
Digital Engineering Development in an Academic CubeSat
Project

Evelyn Honoré-Livermore ∗, Roger Birkeland†, Sivert Bakken‡, Joseph L. Garrett§, and Cecilia Haskins¶

Norwegian University of Science and Technology, Trondheim, Norway

Digital engineering is increasingly introduced for managing and supporting the develop-

ment of systems for space. However, few academic teams have the competency needed to

manage projects using digital engineering and systems engineering. The subject of this pa-

per is an academic CubeSat project in which a variety of digital engineering techniques are

used. The tailoring that has been applied to fit the academic environment including students

from different disciplines and levels of maturity is described. We show how a customized

Scrum methodology for hardware and software integrated with a workflow in a digital tool

environment has given positive results for both the team and the system development. We

also discuss how to introduce new members to the team and how to train them to work with

digital engineering as a multi-disciplinary team. We present how the systems engineering

and project management activities have been integrated into the academic CubeSat project,

evaluate how well this fusion worked, and estimate its potential to be used as a guide for other

digital engineering projects.

I. Introduction
The digital transformation that is taking place in all elements of society calls for continuously updated knowledge

for leaders and for engineers. The increasing project complexity introduced by the advent of embedded systems and

Cyber-Physical Systems (CPS), and the tools needed for developing them challenges managers to re-think the approach

to leading projects and people to ensure knowledge management and project success [1]. While this is challenging

in industrial settings with experienced engineers and support systems, developing complex systems in an academic

environment adds factors such as high turnover, coursework, lack of multidisciplinary teamwork experience, and fewer

competent Systems Engineering (SE) and Project Management (PM) resources.

Digital engineering and Model-Based Systems Engineering (MBSE) are proposed as tools to manage the challenges

of developing systems, delivering integrated multidisciplinary product development from concept through the product
∗Ph.D. Candidate, Department of Electronic Systems, evelyn.livermore@ntnu.no, and AIAA student member.
†Post-doctoral researcher, Department of Electronic Systems, roger.birkeland@ntnu.no
‡Ph.D. Candidate, Department of Engineering Cybernetics, sivert.bakken@ntnu.no
§Post-doctoral researcher, Department of Engineering Cybernetics, joseph.garrett@ntnu.no
¶Associate Professor, Department of Mechanical and Industrial Engineering, cecilia.haskins@ntnu.no



life-cycle to retirement. We adopt the Digital Engineering (DE) definition of the U.S. Department of Defense (DoD): “an

integrated digital approach that uses authoritative sources of system data and models and a continuum across disciplines

to support lifecycle activities from concept through disposal” [2, p. 340]. For MBSE, we use the definition provided by

International Council of Systems Engineering (INCOSE): “The formalized application of modeling to support system

requirements, design, analysis, verification and validation activities beginning in the conceptual design phase and

continuing throughout development and later life cycle phases” [3]. However, choosing the approach tools and methods

to introduce and adopt DE is equally challenging and requires both human and technical resources.

Concurrent with the advent of digital engineering, approaches such as Scrum and Extreme Programming (XP)

have increased in popularity both for hardware and software [4]. The Scrum methodology allows for agile product

development, so that the project can respond to changing demands from stakeholders and new technology developments

while continuously delivering features. The digital Scrum tools also provide a system which support project management

through feature and schedule management, product management through scope and verification management, and may

be integrated with the digital design artifacts. Extreme Programming takes iterative development to an “extreme” level,

with short iterations, continuous test development, pair programming, continuous integration, and frequent releases [5].

In software projects where there is scientific code development, and requirements are either unknown at the beginning

or frequently change, XP or Scrum are suitable over other traditional approaches [6].

Students in academic projects face the challenge of balancing coursework and project work. The students follow the

school-year, so long-term academic projects must adapt their expectations to this fluctuation and there is a high natural

turnover the team composition when students graduate. Academic projects may have fewer resources and fewer support

systems that product development often necessitates (e.g. a procurement department or quality assurance knowledge)

[7, 8]. The university context requires attention to knowledge transfer and management, and digital engineering is a tool

that can be applied and must be managed to enable a good development environment.

This paper is based on the longitudinal case study of an academic CubeSat where the students typically join in

September and leave in June the following year, although some students join in January and leave in June the same

year. They contribute to the development of the CubeSat through work toward a thesis in either software, hardware,

or theoretical studies. We explore the cycle of development of a CubeSat in an academic environment using digital

engineering tools and describe how they have been tailored. Furthermore, we discuss how MBSE has been applied and

what barriers for use of were experienced. We found that using agile practices powered with DE tools and processes

greatly improved information sharing and knowledge management, and that the introduction of remotely accessible

hardware-in-the-loop (HIL) setups coupled with a defined workflow enabled improved verification, validation, and

integration activities.

2



II. Background

A. Academic CubeSat projects

Since the definition of the Cube Satellite (CubeSat) standard around the year 2000, applied space technology and

satellite production has become a staple offering at universities [9]. At first, most initial CubeSat projects sought to

evaluate the viability of CubeSats as a concept, and limited their initial goal to communication. Over the last 20 years,

the missions have evolved in sophistication into projects with more advanced research objectives [10]. To meet the

needs of this burgeoning industry, a substantial supply chain for CubeSat buses and subsystems has been established so

that university researchers can then focus upon their main task: defining and building the payload and without having to

build the rest of the spacecraft bus around the payload too. In most cases this saves both cost and development time.

CubeSats are built from units (U) of 10 cm × 10 cm × 10 cm, ranging from 0.25U to 16U, with 3U being the most

common size [11]. Larger satellites at 6U and 12U are becoming increasingly popular. As the technology matures, the

satellites’ capabilities increase, for example including advanced deployable mechanisms for solar panels and instruments.

With this maturity the missions are becoming more advanced and can deliver more valuable results.

The lifecycle of an academic CubeSat project typically starts with an idea for a research project or an educational

CubeSat, then securing the funding, moving on to the preliminary design phase, the critical design phase, launch of the

CubeSat (when funding is available). Then follows the operational phase with payload data collection and analysis (if

successful), and finally decommissioning at the end of spacecraft lifetime. This takes from 1–5 years, with an average of

3.8 years [12].

The CubeSat subsystems are usually highly integrated, and modularity is ensured both in software and hardware [13].

As the cost of fixing problems increases later in the development cycle, during integration, testing, and maintenance

[14], early integration and testing are encouraged. To a large degree, the subsystems can be considered a cyber-physical

system because their performance depends on both the hardware and software developed. The integration process can

be improved by using advanced, industrial-type electronics and computational platforms during development and test,

the integration process can be improved. Using as many Commercial-Off-The-Shelf (COTS) components as possible,

lead-time is reduced, and development can be based upon well-known tools with little or no adaptation. There is an

opportunity to reduce the risk of late discovery of bugs by proactively using HIL setups throughout the development

cycle, enabling iterative development.

Opportunities for education and training using CubeSats To date, over 400 university satellites have been

launched, with more than 500 in the pipeline [11]. The educational benefit and the use of CubeSat programs as an

introduction to applied space technology has been much discussed in the CubeSat community [7, 15–17]. The first

educational CubeSats provided students an opportunity to follow a space project from start to launch within their time at

a university. Hands-on projects give students a realistic, but manageable “first contact” with space projects and space

3



industry [18]. Institutional actors such as National Aeronautics and Space Administration (NASA) and European Space

Agency (ESA) promote and support educational CubeSats by enabling contact and access to space professionals, and

by facilitating courses and workshops as well as launch for the best qualified satellites through their ELaNa [19] and

Fly-your-satellite [20] programs. This applied work also motivated many university teams to create spin-offs from

their projects, becoming central players in the CubeSat community and a part of the supply chain. They now form a

substantial ecosystem where it is possible to procure everything from single components to a turn-key mission where

you define your payload and the satellite provider does the rest.

