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Abstract

Autonomous vessels relies on intelligent decision algorithms based on machine learning. As

a major advantage in machine learning, the deep learning approach is becoming a powerful

technique for object detection. The deep learning methodologies are applied in various fields in

the maritime industry such as ship classification, collision avoidance, and navigation. However,

challenges within the maritime environment give rise to the need for unique solutions. In this

thesis, maritime vessels are classified and detected in optical camera images using the Bag-

of-Visual-Words (BoVW) method for maritime environments. Features from vessel targets and

background are first extracted using either interest point detectors or sliding window. Then,

similar features are clustered using k-means clustering algorithm to create vocabulary for both

categories. The vocabularies are used for testing the model performance on unseen data. The

features corresponding to the vessel targets from the test set are matched to those of the training

to classify each feature. The aim was to examine if BoVW could be used to extract information

about the parts of the vessel to improve object detection in cluttered harbor environments.

The results from the tests done in this project shows that the method needs improvements.

The method shows promising results in certain situations, however object detection in real-life

cluttered harbor environments proved to be difficult.
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Sammendrag

Autonome fartøy er avhengig av intelligente beslutningsalgoritmer basert på maskinlæring. En

stor fordel innen maskinlæring er at dype nettverk utvikler seg mot å bli kraftfulle verktøy in-

nen objekt deteksjon. Dype nettverk brukes i ulike felt innen den maritime industrien som

blant annet til klassifisering av skip, kollisjonsunngåelse og navigasjon. Utfordringer innen-

for havnmiljøet gir imidlertid behov for unike løsninger. I denne rapporten ble Bag-of-Visual-

Words (BoVW) metoden brukt til å klassifisere og detektere skip i optiske bilder fra maritime

omgivelser. En interessepunktdetektor eller sliding window blir først brukt til å hente ut deler av

skipet. Så blir skips- og bakgrunnsdeler med like egenskaper gruppert sammen med k-means

cluster algoritmen for å lage en ordbok for begge kategoriene. Ordbøkene vil så bli brukt for å

teste ytelsen til modellen. De delene som tilsvarer skipsklassen, blir så matchet med trenings-

dataen for å klassifisere hver skipsdel. Målet med prosjektet var å undersøke om BoVW kan

brukes til å hente ut informasjon fra fartøyet for å forbedre deteksjon av skip i havnemiljøer.

Resultatene fra testene som har blitt gjort i dette prosjektet viser at metoden har forbedringspoten-

sial. Metoden viser lovende resultater under visse situasjoner, men skipsdeteksjon fra havne-

miljøer viser seg å være utfordrende.
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Chapter 1

Introduction

In this thesis the usage of the Bag-of-Visual-Words (BoVW) model is examined to efficiently

classify and detect vessels in maritime environments. The BoVW representation is build using

image analysis techniques, such as feature detection and description, clustering, and feature

matching, in order to be able to recognize and localize the target objects in optical camera im-

ages. The aim of this thesis is to extract information about the parts of the vessel to improve

object detection in cluttered harbour environments.

1.1 Motivation

Autonomous Surface Vessels (ASV) has in recent years made significant progress in the maritime

research field. The potential advantages expand beyond reduced manual labor, increased traffic

safety, and efficient route planning. A vessel’s ability to communicate with other vessels, sense

it surroundings and make decisions based on that information is crucial to the development of

autonomous systems. The autonomous navigation system depends on a complex pipeline of

situational-awareness and robust algorithms for collision-avoidance. Detection of objects, or

locating surrounding objects is the first step in such a pipeline. Sensors such as LIDAR, radar

and the AIS systems are commonly utilized for doing this. Such sensors are good at measur-

ing distance. However, AIS relies on vessel-to-vessel communication and smaller vessels are

not equipped with automatic identification system transponders. Other disadvantages are that

the sensor may fail due to e.g. absence of satellite coverage, or it may provide false informa-

tion for different reasons. Therefore, autonomous ships must be able to navigate among other

autonomous and non-autonomous ships. This motivates research towards the exploration of

camera-based navigation estimation. Optical images have proven to provide accurate object

1
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localization information and has been extended into camera tracking systems. Camera sensors

achieve situational awareness without relying on vessel-to-vessel communication [45].

In recent years object detection has been used to detect and classify objects in the surrounding

of the ship. Based on this it is important to understand the environment where the detector is

to be implemented. The object detection task in the maritime environment is placed in chal-

lenging conditions, where the environment naturally prevent the detector to perform robustly.

Objects of interest are other maritime vessels, signs, buoys, and landmarks. Challenges to be ad-

dressed in a maritime environment include occlusion, blurred images, different variety of scales

of objects, and changes in viewpoint. Object detection can perform well to high-quality custom

datasets, however their robustness to new real-world images can not be guaranteed. A problem

with using detection algorithms is that the predicted bounding boxes does not necessary cover

the actual object perfectly. In addition, reflection in water and similar objects may results in

false positive predictions. This is illustrated in Figure 1.1. Low accuracy and misclassification

of other target objects are problems that often occur in research papers. Moreover, methods for

classification that deal with maritime vessels in cluttered harbor environments are not widely

known, or tested.

Object detection from maritime environments poses challenges that needs unique solutions.

It needs algorithms with better adaptability to the various conditions encountered in maritime

scenario. Hence, there is a need to do more research on solving these problems.

Figure 1.1: False positive maritime vessel detection.

In this project thesis, it is desirable to use Bag-of-Visual-Words (BoVW) for ship part detection to

address the challenges within a harbor environment. The report involves using BoVW approach

to extract features from maritime vessels on camera images and use these features to detect

the vessel. The author’s specialization project [20] had the same objective, but focused only on

classification of the ship. The aim of this thesis is to extend the objective to localization of ship
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targets. The methods used in this thesis are different from those in the specialization project.

While it was used Support Vector Machine (SVM) to classify features, it will in this thesis be

considered a comparison of visual words in the vocabulary with query features using k-Nearest

Neighbor. With respect to this, the project will focus on implementing a detection framework to

see if it is possible to use BoVW for ship detection in maritime environments.

1.2 Object Detection Methods Based on Deep Learning

In recent years, image classification and object detection have developed rapidly. The main con-

tribution of this development is the implementation of convolutional neural networks (CNN).

These are deep learning algorithms which is widely used in various classification applications.

Being capable of taking intelligent decisions and handling large datasets are among the factors

for their success [29]. Over the years, a greater number of variations of this architecture have

been proposed. In object detection, the goal is to both classify and locate objects in the image.

The first part is solved by CNNs and the remaining part is to find the subregions using object

detectors.

