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Abstract

Most digital communication today relies on central entities to provide
secure communication. However, these central entities may not be avail-
able when the Internet is unavailable due to lack of reception in remote
areas, natural disasters destroying network infrastructure, or congestion
due to large amounts of tra�c. This causes secure communication even
among users in the vicinity of each other to become a challenge. The goal
of this master thesis is to design and implement a solution that enables
peers within the vicinity of each other to communicate securely without
a connection to the Internet backbone.

The proposed solution is threefold. First, the solution uses access
points running Wi-Fi in infrastructure mode to enable users to communi-
cate. To manage users in an o�ine environment, the system provides a
solution based on public key infrastructure that lets all the users reach an
agreement on which username belongs to which public key. This enables
authentication without a third party. The system for authentication is
the main contribution of the thesis. Finally, the solution lets users set up
secure communication channels using mutual authentication to exchange
data securely.

The proof of concept application makes it possible to measure the
performance and security of the application. The results from these
measurements are then discussed to evaluate the proposed solution.





Sammendrag

Store deler av dagens digitale kommunikasjon er avhengig av en eller flere
sentrale enheter som kan sørge for sikker kommunikasjon. Slike enheter
er ofte utilgjengelige når internett er utilgjengelig. Utilgjengeligheten kan
skyldes mangel på dekning, naturkatastrofer som ødelegger infrastruk-
tur i nettverket, eller overbelastning i nettverket grunnet mye trafikk.
Dette gjør det vanskelig å sette opp sikker digital kommunikasjon selv
mellom enheter som befinner seg i nærheten av hverandre. Målet med
denne masteroppgaven er å designe og implementere et system som lar
enheter i nærheten av hverandre kommunisere sikkert selv når internett
er utilgjengelig.

Det foreslåtte systemet består av tre deler. For å opprette forbindelse
bruker løsningen Wi-Fi i infrastruktur modus. For å holde oversikt over
brukerne i nettverket har systemet en trygg løsning for å lagre o�entlige
nøkler sammen med brukernavn. Dette gjør at brukere i løsningen kan
autentisere hverandre uten en tredjepart. Denne autentiseringsløsningen
er hovedbidraget i masteroppgaven. Systemet har også metoder for å
sette opp sikker kommunikasjon med gjensidig autentisering.

Systemet er implementert i en applikasjon som gjør det mulig å måle
ytelsen og sikkerheten til systemet. Resultatene fra disse målingene brukes
til å diskutere den foreslåtte løsningen.
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Chapter

1Introduction

When the Internet backbone is unavailable, most Internet applications do not provide
their intended services. In these scenarios, users in close proximity can deliver and
receive service by establishing a Peer-to-Peer (P2P) network. However, a P2P network
has other characteristics than the more common client-server architecture, requiring
other security mechanisms to provide secure and authenticated communication
between peers. This thesis proposes a solution for secure communication without the
Internet backbone using Wi-Fi technology.

The following chapter includes a further description of the problem to be solved.
It also presents the methodology used to research and validate the proposed solution.

1.1 Motivation

The evolvement of the Internet and computer systems has moved a big part of human
interaction from a physical to a digital medium. We are used to always having
an Internet connection. Mobile devices with an Internet connection allow us to
communicate with anyone from anywhere. However, without a connection to the
Internet, such services cannot be utilized even when we are within the radio range of
our peers. The Internet may become unavailable due to natural disasters, accidents,
tra�c overload, or loss of mobile coverage. In such scenarios, a P2P network can
provide connectivity between peers in the vicinity.

When data are transmitted using wireless connections, the signals between the
devices are exposed to everyone within the radio range of the devices. Without
proper measures, the data transmitted is exposed and can easily be manipulated. To
avoid this, it is important to establish a secure connection between peers.

To establish a secure connection, confidentiality, integrity, and availability must
be achieved [Sta16]. Confidentiality is achieved through encryption and ensures that
an attacker eavesdropping on the channel can not read any clear-text information.

1



2 1. INTRODUCTION

Integrity can be achieved with message authentication codes which the receiver of the
data can use to discover if a message has been altered. An essential part of integrity
is authentication, which is proving an identity. Authentication aids in ensuring that
the connection is established with the alleged user. Finally, availability ensures the
system is online and working when the users want to use the system.

One architecture that aid in secure connection establishment is Public Key
Infrastructure (PKI). In a PKI, anyone can create and distribute a private-public
key pair. Hence, some mechanism is needed to provide integrity of the public keys
and avoid, for instance, man-in-the-middle attacks. To provide key integrity, a
digital certificate can be used. A digital certificate includes a public key and often a
third party’s signature vouching for the key. The central trusted unit signing the
certificates is called the Certificate Authority (CA). If the CA is not available, new
users can not get their key signed by this central trusted unit, and a CA signature
can not be used to confirm the ownership of the encryption keys. That is the case
for o�ine networks without a CA running on the Local Area Network (LAN).

Wi-Fi is a popular technology for connecting to the Internet. It provides a radio
link between a user’s device and an access point. The access point can further connect
the user to the Internet or connect to a LAN. Wi-Fi provides confidentiality and
integrity through encryption [IEE21]. It can also provide authentication through a
protocol called Wi-Fi Protected Access (WPA)-Enterprise. However, WPA-Enterprise
requires an authentication server for authentication. Therefore, in a scenario where
the Internet is unavailable and the central unit is unavailable on the LAN, Wi-Fi
can not provide authentication.

The challenge of trusting public keys without a CA-signature and the lack of
authentication in Wi-Fi raises the question of how to authenticate users in an o�ine
Wi-Fi network.

1.2 Scope

The scope of this master thesis is to design, implement and validate a system that
allows users to sign up and authenticate without using a central trusted unit. The
intended scenario is an o�ce- or school building that loses Internet connection due
to an accident. The building is assumed to have multiple Wi-Fi APs connected on
the same LAN.

The system should share authentication credentials, such as a certificate, between
users who have signed up for the service. A user should be able to sign up to the
system both with and without a connection to the Internet backbone. In addition,
users should be able to verify peers’ authentication credentials and prove their
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identities.

The system should provide secure communication. To achieve this, well-known
secure protocols such as Transport Layer Security (TLS) and Di�e-Hellman (DH)
are used. These protocols are considered to be secure [JKSS12]. The system will be
implemented using various tools such as Android and Kotlin. The security of these
tools are not considered within the scope of this thesis and are therefore assumed to
be secure.

The system should provide authentication and Device-to-Device (D2D) instant
messaging between devices on the same Wi-Fi Infrastructure mode network. This
allows for validation of the proposed authentication solution. Providing the means
to communicate with other connection technologies such as cellular networks is out
of the scope of this thesis.

1.3 Challenges

Wi-Fi with Wi-Fi Protected Access II (WPA2) can provide confidentiality and in-
tegrity through encryption and data signing. However, WPA2 does not provide
authentication. To provide authentication in Wi-Fi, a protocol called WPA-Enterprise
can be used. However, a limitation of WPA-Enterprise is the need for an authenti-
cation server that may not be present in an o�ine network. This limitation means
WPA-Enterprise is not suitable for use in such networks. Without additional authen-
tication measures, Wi-Fi does not provide authentication and can not guarantee the
identity of peers.

Work has previously been done on the authentication of users in o�ine networks.
Previous solutions have proposed systems where users sign up and receive authentica-
tion material when an Internet connection is available. If the users lose the Internet
connection, the authentication material can still be used. A remaining challenge
is signing up and getting authentication material when the user does not have an
Internet connection. Without an Internet connection, the CA is not available to sign
authentication material. Hence, new mechanisms are needed to sign up and get valid
authentication material in an o�ine network.

A distributed authentication mechanism can solve the issue with a single cen-
tral trusted unit not being available on the network. A distributed authentication
mechanism should allow benign nodes to agree on an immutable record of authenti-
cation material, despite the existence of malicious nodes [Sun20]. To achieve such
an agreement, Distributed Ledger Technology (DLT) could be utilized. However,
most DLT, for example, Bitcoin (BTC) has resource-consuming security mechanisms
tailored for financial transactions. These are secured by consensus mechanisms such
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as Proof-of-work (PoW) and Proof-of-stake (PoS). The former requires a large amount
of resources, which is not suitable for resource-scarce mobile phones. The latter is
not suitable as an authentication process does not include financial transactions and,
therefore, stakes. Other DLTs use a less resource-consuming Directed Acyclic Graph
(DAG), but require transactions to verify other transactions, and the security of
the network is dependent on the number of transactions. Common for all of these
technologies are that they require large networks to be secure; hence they are not
suitable for isolated networks.

To use a distributed solution, the users have to be able to communicate e�ciently
with each other. Broadcast is a solution that allows distribution of information
without trusting that other users forward it. By using broadcast, the solution ensures
that all peers can listen to all transmitted data. The most common transport protocols
today are Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).
Compared with TCP, UDP is a more lightweight solution. UDP does not provide
reliable data transfer but provide multicast [IET17]. By making every user join the
same multicast group, broadcast can be achieved in UDP. TCP on the other hand,
is more comprehensive and does provide reliable data transfer. However, it does
not support broadcast. Hence, to achieve a one-to-many distribution, TCP would
require the network to form a mesh topology, which would not scale with an increased
number of users. As there is also a need for e�cient resource utilization, UDP is the
preferred choice when a one-to-many distribution is needed. The disadvantages with
UDP have to be compensated on the application layer.

1.4 Research questions

The challenges described in the previous section give rise to the following research
questions.

– How can a user be authenticated in an o�ine network?

– How can users reach a consensus on each other’s authentication material without
a central authority to allow trusted communication among peers?

– How to provide ledger distribution reliably and e�ciently using UDP?

1.5 Methodology

The project has been divided into four phases: Research, Design, Implementation,
and Validation. The process has been iterative, where multiple iterations over the
four phases have been done.



1.5. METHODOLOGY 5

1.5.1 Research of background and related work

The main objective in the research phase, was to understand current research on
authentication in o�ine networks. In addition, the aim was to find unresolved issues
in the field where research contributions could be made. An overview of relevant
research fields and applications looking to solve similar problems was needed to
achieve this. The research was mainly done on authentication solutions used in o�ine
and online networks and connectivity technologies suitable for o�ine networks.

During the research phase, multiple connection technologies were researched. Wi-
Fi Infrastructure mode was selected due to its high presence in society and its e�cient
data transfer. However, Wi-Fi Infrastructure mode does not provide authentication
without additional protocols, and existing authentication protocols do not work
without an authentication server. Hence, a protocol for o�ine authentication is
needed.

The solution needs to be decentralized as an o�ine network can not guarantee
the presence of an authentication server. Hence, distributed databases, distributed
ledgers, and blockchain technologies were researched to understand how to create
systems without a central governing server.

The context for the solution was selected during the research phase. The solution
should provide secure and authenticated communication between devices when
the backbone Internet is unavailable. For example, an imagined scenario is a
school building or o�ce building with multiple Wi-Fi APs that has lost its Internet
connection due to an accident. The solution should also work in Internet-isolated
areas if mobile or stationary APs are available.

1.5.2 Design

During the design phase, the architecture of the proposed solution was designed. The
system consists of a distributed ledger for keeping authentication material, a way for
peers to establish a secure connection, and a system for storing symmetric keys for
improved connection establishment times.

The distributed ledger contains an entry for every user in the network. A
Ledger Entry (LE) contains an X.509 certificate and a username. The idea is to use
concepts from distributed ledger technology to ensure a one-to-one mapping between
a username and a certificate. This will guarantee a persistent relationship between
username and authentication material. In addition, the distributed ledger was
designed with security measures to ensure correctness and synchronization between
devices in the network.

To establish a connection between devices, an architecture allowing secure D2D
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communication was designed. This connectivity architecture is based on existing
solutions but is improved to reduce establishment times the second time two users
connect. Symmetric keys and DH ratchets are essential components in the improved
solution.

1.5.3 Implementation

A proof-of-concept mobile application based on the system proposed during the
design phase was developed in the implementation phase. The application was
developed using Android Studio version 2020.3.1 [Goo21b] and was implemented for
Android 11, API level 30 [Goo21a]. The programming language used is Kotlin [Jet21].
For advanced cryptographic functions that do not have native Kotlin support, the
Bouncycastle API [The21] is used. Three Samsung Galaxy S21 and three Samsung
Galaxy A71 are used to run the application. All phones are running Android 11,
API level 30. Two APs, Asus AC750, and Netgear Nighthawk M1 4G LTE Mobile
Router are used to create a Wi-Fi network.

1.5.4 Validation

A set of tests has been conducted and network tra�c has been inspected to validate
the proposed solution and to ensure the application behaves and performs as expected.
The tests are conducted using Android Debug Bridge, allowing for automated and
e�cient conduction of multiple tests. The tests include time to set up communication
paths, accept a ledger, and generate a certificate.

To validate the application’s security, packets have been captured and analyzed
with Wireshark to ensure they are properly encrypted.

1.6 Outline

The thesis is divided into six chapters and is structured as follows:

Chapter 1: Introduction Introduces the problem to be solved and how the
solution can contribute to the research field.

Chapter 2: Background and related work Introduces the technologies, proto-
col, and related work needed to understand the proposed solution and design choices
made in the proposed solution.

Chapter 3: Proposed solution Describes how the problem is solved using WiFi
Infrastructure mode, a distributed ledger, and symmetric keys.
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Chapter 4: Proof of concept application Describes how the solution is imple-
mented in the application.

Chapter 5: Results Presents the results from the tests that have been conducted.

Chapter 6: Conclusion Concludes the thesis with final remarks.





Chapter

2Background and related work

This chapter introduces technologies used in the proposed solution and technologies
needed to understand the design choices made in the proposed solution. Relevant
related and previous work on the topic is also presented.

2.1 Background

This section presents relevant technologies and concepts that have been considered
or used in the proposed solution.

2.1.1 Connection technology

To establish a connection between devices, a set of protocols and technologies are
needed. One popular connection technology is Wi-Fi IEEE 802.11, which specifies a
set of media access control and physical layer protocols for establishing a Wireless
Local Area Network (WLAN). In addition, there are alternatives to Wi-Fi for
establishing a WLAN, such as Bluetooth, Zigbee, and Z-Wave. This section will
present di�erent versions of Wi-Fi and some alternatives to Wi-Fi.

Research on connection technology was conducted during the pre-project preceding
this thesis [BMTJ21]. Hence, parts of the presentation from the project report are
included below.

Wi-Fi infrastructure mode

Infrastructure mode is the most common mode of operation for Wi-Fi IEEE 802.11. In
infrastructure mode, all communication goes through an AP. The AP is responsible for
coordinating the communication on the wireless network and can work as a gateway
providing a connection to the Internet. One advantage of using infrastructure mode
is the AP’s specialized hardware. For example, higher-power wireless radios and

9
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antennas allow the network to cover a wider area, and specialized instruction sets
allow for fast routing and forwarding.

In IEEE 802.11, a service set is a group of devices that shares the same Service
Set Identifier (SSID). There are two types of services sets: Basic Service Set (BSS)
and Extended Service Set (ESS). A BSS is a subgroup of the service set where the
devices share the same physical-layer medium access. All devices in a BSS share the
same Basic Service Set Identifier (BSSID). An ESS is a wireless network consisting of
multiple APs which appear to users as a single network. This is achieved by having
multiple BSS with the same logical network segment like a shared IP subnet [Gar07].
By utilizing the advantages of ESS, IEEE 802.11 can cover larger areas than the
radio range of a single AP.

Wi-Fi ad-hoc

With Wi-Fi IEEE 802.11 in ad-hoc mode, it is possible to set up D2D connectivity
with the original IEEE 802.11 standard. This mode of operation supports both one-
to-one messaging and forwarding, which allows networks of di�erent sizes. However,
IEEE 802.11 ad-hoc mode has several drawbacks, like lack of e�cient power saving
and limited Quality of Service (QoS) capabilities [CGS13]. This resulted in a need
for new D2D technologies, like Wi-Fi Direct and Wi-Fi Aware.

Wi-Fi Direct

Wi-Fi Direct is a technology that extends the IEEE 802.11 standard. It improves the
D2D communication of IEEE 802.11 ad-hoc by introducing software APs in devices
supporting Wi-Fi Direct. Wi-Fi Direct forms groups of devices, choosing one device
as Group Owner (GO), to assume the responsibilities usually held by the AP [All16].
Using Wi-Fi Direct requires significant time to set up a connection [STJ19]. The
GO also has a significantly higher resource consumption than the other nodes due to
its special responsibility [STJ19]. In addition to putting a high load on the GO, this
may lead to the GO being a bottleneck limiting the scalability of the network.

Wi-Fi Aware

Like Wi-Fi Direct, Wi-Fi Aware is an extension of the IEEE 802.11 standard [All21].
In Wi-Fi Aware, devices forms clusters where devices can advertise services supported.
Two devices that want to connect can set up a direct communication path. The time
it takes to set up a connection varies a lot and may be a�ected by a mismatch between
the devices’ Discovery Window (DW) [SSTJ20]. Additional security vulnerabilities
may arise due to the standard operation of WiFi-Aware, making it less suitable
for secure o�ine communication. For example, if a malicious node sends out false
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synchronization beacons, a new user may not be able to access services resulting in a
Denial-of-Service (DoS) attack on the network [SSTJ20].

Bluetooth mesh

Bluetooth Mesh is a communication technology that allows for many-to-many commu-
nication over Bluetooth radio. With segmentation and reassembly, Bluetooth Mesh
messages can be up to 384 bytes long. The architecture is decentralized and supports
multicasting by using publish/subscribe addresses. This results in greater scalability
and performance compared to native Bluetooth technology. Bluetooth Mesh has
some built-in security measures where the initial authentication requires a user to
do some out-of-bound communication between devices [Woo20]. The technology
allows for message forwarding, meaning the mesh can cover large areas, but the
intermediate device distance can not exceed the Bluetooth radio range of about
10m [RY06]. The limited range makes it less suitable when a large area needs to be
covered. In addition, Bluetooth has a lower data transfer rate than Wi-Fi, making it
less suitable for large data transfers.

