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Abstract— Morphing attacks have posed a severe threat to Face
Recognition System (FRS). Despite the number of advancements
reported in recent works, we note serious open issues such
as independent benchmarking, generalizability challenges and
considerations to age, gender, ethnicity that are inadequately
addressed. Morphing Attack Detection (MAD) algorithms often
are prone to generalization challenges as they are database depen-
dent. The existing databases, mostly of semi-public nature, lack
in diversity in terms of ethnicity, various morphing process and
post-processing pipelines. Further, they do not reflect a realistic
operational scenario for Automated Border Control (ABC) and
do not provide a basis to test MAD on unseen data, in order to
benchmark the robustness of algorithms. In this work, we present
a new sequestered dataset for facilitating the advancements of
MAD where the algorithms can be tested on unseen data in an
effort to better generalize. The newly constructed dataset consists
of facial images from 150 subjects from various ethnicities,
age-groups and both genders. In order to challenge the existing
MAD algorithms, the morphed images are with careful subject
pre-selection created from the contributing images, and further
post-processed to remove morphing artifacts. The images are also
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printed and scanned to remove all digital cues and to simulate
a realistic challenge for MAD algorithms. Further, we present a
new online evaluation platform to test algorithms on sequestered
data. With the platform we can benchmark the morph detection
performance and study the generalization ability. This work also
presents a detailed analysis on various subsets of sequestered
data and outlines open challenges for future directions in MAD
research.

Index Terms— Biometrics, morphing attack detection, face
recognition, vulnerability of biometric systems.

I. INTRODUCTION

MORPHING attacks pose threats to Face Recognition
Systems (FRS) by exploiting the tolerance towards

intra-subject variations. Such attacks constitute a vulnerability
in various applications like identity management, identity
verified border crossing and visa management [1]. Morphing
attacks consists of generating a composite image of two
subjects resembling closely (for instance similar age and same
ethnicity) and using the composite image to verify both the
subject in an access control scenario. The composite image,
hereafter referred as Morphed Image should be of sufficient
quality to obtain a score above the threshold recommended by
a FRS in an automated face comparison system. It should also
be of sufficiently high quality to fool a trained border guard
when inspected manually [1].

The morphed image can for instance be obtained by
a malicious actor by colluding with a person having no
criminal record to mask the identity of the malicious actor
himself/herself, in order to obtain a new passport. When a
malicious actor is granted a valid identity document, he/she
can use it for various purposes posing a risk to national secu-
rity in the worst possible scenarios. With such an assertion,
the initial work demonstrating the morphing attacks illustrated
that commercial-off-the-shelf (COTS) FRS could be defeated
with a given set of morphed images [1]. That study further
assessed if morphing attacks would succeed when presented
to border guards. This means morphing attacks pose a threat
to FRS systems and leave a major security risk to any nation
where the malicious actor enters.

Initial studies have investigated various aspects of morphing
attacks starting from analysing the vulnerability of FRS in
detail [2]–[5] to providing measures to detect and mitigate the
attacks effectively [2], [6]–[12]. Further, a number of works
have focused on studying various parameters influencing the
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decisions of morphing attack detection subsystems, while
other works have focused on providing the set of metrics to
gauge the strengths of Morphing Attack Detection (MAD)
mechanisms. The works have also noted the vulnerability
of FRS with respect to morphing attacks, when using the
digital images and re-digitized images (digitally captured
image which is printed and subsequently scanned/re-digitized).
In pursuit of the current State Of The Art (SOTA) in MAD,
we first review the related work in the next section.

II. RELATED WORK IN MORPHING ATTACKS

ON FRS AND DATABASES

Morphing attacks can be conducted in two specific types
in a broader sense - (i) morphing attacks using digital images
(ii) morphing attacks using re-digitized images (a.k.a. printed-
and-scanned images). The former domain is inspired by the
practices of various countries which allow to upload a digital
representation of the face image for various applications such
as passport renewal in UK [21] and visa application in New
Zealand [22]. The latter is used in many countries where the
passport/visa/identity-card applicant is requested to provide an
image such as in India [23] and in most European countries
(e.g. in The Netherlands [24]) and this leaves the opportunity
for a malicious actor to morph the facial image before it is
printed. The image submitted by the applicant is thereafter
re-digitized for digital processing and biometric enrolment.
The earlier works have considered both scenarios and studied
the impact of both types of attacks [1], [3]–[5]. In this section,
we review the key aspects of earlier works in both domains.
While the literature is extensive in the recent years, we focus
in this work to the most relevant works with new databases
for MAD. The reader is further referred to Scherhag et al. [6]
for a detailed survey of the literature.

A. Morphing Attacks Using Digital Images

The first work illustrating morphing attacks was reported
in 2014 by Ferrara et al. [1] where a set of morphed images
was created using the AR Face Database [25]. 5 pairs of
images were morphed for male subjects and 5 pairs of female
subjects for studying the vulnerability of FRS [1]. Further,
to supplement the study, one morphed image constituted by
one male and one female subject and another morphed image
constituted by 3 male subjects was employed. The studies
specifically investigated the vulnerability of two commercial
FRS - Neurotechnology VeriLook SDK 5.4 [26] and Luxand
SDK 4.0 [27]. The initial studies asserted the success of all
morphed images in reaching a match for both constituent
subjects probe images and thereby illustrating the vulnera-
bility of face recognition systems. In the following work by
Raghavendra et al. [2], the authors investigated the vulnera-
bility on a larger set of grey scale images with 450 morphed
samples from 110 different subjects on the Neurotechnology
Verilook SDK [26]. In the same work, the authors also
proposed a first detection approach suitable for morphed
images that are processed only in the digital domain. Further,
Scherhag et al. [4] conducted a similar analysis on using both
a commercial SDK and OpenFace SDK - an open source face
recognition SDK. In yet another work, Raghavendra et al. [3]
employed a total of 431 morphed images to evaluate MAD
mechanisms using deep neural networks. In a complementary
work, Gomez-Barrero et al. [5] investigated the vulnerability
of FRS to morphing attacks using 840 images from the
Multimodal BioSecure Database [28] in the digital domain

and also investigated the vulnerability of fingerprint and iris
biometric systems against biometric attacks. As an alterna-
tive to morphing approaches, Raghavendra et al. [14] pre-
sented another concept of averaging facial images and proved
the vulnerability of FRS for morphed and averaged images
in the digital domain. The vulnerability was reported again
using the Neurotechnology Verilook SDK on a newly created
database of 580 morphed images and 580 averaged images.
In a different paradigm, Damer et al. [7] presented an approach
of generating morphed images using Generative Adversarial
Networks (GAN) on a set of 1500 images to create 1000 mor-
phed images. The authors compared the results of MAD mech-
anism against traditional Landmark Aligned (LMA) morphing
approaches, the vulnerability of the generated database was
reported using two open source face SDKs based on VGG
Network [29] and OpenFace [30]. The database was used to
devise MAD mechanisms on digital images alone in following
works [8]–[12].

