retries of the protocol execution and, thus,
different RTTs.

6.1.2 Implementation of the Security Algorithms

The RC5, CCM, and AEGIS algorithms were implemented in C, following their
specifications in [Riv95], [Dwo04], and [WP13], respectively. For CCM and AEGIS,
a ready-made lightweight implementation of AES was used. The correct implemen-
tations of the algorithms were verified using the test vectors provided in all three
specifications.

The algorithms were then incorporated into the Janus simulation. For this,
the original version of Janus was modified such that the functions of the security

6.1. EXPERIMENTAL WORK 73

Table 6.2: Output of the creation of a Janus packet containing MMSIA in encrypted
form, in the CCM-based protocol.

Bytes (decimal) | 48| 0| 3| 66|130| 63|108|135|
Bytes (hex) | 30| 00| 03| 42| 82| 3F| 6C| 87|

Fields (binary)
|0011|0|0|0|0|00000000|000000|

1101000010100000100011111101101100|
10000111|

Version Number (4 bits) 3
Mobility Flag (1 bit) 0
Schedule Flag (1 bit) 0
Tx/Rx Flag (1 bit) 0

Forwarding Capability (1 bit) 0
Class User Identifier (8 bits) 16 (NATO JANUS reference Implementation)

Application Type (6 bits) 0
Application Data (34 bits) 00

CRC (8 bits) 135
CRC Validity 0

algorithms were called with their respective portions of the Janus packet as input. For
example, in the case of CCM, the nonce, associated data, and plaintext of the entire
protocols in Section 3.1.5 was generated and passed to the generation-encryption
function. The resulting output was then partitioned into five baseline packets and one
cargo packet for the versions without and with cargo, respectively. The partitioning
was done by invoking the builtin functions of the Janus simulation for creating new
packets, extracting and modifying the ADB, as well as other utilities. The simulation
was prepared such that the same janus-tx command shown above created all
packets needed to transmit for each protocol version. For example, the third packet
in the CCM-based protocol without cargo, containing MMSIA (see Figure 3.3),
was represented with the output given in Table 6.2. Note the Bytes (decimal),
Bytes (hex), Fields (binary), and CRC (8 bits) fields, showing the data
in the processed packet.

6.1.3 Work with Acoustic Modems

To determine the level to which our proposed protocols can be implemented and
used in reality, work was conducted towards an implementation on two EvoLogics
S2CR acoustic modems. These modems are compatible with the Janus standard and
allow for the transmission of information with it. In our setup, they were configured
for in-air testing and were used in a laboratory environment, outside water. A cable

74 6. EXPERIMENTAL WORK, RESULTS, AND DISCUSSION

connection over Ethernet was used to connect the modems to a computer, from
which commands were sent to configure the Janus Tx and Rx servers. The setup is
shown in Figure 6.2.

The commands to the modems were issued through the Software Defined Modem
(SDM) shell, which allows for transmission of data from a computer to the modems
via a Transmission Control Protocol (TCP) connection. Through this connection,
Janus commands, such as the one in Section 6.1.1, were used to transmit a packet,
as well as to initiate listening processes on the modems on their respective TCP
ports. The sound file that was generated by Janus Tx was then played from one of
the modems.

A full implementation of the protocols was not performed, as such an implemen-
tation would require the incorporation of the implementations of CCM and AEGIS
into the modems, which would also involve an implementation of AES. An RBG
would also be necessary to generate the nonces and IVs. Additionally, it would be
necessary to automate the execution of these algorithms. For this, an intervention in
the firmware of the modems would have to be done, which was not accessible to us,
and would require a legal agreement with the EvoLogics manufacturer. Even the
use of Janus with the modems requires a proprietary modification of Janus, which
is not open source and was obtained through an agreement with NTNU. Hence,
further modifications would be subject to additional legal procedures. Also, if the
protocols are to be implemented on other modems from other manufacturers than
EvoLogics, agreements would have to be made for these as well. Additionally, to
perform in-water tests of the simulated protocols, it would be necessary to transport
the modems to a marine environment, such as the Trondheim fjord, where they would
need to perform the protocols repeatedly until a distance of 10 kilometers. This
would require funding and it would pose a substantial organizational complexity.

6.2 Results

After simulating the protocols both with and without noise, and measuring the time
needed for each version to complete in NS3, the round-trip times shown in Figure 6.3,
Figure 6.4, Figure 6.5, and Figure 6.6, were obtained. Figure 6.3 shows the distance
in meters between two devices performing authentication with respect to the time in
milliseconds needed to perform the authentication, in the case without noise. The
times for the protocols based on CCM and AEGIS both with and without cargo are
shown. Additionally, the simulated time for the original protocol by Téglásy et al. is
shown for comparison. In Figure 6.4 and Figure 6.5, the RTTs of the protocols with
and without cargo, with varying levels of packet loss probability and varying distance,
are shown for CCM and AEGIS, respectively. Figure 6.6 also shows the performance
of the protocol by Téglásy et al. in a noisy channel, for comparison. The round-trip

6.2. RESULTS 75

(a) The modems were connected to a computer using a switch. A power source was used to
provide power to the modems during longer periods of time.

(b) The modems had to be placed close to each other to exchange information in air.

Figure 6.2: The setup for in-air testing of the acoustic modems.

76 6. EXPERIMENTAL WORK, RESULTS, AND DISCUSSION

Figure 6.3: Round-trip times of the authentication protocols, using CCM and
AEGIS, with and without cargo packets for both algorithms. The RC5-based solution
by Téglásy et al. is included for comparison.

Table 6.3: The processing times of the security algorithms.

Algorithm Generation-encryption Decryption-verification
CCM 0.0160203 ms 0.0161610 ms

AEGIS 0.0368927 ms 0.0373279 ms
RC51 0.002678 ms 0.0026934 ms

1 RC5 only performs encryption and decryption and processes a smaller
amount of data in our case.

times are considered to be the total times needed to process, transmit, and receive all
necessary data in both directions i.e., the sequence of events in Figure 6.1 performed
twice. The times needed for the security algorithms to process their respective data
are shown in Table 6.3.

6.3 Discussion

A discussion of the results presented in Section 6.2 follows.

6.3. DISCUSSION 77

(a) RTTs of the CCM-based protocol without cargo in a noisy channel.

(b) RTTs of the CCM-based protocol with cargo in a noisy channel.

Figure 6.4: Comparison of RTTs for the CCM-based protocols with and without
cargo, with varying levels of noise.

78 6. EXPERIMENTAL WORK, RESULTS, AND DISCUSSION

(a) RTTs of the AEGIS-based protocol without cargo in a noisy channel.

(b) RTTs of the AEGIS-based protocol with cargo in a noisy channel.

Figure 6.5: Comparison of RTTs for the AEGIS-based protocols with and without
cargo, with varying levels of noise.

6.3. DISCUSSION 79

Figure 6.6: RTTs for the protocol by Téglásy et al., with varying levels of noise.

6.3.1 The Cases Without Noise

As expected, the times of the protocols with cargo in Figure 6.3 are substantially
shorter than in the case of the cargo-less versions. This is due to the smaller amount of
data to process and transmit, as there is only one Janus header and CRC transmitted
in each direction. Moreover, the AEGIS-based protocol with cargo is marginally faster
than its CCM-based counterpart, while the versions without cargo have practically
identical times. Since the efficient usage of the AES round function and state variable
of AEGIS has the purpose to increase its speed and performance, the expected result
would be that the AEGIS-based protocols would be marginally faster. However, as
shown in Table 6.3, in our simulations, CCM was the faster algorithm of the two.
This may be due to our specific implementation, which was pedagogical and focused
on readability rather than performance. Also, the repeated IV in AEGIS is longer
than the repeated nonce in CCM (256 bits versus 64 bits, respectively), which also
might have had an impact on the processing time. It is, however, worth noting that
the processing times of all algorithms are negligible in comparison to the propagation
time of the acoustic signals. Therefore, they have a minimal impact on the RTTs.

It was also expected that the original protocol by Téglásy et al. has the shortest

80 6. EXPERIMENTAL WORK, RESULTS, AND DISCUSSION

round-trip time, as it only requires the transmission of one baseline packet in each
direction and requires very little computation. However, the protocols presented
in this thesis, especially the cargo versions, also have acceptable performance, with
the shortest time being approximately 10 seconds for AEGIS with cargo when the
devices are next to each other (0 meters). With the added security and scalability
benefits, we believe this is an acceptable compromise.

Due to the simplistic Thorp propagation model used by NS3, the resulting
curves in Figure 6.3 are linear. This is because no noise or packet loss is simulated
in the communication channel, resulting in equal channel quality for all packets.
However, a certain level of realism is still achieved, as the times shown are not
the theoretical times that can be calculated for all algorithms and distances. For
example, the theoretical time for the CCM-based protocol with cargo at a distance
of 4000 m is 2 · (0.0160203 ms + 2 · ((196 b/80 bps) · 1000) + (4000 m/1500 m/s) ·
1000) + 0.0161610 ms) = 15133.3977 ms. However, the time calculated with NS3 is
17332.064363 ms. Hence, some unpredictability is still provided. In addition, there
are no results for distances beyond approximately 11000 m due to signal fading,
which is an accurate portrayal of the behavior of Janus.

6.3.2 The Cases With Noise

When noise is added, it can be seen in both Figure 6.4 and Figure 6.5 that a longer
propagation distance and higher packet loss probability contribute to higher RTTs.
In this case, we defined an acceptable RTT of 5 minutes for the authentication
procedure.

In Figure 6.4a it can be seen that, when cargo is not used, a distance of 10000 m
causes the RTT to exceed 5 minutes at a packet loss probability of less than 0.2.
When the distance is reduced, the RTT reaches the 5 minute limit at a higher packet
loss probability i.e., around 0.3. On the other hand, when cargo is used, the RTT
limit is reached after a probability of around 0.3 for all distances. This is expected,
as the cargo versions are generally more reliable due to the smaller amount of data
to transmit.