Region-based CNN (R-CNN) proposed by Girshick et al. [13] and its variants like Fast R-CNN [8]

and Faster R-CNN [40] are the typical deep learning-based object detection methods used to-

day. Researchers developed R-CNN to deal with the task of object localization and classification.

R-CNN is a concept that combine CNN with region proposals. For each input image, multiple

windows which may contain the detected objects are generated by using Selective Search. Then

these windows are classified using CNN. If the confidence of the the classification is high, the re-

gion proposals are returned from the algorithm. R-CNN model has achieved high performance

with a mAP of 53,3 % on the PASCAL VOC dataset [13]. Despite the amazing achievements, none

of the R-CNN architectures have managed to deal with real-time object detection. Fortunately,

new architectures have been created to achieve this.

The "You Only Look Once" (YOLO) network proposed by Redmon et al. [39] is a CNN-based

real-time detection method. In the past years, researchers have published several improved

versions of the algorithm represented as YOLO v2, YOLO v3, YOLO v4, and YOLO v5 [37] [38]

[5]. The core idea of YOLO is to divide the input image into SxS grid. The goal of each cell is to

predict bounding boxes and confidence scores for these boxes. If the center of an object falls

into a grid cell, that grid cell is responsible for detecting that object. Based on this, YOLO is a

one-stage algorithm. This means that the tasks of object classification and localization are done

in a single forward pass of the network. YOLO outperforms R-CNN with a mAP of 63,4 % while

still maintaining real-time performance on PASCAL VOC dataset [39].
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Single Shot Multibox Detector proposed (SSD) by Liu et al. [22] is a one-stage algorithm like

YOLO. SSD runs a convolutional neural network on input image once and then computes a fea-

ture map. SSD has reached high performance and precision for object detection tasks, scoring

over 74 % mAP (mean Average Precision) on the PASCAL VOC dataset. SSD achieves real-time

processing speed and even beats the accuracy of the Faster R-CNN [22].

Currently, deep object detection architectures has achieved state-of-the-art results in both ac-

curacy and speed in the object detection task in maritime environments. Deploying deep learn-

ing based object detectors in maritime environments is not a new phenomena. Moosbauer et

al. [26] analyzed object detection task in maritime environments by training the Faster R-CNN

architecture on the Singapore Maritime Dataset. In addition, Tangstad [41] trained a Faster R-

CNN model to detect maritime objects for collision avoidance. Grini [17] worked with different

type of deep-learning based detectors. Grini trained the YOLO v3 and SSD one-stage detectors

for boat and building detection in maritime environments.

1.3 Related Work

Parts of this section were presented in the specialization project [20]

Traditional machine learning algorithms has grown in the field of computer vision as an alter-

native way to approach image classification problems. Bag-of-Visual-Words (BoVW) is one of

these methods and was proposed by Csurka et al. [9] for image representation with the SIFT

descriptors used in supervised image classification. This method has shown to have great capa-

bility for selecting and classifying the features by creating bags of each instance type [36]. Since

2003, the method has achieved state-of-the-art performance on several applications within com-

puter vision such as human action recognition [33], scene classification [48] and face recogni-

tion [44]. Multiple papers have examined image classification using this approach and have

come with different ways to improve it. Tsai [42] presents a review consisting of recent related

works using BoVW for image classification. Jun et al. [2] proposed ways to improve performance

of BoVW by comparing different feature descriptors. Pawara et al. [32] compared BoVW with

three different classifiers; Support Vector Machine, k-Nearest Neighbor, and multi-layer per-

ceptrons to deep CNN on plant datasets. Pawara et al. concluded that the deep CNN methods

outperform the traditional methods.

As stated, this topic has been extensively studied, however few research papers examine the us-

age of image classification and localization of maritime vessel targets in maritime environments.

Even fewer examine the usage of BoVW for object localization. To the author’s knowledge, there
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is no research papers that fully discuss these issues. Polap et al. [34] used CNN with the BoVW

approach for faster feature extraction and classification of non-conventional ships. Costa [10]

analysed the usage of BoVW model to efficiently classify and detect car targets using SVM and

sliding window technique. Can et al. [6] evaluate detection and tracking of sea-surface targets

on IR and VIS band videos based on the BoVW technique. The performance of the given BoVW

models are evaluated on images consisting of only one object to classify and detect. Rarely taken

into consideration of cluttered harbor environments.

1.4 Problem Formulation

The aim of this thesis is to use BoVW approach for supervised ship detection. The problem of

interest is the detection of maritime vessel in optical camera images. The problem formulation

is stated as follows:

Can BoVW be used to extract information about maritime vessel parts contained in camera im-

ages to improve ship detection?

According to the defined problem formulation, the objective of this thesis is to determine whether

the BoVW model can produce a satisfying accuracy for object detection in harbour environ-

ments. This involves building a dataset and setting up a framework for training and testing of a

BoVW approach. Experiments will be conducted in order to fulfill the aim of this master thesis.

1.5 Contributions

The main contribution of this thesis is the use of a BoVW approach to detect maritime vessels in

maritime environments. To the best of the author’s knowledge, BoVW has extensively been used

for image classification, however few papers considers to use the approach for object detection.

Especially, for maritime vessels in real-life harbour environments. Another contribution was

labeling ship parts on a relatively large dataset. This was not used during this thesis due to

limited time, however it can be used for future research.
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1.6 Report Outline

The report is organized as follows. Chapter 2 presents the theoretical background needed for

assessment and choices later in the report. Two different approaches for feature detection and

description is presented, together with k-means clustering and feature matching with nearest

neighbor algorithm. Chapter 3 introduces the experimental setup and methodology description

of the BoVW approach used in the project. Chapter 4 contains the discussion of the results

gathered from the experimental study. Results from comparison among the approaches are

presented. Lastly, the conclusion of the report and future work suggestions are presented in

Chapter 5.



Chapter 2

Theoretical basis

This chapter describes general concepts that form a theoretical basis for the proposed method.

These concepts are aimed at establishing a common conceptual ground for the interpretation

and understanding of the different terms used through the project. It is of interest for the project

to obtain an overview of the Bag-of-Visual-Words (BoVW) approach and its building-blocks.

Therefore, the theory behind each component will be presented in depth.

2.1 Interest Point Feature Extraction

Contents of this section were partially published in the specialization project [20]

In image processing, features are used to describe characteristic properties of images such as

color, shape, or edges. When talking about features it is often referred to as local image features.

Features include properties like corners, edges, or regions of interest points. A feature is called

local if it is only influenced by a restricted region. Features can also be categorized as global,

however local features are desired since it can be used as robust image representation that allows

to find correspondence despite changes in viewing conditions, occlusion, and image clutter.