B. Agile methodology and development practices

Using agile methodologies in software and hardware development has gained popularity in the past decades, focusing

on continuous feedback from the customer and the ability to react to a changing environment [21, 22]. The word “agile”

has its etymological source from the Latin word agilis, which means “can be moved easily, light”, and from the French

word agere, which means “to drive, to be in motion” [23]. In software development, the agile methodology gained

popularity in the late 1990s, and “Manifesto for Agile Software Development” [24] with its 12 guiding principles was

published in 2001. The manifesto includes principles that focus on delivering the highest value to the customer, to

allow for changing requirements, frequent and iterative deliveries of software, motivating individuals, face-to-face

conversations, measuring progress through working software products, simplicity, reflexive practices, and believing that

the best designs come from self-organizing teams [24].

At universities, software and hardware development serve both to assist scientists in gathering data, and for teaching

technology and product development. In most cases, the development is not done with the purpose of delivering a

mass-produced product or service, but for the purpose of contributing to new knowledge and research. A key challenge

of scientific software development is that the scientists often have formal education in a field other than computer

science, for example in biology, remote sensing, electronics, or radio technology, but need custom software to address

their discipline-specific research questions [25, 26]. Given the open-ended nature of research projects, the process of

requirements specification lacks maturity in comparison to industrial development projects, making it challenging to

plan the development and to test the software. Furthermore, the scientific software development does not “stop” when

the first research project ends, but it may be reused in a different research project with different goals, and new scientists

desiring new functionality [27].

Best practices for scientific software development include: write programs so that the other researchers understand

and stick to a code style and formatting, make the frequently used commands easily accessible, incremental development

with continuous testing, use version control, “plan for mistakes” and use unit testing, improve performance after the

functionality is there, document the design and interfaces, and choices made during development, and collaborate on

code development and do code reviews [25]. Typical challenges facing scientific software teams are “compromising

4



between feature demands and quality control; code ownership and management during evolution; data organisation

and curation; and quality assurance of heterogeneous components, (...) and a tendency for prototyping practices to be

employed even when production scientific software was being written [28, p. 47:6-7].” In Arvanitou et al., software

practices for scientific development were discussed based on an extensive literature study [26]. They found that most

scientific software engineering literature has studied process improvement, ease of development, testing and verification,

project management, coding and quality assurance. Furthermore, that performance, maintainability and development

productivity were the highest priorities for the scientists.

In a survey of agile methods in scientific programming in disciplines such as bioinformatics, climate scientists,

and aerospace, it was found that the agile method XP has been applied successfully in projects where requirements

and design cannot be known in the planning phase of a project [28]. Furthermore, agile practices such as iterative

development, continuous integration, and version control, were prominent. In contrast to commercial and industrial

software development, there is no declared or identified customer to review the software features. However, scientific

publications can be analogous to customers in which the scientists receive feedback on what they have developed

[28, 29]. Sletholt et al. [27] conducted a literature review against 35 agile practices from Scrum and XP, and found

some support that agile practices are suited to testing-related activities.

Agile practices in teaching have gained popularity since the 2000s [30, 31], where Scrum or XP have been the

most prominent methods, and typically found in either software or capstone projects. The students benefit from

learning hands-on project experience, learning to prioritize work tasks, gaining communication skills, and providing and

receiving assessment on work done openly. However, there may be challenges in terms of balancing time commitments,

for example having concurrent development sessions, or tailoring the Scrum processes to suit the different needs of

team members [31]. Lundqvist et al. [32] reported on teaching agile in cooperation with industry. They highlighted the

importance of ownership, the engagement of customer, also called the industrial partner, and the allocation of academic

resources to support the academic teams.

According to a study from Australia in 2015, employers want both technical skills and non-technical professional

skills such as “being able to communicate effectively,” “ability to organise work and manage time effectively,” “being

willing to face and learn from errors and listen openly to feedback,” “being able to empathise with and work productively

with people from a wide range of backgrounds” [33, pp. 263–264]. A similar study conducted in Norway also highlighted

these points [34]. However, the traditional form of classroom teaching may not facilitate the development of these

skills effectively. Using CubeSats for training students in cross-disciplinary projects has been studied and discussed

[7, 12, 15–17]. Some principles for agile SE that have been suggested include (1) focus on delivering customer value,

(2) team ownership, (3) embrace change, (4) continuous integration, (5) test-driven, and (6) taking a scientific approach

to systems’ thinking [29, 35]. Many of these principles are aligned with transferable skills students can be expected to

have when they graduate [33, 34].

5



C. Digital engineering

Digital engineering goes beyond “just” using computer tools to aid engineering, but includes the engineering process

and approach to development. Choosing a DE strategy should be done based on the resources available and needs of

the organization. A framework that assesses the DE competence was developed by the Systems Engineering Research

Center (SERC) which looked at the following areas: adoption, velocity/agility, knowledge transfer, user interface, and

quality [36]. While the framework did not specify how to measure the competence in each of the areas, it listed different

factors and examples of processes or outcome metrics that could be used. Some factors identified can be categorized as

objectives for why DE measures are incorporated, others as factors which may influence the adoption, and other factors

as outcomes and direct competencies the organization can gain with DE practices. DE has a strong relationship with

MBSE and Model-Centric Engineering (MCE), and establishing a “single source of truth” for a project [2]. However,

there is currently no single solution for the whole system lifecycle to provide an authoritative source of truth. Most

work-forces and organizations need to transition their methods and methodologies to DE and incorporate it into their

engineering practices, and ensure possibilities for collaboration and information sharing throughout the system lifecycle

between developers and the stakeholders. Most university CubeSat teams use some degree of DE, such as employing

version-controlled software repositories, using CAD tools, shared cloud documentation, and using cloud-based issue

tracking or project management tools to achieve integration in the management of knowledge [12].

Garzaniti et al. [37] also describe the use of Scrum using an online tool to manage the work in an academic CubeSat

team. The results presented were from the preliminary design phase of the space hardware. They found that the

Scrum approach was helpful for reacting to unforeseen changes and delays, even when the changes impacted external

manufacturers. Furthermore, that it takes time for the team to become accustomed to Scrum and the scoring of issues,

similar to [31]. Huang et al. [38] describe the development of a CubeSat using agile practices. They highlight the

importance of tailoring the approach to the needs of the project, using interactive design reviews to produce as much

feedback as possible, empowering smaller teams to enable faster decision-making and ownership, and allowing for

continuous testing and improvement.

III. The HYPSO case study

A. The HYPSO CubeSat project

In this paper we report on the case study of the CubeSat project Hyper-Spectral SmallSat for Ocean Observation

(HYPSO). It is the first research CubeSat mission for the Norwegian University of Science and Technology (NTNU), as

a part of a strategy of monitoring coastal areas using autonomous assets [39]. The project’s mission is to:

“To provide and support ocean color mapping through aHyperspectral Imager (HSI) payload, autonomously

processed data, and on-demand autonomous communications in a concert of robotic agents at the Norwegian

6



Fig. 1 Overview of the HYPSO CubeSat and its subsystems. Model made using CORE/GENESYS.

Fig. 2 Overview of the payload developed by the HYPSO team. Model made using CORE/GENESYS.

coast.”

The university CubeSat team develops the payload, which consists of an optical telescope, a COTS camera unit,

a COTS processing unit, an electronics interface board, an electrical harness, software to control the payload and to

perform the image processing, and mechanical support structure which also acts as the mechanical interface to the

satellite bus. Block diagrams of the spacecraft and the payload are given in Fig. 1 and Fig. 2, respectively. Apart from

the above-mentioned COTS components, all have been developed in-house. In addition to the payload, there is also

development of a local ground station and the mission operations center and associated procedures and functionality,

effectively resulting in a System of Systems (SoS).

The CubeSat project team includes 10–20 MSc and BSc students, one electronics engineer, a procurement officer,

6–8 PhD/Post.Doc. researchers, and professors supervising the thesis work or offering experience and support. The

7



project manager is a PhD candidate examining the value of MBSE to deliver the CubeSat on time and within schedule.