B. Morphing Attacks Using Print and Scanned Images

Motivated by threats of morphed images to FRS, a num-
ber of works have also investigated morphing attacks using
re-digitized images (printed and scanned). The key assertion
behind these works is that the loss of pixel level information,
which was originally introduced by the morphing process,
and is now lost due to subsequent printing and scanning
processes using devices of various vendors decreases the MAD
capability. Further the printing and scanning processes cause
additional noise artifacts contained in the re-digitized morphed
images [4], [14]–[16], [31].

The works in detecting re-digitized images employ the
same techniques to generate morphs and then print-and-scan
them. Raghavendra et al. [14] introduced a print and scanned
database of 1423 morphed images using both morphing and
averaging of pixels. The images were printed using a RICOH
MPC 6003 SP on high-quality photo paper with 300 g/m2

density and scanned using a HP Photosmart 5520 scanner at
300 dpi for bona fide, morphed and averaged images. The
work also illustrated the vulnerability of COTS FRS with
regards to re-digitized images to be equal to digital domain
images while the MAD performance dropped. The same work
was further extended with a database to have 2518 morphed
images [16]. In a similar direction, Scherhag et al. [11],
introduced a printed-scanned morphed face image database
generated using the FRGCv2 face dataset. The authors used
the Epson DS-50000 Scanner at 300 dpi to print and scan
the morphed images generated using three different morphing
schemes (OpenCV/dlib, FaceFusion and FaceMorpher) [11].
Ferrara et al. [15] also introduced a printed-scanned database
for MAD, specifically to study the demorphing approach
where the authors subtract the re-digitized images to detect
a face morphing attack. The morphed images were printed
and scanned at 600 dpi using a professional quality photo-
printer [15].

C. Classification of MAD

While the aforementioned works have employed various
databases, most of the works have also reported MAD mech-
anisms correspondingly to mitigate the threats on FRS: The
algorithms for MAD can be classified in two classes:

• Differential-image MAD (D-MAD): A suspected morph
image is compared against an image captured in a trusted
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Fig. 1. An illustration of the D-MAD pipeline.

environment (e.g., ABC gate) to determine if the sus-
pected image is morphed.

• Single-image MAD (S-MAD): A suspected morph image
is investigated (e.g. in a forensic process), in order to
determine if the image itself is morphed without using any
prior information or another reference image (captured
under a trusted acquisition scenario).

We provide a brief review of the relevant algorithms reported
in the recent works for both S-MAD and D-MAD.

1) Differential-Image MAD: The general principle behind
the D-MAD algorithms relies on the idea that given a sus-
pected morphed image, Is and a reference image It captured
in a trusted environment, the difference between Is and It is
obtained. The lower the difference, either in the image space
or feature space, the larger the probability that the suspected
image is accepted as non-morphed (or bona fide image). The
first approach of D-MAD was based on inverting the morphing
process in a reverse engineered manner which was termed as
Demorphing [15]. In a similar manner, a number of works
have been reported where the difference of feature vectors
from the bona fide image and from the morph image is used
to determine if the suspected image is morphed [19], [32].
The deep features from two different networks are employed
to determine the difference in features in [19], and features
from the 3D shape and the diffuse reflectance component
estimated directly from the image was employed to detect a
morphing attack in [32]. Another set of works explored the
shift in landmarks of bona fide and suspected morph images
in face region to determine the morphing attack [10], [11].
For the sake of simplicity a generic illustration of the D-MAD
working principle is presented in Figure 1.

2) Single-Image MAD: S-MAD algorithms largely rely on
learning a classifier to distinguish the bona fide image from a
morphed image. Given a suspected morph image, Is , the tex-
ture information is extracted from the normalized and aligned
face. The texture features such as Binarized Statistical Image
Features (BSIF) and Local Binary Patterns (LBP) are used
to classify the images using a pre-trained SVM classifier [4],
[14], [16] in the earlier works. In a very similar direction,
the LBP features were also explored in [11], [33]. While
extending the works for MAD, another approach was proposed
to exploit the colour spaces and the scale spaces jointly
[16], [34]. With the intent to address also the post-processed
morphed images, pre-trained deep networks for extraction of
texture features were employed to detect the morphing attacks
not only in the digital domain, but also in re-digitized domain
(print-scan) [3]. Notably, the earlier works have employed
two deep neural networks including VGG19 [29] and AlexNet

[35], where they perform feature level fusion of the first fully
connected layers from both the networks [3]. In a continued
effort, other deep networks have been investigated for detect-
ing morph attacks [17]. Another approach to detecting morph-
ing attacks was proposed by extracting the features from the
“Photo Response Non-Uniformity“ where the characteristics
of the image sensor were employed to determine, if the image
was morphed or not [12]. Motivated by the effectiveness of
the noise modelling, better performing algorithms have been
reported where the color space has been investigated to seek
for residuals of the morphing process [36] including dedi-
cated context aggregation networks to automatically model the
noise [37].

