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Biological Sphere with Arbitrary Homogeneous
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Abstract—Diffusion-based molecular communication (DMC)
is envisioned to realize nanonetworks for health applications.
Inspired by sphere-like entities in the body, modeling diffusion
channel in the biological sphere is motivated. The boundary
condition in such biological environments is considered as ho-
mogeneous boundary conditions (HBC) that can simply model
the molecular processes over biological barriers, e.g., carrier-
mediated transport and transcytosis over the blood vessel walls.
In this paper, we model the diffusive communication channel
between a point source transmitter and a transparent receiver
arbitrarily located inside a spherical environment with HBC. To
this end, the concentration Green’s function (CGF) is analytically
derived in the Fourier domain. Statistics of the signal received at
the receiver is computed based on the derived CGF to obtain the
analytical results. The analytical results are accurately confirmed
with particle-based simulation (PBS). The performance of a
simple on-off keying modulation scheme is also examined in terms
of error probability.

Index Terms—Diffusive molecular communication, Green’s
function, Fourier transform, error probability.

I. INTRODUCTION

Diffusion-based molecular communication (DMC) has re-
cently received high attention to develop future embedded
internet of bio-nanothing (IoBNT) devices for healthcare ap-
plications [1]-[2]. In the biological environments, DMC system
has to overcome the Brownian motion and chemical reactions
of the particles to convey the information [3]. The communica-
tion channel modeling in different biological environments is
a vital step towards the development of DMC systems [4]. The
geometry, interaction of particles with the biological barriers
and corresponding boundary conditions in the environment
should be taken into account in the channel modeling.

For the symmetric simple geometries, analytical channel
models may be derived. As a very important symmetric ge-
ometry, spherical biological environment is inspired by sphere-
like entities in the body, e.g., stomach, lung, kidney, cells, and
nucleus [5]-[6]. Tumor microenvironment that is referred to as
tumor spheroid can also be approximated by a spherical envi-
ronment in which the outer cells make the reactive boundary
[7]. This boundary behaves as a reversible binding surface
for ordinary signaling molecules transmitted by the cells [7].
Moreover, the space with reactive surface in the proximity of
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a synaptic cleft in the presynaptic neuron where the vesicles
are generated and diffuse can be considered as a sphere-like
biological environment [8]. In synthetic drug-delivery systems,
mathematical models are desired to describe the release rate
of the particles out of the nanocarrier spheroids where the
internal reactive surface characterizes the permeability rate of
the membrane [9]. Modeling the release of exosomes in the
vicinity of a biological barrier, e.g. spherical membrane of
a cell with specific boundary conditions is another example
motivating the spherical biological environment [10].

The boundary conditions in such biological environments
can be simply modeled by homogeneous boundary conditions
(HBC) framework proposed recently in [11]. The general
HBC framework is able to model the interaction of different
active transport mechanisms across the biological barriers.
Considering the general HBCs for objects, transceivers, and
borders in an environment with arbitrary geometries, a semi-
analytical approach has been recently proposed to model the
pure diffusion channel [12].

DMC literature have already addressed the channel mod-
eling problem for molecular communication in the sphere
with various simple BCs [5]-[6], [13]-[15]. Authors in [13]
proposed a semi-analytical transfer function approach which
models particle diffusion inside a single or across multiple
conjugating spheres with variable permeability based on an
initial-boundary value problem. Authors in [6] obtained analyt-
ical concentration Green’s function (CGF) for a DMC system
confined in a spherical environment with irreversible reaction
across the boundary assuming a fully-absorbing receiver lo-
cated at the origin. Furthermore, analytical CGF for the sphere
with fully reflective or absorbing boundary is provided in
[14]. The authors in [15] provide analytical CGF inside a
sphere considering fully-reflective boundary in the presence of
a spherical fully-absorbing receiver concentric with the sphere.
In [5], the analytical CGF for the spherical environment with
partially absorbing boundary that covers a wide range from
fully-reflective to fully-absorbing BCs assuming arbitrarily-
located point transmitter and transparent receiver inside the
sphere. All the previous approaches are unable to consider
arbitrarily-located transmitter inside a sphere with a general
HBC that linearly simplifies the BC corresponding to any
reaction over the boundary, e.g., reversible reactions and active
transport mechanisms.