In the case of AEGIS, a longer distance again causes the 5 minute RTT limit to
be reached sooner than with a shorter distance, which is expected. However, when
cargo is not used, the limit at 10000 m is reached at a packet loss probability of
around 0.3, compared to around 0.2 with CCM. When cargo is used, the results are
practically identical with the CCM version.

With the protocol by Téglásy et al., the RTTs are shorter, which was expected,
since only one baseline packet is transmitted in each direction and the RC5 processing
is extremely fast. However, the average RTTs in Figure 6.6 are only marginally

6.3. DISCUSSION 81

shorter than with CCM and AEGIS. The 5 minute time limit is reached at a failure
probability of around 0.3 at 10000 m, while, at shorter distances, it is reached at
a probability of just over 0.4. The reason for such a small difference from CCM
and AEGIS is that, when noise is added, the noise is the biggest source of delay
and not the propagation time of the signals. The delay added by the noise is much
larger than the propagation time (at least 7 minutes, with one failure), making the
propagation time small in comparison. Consequently, in a realistic mission scenario,
where messages are transmitted in a noisy channel over longer periods of time, the
performance of the new schemes based on CCM and AEGIS is very similar to that
of the scheme by Téglásy et al.

To conclude, a higher packet loss probability will cause the authentication pro-
cedure to exceed the time limit sooner. As mentioned previously, packet loss can
be caused by many factors. Deliberate DoS caused by, for instance, jamming (see
Section 2.4.1), can provoke packet loss, but also channel quality fluctuations due to
water currents, temperature, etc., can do this. Hence, if the desired maximum RTT
is 5 minutes, the results presented above can serve as guidance in different mission
conditions and network configurations. Note that, generally, the RTTs with noise are
higher than without noise (with noise they are in the order of 105 to 107 ms, while,
without noise, they are in the order of 104 ms.) This is expected, as each time a
packet is lost and the authentication fails, 7 minutes (420000 ms) are added to the
RTT.

More accurate measurements of the RTTs would be obtained if the protocols were
realized on real acoustic modems. However, as discussed in Section 6.1.3, this was
beyond the scope of this thesis.

Chapter7Conclusion and Future Work

In this thesis, we have proposed two AE schemes for providing confidentiality and
integrity in wireless acoustic underwater communication using the Janus standard.
We have incorporated these schemes into the first method for authentication between
devices that use the Janus standard, defined by Téglásy et al. We have kept the
original functionality of this protocol for ranging based on timestamps. We have
shown that the new authentication procedures can be completed within an acceptable
time period, in a simulation environment.

7.1 Answers to the Research Questions

Below is a short summary of the answers to the research questions of this thesis,
defined in Section 1.3.

RQ1: How can authenticated encryption mechanisms be applied in Janus-based un-
derwater communication to provide integrity and confidentiality of data?

◦ We have shown in Chapter 3 that our two identified mechanisms, CCM
and AEGIS, can be adapted such that elements from Janus packets can
be used as input to them. By performing these adaptations, we have
realized the authentication protocol defined by Téglásy et al. using the
mechanisms, both with and without Janus cargo packets.

RQ2: How can the underwater authenticated encryption schemes (ref. RQ1) be made
to complete reliably within a required time?

◦ The selected security algorithms allow for the minimization of the communi-
cation overhead in the authentication protocols, which enables completion
of the procedures in an acceptable time period. This was confirmed on the
simulation level, as described in Chapter 6. The RTTs obtained satisfy
our expectations and indicate the possibility of practical realization of the

83

84 7. CONCLUSION AND FUTURE WORK

protocols.

RQ3: What level of security do the proposed schemes provide in relation to the
underwater threat landscape?

◦ The underwater threat landscape, as well as the security requirements
based on this landscape, were reviewed in Chapter 2. According to the
STRIDE-based security analysis provided in Chapter 4, our proposed
schemes are capable of resisting most attacks against the authentication
protocols, except physical capture and DoS, from which no protocol or
software algorithm can protect.

Based on the answers to the research questions that we obtained in this thesis, we
can conclude that our proposed authentication methods, combined with the method
proposed by Téglásy et al., have a potential for providing confidentiality and integrity
of data in Janus-based wireless underwater communication. The research results
obtained in this thesis were summarized in a paper, which was submitted to the
Spanish national cryptologic conference, RECSI 20221.

7.2 Future Work

A major feature from Téglásy et al. that has been left out in this thesis is the
generation and management of the session key KAB, which was introduced in
Section 2.8.1. The reason for this is that it was discovered during the work on
the thesis that KAB does not provide full forward secrecy in many cases and that
the claim of forward secrecy relies on many assumptions. Hence, a project for the
future is to provide symmetric authenticated key exchange with full forward secrecy,
incorporated into the protocols defined in this thesis. For this, protocols based on key
evolution and ratcheting can be used, such as those employed by the Signal protocol
[Signal] or the ones proposed by Boyd et al. [BDdK+21].

Additionally, as discussed in Section 6.1.3, implementation of the protocols on real
acoustic modems was beyond the scope of this thesis. Hence, an engineering project
for the future would be to work towards agreements with manufacturers to allow for
the implementation of the protocols on modems, such that modems could be sold as
products with the support of the authentication protocols. An implementation of
this kind would be done by implementing CCM and AEGIS with their respective
dependencies into the modems and using standard Janus commands, such as those
provided by the EvoLogics patch, to generate packets with the necessary user data
for the protocols.

1The home page of the conference can be found here: https://recsi2022.unican.es/en/

https://recsi2022.unican.es/en/

References

[BDdK+21] C. Boyd, G. T. Davies, et al., «Symmetric Key Exchange with Full Forward
Security and Robust Synchronization», in Advances in Cryptology – ASI-
ACRYPT 2021, M. Tibouchi and H. Wang, Eds., Cham: Springer International
Publishing, 2021, pp. 681–710.

[BK98] A. Biryukov and E. Kushilevitz, «Improved cryptanalysis of RC5», in Ad-
vances in Cryptology — EUROCRYPT’98, K. Nyberg, Ed., Berlin, Heidelberg:
Springer Berlin Heidelberg, 1998, pp. 85–99.

[Caesar] «Crypto competitions CAESAR: Competition for Authenticated Encryption:
Security, Applicability, and Robustness». (), [Online]. Available: https://
competitions.cr.yp.to/caesar.html (last visited: Jun. 15, 2022).

[CQP+05] C. Chaplin, E. Qi, et al., «802.11i Overview», IEEE 802.11-04, Feb. 2005.
[DCT19] R. Diamant, P. Casari, and S. Tomasin, «Cooperative Authentication in Un-

derwater Acoustic Sensor Networks», IEEE Trans. Wirel. Commun., vol. 18,
no. 2, pp. 954–968, 2019. [Online]. Available: https://doi.org/10.1109/TWC.
2018.2886896.

[DEMS21] C. Dobraunig, M. Eichlseder, et al., «Ascon v1.2: Lightweight Authenticated
Encryption and Hashing», J. Cryptol., vol. 34, no. 3, p. 33, 2021. [Online].
Available: https://doi.org/10.1007/s00145-021-09398-9.

[Dom11] M. C. Domingo, «Securing Underwater Wireless Communication Networks»,
IEEE Wireless Communications, vol. 18, no. 1, pp. 22–28, 2011.

[Dwo01] M. Dworkin, «Recommendation for Block Cipher Modes of Operation: Meth-
ods and Techniques», NIST Special Publication 800-38A, pp. 1–66, Dec.
2001.

[Dwo04] ——, «Recommendation for Block Cipher Modes of Operation: The CCM
Mode for Authentication and Confidentiality», NIST Special Publication
800-38C, pp. 1–27, May 2004.

[Dwo05] ——, «Recommendation for Block Cipher Modes of Operation: The CMAC
Mode for Authentication», NIST Special Publication 800-38B, pp. 1–21, May
2005.

[Dwo07] ——, «Recommendation for Block Cipher Modes of Operation: Galois/-
Counter Mode (GCM) and GMAC», NIST Special Publication 800-38D,
pp. 1–39, Nov. 2007.

85

https://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/caesar.html
https://doi.org/10.1109/TWC.2018.2886896
https://doi.org/10.1109/TWC.2018.2886896
https://doi.org/10.1007/s00145-021-09398-9

86 REFERENCES

[Evo18] EvoLogics, EvoLogics Underwater Acoustic Positioning System User Guide,
Included with a set of EvoLogics acoustic modems., Feb. 2018.

[Fer02] N. Ferguson, «Michael: an improved MIC for 802.11 WEP», IEEE P802.11
Wireless LANs, Jan. 2002.

[Fer05] ——, «Authentication weakness in GCM», Jan. 2005.

[GB18] H. Ghannadrezaii and J.-F. Bousquet, «Securing a Janus-Based Flooding
Routing Protocol for Underwater Acoustic Networks», in OCEANS 2018
MTS/IEEE Charleston, 2018, pp. 1–7.

[GitHub] «BranislavPetrovic/JanusSecurity: Source code of the simulations conducted
for the thesis "Authentication and Encryption in Janus-Based Wireless Un-
derwater Communications" at NTNU.» (), [Online]. Available: https://github.
com/BranislavPetrovic/JanusSecurity.git (last visited: Jun. 19, 2022).

[HH21a] A.-M. Hobbs and S. Holdcroft, «Janus Class 17 “Venilia”: Secure Pre-Canned
Messaging», Dstl Cyber and Information Systems, pp. 1–22, May 2021, Re-
quires account on the Janus Wiki.

[HH21b] ——, «Tiny Underwater Block cipher (TUBcipher): 27-bit Encryption Scheme
for JANUS Class 17», Dstl Cyber and Information Systems, pp. 1–22, May
2021, Requires account on the Janus Wiki.