D. Limitations

As noted from the set of works listed in the previous section
and Table I, there is a need for standardized and reproducible
testing of MAD mechanisms. The limitations can be further
divided in four main categories:

• Need for cross-dataset evaluation: As different works
have used in-house datasets generated using different
approaches, the proposed methods are only evaluated on
limited sets. Despite the proposed MAD approaches per-
forming very well on the in-house datasets, no works have
attempted to study the generalizable detection perfor-
mance except in recent works [33], [37] which attempts
to study the cross-dataset evaluation. The missing aspect
from different studies suffer from validation of SOTA
proposed approaches in terms of generalizable detection
performance and also indicating the directions for future
works. In order to address this aspect, it is necessary
to avoid the classical over-fitting problem for MAD
mechanisms.

• Need for sequestered database: Further to support
the reporting of generalizable detection performance in
studies, there is a need for sequestered data for testing
the robustness of the MAD algorithms. Thus, the need
for a sequestered dataset, to which researchers do not
have access for training purposes, is obvious. Sequestered
data should solely be used for reproducible testing.
Such tests on unknown data will establish a reliable
benchmark of algorithms and will indicate, whether said
algorithms are robust to handle various factors unaware to
researchers.

• Need for independent evaluation: As a third factor,
MAD algorithms are often tuned to perform well on
known datasets owing to the nature of in-house datasets.
Despite the datasets being divided in training, testing
and validation sets, it can be well observed that the
algorithms and researchers have full access to look at
the cases during an introspection and thereby improve
their own MAD detection performance iteratively. While
this enables continuous development and impovement
of algorithms, morphing attacks in a real-life border
crossing scenario can be compared to biometrics in the
wild, where neither morphing generation algorithms, nor
the post-processing approaches or printing and scanning
mechanisms can be fully controlled. For the algorithms
to be ready for operational deployment, there is a need
for independent testing using morphed images which are
unknown to the developers.

• Need for evaluation platform: While independent test-
ing is desired, there are not many organizations hosting
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TABLE I

STATE OF THE ART IN MORPHING ATTACK DATABASES AND VULNERABILITY REPORTING
(* INDICATES VULNERABILITY DEMONSTRATED USING COTS FRS)

such platforms limiting the researchers to devise robust
algorithms. Although a similar evaluation effort is carried
out by NIST [38], the NIST FRVT MORPH dataset,
especially the subset containing post-processed print-scan
and operational ABC gate images, is currently limited in
size. Therefore, the need for an independent evaluation
platform that runs continuously is needed to facilitate
algorithmic evaluation and benchmark the detection per-
formance against other competing algorithms in the
lines of earlier evaluation platforms from University of
Bologna, who have provided a long-standing fingerprint
evaluation system [39], [40].

E. Contributions of This Work

In order to address these four key limitations, in this
work we provide three major contributions followed by the
benchmarking of SOTA MAD mechanisms.

• A large scale sequestered database of morphed and bona
fide images collected in three different sites constitut-
ing to 1800 photographs of 150 subjects is released
along with this article. The database covers various age
groups, equal representation of genders and varied eth-
nicity making it an unique database for MAD algorithm
evaluation. The morphing of images was conducted with
6 different morphing algorithms presenting a wide vari-
ety of possible approaches. The images in the database
consist of 5,748 morphed face images, where subsets
consist of: (1) morphed images without post-processing to
remove digital artifacts, (2) morphed and post-processed
images to remove artifacts induced while morphing to
produce passport quality ICAO photos [41], (3) printed
and scanned versions of ICAO standard passport images
using different combinations of printers and scanners
including the scanners used in federal ID management
offices in Europe. The database is accessible through

the FVConGoing platform [40] to allow third parties for
evaluation and benchmarking.

• An unbiased and independent evaluation of 5 state
of the art MAD algorithms against 5,748 morphed
face images and 1,396 bona fide face images. A total
of 500,200 attempts with bona fide (69,800) and morphed
(430,400) face images are evaluated to report the detec-
tion performance of current SOTA MAD mechanisms.

• A new and independent evaluation platform is further
presented to facilitate reproducible research where any
researcher, governmental agency or private entity can
upload SDKs and measure the performance of their MAD
algorithm. The platform provides the benchmarking of the
MAD performance against all previously submitted algo-
rithms and specifically provides the results for different
subsets corresponding to age, gender or ethnicity. Such
detailed analysis will enable the researchers to identify
the performance limitations of MAD mechanisms and
facilitate them to develop more robust algorithms.

In the remainder of this article, in Section III we present
the newly composed database where the details of the entire
dataset are described. The new independent evaluation plat-
form is introduced in Section IV. In Section V, we present
the set of SOTA algorithms that are particularly evaluated on
the sequestered dataset. A detailed discussion of results and
the analysis of MAD performance is reported in Section VI.
While in Section VII we draw the conclusions and list current
limitations with the intention, to facilitate the efforts for
development of future algorithms.

III. SOTAMD DATABASE

As noted in the earlier works, the existing MAD efforts
by research institutions are largely based on internally cre-
ated databases, which often are limited in size, diversity of
image capture devices, image quality, realistic post-processing,
and variability of morphing algorithms. We note that a best
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TABLE II

NUMBER OF IMAGES IN THE DATABASE

TABLE III

MINIMUM AND MAXIMUM IMAGE SIZE

practice of using different databases and image acquisition
and testing protocols makes it challenging, to benchmark
MAD algorithms and thereby makes it for an operator next
to impossible to judge the applicability of current MAD for
operational deployment. In order to overcome these limitations
and provide a new dataset for benchmarking (both for S-MAD
and D-MAD algorithms) under realistic conditions with high
quality images, we created a new dataset, to which we refer
as State of the Art Morphing Detection (SOTAMD) dataset.
The dataset consists of:

1) Enrolment images: bona fide face images taken in a
capture set-up, which is meeting the requirements of
passport application photo capture (e.g., photographer
studio).

2) Gate images: bona fide face images captured live with
a face capture system in an Automated Border Con-
trol ABC) gate.

3) Chip images: compressed face images stored on an elec-
tronic Machine Readable Travel Document (e-MRTD).

4) Morphed face images: morphed images created from
the pool of passport face images. The database contains
different kinds of morphed images as listed below:

a) Digital morphed images: Images obtained
obtained directly after morphing in the digital
domain.

b) Digital post-processed morphed images: mor-
phed images that are processed (automatically
or manually) in the digital domain, to eliminate
or hide the artifacts resulting from a morphing
process.

c) Print-scanned morphed images: post-processed
morphed images that are printed and scanned to
simulate the passport application process.