The researchers typically join the project for 2–4 years, and the students for 4 (BSc) or 9 (MSc) months when they

write their thesis. The backgrounds of the students vary, but typically they are enrolled in engineering cybernetics,

embedded systems, electronic systems, product development, or material science. Some of the students have experience

with working in teams, and sometimes multidisciplinary development through previous coursework or volunteer

organization. However, not many have experience with product development, which typically has more unknowns than

course-organized project work.

The project had its first major milestone in December 2017, the Mission Design Review (MDR). There had been

some software development prior to this, mostly focused on algorithm development for processing, without target

hardware or system in mind. The overall system maturity timeline is shown in Fig. 3, and a more detailed timeline of

the progress in 2020 is shown in Fig. 4. Most of the integration and HIL testing occurred in 2020.

31.12.2017 31.12.2018 31.12.2019 March 31.12.2020

Compression and image
processing development

First GitHub organization
pull request

Target hardware selected SW architecture
defined

GitHub flow
introduced

Corona lockdown

Mission
Design
Review

Preliminary
Design
Review

Preliminary
Design
Review 2

Critical
Design
Review

SW V1.0.0

SW V1.1.0

Fig. 3 Overall timeline of in-house developed product maturity, including both hardware and software (SW).

March June September November

First Hardware-in-the-loop
setup

Postgres test
results database Use automated tests

Operations
rehearsals

Telemetry service
development

SW V1.1.0

Critical
Design
Review

Operations
Design
Review

Fall
Kick-off

Flight model SW
specification

SW V1.0.0

Fig. 4 Timeline of product maturity through 2020. "SW" refers to in-house developed software.

8



Fig. 5 The software system architecture. OPU = On-Board Processing Unit, FC = Flight Computer, EPS =
Electrical Power Subsystem, PC = Payload Controller, CAN = Controlled Area Network, GS = Ground Station,
RF = Radio Frequency, NNG = nanomsg Next Generation.

B. Software system architecture

The high-level system architecture is given in Fig. 5, where the flow of signals and data is bi-directional. Some of

the items in the software architecture are developed in-house, while others are delivered by suppliers, or interfaced as a

service. The architecture was not clear at the beginning of the project, and has been gradually defined throughout the

system development lifecycle. The components have also undergone continuous development, as well as updates to the

interfaces to a certain degree. The reasons for continuous development and changes are new functionality requirements

and new performance requirements, the inherent constraints of the chosen components, as well as the learning and

discovery process of developing a CubeSat system for the first time.

Modular software components require that interfaces and software architecture are defined. While the initial software

architecture was developed in late 2018, not all interfaces between different components were defined. This meant that

a lot of work was required to integrate the in-house developed components. Furthermore, the interface definition to

other spacecraft subsystems had not been considered prior to 2018, such that the components also needed adaption to

enable integration to the satellite bus. The software-based sub-systems allows for hardware to host the functionality of

several subsystems. For the HYPSO spacecraft (Fig. 1), the subsystems “SYS1.3 ADCS Subsystem” and “SYS1.5 OBC

Subsystem” are both hosted on the same physical component, the Flight Controller (FC). On the payload, the physical

On-board Processing Unit (OPU) hosts the image processing pipeline, the camera control, the payload operating system,

and telemetry services for the payload.

In Fig. 5, each partition is composed of tightly integrated physical and software sub-systems; namely, a cyber-physical

SoS. The space environment will affect each of the interfaces between the sub-systems and the performance of the

spacecraft itself, and the software sub-systems need to adjust (for example pointing the spacecraft towards the sun when

the battery levels get low) to ensure functionality and performance. Additionally, this means that to develop hardware

components, one needs to consider the software, and when developing software components, one needs to consider

hardware limitations, such as data transfer speed limitations, or processing hardware physical layout. Furthermore,

the “Mission Control Software” and “Mission Operations Center” were not available until mid-2020, which led to the

9



discovery of new functionality and software adjustments to facilitate operations of the payload. When the spacecraft

is operational and commissioned, the operator will only interact with the first box (the telemetry display and the

hypso-cli (user interface translating commands to packets used for communicating) or nanoMCS interface) and the

OPU-services on the HYPSO spacecraft, under the expectation that the underlying system functions as expected.

Despite the many hardware and software systems in between the operator and the spacecraft, they must exchange

information correctly and in a timely manner.

Fig. 6 Tailored Scrum process with a product backlog consisting of both thesis tasks and project work tasks.

C. Tailoring of the agile methodology

The Scrum methodology has been tailored such that the team members deliver either a product increment or a thesis,

as shown in Fig. 6. The sprints typically lasted 2 weeks, and there was a daily scrum meeting (a stand-up) in which

issues were raised or discussed for clarification, in addition to general keeping-in-touch with each other. The team uses

GitHub for managing the code repository and schematics, and providing version control and release management [12].

GitHub is a service that provides users of several different backgrounds and development approaches to work together

and at the same time have a coherent overview of the current status of the code base. GitHub has a plugin for managing

Scrum with a kanban board. Kanban boards, from the Japanese word meaning billboard, are used to visualize and

manage workload by providing an overview of work-in-progress, backlogged items, blocked items, done items, and

review-in-progress items. A kanban board is based on pulling tasks instead of being pushed, which enables the students

to take control of their own workload. At the same time, the Scrum master (called group leader in Fig. 6) can control

10



which items are included on the board, so the work that gets done is pertinent to the schedule and the product to be

delivered.

Planning, workflow, and continuous integration Planning and developing a complex system are not guaranteed

to align well with research goals found in academia. Finding synergies and acknowledging what needs to be prioritized

can benefit the development of a CubeSat as well as providing a better foundation to build and expand research activities

upon. While Scrum traditionally has a goal of delivering a pre-defined Minimum Viable Product (MVP) at the end of a

Sprint, this was not the case for HYPSO. In this case study, participants contribute to components ranging from hardware

to User Interface (UI). Until the first agreed software release at the end of 2020, as shown in Fig. 4, the sprint backlogs

included issues which the team members “wanted to focus on” and had time to work on. There was an agreement

between the team members when selecting issues, and there was a continuous focus on working on issues labeled as

“bugs” or mission-required functionality (defined by the group leader in conjunction with the project manager) instead

of issues categorized as “enhancements” in GitHub. Furthermore, each participant developed modules without defined

interfaces between them. This made retaining the value added from different contributions, and especially integration,

unnecessarily difficult and time consuming. To mitigate these challenges a common workflow was proposed and became

a part of the on-boarding procedure, as well as providing the students with a common repository.

Some of the contributors only participate in the development for as little as one semester, and there are limitations to

how complicated the workflow and how complicated the development tools can be. To achieve a convenient workflow,

development needs to be coherent and a multitude of development considerations have to be made clear, as well as

followed-up to ensure the desired quality of the project and product. Continuous integration (CI), or the practice of

integrating contributions from multiple developers into a common software product, is beneficial for collaborative code

development [40], and is also promoted in XP practices. A workflow focusing on integration was then proposed, i.e. the

GitHub workflow [41]. This workflow states that the main branch shall always be working, and any feature or fix to be

included in the code base shall originate from a dedicated branch, i.e. there are no development branches that branch

out beyond the main branch. This workflow encourages contributors to frequently merge their code contributions into a

central repository for review and testing, as is considered a good practice in software development [41].

D. Verification and validation using Hardware-in-the-loop setups

Verification and validation are important to ensure that the product functions as specified (verification) and meets the

needs of an end-user (validation). Collectively, these will be referred to as testing. In the HYPSO project several testing

regiments were developed to expand the number of reviewers. The software group leader emphasized that approval of a

Pull Request (PR) should be done by reviewers not necessarily involved in the development of the code. In other words,

the contributors were required to describe their changes or additions in such a way that “any” software team member

could be able to review them. Even though not every team member is able to review every change, this motivates

11



the developer to make code modifications in such a way that they are understandable to “any” person responsible for

reviewing said changes. For a change to become part of the master branch, at least one other person has to approve the

suggested changes. When the code changes are committed to a separate feature branch of the central repository, it is

then built and tested by a team member prior to being accepted as a valid code base addition. If no adverse effects are

detected during review, the pending PR is then merged into the master branch. This is the manual process of testing and

ensures that specifically the newly added feature or fix is tested independently and sufficiently.