In this paper, we consider a spherical environment where the
interaction of information particles with the internal surface
of the sphere is generally modeled as HBC. The proposed
analysis provides the CGF at any point inside the sphere
assuming an arbitrarily-located point transmitter. Applying
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Figure 1: Schematic illustration of the considered DMC system. The point
transmitter (in yellow color) and the transparent receiver (gray sphere with

radius rrx) are located inside the biological sphere with radius rs.

a frequency-domain approach, the CGF inside and over the
surface of the sphere can be analytically obtained given the
HBC, assuming a point transmitter and a transparent receiver.
The derived Fourier transform of the CGF can be employed
for important analysis in the communication systems, e.g.,
frequency-domain equalization, channel estimation, channel
shortening, and pulse shaping from the frequency-domain
perspective [16]-[17]. However, the proposed CGF may feed
the sequential method of moments provided by [12] as the
initial analytical CGF to get the CGF inside the sphere in the
presence of multiple volumetric transceivers and/or obstacles
with arbitrary HBCs.

The organization of the letter is described as follows. In
Section II, the considered system model is introduced. The
CGF for the described system model is derived in frequency
domain in Section III. Finally, in Section IV, the provided
method is evaluated by a particle-based simulation (PBS) and
the corresponding bit error rate (BER) analysis are carried out
for various scenarios. The paper is concluded in Section V.

II. SYSTEM MODEL

We consider a DMC system inside a spherical boundary
with radius rs where a general HBC is conducted; see Fig. 1.
The point transmitter (Tx) uses information molecules of type
A to communicate with the transparent receiver (Rx). The
information molecules, released by the Tx, undergo Brownian
motion and some of them may reach the Rx. The spherical
coordinate system (r, θ, φ) is adopted where r, θ, and φ denote
the radial, elevation, and azimuthal coordinates, respectively.
Also, homogeneous diffusion coefficient D is considered for
diffusion of information molecules in the environment. The
first order degradation reaction

A
kd ∅ (1)

is assumed inside the sphere where kd is the degradation
constant in s−1. The internal boundary of the sphere is

assumed to be modeled as a general HBC [11] described as
follows

D∇c(r̄, t) · n̂ = Lc(r̄, t), r̄ ∈ ∂D, (2)

where ∇ denotes the spatial gradient operator, (·) is the inner
multiplication operator, n̂ describes the surface normal vector
pointing towards the exterior of the diffusion environment at
r̄ ∈ ∂D with ∂D denoting the set of all points over the
boundary of the environment, D and L are arbitrary time
domain differential operators which are characterized based
on the reactions involving information molecules across the
boundary, and c(r̄, t) denotes the concentration of information
molecules at point r̄ and time t. The HBC models wide range
of BCs from partially absorbing BCs [5] to active transport
mechanism [11] across the biological barriers, e.g., carrier-
mediated transport and transcytosis [18]. Active mechanisms
incorporating several reversible reactions are responsible for
transport of the macromolecules across the boundary cells. For
instance, a simplified model for the carrier-mediated transport
across the endothelial cells is given by [11]

A+B
kf
kb

AB
ki ∅ (3)

where kf , kb, and ki denote forward and backward reaction
constants, and molecule internalization rate, respectively. The
reaction (3) reduces to the reversible reaction for ki = 0 [11],
i.e.,

D(
∂

∂t
+ kb)∇c(r̄, t) · n̂ = kf

∂

∂t
c(r̄, t). (4)

In the communication setup, a simple on-off keying modula-
tion scheme is considered. In each time slot of duration Ts,
the Poisson concentration transmitter [19] encodes information
bits 0 and 1 into the release of zero and N molecules on
average, respectively, at the beginning of the time slot. In other
words, the number of molecules released at the beginning of
each time slot is modeled as a Poisson distribution with rate
biN where bi denotes the ith bit, i ∈ {0, 1} [19]-[20]. The
receiver decodes the received signal based on the number of
observed molecules inside the volume of the receiver measured
at the peak sampling time.