[HL15] R. Haakegaard and J. Lang, «The Elliptic Curve Diffe-Hellman (ECDH)»,
pp. 1–4, Dec. 2015.

[HM05] C. He and J. C. Mitchell, «Security analysis and improvements for IEEE
802.11i», in In Proceedings of the 12th Annual Network and Distributed System
Security Symposium, 2005, pp. 90–110.

[JanusWiki] «JANUS Community Wiki | HomePage». (), [Online]. Available: http://www.
januswiki.org/tiki-index.php (last visited: Jun. 15, 2022).

[Jea16] J. Jean, TikZ for Cryptographers, https://www.iacr.org/authors/tikz/, 2016.

[Jon03] J. Jonsson, «On the Security of CTR + CBC-MAC», in Selected Areas in
Cryptography, K. Nyberg and H. Heys, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 76–93.

[LM12] J. Llor and M. P. Malumbres, «Underwater wireless sensor networks: How do
acoustic propagation models impact the performance of higher-level proto-
cols?», Sensors (Basel), pp. 1313–1314, Jan. 2012.

[LSAR12] J. Lloret, S. Sendra, et al., «Underwater Wireless Sensor Communications in
the 2.4 GHz ISM Frequency Band», Sensors, vol. 12, no. 4, pp. 4237–4264,
2012. [Online]. Available: https://www.mdpi.com/1424-8220/12/4/4237.

[MV04] D. A. McGrew and J. Viega, «The Security and Performance of the Galois/-
Counter Mode of Operation (Full Version)», IACR Cryptol. ePrint Arch.,
p. 193, 2004. [Online]. Available: http://eprint.iacr.org/2004/193.

[NS3] «UAN Framework - Model Library». (), [Online]. Available: https://www.
nsnam.org/docs/models/html/uan.html (last visited: Jun. 24, 2022).

https://github.com/BranislavPetrovic/JanusSecurity.git
https://github.com/BranislavPetrovic/JanusSecurity.git
http://www.januswiki.org/tiki-index.php
http://www.januswiki.org/tiki-index.php
https://www.iacr.org/authors/tikz/
https://www.mdpi.com/1424-8220/12/4/4237
http://eprint.iacr.org/2004/193
https://www.nsnam.org/docs/models/html/uan.html
https://www.nsnam.org/docs/models/html/uan.html

REFERENCES 87

[PAG+14] J. Potter, J. Alves, et al., «The JANUS Underwater Communications Stan-
dard», 2014 Underwater Communications and Networking (UComms), pp. 1–
4, Sep. 2014.

[PDLL16] C. Peng, X. Du, et al., «An Ultra-Lightweight Encryption Scheme in Un-
derwater Acoustic Networks», Hindawi Publishing Corporation, Journal of
Sensors, vol. 2016, no. 8763528, pp. 1–10, Feb. 2016.

[PTB21] B. Petrovic, B. Z. Téglásy, and C. Boyd, Securing Wireless Underwater
Communications, Nov. 2021.

[Riv95] R. L. Rivest, «The RC5 encryption algorithm», Preneel B. (eds) Fast Software
Encryption. FSE 1994, pp. 86–96, 1995.

[RSG+00] P. Ryan, S. Schneider, et al., The Modelling and Analysis of Security Protocols:
the CSP Approach. Pearson Education, 2000, pp. 6–14.

[SCO+18] N. Shevchenko, T. A. Chick, et al., «THREAT MODELING: A SUMMARY
OF AVAILABLE METHODS», Software Engineering Institute, Carnegie
Mellon University, pp. 1–2, Aug. 2018.

[Sha49] C. E. Shannon, «Communication Theory of Secrecy Systems», Bell Systems
Technical Journal, no. 4, 1949.

[Signal] «Signal » Specifications » The Double Ratchet Algorithm». (), [Online].
Available: https://signal.org/docs/specifications/doubleratchet/ (last visited:
Jun. 15, 2022).

[SKK10] P. Szalachowski, B. Ksiezopolski, and Z. Kotulski, «CMAC, CCM and
GCM/GMAC: Advanced modes of operation of symmetric block ciphers
in wireless sensor networks», Information Processing Letters, vol. 110, no. 7,
pp. 247–251, 2010. [Online]. Available: https ://www.sciencedirect .com/
science/article/pii/S0020019010000219.

[Sta17] W. Stallings, Cryptography and Network Security, Principles and Practice.
Harlow: Pearson, 2017.

[TC91] T. I. Telegraph and T. C. Committee, «Security Architecture for Open Sys-
tems Interconnection for CCITT Applications, Recommendation X.800», Data
Communication Networks: Open Systems Interconnection (OSI); Security,
Structure, and Applications, pp. 8–9, Mar. 1991.

[TWPK] B. Z. Téglásy, E. Wengle, et al., «Authentication of Underwater Assets»,
Paper in preparation.

[VP17] M. Vanhoef and F. Piessens, «Key Reinstallation Attacks: Forcing Nonce
Reuse in WPA2», in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’17, Dallas, Texas, USA:
Association for Computing Machinery, 2017, pp. 1313–1328.

[VSPF21] Ø. Volden, P. Solnør, et al., «Secure and Efficient Transmission of Vision-
Based Feedback Control Signals», Journal of Intelligent & Robotic Systems,
vol. 103, Sep. 2021.

https://signal.org/docs/specifications/doubleratchet/
https://www.sciencedirect.com/science/article/pii/S0020019010000219
https://www.sciencedirect.com/science/article/pii/S0020019010000219

88 REFERENCES

[WHF02] D. Whiting, R. Housley, and N. Ferguson, «AES Encryption & Authentication
Using CTR Mode & CBC-MAC», IEEE 802.11-02, pp. 1–16, Jan. 2002.

[Wie14] R. J. Wieringa, Design Science Methodology for Information Systems and
Software Engineering. Springer Verlag, 2014.

[WLLX19] J. Wang, C. Lu, et al., «100 m/500 Mbps underwater optical wireless com-
munication using an NRZ-OOK modulated 520 nm laser diode», Opt. Ex-
press, vol. 27, no. 9, pp. 12 171–12 181, Apr. 2019. [Online]. Available: http:
//opg.optica.org/oe/abstract.cfm?URI=oe-27-9-12171.

[WP13] H. Wu and B. Preneel, «AEGIS: A Fast Authenticated Encryption Algorithm»,
Selected Areas in Cryptography (SAC 2013), pp. 1–21, 2013.

[Zap] G. Zappa, README - JANUS Tool Kit 3.0.1, http://www.januswiki.org/tiki-
download_file.php?fileId=73, Requires account on the Janus Wiki. (last
visited: Nov. 12, 2021).

http://opg.optica.org/oe/abstract.cfm?URI=oe-27-9-12171
http://opg.optica.org/oe/abstract.cfm?URI=oe-27-9-12171
http://www.januswiki.org/tiki-download_file.php?fileId=73
http://www.januswiki.org/tiki-download_file.php?fileId=73

AppendixATUBcipher

The TUBcipher is an SPN that utilizes a 256-bit key, 27-bit blocks, and 56 rounds
of encryption. Each round of the cipher uses two subkeys, where one key is used in
a keyed XOR stage and the other in a keyed permutation stage. The cipher also
involves a linear diffusion stage and a fixed substitution stage. The structure of a
round is shown in Figure A.1.

The 27-bit block size is chosen to provide confidentiality for the encrypted field
in Figure 2.12. The remaining 7 bits of the ADB consist of a 5-bit IV and a 2-bit
epoch identifier. Upon reception of a Venilia packet at the receiving device, the IV is
left-padded with 0-bits until a length of 32 bits, before it is used in the TUBcipher.
The epoch is also padded to the same length if it is too short. Although both the

Figure A.1: A round of TUBcipher consisting of a keyed XOR, linear diffusion,
keyed permutation, and fixed substitution. Source: [HH21b].

89

90 A. TUBCIPHER

IV and the epoch are incremental counters, they are only used in the KDF of the
key scheduler, and not in the encryption operation itself. The KDF produces the
two subkeys sk1 and sk2 for all 56 rounds of the cipher, where sk1 is 27 bits long,
while sk2 is 18 bits long. All subkeys are derived from a 2560-bit extended key K

that is generated by concatenating the epoch, the key, the IV, and a 1-byte counter
i, before calculating the digest of the 512-bit version of the Secure Hash Algorithm
(SHA) of the resulting string five times, in the following way:

hi = SHA512(epoch||key||IV ||i), 1 ≤ i ≤ 5 (A.1)

These digests are then concatenated together to produce the extended key K, from
which sk1 and sk2 for all 56 rounds are derived:

K = h0||h1||h2||h3||h4. (A.2)

The IV provides for 32 independent ciphertexts per epoch. The epoch is a 32-bit
variable and it indicates the time period in which the IV is required to be unique.
The epoch duration must be known by all devices in a network, and the current
epoch is identified by the two LSBs in the ADB. This allows for reuse of the 32 IVs,
since the reuse of an IV under different epochs will result in a different ciphertext.

After the subkeys are created, the keyed XOR stage under sk1 ensues. Since both
the plaintext and sk1 are 27 bits long, the plaintext bits are directly XORed with
their respective key bits to produce an intermediate value, PXOR. The operation is
as follows:

PXOR[i] = P [i] ⊕ sk1(r)[i], 0 ≤ i ≤ 26, (A.3)

where r is the round number.

Following the XOR stage, a linear permutation takes place, as depicted in
Figure A.1. The permutation is fixed and symmetric and requires no key. Each bit
PXOR[i] is moved to the position PDIF F [j], where:

j =
{

3i mod 26, 0 ≤ i ≤ 25
26, i = 26

(A.4)

A keyed permutation then follows, in which the 27-bit block is split into 9 sub-
blocks of 3 bits each, and the second 18-bit subkey sk2 is split into 9 pairs of bits.