In addition to the manual process, several automatic scripts have been developed to do routine tests of nominal

operations of the system. While simplifying the process of testing any proposed changes on the target hardware this also

provides a platform for other types of testing. Several installations of the system, laid out as closely as possible with the

actual satellite, were set up to be interfaced remotely by any team member, namely the HIL setups. HIL setups can be

used for verification of functional requirements [42], and if deployed on target hardware, it can also verify performance

requirements. Because university CubeSat projects often have limited funding available, having a full engineering model

(an exact replica of the system) of the satellite bus and its subsystems is not always feasible. Instead, using a FlatSat (a

flat satellite) with subsystems provides many of the same functions at a much lower cost. The satellite bus providers

often sell FlatSat services at lower fees because the subsystems that constitute the FlatSat can be shared between different

customers, or the subsystems can be development models used by the satellite bus providers themselves.

Two HIL setups were developed to facilitate verification and validation activities, and to improve early integration

efforts. The HIL setups are shown in Fig. 7, and are called LidSat (because the systems are mounted in an ESD-box lid),

and pHIL (payload HIL). Both setups use target hardware for the software subsystems, and have different purposes.

The pHIL setup is mainly for testing payload and its communication interface with the command line interface, while

the LidSat is used to test both the payload software and the integration of the payload to the spacecraft. The pHIL is

connected to a workstation which is running a Jenkins continuous integration server. To test a branch of the software,

the branch is first compiled and initiated on the payload. Then Jenkins runs a set of tests on the target hardware. The

outcome of the tests (both whether they pass and their performance) is recorded in a database. The central database

allows the developers to see how various branches have performed during the test. The test set includes sending

several commands which operators commonly use, and ensuring that the correct results are obtained for different sets

of parameters. The LidSat has both the Electrical Power Subsystem (EPS) and payload controller connected via a

Controlled Area Network (CAN), with an additional connection to the rest of the spacecraft subsystems on a FlatSat in

Vilnius through internet with a CAN-over-internet bridge. These are the main interfaces for the payload, and as such,

the FlatSat replicates integration with the spacecraft.

Furthermore, integration testing has been automated by scripting commands to be sent from the operator computer

to the payload. Scripts have been developed to aid other hardware team members in testing nominal operations when

mechanical changes are made, and these scripts are also used in a test-to-failure scheme where the procedures are

12



Fig. 7 Hardware-in-the-loop test setups.

repeated a set number of times or until failure. A script testing the potential performance alterations was also used on

the system, as well as a test of the subsystem communication and integration. All these tests are run routinely in an

effort to uncover unforeseen adverse effects of any proposed code changes.

IV. Experience using digital engineering in an academic project
The product development lifecycle with its DE tools and methods are shown in Fig. 8. Note that specific tools used

for analysis are not shown, as they depend on the specific discipline and task the team member is working on. This

lifecycle is supported by the GitHub workflow and the Scrum method for daily management of work. There are many

improvements that can be made, but the DE strategy presented here is low-cost, and makes use of well-established

processes and tools that are readily available. Furthermore, while some training is needed, and there should be an

agreement to be consistent, most HYPSO team members agree that the benefits greatly outweigh the cost.

In this section we will discuss which factors influence the approach to DE, evaluate the effectiveness of using agile

practices, the educational aspect of the HYPSO project, and also provide some insights gained during the COVID-19

outbreak and how this relates to DE [8].

A. Choice of digital engineering strategy

The choice of DE processes for the HYPSO project team was continuously evaluated, with introduction of new

methods and tools as needed. The overall strategy was to adopt and test different DE approaches throughout the project.

Typically, the solutions chosen were based on previous knowledge or experience from the team members in other

13



Testing and 
integration

Maintenance

Planning

Analysis

Design

Implementation

LidSat/pHIL

LidSat/pHIL

• Kanban
• Stand-ups

• Stand-ups
• 3D-print
• CAD/CAE

• Kanban
• Stand-ups
• 3D-print

• Stand-ups
• 3D-print
• CAD/CAE

• Stand-ups
• 3D-print
• Machining

Operators

Central, shared, 
digital information 

system

Fig. 8 Product development lifecycle with digital engineering methods and tools.

projects. This previous experience also made training of other team members easier, which is a critical component in

the adoption of new methods and tools. From the list in McDermott et al. [36], the factors listed in Tab. 1 were chosen.

The factors were selected by reviewing the discussions in the project team that led to the DE approach. No quantitative

measures of DE competency before and after introduction of tools were done, however, results from action research

have been used as basis for this paper.

Adoption The DE tools were based on what would have a high adoption rate, be open-source or free license, and

that there would be little resistance from the students. For example, the project team conducted polls to decide on

which cloud file repository to use, which communication platform to use, and which video conferencing tool to use.

This means choosing tools with good user interface, or tools that have been used in other courses, closely linked to

Workforce knowledge, to reduce the need for Training as there are little General resources for implementation. The

implementation efforts mainly have to be performed by students or group leaders (PhD candidates). The DE processes

were selected based on recommendations in literature review [24, 41, 43] and recommendations from other CubeSat

teams at informal discussions at conferences such as the International Astronautical Conference or Small Satellite

Conference. Considerations were made to find processes that would not require too much General resources for

implementation and that would quickly Demonstrate benefits to the project team, to ensure that the team members were

Willing to use tools.

Knowledge transfer During the first year of the HYPSO project, challenges with Information sharing occurred

14



Table 1 List of factors influencing digital engineering strategy at HYPSO project. Right-hand side shows the
sociotechnical factors, while the left-hand side are more technical.

Digital Engineering Competencies
Category Factor Category Factor
Quality Traceability Knowledge transfer Better information sharing

System quality Better information accessibility
Reduce defects/errors Improved collaboration
Improved system design Better knowledge capture
Increased effectiveness Improved architecture
Strengthened testing Adoption General resources for implementation

Velocity/Agility Improved consistency Workforce knowledge
Reduce time DE processes
Increased capacity for reuse Training
Early V&V DE tools
Easy to make changes Demonstrating benefits
Higher level of support for integration People willing to use tools

User experience Improved system understanding
Reduce effort
Higher level support for automation
Better decision-making

frequently, such as missed hardware changes which influenced both software and hardware performance but were not

communicated clearly. Furthermore, the complexity of the system necessitates Better information accessibility and

Better knowledge capture, which were two of the main objectives to fulfill for the DE tools and processes chosen. The

agile methodology in hardware and software Improved collaboration and Information sharing both by having the issues

documented in GitHub, but also through the common stand-up meetings held daily. In addition to the technical benefits

of using the GitHub workflow, having a common workflow could also increase the feeling of team cohesiveness, and

shared understanding of how the fragments can work and should work together through for example testing each other’s

code. The common stand-up meetings enabled a better understanding of how hardware and testing worked for the

software developers, and limitations in for example physical interfaces, from the perspective of hardware developers.

On the other hand, the hardware developers got a better understanding of how the system would be used operationally,

and could align their development and prototyping schedule to accommodate for verification and validation activities.