Feature extraction consist of feature detection and feature description. Feature detection refers

to finding the features in an image, while feature description assigns quantitative attributes to

the detected features [14]. In the following sections, each part will be presented.

7
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2.1.1 Feature detector

The first step of feature extraction is to use a feature detector to find a set of local, distinctive

interest points. Interest points are locations on an image that include the scale and orientation

of the feature. The feature in this context is referred to as an image patch which is an image

region containing rich local information. The image patch is specified by the coordinates and

size of the feature’s interest point as illustrated in Figure 2.1. The aim of the feature detector is

to find the features that are likely to be relocated in other images with the same corresponding

physical location [14]. The purpose of local features is to provide a representation that allows to

efficiently match between local structures in images. It is desired to obtain a sparse set of local

measurements that capture the essence of the underlying input images and that encode their

interesting structure [32].

Figure 2.1: Illustration of how an image patch is defined from interest point

SIFT Detector

David G. Lowe [23] proposed a local feature extraction algorithm called Scale-Invariant Fea-

ture Transform (SIFT). SIFT detector has unique advantages since it extract features invariant to

scale and rotation. The algorithm has therefore become a popular research topic.

The first stage of interest point detection is to identify locations and scales of the same object

under different views. Detecting locations invariant to scale is accomplished by searching for

stable features across multiple scales through smoothing and subsampling. SIFT defines the

scale space of an image as a function L(x, y,σ) that is produced from convolution between the
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Gaussian function G(x, y,σ) with an input image I (x, y,σ).

L(x, y,σ) =G(x, y,σ)∗ I (x, y,σ) (2.1)

where∗ is the convolution operation in x and y . The Gaussian function is defined as in Equation

2.2. SIFT obtain features in various scales by changing the variable σ.

G(x, y,σ) = 1

2πσ2
e− x2+y2

2σ2 (2.2)

To efficiently detect interest point locations in scale space, Lowe [23] proposed using scale-space

extrema in the Difference-of-Gaussian (DoG) function D(x, y,σ) shown in Equation 2.3.

L(x, y,σ) = (G(x, y,kσ)−G(x, y,σ))∗ I (x, y)

= L(x, y,kσ)−L(x, y,σ) (2.3)

Scale invariance is then achieved when SIFT creates a DoG pyramid by subtracting the images

which are adjacent in the same resolution. SIFT detect interest points by comparing each point

with its adjacent 26 pixels, which is the sum of eight adjacent pixels in the same layer and nine

in the upper and lower adjacent layers. This is represented in Figure 2.2. If the given point is a

minimum or maximum, then the location and scale of this point are recorded. Because of this,

SIFT gets all extreme points of DoG scale-space. SIFT then removes low contrast and unstable

edge points.

Figure 2.2: Maxima and minima of the DoG images. Image from [23]
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2.1.2 Feature descriptor

Feature descriptors describes the area surrounding the detected keypoint by converting the key-

point into a feature vector. Based on this, descriptors can be compared in order to match fea-

tures in different images. An ideal feature detector would be able to find distinctive features

efficiently and their performance would be invariant to changes in illumination, rotation and

scale. This is important since features can appear at different image locations and with vary-

ing orientations. Thus, a descriptor should be able to identify the same features under varying

appearances [14].

SIFT Descriptor

In the phase of descriptor establishing, SIFT measures the local image gradient at the selected

scale in the area around each interest point [23]. The SIFT descriptor is a 3D histogram of gra-

dient locations and orientations that is stacked as a single 128-dimensional vector. The high

dimension makes the descriptor relative slow to compute for larger sets. Before the SIFT de-

scriptor is computed, an orientation is assigned to each interest point to make the feature robust

to image rotation. To do this a neighborhood is taken around a interest point and the gradient

magnitude and direction is computed for that region. From this an orientation histogram with

36 bins is created covering 360 degree. The direction of the interest point is defined as the high-

est peak of the histogram. Now interest point descriptor is created. SIFT takes a 16x16 neigh-

borhood around the selected keypoint. Then SIFT divides this region into 4x4 sub-regions. For

each sub-region, 8 bin orientation histogram is created. Thereby, SIFT gets a 128-dimensional

feature descriptor (4x4x8) [46] [23].

Figure 2.3: Illustration of how the SIFT descriptor is created. Image from [23]
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2.2 Sliding Window Based Feature Extraction

In object detection, sliding window play an integral role as a technique to localize objects in an

image. Sliding window is a rectangular region of fixed width and height that slides across the

image. This is illustrated in Figure 2.4. For this project a sliding window is used to find features

of the image where each window is analyzed to determine if the given region contain features of

interest. When combined with image pyramids, it is possible to detect features at various scales

and locations.

Sliding window require three arguments; The first is the image to slide across, while the second

is the step size. The step size indicate how many pixels of the image to skip in both the x- and

y-direction. The third argument defines the window size, or the size of the region to analyze.

Figure 2.4: Illustration of sliding window with image pyramid

2.2.1 Classical Local Descriptors: Histogram of Oriented Gradients

Histogram of Oriented Gradients (HoG) is a feature descriptor that is used to extract features

from images. HoG was initially introduced for human detection [11]. The HoG feature descrip-

tor represents features by counting occurrences of gradient intensities and orientations in local

image patches. The feature descriptor give a compact representation that only contains the

most important information of the image. Typically, the feature descriptor converts an image

of size (width x height x channels) to a feature vector of length N. The HoG descriptor focuses

on the structure or the shape of an object since it uses magnitude and angle of the gradients

to compute features. Magnitude of gradients is large around edges and corners which give in-

formation about object shape. The gradient is less, or none, at flat regions and thus give less

information. The magnitude of gradients fires where there is a sharp change in intensity [24]

[43].
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The method is based on evaluating normalized local histograms of image gradient orientations

in dense grid. Local object appearance and shape is characterized by the distribution of local

intensity gradients or edge directions. The HoG descriptor is implemented by dividing the image

into small cells of size nxn. Horizontal Hx and vertical Hy gradients of the cell are computed by

applying the kernel [-1, 0, 1] as gradient detector. The gradient magnitude and orientation are

computed as follow:

M(x,y) =
√

H 2
x +H 2

y (2.4)

θ(x,y) = ar ct an
Hy

Hx
(2.5)

A local histogram of gradient directions is computed over the pixels of the cell. The combined

histogram entries form the descriptor. L2 normalization is applied to the histogram bins to

reduce illumination variability [24]. HoG descriptor is used for this project to create a descriptor

for image patches extracted using sliding window technique. This technique is not dependent

on interest points and thus another type of descriptor was desired. Since HoG only considers the

gradients on the image patch, the descriptor is neither invariant to rotation or scale. Therefore,

it is applied a sliding window with image pyramid to get robustness to scale.