91

The permutation is performed according to a lookup table of bit pairs of the subkey
and corresponding permutations of the 3-bit sub-blocks. Each bit pair of the subkey
determines an order in which the sub-blocks should be permuted, resulting in a
permutation that is dependent on the second subkey in each round.

Finally, the resulting 3-bit sub-blocks undergo a fixed substitution according to
an S-box. The S-box simply determines which other sub-block each sub-block should
be substituted with. After this substitution stage, a new round of TUBcipher begins.
After the last round, the sub-blocks are concatenated together to produce the final
27-bit ciphertext.

AppendixBSimulation Scripts

In this appendix, examples of simulation scripts that were used to conduct the
experiments described in Section 6.1, are given. The examples include scripts from
the Janus simulation in C, as well as protocol simulations in NS3, in C++. Only
the CCM-based examples are shown i.e., the packet generation in Janus and the
protocol in NS3, both with and without cargo. Only the portion of the script files
that were modified in this project are shown. The complete source code that contains
all simulations used for this thesis can be found in the project’s GitHub repository
[GitHub].

B.1 shows how five packets with example values were generated for the CCM-
based protocol without cargo. The packets’ binary representations were stored in
their respective files for use in NS3. Similarly, B.2 shows the same procedure with
one large cargo packet.

B.3 shows the protocol simulation of the CCM-based protocol without cargo,
depicted in Figure 3.3. The appropriate processing delays for generation-encryption
and decryption-verification, as well as the signal propagation delays with increasing
distance, are added. In B.4, the same procedure for cargo packets is shown, depicted
in Figure 3.4.

93

94 B. SIMULATION SCRIPTS

Source code B.1 The packet generation for the cargo-less CCM-based protocol,
incorporated into the Janus simulation.

// --- CCM, no cargo ---
janus_packet_t ccmpkt1 = 0;
janus_packet_t ccmpkt2 = 0;
janus_packet_t ccmpkt3 = 0;
janus_packet_t ccmpkt4 = 0;
janus_packet_t ccmpkt5 = 0;
ccmpkt1 = janus_packet_new(params->verbose);
janus_uint8_t* ccmpkt1bytes = janus_packet_get_bytes(
ccmpkt1);
FILE* fp;
janus_uint8_t bin[JANUS_MIN_PKT_SIZE * 8];
clock_t encStart, encEnd;
double cpu_time_used;
double avgEnc, avgDec = 0;
int i;
janus_utils_dec2bin(ccmpkt1bytes, JANUS_MIN_PKT_SIZE, bin);
fp = fopen("/home/ttm4128/ccmnocargopkt1.txt", "wb");
uint8_t ccmpkt1adbbin[34];
uint8_t N[] = {0x00, 0x00, 0x00, 0x03};
uint8_t Ndouble[] = {0x00, 0x00, 0x00, 0x03, 0x00, 0x00,
0x00, 0x03};
uint8_t Nbin[32];
uint8_t key[] = {0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6,
0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf};
uint8_t A[3];
uint8_t Abin[24];

95

uint8_t n = 8;
ulong a = 3;
ulong p = 12;
uint8_t t = 4;
uint8_t err;
ulong c = p + t;
uint8_t* C = malloc(c * sizeof (uint8_t));
uint8_t cBin[8 * c];
uint8_t TSCD[] = {0x01, 0x02, 0x03, 0x04};
uint8_t MMSIA[] = {0x05, 0x06, 0x07, 0x08};
uint8_t MMSIB[] = {0x09, 0x10, 0x11, 0x12};
uint8_t MMSIAbin[32];
uint8_t MMSIBbin[32];
uint8_t P[12];

janus_utils_dec2bin(MMSIA, 4, MMSIAbin);
janus_utils_dec2bin(MMSIB, 4, MMSIBbin);
MMSIAbin[30] = MMSIAbin[31] = 0;
MMSIBbin[30] = MMSIBbin[31] = 0;
janus_utils_bin2dec(MMSIAbin, 32, MMSIA);
janus_utils_bin2dec(MMSIBbin, 32, MMSIB);

for (i = 0; i < 4; i++) {
P[i] = TSCD[i];
P[i + 4] = MMSIA[i];
P[i + 8] = MMSIB[i];

}

for (i = 0; i < 64; i++) {
if (i >= 0 && i <= 21) {

Abin[i] = bin[i];
} else if (i >= 54 && i <= 55) {

Abin[i - 32] = bin[i];
}

}

96 B. SIMULATION SCRIPTS

janus_utils_bin2dec(Abin, 24, A);

err = CCM_gen_encrypt(key, Ndouble, n, A, a, P, p, t, C, c);

// --- packet 1 ---
janus_utils_dec2bin(N, 4, Nbin);

for (i = 0; i < 32; i++) {
bin[i + 22] = Nbin[i];

}

janus_utils_bin2dec(bin, 64, ccmpkt1bytes);
janus_packet_set_bytes(ccmpkt1, ccmpkt1bytes);

// Initialize state.
state = janus_tx_state_new((params->verbose > 1));

// Transmit.
janus_simple_tx_execute(simple_tx, ccmpkt1, state);

janus_utils_dec2bin(ccmpkt1bytes, JANUS_MIN_PKT_SIZE, bin);

for (i = 0; i < 64; i++)
fprintf(fp, "%u", bin[i]);

fclose(fp);

// --- packet 2 ---
fp = fopen("/home/ttm4128/ccmnocargopkt2.txt", "wb");
janus_utils_dec2bin(C, 16, cBin);

ccmpkt2 = janus_packet_new(params->verbose);
janus_uint8_t* ccmpkt2bytes = janus_packet_get_bytes(
ccmpkt2);
janus_utils_dec2bin(ccmpkt2bytes, JANUS_MIN_PKT_SIZE, bin);

for (i = 0; i < 32; i++) {
bin[i + 22] = cBin[i];

}

janus_utils_bin2dec(bin, 64, ccmpkt2bytes);
janus_packet_set_bytes(ccmpkt2, ccmpkt2bytes);

97

// Initialize state.
state = janus_tx_state_new((params->verbose > 1));

// Transmit.
janus_simple_tx_execute(simple_tx, ccmpkt2, state);

janus_utils_dec2bin(ccmpkt2bytes, JANUS_MIN_PKT_SIZE, bin);

for (i = 0; i < 64; i++)
fprintf(fp, "%u", bin[i]);

fclose(fp);

// --- packet 3 ---
fp = fopen("/home/ttm4128/ccmnocargopkt3.txt", "wb");
ccmpkt3 = janus_packet_new(params->verbose);
janus_uint8_t* ccmpkt3bytes = janus_packet_get_bytes(
ccmpkt3);
janus_utils_dec2bin(ccmpkt3bytes, JANUS_MIN_PKT_SIZE, bin);

for (i = 0; i < 32; i++) {
bin[i + 22] = cBin[i + 32];

}

janus_utils_bin2dec(bin, 64, ccmpkt3bytes);
janus_packet_set_bytes(ccmpkt3, ccmpkt3bytes);

// Initialize state.
state = janus_tx_state_new((params->verbose > 1));

// Transmit.
janus_simple_tx_execute(simple_tx, ccmpkt3, state);

janus_utils_dec2bin(ccmpkt3bytes, JANUS_MIN_PKT_SIZE, bin);

for (i = 0; i < 64; i++)
fprintf(fp, "%u", bin[i]);

fclose(fp);

98 B. SIMULATION SCRIPTS

// --- packet 4 ---
fp = fopen("/home/ttm4128/ccmnocargopkt4.txt", "wb");
ccmpkt4 = janus_packet_new(params->verbose);
janus_uint8_t* ccmpkt4bytes = janus_packet_get_bytes(
ccmpkt4);
janus_utils_dec2bin(ccmpkt4bytes, JANUS_MIN_PKT_SIZE, bin);

for (i = 0; i < 32; i++) {
bin[i + 22] = cBin[i + 64];

}

janus_utils_bin2dec(bin, 64, ccmpkt4bytes);
janus_packet_set_bytes(ccmpkt4, ccmpkt4bytes);

// Initialize state.
state = janus_tx_state_new((params->verbose > 1));

// Transmit.
janus_simple_tx_execute(simple_tx, ccmpkt4, state);

janus_utils_dec2bin(ccmpkt4bytes, JANUS_MIN_PKT_SIZE, bin);

for (i = 0; i < 64; i++)
fprintf(fp, "%u", bin[i]);

fclose(fp);

// --- packet 5 ---
fp = fopen("/home/ttm4128/ccmnocargopkt5.txt", "wb");
ccmpkt5 = janus_packet_new(params->verbose);
janus_uint8_t* ccmpkt5bytes = janus_packet_get_bytes(
ccmpkt5);
janus_utils_dec2bin(ccmpkt5bytes, JANUS_MIN_PKT_SIZE, bin);

for (i = 0; i < 32; i++) {
bin[i + 22] = cBin[i + 96];

}

janus_utils_bin2dec(bin, 64, ccmpkt5bytes);
janus_packet_set_bytes(ccmpkt5, ccmpkt5bytes);

// Initialize state.
state = janus_tx_state_new((params->verbose > 1));

99

// Transmit.
janus_simple_tx_execute(simple_tx, ccmpkt5, state);

janus_utils_dec2bin(ccmpkt5bytes, JANUS_MIN_PKT_SIZE, bin);

for (i = 0; i < 64; i++)
fprintf(fp, "%u", bin[i]);

fclose(fp);

100 B. SIMULATION SCRIPTS

Source code B.2 The packet generation for the CCM-based protocol with cargo,
incorporated into the Janus simulation.