A number of factors are considered in creating this dataset
as a joint effort in an EU funded project - State-Of-The-Art-
Morphing-Detection (SOTAMD) which are explained in the
subsequent sections.

Some information about the number of images in the
database and their size is given, respectively, in Table II and
Table III. The bona fide enrolment images have been cropped
to remove the background and resized in order to follow the
same inter-eye distance distribution of the morphed images,
so that it’s not possible to infer the image class from its size.
The details of the various subsets of data along with the details
on morphing methods, print-scan pipeline, and compression

TABLE IV

DEMOGRAPHICS OF THE SOTAMD DATABASE

TABLE V

TOTAL NUMBER OF IMAGES WITH MORPHING AND

MANUAL POST-PROCESSING

details is provided in Table XIII and Table XIV, as shown in
the Supplementary Material. The images from the database are
used to test both S-MAD and D-MAD algorithms according
to the testing protocols defined in Section IV-B.

A. Subject Pre-Selection

An important aspect of creating a successful morph attack
is subject selection, such that closely resembling pairs of
faces are chosen [4]. Following the guidelines of earlier
works, the SOTAMD database was created by selecting the
morph pairing candidates with high similarity with careful
considerations to age, gender and ethnicity. As an additional
measure, the selected morph pairing candidates were also
validated by observing the comparison scores from two spe-
cific commercial-off-the-shelf (COTS) FRS - Neurotechnology
Verilook SDK [26] and Cognitec FaceVacs SDK [50]. All
the morphed images that did not verify against probe images
from both contributing subjects were classified as low quality
morph set in the final database. This labeling makes the
SOTAMD database highly relevant to investigate low quality
and high quality morph detection capability. Such elimination
and careful selection has led to 75 unique pairs of candidates
for morphing from a total of 150 individuals of various
ethnicity and age group. The subjects were selected amongst
university staff and student corpus, and a casting agency
website. Table IV presents the gender, age and ethnicity
demographics of the selected subjects for the final SOTAMD
database.

B. Bona Fide Enrolment Images

For each of the 150 subjects in the SOTAMD database,
two enrolment images were captured in high quality studio
acquisition set-up reflecting the real-life passport photo capture
process. Further, the enrolment images are also printed and
scanned to have both digital and correspondingly printed and
scanned subsets. The print and scan processes are conducted
using various printers and scanners to increase the diversity of
the dataset.
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TABLE VI

CONTRIBUTED MORPHING METHODS, MANUAL POST-PROCESSING METHODS AND AUTOMATED POST-PROCESSING METHODS

Given the nature of this work reflecting a operational border
control scenario, we have exercised care to make sure the
images are ICAO complaint [41]. Thus, each of the images
in the enrolment set was processed with professional software
to comply with ICAO standards for eMRTD images. The
processed images were further used for printing and scanning
to closely follow the actual production scenario of passports
based on the regulations in the Netherlands and Germany
under EU member state regulations.

The number of bona fide enrolment images in the new
SOTAMD database is 300 in digital format, and 1096 printed
and scanned.

C. Morphed Enrolment Images

To simulate the criminal attack, we generated a num-
ber of morphed images to be used for enrolment, i.e.
to be hypothetically presented during the passport application
process. The morphed images have been created starting from
the bona fide enrolment images (one for each subject).

Unlike the noted previous works in Table I, the newly
created morphed set in the SOTAMD database has a
wide variation of employed morphing processes. Specifically,
the morphing set consists of an unprocessed image set and
fully-processed image set. To increase the challenging nature
of the dataset and in order to simulate realistic data, the post-
processed images are printed and scanned using different
pipelines. To further increase the diversity, each image pair
was morphed using contributing factors (referred as alpha
factor) of 0.3 and 0.5 for each of the two contributing faces.
Examples of two morphed face images are shown in Figure 2.

Furthermore, the processed images are resized using the
OpenCV library [51] to maintain the same inter-eye distance
distribution as observed in the morphed images to avoid any
possibility of inferring the image class from it’s dimensions.
Post-processing methods consist of automatic and/or manual
methods to conceal visible, and sometimes easy to detect mor-
phing traces. Due to such variation in algorithms, any MAD
algorithm that can achieve significant accuracy of detection on
the SOTAMD dataset can be deemed as robust. Examples of

Fig. 2. Impact of morphing factors (α) on morphing.

Fig. 3. Illustration of post-processing - Careful processing to remove the
artifacts can be noted in the eyelids, iris and nostril regions to eliminate the
traces of the morphing process. Refer Figure 4 for detailed illustration.

automatically and manually post-processed digital morphed
face image (left), and the same image after printing and
scanning (right) are shown in Figure 3.

Examples of a morphed face image, before (left) and
after (right) manual post-processing are shown in Figure 4.
Morphed face images that were both automatically and man-
ually post-processed compose the most challenging subset.
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Fig. 4. Morphed face image before and after manual Post-processing from
Figure 3. Only the central part of the face is reported to better appreciate the
effect of artifact removal. Careful processing to remove the artifacts can be
noted in the eyelids, iris and nostril regions to eliminate the traces of morphing
process.

All the enrolment face images (bona fide and morphed) were
processed with ICAO compliance [41] testing software before
entering into the database. An overview of the basic subsets
of morphed face images is shown in Table V.

A detailed account of the morphing methods that were
contributed by each partner can be seen in Table VI which
provides the various approaches used for automated and man-
ual post-processing pipelines.

A subset of the generated morphed images has been printed
and scanned using multiple pipelines (in analogy with the bona
fide enrolment images); the number of morphed images in the
database is therefore 2045 in digital format and 3703 printed
and scanned.

D. Gate Images

The SOTAMD database contains 10 gate images captured
from each subject (overall 1500 images) during a single
acquisition session at different locations under a simulated
ABC gate operational scenario.1

As an additional measure, the quality of the images captured
in the emulate ABC set-up was validated by reading the
corresponding eMRTD chip images and verifying them against
the captured gate image using COTS FRS.