User experience Because the DE strategy involved stand-up meetings, 3D-printed hardware prototypes, and HIL

test setups, team members acquired an Improved system understanding. While it is difficult to prove an improvement,

discussions during review meetings have been less about clarification and more about design enhancements and future

development. The first iteration of the agile methodology used a physical kanban board, which was not adopted well by

the team. Introducing a GitHub kanban board Reduced the effort needed to separate software code development from the

process of managing the development. This is a clear advantage of using DE tools and processes. Decision-making has

15



been improved for hardware by employing 3D-printing to prototype and test design alternatives, thus giving more data

for making decisions. Automatic unit tests are run on HIL setups before and after software updates are merged to the

master branch, providing higher level support for automation. However, all unit tests must be developed manually, so

there is an effort required there for the developers. The compilation of code generates code documentation in Doxygen

automatically. Doxygen can provide information about how functions are related which further helps information

accessibility and sharing. Future work could be on enabling more automatic generation of unit tests in parallel with

code development.

Velocity and agility The HYPSO project is a part of a long-term strategy for establishing capabilities for developing

small satellites for scientific purposes at NTNU [39]. There is thus a need for the development strategy to have a

capacity for reuse so that the different subsystems can be used across a variety of platforms with some changes, and

reused in new satellites. Introducing the different HIL setups have increased the capabilities for Early V&V, which

has Reduced time required to discover bugs. In addition, the increased employment of 3D-printing technology (also a

digital technology) in prototyping and the development of Ground Support Equipment (GSE) has reduced the time for

hardware development through increased Early V&V. Having 3D-printing technology in-house in the lab has made it

easier for the team to try out new designs or satellite physical architectures. Furthermore, there is a Higher level of

support for integration when combining 3D-printed prototypes of hardware, mature HIL setups and test software which

can emulate physical conditions such as lost packets on the radio communication link. The GitHub workflow process

introduced an Improved consistency, together with other standards. The shared repositories enabled students to see how

others write code and test, improving consistency across the whole codebase, as well as functioning as a resource for

reuse in other platforms or future satellites.

Quality The goal of introducing HIL setups and the GitHub workflow was to Strengthen testing and thus Reduce

defects and errors. However, prior to the introduction of the HIL setups, the Github flow also helped with increased

testing and integration into master branch from mid-2019. There were no measures of effectiveness prior to the

introduction of DE measures, and the discussion regarding effectiveness is given in Section IV.B. While not considered

explicitly when choosing GitHub, the issue tracking and discussion has enabled better Traceability of design choices.

For example, if a bug or unwanted behavior of code during testing resurfaces, it is possible to search for keywords in

GitHub and find similar bugs and investigate if similar solutions can be used to mitigate the unwanted behavior. This

can Reduce the time spent bug fixing for new developers who were not a part of the project at the time of the original

bug. An added benefit from incorporating the design into DE tools such as GitHub, was that it required a conscious

decision and discussions regarding architecture and system design (related to both Knowledge transfer and quality), and

there have been three instances of refactoring of code systematically to improve the maintainability and modularity of

the codebase.

16



B. Effectiveness of using agile digital engineering: software and hardware

1. Tailoring of Scrum

The Scrum process was tailored to include issues related to thesis work as well as product development tasks, as

shown in Fig. 6. The stand-ups have included both the hardware and the software team, and people could join either

physically or with their phone or computer. Most team members have reported that stand-ups have increased their

understanding of the system and sharing of information. Some students have reported that the stand-ups increased in

relevance as they were working on integration of subsystems, but not so much when they were developing the prototype

modules. Another tailoring that was done was to agree on which issues would be performed and ensure that each student

had something to work on. This was needed to accommodate thesis work. Unlike traditional Scrum processes, such as

the one described by Garzaniti et al. [37], the team did not agree on the functionality for each MVP to deliver at the end

of each sprint. In hindsight, a better defined MVP might have improved the results by having a shared goal for each

sprint, which can contribute to team cohesiveness and commitment.

Fig. 9 Full SW Sprint

Fig. 10 HW sprint in barplot. There was a break during the summer holiday.

17



2. Scrum performance

Software The first sprint using GitHub kanban was held in early 2019, and apart from the first sprint, all sprints

were two weeks long. The sprints started long after the software development began, and the team had a good enough

overview of functionality. The first couple of sprints had a high number of attempted points, with a high “miss-factor”

of points not done (February to June). This can be attributed to the learning process and is not uncommon for new

Scrum teams. Team members mentioned that it was challenging to figure out how to score their tasks. The Scrum

leader can support this process by guiding the students, for example, by referring to previous work they have done and

how long it took them to complete. An ongoing challenge has been to have enough reviewers to reduce the amount of

points in the “Review-in-progress” column. Since the workflow requires that someone else reviews the code, there

needs to be at least one other person with similar knowledge and capabilities to be able to review the code. This may not

always be available when the students’ priorities are changing to consider coursework and such.

In April 2019, it was decided that the software team leader would be the Scrum leader moving forward, and also run

the sprint meeting. Furthermore, that sprint reviews should include an aspect of code demonstration or a more rigorous

documentation of how an issue was closed. The team has also discussed how to agree on a “definition-of-done”. This

definition has not been finalized yet, but there is agreement that it should be related to the type of issue being solved.

For example, issues related to theses can be draft sections or chapters, and code issues could be a bugfix, a functioning

module or function that has resulted in a PR.

Hardware The hardware team started using the agile framework and sprint methodology at the end of Q2 2020.

The payload design had reached a high level of maturity by then, and most of the parts and suppliers chosen. All satellite

bus components had been procured. The work that remained was focused on verification and validation activities, and

coordination with external test facilities and the in-house mechanical and optical labs. In addition, planning began for

the updates of design for HYPSO-2, the next CubeSat to be developed. As shown in Fig. 10, there is a break during

the summer holidays. The performance has varied over the nine two-week sprints that have been so far. Many Scrum

teams take a while to learn how to estimate points to issues, and to estimate how much work can be done in one sprint.

Towards the end of the semester, the total points done matched the points attempted better. This could be because the

team became more accustomed to the Scrum workflow, or because the deadline for delivery of the flight model was

getting closer and people felt committed to this milestone. The blocked issues were typically due to external factors,

such as lack of access to testing or machining facilities, similar to the findings in [37]. There have been continuous

redesign and rework activities. The stand-ups helped in coordinating the activities between designers and the group

leaders organizing the support facilities. Some hardware team members stated that using Scrum helped them prioritize

tasks and not get “distracted” during the two-week period.

However, the greatest issues were related to attendance and commitments to sprints. It was challenging for the group

leader to motivate the students when there were too few collaborative tasks. We found that a two-week duration of sprints

18



were suitable for the team because the students were available to deliver increments in that time period. Longer sprints

could make it harder to motivate the students, and shorter duration would make it difficult to deliver increments [37].

The motivation could be improved by introducing stricter MVPs or by spending more time planning the work up-front.

The MVPs could for example specify new features to be included on the hardware prototypes, iterated simulation

results, increased performance or lower manufacturing cost. The MVPs could also be tangible, for example, 3D-printed

prototypes and parts that can be validated by other team members, or simulated assembly and incremental tests.

Lessons learned The team experienced challenges with commitment and attendance at stand-up meetings, especially

with team members who started during the COVID-19 lockdown (fall of 2020). There were fewer on-boarding and team

building activities than previous years, and little or no chance of face-to-face meetings. Some students used the Kanban

board to organize their own work, but did not join many of the stand-ups. Based on this experience, we see that it is not

sufficient to have good workflows and tools alone, but that the social aspects matter as well. The team members need

to be a part of the culture, and people need to feel that they are a part of the team, which is consistent with findings

of Garzaniti et al. [37] and Masood et al. [31]. The HYPSO team combined the sprint planning and review meeting

to reduce time spent in meetings [31], and adjusted the sprint scoring and length to accommodate the overall school

schedules and workload [31, 37].

3. Integration and verification and validation

TheHIL setups have been instrumental in easing integration between different systems, both for software development,

operations development, and for hardware development. For software development, the HIL setups facilitate not only

verification of software changes before merging with the master branch, but also verification that the changes work with

the satellite bus via local engineering model versions of subsystems or the FlatSat. There have been HYPSO-initiated

interface changes, and NanoAvionics (the satellite bus provider) initiated interface changes. These interface changes

have been to improve performance or add functionality. By having a HIL FlatSat-setup with physically distributed

subsystems, engineers in Vilnius could update the modules remotely and work concurrently with HYPSO project

members. Challenges with the HIL setups included finding people to work on setting them up and developing required

functionality, such as automatic tests, and maintaining them. It was also challenging to find sufficiently interesting

thesis topics for working with HIL and testing activities.