// --- CCM, cargo ---
janus_packet_t pkt = 0;
pkt = janus_packet_new(params->verbose);
janus_uint8_t* pktbytes = janus_packet_get_bytes(pkt);
FILE* fp;
janus_uint8_t bin[JANUS_MIN_PKT_SIZE * 8];
clock_t encStart, encEnd;
double cpu_time_used;
double avgEnc, avgDec = 0;
int i;
janus_utils_dec2bin(pktbytes, JANUS_MIN_PKT_SIZE, bin);
fp = fopen("/home/ttm4128/ccmcargopkt.txt", "wb");
uint8_t pktadbbin[34];
uint8_t N[] = {0x00, 0x00, 0x00, 0x03};
uint8_t Ndouble[] = {0x00, 0x00, 0x00, 0x03, 0x00,
0x00, 0x00, 0x03};
uint8_t Nbin[32];
uint8_t key[] = {0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6,
0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf};
uint8_t F[] = {0x02};
uint8_t Fbin[8];
uint8_t A[3];
uint8_t Abin[24];
uint8_t n = 8;
ulong a = 3;
ulong p = 12;
uint8_t t = 4;
uint8_t err;
ulong c = p + t;
uint8_t* C = malloc(c * sizeof (uint8_t));
uint8_t cBin[8 * c];
uint8_t TSCD[] = {0x01, 0x02, 0x03, 0x04};
uint8_t MMSIA[] = {0x05, 0x06, 0x07, 0x08};
uint8_t MMSIB[] = {0x09, 0x10, 0x11, 0x12};
uint8_t MMSIAbin[32];
uint8_t MMSIBbin[32];
uint8_t P[12];

101

janus_utils_dec2bin(MMSIA, 4, MMSIAbin);
janus_utils_dec2bin(MMSIB, 4, MMSIBbin);
MMSIAbin[30] = MMSIAbin[31] = 0;
MMSIBbin[30] = MMSIBbin[31] = 0;
janus_utils_bin2dec(MMSIAbin, 32, MMSIA);
janus_utils_bin2dec(MMSIBbin, 32, MMSIB);

for (i = 0; i < 4; i++) {
P[i] = TSCD[i];
P[i + 4] = MMSIA[i];
P[i + 8] = MMSIB[i];

}

for (i = 0; i < 64; i++) {
if (i >= 0 && i <= 21) {

Abin[i] = bin[i];
} else if (i >= 54 && i <= 55) {

Abin[i - 32] = bin[i];
}

}

janus_utils_bin2dec(Abin, 24, A);

err = CCM_gen_encrypt(key, Ndouble, n, A, a, P, p, t, C, c);

// --- packet ---
janus_utils_dec2bin(N, 4, Nbin);

for (i = 0; i < 26; i++) {
bin[i + 30] = Nbin[i];

}

janus_utils_bin2dec(bin, 64, pktbytes);
janus_packet_set_bytes(pkt, pktbytes);

// Initialize state.
state = janus_tx_state_new((params->verbose > 1));

// Transmit.
janus_simple_tx_execute(simple_tx, pkt, state);

janus_utils_dec2bin(pktbytes, JANUS_MIN_PKT_SIZE, bin);

102 B. SIMULATION SCRIPTS

for (i = 0; i < 64; i++) {
fprintf(fp, "%u", bin[i]);

}

for (i = 0; i < 6; i++) {
fprintf(fp, "%u", Nbin[i + 26]);

}

janus_utils_dec2bin(F, 1, Fbin);

fprintf(fp, "%u", Fbin[6]);
fprintf(fp, "%u", Fbin[7]);

janus_utils_dec2bin(C, 16, cBin);

for (i = 0; i < 124; i++) {
fprintf(fp, "%u", cBin[i]);

}

fclose(fp);

103

Source code B.3 The protocol simulation of the cargo-less CCM-based protocol in
NS3.

private:
NodeContainer m_nodes; //!< UAN nodes
std::map<Ptr<Node>, Ptr<Socket> > m_sockets; //!< send and
receive sockets
double timestamp;
double oneWay;
double rtt;
ulong protI = 0;
int pktNum;

};

void
UanExperiment::SetupPositions() {

MobilityHelper mobilityHelper;
mobilityHelper.SetMobilityModel(
"ns3::ConstantPositionMobilityModel");
mobilityHelper.Install(m_nodes);
m_nodes.Get(0)->GetObject<MobilityModel> ()->
SetPosition(Vector(0, 0, 0));
m_nodes.Get(1)->GetObject<MobilityModel> ()->
SetPosition(Vector(1, 0, 0));

}

void
UanExperiment::SetupCommunications() {

Ptr<UanChannel> channel = CreateObject<UanChannel> ();
//Ptr<UanPropModel> prop = CreateObject<UanPropModelIdeal>();
Ptr<UanPropModel> prop = CreateObject<UanPropModelThorp>();
channel->SetPropagationModel(prop);
UanHelper uanHelper;
NetDeviceContainer netDeviceContainer = uanHelper.Install(
m_nodes, channel);

}

104 B. SIMULATION SCRIPTS

void
UanExperiment::PrintReceivedPacket(Ptr<Socket> socket) {

Address srcAddress;
double distance = m_nodes.Get (1)->
GetObject<MobilityModel> ()->GetPosition ().x;
while (socket->GetRxAvailable() > 0) {

Ptr<Packet> packet1 = socket->RecvFrom(srcAddress);
PacketSocketAddress packetSocketAddress5 =
PacketSocketAddress::ConvertFrom(srcAddress);
srcAddress = packetSocketAddress5.GetPhysicalAddress();

uint32_t k;
int l;
double a, b, c, d;
string strpkt1, strpkt2, strpkt3, strpkt4, strpkt5;
ifstream in1("/home/ttm4128/ccmnocargopkt1.txt", ios_base::in);
ifstream in2("/home/ttm4128/ccmnocargopkt2.txt", ios_base::in);
ifstream in3("/home/ttm4128/ccmnocargopkt3.txt", ios_base::in);
ifstream in4("/home/ttm4128/ccmnocargopkt4.txt", ios_base::in);
ifstream in5("/home/ttm4128/ccmnocargopkt5.txt", ios_base::in);

//NS_LOG_UNCOND(pktNum);
if (pktNum == 1) {

in1 >> strpkt1;
//NS_LOG_UNCOND(strpkt1);
l = strpkt1.length();
a = (double) Simulator::Now().GetMilliSeconds();
c = ((double) l / 80.0) * 1000; // janus RX
d = ((double) l / 80.0) * 1000 + 0.0160203; // janus TX +
generation-encryption

timestamp = a + c + d;

Simulator::Schedule(Seconds(0), &UanExperiment::
SendPacket2To1, this);

} else if (pktNum == 2) {
in2 >> strpkt1;
//NS_LOG_UNCOND(strpkt1);
l = strpkt1.length();
a = (double) Simulator::Now().GetMilliSeconds();
c = ((double) l / 80.0) * 1000; // janus RX
d = ((double) l / 80.0) * 1000; // janus TX +
generation-encryption

105

timestamp = a + c + d;

Simulator::Schedule(Seconds(0), &UanExperiment::
SendPacket3To1, this);

} else if (pktNum == 3) {
in3 >> strpkt1;
l = strpkt1.length();
a = (double) Simulator::Now().GetMilliSeconds();
c = 5 * ((double) l / 80.0) * 1000; // janus RX
d = 5 * ((double) l / 80.0) * 1000;
// janus TX + generation-encryption

timestamp = a + c + d;

Simulator::Schedule(Seconds(0), &UanExperiment::
SendPacket4To1, this);

} else if (pktNum == 4) {
in4 >> strpkt1;
l = strpkt1.length();
a = (double) Simulator::Now().GetMilliSeconds();
c = 5 * ((double) l / 80.0) * 1000; // janus RX
d = 5 * ((double) l / 80.0) * 1000; // janus TX +
generation-encryption

timestamp = a + c + d;
oneWay = timestamp - oneWay;

Simulator::Schedule(Seconds(0), &UanExperiment::
SendPacket5To1, this);

} else if (pktNum == 5) {
in1 >> strpkt1;
l = strpkt1.length();
a = (double) Simulator::Now().GetMilliSeconds();
b = 0.0161610; // decryption-verification
c = 5 * ((double) l / 80.0) * 1000; // janus RX
d = 5 * ((double) l / 80.0) * 1000 + 0.0160203;
// janus TX + generation-encryption

timestamp = a + b + c + d;

Simulator::Schedule(Seconds(0), &UanExperiment::
SendPacket1To0, this);

}

106 B. SIMULATION SCRIPTS

else if (pktNum == 6) {
in2 >> strpkt1;
l = strpkt1.length();
a = (double) Simulator::Now().GetMilliSeconds();
c = 5 * ((double) l / 80.0) * 1000; // janus RX
d = 5 * ((double) l / 80.0) * 1000;
// janus TX + generation-encryption

timestamp = a + c + d;

Simulator::Schedule(Seconds(0), &UanExperiment::
SendPacket2To0, this);

} else if (pktNum == 7) {
in3 >> strpkt1;
l = strpkt1.length();
a = (double) Simulator::Now().GetMilliSeconds();
c = 5 * ((double) l / 80.0) * 1000; // janus RX
d = 5 * ((double) l / 80.0) * 1000;
// janus TX + generation-encryption

timestamp = a + c + d;

Simulator::Schedule(Seconds(0), &UanExperiment::
SendPacket3To0, this);

} else if (pktNum == 8) {
in3 >> strpkt1;
l = strpkt1.length();
a = (double) Simulator::Now().GetMilliSeconds();
c = 5 * ((double) l / 80.0) * 1000; // janus RX
d = 5 * ((double) l / 80.0) * 1000;
// janus TX + generation-encryption

timestamp = a + c + d;

Simulator::Schedule(Seconds(0), &UanExperiment::
SendPacket4To0, this);