III. DERIVATION OF CGF IN FREQUENCY DOMAIN

In this letter, a frequency domain approach is utilized to
find the CGF inside the sphere, given the general HBC in (2).

The point transmitter is located at r̄tx = (rtx, θtx, ϕtx). The
partial differential equation governing the diffusion process in
the frequency domain and the spherical coordinate system is
given by (5) [21] at the top of the next page where C is the
abbreviation for C(r̄, ω|r̄tx) that denotes the concentration of
molecules at point r̄ and frequency ω given the impulsive
point source at r̄tx i.e. δ(r−rtx)δ(θ−θtx)δ(ϕ−ϕtx)

r2 sin θ . HBC (2) in
the spherical coordinate system and the frequency domain is
obtained as

D(ω)
∂C(r̄, ω|r̄tx)

∂r

∣∣∣∣
r̄=rsr̂

= L(ω)C(rsr̂, ω|r̄tx), (6)
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D

r2

∂

∂r
(r2 ∂C

∂r
) +

D

r2 sin θ

∂

∂θ
(sin θ

∂C

∂θ
) +

D

r2sin2θ

∂2C

∂ϕ2
− (kd + iω)C +

δ(r − rtx)δ(θ − θtx)δ(ϕ− ϕtx)

r2 sin θ
= 0 (5)

where r̂ is the radial unit vector. The series-form separated
solution of (5) is written as [5]

C(r, θ, ϕ, ω|r̄tx)

=

∞∑
n=0

n∑
m=0

HmnRn(r, ω) cos(m(ϕ− ϕtx))Pmn (cos θ),
(7)

where Rn(r, ω) is unknown radial function of r, F(θ, ϕ) =
cos(mϕ)Pmn (cos θ) is the associated Fourier-Legendre func-
tion of the first kind with degree n and order m that satisfies
the partial differential equation (PDE) in (9), and Hmn denotes
the unknown coefficient corresponding to the mode mn of
the response. Also, the representation of δ(ϕ− ϕtx) δ(θ−θtx)

sin θ
based on the aforementioned Fourier-Legendre basis functions
is given by (8) at the top of the current page where L0 = 1

2π

and Lm = 1
π ,m ≥ 1 [5]. Replacing C and δ(ϕ− ϕtx) δ(θ−θtx)

sin θ
in (5) by the corresponding series-form representation given
by (7) and (8) respectively, gives (10). Matching two sides of
(10) yields,

Hmn = Lm
2n+ 1

2

(n−m)!

(n+m)!
Pmn (cos θtx), (11)

and

r2 ∂
2Rn(r, ω)

∂r2
+ 2r

∂Rn(r, ω)

∂r
+ (k2r2 − n(n+ 1))Rn(r, ω)

= δ(r̄ − r̄tx),
(12)

where k =
√
−kd−iω

D . By applying (7) in the HBC (6), we
also obtain

D(ω)
∂Rn(r, ω)

∂r

∣∣∣∣
r̄=(rs,θ,ϕ)

= L(ω)Rn(r, ω). (13)

To solve (12), we remove the source term δ(r̄− r̄tx) in the
right hand and consider the derivative discontinuity of CGF
at r̄ = r̄tx that leads to the following corresponding boundary
condition1

r2 ∂Rn(r, ω)

∂r

∣∣∣∣
r=r+tx

− r2 ∂Rn(r, ω)

∂r

∣∣∣∣
r=r−tx

= 1. (14)