2.3 Classification models

In machine learning, classification refers to the machine’s ability to assign instances to their cor-

rect groups. To be able to do this, the machine has to learn the patterns of the features available

in the labeled training dataset. In this section, the algorithms used for classification of maritime

vessels parts are presented.

2.3.1 K-means clustering

Contents of this section were presented in the specialization project [20]

k-means clustering is an unsupervised learning algorithm that aims to partition the data into

a specified number, k, of clusters. The algorithm starts with selecting k points randomly from

the dataset, and each point is assigned to the cluster with the nearest mean. A cluster refers to

a collection of data points categorized together because of certain similarities [14]. Each mean

is called the centroid of its cluster. The k-means algorithm then iteratively assign points to the

nearest centroid in terms of the shortest Euclidean distance. The next step is to update the
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cluster centroids. The process of data association and updating the centroids are then repeated

until convergence is achieved [21].

The objective of the algorithm is to optimally satisfy the criterion:

argmin
C

(
k∑

i=1

∑
z∈Ci

||z −mi ||2
)

(2.6)

where mi is the centroid of the data in set Ci . The term ∥z −mi∥ is the Euclidean distance from

a point in Ci to centroid mi . The k-means clustering algorithm will always converge, but it is

not guaranteed to yield the global minimum which result in bad clustering. An approach used

frequently is to start the method several times with different starting conditions to increase the

probability of finding the global solution. If the algorithm is run several times, then the attempt

which best minimizes the Equation 2.6 is chosen [14].

The simplicity of the k-means algorithm sometimes affect the accuracy. An approach to tackle

this problem is to use k-means++ initialization instead of running the algorithm from random

starting points. k-means++ is similar to k-means, but the idea is to choose initial points that

have the maximum distance from each other. For each point, the distance from the nearest,

previously chosen centroid is computed. The next centroid is chosen such that the probability

of selecting a point as centroid is directly proportional to its distance from the nearest, previ-

ously chosen centroid. This means that the next selected centroid is most likely to be the point

which is as far away as possible from the closest centroid. This approach improves both speed

and accuracy of k-means by helping the algorithm converge to the global minimum in fewer

iterations. Because of this, k-means++ is a recommended initialization method [3] [7].

For this project, k-means++ is used as initialization method to cluster the feature descriptors

computed from SIFT and HoG. These clusters will later be used to classify features using Nearest

Neighbor (NN) algorithm.
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2.3.2 Support Vector Machine

This section was published in the specialization project [20].

Multi-class classification is a classification task in machine learning where the machine should

classify an image into one of many classes. Support Vector Machine (SVM) is a supervised ma-

chine learning algorithm for such classification problems. SVM aims to find an optimal bound-

ary, known as hyperplane, between the different classes [16].

In the most basic setting, binary classification, SVM tries to find the boundary that maximizes

the separation between the datapoints of the two-class dataset that are defined. The objec-

tive is to find the hyperplane that separates the datapoints into their potential classes in a n-

dimensional space. A good choice is the hyperplane that leaves the maximum margin between

the two classes, where the margin is determined as the sum of the distances of the hyperplane

from the closest point of the two classes. The datapoints with the minimum distance to the hy-

perplane are called support vectors. In Figure 2.5, the support vectors are the two points laying

on the solid lines, and the hyperplane separating the data is the dotted line [16] [30].

Figure 2.5: Illustration of SVM with (Left) a hyperplane with small margin and (Right) a hyper-
plane with greater margin

The computations of the separation of datapoints depend on a kernel function. Kernel functions

are responsible for defining the decision boundary between the classes. A widely used kernel are

the Radial Basis Function (RBF), which is defined by Equation 2.7:

K (x, x ′) = e− ||x−x′||2
2σ2 (2.7)

Where ||x−x ′|| is the Euclidean distance. The RBF kernel is used on non-linearly separable data

where the decision boundary is needed to be curve-shaped. When using SVM in Scikit-learn,
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the RBF kernel has two user-defined parameters; γ and C.

The γ parameter adjust the spread of the decision region. When γ is low, the curvature of the

decision boundary is pretty broad. When γ is high, the curvature is high which creates decision

boundaries around datapoints. The parameter C is the penalty for misclassifying datapoints.

When C is small, the classifier accept misclassified datapoints, while penalizes the classifier for

misclassified datapoints when C is large. The decision boundary then bends to avoid misclassi-

fying points [1]. SVM for multiclass classification utilize multiple binary classification problems.

The aim is to map datapoints into high dimensional space to generate similar linear separations

between every two classes.

2.3.3 Feature matching with K Nearest Neighbor

Feature matching is how to match features in one image with other images. Feature matching

involves comparing an unknown feature vector, in this thesis called descriptor, against a class

of feature vectors. Then an unknown vector from test dataset is assigned to the class that is

most similar to the unknown. The set of feature vectors are in this thesis referred to as the mean

vectors computed from k-means cluster algorithm. The measure used to determine similarity

is used to distinguish between one matching method from another [14].

One of the simplest and most widely used feature matching method is the Nearest Neighbor

(NN) classier. NN classifier computes the similarity between an unknown descriptor and each

of the feature classes using a distance-based measure. The NN algorithm assumes that similar

features exist close to each other and is determined by the minimal distance. The classifier then

assigns the unknown vector to the class containing its closest feature [14].

There are various ways of determining similarity, however the Euclidean distance is the most

commonly used. The NN classifier computes the distances with Equation 2.8.

D j (x) = ||x − c j ||, j = 1,2, ..., N (2.8)

where ||a|| = (aT a)(1/2) is the Euclidean distance. During classification the NN classifier assigns

an unknown feature x to class c j if Di (x) for j = 1,2, ...N , j ̸= i .

The NN algorithm is considered as a “lazy learning” algorithm, meaning that it only stores the

training dataset. When asked to classify a test feature, the algorithm looks up the nearest entry

in the training set and returns its associated class [15].
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2.3.4 Fast Library for Approximate Nearest Neighbor (FLANN) library

The Nearest Neighbor algorithm is one of major importance in a variety of computer vision

applications such as image recognition, pattern recognition and classification, and machine

learning. The simplest way of matching features are to use a Brute-Force approach. This ap-

proach is simple. It match one feature descriptor with all other features in another set using

a distance measure. A disadvantage with this NN algorithm comes when solving the problem

in high dimensional space. The process of looking for feature matches can be computation-

ally expensive when there are a high number of features. The feature descriptors used during

this thesis is a high dimensional vector. Therefore, the Fast Library for Approximate Nearest

Neighbor (FLANN) library is used to manage the task. FLANN is written in C++ programming

language, but can easily be used with Python [27] [28].