2.1.2 Carrier-sense multiple access with collision avoidance

When sending data over a wireless channel, a protocol for avoiding collisions is needed.
In Wi-Fi this protocol is Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) [KR13]. In CSMA/CA devices take turns sending data one at a time.
While one device is transmitting, the other devices listen to the channel. When a
device has a frame ready for transmission, it listens to the channel to determine if it
is idle. If the channel is idle, the device starts transferring its frame. If the channel
is not idle, the device selects a random back-o� time, waits, and checks again if the
channel is idle.

Due to the hidden terminal problem [KR13], CSMA/CA does not always avoid
collisions. If device D1 transmits data outside of the radio range of device D2, the
device D2 believes the channel is idle and may start transmitting data. In this case,
the channel will be wasted in the entire period of the transmission.

2.1.3 Network security

Confidentiality, integrity, and availability are essential for achieving security in
computer networks. These principles are known as the CIA triad and are viewed as
the fundamental objectives of information security [Sta16]. These principles are all
important, but di�erent systems will value these principles di�erently.

Confidentiality is to prevent unauthorized users from viewing or accessing data or
services. Encryption is often used to achieve this. Encryption transforms plaintext to
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ciphertext making it di�cult for an attacker to read the data. Good confidentiality
increases privacy as it hides sensitive information from unauthorized users.

Integrity is to prevent an unauthorized change of data. It should allow detection
of malicious altering of data and system errors altering data. Integrity should also
include authentication to ensure that the alleged user sent the data. Checks like
hashes and signatures can be appended to the data to detect modification, duplication,
deletion, or replays.

Availability ensures that a system is working correctly and provides a reliable
service. If a system is not available, it cannot provide its intended services. For
example, natural disasters, power outages, or DoS attacks are causes that could
reduce a system’s availability. In some systems, like emergency communication
systems, availability is critical.

Symmetric encryption

Symmetric encryption is used to encrypt data with a single shared encryption key.
All the communicating parties will share the same encryption key, which will be used
for encryption and decryption. The encryption key must be shared over a secure
channel. Multiple protocols exist to increase the security of the key-sharing process.

The Advanced Encryption Standard (AES) is a popular symmetric encryption
algorithm. It is based on a substitution-permutation network with a fixed block size
of 128 bits and a key size of 128, 192, or 256 bits. The algorithm provides security
equal to its key length, meaning for a key length of 256 bits, an attack needs to
perform on 2256 ¥ 115 quattuorvigintillion = 115 ◊ 1075 combinations to break the
encryption.

AES can be implemented with di�erent modes of operations. One mode of
operation is the Galois Counter Mode (GCM). GCM provides both confidentiality
and integrity. It achieves integrity by computing an authentication tag that is
appended as a part of the encrypted message. GCM allows for parallel processing
and pipelining, making it more e�cient than other modes of operations like Cipher
Block Chaining (CBC), which do not support pipelining [Sta16].

Generally AES encrypts fast. Using AES hardware instructions makes it possible
to achieve speeds of 1.3 cycles per byte [ADF+10]. For a computer working at
2.2GHz = 2.2 ◊ 109 cycles per second, AES can encrypt approximately 1.58 GB/s.
The calculation is shown in Equation (2.1).

2.2 ◊ 109 cycles per second

1.3 ◊ 230 cycles per GB
¥ 1.58 GB/s (2.1)
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Figure 2.1: Asymmetric encryption/decryption

One of the main drawbacks of symmetric encryption is its ability to scale. Every
communication pair or group need to have a unique encryption key for that pair or
group. That means a total of n(n ≠ 1)/n keys are required, where n is the number of
pairs plus the number of groups. As the number of users in the system increases, this
will cause an issue as a considerable number of keys need to be stored and handled.

Asymmetric encryption

Asymmetric encryption, also known as public-key cryptography, uses two separate
keys for encryption and decryption. The key used for encryption and signature
verification is called the public key, and it is exposed to the network. The key used
for decryption and signature generation is called the private key, and it is kept secret
[KR13].

Figure 2.1 shows a scenario where Bob wants to send a confidential message to
Alice. He can use asymmetric encryption to achieve this. Bob will use Alice’s public
key to encrypt the message. Only Alice’s private key can decrypt the message. Hence
Bob knows that only Alice will be able to decrypt and read the message.

Asymmetric encryption can also provide message integrity. For example, Figure
2.2 shows a scenario where Bob wants to send a message to Alice and make sure
Alice knows the message is from Bob and is unaltered. To achieve this, Bob can
sign the message with his private key. When Alice receives the message from Bob,
she can check the signature using Bob’s public key. If the signature is correct, Alice
knows Bob’s private key must have generated the signature, and hence she can trust
the message’s integrity. Asymmetric encryption and signatures are often combined.

One popular approach to asymmetric encryption is to use Elliptic-curve cryptog-
raphy (ECC). ECC is based on the elliptic curve discrete logarithm problem. With a
key size of 256 bits, the scheme achieves 128 bits security, which is good compared to
other asymmetric encryption schemes like Rivest–Shamir–Adleman (RSA) [BGM21].

The main drawback of asymmetric encryption is its encryption speed. For example,
the authors in [LAM05] show that for a 1MB IEEE 802.11 MAC frame, AES in
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Figure 2.2: Asymmetric signature

Counter with Cipher Block Chaining Message Authentication Code (CCM) mode
with 128 bits key uses only 1.404 ms to encrypt, while ECC with 283 bits key uses
35 ms [LAM05].

Public key infrastructure PKI

Anyone can generate a public/private key pair to be used in asymmetric encryption.
Hence, a system to share and trust the keys is needed. A system that can achieve
this is the PKI. In a PKI, a digital certificate is used as an electronic document that
can prove ownership of a public key. The most common standard is X.509, which is
defined by the International Telecommunication Union (ITU). An X.509 certificate
includes, among other fields, a version number, a certificate serial number, validity
time, unique identifier, subject’s public key information, signature algorithm, and a
signature [CSF+08]. A signed certificate provides a binding between the public key
and a user’s identity, making it possible for a peer to trust the integrity of the public
key. A certificate can be self-signed or signed by a mutual trusted third party.

An authentication server can act as a trusted third party. It claims the role of
a CA in a PKI, issuing and signing certificates. In a PKI, when the CA signs a
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Figure 2.3: Man-in-the-middle-attack

certificate, all entities that trust the CA trust that the public key belongs to the
stated user [HN17]. However, the CA may be unavailable at some times, for example,
when the Internet is unavailable and the server is not on the LAN. In such scenarios,
new users can not get their certificate signed by the CA, and their peers can not
trust the new users.

One possible vulnerability in a PKI is a Man-in-the-middle (MITM)-attack. Figure
2.3 shows an MITM-attack. In the attack, the attacker publishes his public key to the
network, claiming it belongs to another user, for example, Alice. When a third user,
Bob, wants to connect with Alice, he uses what he thinks is Alice’s key to establish
a connection. In reality, this is the attacker’s key, and the connection established
is between Bob and the attacker. The attacker then establishes a connection with
Alice posing as Bob. At this point, Alice and Bob believe they have established a
secure communication path between each other. In reality, the attacker poses as a
middleman who can read, alter and forward messages. The use of a CA-server and
signed cryptographic keys mitigate this attack.

Double ratchet

Double ratchet is a concept that aims to provide key resilience, forward secrecy, and
break-in recovery. To achieve this, a Key Derivation Function (KDF) is used [CY12].
A KDF is a cryptographic function that takes a secret and random KDF-key as
input and returns a new key as an output. As long as the key is kept secret, the
output data should be indistinguishable from random, and it should be impossible to
find the input from the output. Hash-based Message Authentication Code (HMAC)
[KBC97] is a hashing algorithm that meets the requirements of an KDF function
[MP16a].
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Figure 2.4: DH-ratchet

During a double ratchet session, the communicating parties keep a root chain, a
sending chain, and a receiving chain. Each chain is a list of symmetric encryption
keys. Every new key in the chain is the previous key hashed with a KDF [MP16a].
When sending a message, the sender should do one iteration of KDF on its sending
chain, updating the encryption key. Likewise, the receiver should update its receiving
chain upon receiving a message. The sending and receiving chain is reset when
updating the root chain. This results in a system where every message is encrypted
with a unique encryption key. This system provides forward secrecy [MP16a]. If
an adversary is to capture tra�c and break one encryption key, they will be able
to follow the message exchange from that point, but they can not read previous
messages.

DH ratchets improve the security of this system by introducing backward secrecy.
On given occasions, one party can generate a new DH public key and send it to the
receiver. The receiver then uses this public key to calculate a new DH secret [MP16a].
This could be viewed as half a DH key exchange. This process is shown in Figure
2.4 where parties take turns generating a new key-pair and sharing the new public
key. An adversary who compromises one of the parties could learn the symmetric
ratchet keys. However, after the DH ratchet round, the symmetric ratchet keys will
be replaced with uncompromised ones. Consequently, the adversary is no longer able
to follow the message exchange.
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Mutual Transport Layer Security (mTLS)

TLS is the most important security mechanism in today’s Internet [JKSS12]. TLS is a
protocol that supports symmetric encryption, asymmetric encryption, and certificates
to provide reliable high-end service over TCP. It is a client-server protocol where
the server is responsible for providing a certificate to the client. This allows the
client to verify that a mutually trusted third party has authenticated the server. As
shown in Figure 2.5, the certificate and other cryptographic material are exchanged
during the initial TLS handshake. The end product of the handshake is a shared
encryption key to be used in symmetric encryption. For TLSv1.2 and TLSv1.3,
four and two messages, respectively, are needed to establish a secure communication
channel. In addition to authentication, TLS includes encryption algorithms to ensure
message integrity and confidentiality [Res18]. Confidentiality is provided by agreeing
on a shared secret key that will be used for one session. The messages sent in key
negotiation are encrypted using the public keys. TLS provide integrity by calculating
a message digest of every message sent. The level of integrity provided depends on
the security of the hash function used.

Figure 2.5: TLSv1.2 and TLSv1.3 handshake

Native TLS o�ers one-way authentication but can be extended to support mutual
authentication with mTLS. In mutual authentication, all communicating parties
must prove their identity. This is desired in verification schemes to ensure data
security and verify that all parties are connected as they expect. In a P2P network,
this is especially important as no dedicated servers exist, and all devices should be
able to adapt to a server role and still be able to authenticate their peers. In mTLS,
all parties send their certificate during the initial handshake to verify each other’s
identity.
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2.1.4 Distributed Ledger Technology (DLT)

Many of today’s web services rely on centralized data storage. Users must trust and
be able to access the central entity in order to use centralized systems. In terms of
availability and performance, central databases have drawbacks as well [Sun20].

A distributed ledger is an asset database that can be shared across di�erent
locations and devices. Each device holds a copy of the ledger, and changes made in
one device, are reflected in the other devices. Signatures are used to authenticate
changes in the ledger. Changes in the ledger can only be made according to rules
agreed by the network [Adv16]. DLT assumes the existence of malicious nodes while
still allowing benign nodes to agree on a shared ledger, despite the occurrence of
failures [Sun20].

DLTs can be divided into three main groups: Blockchain, DAG, and Hybrid DLT.
Hybrid DLT is based on both blockchains, and DAG [LFF20].

A blockchain is a chain of blocks in which each new block contains the hash of the
previous block. Each block contains a collection of transactions that are confirmed
when they are included in that block [Nak09]. The number of transactions that
can be validated per time unit is limited because only one block can be uploaded
at a time. Furthermore, because there can only be one genuine blockchain, two
synchronized copies cannot be merged, even if there are no transactions that conflict.
The majority of transactions in a blockchain involve a fee to encourage users to
validate them. The fees of all the included transfers are awarded to the user who
creates a new block.

Like a blockchain, a DAG can also store data transactions [LFF20]. While
transactions in a blockchain are stored in blocks, transactions in a DAG are connected
by links. Every transaction that is added to the DAG is required to verify one or
more previous transactions. The transactions do thereby verify each other. An
example of a DAG-based DLT is IoTA. IoTA enables secure zero-fee data and value
transmission [PMC20] and has low resource utilization.

Consensus mechanism

A consensus mechanism is a fault-tolerant mechanism used to reach an agreement on
a single state among nodes in a distributed network [AK21a]. These mechanisms
ensure that all parties agree on the same set of valid and authenticated transactions.

PoW is a popular consensus algorithm, which is implemented by the two largest
cryptocurrencies according to total market capitalization, BTC and Ethereum (ETH)
[Nak09][But14]. PoW requires the nodes in the network to invest a large computa-
tional e�ort to create a block. In BTC a block is only valid if the hash of the header
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starts with a certain number of zeros. Finding such a header requires a significant
number of computations, thus limiting the rate at which new blocks can be created.

Another important consensus protocol is PoS, to which ETH will soon transition
to. In PoS, the creator of the new block is chosen after a set of predefined rules,
where the probability of being chosen is proportional to the number of ETH you
own. The idea is that those with a large stake in the network also have the highest
interest in maintaining the integrity of the blockchain.

2.2 Related work

This section presents work that has been conducted on similar topics and other
solutions to the same problem. [STJ19] and [SSTJ20] where discussed in the pre-
project preceding this thesis [BMTJ21]. This discussion is amended with more related
work below.

2.2.1 Keeping connected when the mobile social network goes
o�ine

In "Keeping connected when the mobile social network goes o�ine," the authors
proposed a solution to the problem of not having an available central trusted unit
[STJ19]. The solution uses Wi-Fi Direct and pre-signed certificates. The main idea
was that users register for the service when the Internet is available. Then, if the
Internet becomes unavailable, pre-registered users could connect using Wi-Fi Direct
if they had a valid pre-signed certificate.

The main drawback of this solution is that users have to sign up for the application
before losing an Internet connection. Moreover, a user that signs up without an
Internet connection will not get a valid certificate and can not communicate with
other users. Other shortcomings of this solution are the lack of forward secrecy, lack
of backward secrecy, and high overhead.

2.2.2 Keeping connected in Internet-isolated locations

In "Keeping connected in Internet-isolated locations," the authors proposed an
improvement to the system in [STJ19], allowing users to register after losing Internet
connection [SSTJ20]. The system uses Wi-Fi Aware and pre-signed certificates. In
addition, they included the option for peer signed certificates. The main idea is that
users with a pre-signed certificate are trusted and can sign the certificates of new
users.

To peer authenticate a user, a CA-certified user, PA, will have to sign the
unauthenticated users, PB ’s certificate. When a peer authenticated user, PB , wants
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to connect to a new peer PC , he must provide his keying material as well as the
public key of the peer who signed his certificate. If the PC trust PA, he can also
trust PB ’s certificate. However, the proposed system does require at least one of the
participants to be CA-authenticated when establishing a connection. This limits the
possibility for two peer authenticated users to communicate with each other securely.
In this system, two peer authenticated users can not communicate.

This solution partly solved the issue of not being able to join the system after
losing connection to the Internet. However, the fact that two peer authenticated
users can not communicate sets a limiting constraint on the communication. Also,
this solution has some issues with fair resource allocation and performance, leading
to a bad user experience.

2.2.3 Bubbles of Trust: A decentralized blockchain-based
authentication system for IoT

In "Bubbles of Trust: A decentralized blockchain-based authentication system for
IoT," the authors propose a blockchain-based solution for decentralized authentication
of IoT devices [HHBS18]. The proposal is based on Ethereum and creates zones of
trust called Bubbels. Within the Bubble, IoT devices establish trust. However, there
are no mechanisms for establishing trust between di�erent Bubbles. Furthermore, the
use of Ethereum means the solution is associated with economical cost, is unsuited
for real-time applications, and requires an initialization phase with a node assuming
the role of a certification authority. Hence, the solution is not suitable for use cases
with high user mobility.

2.2.4 Signal

Signal is a secure communication platform that supports End-to-End (E2E) en-
cryption and o�ine communication. Signal’s encryption scheme is useful to reduce
overhead and increase security in o�ine communication. Open Whisper System
designs the encryption scheme. The protocol uses AES256 encryption with HMAC-
SHA256 for authentication. The symmetric keys are derived from an Extended Triple
Di�e Hellman key exchange (X3DH) [MP16b] and is updated by using a Double
Ratchet algorithm [MP16a]. The X3DH proves to the receiver that the sender owns
the public key corresponding private key. The Double Ratchet algorithm provides
both forward and backward secrecy while reducing the overhead needed to calculate
new symmetric keys. To trust the encryption keys used and eliminate the chance
of MITM attack, Signal recommends that users compare a security number derived
from the shared secret on an out-of-band communication channel.

WhatsApp is a popular communication platform [Sta22] which focuses on security,
especially E2E encryption [Wha22]. WhatsApp’s encryption is based on Open
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Whisper Systems Signaling Protocol [Wha21] described above. Bridify is another
o�ine messaging application based on the Signaling encryption protocol [Bri22].

2.2.5 Briar

Briar is a secure messaging application designed for safe and robust communication.
Briar does not rely on a centralized server and can provide o�ine communication over
Bluetooth and Wi-Fi. For key exchange, Briar relies on an out-of-band communication
where users share a secret by, for example, scanning a QR code. A Briar user has a
nickname and a corresponding public key. Multiple users can use the same nickname.
Briar uses sudo-random tags appended to the transferred data to identify users
and choose the correct encryption key. Both sender and receiver need the mapping
between the sudo-random string and the user identity [akw22].
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3Proposed solution

This chapter describes how the proposed solution enables authenticated and secure
communication without relying on a central trusted unit. As shown in Figure 3.1, the
proposed solution is divided into three layers with the following responsibilities: (1)
setting up a wireless communication channel, (2) handling the identities of the users
in the network, enabling authentication, and (3) setting up secure communication
between devices. The chapter will first provide an overview of how the solution works
before going into more detail on the di�erent layers.

3.1 Overview of the proposed solution

This section will present how applications that use a client-server model traditionally
handle authentication and the server’s responsibilities in such applications. This
section will further show how the proposed solution handles these tasks.

3.1.1 Authentication in client-server model

In the client-server model, the server has two primary responsibilities, authenticating
the client, and providing a service, as can be seen in Figure 3.2. How the server
authenticates the client is discussed below.

To authenticate a client or user means to verify its identity [Onl22]. The user’s
identity often refers to the user’s identity within a specific service. However, the
user’s identity can also be connected to something outside the current service, such
as an email address or legal identity document. This makes it possible to create a
connection between a physical person and a user of a service. To what degree a user
must be able to prove their identity should be reflected in the application’s security
level.