} else if (pktNum == 9) {
in3 >> strpkt1;
l = strpkt1.length();
a = (double) Simulator::Now().GetMilliSeconds();
c = 5 * ((double) l / 80.0) * 1000; // janus RX
d = 5 * ((double) l / 80.0) * 1000;
// janus TX + generation-encryption

107

timestamp = a + c + d;

Simulator::Schedule(Seconds(0), &UanExperiment::
SendPacket5To0, this);

} else if (pktNum == 10) {
in4 >> strpkt1;
l = strpkt1.length();
a = (double) Simulator::Now().GetMilliSeconds();
b = 0.0161610; // decryption-verification
c = 5 * ((double) l / 80.0) * 1000; // janus RX
d = 5 * ((double) l / 80.0) * 1000 + 0.0160203;
// janus TX + generation-encryption

timestamp = a + b + c + d;
rtt = timestamp - rtt;
NS_LOG_UNCOND(to_string(distance) << ", " <<
to_string(rtt));
distance += 10;
m_nodes.Get(1)->GetObject<MobilityModel> ()->
SetPosition(Vector(distance, 0, 0));

if (protI == 1) {
k = timestamp;

}
Simulator::Schedule(MilliSeconds(420000 - k),
&UanExperiment::SendPacket1To1, this);

}

in1.close();
in2.close();
in3.close();
in4.close();
in5.close();

while (l % 8 != 0) {
l++;

}

uint8_t* janusDecArr1 = (uint8_t*) malloc(l / 8 *
sizeof (uint8_t));
string binPacket1, binPacket2, binPacket3, binPacket4;

108 B. SIMULATION SCRIPTS

packet1->CopyData(janusDecArr1, l / 8);

for (int i = 0; i < l / 8; i++) {
binPacket1 += bitset<8>(*(janusDecArr1 + i)).to_string();

}
// NS_LOG_UNCOND(binPacket1);

free(janusDecArr1);
}

}

int chartobin(char c) {
if (c == ’1’)

return 1;
else

return 0;
}

void UanExperiment::SendPacket1To1() {
NodeContainer::Iterator node = m_nodes.Begin();
node++;
Mac8Address dst = Mac8Address::ConvertFrom((*node)->
GetDevice(0)->GetAddress());
node = m_nodes.Begin();
protI++;
pktNum = 1;
string strpkt1;
ifstream in1("/home/ttm4128/ccmnocargopkt1.txt", ios_base::in);
in1 >> strpkt1;
int l = strpkt1.length();

int i, j, k, b, p, janusIndex = -1;
char newArr8[l / 8];
uint8_t* janusDecArr1 = (uint8_t*) malloc(l / 8 * sizeof (
uint8_t));
j = -1;

109

for (i = 0; i < l; i++) {
j++;
newArr8[j] = strpkt1[i];
if ((i + 1) % 8 == 0) {

janusIndex++;
j = -1;
b = 0;
for (k = 7; k > -1; k--) {

p = (int) pow(2, 7 - k);
b += chartobin(newArr8[k]) * p;

}
// NS_LOG_UNCOND("b = " << b);
*(janusDecArr1 + janusIndex) = (uint8_t) b;

}
}

in1.close();
Ptr<Packet> pkt1 = Create<Packet> (janusDecArr1, l / 8);
delete janusDecArr1;

Simulator::Schedule(Seconds(0), &UanExperiment::SendSinglePacket,
this, *node, pkt1, dst);
rtt = (double)(Simulator::Now().GetMilliSeconds());
timestamp = oneWay = (double)Simulator::Now().GetMilliSeconds() +
0.0160203 + ((double)l / 80.0) * 1000;
// Now + generation-encryption + Janus encoding
//NS_LOG_UNCOND("Node 0 | sent 1 packet to 1, timestamp: " <<
to_string(timestamp));

}

void UanExperiment::SendPacket2To1() {
NodeContainer::Iterator node = m_nodes.Begin();
node++;
Mac8Address dst = Mac8Address::ConvertFrom((*node)->
GetDevice(0)->GetAddress());
node = m_nodes.Begin();
pktNum = 2;

string strpkt;
ifstream in1("/home/ttm4128/ccmnocargopkt2.txt", ios_base::in);
in1 >> strpkt;
int l = strpkt.length();

110 B. SIMULATION SCRIPTS

int i, j, k, b, p, janusIndex = -1;
char newArr8[l / 8];
uint8_t* janusDecArr1 = (uint8_t*) malloc(l / 8 * sizeof (
uint8_t));
j = -1;

for (i = 0; i < l; i++) {
j++;
newArr8[j] = strpkt[i];
if ((i + 1) % 8 == 0) {

janusIndex++;
j = -1;
b = 0;
for (k = 7; k > -1; k--) {

p = (int) pow(2, 7 - k);
b += chartobin(newArr8[k]) * p;

}
// NS_LOG_UNCOND("b = " << b);
*(janusDecArr1 + janusIndex) = (uint8_t) b;

}
}

in1.close();
Ptr<Packet> pkt1 = Create<Packet> (janusDecArr1, l / 8);
delete janusDecArr1;

Simulator::Schedule(Seconds(1), &UanExperiment::SendSinglePacket,
this, *node, pkt1, dst);

timestamp += ((double)l / 80.0) * 1000; // Now + Janus encoding
//NS_LOG_UNCOND("Node 0 | sent 2 packets to 1, timestamp: " <<
to_string(timestamp));

}

void UanExperiment::SendPacket3To1() {
NodeContainer::Iterator node = m_nodes.Begin();
node++;
Mac8Address dst = Mac8Address::ConvertFrom((*node)->
GetDevice(0)->GetAddress());
node = m_nodes.Begin();
pktNum = 3;

111

string strpkt;
ifstream in("/home/ttm4128/ccmnocargopkt3.txt", ios_base::in);
in >> strpkt;
int l = strpkt.length();

int i, j, k, b, p, janusIndex = -1;
char newArr8[l / 8];
uint8_t* janusDecArr = (uint8_t*) malloc(l / 8 * sizeof (
uint8_t));
j = -1;

for (i = 0; i < l; i++) {
j++;
newArr8[j] = strpkt[i];
if ((i + 1) % 8 == 0) {

janusIndex++;
j = -1;
b = 0;
for (k = 7; k > -1; k--) {

p = (int) pow(2, 7 - k);
b += chartobin(newArr8[k]) * p;

}
// NS_LOG_UNCOND("b = " << b);
*(janusDecArr + janusIndex) = (uint8_t) b;

}
}

in.close();
Ptr<Packet> pkt1 = Create<Packet> (janusDecArr, l / 8);
delete janusDecArr;

Simulator::Schedule(Seconds(0), &UanExperiment::SendSinglePacket,
this, *node, pkt1, dst);
timestamp += ((double)l / 80.0) * 1000; // Now + Janus encoding
//NS_LOG_UNCOND("Node 0 | sent 3 packets to 1, timestamp: " <<
to_string(timestamp));

}

112 B. SIMULATION SCRIPTS

void UanExperiment::SendPacket4To1() {
NodeContainer::Iterator node = m_nodes.Begin();
node++;
Mac8Address dst = Mac8Address::ConvertFrom((*node)->
GetDevice(0)->GetAddress());
node = m_nodes.Begin();
pktNum = 4;

string strpkt;
ifstream in("/home/ttm4128/ccmnocargopkt4.txt", ios_base::in);
in >> strpkt;
int l = strpkt.length();

int i, j, k, b, p, janusIndex = -1;
char newArr8[l / 8];
uint8_t* janusDecArr = (uint8_t*) malloc(l / 8 * sizeof (
uint8_t));
j = -1;

for (i = 0; i < l; i++) {
j++;
newArr8[j] = strpkt[i];
if ((i + 1) % 8 == 0) {

janusIndex++;
j = -1;
b = 0;
for (k = 7; k > -1; k--) {

p = (int) pow(2, 7 - k);
b += chartobin(newArr8[k]) * p;

}
// NS_LOG_UNCOND("b = " << b);
*(janusDecArr + janusIndex) = (uint8_t) b;

}
}

in.close();
Ptr<Packet> pkt1 = Create<Packet> (janusDecArr, l / 8);
delete janusDecArr;

Simulator::Schedule(Seconds(0), &UanExperiment::SendSinglePacket,
this, *node, pkt1, dst);

113

timestamp += ((double)l / 80.0) * 1000; // Now + Janus encoding
//NS_LOG_UNCOND("Node 0 | sent 4 packets to 1, timestamp: " <<
to_string(timestamp));

}

void UanExperiment::SendPacket5To1() {
NodeContainer::Iterator node = m_nodes.Begin();
node++;
Mac8Address dst = Mac8Address::ConvertFrom((*node)->
GetDevice(0)->GetAddress());
node = m_nodes.Begin();
pktNum = 5;

string strpkt;
ifstream in("/home/ttm4128/ccmnocargopkt5.txt", ios_base::in);
in >> strpkt;
int l = strpkt.length();

int i, j, k, b, p, janusIndex = -1;
char newArr8[l / 8];
uint8_t* janusDecArr = (uint8_t*) malloc(l / 8 * sizeof (
uint8_t));
j = -1;

for (i = 0; i < l; i++) {
j++;
newArr8[j] = strpkt[i];
if ((i + 1) % 8 == 0) {

janusIndex++;
j = -1;
b = 0;
for (k = 7; k > -1; k--) {

p = (int) pow(2, 7 - k);
b += chartobin(newArr8[k]) * p;

}
// NS_LOG_UNCOND("b = " << b);
*(janusDecArr + janusIndex) = (uint8_t) b;

114 B. SIMULATION SCRIPTS

}
}

in.close();
Ptr<Packet> pkt1 = Create<Packet> (janusDecArr, l / 8);
delete janusDecArr;

Simulator::Schedule(Seconds(0), &UanExperiment::SendSinglePacket,
this, *node, pkt1, dst);
timestamp += ((double)l / 80.0) * 1000; // Now + Janus encoding
//NS_LOG_UNCOND("Node 0 | sent 5 packets to 1, timestamp: " <<
to_string(timestamp));