The HYPSO project team can choose which subsystems they need to locally with the payload (as shown in Fig. 7),

and which subsystems that can be located at the supplier premises. The subsystems located at supplier premises can easily

receive hardware upgrades without the need for shipping modules back and forth. Additionally, the distributed system

still allows the supplier to log in to subsystems located in the university to perform software upgrades, configuration

changes or other fixes.

For operations development, the HYPSO operations’ developers have been able to perform rehearsals to validate

19



that the software functions and performs as expected. This has been enabled by allowing the operator to connect to the

HIL LidSat setup using the hypso-cli user interface (as shown in Fig. 5). Experiences from the operators were critical

for preparing the first official software release for deployment on the flight model.

4. COVID-19

The COVID-19 pandemic caused the university to lock down on March 12th 2020. Luckily for the team, the HIL

setups had been implemented in end of February, which allowed for remote access and testing of software on target

hardware. In addition, the regular stand-up meetings had begun the year before, and only required a shift to full virtual

meeting. The stand-ups were a bit longer than they had been previously, because more people joined regularly and

there was a need to move some of the informal discussions that usually take place in the physical lab to the stand-ups.

Team members also said they appreciated the stand-up meetings because it was a forum for social interaction. The issue

tracking on GitHub for software helped to follow-up the work and monitor the progress of the project, and was not

affected by the lockdown. There was an increase in commits to the main software repositories around the time of the

lockdown, and the high frequency persisted until the end of semester, as shown in Fig. 11.

However, no hardware integration and testing could be performed during the lockdown, since the team members

were not allowed on campus or to travel to external test facilities. This created a severe schedule delay to the project. The

hardware team spent time preparing design documentation and refining test plans until the lockdown restrictions eased.

Fig. 11 The two main software repositories commit frequencies.

C. Educational aspects

In the context of digital engineering, the HYPSO project organization described in this paper have many similarities

with the projects described in Berthoud et al. [12]. The university CubeSat project format is an inherently interdisciplinary

project which prepares students for future work, even if it may be in different industries. Additionally, the use of HIL

setups, a strict GitHub development flow, and agile practices in software and hardware development provide the students

with a larger skill set for future employers. The students gain practical experience with using digital engineering methods

20



and tools, while still delivering the required coursework and thesis work. While these skills may be gained through

capstone courses as well, having an active “customer” with strict deadlines and objectives in addition to educating

students, can motivate teams to work even harder with delivering results [32]. The customer for the HYPSO project

was the group of scientists who needed the data from the CubeSat, and the deadline was set by the commercial launch

date. However, managing CubeSat projects with agile practices requires coordination and training, and should not be

underestimated [30–32].

Although we have not done a systematic study of the transferability of skills learned during the HYPSO project, one

student mentioned that:

I have noticed that in my job, where they use Scrum with Kanban on a digital platform, I at once felt at

home and prepared for how to do my work. And I also felt that I could contribute fast. The meeting

structure and documentation (templates, as-built documents, internal and external design reviews) were

similar to how we did it in the HYPSO project, which made it easier for me to see the value of what I had

learned and realized the relevance of the HYPSO practices. (...) I felt I was prepared to start a job because

I know how the workday is structured and how to organize my work.

Some of the graduated students have joined the team as PhD candidates and taken on leadership roles. The rest of the

graduated students have joined companies in various industries, and some still join HYPSO design reviews or contribute

to the code repository.

D. Future satellite development

The HYPSO team has started the development of their second CubeSat that will have an upgraded version of the

hyperspectral payload, increased processing capabilities, and a Software Defined Radio (SDR) [44]. Based on the

experiences from HYPSO-1, the team plans to continue the agile work methodology for both hardware and software,

and increase the importance of team building and team cohesiveness. They are also considering introducing MVPs and

a clearer “definition of done” [31, 45], which could increase the sprint performance.

The team has introduced a cloud-based digital tool for managing requirements, system budgets, analysis, verification

planning, and project planning. Previously, this effort was managed through the systems engineer, but now, the team can

collaborate real-time from different sites on the same set of requirements. These updates also feed automatically into

system budgets and the product breakdown structure. The team members can create discussions and flag components or

requirements, and assign tasks to each other. This is a part of the “Central, shared, digital information system” shown in

Fig. 8.

21



V. Conclusion
Digital engineering is needed for managing the development of complex systems. This requires a conscious effort

throughout the organization, and the strategy must be tailored to the specific needs and constraints. There is also a need

for engineers who are trained to use digital engineering approaches in their work, in all lifecycle phases of a project.

Academic CubeSat projects provide an arena to training future engineers by collaborating in interdisciplinary system

development. The students gain both technical and non-technical professional skills. For academic CubeSat projects,

the needs for a digital engineering strategy are often similar to the industrial setting, but the context and constraints are

quite different.

In this paper we have described the case of an academic CubeSat project in Norway, where they are developing a

scientific 6U satellite and ground segment. Because of the challenges with knowledge sharing, unclear decision-making,

lack of coordinated planning, and poor code quality and documentation, the project organization introduced some

measures that includes digital engineering tools and methods. We have outlined the project development lifecycle,

and highlighted how agile practices supported by a digital kanban, a GitHub workflow, and HIL setups have been

essential in managing the development of the complex CubeSat. In addition, we have discussed in which ways the digital

engineering strategy chosen contributed to verification and validation activities, integration of systems, knowledge

sharing, and how the tools and methods supported development even during the COVID-19 lockdown. However, the

tools and processes alone are not sufficient for adoption of the DE work environment. People need to be encouraged

to use them, and social aspects such as team cohesiveness and commitment are important. Throughout this process

the project manager has used a participatory approach in which all team members could influence the practices and

processes.

The digital engineering strategy adopted by the HYPSO team is a low-cost, low-effort approach using readily

available tools and methods. Some of the methods, such as agile practices and software repositories, have been used

in other CubeSat projects. There are valuable lessons to be learned between different academic teams and between

industry and academia on how to best approach and implement digital engineering in the organization. Future work

will look at including more MBSE tools and incorporating them with the product lifecycle proposed, to increase the

common understanding of the system and support knowledge management. Lastly, to combat the hurdles that using

target hardware for testing can cause, it is common to simulate the hardware responses. The caveat will always be that

the addition of mocking software as well as the addition of unit tests will be prone to the same coding mistakes as any

type of software development. The additional overhead of producing and maintaining a mocking library can take away

resources from code development that would otherwise provide the needed functionality or enhance it. The addition of

unit tests should be added when possible, and could help uncover undesirable side-effects of any proposed changes to

the code base.

Future studies could look at: (1) how the graduated studies have experienced transferability of skills and practices

22



gained during the HYPSO project; (2) how other university projects use DE and how the students experience it there; (3)

opportunities for cooperation between the CubeSat project and the wider university context, for example by introducing

aspects with DE as a part of the student curriculum to prepare for joining cross-disciplinary projects.

Funding Sources
This work is supported by the Norwegian Research Council (grant no. 270959) and the Centre of Autonomous

Marine Operations and Systems (NTNU AMOS, grant no. 223254). It has been approved by the Norwegian Centre for

Research Data (project no. 560218).

Acknowledgments
The authors would like to acknowledge all the team members at the NTNU SmallSatLab for their participation in

the CubeSat project. Authors also thank all the professors and technical support staff at the university departments for

their contributions with theoretical insights and practical solutions to developing a CubeSat. E.H-L. would like to thank

Vitech Corporation for making the CORE/GENESYS software available for this work.

References
[1] Törngren, M., and Sellgren, U., “Complexity challenges in development of cyber-physical systems,” Principles of Modeling.