The process of authenticating a client in a client-server is illustrated in Figure
3.3. To be authenticated, the client must prove that they are indeed the person

23
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Figure 3.1: Overview of the proposed solution

who created the user in the service. The server must be able to validate this proof.
Such proof can be a secret that only the client and the server know, for example, a
password.

A proof to authenticate a client can also be created using public-private key pairs.
The server knows the public key, and the key is associated with the user. The client
can prove that he knows the private key corresponding to the public key by using
cryptographic signatures. Because only the person who created the public-private
key pair can generate valid signatures, a valid signature proves the client’s identity.
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Figure 3.2: The responsibilities of the server is divided into authenticating client
and poviding a service.

Figure 3.3: The client provides a secret known also by the server.

This method is more resource-consuming than providing a password because of the
computations needed to create and validate the signatures. Because the public key
is a long string of seemingly random characters, they are not easily remembered or
used by humans. Hence, this authentication method is best suited when the client
always uses the same device, as the private key can easily be stored on the user’s
device. Other authentication means exist but will not be discussed because of the
lack of relevance for the proposed solution.

3.1.2 Authentication in the proposed solution

In the client-server model, the responsibility of storing authentication material, and
authenticating the clients, lies with the server. The server is a trusted third party
available to the clients through the Internet or on the LAN. Without access to the
Internet or a trusted third party on the LAN, it is not possible to provide a central
trusted unit to the users. This has several implications concerning authentication.

The responsibility of storing authentication material has to be assumed by a
logical unit that all users can trust. However, the presence of a single unit trusted
by all users cannot always be guaranteed in an o�ine network. Hence, the proposed
solution does not rely on one user or server acting as the authentication server when
the Internet is unavailable. Instead, the responsibility is assumed by the entire group
of users as a whole. Every member of the o�ine network is therefore responsible for
keeping a ledger. The ledger holds information on all users in the network and their
authentication credentials. A user with a LE can be authenticated by their peers as
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all peers hold the authentication material needed to authenticate that user. Thus, a
distributed ledger with authentication material can allow peers to authenticate each
other without a trusted third party.

The ledger should be synchronized between all users to achieve consensus on the
users’ identities and authentication materials. The system accomplishes consensus by
comparing the ledgers held by all the users in the network. One consensus mechanism
can be a majority decision where the ledger held by the majority of the users is
accepted as the correct ledger both by new users joining the network and existing
users. Chapter 3.3.5 presents the details of how this decision is made. Using the
majority, the users do not have to trust any single user in the network. The trust
is rather put in the network as a whole, and that the majority of users are acting
benevolently.

Using shared secrets as authentication material does not work for authentication
when all users use the same secret. In such a solution, the user can prove that he has
access to the system, but the system can not identify di�erent users. Therefore, the
proposed solution relies on private-public keys to authenticate each other. A user
can prove that they own the private key and verify that they are indeed that user to
anyone in the network without exposing their secret.

A comprehensive dive into the details of how the ledger works is found in Chapter
3.3.

3.1.3 Providing the service

The second responsibility that a central trusted unit is usually trusted with is
providing the actual service. For services relying on communication, such as instant
messaging applications and email services, the server may act as a middleman. The
server authenticates and establishes a secure connection to the users communicating
and stores and forwards the data. Without a trusted third party to act as a
middleman, another trusted unit has to adopt the responsibility of ensuring secure
communication and providing the service.

The service delivered in the proposed solution is an instant messaging application.
However, other services relying on secure communication between peers in o�ine
networks can also apply the solution. For an instant messaging application, the
service is secure direct communication between two users in the network. Direct
communication does not require a middleman. Hence, no trusted third party is
needed. This is possible because all the users can authenticate each other, making it
possible for both parties to verify that the established communication is secure.

How the actual communication is set up is further described in Chapter 3.4.
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3.2 Wireless connectivity

The first layer of the proposed solution is the wireless connectivity. The second and
third layers could also work on top of a wired network, but the proposed solution
focuses on a wireless connection to increase mobility and versatility. The wireless
connection has to support both multicast and unicast communication. Multicast is
used to ensure that every node in the network can receive messages with the intent to
maintain an updated version of the ledger. Unicast is used for direct communication
between peers in the network.

The proposed solution makes use of available Wi-Fi infrastructure to create LANs
when the Internet is not available. Wi-Fi APs are widely available in nearly all homes
and o�ce buildings and can also be deployed easily in the case of an emergency. For
users in areas without Internet availability, mobile APs can still be used to create
a LAN. In addition, most mobile devices are equipped with Wi-Fi radios making
Wi-Fi a technology highly available.

Figure 3.4: From the users perspective the network will be percevied as if there
was only on AP.

In order for devices to be able to communicate, they have to be connected to the
same WLAN. This WLAN may or may not have an Internet connection. To allow
the solution to connect users across a large area, multiple APs can be interconnected,
working together to create an extensive network. This can be done by combining
them under one ESS. As can be seen in Figure 3.4, users will then perceive the
network as one WLAN.

Requiring the users to be connected to the same WLAN can also serve as an
extra layer of security. If the network requires the user to authenticate to get network
access, the users can be viewed as more trustworthy than on an unsecured network.
As only authenticated parties have access to the network, malicious users are less
likely to be connected to the network. However, there is no guarantee that a network
authenticated user does not have malicious intent using the proposed application.
The application should also be secure on insecure networks. Hence, the ledger also
provides several security measures. These will be described in the next section.
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3.3 The ledger

The second layer of the proposed solution is responsible for handling identities using
the ledger. As mentioned in Chapter 3.1, the ledger is responsible for enabling
authentication in the network. Every user, along with their authentication material,
is represented in the ledger. The ledger is an agreement among the users within the
network on which users are part of the network and how to authenticate them. The
following section will present the details of how the ledger works.

3.3.1 Ledger messages

To maintain a synchronized ledger among the users and distribute it to new users, the
users have to be able to exchange data. When a new device joins the network, it will
join and listen to a predefined multicast group. Every device using the application
is a part of the same multicast group. Hence, a message sent to this group can be
considered a broadcast message within the context of the solution. All messages
sent concerning the ledger are sent to this group. This creates the foundation for
synchronizing the ledger among all the users.

The underlying broadcast protocol is UDP. As UDP is a best-e�ort protocol,
it can not guarantee packet delivery. To reduce the chance of lost packets, every
broadcast message is sent multiple times with a given time interval between each
message. The number of transmissions, as well as the time between messages, is
further discussed in Chapter 5.1.

3.3.2 Ledger Entry (LE)

The ledger consists of one or more LEs. Each LE represents one user in the network
and contains the data required to connect to and authenticate that user. Thus, one
LE represents the identity of one user in the network. In order for a new user to join
a network, they have to create a valid LE and distribute it to the other users in the
network. If it is valid, the other users will add it to their ledger, making the new
user a part of the network. Chapter 3.3.3 provides further details on the process of
joining the network.

Each LE contains an X.509 certificate and an Internet Protocol (IP) address. The
certificate contains information on both the username and public key, which are also
key components of an LE. In the following section, the role of each of these pieces of
information will be described.
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Certificate

The most important piece of information contained in an LE is the certificate. The
certificate is in the format X.509, which is a standard for public key certificates,
defined by the ITU [CSF+08]. The certificate contains information about the
username and public key of the user.

The certificates can be signed either by a CA or by the users themselves. The
CA is a trusted third party available to the users through the Internet. To receive a
certificate signed by the CA, the user has to sign up and log in to the service while
the Internet is available. The user signs up using an email address as a username
and a password. Before receiving a certificate from the CA, the user has to prove
ownership of the email address. After signing up, the user can provide the CA with
their username, password, and a public key corresponding to a private key only
known to the user. If the password is correct for that username, the CA will generate,
sign and send a certificate to the user based on the username and public key.

If the Internet is unavailable and a user needs to obtain a certificate, they have to
generate and sign it themselves. The user will then have to generate a key pair, pick
a username, generate the certificate and sign it with the private key of the generated
key pair. With self-signed certificates, anyone can generate a certificate with any
username. Therefore, the proposed solution implements measures ensuring that only
one user can hold a specific username within a ledger.

Whether the user has a CA- or self-signed certificate is of importance when the
ledger is distributed. The reason is that in order to obtain a CA-signed certificate, the
user has to provide a valid email that they can prove ownership of. Hence, only one
user can obtain a valid CA-signed certificate for a given email. In contrast, anyone
can create a self-signed certificate with any email. Obtaining several CA-signed
certificates for multiple users is time-consuming and must be done while the Internet
is available. This increases the trust the system can put in a user with a CA-signed
certificate.

If a user encounters one LE with a self-signed certificate and one LE with a
CA-signed certificate, both with the same username, the user has to choose which one
to include in their ledger. The user will then always pick the LE with a CA-signed
certificate. This can happen when a new user joins the network as described in
Chapter 3.3.3 or if their ledger is not up-to-date as described in Chapter 3.3.6. LEs
with CA-signed certificates are always picked because they must have verified their
email address. By having a CA-signed certificate, a user can always be sure that
they can use it to join a ledger and not worry that their username will be taken.
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Username

The username is contained in the certificate. The username is required to be an
email address, and in order to obtain a certificate signed by the CA, the user has to
prove ownership of the email address as well. Using an email address that the user
owns is also recommended when signing up while o�ine because it guarantees that
no one else can have a CA-signed certificate with that email address. This, in turn,
guarantees that the user will not be replaced in the ledger. More details on how a
user may be replaced in the ledger are described in Chapter 3.3.6.

Using an email address as a username also serves another important role. Email
addresses are easy for users to read and remember. In addition, they can be easily
connected to the person owning the address because they are often shared with
friends, family, and colleagues. For users with a CA-signed certificate, this makes it
possible not only to prove their identity within the network but also to prove that
they are the person they say they are outside of the service.

Public key

The public key is, like the username, contained within the certificate, but it does
also play an essential role in itself. The public key in a user’s LE is what makes it
possible for other users to authenticate that user. Because the corresponding private
key is only known to the user who created the LE, a user only has to provide proof
that they know the private key to be authenticated. This proof can only be validated
by users that know the public key and is, therefore, an essential piece of information
in every LE.

IP address

The IP address is also a part of every LE, but in contrast to the certificate and
information contained in it, it is not used for security reasons. Instead, it is used to
set up a direct communication path between peers. Therefore, to avoid having to do
an IP address lookup every time two peers want to communicate, this is contained
in the LE.

Because IP addresses may change, it is possible to update the IP address of an
LE. This update is broadcast to all the other users, and the message is signed so
that only the owner of the LE can update the IP address.

3.3.3 Joining the ledger

The ledger contains one LE for every user in the network, and every time a new user
wants to join the network, a new LE has to be added. How this process works is
described in the following paragraphs.
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Figure 3.5: Broadcast message exchange when a new user joins the network

When a device connects to a new network, it first joins the multicast group, to
which all users are listening. Secondly, it broadcasts a request for the ledger to all
the users in this group. The first messages sent in Figure 3.5 shows this request. The
format of both the request and it’s responses are described in Chapter 4.2.1.

If the user does not receive any responses for a given amount of time, the user
assumes there are no other users in the network. The amount of time the user waits
is discussed in Chapter 5.1.6. The user will then proceed to create their own LE,
which at this point will make up the ledger.

More often than not, the user will not be the first to join the network and will
therefore receive responses from the existing users. This is shown in Figure 3.5. One
of the users will respond by sending all the LEs in their ledger, while the others will
send the hash of their ledger. Which of the users send the full ledger is discussed
in Chapter 5.1.7. The user will accept a ledger and store it locally based on these
responses. How the user decides which ledger to accept is discussed in Chapter 3.3.5.

As UDP is a best-e�ort protocol, packets might get lost, and all users might not
receive the full ledger during a voting. A user that does not receive the full ledger
will after – seconds request the ledger again. The user will pick a random user from
the users that responded with the correct hash, and request the full ledger from
them. If the user still does not receive the ledger within – seconds, they will request
it again from another user. This is repeated until the ledger is successfully received.
The value of – is discussed in Chapter 5.1.5.

After receiving the ledger, the user can create its own LE. If the user already has
a stored certificate and the corresponding private key, this can be used. If not, the
user will have to obtain a new certificate, as discussed in Chapter 3.3.2. Whether the
user uses an existing certificate or obtains a new one, the username in the certificate
cannot already exist in the ledger. The exception is if the new user has or can obtain
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a CA-signed certificate for that username. If this is the case, the user will replace
the conflicting LE in their ledger with their own LE. When the user then broadcasts
their LE containing a CA-signed certificate, all the other users will replace the LE
with that username with the LE of the new user.

When the user has successfully generated a valid LE that can be added to the
ledger, the user broadcasts it to the other users. All of the users will then update
their ledger accordingly.

3.3.4 Life cycle of the ledger

The first user to join a network running an application implementing the proposed
solution creates a ledger. This is done simply by creating an LE. Then, for every
user that joins the network, a new LE will be added, and so the ledger will continue
to grow.

Figure 3.6: Because Alice’s LE from the first time she joined the network, is still
in the ledger, she does not have to create a new LE the second time she joins the
same ledger.

A user who leaves the network either by quitting the application, connecting to a
di�erent network, or losing reception will delete the ledger stored locally. However,
the user’s certificate and keying material is stored because they may be reused in
another ledger should the user join another network. The LE of the user that leaves
are not removed from the ledger. Should the user rejoin the same network later in
time, and the same ledger is still maintained, the user will receive a ledger containing
an LE that they created. This is shown in Figure 3.6. Because the user still stores
the certificate and private key, the user will discover this and will continue to use
the LE already in the ledger. If the IP address of the LE does not match the user’s
current IP address, the new IP address will be broadcast to the network so that
everyone can update the IP address of that LE.
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Like a language is passed on to new generations, the ledger is passed to new
users joining the network. As long as there is still a user in the network that knows
the ledger, it will be passed on and continue to grow. When there are no longer
any devices in the network that passes the ledger on to new users, like an ancient
language, the ledger is e�ectively gone. The next user to join the network will not
learn the previous ledger but create a new one. This ledger will continue to be passed
on and grow as long as users pass it on.

3.3.5 Consensus in the ledger

Every time a new user joins the network, the user has to obtain the ledger to store
it locally. Because a user does not trust any other single user, it is important that
a single user can not manipulate what ledger the new user accepts. The process of
learning the ledger should therefore ensure that the ledger accepted by the new user
is the one held by the majority of the users.

To achieve this, all users are involved in distributing the ledger to new users.
As described in Chapter 3.3.3, the process starts with the new user requesting the
ledger from their peers. This request triggers a voting process. All the users in the
network respond by broadcasting a response to this request. The response contains
either the full ledger or a hash of the ledger. When deciding which ledger to accept,
both types of responses are considered a vote. The full ledger is hashed before all
hashes are compared. To ensure that each user can only vote once, the messages
have to be signed, and their certificate has to be included in the message. The ledger
corresponding to the most common hash will be accepted as the correct one.

When deciding what ledger is to be accepted, the one with the most votes overall
is not blindly selected. The reason is that users with self-signed certificates can
join the ledger and send votes. Because these certificates can easily be generated, a
malicious actor could quickly generate multiple users with self-signed certificates and
join a ledger. This could lead to one actor controlling the majority of users, thereby
gaining the majority of the votes. Controlling the majority of users would enable the
malicious actor to manipulate the ledger, which could lead to DoS attack. Gaining
the majority vote in a distributed ledger, and hence being able to manipulate the
ledger, is called a Sybil attack [AK21b].

To mitigate such an attack mainly votes from users with a CA-signed certificate
are considered. Other votes are only considered if no votes from users with CA-signed
certificates are received. That event might happen due to packet loss or when there
are no users with CA-signed certificate in the network. The reason votes from users
with a CA-signed certificate are valued higher is that the CA-signed certificates are
harder to obtain. Firstly, they have to be obtained while the Internet is still available.
Secondly, it will require the user to create an email for every certificate and validate
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that they own that email address. This makes it harder for anyone to conduct a
Sybil attack.

The following criteria must be met before a user accepts a ledger. The criteria
are designed to provide su�cient security while still guaranteeing availability by
ensuring a ledger is always accepted, regardless of the number and types of users in
the network.

1. If at least two CA-certified users agree on the ledger, and they make up more
than 50% of the CA-certified users in the ledger, that ledger will be accepted.

2. If – seconds have passed from the ledger was requested and at least one CA-
certified user has responded with the ledger, the ledger with most votes from
CA-certified users are accepted.

3. If – seconds have passed from the ledger was requested and no CA-certified users
have responded with the ledger, the ledger with most votes will be accepted.

– has to be set so that users can expect to have received all the votes within that
time. Further discussion on what the value should be, is found in Chapter 5.1.

The acceptance criteria are based on a majority rule, with some customization
related to the user certificate type. In a majority decision, the outcome is more
likely to be correct the more users participate in the decision making. More users
participating makes it harder for a malicious actor or a group of malicious actors to
a�ect decision-making. It is also less likely that a friendly user with an out-of-sync
ledger will a�ect decision-making. Hence, the system becomes more secure as more
users join the network.

3.3.6 Synchronizing the ledger

As previously mentioned, the underlying transport protocol used when sending
messages concerning the ledger is best-e�ort. This can cause some users’ ledgers to
become out of sync. That can happen, for example, if messages broadcasting the
LE of a new user are lost. Therefore, the proposed solution includes measures for
synchronizing the ledger among users in the network.

The most important measure for keeping the ledger synchronized is that all
messages concerning the ledger are broadcast. This includes requests for ledgers and
all the votes sent in response to that request. Because these messages are broadcast,
all the users in the network can receive and store these votes. Then, in the same
way as the user joining, the other users can use these votes to see if they have an
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Figure 3.7: LE of new user 1 is not included in the ledger from request 2, and is
therefore lost after new user 1 has registered.

updated ledger. If their ledger is not up-to-date, they can update it according to a
set of rules.