The gate images were captured at two different partner
facilities (Norwegian University of Science and Technology
- referred to as NTN and Hochschule Darmstadt - referred
to as HDA) from 100 subjects that directly corresponds to
real ABC gates from two different vendors. These probe
images that are generated from two different vendors capture
devices, represent images that are used in real operational
settings. Another set (from University of Twente - referred
to as UTW) of gate images from 50 subjects are captured
with a simulated custom-built mock ABC gate. Thus, given
three different set-ups of ABC gates, the probe-set provides a
variation for benchmarking different MAD algorithms, which
demands an agnostic nature and robustness of the algorithms.
Examples of the different probe images captured from different
set-up are illustrated in Figure 5.

IV. EVALUATION PLATFORM

We further present a new independent evaluation frame-
work to measure the robustness of MAD. The MAD bench-

1Due to operational concerns not to interfere border control processes the
images were not acquired with operational ABC gates at airport locations.
Instead, HDA and NTN used a mock ABC gate setup provided by an ABC
manufacturer, whereas UTW created a mock ABC gate setup.

Fig. 5. Examples of probe face images captured from different ABC set-up.

marks have been realized following the testing framework of
FVC-onGoing [39], [40]. A web-based automated evaluation
platform has been designed to track the advances in MAD,
through continuously updated independent testing and report-
ing of performances on given benchmarks. FVC-onGoing
benchmarks are grouped into benchmark areas according
to the (sub)problem addressed and the evaluation protocol
adopted (e.g. Fingerprint Verification, Palmprint Verification,
Face Image ISO Compliance Verification, etc.). To maximize
trustworthiness of the results, tests are carried out using a
strongly supervised approach on a collection of sequestered
datasets and results are reported on-line by using well known
performance indicators and metrics. We follow the same
design principles to evaluate the MAD algorithms in this work.

The evaluation process is fully automated as illustrated
in Figure 6 which consists of participant registration, algorithm
submission, performance evaluation, and results visualization.
To protect sensitive information (biometric data) and to prevent
external attacks, the FVC-onGoing framework is composed
of two different modules physically located in two separate
servers:

• The Front-End server containing the web site and the
algorithm repository.

• The Test Engine server containing the test engine and
the benchmark datasets.

A firewall protects the Test Engine server by blocking
all inbound and outbound connections on public and private
networks. Only a few authorized users can access the Test
Engine server from a specific terminal using a protected
local connection. Moreover, to avoid undesirable behaviour
of the submitted algorithms, all of them are first analysed by
antivirus software and then executed in a strongly controlled
environment with minimal permissions.

Algorithms can be provided in the form of i) a Win32 con-
sole application or ii) a Linux dynamically-linked library
compliant to NIST FRVT MORPH specifications [38].

Two different benchmark areas (D-MAD and S-MAD) have
been created to evaluate the accuracy of MAD algorithms in
the differential- and single-image scenarios. Table VII provides
detailed information on the benchmarks contained in the two
benchmark areas. Algorithms submitted to these benchmarks
must comply to specific protocols, whose details are given on
the FVC-onGoing web site [40].

A. Detection Performance Evaluation

The evaluation platform is designed to report a number
of performance metrics for MAD algorithms as detailed in
this section. For each experiment bona fide and morphed
face images are used to compute the Bona fide Presentation
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Fig. 6. The figure shows the architecture of the FVC-onGoing evaluation framework and an example of a typical workflow: a given participant, after registering
to the Web Site (1), submits some algorithms (2) to one or more of the available benchmarks; the algorithms (binary executable programs compliant to a
given protocol) are stored in a specific repository (3). Each algorithm is evaluated by the Test Engine that, after some preliminary checks (4), executes it on
the dataset of the corresponding benchmark (5) and processes its outputs (e.g. comparison scores) to generate (6) all the results (e.g. EER, score graphs),
which are finally published (7) on the Web Site.

TABLE VII

D-MAD AND S-MAD BENCHMARKS

Classification Error Rate (BPCER) and the Attack Presentation
Classification Error Rate (APCER). As defined in [52] the
BPCER is the proportion of bona fide presentations falsely
classified as morphing presentation attacks while the APCER
is the proportion of morphing attack presentations falsely clas-
sified as bona fide presentations. The following performance
indicators are reported:

• EER (detection Equal-Error-Rate): the error rate for
which BPCER and APCER are identical

• BPCER10: the lowest BPCER for APCER≤10%
• BPCER20: the lowest BPCER for APCER≤5%
• BPCER100: the lowest BPCER for APCER≤1%
• REJNBFRA: Number of bona fide face images that cannot

be processed
• REJNMRA: Number of morphed face images that cannot

be processed
• Bona fide and Morph detection score distributions
• APCER(t)/BPCER(t) curves, where t is the detection

threshold
• DET(t) curve (the plot of BPCER against APCER)

B. Protocols for Evaluation

In order to benchmark the MAD algorithms, we defined two
specific protocols for D-MAD and S-MAD respectively:

• D-MAD: in this case, the algorithms receive as input a
pair of images (an enrolment image and a gate image)
and are requested to estimate the probability that the
enrolment image is morphed, based on a differential

analysis of the two input images. The enrolment images
available in the database are thus compared against the
gate images (i.e. trusted live capture) according to the
following protocol:

– Bona fide images: the bona fide enrolment image
is compared against the gate images of the same
subject;

– Morphed images (factor 0.3): the morphed enrol-
ment image is compared against the gate images of
the subject who contributed least in the morphing
(the hidden identity);

– Morphed images (factor 0.5): the morphed enrol-
ment image is compared against the gate images of
both contributing subjects.

• S-MAD: in this case, the algorithms receive as input a
single image and are requested to estimate the probability
that the image is morphed (i.e. to report a morphing
likelihood score). To this aim, the probe set consists of
the whole set of available enrolment images (bona fide
and morphed).

The resulting number of attempts for the two benchmarks is
provided in Table VII.

V. MAD ALGORITHMS

A number of existing state of the art MAD algorithms
are evaluated on the newly created SOTAMD database using
the new evaluation platform. Within the scope of this work,
both D-MAD and S-MAD algorithms have been submitted to
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the corresponding FVC-onGoing benchmarks. In this section,
we provide a brief description of the algorithms that were
tested on the newly developed database and the evaluation
platform.