The solution of homogeneous form of PDE obtained from
(12) is written as

Rn(r, ω) =

{
Anjn(kr) +Bnnn(kr) r ≥ rtx

Cnjn(kr) +Dnjn(kr) r < rtx
(15)

where jn(.) and nn(.) are nth order of the first and second
types of spherical Bessel function, respectively. Since nn(kr)
is singular at r = 0, we set Dn = 0 for r < rtx. Considering
the boundary conditions (13), (14), and also the continuity
condition of concentration at r̄tx,

Rn(r, ω)

∣∣∣∣
r=r+tx

= Rn(r, ω)

∣∣∣∣
r=r−tx

, (16)

1The equivalent boundary condition of (14) is derived by integration of two
sides of over [r+tx, r

−
tx].

where coefficients An, Bn, and Cn in (15) are obtained
as (17)-(19) at the top of the next page. Noteworthy, j′(·)
and n′(·) in (17)-(19) are the derivative functions of j(·)
and n(·) in terms of r, respectively. By having An, Bn and
Cn, Rn(r, ω) is given in (15) and the concentration Green’s
function is computed by taking inverse Fourier transform from
(7).

IV. ANALYTICAL AND SIMULATION RESULTS

For the results section, the spherical environment described
in Section II is considered. A reversible reaction, i.e., (3) for
ki = 0 is assumed across the boundary that corresponds to
the frequency-domain HBC of (4), i.e., D(ω) = D(iω + kb)
and L(ω) = iωkf , respectively. The diffusion coefficient
D = 10−9 m2s−1 is assumed for information molecules. The
analytical results are confirmed by the PBS [12]. Then we
investigate the performance of the DMC system in terms of
BER analysis.

A transparent receiver located at r̄rx = (4µm, π4 ,
3π
4 ) is

considered in the described spherical environment with radius
rs = 5µm. Also, a time-slot duration Ts = 0.25 is adopted
and the receiver is assumed to have the radius rrx = 1 µm.
The CGF at position (r, θ, φ) given a point transmitter located
at r̄tx = (3µm, π2 , 0) is obtained by taking inverse Fourier
transform of (7). Based on the transmitted signal model in
Section II and having the analytical CGF, the discrete-time
received signal at ith time slot denoted by Yi, follows a
Poisson distribution as Yi ∼ Poisson(Nvrx

∑i
j=0 bjci−j)

where {bj}ij=0 denote the transmitted sequence up to the
ith transmission time slot, i.e., t = iTs, and vrx = 4

3πr
3
rx.

Also, ci−j is the CGF value at sampling times defined as
ci−j

∆
= c(r̄, t)

∣∣
t=(i−j)Ts+ts

where ts denotes the peak sam-
pling time starting from the beginning of the time slot. The
terms with i 6= j characterize the accumulated inter-symbol
interference (ISI) observed at the receiver at ith time slot.

Fig. 2 depicts the observation probability function (OPF)
defined as vrxc(r̄, t) which is obtained by the proposed
analytical CGF and the PBS for fully reflective and fully
absorbing HBCs, i.e., kf = 0 m s−1, kf = ∞, respectively,
when different degradation constants kd ∈ {0, 20} m s−1 are
adopted. The time step ∆t = 10−3 s is assumed for the PBS.
The figure also shows the results for a reversible boundary with
kf = 10−4 m s−1 for different backward reaction constants
kb ∈ {50, 10} s−1. As observed, the analysis is accurately
confirmed by PBS. As expected, by increasing kb, the tail
of the CGF increases which results in severe ISI level and
consequently higher channel memory.

Fig. 3 demonstrates the BER analysis versus time-slot
duration for the DMC system for different backward reaction
constants kb ∈ {0, 10, 50} s−1 when kf = 10−4 m s−1

and kd = 20 s−1. In our simulations, we have employed
a symbol-by-symbol detector which determines the threshold
value based on the maximum-a-posteriori rule. Due to the lack



SUBMITTED TO IEEE WIRELESS COMMUNICATIONS LETTERS 4

δ(ϕ− ϕtx)
δ(θ − θtx)

sin θ
=

∞∑
n=0

n∑
m=0

Lm
2n+ 1

2

(n−m)!