If a user sees that the accepted ledger contains one or more LEs with usernames
that do not exist in their ledger, they are added. If a user’s ledger hold any LEs
that do not exist in the accepted ledger, those LEs are not removed. There are two
main reasons why LEs are never removed from a ledger. The first is that it may
open the door for a ledger reset attack, which is described in detail in Chapter 3.3.7.
The second reason is that deleting LEs may lead to a lost LE, which is illustrated in
Figure 3.7. This can happen if two users join the network at about the same time.
Because the LE of User 1 has not been broadcast yet when the responses to ledger
request 2 is sent, those responses do not contain the LE of User 1. If User 1’s LE
is broadcast between the time when the responses to ledger request 2 are sent, and
when a ledger from ledger request 2 is accepted the network will accept a ledger
without User 1’s LE, even though the network has already received User 1’s LE. If
LEs could be removed from the local ledgers if they did not exist in the accepted
ledger, User 1 would be removed from the ledger and would have to sign up again.
However, since they are not removed, the next time a new user requests the ledger,
User 1’s LE will be included in the ledger.

There could also be a conflict between some LEs in the accepted ledger and the
ledger held by a user. A conflict between LEs means that two LEs with di�erent
certificates have the same username. This can happen, for instance, in the situation
illustrated in Figure 3.8. What happens is that the broadcast block from User 1,
message 1, is not received by all users present in the network. User 1’s LE is therefore
only added to User 1 and User 2’s ledger. When User 6 joins the network, they
accept the most common ledger, which does not include User 1’s LE. If User 6 claims
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Figure 3.8: If user 6 uses the same username as user 1, user 3-5 will accept it,
causing two user 1 and 2 and user 3-6 to have di�erent versions of the ledger.

the same username as User 1, it will be accepted by User 3-5, but as long as the
certificate is not CA signed, it will not be accepted by User 1 and 2. The network is
now split into two groups, where User 1 and 2 have User 1’s LE and the rest has User
6’s LE. If a new user joins the network, everyone will participate in the voting. The
ledger with User 6’s LE will be chosen as the accepted ledger, and since both User
1 and User 2 can see all the votes, they will replace User 1’s LE with User 6’s LE.
User 1 will then have to sign up again. However, should User 1 have a CA-signed
certificate, User 1 and 2 will not replace User 1 in their ledger. In that case, User 1
would broadcast their LE again, and the other users would replace User 6’s LE with
User 1’s LE, even though the majority had User 6’ LE.

Conflicts such as those described above will rarely happen because the username
should be an email address. If all users pick an address they own, there will be no
accidental conflicts. Accidental conflicts will not happen if the majority receive the
first broadcast LE neither, because the new users will then see that the username is
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Figure 3.9: If Mallory responds to request 2 first with stored valid responses, new
user 2 will accept an old version of the ledger.

taken. However, how such conflicts are handled is critical to ensure that malicious
actors cannot exploit them.

3.3.7 Mitigating attacks

There are several security mechanisms added to the proposed solution to mitigate
attacks. This section describes the most important ones and what attacks they
mitigate.

Vote replay attack

When a new user joins the network, they first have to obtain the ledger from the
existing users. To decide which ledger is correct, every user responds to the request,
with the responses acting as votes. This process has been described in further detail
in Chapter 3.3.3. If a valid vote in one voting could also be valid in another voting, a
malicious actor could exploit this to execute a replay attack. This is shown in Figure
3.9. In the figure, Mallory stores Alice’s response to request number 1. By storing
the vote, Mallory can vote on Alice’s behalf by replaying the stored response when
a new ledger request is received. The vote would be for a previous version of the
ledger and could lead to the new user accepting an outdated version of the ledger.
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Nonces are introduced to avoid that the response to one request is also a valid
response to any other request. The nonce is a randomly picked integer chosen by
the user sending a request and is sent along with the request. The nonce has to be
su�ciently large so that a user will not randomly pick a nonce that has already been
used. For a response to be valid for a specific request, the response has to include
the same nonce. Because an attacker cannot forge a signature, there is no way for
them to obtain a valid response signed by another user, and the attack is mitigated.

Ledger rollback attack

A ledger rollback attack is illustrated in Figure 3.10. The attack is conducted by
first storing the responses sent to a request. These responses will be signed and valid
for a specific nonce. Because these responses act as votes, they can be used later to
vote for an earlier version of the ledger. This attack is similar to the previous one,
but require the attacker to send out a response with the same nonce as the stored
responses. While the previous attack can be conducted on users when they try to
join the network, an attacker conducting this attack must assume that all users have
joined the network and know the current ledger.

In the situation shown in Figure 3.10, a new user joins the ledger after Mallory
has stored responses from the other users, i.e., Cole, Bob, and Alice, with nonce 1.
After the new user has joined, Mallory can send a new request with nonce 1 and
quickly send the stored responses with nonce 1. Then, when Cole, Bob, and Alice
send their legitimate responses in messages 10-13, the other users will discard the
responses, as they have already received a signed response from them. Therefore,
the stored votes will be in the majority, and all the users will accept the ledger from
before New joined the network. This way, Mallory can shut New out of the ledger,
making this a DoS attack.

To avoid this from happening, LEs are not removed from the ledger even when
they are not a part of the accepted ledger.

DoS by request flooding

Every request for the ledger broadcast in the network triggers a response from the
other users. All the users in the network then handle these responses. Flooding the
network with requests will therefore cause an increase in computational load on the
devices. If the computational load is su�ciently large, the device will no longer be
able to handle all the messages it receives, and new users will be unable to join the
network. When the computational load gets too large, the application will crash,
and the service becomes unavailable.
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Figure 3.10: By storing responses from Alice, Bob and Cole, Mallory can force
them to accept a ledger without New.

To combat DoS attack by request flooding, a user will not respond to requests for
“ seconds after responding to a request for the ledger. Requests for ledgers received
within this “ second window will be dropped. What value should be chosen for “ is
discussed in Chapter 5.1.8.

The messages are transmitted multiple times to avoid packet loss. As long as
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Figure 3.11: If one ledger request falls within the time window where a request is
dropped, another will fall outside it.

“ is less than the time between the first and last request transmission, dropping
these packets will not lead to requests not getting a response. Figure 3.11 shows
why the mitigation mechanism will not lead to new users not getting the ledger.
Suppose one of the transmissions is received inside the window where requests are
being dropped. The system is designed to receive another one outside of the dropping
window. Dropping some packets reduces the redundancy of the packets sent, hence,
increasing the probability of packet loss.

3.4 Connection establishment

The first time two peers establish a connection, they set up an mTLS connection.
mTLS provides confidentiality, integrity, and authentication between two parties
communicating over a reliable, in-order data stream. mTLS require both parties to
present a certificate, resulting in mutual authentication of the parties. Hence, the
parties can trust that they are talking to their alleged peer to the same degree as
they trust the certificates. The users only trust certificates already in the ledger, and
the certificates have to be either self-signed or signed by the CA. To ensure message
integrity in the handshake messages, the hash algorithm SHA256 is used, which is
considered secure [Dan12]. As discussed in Chapter 2.1.3, the initial TLS handshake
requires multiple messages to be sent and, hence, has more overhead. Therefore, an
e�ort has been made to reduce the connection establishment time the second time
two peers communicate.

After the initial mTLS handshake, the peers negotiate a symmetric key. The
second time two peers communicate, they do not set up a full mTLS connection but
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use pure TCP instead. The symmetric key is used to encrypt the data sent over the
pure TCP connection. Every time they communicate, the peers negotiate a key they
will use the next time they communicate.

The proposed solution uses DH key exchange to achieve a secure key exchange.
The DH key exchange is a well-known and tested algorithm that is hard to break
[MW00]. However, the DH key exchange requires both users to send their public key.
By introducing DH-ratchet, two messages are only needed the first time two users
communicate, while one message is required from there on.

The first DH key exchange between two users initiates a DH-ratchet. The ratchet
uses one user’s private key and the other user’s public key and thus requires the
exchange of two messages. These keys are used to calculate a shared DH secret, from
which the users derive the symmetric key. From the second time two users interact,
only one of the users has to update their key pair to generate a new symmetric key.
Only one message is therefore required to update the symmetric key. The users
renegotiate the symmetric key every time they set up a connection, hence, the system
provides both forward and backward secrecy between connections.

If an attacker can break one of the symmetric keys, he will be able to read all
messages within that conversation. By introducing double ratchets, this problem
is reduced to a backward secrecy problem, meaning the attacker will only be able
to read messages from that point in the conversation and forward in time. Double
ratchets use a KDF function on every key after use to ensure a key is only used once.
With double ratchets, it is not possible to find an old key given a new one, but it is
possible to find a new key given an old one. Using double ratchets and DH-ratchets
results in a system that provides forward secrecy within a conversation and forward-
and backward secrecy between conversations [MP16a].

To encrypt and sign messages with the symmetric keys, AES in GCM is used. This
algorithm is an authenticated encryption algorithm providing both confidentiality
and integrity. The algorithm achieves security equal to its key size. The proposed
solution uses AES in GCM with a key size of 256-bits as recommended by Android
[Goo22a].





Chapter

4Proof of concept application

This chapter describes the proof-of-concept application developed to validate the
proposed solution. Specifically, the chapter includes specifications on implementation
choices and technologies used to achieve the functionality of the proposed solution.

4.1 Overview

Figure 4.1: Application overview

The proof of concept application consists of six components. These are shown
in Figure 4.1. In order to achieve user authentication, a multicast client, multicast
server, a voting handler, and a ledger are involved. The multicast client and server
respectively send and receive multicast messages. The voting handler handles
processes related to consensus and sign-up. The ledger module records users associated
with the network and their authentication material. The unicast client and server
handle instant messaging.

An Android Service starts working as a multicast server when the application
starts. The multicast server opens a multicast socket and joins a predefined multicast
group. The multicast server handles all packets sent to the multicast group. Some
messages are handled entirely in the multicast server, while other messages are passed
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Figure 4.2: Show how the modules of the application work to handle requests.

further into the system. Chapter 4.2.1 further describes how the application handles
messages.

The application initiates a multicast client along with the multicast server when
it launches. The multicast client joins the same predefined multicast group and is
responsible for sending messages to the multicast group. All multicast messages are
sent using UDP.

Figure 4.2 shows when the application initiates a voting handler and how a ledger
is updated. When a new user joins the network, the user sends a request ledger
message which starts a new voting. For every new voting, the application initiates
a new voting handler. The voting handler handles votes, including full ledgers and
hashes, counts votes, selects the correct ledger, and is responsible for updating the
ledger after a finished voting.

The ledger module contains the ledger itself and methods for updating the ledger
and creating new ledger blocks. The application updates the information in the
ledger after every voting.

When the application starts, it initiates a unicast server in addition to the
multicast server. The unicast server listens for incoming requests to set up unicast
communication. On an incoming request, the unicast server sets up a TLS over TCP
or a pure TCP connection depending on the available encryption material.

When the user starts a chat, the application initiates a unicast client. The
unicast client sends a connection request to its peer’s unicast server and establishes
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Figure 4.3: Multicast message fields

a connection.

After a unicast connection is established, both server and client send and receive
messages. The types of messages is further discussed in Chapter 4.3.1.

4.2 Authentication

Consensus on the users’ identity is needed to enable authentication in the application.
How this is used for authentication is described in Chapter 3. This section describes
the messages and modules implemented to achieve the consensus.

4.2.1 Multicast messaging

The application uses a set of predefined messages to share and synchronize the ledger
between devices. These messages are sent to the predefined multicast group. Every
device joins this multicast group when starting the application. Hence, a message sent
in this multicast group is a broadcast in the context of the application. The following
paragraphs describe the structure of multicast messages and how the di�erent types
of multicast messages are used.

As shown in Figure 4.3, a multicast message has the following fields: a sender,
a payload, a signature, a nonce, a sequence number, a last sequence number, and
a message type. Di�erent message types use a di�erent subset of these fields. The
purpose of each field and its usage in the di�erent message types are further described
below.

The sender field holds the username or LE of the sender. The receiver uses this
information to look up authentication material for signature verification.

The payload field holds the information carried with the message. The di�erent
message types use di�erent but standardized formats for the payload. It typically
includes a ledger, a ledger hash, or a username.

The signature is made with SHA256 Elliptic Curve Digital Signature Algorithm
(ECDSA) and uses the payload and nonce as input. The signature helps provide
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Figure 4.4: Multicast message exchange

message integrity.

The nonce identifies to which voting process the message is related. Before the
application sends a request ledger message, a nonce is generated and appended to
the request. This nonce will serve as the identity of the voting process. All responses
related to this voting process will use the same nonce. The use of nonce also helps
mitigate the replay attack described in Chapter 3.9.

The sequence number and last sequence number are used when packets are
fragmented at the application layer. Because the messages are sent over an unreliable
UDP channel, there is a probability of messages getting lost. Fragmenting big
messages reduces the probability of a lost message. How fragmentation reduces
packet loss is further discussed in Chapter 5.1. The sequence number and last
sequence number fields aid in packet reassembly. How messages are fragmented is
further described when discussing FULL_LEDGER message below.

The message type indicates how the receiver should handle the packet. Five
di�erent multicast message types are defined. These are discussed below. Figure 4.4
and Figure 4.5 shows how the di�erent message types are typically triggered.

Multicast message types

REQUEST_LEDGER is the first message sent when a user starts the application.
The message starts a new voting process where the intention is for the new user to
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Figure 4.5: Multicast message exchange with user 4 not receiving full ledger

learn about its peers by receiving the full correct ledger. This message type uses
the message type field and nonce field. The nonce field identifies the voting process
this message initiate. All messages that are related to this voting will use the same
nonce. The use of nonce as identification for voting allows multiple users to join the
network simultaneously as multiple votings can proceed in parallel.

REQUEST_SPECIFIC_LEDGER is used to request the ledger from a specific
user. If a voting is finished, but only hashes of the most common ledger have been
received, the user sends this message to get the full ledger. This scenario is illustrated
in Figure 4.5 where message number 2 fail to reach User 4, and User 4 only receives
the hash of the ledger. The REQUEST_SPECIFIC_LEDGER message uses the
payload, message type, and nonce fields. The payload consists of the username of the
peer that should respond and a hash of the requested ledger. The user who should
respond is selected randomly from those who responded with the most common hash.
Because the REQUEST_SPECIFIC_LEDGER message is broadcast, the username
is needed in the payload to indicate which user should respond to the request. As
the REQUEST_SPECIFIC_LEDGER message and its response are broadcast, all
users can listen to the request and its responses. This means only one user has to
send this message which reduces the load on the network. The hash in the payload
field allows the respondent to ensure the correct ledger is sent in the response.

The application uses the FULL_LEDGER message as a response to REQUEST_-
LEDGER or REQUEST_SPECIFIC_LEDGER. This message type uses all the
fields of the multicast message. This message may be fragmented to support sending
of large ledgers. The FULL_LEDGER message is fragmented if the ledger has more
than four entries. This is further discussed in Chapter 5.1. In the first fragment,
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the sender field holds the LE of the sender. The LE includes the sender’s certificate,
which allows the receiver to verify the message signature. In the following fragments,
the sender field holds the sender’s username. This reduces the packet size while still
allowing the receiver to look up previously received encryption material. If any other
fragments are received before the first fragment, their integrity cannot be verified as
only the first fragment include the public key needed to verify the signature. The
fragments are then stored temporarily until the first fragment is received. When the
first fragment is received, the other fragments can be verified. The sequence number
and last sequence number indicate which number in line a fragment is and how many
fragments there are. This information is used when reassembling the ledger. The
signature provides message integrity and ensures every user only can contribute with
one vote per voting.

LEDGER_HASH is used as a response to REQUEST_LEDGER and contains a
hash of the full ledger. This message type uses the sender, message type, payload,
signature, and nonce fields. The sender field holds the LE of the sender. The
payload contains a hash of the ledger. As with the FULL_LEDGER message,
the signature provides message integrity and is used to ensure every user only
contributes with one vote per voting. The nonce value is the same as the nonce in
the REQUEST_LEDGER message, which triggered this response.

BROADCAST_BLOCK is used for broadcasting an LE in the network. After
completing a voting and receiving the correct ledger, a new user sends this message
to broadcast their LE to the network. This message type uses the sender, message
type, payload, signature, and nonce fields. The sender field holds the username of
the sender. The payload holds the LE of the new user. The signature proves that the
new user knows the private key related to the public key of the LE. The nonce value
is the same as the nonce in the REQUEST_LEDGER message, which triggered this
response.

IP_CHANGED is used to notify the network when a user changes IP address.
Message 7 in Figure 4.4 illustrates the use of this message type, where a user leaves
the network, then returns later with a new IP address. This message type uses the
sender, payload, signature, and message type fields. The sender field holds the ledger
entry of the sender. The payload holds the new IP address and the time of updating
the IP address. Including the time in the payload combats the replay attack. Without
this measure, an attacker could record the IP_CHANGED message and replay it
later, performing a DoS attack. Finally, the signature provides message integrity and
ensures only the owner of the LE can send a valid IP_CHANGE message.
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Figure 4.6: Voting handler flowchart

4.2.2 Authentication modules

The voting is an essential process used to achieve ledger consensus. The voting
handler handles messages and processes related to a voting. It does so by storing the
votes received, both full ledgers and hashes, counting votes, and selecting the correct
ledger after a voting is finished. It is also responsible for updating the ledger after it
learns the correct one. The voting handler is initiated when a REQUEST_LEDGER
message is sent or received. The nonce from the REQUEST_LEDGER message
identifies the voting handler. A new voting handler is initiated with every new voting.

Figure 4.6 shows how a new vote is processed when entering the system. First,
the multicast server receives and interprets the message received. If the received
message is of type FULL_LEDGER or LEDGER_HASH, the message is interpreted



50 4. PROOF OF CONCEPT APPLICATION

as a vote, and the multicast server checks the nonce to determine if a related voting
handler exists. If this is the case, the multicast server forwards the message to this
voting handler. If no related voting handler exists, the message is dropped.

Every user can only vote once. Hence, when a voting handler receives a new
vote, the certificate of the incoming vote is compared to the certificates of the
previously received votes to check if the user has already voted. If no match exists in
this comparison, the vote is accepted. If a match exists the vote is dropped. The
certificates are public, and a malicious user could easily send a vote with another
user’s certificate to vote on behalf of another user. Therefore, the voting messages
are signed, and votes with an invalid signature are dropped. This results in a system
where the voter has to know a certificate’s corresponding private key to vote with
the certificate.