A. D-MAD

A D-MAD algorithm uses additional information from
a second image known to be bona fide (e.g. a live image
captured in an ABC gate) to detect morphed face images.
D-MAD algorithms obtain the differences in images using tex-
tural features (textural features or deep features) or landmark
shifts. We present a set of D-MAD algorithms evaluated on
SOTAMD database in the subsequent sections.

1) BSIF: It is based on a set of texture features obtained
using the Binarized Statistical Independent Features (BSIF)
with a 8-bit filter of size 3 × 3, applied on the normalized
and aligned image [53]. Given the histogram feature vector of
the dimension 1 × 4096 for hs and ht respectively, the dif-
ference is presented to a pre-trained SVM classifier trained
on the bona fide and morphed data from FERET [54] and
FRGC [55] images. The approach also considers a number
of post-processing steps such as median filtering, histogram
normalization and sharpness processing on the images before
training the SVM classifier for morphs generated from Face-
Morpher and OpenCV.

2) DFR: It utilizes the information of the embeddings
(feature vectors) of the ArcFace algorithm [56], a ResNet
based face recognition system. The fundamental idea is to use
the feature vectors of the face-generating neural network to
train an SVM. Since the neural network does not encounter
morphed facial images during training, it can be excluded that
the feature extraction overfits to artifacts of certain morphing
algorithms, which in turn leads to a higher robustness of the
resulting MAD algorithm. The ArcFace feature vector has
a length of 512 features. The feature vectors of the e-gate
live capture and the suspected morph image are subtracted.
The resulting difference is used to train an SVM with RBF
kernel. The algorithm evaluated in this paper was trained
on the bona fide and morphed data from FERET [54] and
FRGC [55]. Details of the DFR MAD algorithm can be found
in [19].

3) MBLBP: It consists of pre-processing, calculation of
multiple block LBP from both Is and It followed by classi-
fying them as a bona fide image or morphed image using the
pre-trained SVM classifer [53]. The Dlib landmark detector
is used to detect the facial area and the landmarks with the
face in the pre-processing step where the face is realigned and
normalized to achieve ICAO compliance [41]. The normalised
face image is then cropped to the 320 × 320 pixel wide
region of from which the LBP information is extracted using
4 × 4 equally sized blocks of the image. Within each block,
a window size of 5 × 5 pixels is employed to obtain the
histograms. Given the histogram of hs and ht for Is and
It respectively, a difference of hs and ht is obtained which
is given to the SVM classifier to obtain a final decision on
suspected image as morphed or bona fide image. Details on
the MBLBP algorithm can be found in [53].

4) WL: This method is based the fact that facial landmarks
are usually averaged between two individuals when morphed
images are created. Therefore, the distance of a given landmark
(e.g., right corner of the right eye) between two bona fide
images of the same subject will be smaller than the distance

between that same landmark from a bona fide images of
the subject and the morphed images with another subject.
To exploit this idea, a set of 68 facial landmarks is extracted
from each input image using dlib. Subsequently, two types
of features are computed: Euclidean distances between land-
marks, and angles between a pre-defined set of neighbouring
landmarks. In order to account for the reliability of the
landmarks estimation (e.g., the eye corners are more stable
than landmarks on the lips), different weights are applied to
the distances before they are classified as bona fide or morphed
images using an SVM. Details on the computations of the
distances and angles can be found in [10], [57].

5) DR: This method is based on the differentiating the
image from bona fide image captured from trusted envi-
ronment, (e.g., ABC gate) and the suspected image from
Machine-Readable Travel Document (eMRTD) [32]. Both
images Is and It are decomposed into the normal maps, and
diffuse map using SfSNet [58] following which the diffuse
reconstructed image and a quantized normal map are obtained.
From the diffuse map, the features are extracted using ‘fc7’
activation layer of AlexNet [35]. The features from the normal
map are extracted by converting them to quantized spherical
angles (quantization is 24-bit). The features are used to train
polynomial SVM classifiers for each set of features. The
classifiers are used then used to determine if the suspected
image is morphed or not based on the fusion of scores from
each individual classifier corresponding to normal map and
diffuse map. Details on the DR D-MAD algorithm can be
found in [32].

6) Face Demorphing: The idea of Face Demorphing (FaDe)
[15] involves inverting the morphing process in a reverse
engineered manner. Given a suspected image Is that is cor-
responding to image stored in the ID document where Is is
generally a linear combination of multiple images. Im = Ia+Ic
where Ia and Ic are the face images of bona fide accomplice
and a criminal respectively. The assumption on the other end
is that for a genuine ID document (with no morphing attack)
the image Im is a combination of two identical images (for
e.g., Im = Ia + Ia), where Ia is the bona fide image.

Given the captured image It in a trusted environment,
demorphing algorithm obtains a difference between the sus-
pected image Is and the captured image It to obtain a
demorphed image Id . When the Id is compared against the
It using a FRS system, a high comparison score (S) indicates
no morphing and lower score indicates higher probability of
morphing. Ferrara et al. [15] employ Dlib for comparing the
trusted capture image It and demorphed image Id as given
below:

S =

⎧⎨⎨⎨
⎨⎨⎩

max

�
0,

(d − τ1)

(2 × (τ2 − τ1))

�
, i f d ≤ τ2

max

�
1, 0.5 + (d − τ2)

(2 × (τ3 − τ2))

�
, otherwise.

(1)

where τ1, τ2, τ3 are thresholds chosen om empirical trials set
to 0.3699, 0.4565, 0.5469 respectively.

B. S-MAD

An S-MAD algorithm determines whether an image is mor-
phed directly i.e. without using a trusted reference image. Most
of the S-MAD algorithms first extract the features from the
suspected image using textural or deep networks, followed by
learning a classifier. The learnt classifier is used to determine



RAJA et al.: MORPHING ATTACK DETECTION-DATABASE, EVALUATION PLATFORM, AND BENCHMARKING 4345

if the image is morphed or not. We briefly describe the set of
S-MAD algorithms evaluated in this work.