2.4 Evaluation Metric for Object Detection

2.4.1 Intersection over Union

Intersection over Union is a measure that evaluates the predicted bounding box for object detec-

tion. IoU is given by the overlapping area between the predicted bounding box and the ground

truth bounding box divided by the area of union between them. The ground truth is referred to

as a manually drawn box over a correct object in the image [31].

IoU = area(Bp ∩Bg t )

area(Bp ∪Bg t )
(2.9)

By applying the IoU, one can define if the detection is valid (True Positive) or not (False Positive)

by comparing the IoU to a threshold. Figure 2.6 show the IoU between the ground truth box

(green) and predicted box (red).

Figure 2.6: Intersection over Union
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2.5 Bag-of-Visual-Words

Contents of this section were partially published in the specialization project [20].

Bag-of-Visual Words (BoVW) approach is commonly used in computer vision applications such

as image classification. The concept was first introduced in Natural Language Processing (NLP)

for text categorization. In the classic Bag-of-Words (BoW) algorithm, a document is represented

as a histogram of frequencies of order-less words. Later, the methodology of BoVW was inspired

by the BoW model to be applied for images in the field of computer vision. This idea was pro-

posed by Csurka et al.[9]. To apply the BoW model in computer vision applications, an image is

treated as a document, which can be considered as a collection of image features [19].

The classification approach is divided into two phases, where the first phase consists of training

a classifier with samples built with a visual vocabulary, and a recognition phase where the classi-

fier is used to identify new instances of the target object [10]. The visual vocabulary is generated

by applying the k-means clustering algorithm on the extracted image features. As mentioned in

Section 2.1, these features can be extracted in different ways using feature detectors. The local

region around the detected features are represented by feature descriptors. Descriptors with

similar features are then grouped into clusters using k-means algorithm. The obtained clusters

are considered as visual words which represent specific local patterns presented in that cluster.

Thus, a set of visual words generates a vocabulary which then represent different patterns in

the image. The size of the vocabulary is defined by the number of clusters. Each image can be

identified as a "bag of visual words" by mapping the features to visual words [? ]. The "bag of

visual words" corresponds to a histogram which is a representation of the occurrences of each

visual word of the vocabulary. Based on this, histograms can be compared with each other to

search for similar images[12]. The histogram is frequently used in the classification approach,

however it is not used during this thesis. The reason is that it is used to classify whole images,

which is not desired for an object detection task.

The last step of the approach is to classify the image by applying a classifier on the BoVW model

to determine which category to assign to the image. This is usually done with Support Vector

Machine (SVM), where the classifier is trained on the obtained features. Another option is to

use Nearest Neighbor algorithm for features matching. The new image is classified by finding

the smallest distance between the feature descriptors of the image and the visual words of the

vocabulary obtained during training phase [? ]. The last option is used during the thesis. A

general overview of the BoVW approach is illustrated in Figure 2.7.
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Figure 2.7: Schematic overview of the Bag-of-Visual-Words approach



Chapter 3

Method and Materials

This chapter presents the method used in this thesis in order to detect ships using BoVW ap-

proach. The proposed solution consists of several modules: preparation of dataset, feature ex-

traction, vocabulary generation, and lastly evaluation of model performance.

3.1 Experimental Setup

3.1.1 Software requirements

The source code written in order to produce and present the results in this thesis is written

with Python 3.8. Python is chosen as programming language as it arguably has the best open-

source libraries for computer vision and machine learning. OpenCV library has been extensively

used for computer vision tasks as image processing, feature extraction with SIFT, and descriptor

matching using FLANN. The machine learning framework of choice has been Scikit-learn since

it support k-means clustering. The source code has been written with PyCharm IDE and are

available at Github 1.

To train a supervised classification algorithm on the dataset, the open-source graphical image

annotation tool LabelImg2 was used to label bounding boxes on the train and test images. The

annotations were saved as .xml files with the PASCAL VOC XML format containing the ground

truth box coordinate information and category labels. The labeling is further presented in Sec-

tion 3.3.3.
1https://github.com/amalieKo/master-thesis
2https://github.com/tzutalin/labelImg

19

https://github.com/amalieKo/master-thesis
https://github.com/tzutalin/labelImg


CHAPTER 3. METHOD AND MATERIALS 20

3.1.2 Hardware requirements

Training and testing with traditional machine learning techniques does not require specific

hardware. The machine learning algorithm was not implemented with support for Graphics

Processing Unit (GPU) computations since it performs well with simply using a Central Pro-

cessing Unit (CPU). Therefore, all training of the BoVW model and experimentation has been

performed on a 64-bit personal computer with the following relevant technical specifications:

• Processor: Intel Core i7-9750H. 6 cores / 2.59 GHz base clock

• Memory: 16 GB

• Storage: KINGSTON 1 TB M.2 SSD

With these specifications the training time was of approximately 3 hours. Naturally, this training

time was affected by the number of images in dataset, number of features to detect and describe,

and number of clusters to generate with k-means clustering.

3.2 Maritime Environment Datasets

Large datasets are considered important when trying to implement object detection algorithms

that generalize well to a given dataset. In addition, for large datasets it is required to use a large

amount of effort to annotate all images. Annotated datasets for maritime vessels are particu-

larly hard to find since there is no large public dataset available. Therefore, extensive annotated

maritime datasets proves to be a significant contribution for future research. Some examples

of such datasets are MARVEL [4] and Singapore Maritime dataset [35]. When a dataset was to

be selected, it was important that it had diversity of images and was annotated. The MARVEL

dataset mostly contains images of re-occurring large cruise and container ships. However, it

does not contain bounding box annotation. Because of this, the MARVEL dataset was not se-

lected for this thesis. The Singapore dataset was another option, however it was discarded since

it consists of videos. This results in similar scenes when converting to image sequences.
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3.2.1 Brekke&Lopez Dataset

The Brekke&Lopez dataset was collected by Edmund Brekke and Michael Ernesto Lopez. The

annotated dataset consist of optical images captured from the Norwegian ferry Hurtigruten at

the coast of Norway and from different harbour environments. Hurtigruten dataset consists

of a large quantity of harbour-relevant images. In addition, some images are captured from

canals in Amsterdam with city-like environments. Samples from the respective sub-datasets are

visualized in Figure 3.1.