}

void UanExperiment::SendPacket1To0() {
NodeContainer::Iterator node = m_nodes.Begin();
Mac8Address dst = Mac8Address::ConvertFrom((*node)->
GetDevice(0)->GetAddress());
node++;

string strpkt1;
ifstream in1("/home/ttm4128/ccmnocargopkt1.txt", ios_base::in);
in1 >> strpkt1;
int l = strpkt1.length();
pktNum = 6;

int i, j, k, b, p, janusIndex = -1;
char newArr8[l / 8];
uint8_t* janusDecArr1 = (uint8_t*) malloc(l / 8 * sizeof (
uint8_t));
j = -1;

for (i = 0; i < l; i++) {
j++;
newArr8[j] = strpkt1[i];
if ((i + 1) % 8 == 0) {

janusIndex++;
j = -1;
b = 0;
for (k = 7; k > -1; k--) {

p = (int) pow(2, 7 - k);
b += chartobin(newArr8[k]) * p;

}

115

// NS_LOG_UNCOND("b = " << b);
*(janusDecArr1 + janusIndex) = (uint8_t) b;

}
}

in1.close();
Ptr<Packet> pkt1 = Create<Packet> (janusDecArr1, l / 8);
delete janusDecArr1;

Simulator::Schedule(Seconds(0), &UanExperiment::SendSinglePacket,
this, *node, pkt1, dst);
timestamp += 0.0161610 + ((double)l / 80.0) * 1000;
// Now + generation-encryption + Janus encoding
//NS_LOG_UNCOND("Node 1 | sent 1 packet to 0, timestamp: " <<
to_string(timestamp));

}

void UanExperiment::SendPacket2To0() {
NodeContainer::Iterator node = m_nodes.Begin();
Mac8Address dst = Mac8Address::ConvertFrom((*node)->
GetDevice(0)->GetAddress());
node++;

string strpkt1;
ifstream in1("/home/ttm4128/ccmnocargopkt2.txt", ios_base::in);
in1 >> strpkt1;
int l = strpkt1.length();
pktNum = 7;

int i, j, k, b, p, janusIndex = -1;
char newArr8[l / 8];
uint8_t* janusDecArr1 = (uint8_t*) malloc(l / 8 * sizeof (
uint8_t));
j = -1;

for (i = 0; i < l; i++) {
j++;
newArr8[j] = strpkt1[i];
if ((i + 1) % 8 == 0) {

janusIndex++;
j = -1;
b = 0;

116 B. SIMULATION SCRIPTS

for (k = 7; k > -1; k--) {
p = (int) pow(2, 7 - k);
b += chartobin(newArr8[k]) * p;

}
// NS_LOG_UNCOND("b = " << b);
*(janusDecArr1 + janusIndex) = (uint8_t) b;

}
}

in1.close();
Ptr<Packet> pkt1 = Create<Packet> (janusDecArr1, l / 8);
delete janusDecArr1;

Simulator::Schedule(Seconds(0), &UanExperiment::SendSinglePacket,
this, *node, pkt1, dst);
timestamp += ((double)l / 80.0) * 1000; // Janus encoding
//NS_LOG_UNCOND("Node 1 | sent 2 packets to 0, timestamp: "
<< to_string(timestamp));

}

void UanExperiment::SendPacket3To0() {
NodeContainer::Iterator node = m_nodes.Begin();
Mac8Address dst = Mac8Address::ConvertFrom((*node)->
GetDevice(0)->GetAddress());
node++;

string strpkt1;
ifstream in1("/home/ttm4128/ccmnocargopkt3.txt", ios_base::in);
in1 >> strpkt1;
int l = strpkt1.length();
pktNum = 8;

int i, j, k, b, p, janusIndex = -1;
char newArr8[l / 8];
uint8_t* janusDecArr1 = (uint8_t*) malloc(l / 8 * sizeof (
uint8_t));
j = -1;

for (i = 0; i < l; i++) {
j++;
newArr8[j] = strpkt1[i];
if ((i + 1) % 8 == 0) {

117

janusIndex++;
j = -1;
b = 0;
for (k = 7; k > -1; k--) {

p = (int) pow(2, 7 - k);
b += chartobin(newArr8[k]) * p;

}
// NS_LOG_UNCOND("b = " << b);
*(janusDecArr1 + janusIndex) = (uint8_t) b;

}
}

in1.close();
Ptr<Packet> pkt1 = Create<Packet> (janusDecArr1, l / 8);
delete janusDecArr1;

Simulator::Schedule(Seconds(0), &UanExperiment::SendSinglePacket,
this, *node, pkt1, dst);
timestamp += ((double)l / 80.0) * 1000; // Janus encoding
//NS_LOG_UNCOND("Node 1 | sent 3 packets to 0, timestamp: " <<
to_string(timestamp));

}

void UanExperiment::SendPacket4To0() {
NodeContainer::Iterator node = m_nodes.Begin();
Mac8Address dst = Mac8Address::ConvertFrom((*node)->
GetDevice(0)->GetAddress());
node++;

string strpkt1;
ifstream in1("/home/ttm4128/ccmnocargopkt4.txt", ios_base::in);
in1 >> strpkt1;
int l = strpkt1.length();
pktNum = 9;

int i, j, k, b, p, janusIndex = -1;
char newArr8[l / 8];
uint8_t* janusDecArr1 = (uint8_t*) malloc(l / 8 * sizeof (
uint8_t));
j = -1;

for (i = 0; i < l; i++) {

118 B. SIMULATION SCRIPTS

j++;
newArr8[j] = strpkt1[i];
if ((i + 1) % 8 == 0) {

janusIndex++;
j = -1;
b = 0;
for (k = 7; k > -1; k--) {

p = (int) pow(2, 7 - k);
b += chartobin(newArr8[k]) * p;

}
// NS_LOG_UNCOND("b = " << b);
*(janusDecArr1 + janusIndex) = (uint8_t) b;

}
}

in1.close();
Ptr<Packet> pkt1 = Create<Packet> (janusDecArr1, l / 8);
delete janusDecArr1;

Simulator::Schedule(Seconds(0), &UanExperiment::SendSinglePacket,
this, *node, pkt1, dst);
timestamp += ((double)l / 80.0) * 1000; // Janus encoding
//NS_LOG_UNCOND("Node 1 | sent 4 packets to 0, timestamp: " <<
to_string(timestamp));

}

void UanExperiment::SendPacket5To0() {
NodeContainer::Iterator node = m_nodes.Begin();
Mac8Address dst = Mac8Address::ConvertFrom((*node)->
GetDevice(0)->GetAddress());
node++;

string strpkt1;
ifstream in1("/home/ttm4128/ccmnocargopkt5.txt", ios_base::in);
in1 >> strpkt1;
int l = strpkt1.length();
pktNum = 10;

int i, j, k, b, p, janusIndex = -1;
char newArr8[l / 8];
uint8_t* janusDecArr1 = (uint8_t*) malloc(l / 8 * sizeof (
uint8_t));
j = -1;

119

for (i = 0; i < l; i++) {
j++;
newArr8[j] = strpkt1[i];
if ((i + 1) % 8 == 0) {

janusIndex++;
j = -1;
b = 0;
for (k = 7; k > -1; k--) {

p = (int) pow(2, 7 - k);
b += chartobin(newArr8[k]) * p;

}
// NS_LOG_UNCOND("b = " << b);
*(janusDecArr1 + janusIndex) = (uint8_t) b;

}
}

in1.close();
Ptr<Packet> pkt1 = Create<Packet> (janusDecArr1, l / 8);
delete janusDecArr1;

Simulator::Schedule(Seconds(0), &UanExperiment::SendSinglePacket,
this, *node, pkt1, dst);
timestamp += ((double)l / 80.0) * 1000; // Janus encoding
//NS_LOG_UNCOND("Node 1 | sent 5 packets to 0, timestamp: " <<
to_string(timestamp));

}

void
UanExperiment::SendSinglePacket(Ptr<Node> node, Ptr<Packet> pkt,
Mac8Address dst) {

//NS_LOG_UNCOND (Simulator::Now ().GetHours () << "h" <<
" packet sent to " << dst);
PacketSocketAddress socketAddress;
socketAddress.SetSingleDevice(node->GetDevice(0)->GetIfIndex());
socketAddress.SetPhysicalAddress(dst);
socketAddress.SetProtocol(0);
m_sockets[node]->SendTo(pkt, 0, socketAddress);

}

120 B. SIMULATION SCRIPTS

void
UanExperiment::Prepare() {

m_nodes.Create(2);
SetupPositions();
SetupCommunications();
SetupApplications();
SendPacket1To1();

}

int
main(int argc, char *argv[]) {

CommandLine cmd(__FILE__);
cmd.Parse(argc, argv);

UanExperiment experiment;
experiment.Prepare();

Simulator::Stop(Days(6));
Simulator::Run();
Simulator::Destroy();

experiment.Teardown();

return 0;
}

121

Source code B.4 The protocol simulation of the CCM-based protocol with cargo,
in NS3.

private:
NodeContainer m_nodes; //!< UAN nodes
std::map<Ptr<Node>, Ptr<Socket> > m_sockets;
//!< send and receive sockets
double timestamp;
double oneWay;
double rtt;
ulong protI = 0;
int pktNum;

};

void
UanExperiment::SetupPositions() {

MobilityHelper mobilityHelper;
mobilityHelper.SetMobilityModel("ns3::
ConstantPositionMobilityModel");
mobilityHelper.Install(m_nodes);
m_nodes.Get(0)->GetObject<MobilityModel> ()->
SetPosition(Vector(0, 0, 0));
m_nodes.Get(1)->GetObject<MobilityModel> ()->
SetPosition(Vector(1, 0, 0));