1) PRNU: This algorithm is based on the analysis of Photo
Response Non-Uniformity (PRNU). In essence, the PRNU
stems from slight variations among individual pixels during
the photoelectric conversion in digital image sensors. As a
consequence, it is present in all acquired images and can be
considered as an inherent part of any sensor’s output. In fact,
the PRNU has been successfully used for different forensic
tasks, such as device identification or detection of digital
forgeries. For the particular purpose of detecting morphed
images [11], the PRNU is extracted from the preprocessed
facial images and subsequently split into cells. From each cell,
the variance of 100-bin histograms of the PRNU is computed.
Then, the minimum value among all cells is thresholded to
obtain a bona fide vs. morphed image decision. More details
on this MAD mechanism can be found in [11].

2) Scale-Space Ensemble Approach (SSE): The algorithm
is based on ensemble approach of extracting textural features
followed by learning a classifier [16]. With the set of scores
obtained from different classifiers learnt from different fea-
tures, the final decision is made on whether the image is
bona fide or morphed. Specifically, the image is decomposed
in different color spaces such as YCbCr and HSV space.
For each channel of the color space, the image is decom-
posed into different scale spaces using a Laplacian pyramid
with 3 level decomposition. Further different textural features
using Binarized Statistical Independent Features (BSIF), Local
Binary Patterns (LBP) and Histogram of Gradients (HOG)
are obtained. The obtained features are further used to learn
the Collaborative Representative Classifier (CRC). While the
testing is carried out on the SOTAMD dataset, the training was
performed on a dataset derived from the FRGC face dataset.
More details can be found in [3].

3) Deep-S-MAD: This algorithm uses well-known pre-
trained CNNs to detect morphed images [17]. Pre-trained
networks have been fine tuned using a large set of artificially
generated digital images (both bona fide and morphed). More-
over, in order to deal with the print and scan process (P&S),
a further fine tuning step has been performed for the P&S case
exploiting a set of images artificially generated to simulate
P&S. The simulation follows a mathematical model that allows
to control different image characteristics, related to both image
visual quality and low-level signal content. In particular,
the main visual effects produced when an image is printed
and scanned can be successfully reproduced (blurring, gamma
correction, color adjustment or noise).

The AlexNet architecture pre-trained on ImageNet [35] has
been used on digital images while the VGG-Face16 [59]
architecture pre-trained on the VGG-Face dataset [59] has been
used on P&S images.

4) S-MBLBP: The created classification system extracts
multi-block local binary patterns from a face image and uses
a support vector machine with a linear kernel to classify it as
either morphed or bona fide [53]. The approach optimises the
feature extraction process by using uniform LBPs with radius,
r = 1 (i.e. number of neighbours, n = 8), and a histogram
layout of 3 × 3. Before feature extraction the face is detected
and cropped with a HOG-based face detector [45], converted
to grey scale and finally histogram equalization is applied to
enhance image contrast. The 3×3 histogram layout is realized
by splitting the face image by 2 equidistant vertical and
horizontal lines. A single histogram contains 59 feature values,

Fig. 7. DET plots for the D-MAD-SOTAMD_D-1.0.

which means that after concatenating the 9 histograms of our
layout our feature space has 531 dimensions. The classifier was
trained on [55] and [60]. As pre-processing steps, all training
images were converted to png format without any compression
to avoid jpg compression artefacts being detected, and resized
using nearest neighbour interpolation to the average size of the
three training datasets. Additionally, faces were horizontally
aligned to make them similar to (ICAO compliant) benchmark
images.

VI. RESULTS AND DISCUSSION

A. Results -D-MAD

The results observed in the Digital Image Benchmark (D-
MAD-SOTAMD_D-1.0) are reported in Figure 7 (also Table X
in Appendix, as shown in the Supplementary Material, for
the results on two subsets with morphing factor 0.3 and
0.5 respectively). In particular, the DET plots in Figure 7
refer to the overall results, additional results are reported in
Appendix A, as shown in the Supplementary Material.

The detection accuracy of some of the evaluated algorithms
is quite modest. Two algorithms perform better than the aver-
age, and the algorithm DFR in particular reaches very promis-
ing results. The reason for the general under-performance
of MAD algorithms with respect to the detection accuracy
reported in the original publications could be due to the
difficulty of the benchmark dataset and the over-specialization
of said algorithms on the native training sets used previously
in the research labs. As to the FaDe approach, its better
generalization capability is probably due to the absence in the
method of a specific training stage and/or hyperparameters
tuning. The good performance of DFR can be attributed to
the fact that the ArcFace algorithm used for feature extraction
was trained independently of morphed images and thus the
extracted feature vectors are not overfitted to the artifacts
of individual MAD algorithms. Table X, as shown in the
Supplementary Material reports the performance of the tested
MADs on the entire set of images as well as separately for
the subsets of images with morphing factor 0.3 and 0.5. The
results related to the morphing factor 0.3 are in general slightly
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TABLE VIII

PERFORMANCE INDICATORS MEASURED ON THE D-MAD-SOTAMD_P&S-1.0 BENCHMARK FOR THE OVERALL
SET OF IMAGES AND FOR THE SUBSETS OF IMAGES WITH MORPHING FACTOR 0.3 AND 0.5

Fig. 8. DET plot for the D-MAD-SOTAMD_P&S-1.0.

better than those obtained on the entire database. A noticeable
improvement can only be observed on all the performance
indicators for DFR and FaDe algorithms. The behavior of
FaDe is explainable if we consider that the algorithm has been
designed to work on asymmetric morphings. The performance
gain of the DFR can be attributed to the use of the difference
vector. If the morphing factor is lower, the difference increases
and so does the possibility to detect the morph.

For a deeper comprehension of the main image charac-
teristics affecting to a larger extent the MAD performance,
the results have been analyzed for specific subsets of images,
described in Table XII presented in Appendix, as shown in
the Supplementary Material. The subsets have been selected
according to the number of images available (too small subsets
are therefore discarded).