If the received vote is from a user who has not already voted, the received voting
message is processed further by being formatted into a vote. If the voting message is
a LEDGER_HASH message, it is in the correct format and is added to the voting
pool together with the LE of the sender. If the voting message is a FULL_LEDGER
message, it must be validated and hashed before sending it to the voting pool. The
validation is done by iterating over the LEs to ensure no username duplicates exist.
If username duplicates exist, the ledger is considered corrupt, and the voting handler
drops the vote. If the ledger is valid, it is hashed with the SHA256 and added to the
voting pool together with the LE of the sender.

The voting handler will end a voting and choose a ledger after one of the criteria
described in Chapter 3.3.5 are fulfilled. The first criteria will accept a ledger if there
are at least two votes from CA-certified users for the same ledger, and they make
up more than 50% of the total number of votes. However, to fulfill the remaining
two criteria, a timer is needed. When a new user joins the network, the user does
not know how many users are active in the network, and hence, the new user can
not know how many votes to expect in a voting. The acceptance timer ensures that
the voting process always finishes and a ledger is accepted. Figure 4.7 shows that
the acceptance timer starts when the voting handler is initiated. The timer is set to
– seconds. The value of – must ensure that the user receives all voting messages
within this period. The value of – is further discussed in Chapter 5.1.5. When the
timer finishes, the ledger is accepted according to the last two criteria described in
Chapter 3.3.5.

In addition to the acceptance timer, a timer to check if the user is alone in the
network starts when the voting handler is initiated. The timers are shown in Figure
4.8. The alone-in-network timer is set to — seconds. The value of — must ensure that
potential voting messages reach the user before the timer finishes. The value of —
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Figure 4.7: Acceptance timer Figure 4.8: Alone in network timer

is further discussed in Chapter 5.1.6. If the alone-in-network timer finishes before
receiving any votes, the system assumes the new user is the first in the network, and
a new ledger is initiated.

4.2.3 Certificates

The application generates a key pair and a certificate when the user signs up for the
application. The certificate is generated using Bouncycastles X509 v3 Certificate
Builder and is signed using Bouncycastles ECC Content signer [The21]. If the user
signs up when o�ine, the certificate is generated on the user’s device and is self-signed.
If the user signs up online, the user will generate a key pair and send the public key
and username to the CA server running on the Internet. The CA server is a Google
Cloud function in the proposed solution. The CA server responds with a CA-signed
certificate. Both the CA- and self-signed certificate has a validity of 1 year. All users
have access to the CA server’s public key and can verify CA-signed certificates.

For a user to receive a CA-signed certificate, the user will have to sign up
online and verify their email. Online authentication and log-in are handled with
Firebase [Goo22b]. In addition, Firebase is responsible for checking global username
availability, password strength, and handling email verification.

Certificates are stored on the devices using Android Keystore [And22]. The user’s
own certificate is stored in a Keystore instance of the Android Keystore, while the
peer certificates are stored in a Truststore instance of the Android Keystore. After a
successful certificate generation, the certificate is stored in the Keystore as a root
certificate. This certificate will be shared with peers when joining the ledger and
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Figure 4.9: Unicast message fields

during the TLS handshake. When a user is added to the ledger, they broadcast
an LE that includes a certificate. When their peers receive this LE they will add
the certificate to their Truststore. On an incoming TLS connection request, the
application looks for certificates in the Truststore. If a valid certificate exists for the
user requesting a connection, the user is regarded as trusted, and they can establish
a connection.

4.3 Messaging

The service provided by the proof of concept application is an instant messaging
service. This chapter describes the messages and modules needed to provide this
service.

4.3.1 Unicast messaging

A set of predefined messages is used to establish a connection and send messages
between devices. These messages are unicast and are sent over a reliable mTLS over
TCP or pure TCP connection. When the application uses the di�erent technologies
is further described in Chapter 4.3.2.

The unicast messages in the proof of concept application are encrypted at the
application layer using AES in GCM. As described in Chapter 2.1.3, AES in GCM
provides both confidentiality and integrity of the data. Hence, together with the
ledgers authenticity property, this type of encryption provides integrity on the
application layer.

As shown in Figure 4.9, a unicast message has the following fields: a sender,
a payload, a ratchet key, and a message type. The di�erent message types use
a di�erent subset of these fields. The purpose of the fields and how the di�erent
message types use these fields are further described below.

The sender field holds the username of the sender. The receiver uses this infor-
mation to look up authentication and encryption material.
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Figure 4.10: Unicast message exchange

The payload field holds the information sent in the message. This information is
typically the content of the chat message the users send.

The ratchet key field holds information on the current ratchet key round rep-
resented as an integer. If the ratchet keys get out of sync, this integer indicates
how many times the original key has been hashed to produce the current symmetric
encryption key.

The message type indicates how the receiver should handle the packet. Four
di�erent unicast message types are defined. These are discussed below. Figure 4.10
show how the di�erent message types typically are triggered.

Unicast message types

CLIENT_HELLO is sent as the first message in a message exchange and initiates
the chat. This message type uses the sender, the message type, and the ratchet key
field. Upon receiving a CLIENT_HELLO message, the receiver opens a new server
socket used to send and receive messages in the current conversation. This server
socket is active until the server receives a GOODBYE message from the same peer.
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When the client sends the CLIENT_HELLO message, the system can not guarantee
a negotiated encryption key. Hence, the CLIENT_HELLO message is not encrypted.

GOODBYE is sent when the client device leaves the chat. This message type uses
the sender, the message type, and the ratchet key field. Upon receiving a GOODBYE
message, the receiver closes the related server socket. The GOODBYE message is
encrypted with the symmetric key, ensuring that a malicious actor can not send a
GOODBYE message to trigger a socket close.

CHAT_MESSAGE is sent to transfer chat data. This message type uses all the
message fields. The payload field holds the chat message to be transferred. This
message type is encrypted with the symmetric key to provide confidentiality and
integrity.

KEY_MATERIAL is sent to transfer keying material. This message type uses all
the message fields. The payload field holds the key material needed to do a DH key
exchange. This message type is encrypted to provide confidentiality and integrity.
As Figure 4.10 shows, the first time two users communicate, both users have to
send this message in order to agree on a symmetric key. The second time two users
communicate, the DH-ratchet provides the mechanisms to allow only one of the users
to send the key material. DH-ratchets are discussed in Chapter 2.1.3.

4.3.2 Messaging modules

In order to provide the messaging service, the application uses two modules: a unicast
client and a unicast server. The unicast client is initiated when the user opens the
chat activity. The user can only be in one chat activity at a time, meaning only one
unicast client is running at a time. The unicast client handles symmetric encryption
material and encrypts and sends unicast messages. The application terminates the
unicast client when the user leaves the chat activity.

When establishing a new connection, the unicast client decides if the connection
is to be an mTLS over TCP or a pure TCP connection. If two users have not been
in contact with each other before, no symmetric encryption material exists for these
users, and an mTLS over TCP connection is established. If the users previously have
been in contact, a symmetric key has been negotiated. This key will be used for
encryption, and the additional mTLS encryption is not needed. Hence a pure TCP
connection will be established from the second time two users communicate. Not
needing to establish a mTLS connection reduces the connection setup time. The
benefits of establishing a pure TCP connection is further discussed in Chapter 5.2.2.

The application initiates a new unicast server when the user receives a CLIENT_-
HELLO message. As a result, multiple unicast servers can run simultaneously,
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allowing the application to support receiving messages from multiple devices simul-
taneously. The unicast server is terminated when the user receives a GOODBYE
message.

The unicast client and unicast server maintain two ratchets for sending unicast
messages. The sending ratchet maintains the symmetric key used for encrypting
messages, while the receiving ratchet maintains the symmetric key used for decrypting
messages. Together they ensure that every encryption key is only used once [MP16a].
Ratchets are discussed in Chapter 2.1.3.

4.4 Activities

Android divides applications into di�erent interfaces called activities. The proof-of-
concept application consists of four activities: The main activity, the chat activity,
the sign-up activity, and the login activity.

4.4.1 Main activity

The main activity is the first interface presented to the user. This activity is
responsible for initiating the Keystore and Truststore and starting the multicast and
unicast servers.

Figure 4.11 shows the main activity interface. The interface displays the content
of the ledger as a list of users. Each list entry has a username, an IP address, a hash
of the certificate, and an indication of the certificate’s type. A yellow dot indicates a
self-signed certificate, and a green dot indicates a CA-signed certificate. If the user
taps a list entry, the application initiates a chat with that user.

4.4.2 Chat activity

When a connection between two peers has been initiated, the chat activity starts.
The chat activity is shown in Figure 4.12. In this activity, the users can read and send
messages. Messages are displayed in chronological order, with outgoing messages on
the right-hand side and received messages on the left-hand side. The user writes
their message in the bottom edit text and sends the message by pressing the send
button.

4.4.3 Other activities

If a user wants to sign up for the application, the user will start the sign-up activity,
shown in Figure 4.13. The sign-up activity displays fields for email and password
and a button for signing up. The user must fill in these fields with a valid email
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Figure 4.11: Main Activity Figure 4.12: Chat Activity

and password to sign up. If the user is online, a user will be created in Firebase.
Regardless of the Internet availability, an LE will be created and broadcast.

If a user is online and has already created a user in Firebase, they can use the
login activity shown in Figure 4.14. First, the user has to enter their credentials, and
if the credentials are correct and they have validated their email, they will receive a
CA-signed certificate.
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Figure 4.13: Sign Up Activity Figure 4.14: Log In Activity





Chapter

5Results

This chapter describes the test conducted to verify the security and performance of
the proof of concept application. The chapter also presents and discusses the results
and recommends optimal parameters to achieve the best security and performance.

5.1 Optimizing parameters

The application uses UDP as transport layer protocol for multicast messaging, used
for ledger management. UDP is a best-e�ort protocol which means packets may be
lost. The loss of multicast packets will a�ect the system’s ability to synchronize
the ledger and achieve a consensus on users’ identities. As described in Chapter
3.1.2 it is essential for the system’s authentication mechanism to achieve consensus.
Thus, the system’s ability to deliver multicast packets is essential for performance
and security. To reduce the packet loss and optimize the performance of the solution,
there have been conducted tests to see how di�erent parameters a�ect the system’s
performance. In this section, the test results used for deciding the value of those
parameters are presented, and a recommendation for each parameter is provided.

In the tests, one user is active in the network as a second user joins the network.
When the second user joins the network, they will request the ledger from the first
user, which will send a pre-programmed ledger to the multicast group. The tests
only regard packet loss, so there is no need for multiple peers to vote for a correct
ledger. The messages that are sent and received are logged. Based on these logs, it
is possible to determine whether the user has received the entire ledger. Each ledger
is seen as one packet in the tests, although it is transmitted in fragments. Therefore,
a ledger is considered lost if one or more fragments are not received. The tests have
been conducted using two Samsung Galaxy S21 5G phones and Netgear a MR2100
Nighthawk M2 wireless router.

There are several parameters that may influence system’s performance and the
main ones have been identified as:
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– The number of transmissions of each packet

– The time between transmissions

– The fragment size

– The time between fragments

The number of parameters makes it time consuming to test all the di�erent combina-
tions of possible values. Due to the time limitations of this project, the optimal value
of each parameter has been found by varying the value of the parameter in question
while keeping the values of the other parameters fixed. The fixed parameters’ values
are chosen to be near-optimal, based on a small sample of test results.

The number of LEs in the pre-programmed ledger in the tests negatively a�ects
the packet loss. For each test, the number of LEs is chosen so that the packet loss will
be near to 50% for what is believed to be the optimal value for the tested parameter.
A packet loss of around 50% will increase the statistical significance of the results
compared to a very high or very low packet loss. The test environment for testing
the parameters identified above are deliberately constructed to have a large packet
loss for the purpose of increasing the statistical significance. It is designed solely to
find the optimal values for the parameters tested. Hence, the results do not represent
how the system will generally perform under normal operation. How the system will
perform under normal circumstances is illustrated further in Chapter 5.2.

When calculating the packet loss, a full ledger is considered one packet, even
though it is sent in multiple fragments. The reason is that without all the fragments
the hash of the full ledger cannot be computed and it cannot be counted as a vote.
The packet is considered successfully received if all fragments are received at least
once. That is because the entire ledger will have to be received in order for it to be
considered a vote. The packet loss is the number of full ledgers received divided by
the number of full ledgers sent.

5.1.1 Number of transmissions

Multicast packets are sent multiple times to address the challenge of the unreliable
UDP protocol. By sending the packets multiple times, the chance of losing the message
is reduced. However, sending the packets too many times will be an unnecessary
load on both the devices and the network. Hence a test is conducted to find the
optimal number of transmissions needed.

Figure 5.1 shows how the packet loss is a�ected by the number of transmissions of
the same packets. The orange bars show the packet loss for the REQUEST_LEDGER
message, while the blue bars show the packet loss for the FULL_LEDGER message
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Figure 5.1: Number of transmissions

Number of
transmis-
sions

Number of
trials

Packet
loss

Confidence inter-
val 95%

1 300 12.3% [8.834, 16.597]
2 300 0.0% [0.000, 1.222]
3 300 0.3% [0.008, 1.843]
4 300 1.0% [0.207, 2.894]
5 300 4.0% [2.084, 6.883]
8 300 25.3% [20.510, 30.651]

Table 5.1: Statistical values for successful packet delivery given number of trans-
mission of same REQUEST_LEDGER packet

Number of
transmis-
sions

Number of
trials

Packet
loss

Confidence inter-
val 95%

1 300 100% [98.779, 100.000]
2 300 98.0% [95.698, 99.263]
3 300 86.3% [81.920, 90.011]
4 300 48.8% [42.882, 54.478]
5 300 41.7% [36.028, 47.472]
8 300 57.1% [51.185, 62.675]

Table 5.2: Statistical values for successful packet delivery given number of trans-
mission of same FULL_LEDGER packet containing 100 LEs
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sent in response to those requests. The packets with requests for ledgers are sent in
one fragment, and the packet loss will therefore be similar for other packets sent in
one fragment, such as messages containing the hash of the ledger. In contrast, the
full ledger contains 100 LEs in this test, and with a fragmentation size of 1, they are
sent in 100 fragments. With more fragments, the probability of losing one fragment
increases. Hence, the packet loss of the full ledger is expected to be higher than that
of the requests.

As most packets are sent in only one fragment, the packet loss shown in the
orange bars represents the packet loss in most packets. Hence, it is important to keep
this packet loss su�ciently low. However, the packet loss of the full ledger dictates
how many times the ledger will have to be requested and thus how long it takes to
sign up. Therefore, when choosing the number of transmissions, the aim is to find a
value that gives a low packet loss for messages of one fragment while still giving a
low packet loss for the full ledger. The value that is considered optimal is, therefore
4 transmissions.

5.1.2 Time between transmissions

Another measure to reduce packet loss is to stretch out the transmissions in time.
Because CSMA/CA and UDP are unreliable, packets can be lost for reasons such
as collision, interference, and device congestion. Stretching the transmissions out in
time reduces the probability that the same factor will a�ect multiple transmissions-
However, too long time between packets will increase the time it takes to sign up,
potentially a�ecting the user experience.

The tested parameter is the time between transmissions. This parameter describes
the time from sending the last fragment of the ledger in one transmission until sending
the first fragment of the ledger in the subsequent transmission.

Figure 5.2 shows how the packet loss is a�ected by the time between transmissions.
The figure shows that increasing the time between transmissions will decrease the
packet loss until 400 ms. The reason for this can be that what causes packets to
be lost in one transmission might be gone before the next one. From 400 ms and
upwards, the packet loss increases with more time between transmissions. This
indicates that the advantage of stretching out the transmissions in time is reduced
for values larger than 400 ms.

The number of transmissions has to be considered when analyzing the test results.
While 400 ms is the optimal time between transmissions for four transmissions,
according to these results, that might not be the case for another number of trans-
missions. That is because 400 ms between each transmission will result in 1200
ms from the first transmission starts until the last transmission starts. With four
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Figure 5.2: Time between transmissions

Time
between
transmis-
sions

Number of
trials

Packet
loss

Confidence in-
terval 95%

0ms 300 96.8% [93.955, 98.390]
100ms 300 61.1% [55.227, 66.553]
200ms 300 56.8% [50.850, 62.350]
300ms 300 53.9% [48.178, 59.742]
400ms 300 45.2% [39.278, 50.822]
500ms 300 50.8% [45.763, 55.560]

Table 5.3: Statistical values for successful packet delivery given time between
transmissions
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transmissions, 400 ms between each transmission will stretch the transmission out to
1200 ms in total. The total stretch in time will be lower for fewer transmissions, and
the optimal value for the time between transmissions might be higher.

If another value for the number of transmissions where selected, the time between
transmissions should be tested again to ensure that the value chosen is indeed optimal.

5.1.3 Ledger fragment size

When the ledger is su�ciently large, it is divided and sent in di�erent fragments, as
described in Chapter 4.2.1. That reduces the size of each packet sent and the chance
of the packet being lost. In the proof-of-concept application, one fragment holds n
LEs. The number of LEs in each fragment a�ects the size of each UDP message sent,
as well as the number of UDP messages that have to be successfully received in order
for the full ledger to be correctly assembled at the receiver. For the ledger to be
counted as a vote, every fragment must be received. Thus, the number of fragments
will a�ect the probability of the ledger being received.

When the size of each fragment is reduced, the probability that one fragment
is lost is also reduced as found in [KW05]. However with smaller fragments, the
number of fragments that has to be successfully received also increases. Hence, when
choosing the fragmentation size, a compromise between the number of fragments and
fragmentation size has to be made to optimize packet delivery. To find the optimal
ledger fragmentation size, a test has been conducted by varying the number of ledger
entries per fragment and observing the impact it has on the packet loss.