(a) Sample image from Hurtigruten sub-dataset

(b) Sample image from Amsterdam sub-dataset

Figure 3.1: Sample images from Brekke&Lopez

The two sub-datasets are treated as one large dataset. In total, there are 1448 annotated optical

images as shown in Table 3.1.
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Table 3.1: Overview over number of images in Brekke&Lopez dataset

Optical images

Hurtigruten Amsterdam Total count

Image files 1334 114 1448

Utilizing a python script, developed by Lopez, to iterate through all annotation files, the amount

of class-labels is presented in Table 3.2.

Table 3.2: Complete overview over class-labels of Brekke&Lopez dataset

Class-labels summary

Class Hurtigruten Amsterdam Total count

Airplane 3 0 3

Barge 48 62 110

Building 2488 1047 3535

Helicopter 1 0 1

Kayak 11 2 13

Motorboat 830 440 1270

Motorboat with priority 1101 45 1146

Sailboat with sails down 102 14 116

Sailboat with sails up 32 2 34

Class total 4616 1612 6228

The Brekke&Lopez dataset is class-imbalanced. motorboat and motorboat with priority comes

much more frequent than sailboat with sails up and sailboat with sails down. helicopter, kayak

do not count as notable classes. It was decided to not use barge class as it is similar to building

class and it does not contain typical features of ship. Some images were excluded since they

consisted of object that were too far away from the camera and thus too small. This makes

the image no use for feature extraction. After these changes, the dataset contains insufficient

number of images for object detection in maritime environment. Based on this it was of interest

to combine the dataset with another dataset for this project.
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Table 3.3: Overview over class-labels of Brekke&Lopez dataset after filtering our irrelevant im-
ages

Class-labels summary

Class Total count

Building 2764

Motorboat 876

Motorboat with priority 996

Sailboat 126

Class total 4762

3.2.2 ImageNet Dataset

The most established dataset in maritime environment, also containing bounding box labels is

the ImageNet3 dataset. ImageNet dataset consists of approximately 14 million images that are

available for free to researchers for non-commercial use. ImageNet is used for training large-

scale object recognition models. From ImageNet it was obtained 6 classes of different vessel

types. An overview of the class-labels are shown in Table 3.4.

Table 3.4: Complete overview over class-labels of ImageNet dataset

Class-labels summary

Class Total count

Aircraft carrier 330

Catamaran 405

Container 420

Cruise ship 455

Lifeboat 455

Speedboat 386

Class total 2451

Some images were removed since they contained vessels that were too unique and thus affect

the generalization in a negative way. speedboat class consisted of multiple motorboats with

unique colors and patterns. Some boats had text livery which would been easily picked up by the

feature detector. Liveries are not features that are desired for the training dataset. In addition.

3https://www.image-net.org/

https://www.image-net.org/
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aircraft carrier contained some images with irrelevant viewpoints, e.g on deck showing fighter

aircraft. Sample images removed from ImageNet are shown in Figure 3.2.

(a) Speedboat with unique text livery (b) Bad viewpoint at aircraft carrier

Figure 3.2: Sample images removed from ImageNet

Figure 3.3: Sample images from ImageNet dataset

3.3 Preparation of the Dataset

3.3.1 Merging of Datasets

To increase the number of images of the dataset, the two datasets presented in Section 3.2 were

merged. Firstly, in attempting to do this the structure of the annotation files were changed to

be equal in structure. Both Brekke&Lopez and ImageNet follow the PASCAL VOC XML format,

however some elements of the file differed from each others. Thus, it was decided to change

the elements of the annotation files. Figure 3.4 illustrate the structure of the annotation files of

the two datasets together with the new merged dataset. The merged dataset will be used as the

main dataset further in the thesis. The aim is to get a simplified annotation file with only the

most relevant elements for further processing. This was done with a python script developed by

Ph.D candidate Michael Ernesto Lopez.
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Figure 3.4: Overview of the structure of annotation files. ImageNet and Brekke&Lopez are
changed to have the structure of MergedDataset

Then, the ship class-labels were changed so that they became similar before merging the two

datasets. Two different annotation-merging approaches were considered. Ship sub-classes with

high resemblance can be divided into motorboat and sailboat. Following such labelling method-

ology would place motorboat with priority into the motorboat class-label. Similarly, the two

sailboat classes sailboat with sails down and sailboat with sails up can be treated as sailboat.

For imageNet, aircraft carrier, container, cruise ship, lifeboat, and speedboat can be considered

as motorboat, while catamaran as sailboat. The purpose of such a partition would be to train

a detector to separate between motorboats and sailboats. In total there would be three classes

to consider: motorboat, sailboat and building. However, this partition would yield an minority-

class of sailboat. Therefore, another approach would be to treat all ship types as ship. This

option would result in a two-class detection task; ship and non-ship. The last approach is used

for this project. Implementing more classes was left for future work.

3.3.2 Collection of non-ship images

For the thesis it was desirable to learn the model to distinguish between ship and non-ship. Thus

more images of background elements (i.e buildings) were obtained. Images were downloaded

from the web and labeled manually with LabelImg since no such dataset was available. 124 new

images of building were obtained. Adding more images would be too time consuming regarding

labeling. Sample images from the non-ship dataset is shown in Figure 3.5.
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Figure 3.5: Sample images from the non-ship dataset

The total number of class-labels used for training the model is shown in Table 3.5.

Table 3.5: Overview over the final class-labels in MergedDataset

Class-labels summary

Ship 4146

Non-ship 2961

Total 7107

3.3.3 Labeling of The Dataset

To be able to correctly classify maritime vessels that is partly covered by other vessels, the object

detection model need to recognize ship parts as ship. To achieve this, it was desired to detect

three parts of the ship class; front, side, and back. The dataset was annotated with new labels

using LabelImg. The three new labels were annotated inside the ground truth box of the ship

class. The ship parts are shown in Figure 3.6. Manually labeling 4619 images was a huge work-

load for a single person. It took the author 14 days to complete the task which resulted in a huge



CHAPTER 3. METHOD AND MATERIALS 27

deviation in the progress plan. Although a lot of time was spent on labeling, these classes were

not completely implemented into the detection algorithm. Due to the limited time, it was not an

easy system to implement. As the submission deadline came closer, it became more important

for the author to focus on improving the results that were already available. It was thus decided

to only focus on ship/non-ship detection. Detection of these ship part classes are set as future

work.

Figure 3.6: Dividing ship into three parts from different viewpoints. "Front" are represented by
yellow bounding box, "side" as blue, and "back" as red
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During labeling the MergedDataset, some of the points from the VOC Annotation Guidelines4

have been used. These are:

• What to label

– All objects of the defined categories, unless:

* you are unsure what the object is.

* the object is very small (at your discretion).

* less than 10-20 % of the object is visible.