Lecture Notes in Computer Science, edited by M. S. Martin Lohstroh, Patricia Derler, Springer, Switzerland, 2018, pp. 478–503.

https://doi.org/10.1007/978-3-319-95246-8_27.

[2] Bone, M. A., Blackburn, M. R., Rhodes, D. H., Cohen, D. N., and Guerrero, J. A., “Transforming systems engineering

through digital engineering,” The Journal of Defense Modeling and Simulation, Vol. 16, No. 4, 2019, pp. 339–355.

https://doi.org/10.1177/2F1548512917751873.

[3] SEBoK, “Model-Based Systems Engineering (MBSE) (glossary)— SEBoK,,” , 2020. URL: "https://www.sebokwiki.org/

w/index.php?title=Model-Based_Systems_Engineering_(MBSE)_(glossary)&oldid=59725", Accessed: 2021-

02-15.

[4] Aigner, A., and Khelil, A., “Assessment of Model-based Methodologies to Architect Cyber-Physical Systems,” International

Conference on Omni-Layer Intelligent Systems, 2019, pp. 146–151. https://doi.org/10.1145/3312614.3313779.

[5] Beck, K., “Embracing change with extreme programming,” Computer, Vol. 32, No. 10, 1999, pp. 70–77. https://doi.org/

10.1109/2.796139.

[6] Könnöla, K., Suomi, S., Mäkilä, T., and Lehtonen, T., “Can embedded space system development benefit from agile practices?”

EURASIP Journal on Embedded Systems, Vol. 1, 2017, pp. 1–16. https://doi.org/10.1186/s13639-016-0040-z.

23

https://doi.org/10.1007/978-3-319-95246-8_27
https://doi.org/10.1177/2F1548512917751873
"https://www.sebokwiki.org/w/index.php?title=Model-Based_Systems_Engineering_(MBSE)_(glossary)&oldid=59725"
"https://www.sebokwiki.org/w/index.php?title=Model-Based_Systems_Engineering_(MBSE)_(glossary)&oldid=59725"
https://doi.org/10.1145/3312614.3313779
https://doi.org/10.1109/2.796139
https://doi.org/10.1109/2.796139
https://doi.org/10.1186/s13639-016-0040-z


[7] Grande, J., Birkeland, R., Lindem, T., Schlanbusch, R., Houge, T., Mathisen, S. V., and Dahle, K., “Educational Benefits and

Challenges for the Norwegian Student Satellite Program,” Proceedings of the 64th International Astronautical Congress, 2013.

[8] Honoré-Livermore, E., and Birkeland, R., “Managing Product Development and Integration of a University CubeSat in a

Locked down World,” IEEE Aerospace Conference, Virtual, USA, 2021.

[9] Puig-Suari, J., Turner, C., and Ahlgren, W., “Development of the standard CubeSat deployer and a CubeSat class PicoSatellite,”

2001 IEEE aerospace conference proceedings (Cat. No. 01TH8542), Vol. 1, IEEE, 2001, pp. 1–347. https://doi.org/10.

1109/AERO.2001.931726.

[10] Sweeting, M. N., “Modern Small Satellites-Changing the Economics of Space,” Proceedings of the IEEE, Vol. 106, No. 3,

2018, pp. 343–361. https://doi.org/10.1109/JPROC.2018.2806218.

[11] Kulu, E., “NanoSats database,” online, 2020. URL: https://www.nanosats.eu, Accessed 2020-12-11.

[12] Berthoud, L., Swartout, M., Cutler, J., Klumpar, D., Larsen, J. A., and Nielsen, J. D., “University CubeSat Project Management

for Success,” Proceedings of the Conference on Small Satellites, 2019. https://digitalcommons.usu.edu/smallsat/

2019/all2019/63/.

[13] NASA, “State-of-the-ArtSmall Spacecraft Technology,” Tech. Rep. NASA/TP—2020–5008734, NASA, 2020. URL: https:

//www.nasa.gov/sites/default/files/atoms/files/soa2020_final3.pdf.

[14] Dawson, M., Burrell, D., Rahim, E., and Brewster, S., “Integrating Software Assurance into the Software Development Life

Cycle (SDLC),” Journal of Information Systems Technology and Planning, Vol. 3, 2010, pp. 49–53.

[15] Jayaram, S., and Swartwout, M., “Significance of Student-Built Spacecraft Design Programs: Its Impact on Spacecraft

Engineering Education over the Last Ten Years,” 2011 ASEE Annual Conference & Exposition, 2011. https://doi.org/10.18260/1-

2--18345, URL https://peer.asee.org/18345.

[16] Howell, E., “CubeSats: Tiny Payloads, Huge Benefits for Space Research,” , 2018. https://www.space.com/34324-cubesats.html,

Accessed 2020-12-10.

[17] Straub, J., and Whalen, D., “Evaluation of the Educational Impact of Participation Time in a Small Spacecraft Development

Program,” education sciences, Vol. 4, No. 141-154, 2014. https://doi.org/10.3390/educsci4010141.

[18] Grande, J., Birkeland, R., Gjersvik, A., Mathisen, S. V., and Stausland, C., “Norwegian student satellite program – lessons

learned,” Proceedings of The 68th International Astronautical Congress, 2017.

[19] NASA, “ELaNa - Educational Launch of Nanosatellites,” online, 2020. URL https://www.nasa.gov/mission_pages/smallsats/

elana/index.html, accessed 2020-12-11.

[20] ESA, “CubeSats - Fly Your Satellite!” online, 2020. URL https://www.esa.int/Education/CubeSats_-_Fly_Your_Satellite,

accessed 2020-12-11.

24

https://doi.org/10.1109/AERO.2001.931726
https://doi.org/10.1109/AERO.2001.931726
https://doi.org/10.1109/JPROC.2018.2806218
https://www.nanosats.eu
https://digitalcommons.usu.edu/smallsat/2019/all2019/63/
https://digitalcommons.usu.edu/smallsat/2019/all2019/63/
https://www.nasa.gov/sites/default/files/atoms/files/soa2020_final3.pdf
https://www.nasa.gov/sites/default/files/atoms/files/soa2020_final3.pdf
https://doi.org/10.18260/1-2--18345
https://doi.org/10.18260/1-2--18345
https://peer.asee.org/18345
https://www.space.com/34324-cubesats.html
https://doi.org/10.3390/educsci4010141
https://www.nasa.gov/mission_pages/smallsats/elana/index.html
https://www.nasa.gov/mission_pages/smallsats/elana/index.html
https://www.esa.int/Education/CubeSats_-_Fly_Your_Satellite


[21] Paluch, S., Antons, D., Brettel, M., Hopp, C., Salge, T.-O., Piller, F., and Wentzel, D., “Stage-gate and agile development

in the digital age: Promises, perils, and boundary conditions,” Journal of Business Research, Vol. 110, 2020, pp. 495–501.

https://doi.org/10.1016/j.jbusres.2019.01.063.

[22] Cooper, R. G., “The drivers of success in new-product development,” Industrial Marketing Management, Vol. 76, 2019, pp.

36–47. https://doi.org/10.1016/j.indmarman.2018.07.005.

[23] Merriam-Webster Dictionary, Agile, 2020 (accessed October 13, 2020). https://www.merriam-webster.com/dictionary/agile.

[24] Beck, K., Beedle, M., Bennekum, A. v., Cockburn, A., Cunningham, W., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R.,

Kern, J., Martin, R. C., Mellor, S., Schwaber, K., Sutherland, J., and Thomas, D.,Manifesto for Agile Software Development,

2001. URL: https://agilemanifesto.org/, Accessed October 12, 2020.

[25] Wilson, G., Aruliah, D. A., Brown, C. T., Chue Hong, N. P., Davis, M., Guy, R. T., Haddock, S. H. D., Huff, K. D., Mitchell,

I. M., Plumbley, M. D., Waugh, B., White, E. P., and Wilson, P., “Best Practices for Scientific Computing,” PLOS Biology,

Vol. 12, No. 1, 2014, p. e1001745. https://doi.org/10.1371/journal.pbio.1001745.