Figure 5.3 shows that the packet loss is lowest for a fragment size of 4 and is
larger for smaller or larger fragment sizes. With fragment sizes lower than 4, the large
number of packets that have to be received for a successful message delivery a�ects
the system more than the benefits of reducing each packet size. For fragment sizes
larger than 4, however, the increased chance of losing a packet when the fragments
are larger is more significant than the benefit of sending fewer fragments. Hence,
the optimal compromise between the number of fragments and fragmentation size is
achieved when each fragment contains 4 LEs.
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Figure 5.3: Fragment size

Fragment
size

Number of
trials

Packet
loss

Confidence in-
terval 95%

1 LE 500 8.4% [6.121, 11.185]
3 LEs 500 5.8% [3.918, 8.224]
4 LEs 500 3.2% [1.840, 5.145]
5 LEs 500 5.2% [3.425, 7.527]
7 LEs 500 12.6% [9.820, 15.307]

Table 5.4: Statistical values for successful packet delivery given fragment size
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5.1.4 Time between fragments

Figure 5.4: Time between fragments

Time be-
tween frag-
ments

Number of
trials

Packet
loss

Confidence in-
terval 95%

0ms 300 77.5% [72.171, 81.947]
5ms 300 52% [46.184, 57.776]
10ms 300 62.3% [56.583, 67.837]
15ms 300 70.3% [64.815, 75.445]
20ms 300 68.3% [63.626, 72.768]

Table 5.5: Statistical values for successful packet delivery given time between
fragments

When a ledger is fragmented, the time between fragments is how long the sender
waits between sending one fragment and the next. The time between fragments helps
stretch the transmission out in time. That will reduce the probability that multiple
fragments are lost due to the same factor, as also mentioned in Chapter 5.1.2. The
test has been conducted with a set of time between fragments from 0 to 20 ms.

Figure 5.4 shows how the packet loss is a�ected by the value of the time between
fragments. As shown, packet loss decreases when increasing the time between
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fragments from 0 ms to 5 ms. However, for values higher than 5 ms, the packet loss
increases as the value increases. Based on these results, 5 ms has been chosen to
achieve the lowest possible packet loss. Further values for the time between fragments
have not been investigated as too much time between fragments will result in a
system that uses a long time to send packets, a�ecting the user experience.

5.1.5 Time to receive full ledger

Figure 5.5: Median time to receive full ledgers of length n

Ledger size
Number
of trials Median Variance

Confidence interval
95%

1 LE 300 0.2s 0.048211 [0.218, 0.221]
30 LEs 300 0.8s 0.676108 [0.824, 0.835]
60 LEs 300 1.5s 2.635382 [1.859, 1.887]
90 LEs 300 3.4s 6.042278 [3.283, 3.341]
120 LEs 300 5.9s 9.880437 [5.517, 5.646]
150 LEs 300 6.6s 1.471836 [6.115, 6.548]

Table 5.6: Statistical values for time to receive full ledger given ledger length

Every request for the ledger triggers a response from all the members of the
ledger. However, a user cannot know how many responses they will receive and thus
when all the other users have voted. That is due to packet loss, the fact that users
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might disconnect from the WLAN, and that the user requesting the ledger does not
already hold the ledger.

In some cases, it is possible to decide which ledger is correct before votes from
all users are received. This is described in Chapter 3.3.5. However, when this is not
the case, the user joining the network will have to wait until they believe they have
received all votes before deciding which ledger is correct. However, a new user does
not know how many users are active in the network and hence how many votes they
are expected to receive. Thus, the new user waits a certain amount of time before
accepting a ledger to increase the probability of receiving all votes.

If a user does not receive the full ledger that is accepted, they will request the
ledger from another user. If the full ledger is still not received, the user will continue
to request the full ledger over and over again until it is successfully received. To
avoid unnecessary transmissions of the full ledger, the user will not request the ledger
again unless the ledger is believed to be lost. From the user requests the ledger, until
they send a new request for the full ledger, they will therefore wait at least the time
it takes to receive a full ledger.

Figure 5.5 shows the median time it takes to receive a full ledger of length n. In
reality, the users would receive not only a full ledger but also several hashes. Because
all the messages are handled in the same thread on the device, many hashes would
a�ect the time it takes to handle the responses. That would cause an increase in time
before the device would consider the full ledger as received. This increase should be
considered when choosing the value of the accept ledger timer.

If the value is too low, the e�ects will not be severe. If the ledger is requested
again while in transit it will cause unnecessary tra�c. If the ledger is accepted before
the full ledger is received, the correct ledger will be decided with one vote missing,
as the full ledger acts as a vote. This will only happen with large ledgers where it is
unlikely that one vote will change the outcome, as all benign nodes will vote for the
same ledger. The only consequence will therefore be an extra transmission of the
ledger.

When choosing how long a user should wait to accept a ledger, it is important to
consider that the user experience will be reduced if it takes too much time to accept
a ledger. By setting the timer to 4000 ms, ledgers of size 90 are most likely received.
For ledgers larger than 90, the packet loss is so high that the ledger most likely will
have to be sent multiple times. A timer of 4000 ms is not expected to a�ect the user
experience either, as it will only a�ect the time before a user can sign up or see other
members in the network. The timer will most likely not a�ect the time it takes to
sign up, as inputting user data takes more than 4000 ms. A delay of 4000 ms before
a user can see the other members is also comparable to what it takes with an instant
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messaging application in an online scenario.

5.1.6 Alone in network timer

New users cannot know if there are any users in the network when they join. Hence,
they always have to send out a request for a ledger. If the new user does not receive
any responses, they can conclude that they are the first user in the network. The
new user will then create a new ledger containing their own LE. To avoid the new
user creating a new ledger when there is an existing one, the new user has to wait
until they can be sure that they will not receive any responses to the ledger request.

As described in Chapter 5.1.1 each packet is sent four times. The time between
each transmission is chosen to be 400 ms, as also observed in Chapter 5.1.2. Therefore,
the total time it takes from the first to the last transmission is 1200 ms. That is the
case for both the ledger request and its responses. If all but the last transmission is
lost, it will therefore take 2400 ms plus the transmission time from the user sends
the request until it receives a response.

By waiting 2500 ms from the request is sent until the user concludes that they are
alone in the network, the user can be sure that they will not receive any responses
for that ledger request.

5.1.7 Who should send full ledgers?

Every request for a ledger is responded to with either a hash of the ledger or the full
ledger. While the full ledgers contain more information and are needed by the new
user, they are also more prone to packet loss. The di�erence in packet loss between
hashes and full ledgers increases as the ledger grows. For large ledgers, it is therefore
important to restrict how many users send the full ledgers so that as few as possible
votes are lost.

Having several users send the full ledger ensures redundancy, although there are
several reasons why the full ledger might not be received. The user responsible for
sending the full ledger can disconnect from the WLAN, or have closed the application
causing them to become unavailable, or the packets sent might be lost. If the full
ledger of the accepted ledger is not received, it will have to be requested from one
of the users who sent its hash. By having multiple users send the full ledger, this
situation is less likely to happen. If the ledger is not completely synchronized, the
user who sends the full ledger might also have an outdated version of the ledger,
which would also require the correct ledger to be requested.

Based on the results presented in Chapter 5.2.3, we can see that the ledger is
rarely unsynchronized, at least for ledgers smaller than 7 LEs. The advantages of
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having redundancy in sending full ledgers do not outweigh the increased probability
of packet loss in full ledgers, the additional time it takes to send them, and the extra
tra�c in the network caused by them. Hence, it is reasonable that only one user
sends the full ledger while the rest sends hashes.

Which user sends the full ledger and which sends hashes is not of great importance
to the ledger’s integrity, as both hashes and full ledgers are treated as one vote.
However, the responsibility of sending the full ledger must fall to exactly one user.
The system cannot know if this user has disconnected, but if that is the case, the
ledger will have to be resent by someone else after the voting has taken place.

Sending the full ledger is slightly more energy-consuming than sending just a hash,
so avoiding that the same user sends the ledger every time can be advantageous.

It is also an advantage that the user sending the ledger is not malicious and thus
is trying to send the correct ledger. It is not crucial to the ledger’s integrity, but if
the user responsible for sending the ledger does not send it or sends an incorrect one,
one of the users that sent the hash of the correct ledger will have to send the full
ledger.

The responsibility of sending the full ledger is given to a user with a CA signed
certificate, as long as there is such a user in the ledger, to increase the likelihood
that the responsible user sends the full ledger correctly. The responsibility is given
to the last CA signed user to join the ledger to avoid the same user will have to send
the full ledger every time. To know if they should send the full ledger, each user has
to keep track of whether someone else has joined the network after themselves. This
ensures that everyone knows whether they should send the full ledger or a hash.

5.1.8 Idle time after request

To avoid DoS attack by request flooding, a user waits for some time after responding
to a request before the user will respond to new requests. Requests received during
this time are discarded. The value for the idle time should be chosen to avoid all
transmissions of a request from a legitimate user falling into this window.

Each request is transmitted four times with 400 ms between each transmission,
as discussed in Chapters 5.1.1 and 5.1.2. The total time from the first to the last
transmission is 1200 ms. At least two transmissions should always fall outside this
window to increase the likelihood of receiving legitimate requests. To ensure that that
is the case, the idle time must be less than 800 ms. The idle time after responding
to a request is therefore set to 790 ms.
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Figure 5.6: Sign up time

5.2 Performance

In the following section, we will assess the performance of the application in terms of
the time it takes to sign up, distribute the ledger, and establish a connection, as well
as packet loss in UDP packets related to the ledger, and the probability of accepting
the correct ledger.

5.2.1 Sign up

For a user to use the application, they will need to sign up. In an o�ine scenario, the
sign-up process includes a check on username availability, generation of a self-signed
certificate, and broadcasting the ledger entry. This process should be fast to provide
a good user experience. However, the process of checking Internet availability and
the generation of certificates are time-consuming tasks and could pose a challenge to
the user experience.

A test was performed to find out how long it will take for a user to sign up. The
tests start when the user presses the sign-up button in the application and finish
when the application has generated an LE for the user. Figure 5.6 shows the sign up
times for 100 sign ups using the two phones.

On average, the Samsung Galaxy S21 used 393ms for sign-up, while the Samsung
Galaxy A71 used 1136ms. The worst test runs resulted in test times of over 2s, which
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Figure 5.7: mTLS establishment times

is a noticeable amount of time.

In large, the task of signing up depends on the certificate generation time.
Generating a certificate is performed within one device and is not dependent on
external factors. The Samsung Galaxy S21 is a newer phone running at a clock speed
of 2.9GHz [SAM22a], while the Samsung Galaxy A71 runs with a clock speed of
1.8GHz [SAM22b]. That is one of the reasons why the Samsung Galaxy S21 achieves
a lower sign-up time compared with the Samsung Galaxy A71.

The second time-consuming task during a sign-up is to check the Internet avail-
ability. That is done by pinging Google open DNS at IP-address 8.8.8.8. This task
can take up to 500 ms and is contributing to why some of the sign-ups take much
time.

5.2.2 Connection establishment time

As described in Chapter 3, the proof of concept application uses a combination of
asymmetric and symmetric encryption to achieve a lower connection establishment
time. Two tests have been conducted to find the time it takes to establish a connection.
One for establishing a mTLS connection, and one for establishing TCP connection.
The tests start when the user presses the LE of its peer and finish when a connection
has been established. Figure 5.7 shows the connection establishment times for mTLS,
and Figure 5.8 shows the connection establishment times for TCP.
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Figure 5.8: TCP establishment times

Test type
Number
of trials Mean Variance

Confidence interval
95%

Sign up time
Galaxy a71 100 1.136s 0.101467 [1.129, 1.142]
Sign up time
Galaxy s21 100 0.393s 0.000292 [0.393, 0.393]
mTLS establish-
ment times 100 0.368s 0.045291 [0.363, 0.372]
TCP establish-
ment times 100 0.243s 0.030059 [0.239, 0.246]

Table 5.7: Statistical values for performance tests
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The test results show that, on average, it takes 368ms to establish a connection
using mTLS and 243ms using TCP.

The test results show that TCP establishes a connection faster than mTLS.
However, a di�erence of 125ms is too small to be notable for a user, and the time
saved does not have a significant value to the user. However, with the TCP connection,
the first message sent can include a chat message, as no initial handshake is needed.
That could be an advantage since messages that carry information valuable to the
user are sent earlier. Nevertheless, the user has to type in the message he wants
to send. It is reasonable to believe that the typing process is slower than mTLS
establishment process of 368ms. Hence, the user will most likely not notice the
advantage of being able to send a chat message with the first message sent in the
conversation.

5.2.3 Ledger acceptance

Before a user can sign up for the application, the user has to get the correct ledger
or conclude that the user is alone in the network. Therefore, the time for accepting
the ledger is an important performance metric.

Tests have been conducted to measure how long it takes before the user accepts
the ledger. The test starts when the user opens the application and finishes when
the application has accepted a ledger. The time it takes to accept a ledger depends
on the number of users with CA-signed certificates. When there are one or fewer CA
verified users in the network, the ledger acceptance timer described in Chapter 4.2.2
always has to time out before the ledger can be accepted. However, when there are
two or more users, they do not need to wait for the timer as long as the conditions
described in Chapter 3.3.5 are met.

Figure 5.9 shows the di�erence in the time it takes to accept the ledger in a
network with only CA verified users and a network without any CA verified users. It
also shows how the time it takes to accept a ledger drops when the first condition of
acceptance is met, and the timer does not have to time out. The drop in acceptance
time from one to two CA verified users shows this.

The accepted ledger should contain the LE of all other users in the network. A
user has the freedom to communicate with all their peers only if all LEs are included
in the ledger. The probability that the n’th user joining the network accepts a ledger
containing the LE of all the users that have previously joined can be seen in Table
5.9. The results show that for ledgers up to 5 the accepted ledger are very likely to
contain the LE of all the users in the network. However, should the accepted ledger
be out-of-date it will be updated next time a new user joins the network.
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Figure 5.9: The time it takes to accept a ledger is a�ected by the number of peers
in the network

Number of
users in net-
work

Number
of trials Mean Variance

Confidence interval
95%

1 100 4.011s 0.000008 [4.011, 4.011]
2 100 0.749s 0.541153 [0, 1.809]
3 100 0.884s 1.034703 [0, 2.912]
4 100 0.511s 0.420092 [0, 1.335]
5 100 0.598s 0.607002 [0, 1.788]

Table 5.8: Statistical values for time to accept ledger given number of users in
network
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Number of
users in net-
work

Number
of trials Mean

Confidence interval
95%

1 100 1 [0.96378, 1.00000]
2 100 1 [0.96378, 1.00000]
3 100 0.99 [0.94554, 0.99975]
4 100 0.99 [0.94554, 0.99975]
5 100 0.99 [0.94554, 0.99975]

Table 5.9: Statistical values for a correct ledger being accepted with n users in the
network

5.2.4 Multicast packet loss

UDP is used as the transport layer protocol for multicast messaging. UDP is a best-
e�ort protocol which means packets may be lost. The loss of multicast packets will
a�ect the system’s ability to synchronize the ledger and achieve a consensus on users’
identities. Furthermore, as described in Chapter 3.1.2 the system’s authentication
mechanism relies on consensus on the ledger. Thus, the system’s ability to deliver
multicast packets is an important metric for performance and security.

To measure multicast packet loss, a test has been designed and conducted. The
test measures the probability that a FULL_LEDGER message is lost during a voting.
In the test, one user is active in the network as a second user joins. The appearance
of the second user triggers a voting where the first user sends a pre-programmed
ledger to the multicast group. The size of the pre-programmed ledger is varied,
where the values tested are 1, 30, 60, 90, 150 and 180. The packets that are sent and
received are recorded.

The tests have been conducted with the optimal variables found in Chapter 5.1.
The number of transmissions is 4. The ledger is fragmented with 4 LEs in each
fragment. The time between each fragment is 5ms, and between each packet is
400ms.

Figure 5.10 shows the number of FULL_LEDGER messages lost for di�erent
sizes of the ledger. Already for a ledger size of 60 LEs, the packet loss is relatively
high. However, this is not an upper bound for the number of LEs in the ledger. If
the full ledger is not received, the user will request the ledger again and again until
it is received successfully, as described in Chapter 3.3.3. The time to learn the ledger
increases with the probability of packet loss as users will wait – seconds between
each request for the ledger. Hence, the packet loss represents the probability that the
ledger must be requested again and that the time to learn the ledger is prolonged.
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Figure 5.10: E�ect on packet loss by size of ledger

Ledger
size

Number of
trials

Packet
loss

Confidence in-
terval 95%

1 LE 300 0.0% [0.000, 1.222]
30 LEs 300 1.7% [0.0543, 3.846]
60 LEs 300 25.0% [20.202, 30.299]
90 LEs 300 45.0% [39.278, 50.822]
120 LEs 300 68.3% [62.741, 73.560]
150 LEs 300 96.0% [93.117, 97.916]
180 LEs 300 99.6% [98.157, 99.992]

Table 5.10: Statistical values for successful packet delivery given ledger length
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Therefore, higher packet loss will increase the number of times the ledger must be
requested again. The low packet loss for one LE means that messages sent in one
fragment, such as BROADCAST_BLOCK and REQUEST_LEDGER are very likely
to be received, which is important to allow users to join the network.

The time it takes to learn the ledger increases when the ledger is su�ciently large,
as a user might have to request it multiple times before it is received. This issue can
be classified as a scalability issue and be exploited by an attacker to conduct a DoS
attack as described in Chapter 6.1.1. This attack would not a�ect communication
among peers already in the ledger but could significantly increase the time it takes
for a new user to join.

5.3 Security

To verify the security of the application, packets have been captured with and
analyzed with Wireshark [Wir22]. To capture packets, a computer was used as an
AP, and all packets were routed through the computer and saved. This section
presents the security-related findings.

5.3.1 Message security

When sending unicast messages, the proof of concept application should encrypt the
data using TLS or AES depending on the security material previously negotiated.
Figure 5.11 shows a Wireshark capture of a data packet the first time two users
communicate. As expected, the packet payload is encrypted using TLS and the
plaintext can not be read without knowledge of the used encryption key. In TLSv1.3
the version number gets the default value of 0x0303 - "TLS 1.2", as the version
number field is not in use [Res18]. Hence, Wireshark shows TLS 1.2 in the version
field even when TLSv1.3 is used. The protocol column shows the correct protocol,
which is TLSv1.3.

Figure 5.12 shows a Wireshark capture of a data packet the second time two
users communicate. As shown in the protocol column, TCP is used as transport
layer protocol. TCP does not provide encryption; hence, the data is expected to
be in cleartext. However, the payload is encrypted due to the AES encryption on
the application layer. The ciphertext is shown in the red box in Figure 5.12. The
encrypted payload while using TCP shows that the application works as expected
with AES encryption on the application layer the second time two users communicate.