The degree of influence of each specific subset with respect
to the overall performance has been evaluated computing,
for each subset s, the percentage deviation between the EER
measured on the specific subset (eers) and the EER measured
on the whole set of images:

devs = eers − eero

eero
× 100 (2)

A negative deviation indicates that the specific subset is
“easier”’ with respect to the overall set of images (a lower EER
value has been observed), high positive values identify more
difficult subsets. The deviation computed for each algorithm,
as well as the average deviation (devs) for the subset of
tests with morphing factor 0.3 are reported in Table XV in
Appendix, as shown in the Supplementary Material, where
the results are sorted by devs . Some interesting results can be
observed, in relation to the main attributes characterizing the
database images:

• Ethnicity: in general the morphed images produced with
Indian-Asian and Middle Eastern subjects are easier to
detect for most of the algorithms. The cardinality of these
subsets is lower than European/American, and the chance
of selecting lookalike subjects for morphing was lower.

• Automatic or manual post-processing: as expected man-
ual post-processing (i.e., retouching for artefact removal)
makes morphing detection more difficult w.r.t. automatic
post-processing, even if the difference is just minor here.

• Manual post-processing technique: significant differences
can be observed in relation to the manual post-processing
executor, thus confirming the importance of manual
retouching aimed at removing small artefacts; while
PM03 and PM06 are easier to detect, especially for some
algorithms, PM02 and PM05 are more difficult to spot.

• Subset of Morphs: the subset containing UTW images
is more difficult with respect to those from the other
partners. In fact, in this case, very similar pairs of subjects
were selected, making the resulting morphs more difficult
to be detected.
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TABLE IX

PERFORMANCE INDICATORS MEASURED ON THE S-MAD-SOTAMD_P&S-1.0 BENCHMARK FOR THE OVERALL
SET OF IMAGES AND FOR THE SUBSETS OF IMAGES WITH MORPHING FACTOR 0.3 AND 0.5

• Morph quality: as expected high quality morphs (i.e.,
those accepted by commercial face verification algo-
rithms) are more difficult to detect than low quality
morphs (i.e., those already rejected by face verification
algorithms).

• Morphing algorithm: the results over different morphing
algorithms are quite different; algorithms C06, C07 and
C03 are generally easier to detect, while C02 and C01 are
quite hard for most of the D-MAD algorithms.

• Age: the results on subjects in the range 56-75 are gener-
ally much worse than those related to younger subjects;
as per the Traits subsets (see below) we argue that the
transfer of evident skin characteristics such as wrinkles,
freckles or moles, can make the morphed images similar
enough to both subjects.

• Gender: morphing detection in female subjects looks on
average more difficult.

• Traits: the error rate on images with specific traits (moles,
freckles) is on average higher than that measured on
images without particular facial traits. See the above
discussion on Age.

The results reported in Table XV (Appendix as shown in the
Supplementary Material) show that, even if a common behav-
iour can be observed for several subsets, in a number of cases
(e.g. Type of Post-processing or Ethnicity) different algorithms
provide significantly different performance. This leads us to
suppose that the tested D-MADs produce quite independent
errors and a combination of such different techniques can lead
to a performance improvement.

The results obtained on the P&S Image Benchmark
(D-MAD-SOTAMD_P&S-1.0) are summarized in Fig. 8. While
for the best performing approach (DFR) the detection accuracy
on Digital and P&S images is similar, in general a performance
drop on Print and Scan images can be observed; for example,
for the demorphing method (FaDe) the BPCER values are
about 10% higher. Also in this case the influence of the
morphing factor on the MAD performance can be observed
in Table VIII reporting the results for the overall set of
images and for the subsets of images with morphing factor
0.3 and 0.5.

B. Results - S-MAD

The results of S-MAD algorithms on printed-scanned
images are given in Table IX and on digital images in Table IX

(Appendix as shown in the Supplementary Material) respec-
tively. In this case the overall performance is quite unsat-
isfactory in general and very far from the accuracy needed
in real operational conditions. No significant differences can
be observed between the different test cases: morphing factor
0.3 or 0.5, digital or printed-scanned images. We can conclude
that morphing attack detection based on the analysis of the
single image is still very complex, particularly in the presence
of heterogeneous image sources, different processing pipelines
and high quality morphs obtained through a careful selection
of subjects and an accurate post-processing aimed at removing
all visible artifacts. The results confirm again the importance of
cross-database training and testing to improve the robustness
of detection algorithms.

C. Directions for Future Works

As noted from the results reported in the previous sections,
it is evident that the accuracy of MAD does not meet the
operational requirements. If we focus on BPCER100, we can
see from Tables X and VIII that the result is around 20% for
the best performing D-MAD approach. For all S-MAD algo-
rithms (see Table IX and Table XI in Appendix as shown in
the Supplementary Material), BPCER100 is higher than 90%.
From a practical point of view, this behaviour would cause a
considerable number of false alarms and, as a consequence,
a high number or false rejections during face verification
at ABC gates. This would be unacceptable if we consider
that operational face verification systems for ABC gates are
expected to work at a False Accept Rate (FAR) of 0.1 per cent
with a False Rejection Rate (FRR) not higher than 5% [61].

• Given the number of covariates impacting the MAD
performance such as age, gender and ethnicity, accurate
and better algorithms need to be developed to address
the complex challenge of morphing attacks. The results
presented in this work also suggest that the combination
of approaches of different nature could lead to a general
performance improvement.

• As it can also be noted from the Table VIII that
the print and scan process reduces the MAD accuracy
to a larger extent. Reliable and accurate algorithms
need to be developed to improve the accuracy of the
algorithms for detecting morphing attacks specifically
when images are processed through the print and scan
pipeline.
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• As a complementary direction, the human detection per-
formance should be studied in a standardized manner
to understand the key factors in spotting the morphing
attacks on FRS.

VII. CONCLUSION AND SUMMARY

Given the complex nature of the morphing attack detection
and the impact on operational FRS, we presented a new
evaluation framework and a new database of morphed images
in this work. The sequesterd morphed dataset being publicly
available allows researchers to benchmark their algorithms in a
continuous manner to contribute to development of morphing
attack detection. Further, this work also provides a benchmark
of the existing state of the art algorithms to give a clear idea
of the limitations in the existing algorithms for MAD.
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