(n+m)!
Pmn (cos θ)Pmn (cos θtx)cos

(
m(ϕ− ϕtx)

)
, (8)

D

sin θ

∂

∂θ

(
sin θ

∂F(θ, ϕ)

∂θ

)
+

D

sin2θ

∂2F(θ, ϕ)

∂ϕ2
+ n(n+ 1)F(θ, ϕ) = 0. (9)

D
r2

∂
∂r (r2 ∂R(r,ω)

∂r )
∑∞
n=0

∑n
m=0HmnP

m
n (cos θ) cos(m(ϕ− ϕtx) +R(r, ω)

∑∞
n=0

∑n
m=0Hmn

D
r2 sin θ

∂
∂θ (sin θ

∂Pm
n (cos θ)
∂θ )+

D
r2sin2θ

∂2(cos(m(ϕ−ϕtx)))
∂ϕ2 − (kd + iω)R(r, ω)

∑∞
n=0

∑n
m=0HmnP

m
n (cos θ) cos(m(ϕ− ϕtx))

= −
∞∑
n=0

n∑
m=0

Lm
2n+1

2
(n−m)!
(n+m)! × P

m
n (cos θ)Pmn (cos θtx)cos(m(ϕ− ϕtx))δ(r̄ − r̄tx).

(10)

An =
1

Dr2
txk

(
j′n(krtx) +

L(ω)
D(ω)

jn(ka)−kj′n(ka)

− L(ω)
D(ω)

nn(ka)+kn′n(ka)
n′n(krtx)− jn(krtx)+nn(krtx)

jn(krtx) j′n(krtx)

) , (17)

Bn = An

L(ω)
D(ω)jn(ka)− kj′n(ka)

−L(ω)
D(ω)nn(ka) + kn′n(ka)

, (18) Cn = An
jn(krtx) + nn(krtx)

jn(krtx)
. (19)

of space, the BER analysis is omitted here and is referred to
our previous work [5] for the interested audience.

Fig. 4 demonstrates the normalized cumulative time error
(CTE) as well as expected run time (ERT) to compute the
series in (7) given a limited number of the series. The nor-
malized CTE, denoted by E(r̄, n), describes the summation of
differential error in consecutive time instances and is defined
as follows:

E(r̄, n) =

∫ tmax

0
|cn(r̄, t)− cn−1(r̄, t)|dt
|
∫ tmax

0
cn(r̄, t)dt|

, (20)

where cn(r̄, t) denotes the channel impulse response employ-
ing n terms of series (7) where lim

n→∞
cn(r̄, t) = c(r̄, t), | · |

denotes the absolute value, and tmax = 0.1 s is assumed. We
consider kb = 10 s−1, kf = 10−4 m s−1, and kd = 20 s−1.
We observe that CTE is enough small for n < 40 that
correspond with an ERT < 30 min. The figure also shows
that normalized CTE increases for larger rs.

V. CONCLUSION

We have adopted a frequency-domain approach to provide
an analytical CGF inside and over the boundary of the sphere
with a reactive surface modeled as HBC. The HBC framework
simply models BC corresponding with the reactions across
the boundary, e.g., active transport mechanisms. The proposed
method extends the limited time-domain approach proposed
previously in [5] to consider general HBCs at the cost of a
higher computational complexity of the inverse Fourier trans-
form. The results demonstrated that the increment in backward
reaction rates leads to significant performance deterioration
in terms of BER due to the higher channel memory and
consequently increased level of ISI. The provided framework
constitutes an analytical basis of the diffusion processes inside
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with n terms.

sphere-like entities, paving the way for the development of
realistic DMC systems, e.g., release-controlled nanocarriers.
Also, the proposed analytical approach can be used to solve
the inverse channel estimation problems in spherical diffusion
environments which is motivated as a future work.
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