[26] Arvanitou, E.-M., Ampatzoglou, A., Chatzigeorgiou, A., and Carver, J. C., “Software engineering practices for scientific

software development: A systematic mapping study,” Journal of Systems and Software, Vol. 172, 2021, p. 110848. https:

//doi.org/10.1016/j.jss.2020.110848.

[27] Sletholt, M. T., Hannay, J., Pfahl, D., Benestad, H. C., and Langtangen, H. P., “A literature review of agile practices and

their effects in scientific software development,” Proceedings of the 4th International Workshop on Software Engineering for

Computational Science and Engineering, Association for Computing Machinery, Waikiki, Honolulu, HI, USA, 2011, pp. 1—-9.

https://doi.org/10.1145/1985782.1985784.

[28] Storer, T., “Bridging the Chasm: A Survey of Software Engineering Practice in Scientific Programming,” ACM Comput. Surv.,

Vol. 50, No. 4, 2017. Article 47, https://doi.org/10.1145/3084225.

[29] Rother, M., and Rosenthal, M., “An Approach to Becoming Agile in a Dynamic World. Helping employees develop scientific

thinking empowers them to solve problems and make decisions,” Association for Manufacturing Excellence: TARGET, Vol. 34,

2018.

[30] Sharp, J. H., and Lang, G., “Agile in teaching and learning: Conceptual framework and research agenda,” Journal of Information

Systems Education, Vol. 29, No. 2, 2018, pp. 45–52. http://jise.org/Volume29/n2/JISEv29n2p45.html.

[31] Masood, Z., Hoda, R., and Blincoe, K., “Adapting Agile Practices in University Contexts,” Journal of Systems and Software,

Vol. 144, No. Special Issue on Software Engineering Education and Training, 2018, pp. 501–510. https://doi.org/10.1016/j.jss.

2018.07.011.

[32] Lundqvist, K., Ahmed, A., Fridman, D., and Bernard, J., “Interdisciplinary Agile Teaching,” 2019 IEEE Frontiers in Education

Conference (FIE), 2019, pp. 1–8. https://doi.org/10.1109/FIE43999.2019.9028544.

25

https://doi.org/10.1016/j.jbusres.2019.01.063
https://doi.org/10.1016/j.indmarman.2018.07.005
https://www.merriam-webster.com/dictionary/agile
https://agilemanifesto.org/
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1016/j.jss.2020.110848
https://doi.org/10.1016/j.jss.2020.110848
https://doi.org/10.1145/1985782.1985784
https://doi.org/10.1145/3084225
http://jise.org/Volume29/n2/JISEv29n2p45.html
https://doi.org/10.1016/j.jss.2018.07.011
https://doi.org/10.1016/j.jss.2018.07.011
https://doi.org/10.1109/FIE43999.2019.9028544


[33] Shah, M., Grebennikov, L., and Nair, C. S., “A decade of study on employer feedback on the quality of university graduates,”

Vol. 23, 2015, pp. 262–278. https://doi.org/10.1108/QAE-04-2014-0018.

[34] Støren, L. A., Reiling, R. B., Skjelbred, S.-E., Ulvestad, M. E. S., Carlsten, T. C., and Olsen, D. S., “Utdanning for

arbeidslivet: Arbeidsgivers forventninger til og erfaringer med nyutdannede fra universiteter, høgskoler og fagskoler/Education

for employment: The employers expectations for and experiences with newly graduates from universities, colleges and vocational

schools,” Tech. rep., Nordic Institute for Studies in Innovation, Research and Education, 2019.

[35] Turner, R., “Toward Agile Systems Engineering Processes,” The Journal of Defence Software Engineering, Vol. 20, 2007, pp.

11–15.

[36] McDermott, T., Van Aken, E., Hutchison, N., Blackburn, M., Clifford, M., Chean, N., Salado, A., and Henderson, K., “Summary

Report Task Order WRT-1001: Digital Engineering Metrics,” Tech. rep., Stevens Institute of Technology, 2020.

[37] Garzaniti, N., Briatore, S., Fortin, C., and Golkar, A., “Effectiveness of the Scrum Methodology for Agile Development of

Space Hardware,” 2019 IEEE Aerospace Conference, 2019, pp. 1–8. https://doi.org/10.1109/AERO.2019.8741892.

[38] Huang, P. M., Darrin, A. G., and Knuth, A. A., “Agile hardware and software system engineering for innovation,” 2012 IEEE

Aerospace Conference, 2012, pp. 1–10. https://doi.org/10.1109/AERO.2012.6187425.

[39] Grøtte, M. E., Birkeland, R., Honoré-Livermore, E., Bakken, S., Garrett, J. L., Prentice, E. F., Sigernes, F., Orlandic, M.,

Gravdahl, J. T., and Johansen, T. A., “Ocean Color Hyperspectral Remote Sensing with High Resolution and Low Latency - the

HYPSO-1 CubeSat Mission,” IEEE Transactions on Geoscience and Remote Sensing, 2021. In press.

[40] Fowler, M., and Foemmel, M., “Continuous integration,” , 2006. https://moodle2019-20.ua.es/moodle/pluginfile.php/2228/

mod_resource/content/2/martin-fowler-continuous-integration.pdf.

[41] Chacon, S., and Straub, B., Pro git, Springer Nature, 2014. https://doi.org/10.1007/978-1-4842-0076-6.

[42] Corpino, S., and Stesina, F., “Verification of a CubeSat via hardware-in-the-loop simulation,” IEEE Transactions on Aerospace

and Electronic Systems, Vol. 50, No. 4, 2014, pp. 2807–2818. https://doi.org/10.1109/TAES.2014.130370.

[43] Waswa, P. M. B., and Redkar, S., “A survey of space mission architecture and system actualisation methodologies,” International

Journal of Aerospace Engineering, Vol. 4, No. 3, 2017, p. 38. https://doi.org/10.1504/ĲSPACESE.2017.085674.

[44] Quintana-Diaz, G., Birkeland, R., Ekman, T., and Honoré-Livermore, E., “An SDRMission Measuring UHF Signal Propagation

and Interference between Small Satellites in LEO and Arctic Sensors,” Small Satellite Conference, Logan, UT, 2019.

[45] Garzaniti, N., and Golkar, A., “Performance Assessment of Agile Hardware Co-development Process,” 2020 IEEE International

Symposium on Systems Engineering (ISSE), 2020, pp. 1–6. https://doi.org/10.1109/ISSE49799.2020.9272209.

26

https://doi.org/10.1108/QAE-04-2014-0018
https://doi.org/10.1109/AERO.2019.8741892
https://doi.org/10.1109/AERO.2012.6187425
https://moodle2019-20.ua.es/moodle/pluginfile.php/2228/mod_resource/content/2/martin-fowler-continuous-integration.pdf
https://moodle2019-20.ua.es/moodle/pluginfile.php/2228/mod_resource/content/2/martin-fowler-continuous-integration.pdf
https://doi.org/10.1007/978-1-4842-0076-6
https://doi.org/10.1109/TAES.2014.130370
https://doi.org/10.1504/IJSPACESE.2017.085674
https://doi.org/10.1109/ISSE49799.2020.9272209

	Introduction
	Background
	Academic CubeSat projects
	Agile methodology and development practices
	Digital engineering

	The HYPSO case study
	The HYPSO CubeSat project
	Software system architecture
	Tailoring of the agile methodology
	Verification and validation using Hardware-in-the-loop setups

	Experience using digital engineering in an academic project
	Choice of digital engineering strategy
	Effectiveness of using agile digital engineering: software and hardware
	Tailoring of Scrum
	Scrum performance
	Integration and verification and validation
	COVID-19

	Educational aspects
	Future satellite development

	Conclusion