• Bounding box

– Mark the bounding box of the visible area of the object (not the estimated total ex-

tent of the object). Bounding box should contain all visible pixels, except where the

bounding box would have to be made excessively large to include a few additional

pixels (<5 %) e.g. a car aerial.

3.4 Extraction of features

The purpose is to get features which are typical for both ship and non-ship. A large part of the

project has been to find good features from each category. It is therefore important to use feature

extractors that can detect and describe these features. Based on this, it has been important to

test different feature extraction methods.

Decomposing an image into features is a widely used technique in Computer Vision. A popular

approach is to use local interest points as features. There is also other approaches, like sliding

window, to extract features. During the proposed method these two methods has been used

and tested for feature extraction. In the first step, image patches are extracted from all training

images using a feature detector. Then all features are represented as a compact feature vector.

This step is called feature description. In the following sections the approach for extracting

features from images are presented.

3.4.1 Approach 1: Interest point feature extraction

In this section, the feature extraction method done with interest point extractors is presented.

The feature extractor used in this thesis is the Scale-Invariant Feature Transform (SIFT).

4http://host.robots.ox.ac.uk/pascal/VOC/voc2011/guidelines.html

http://host.robots.ox.ac.uk/pascal/VOC/voc2011/guidelines.html
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Feature detection

As mentioned in Section 2.1, the ideal keypoint detector finds image regions that can be repeat-

ably detected despite change of viewpoint. In other words, it is robust to all possible image

transformations. Similarly, the ideal interest point descriptor should capture the most impor-

tant and distinctive information of the image region.

Based on the specialization project, the Scale-Invariant Feature Transform (SIFT) was used as

feature extractor in this thesis. SIFT was also chosen as an extractor because of the good per-

formance and results within image recognition [25] [23]. To be able to extract good features

from the image, it was conducted experiments with different parameter values of SIFT from the

OpenCV library. Different parameter values were also tested during the specialization project,

however some tests were performed once more to visualize the corresponding image patches of

the interest points. Visualization of image patches was not achieved during the specialization

project. The parameter values for the SIFT extractor is shown in Table 3.6. These are the de-

fault values used in Lowe [23], except from contrastThreshold. This parameter was set to 0.06 to

reduce the number of interest points detected on the background.

Table 3.6: Overview over parameter values for SIFT in OpenCV

SIFT parameter values

nfeatures 0

nOctaveLayers 4

contrastThreshold 0.06

edgeThreshold 5

sigma 1.6

Feature descriptor

After features are detected from the training images, descriptors were computed to create a

compact representation of each feature. Descriptors are computed as presented in Section 2.1.2.

To be able to visualize the features that are extracted with the interest point detectors, image

patches were created based on the interest point’s centre coordinates and size. Image patches

were used for visualization since it it not possible to visualize descriptors directly. Further in the

report, a feature of the image will be represented by the descriptor.
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Figure 3.7: Principle behind variance threshold

3.4.2 Approach 2: Feature extraction with sliding window

Feature detection

To be able to gather data for training, or gather features of ships, a sliding window was used

over the training images. The sliding window technique extracted features in three steps. At first

every window was inspected. The window size was fixed with a size of 64x64 pixels. The size

was selected according to what the feature descriptor computation expects. The window was

moved with a stride of 1/2 of the window size to cover all the potential features of the image. In

addition, it was tested with a stride of the same size as the window to avoid overlapping features.

Sliding window was used to extract potential image patches with interesting features. Since the

window was fixed, images were downsampled to create an image scale pyramid and the window

was sliced over again to find features of different sizes.

As the window was iterated through the image, the variance of the intensity values was com-

puted for each window. The window was stored as an image patch if the variance score was

above an empirically chosen threshold. The threshold was used as an operator to exclude patches

with less content. The principle behind this technique is illustrated in Figure 3.7. The variance

threshold was selected based on two techniques. The first technique created a histogram of the

variance frequencies from the whole training set. The histogram was used to get an intuition

of where to initially set the threshold. In addition, the effect of the window selection was visu-

alized by copying all pixel values inside of the above-threshold window into an output image.

The output image was predefined as an image with 255 pixel values only and with same size as

input image. By using these output images the threshold was effectively selected for the whole

dataset by looking at which patch were extracted. This made it possible to visualize the features

that were extracted. Each image patch from the ship and non-ship training set were stored in

separate lists dependent on the image label.
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Feature descriptor

In the same way as with interest point extractor, a compact representation of each patch was cre-

ated. Histogram of Oriented Gradients (HoG) was used as descriptor. As mentioned in Section

2.2.1, HoG computes the histogram of gradients for the image. This is suitable when extracting

features with sliding window since the descriptor is not dependent on interest points.

The HoG descriptor is implemented on each patch by using scikit-image library in Python where

the default values are used. These parameter values were selected based on the recommenda-

tion from the paper by Dalal and Triggs [11]. With the default values, the images is divided into

8x8 cells where the histogram of gradients is computed for each cell. Orientations of the gradi-

ents are divided into 9 bins. The HoG features were extracted from 64x64 image patches. The

patch can have any size, however the only constraint is that the patches being analyzed have

a fixed aspect ratio. These parameter settings resulted in a 1764 dimensional real value vector.

The HoG is not a scale invariant descriptor. Typically, scale invariant detectors run the feature

detector at different image scales. To make the HoG descriptor invariant to scale the sliding

window was implemented with image pyramid.

3.5 Generation of Vocabulary using K-means clustering

Before a classifier can be used, it must be trained with several samples of target objects. As such,

a training database is built using a vocabulary of visual words. This vocabulary is made out of

descriptors computed at the previous step. The approach for generating vocabulary is the same

for both extractor methods explained in Section 3.4. Generation of vocabulary is the final step

for training the BoVW model.

To generate the vocabulary the k-means algorithm is initiated with the descriptor lists for both

categories. It was generated a vocabulary for each category. This is done such that the model

are able to differentiate between positive and negative target objects. Excising work usually

determine the vocabulary size empirically and the sizes varies from hundreds to thousands de-

pending on the dataset. There exists no method or theory on how to guide the selection of the

optimal vocabulary size [18]. Therefore, it was tested with different values of k to find the desired

vocabulary size for both ship and non-ship datasets. The desired vocabularies were determined

based on how good the features were clustered. A good vocabulary would have clusters with

similar features. In addition, it is necessary to select a vocabulary size that produces the best

performance. It has been proven that a large vocabulary tends to improve matching accuracy.

However, this does not mean that a vocabulary with a large size guarantee higher matching ac-

curacy. Yang et al. [47] proved with extensive experiments that the matching accuracy first rises
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dramatically when increasing the size, then the accuracy peaks, and after that levels off or drops.