The multicast messages sent from the application are sent in cleartext using UDP.
Figure 5.13 shows a multicast message with the BROADCAST_BLOCK message
type. The message data is not encrypted and can be read by anyone listening to the
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Figure 5.11: Wireshark capture of TLS tra�c

Figure 5.12: Wireshark capture of TCP tra�c
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Figure 5.13: Wireshark capture of UDP tra�c

multicast group. The message has been signed with the sender’s private key, and the
signature is appended to the message. The signature ensures message integrity.



Chapter

6Conclusion

Today a big part of Internet encryption relies on a PKI. In a PKI, the public keys
have to be signed by an entity trusted by all parties in order for peers to trust the
integrity of the public keys. Unfortunately, networks without Internet access cannot
always guarantee the presence of an entity trusted by all parties. Hence, the public
keys cannot be trusted, and parties cannot authenticate each other. Furthermore,
the absence of a trusted entity makes it challenging to set up a secure communication
path without doing out-of-band communication.

This thesis presents a solution for authentication without a central trusted unit
using a distributed authentication scheme and public and private cryptographic keys
to provide secure communication. The solution is divided into three independent
layers. The first layer presents a solution for setting up communication between the
peers relying on Wi-Fi infrastructure. The second layer provides authentication by
using a distributed ledger. Finally, the third layer provides secure communication
relying on mTLS and symmetric encryption.

The main contribution of this work is the distributed authentication scheme. The
idea is to create a distributed ledger with authentication material. As the ledger is
distributed, all users receive the authentication material needed to authenticate their
peers. The consensus mechanism ensures that the network as a whole agrees upon a
user’s identity and thus the user’s authentication material. This solution relocates
the responsibility of authentication from one single trusted unit to the network as a
cooperation between all network participants.

A proof of concept application has been developed for Android to validate the
proposed solution. The application provides secure communication between peers
that are connected to the same WLAN.

Various experimental tests have been conducted to identify how di�erent parame-
ters a�ect the solution’s performance. After finding what parameters provide the
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best performance, tests of the overall performance of the ledger have been conducted.
The tests investigate how the ledger is distributed and how the packet loss changes
depending on the ledger size. Additional tests have been performed to investigate
the performance of establishing a communication path between devices and activities
related to signing up to the system.

The system addresses and solves some authentication issues and establishes
a secure communication path in o�ine networks. However, there are still some
drawbacks to the solution. The main drawback is the application’s ability to scale
when implemented with multicast and UDP as ledger distribution protocol. The
application’s security increases as more users join the network making it harder
for a malicious user to achieve a majority in a voting. However, the system has
challenges related to packet loss as the ledger size increases. That means votes may
get lost, which may challenge the majority property of the consensus algorithm. In
addition, the scaling challenge may open for a DoS attack denying new users to join
the network. This attack is further discussed in the further work chapter.

6.1 Further work

The following section introduces suggestions on how the proposed system could be
improved. Unfortunately, these suggestions have not been investigated further due
to time constraints.

6.1.1 Mitigate ledger exhaustion attack

To join a ledger, a user has to broadcast a valid LE to the network. A malicious
actor could quickly generate multiple LEs and add them to the ledger. Because of
the scaling issues discussed in Chapter 5.2.4, a su�ciently long ledger could lead to
problems for users trying to join the ledger, as high packet loss will increase the time
it takes to learn the ledger.

To mitigate this attack, one could, for example, make it harder to join a network
or solve the problem with scaling. Making it harder to join the network could be
made by requiring a Proof-of-Work. However, the additional work may increase the
sign-up time and a�ect the user experience. Work that would significantly a�ect the
time it takes to sign up on mobile devices would not su�ciently slow down computers,
meaning that an attack could still be conducted.

Another way to mitigate the attack is to check that a human conducts the sign-up
process. That could be done automatically or by proving the sign-up to another user,
which would have to vouch for the new user.
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However, the preferred way to mitigate this attack is to solve the problem with
large ledgers. One solution that could potentially solve the problem is proposed in
Chapter 6.1.3.

6.1.2 Recording user activity

The proposed solution makes no e�ort to record or evaluate user activity or behavior.
The only indication of a user’s trustworthiness is their certificate. That means a user
who acts maliciously or attacks the network is treated the same way as a regular
user. Many of the packets sent in the system are signed, allowing the system to know
who created the packet. Recording and evaluating a user’s activity could determine
their intention and, if needed, penalize them.

Such a solution could be implemented in an o�ine and online environment.
By sharing this information in an o�ine environment, other users could use this
information to determine whether to communicate with this user or not. However,
this information would only be available to the users in the current network. If
the malicious user is kicked out of the network, they could move to a new network
and continue the malicious activity. The new network would not know of the
malicious activity performed in the previous network. Thus, this information should
be uploaded to a central trusted unit when the system goes online.

The CA could use the uploaded user activity to determine what penalties to
put on the malicious user. For example, the malicious activity could be punished
by not giving out a certificate or adding a score to the certificate indicating the
user’s trustworthiness. The trustworthiness score could be used to reduce the user’s
influence during voting or to indicate to other users how to relate to this user. In
the current system, the certificate only needs to be renewed once a year, giving a
malicious actor a long time to do the malicious activity before the consequences are
reflected in the user’s certificate. That can be handled by reducing the certificate
validity time.

6.1.3 Increased use of TCP

Broadcasting the messages regarding the ledger has its benefits, as everyone can
listen to all the tra�c. Hence, the users do not have to rely on others to forward
information to them. It does, however, force the service to use UDP as transport
layer protocol.

TCP for full ledgers

UDP has brought us several advantages like multicast and being lightweight, but
it also comes with some drawbacks regarding an unreliable packet delivery. As
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discovered, the packet loss is also exacerbated by an increased ledger size. A high
packet loss increases the chances that a vote is lost and that a packet must be
retransmitted, a�ecting the time it takes to learn the ledger and sign up.

When a ledger is lost, it is likely that only some of the fragments are lost. Thus,
requiring that the full ledger is sent again can be ine�cient. TCP o�ers mechanisms
for only requesting the lost fragments, e.g., through selective acknowledgments, which
could be utilized when sending full ledgers. Hence, the solution could avoid sending
the full ledger over UDP to increase e�ciency and performance when the ledger
increases in size. Instead, every user could send the hash of the ledger over UDP, and
the users that do not hold the correct ledger could request the full ledger over TCP.

Partial mesh topology using TCP

To send messages to all the other users using TCP would require every user to
maintain a TCP connection to every other user. That would be resource-intensive
and not scale well with many users.

In a partial mesh topology, each user is connected to a number of its peers. The
solution could replace broadcasting messages using UDP with creating a TCP based
partial mesh network, where the users are responsible for relaying information it
receives to their peers. Because this solution would be based on TCP, the transport
of packets would be lossless. However, each user would have to trust that at least one
of its peers relays the correct packets. Therefore, this solution would have to include
measures for setting up the network and maintaining the connections between peers
and consider how many peers each user should be connected to directly.
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Appendix

AScientific Paper

A scientific paper which covers the proposed core concept has been produced. It will
soon be submitted to the IEEE Conference on Communications and Network Security
the 26–28 September 2022, and has been included on the following pages.
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Abstract— Most of today’s digital communications over the
Internet rely on central entities, such as certificate authority
servers, to provide secure and authenticated communication.
In situations when the Internet is unavailable due to lack of
reception in remote areas, natural disasters destroying network
infrastructure, or congestion due to large amounts of traffic,
these central entities may not be available. This causes secure
communication, even among users in the vicinity of each other,
to become a challenge. This paper contributes with a solution
that enables peers within the vicinity to communicate securely
without a connection to the Internet backbone. The solution
operates on the Wi-Fi infrastructure mode and exploits a private
distributed ledger to ensure a trusted authorization among users
without a third party. Moreover, the solution enables users to set
up secure communication channels using mutual authentication
for exchanging data securely. Finally, the solution is validated
through a proof of concept application and extensive experiments
aiming at optimizing system parameters and investigating the
performance of the application are carried out. The results from
these measurements indicate that the solution performs well on
small to medium-scale networks.

Index Terms—Decentralized Authentication, Distributed
Ledger Technology, Device-to-Device Communication, Peer-to-
Peer Network, mTLS, Mobile Social Network.

I. INTRODUCTION

The use of certificates and private/public key pairs is a
common way to provide authentication over the Internet
[1]. Certificates enable end users to be authenticated from
a centralized Certification Authority (CA), a trusted third
party, in order to retrieve service [2]. However, the process
of authentication is challenged in situations where there is
a lack of Internet access or backbone connectivity. In case
natural disasters, power outages, or human-caused accidents
impact the Internet infrastructure, end users will not be able to
retrieve authentication and consequently use a secure service,
or establish secure communication.

Although the Internet may be unavailable due to disaster
impacts, mobile-equipped end users can still establish network
connectivity within the range of their mobile radios. Almost
all modern mobile devices are equipped with Wi-Fi radios
and this technology can be exploited for re-establishing con-
nectivity in a Peer-to-peer (P2P) fashion for offline commu-
nication. However, the lack of a trusted third party will still
prevent the users from establishing and providing secure and
authenticated communication. Wi-Fi can provide authentica-
tion through WPA-Enterprise [3]. However, WPA-Enterprise
requires an authentication server, such as a RADIUS server,

for establishing user identities but if the server is not available
due to Internet connectivity issues, Wi-Fi cannot provide
authentication. Furthermore, in a scenario without access to the
Internet, the users in the vicinity will not be able to establish
a secure communication channel due to the lack of a central
unit orchestrating the communication. As a result, additional
security mechanisms need to be built on upper layers to enable
data confidentiality, integrity and authenticity.

A distributed authentication mechanism can solve the issue
of a CA not being available on the network by allowing
benign nodes to agree on an immutable record of authenti-
cation material, despite the existence of malicious nodes. To
achieve such an agreement, Distributed Ledger Technologies
(DLTs) can be utilized [4]. However, most public DLTs
have resource-consuming security mechanisms tailored for
financial transactions. Transaction are typically secured by
consensus mechanisms such as Proof-of-Work (POW) and
Proof-of-Stake (POS), requiring large amount of resources or
financial transactions [5]. Therefore, these consensus mecha-
nisms are unsuitable for resource-scarce mobile devices when
exchanging authentication material. The mutual authentication
in mutual Transport Layer Security (mTLS) [6] allows all
parties to be authenticated, and the protocol also provides
data encryption. Furthermore, using symmetric encryption
combined with mTLS can improve connection establishment
times compared to only using mTLS.

A previous work addressing authentication in offline net-
works proposes a system where users receive authentication
material when an Internet connection is available [7]. If the
user loses the Internet connection, the authentication material
could still be used. However, this solution does not support
offline registrations, hence preventing new users to be au-
thenticated after the loss of Internet connection. [8] improves
this solution by using peer signed certificates to allow offline
registration. The peer signed certificates establish a trust chain
where users vouch for each other. In this solution, it is difficult
to draw a clear line to what point in the chain a user is
no longer trusted. In [9], the authors propose a blockchain-
based solution for decentralized authentication of IoT devices.
The proposal is based on the public blockchain Ethereum
and envisions the creation of specific trusted zones, called
Bubbles, where IoT devices within the zone establish a level
of trust. The trust is confined within each zone and inter-zone
authentication and trust is left for future work. However, as
also identified by the authors, the solution presents several



open issues related to the use of a public DLT. The solution
is associated with economic cost, is unsuited for real-time
applications, and requires an initialization phase with a node
assuming the role of a certification authority. Such solution is
infeasible for use cases with high user mobility. Henceforth,
a problem yet to be solved is how to efficiently authenticate

users in a mobile offline environment where users are able to

register offline, establish a secure communication path, and
have a clear separation between trusted and untrusted users.

This paper aims to design, implement, and validate a
solution for application layer security in offline networks. The
proposed solution exploits Wi-Fi Infrastructure mode as the
technology for offline communication, mTLS in combination
with a symmetric key solution to provide mutual authentication
and encrypted data exchange among peers, and implements
a private distributed ledger and a consensus mechanism to
agree on users’ authentication material. A proof-of-concept
instant messaging application has been developed to validate
the solution and the implementation source code is publicly
available1. An extensive experimental campaign on real equip-
ment has been performed for optimizing the system parameters
and analyzing its performance and security features.

The remainder of the paper is structured as follows: Section
II illustrates the proposed system architecture for enabling
secure and trustworthy communication over Wi-Fi Infrastruc-
ture mode. The implementation on a real testbed of smart
devices running the Android OS is presented in Section III.
Successively, the validation of the security adopted in the
architecture and the analysis of the experimental results are
presented in Section IV. Finally, Section V concludes the
paper.

II. PROPOSED SOLUTION

This section illustrates how the proposed solution enables
authenticated and secure communication.

A. Overall Architecture

Figure 1 illustrates the high-level architecture of the pro-
posed solution.

Going bottom-up, the first layer is the wireless connection
layer. This layer exploits Wi-Fi in infrastructure mode and
is responsible for handling wireless connections, including
both unicast and multicast transmissions utilized for ledger
management and the actual service. This layer can also be
built on other technologies but we chose Wi-Fi given the wide
adoption of Wi-Fi radios in mobile devices.

The second layer is responsible for handling identities and
enabling authentication. This layer consists of the ledger and
the consensus mechanism. The ledger contains authentication
material for all users in the network. By having all users agree
on the ledger’s content, the responsibility of authenticating
users is moved from a single entity to the network as a whole.
This layer is further discussed in the following sections.

The third layer is responsible for enabling secure communi-
cation. The first time two users connect, an mTLS connection

1Will be disclosed at a later time.

Fig. 1: High-level architecture of the solution.

will be established with the authentication material found in
the ledger. During this connection, the users will negotiate a
symmetric key using the Diffie-Hellman key exchange [10]
to be used the next time they communicate. From the next
time these users connect, they will establish a TCP connection
secured with AES in Galois/Counter Mode (GCM) [11]. Using
symmetric keys reduces the time to establish the connection.
To improve the security of the symmetric keys, DH- and
symmetric ratchets are used [12].

B. Distributed Authentication

This subsection describes how a ledger is used to achieve
distributed authentication.

1) Ledger Entry: The ledger consists of Ledger Entries
(LEs), where one LE represents one user in the network. When
new users want to join a network, they have to create a valid
LE and distribute it. Each LE contains an X.509 certificate
[13] and an IP address. The certificate can be signed by a CA
or by the users themselves. To obtain a CA-signed certificate,
the user has to sign up to the system while the application is
online using a password and an email address as the username.
The email address must be verified before receiving the CA-
signed certificate. Whether the certificate is CA- or self-signed
plays an important role in the consensus mechanism. This is
further described in Section II-B3.

2) Joining the ledger: When a new device connects to a
network, it first joins a predefined multicast group to which
all users attached to the network are listening. Secondly, it
broadcasts a request for the ledger to all the users in this group.
If the user does not receive any responses within ↵ seconds,
the user assumes there are no other users in the network. The



Fig. 2: Multicast message exchange when a new user joins
the network.

user will then proceed to create its own LE, which at this point
will make up the ledger. The value of ↵ is further discussed
in Section IV-A6.

Figure 2 illustrates the process of a new user joining an
already established network. The last CA-signed user to join
the ledger will respond by sending a full ledger, while the
others will send the hash of their ledger. If there are no CA-
signed users in the network, the last user to join the network
will send the full ledger. The new user will use these responses
to select the correct ledger according to the criteria described
in Section II-B3.

All messages regarding the ledger are sent using UDP
multicast. If the user has not received the full ledger that won
the voting, the user will randomly pick one of the users who
sent the hash of the winning ledger and request the full ledger.
If the user does not receive the full ledger within � seconds,
this process is repeated until the full ledger is received. The
value of � is further discussed in Section IV-A5.

After receiving the ledger, the user can create and broadcast
its own LE. The username used by the new user cannot already
exist in the ledger unless the new user can obtain a CA-signed
certificate with that username. If so, the LE with the CA-signed
certificate will replace the one with the self-signed certificate,
and the old user will no longer exist in the ledger.

3) Consensus in the ledger: When a new user joins the
network, a voting is initiated to agree upon and distribute the
ledger to the new user. As shown in Figure 2, all users send
a full ledger or a hash of their ledger. These messages are
interpreted as votes for the validation of the correct ledger
by the new user. The messages have to be signed, and their
certificate must be included to ensure that each user can
vote only once. A malicious user could generate many fake
users with self-signed certificates, corrupt the ledger with
fake entries, and drive the consensus. This would enable a
Sybil attack [14] whose consequences would be a Denial of
Service (DoS). To mitigate this, votes from users with CA-
signed certificates are given priority. This is because CA-
signed certificates contain usernames, i.e., email addresses,
that have to be validated online thus making the process
of impersonation much harder. As a result, the following
restrictive criteria, with a decreasing priority, must be met
before a user accepts a ledger:

1) If at least two CA-certified users distribute the same
ledger or corresponding hash, and they make up more

Fig. 3: LE of new user 1 is not included in the ledger from
request 2, and is therefore lost after new user 1 has registered.

than 50% of the CA-certified users in the ledger, that
ledger will be accepted, given the full ledger has been
received.

2) If � seconds have passed from the time the ledger was
requested and at least one CA-certified user has re-
sponded with the ledger, either full or hashed, the ledger
with most votes from CA-certified users is accepted.

3) If � seconds have passed from the ledger was requested
and no CA-certified users have responded with the
ledger, the ledger with most votes will be accepted.

� has to be set so that users can expect to have received
all the votes within that time. This value is discussed in
Section IV-A. Note that the above criteria are not exclusive
of each other. Priority is given to CA-signed users, however,
self-signed users are considered in some scenarios to ensure
the service is available even though no CA-signed users
are present. This may pose a risk in scenarios without CA-
signed users, but the risk will decrease as the number of user
increases.

4) Synchronizing the ledger: When a new user joins the
network, all users can listen to the following voting process
because all messages are broadcast. They can therefore see
which ledger is correct by comparing responses, in the same
way as the user joining. Hence, users with an incorrect ledger
can update their ledger. If the accepted ledger has LEs that
does not exist in the user’s ledger, they are added. If a
user’s ledger holds any LEs that do not exist in the accepted
ledger, those LEs are not removed. This mechanism combats
a possible ledger rollback attack, further mentioned in Section
II-B5, and ensures no LEs are lost. Figure 3 shows how a
LE could potentially have been lost if two users joined at the
same time.