}

void
UanExperiment::SetupCommunications() {

Ptr<UanChannel> channel = CreateObject<UanChannel> ();
//Ptr<UanPropModel> prop = CreateObject<UanPropModelIdeal>();
Ptr<UanPropModel> prop = CreateObject<UanPropModelThorp>();
channel->SetPropagationModel(prop);
UanHelper uanHelper;
NetDeviceContainer netDeviceContainer = uanHelper.Install(
m_nodes, channel);

}

122 B. SIMULATION SCRIPTS

void
UanExperiment::PrintReceivedPacket(Ptr<Socket> socket) {

Address srcAddress;
double distance = m_nodes.Get (1)->GetObject<MobilityModel> ()->
GetPosition ().x;
while (socket->GetRxAvailable() > 0) {

Ptr<Packet> packet1 = socket->RecvFrom(srcAddress);
PacketSocketAddress packetSocketAddress5 =
PacketSocketAddress::ConvertFrom(srcAddress);
srcAddress = packetSocketAddress5.GetPhysicalAddress();
uint32_t k;
int l;
double a, b, c, d;
string strpkt1;
ifstream in1("/home/ttm4128/ccmcargopkt.txt", ios_base::in);

if(Mac8Address::ConvertFrom(srcAddress) == 0) {
in1 >> strpkt1;
l = strpkt1.length();
a = (double) Simulator::Now().GetMilliSeconds();
b = 0.0161610; // decryption-verification
c = ((double) l / 80.0) * 1000; // janus RX
d = ((double) l / 80.0) * 1000 + 0.0160203;
// janus TX + generation-encryption

timestamp = a + b + c + d;
oneWay = timestamp - oneWay;

Simulator::Schedule(Seconds(0), &UanExperiment::
SendPacketTo0, this);

} else {
in1 >> strpkt1;
l = strpkt1.length();
a = (double) Simulator::Now().GetMilliSeconds();
b = 0.0161610; // decryption-verification
c = ((double) l / 80.0) * 1000; // janus RX
d = ((double) l / 80.0) * 1000 + 0.0160203;
// janus TX + generation-encryption

timestamp = a + b + c + d;
rtt = timestamp - rtt;
NS_LOG_UNCOND(to_string(distance) << ", " <<
to_string(rtt));

123

distance += 10;
m_nodes.Get(1)->GetObject<MobilityModel> ()->
SetPosition(Vector(distance, 0, 0));

if (protI == 1) {
k = timestamp;

}
Simulator::Schedule(MilliSeconds(420000 - k),
&UanExperiment::SendPacketTo1, this);

}

in1.close();

while (l % 8 != 0) {
l++;

}

uint8_t* janusDecArr1 = (uint8_t*) malloc(l / 8 * sizeof (
uint8_t));
string binPacket1;

packet1->CopyData(janusDecArr1, l / 8);

for (int i = 0; i < l / 8; i++) {
binPacket1 += bitset<8>(*(janusDecArr1 + i)).to_string();

}
// NS_LOG_UNCOND(binPacket1);

free(janusDecArr1);
}

}

int chartobin(char c) {
if (c == ’1’)

return 1;
else

return 0;
}

124 B. SIMULATION SCRIPTS

void UanExperiment::SendPacketTo1() {
NodeContainer::Iterator node = m_nodes.Begin();
node++;
Mac8Address dst = Mac8Address::ConvertFrom((*node)->
GetDevice(0)->GetAddress());
node = m_nodes.Begin();
protI++;
string packet;
ifstream in("/home/ttm4128/ccmcargopkt.txt", ios_base::in);
in >> packet;
int l = packet.length();
double numL = l;

while (l % 8 != 0) {
l++;

}

int i, j, k, b, p, janusIndex = -1;
char newArr8[l / 8];
uint8_t* janusDecArr = (uint8_t*) malloc(l / 8 * sizeof (
uint8_t));
j = -1;

for (i = 0; i < l; i++) {
j++;
newArr8[j] = packet[i];
if ((i + 1) % 8 == 0) {

janusIndex++;
j = -1;
b = 0;
for (k = 7; k > -1; k--) {

p = (int) pow(2, 7 - k);
b += chartobin(newArr8[k]) * p;

}
// NS_LOG_UNCOND("b = " << b);
*(janusDecArr + janusIndex) = (uint8_t) b;

}
}

in.close();

125

Ptr<Packet> pkt = Create<Packet> (janusDecArr, l / 8);

Simulator::Schedule(Seconds(0), &UanExperiment::SendSinglePacket,
this, *node, pkt, dst);
rtt = (double)(Simulator::Now().GetMilliSeconds());
timestamp = oneWay = (double)(Simulator::Now().GetMilliSeconds())
+ 0.0160203 + (numL / 80.0) * 1000; // Now + enc + Janus encoding
//NS_LOG_UNCOND("Sent packet to 1, timestamp: " <<
to_string(timestamp) << " ms, distance: " << m_nodes.Get(1)->
GetObject<MobilityModel> ()->GetPosition().x << " m");

}

void UanExperiment::SendPacketTo0() {
NodeContainer::Iterator node = m_nodes.Begin();
Mac8Address dst = Mac8Address::ConvertFrom((*node)->
GetDevice(0)->GetAddress());
node++;

string packet;
ifstream in("/home/ttm4128/ccmcargopkt.txt", ios_base::in);
in >> packet;
int l = packet.length();
in >> packet;
l = packet.length();

int i, j, k, b, p, janusIndex = -1;
char newArr8[l / 8];
uint8_t* janusDecArr = (uint8_t*) malloc(l / 8 * sizeof (
uint8_t));
j = -1;
for (i = 0; i < l; i++) {

j++;
newArr8[j] = packet[i];
if ((i + 1) % 8 == 0) {

janusIndex++;
j = -1;
b = 0;
for (k = 7; k > -1; k--) {

p = (int) pow(2, 7 - k);
b += chartobin(newArr8[k]) * p;

}

126 B. SIMULATION SCRIPTS

// NS_LOG_UNCOND("b = " << b);
*(janusDecArr + janusIndex) = (uint8_t) b;

}
}

in.close();

Ptr<Packet> pkt = Create<Packet> (janusDecArr, l / 8);
//cout << "timestamp at sendto0: " << timestamp << endl;
Simulator::Schedule(Seconds(0), &UanExperiment::SendSinglePacket,
this, *node, pkt, dst);
timestamp += 0.0160203 + (double)l / 80;
// Now + gen-enc + Janus encoding
//NS_LOG_UNCOND("Sent packet to 0, timestamp: " <<
to_string(timestamp));

}

void
UanExperiment::SendSinglePacket(Ptr<Node> node, Ptr<Packet> pkt,
Mac8Address dst) {

//NS_LOG_UNCOND (Simulator::Now ().GetHours () << "h" <<
" packet sent to " << dst);
PacketSocketAddress socketAddress;
socketAddress.SetSingleDevice(node->GetDevice(0)->
GetIfIndex());
socketAddress.SetPhysicalAddress(dst);
socketAddress.SetProtocol(0);
m_sockets[node]->SendTo(pkt, 0, socketAddress);

}

void
UanExperiment::Prepare() {

m_nodes.Create(2);
SetupPositions();
SetupCommunications();
SetupApplications();
SendPacketTo1();

}

127

int
main(int argc, char *argv[]) {

CommandLine cmd(__FILE__);
cmd.Parse(argc, argv);

UanExperiment experiment;
experiment.Prepare();

Simulator::Stop(Days(6));
Simulator::Run();
Simulator::Destroy();

experiment.Teardown();

return 0;
}

	List of Figures
	List of Tables
	List of Algorithms
	List of Symbols
	List of Acronyms
	Introduction
	Motivation
	Main Challenges
	Research Questions and Objectives
	Contributions of the Thesis
	Outline of the Thesis

	Background
	Transmission Media
	General Operation of Underwater Acoustic Networks
	Janus
	Threat Landscape
	Jamming
	Wormhole Attack
	Sybil Attack

	Security Requirements in Underwater Communication
	Authentication of origin and entity authentication
	Confidentiality
	Integrity
	Availability

	Fundamentals of Symmetric Ciphers
	Block Ciphers
	Stream Ciphers
	Modes of Operation for Block Ciphers
	Substitution-Permutation Networks (SPNs)

	Authenticated Encryption
	State of The Art of Underwater Security
	Authentication of Underwater Assets
	Encryption for Janus with Venilia

	Other Related Work

	Authenticated Encryption Schemes for Janus
	Authenticated Encryption with CCM
	Generation of the MAC Tag
	Encryption
	Choice of Length of the MAC Tag for Janus
	Argumentation for the Use of CCM with Janus
	Application in Janus-based Communication

	Authenticated Encryption with AEGIS
	State Update
	Initialization
	Processing of the Associated Data
	Encryption
	Finalization
	Argumentation for the Use of AEGIS with Janus
	Application in Janus-Based Communication

	Summary of the AEAD Schemes

	Security Analysis of the Proposed AE Solutions
	Spoofing
	ACK Spoofing

	Tampering
	Nonce and IV Modification
	Modification of the Associated Data and the Ciphertext
	Modification of the CRC

	Repudiation
	Denial of Protocol Participation through Flag Manipulation

	Information Disclosure
	Disclosure of Information on the Channel
	Disclosure of Locally Stored Information

	Denial of Service (DoS)
	Elevation of Privilege
	Summary of the Security Analysis

	Methodology
	Design Cycle and Empirical Cycle
	Summary of the Methodology

	Experimental Work, Results, and Discussion
	Experimental Work
	Experimental Setup
	Implementation of the Security Algorithms
	Work with Acoustic Modems

	Results
	Discussion
	The Cases Without Noise
	The Cases With Noise

	Conclusion and Future Work
	Answers to the Research Questions
	Future Work

	References
	TUBcipher
	Simulation Scripts