An LE conflict means that two LEs with different certificates
have the same username. If there are conflicting LEs between
the accepted ledger and the ledger held by a user, the users
will update their ledger as long as the conflicting LE they hold
does not have a CA-signed certificate.

5) Mitigating attacks: There are several security mecha-
nisms added to the proposed solution to mitigate various types
of security attacks.

If a valid vote in one voting process could also be valid in
another voting, a malicious actor could exploit this to execute



Fig. 4: If one ledger request falls within the time window
where a request is dropped, another will fall outside it.

a replay attack. To mitigate this, every voting has a unique
nonce where all messages related to this vote have to contain
this nonce. Because the messages are signed, and an attacker
cannot forge a signature, there is no way for them to obtain
a valid response signed by another user, and the attack is
prevented from occurring.

An extension to the above attack is a ledger rollback where
an attacker stores both the request for the ledger and its
responses. As a result, the ledger could be reset to a previous
state by replaying these messages later, potentially removing
users from the ledger. To avoid this from happening, LEs are
not removed from the ledger even when they are not a part of
the accepted ledger.

Every request for the ledger broadcast in the network
triggers a response from the other users. All the users in the
network then handle these responses. Therefore, flooding the
network with requests will cause an increase in computational
load on the devices, potentially leading to a DoS attack. To
combat this attack, a user will drop requests received within �
seconds after responding to a request for the ledger. The choice
of the parameter � is discussed in Section IV-A7. Multicast
packets are transmitted multiple times to avoid packet loss.
As long as � is less than the time between the first and last
request transmission, dropping these packets will not lead to
requests not getting a response, as also shown in Figure 4.

C. Secure communication path

The first time two users connect, they establish an mTLS
connection using the authentication material found in the
ledger. During this connection, the peers negotiate a symmetric
key to be used for the next connection. The second time two
peers communicate, they use a pure TCP connection with
AES for encryption. Every time they communicate, the peers
negotiate a key they will use the next time they communicate.

Diffie-Hellman (DH) key exchange is used to negotiate the
symmetric keys. By introducing DH-ratchet, this process gets
faster as two messages are needed the first time two users
communicate, while only one message is required from there
on. The process is illustrated in Figure 5. The first DH key
exchange between two users initiates a DH-ratchet where one

Fig. 5: DH-ratchet

user’s private key and the other user’s public key are used to
calculate a shared DH secret. From the second time the two
users interact, only one user updates their key pair to generate
the new symmetric key. Therefore, only one key is sent, and
only one message is required to update the symmetric key.
The users renegotiate the symmetric key every time they set
up a new connection.

If an attacker can break one of the symmetric keys, they
will be able to read all messages within that conversation.
By introducing double ratchets, this problem is reduced to
a backward secrecy problem. Double ratchets use a key
derivation function (KDF) on every key after use to ensure
a key is only used once. Hence, it is not possible to find an
old key given a new one, but it is possible to find a new
key given an old one. Using double ratchets and DH-ratchets
provides forward secrecy within a conversation and forward-
and backward secrecy between conversations [12].

Fig. 6: Application overview.

III. PROOF-OF-CONCEPT IMPLEMENTATION

In order to validate the proposed solution, the system has
been implemented in a proof-of-concept Instant Messaging
application. The application consists of the six components,
shown in Figure 6.



Fig. 7: Voting handler flowchart.

A. Authentication components

The multicast client and server are responsible for sending
messages related to the ledger. The multicast server is im-
plemented as an Android Service while the client is a Kotlin
class. Both are initiated when the application starts.

The voting handler is responsible for handling the process
related to achieving consensus on the ledger. For every new
voting, the application initiates a new voting handler. The
voting handler ensures the votes are in the correct format,
counts votes, selects the correct ledger, and is responsible for
updating the ledger after a finished voting.

When a new vote is received by the multicast server, it
checks if there exists a voting handler for that nonce, and if
so, forwards it to the correct handler. Figure 7 shows how
a new vote is processed by the voting handler. The process
ensures the vote is related to an existing voting, that a user
does not vote multiple times, and ensures the vote is in the
correct format.

The ledger module contains the ledger itself and methods
for updating it and creating new LEs. The application updates
the information in the ledger after every voting.

B. Messaging components

When the application starts, it initiates a unicast server.
The unicast server listens for incoming requests to set up
unicast communication. The server opens a new port for every
new connection request, allowing the application to support
receiving messages from multiple devices simultaneously. De-
pending on the available authentication material, an mTLS
over TCP or pure TCP connection is established.

When the user starts a chat, the application initiates a unicast
client. The unicast client sends a connection request to its
peer’s unicast server and establishes a connection. After a
unicast connection is established, both server and client send
and receive messages.

C. Activities

Android divides applications into different interfaces called
activities. The proof-of-concept application consists of two
primary activities: the main and the chat activity.

(a) Main Activity. (b) Chat Activity.

Fig. 8: Android Application Activities.

Figure 8(a) shows the main activity interface. The interface
displays the content of the ledger as a list of users. Each list
entry displays the username, IP address, and a colored dot
indicating if the user’s certificate is self-signed (yellow) or
CA-signed (green). The application will initiate a chat with a
peer when the user taps a list entry. The application does not
limit the users’ ability to connect to other users based on their
certificate type. The users themselves have to decide whether
or not to trust a user with a self-signed certificate.

When a connection between two peers has been initiated,
the chat activity shown in Figure 8(b) starts. In this activity,
the users can read and send messages.

D. Ledger design parameters

The system must achieve a consensus on the ledger content
to enable authentication. The ledger distribution can be chal-
lenged by the use of unreliable access and transport layers,
i.e., wireless channel and UDP. Henceforth, the following
parameters are used to tune mechanisms on the application
layer that have been added to address the eventual packet loss:
i) number of transmissions; ii) time between transmissions; iii)
fragment size; and iv) time between fragments. A description
of each of the parameters is provided below, while tests used
for optimizing the value of each parameter can be found in
Section IV.

i) Number of transmissions: All messages used for ledger
management are sent multiple times to reduce packet loss
through redundancy.

ii) Time between transmissions: The time between transmis-
sions is defined as the time from sending the last fragment of
the ledger in one transmission until sending the first fragment
of the ledger in the subsequent transmission. Increasing this
parameter may reduce the probability that the same factor,
e.g., propagation conditions, will affect multiple transmissions.
However, too much time between packets will increase the



time it takes to sign up, potentially affecting the user experi-
ence.

iii) Fragment size: When a sufficiently large ledger is sent,
the message is divided into several fragments. In the proof-
of-concept application, one fragment holds n LEs. Every
fragment must be received for the ledger to be counted as
a vote. When the size of each fragment is reduced, the packet
loss is also reduced as found in [15]. However, with smaller
fragments the number of fragments that has to be successfully
received increases.

iv) Time between fragments When a ledger is fragmented,
the time between fragments may affect the packet loss simi-
larly to the time between transmissions.

IV. RESULTS

This section describes the test conducted to evaluate the
ledger parameter values and assess the security and perfor-
mance of the proof of concept application.

A. Optimizing parameters

Specific tests have been conducted for optimizing the pa-
rameters identified in Section III. In the tests, one user sends
a pre-programmed ledger to another user, and the messages
sent and received are recorded. The tests only regard message
loss, so there is no need for multiple peers to vote for a correct
ledger. Each ledger is seen as one message, although it is
transmitted in fragments to reduce message loss, with each
fragment containing 1 LE. Therefore, a ledger is considered
lost if one or more fragments are not received. That is because
the entire ledger will have to be received in order for it to be
considered a vote. The tests have been conducted using two
Samsung Galaxy S21 5G phones and a Netgear Nighthawk M2
wireless router. The optimal value of each parameter has been
found by varying its value, while keeping the parameters fixed.
The fixed parameters’ values are chosen to be near-optimal,
based on a smaller sample of the performed tests.

The test environment of the following tests is constructed
to have a large message loss to increase the statistical signifi-
cance. As the number of ledger entries in the pre-programmed
ledger negatively affects the message loss, the number of LEs
is chosen so that the message loss will be near 50% for what
is believed to be the optimal value for the tested parameter.
Such message loss will increase the statistical significance of
the results compared to a very high or very low message loss.
The test environment is designed solely to investigate the near-
optimal values for the parameters tested and does not represent
how the system will perform outside of the test environment.
The latter is investigated in more detail in Section IV-B.

1) Number of transmissions: Figure 9 shows how the
message loss is affected by the number of transmissions of
the same packet. The requests for ledgers messages are sent in
one fragment while the full ledger contains 100 LEs, and with
a fragmentation size of 1, it is delivered in 100 fragments.
As expected, the message loss decreases as the number of
transmissions increases for the full ledgers. However, the
message loss for small packets, here represented by request

Fig. 9: Number of transmissions.

(a) Time between transmissions. (b) Fragment size.

Fig. 10: Impact on the message loss as a result of varying
time between transmissions and fragment size.

messages for the ledger, increases with a higher number
of transmissions. Most of the messages sent in the system,
including hashes of ledgers, consist of one packet, so the
message loss of small messages is very important, even though
the message loss for larger ledgers is also of significance.
Choosing 4 transmissions achieves a low message loss of
the important small messages while achieving an acceptable
message loss of the larger messages, i.e., full ledgers.

2) Time between transmissions: Figure 10(a) shows how
the message loss is affected by the time between transmissions.
Increasing the time between transmissions will decrease the
message loss until 400 ms. That is because what causes pack-
ets to be lost in one transmission might be gone before the next
one. From 400 ms and upwards, the message loss increases
with more time between transmissions. This indicates that
the advantage of stretching out the transmissions in time is
reduced for values larger than 400 ms.

The number of transmissions has to be considered when
analyzing the test results. While 400 ms is the optimal time
between transmissions for four transmissions, according to
these results, that might not be the case for another number
of transmissions. With four transmissions, 400 ms between
each transmission will stretch the transmission out to 1200
ms in total. The total stretch in time will be lower for fewer
transmissions, and the optimal value for the time between
transmissions might be higher.

3) Ledger fragment size: Figure 10(b) shows the test results
for message loss for different fragment sizes. The figure shows
that the message loss is lowest for a fragment size of 4 LEs.

4) Time between fragments: Figure 11(a) shows how the
message loss is affected by the time between fragments. As
shown, message loss decreases from 0ms to 5ms between



(a) Time between fragments. (b) Median time to receive full
ledgers of length n.

Fig. 11: Impact on the message loss as a result of varying time
between fragments and the number of ledger entries’ effect on
time to receive ledger.

fragments. However, for values higher than 5ms, the message
loss increases with the time between fragments. Based on these
results, 5ms has been chosen as the optimal value.

5) Accept ledger timer: The time, �, a user waits before
accepting a ledger according to consensus criteria 2 and 3
should be chosen to ensures that most voting messages are
received before selecting a ledger. Figure 11(b) shows the
median time it takes to receive a full ledger of length n, which
is the largest voting message for ledgers of size. n. This value
is used to decide �. In reality, the users would receive several
hashes in addition to the full ledger. Because all the messages
are handled in the same thread on the device, many hashes
would increase the time it takes to handle the responses, and
should be considered when choosing the value of the timer.

If the value of � is set too low, a ledger might be accepted
while a vote is still missing. As all legitimate users will most
likely vote for the same ledger, one vote missing will not affect
the system for large ledgers. If the value is too large, the user
will have to wait longer before they can join the network.

By setting the value of � to 4000ms, full ledgers as large
as 90 LEs are most likely to be received and the time is not
expected to reduce the user experience.

6) Alone in network timer: The time, ↵, a new user waits
before concluding they are alone in the network should be
chosen to give other users time to respond to the new user.
As described in Section IV-A1 each packet is sent four times.
The time between each transmission is chosen to be 400ms,
as also observed in Section IV-A2. Therefore, the total time
it takes from the first to the last transmission is 1200ms. That
is the case for both the ledger request and its responses. If
all but the last transmission is lost, it will take 2400ms plus
the transmission time from the user sends the request until it
receives a response. Hence, the user should wait 2500ms from
the request is sent until the user concludes that they are alone
in the network.

7) Idle time after request: To avoid a DoS attack by request
flooding, a user waits � seconds after responding to a request
before the user will respond to new requests. The value for
the idle time should be chosen to avoid all transmissions of a
request from a legitimate user falling into this window.

(a) Sign up time. (b) mTLS establishment times.

(c) TCP establishment times.

Fig. 12: Time required to sign up and establish mTLS and
TCP connections.

Each request is transmitted four times with 400ms between
each transmission, as discussed in Sections IV-A1 and IV-A2.
The total time from the first to the last transmission is 900ms.
At least two transmissions should always fall outside this
window to increase the likelihood of receiving legitimate
requests. The idle time must be less than 600ms to ensure
that. Therefore the idle time, �, is chosen to be 590ms.

B. Performance

This section presents the results from testing the applica-
tions’ performance.

1) Sign up time: To use the application, the user signs up
by creating an LE. For users without an existing certificate,
this includes checking that the username is available, checking
if the device has an Internet connection, and generating keys
and certificates.

The test starts when the user has typed in the username and
presses the sign-up button and finishes when the LE has been
generated. Figure 12(a) shows the results from 100 tests using
two different Samsung devices, Galaxy s21 and Galaxy a71.

On average, the Samsung Galaxy s21 used 393ms for sign-
up, while the Samsung Galaxy a71 used 1136ms. The worst
test runs resulted in test times of over 2s, which is a noticeable
amount of time.

The difference in results between the phones is partly due
to the difference in clock speed between the phones [16] [17].
The volatility in test times is related to the variability in the
time it takes to ping the Google open DNS to check the
Internet availability.

2) Connection establishment time: The proof of concept
application uses a combination of asymmetric and symmetric
encryption to achieve a lower connection establishment time.
Two tests have been conducted to find the time it takes to
establish a connection, one for each type of connection. The
tests start when the user presses the LE of its peer and finish



Fig. 13: The time it takes to accept a ledger is affected by the
number of peers in the network.

when the connection is established. Figure 12(b) shows the
connection establishment times for mTLS, and Figure 12(c)
shows the connection establishment times for TCP.

The test results show that, on average, it takes 368ms to
establish a connection using mTLS and 243ms using TCP.
Even though establishing the pure TCP connection takes 34%
less time than mTLS, the difference can be negligible.

3) Ledger acceptance: Before a user can sign up for the
application, the user has to get the correct ledger or conclude
that the user is alone in the network. Therefore, the time for
accepting the ledger is an important performance metric. Tests
have been conducted to measure this.

The test starts when the user opens the application and
finishes when the application has accepted a ledger. The time
it takes to accept a ledger depends on the number of users with
CA-signed certificates, as described in the ledger acceptance
criteria introduced in Section II-B3.

Figure 13 shows how the time to accept the ledger is
affected by the number of users in the. Tests have been
conducted for a network with CA verified users and in a
network without any. The decreased time for more than one
CA verified user shows how the first acceptance increases
performance.

The probability that the n’th user joining the network
accepts a ledger containing the LEs of all the users that have
previously joined has been found to be 99% for up to 5 user.

4) Multicast packet loss: A test has been conducted to
measure message loss. The test measures how many full ledger
messages are lost during a voting. The test is conducted by
making one user send a variable-length ledger to another user
and recording if the message is lost. The tests have been
conducted with the optimal variables found in Section IV-A.

Figure 14 shows that the size of the ledger affects the
message loss negatively. Hence, the ledger size affects the
performance, as the user is more likely to have to request
the full ledger more times when the message loss is high.
In particular, we observe that up to 30 ledger entries, i.e.,
users in the same network, the packet loss is limited to
1.7% which means that the systems enables a fairly robust
ledger distribution for up to 30 users, i.e., small to medium-

Fig. 14: Effect of ledger size on the message loss.

Fig. 15: Wireshark capture of TLS traffic.

scale networks. Note that although the packet loss increases
significantly as the number of users increase, this is not an
upper bound on the network scalability as it simply indicates
that there is a higher probability that they would be required
to forward an additional full ledger request for reaching the
consensus.

C. Security

Packets have been captured with and analyzed with Wire-
shark [18] to verify that the instant messaging traffic is
encrypted. A computer was used as an AP to capture packets,
and all packets were routed through it and saved. This section
presents the security-related findings.

1) Message security: Figure 15 shows a Wireshark capture
of a data packet the first time two users communicate. As
expected, the packet payload is encrypted using TLS, and the
plaintext can not be read without knowledge of the encryption
key. In TLSv1.3 the version number gets the default value of
0x0303 - ”TLS 1.2”, as the version number field is not in use
[6]. Hence, Wireshark shows TLS 1.2 in the version field even
when TLSv1.3 is used. The protocol column shows the correct
protocol, which is TLSv1.3.

Figure 16 shows a Wireshark capture of a data packet the
second time two users communicate. The protocol column
shows that TCP is used as the transport layer protocol. The
payload is encrypted with AES on the application layer, and
the ciphertext is shown in the red box in Figure 16. The
encrypted payload while using TCP shows that the application
works as expected.

The multicast messages sent from the application are sent
in cleartext using UDP. Figure 17 shows a multicast message



Fig. 16: Wireshark capture of TCP traffic.

broadcasting a LE. The message data is not encrypted and
can be read by anyone listening to the multicast group. The
message has been signed with the sender’s private key.

Fig. 17: Wireshark capture of UDP traffic.

V. CONCLUSION

This paper presents a solution for authentication without a
central trusted unit using a distributed authentication scheme
and public and private cryptographic keys to provide secure
communication. The solution is divided into three independent
layers. The first layer presents a solution for setting up com-
munication between the peers relying on Wi-Fi infrastructure.
The second layer provides authentication by using a distributed
ledger. All users receive the authentication material needed
to authenticate their peers. The consensus mechanism ensures
that the network as a whole agrees upon a user’s identity and
thus the user’s authentication material. This solution relocates
the responsibility of authentication from one single trusted
unit to the whole network through cooperation between all
network participants. Finally, the third layer provides secure
communication relying on mTLS and symmetric encryption.
The application’s performance has been tested, and its en-
cryption confirmed. In addition, challenges regarding ledger
distribution have been identified and addressed through various
parameterized mechanisms.
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