Not only does a large vocabulary increase the computation load in clustering and matching, it

can also impact the performance negatively.

Both k-means models were initialized with k-means++ method. As mentioned in Section 2.3.1,

k-means++ is recommended since it is better at avoiding poor clustering than the standard, ran-

dom k-means initial values. The desired vocabulary was chosen based on the content of the

image patches, where it was important to get informative features. As mentioned earlier, fea-

ture detector was an important factor. In theory, a visual world is defined as the cluster centre.

This is a mean vector computed to fit all the descriptors of the corresponding cluster. Therefore,

it was of interest to visualize these cluster centres since they represent the vocabulary. However,

since the mean vector is a real-valued feature vector it is not possible to directly visualize the

vocabulary. To be able to visualize it, Euclidean distance was used to measure the similarity

between the cluster centre with its corresponding clustered descriptors. In addition, represent

visual words of the vocabulary as a representation of multiple similar image patches to the clus-

ter centre. To achieve this the top 20 most similar descriptors to the cluster centre was returned.

In this way, one can visualize the corresponding image patch to the closest descriptors to be

able to illustrate the content of the vocabulary. The vocabulary is visualized by showing the 20

most similar patches for 10 random clusters. In this way it is possible to get an intuition of what

pattern the patches consists of for some of the clusters.

Generating vocabulary is the final, crucial step of training the BoVW model. The vocabulary is

used as a dictionary of words representing ship features. Based on this, new query descriptors

can be compared to the training set and be classified based on similarity. It was created one

vocabulary for each category to be able to compare descriptors to each vocabulary. This will be

further described in the following sections.

3.6 Descriptor Matching with Nearest Neighbor

Once a vocabulary is generated for each category, features that are similar between the vocab-

ularies are removed. Many features from an image containing a ship will have similarities to

features from buildings. Therefore, it would be useful to have a way to discard features that do

not have unique pattern typical for ship or non-ship, respectively. In this way it will be easier

to distinguish between the ship or non-ship category since descriptors from the ship vocabu-

lary could have similar features to the non-ship, and vice versa. An effective measure was ob-

tained by comparing the distance of the closest neighbor of a ship descriptor with a non-ship

descriptor using nearest neighbor. The nearest neighbor is defined as the descriptor from one
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vocabulary with minimum Euclidean distance to a descriptor in another vocabulary. If the two

descriptors are similar, with a distance less than a empirically chosen threshold, then the ship

descriptor is removed from the vocabulary. This distance threshold was chosen based on obser-

vation. This is done for all descriptors in ship vocabulary and non-ship vocabulary.

3.7 Training Bag-of-Visual-Words model

Training a Bag-of-visual-words model consist of 3 steps: feature extraction, feature description

and vocabulary generation. All steps have been presented in details during previous sections.

This section is intended to get a better understanding of the whole training procedure used in

the project by combining previous steps.

Initially, images are retrieved from a folder on the computer containing all training images and

corresponding annotation files (.xml). The corresponding image and annotation file have the

same name to know which file belongs to which image. Before training, each image of the train-

ing set is pre-processed. The first step of the pre-processing was to convert images to grayscale.

Grayscale is used since it is more computationally efficient to work with single channel images

compared to 3 channel RGB color images. After this all objects were cropped out from the train-

ing dataset based on their ground truth boxes in the annotation files. The reason behind this is

that many images contain multiple objects and a lot of background material. If one would use

feature extraction over these images, it would be harder to distinguish between target objects

and other objects that are not of interest. Feature extraction is the most important step of the

approach. Therefore, it is important to extract the best features from the training set. This results

in a training set consisting of images with only one object and nothing else. The cropped images

were separated into the corresponding classes, ship or non-ship, according to their label. How

these images are separated based on its label is described in Section 3.3.1. The pre-processing

steps are illustrated in Figure 3.8.
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Figure 3.8: Illustration of how training images are preprocessed to gather new training set for
feature extraction

Since the ship appear at different locations on the image, the resulting cropped images will have

different resolutions. Therefore, the next step was to re-scale the new images to approximately

same size. The images are re-scaled based on their image height. The aim was to get all images to

have height of 650 pixels. The ratio between the image height and image width was unchanged.

Images with a higher height would be downscaled, while images less than would be upscaled.

The decisions are listed below.

• If image height is larger than 650, then downscale image height to 650 pixels.

• If image height is between 150 and 350, then upscale image height to 650.

• If image height is less than 150, then exclude the image from training set since the image

is too small.

• The rest are unchanged

After images were pre-processed, feature extraction was performed to collect a set of interesting

features from the ship and non-ship category separately. The classifier must be trained with

several samples of the target objects. As presented in Section 3.4, features are extracted with

two different approaches. When using the SIFT interest point detector, image patches were

gathered based on the location and size of each detected interest point. Since the SIFT detector

does not enable parameter change of patch size, each interest point are evaluated and if its size

is too small, then that interest point was excluded. The size of the interest point is referred

to as the diameter. It was desired to get image patches that was understandable for human

assessment. With this it is desirable to get features that describe the ship part more than just an
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edge or corner. The image patches are then converted to a compact representation using the

SIFT descriptor method. A list of descriptors are stored for each category. The second approach

used for feature extraction was sliding window. During this step, the sliding window iteratively

went through each image. An image pyramid with different scales were used to be able to gather

features of different sizes. During the iteration, each window is inspected. The variance of the

intensity values of the window is computed and if the value is higher than a given threshold,

then the window is stored as an image patch as illustrated in Section 3.4.2. Features are extracted

and separated into the corresponding classes according to the ground truth masks and then the

descriptors are computed using HoG.

The last step of training the BoVW model is to generate a vocabulary by clustering similar de-

scriptors from the training images into k number of clusters. The results from training is a vo-

cabulary consisting of similar descriptors in each cluster. The cluster centres will inform the

classifier to which class the testing samples belongs. These vocabularies would later be used

during testing to classify image patches into ship or non-ship.

3.8 Testing of model

The testing approach is done for one test image at a time. After the vocabulary is generated, it is

used to classify test image features. First, images and annotation files are retrieved from a folder

on the computer containing test images. Then, images are re-scaled to the same size with the

same decisions done during training. During testing, the ground truth box will later be used for

performance evaluation. The ground truth is thus resized based on the test image and the (x, y,

xmax, ymax) image coordinates are stored in array.

Testing has the same steps as training. The first step after pre-processing is feature detection.

Then descriptors are computed for each image patch of the test image. After this, each descrip-

tor is matched with both vocabularies to evaluate which category the descriptor is closest to.

The distance between the test descriptor and each cluster centre is computed. As mentioned in

Section 3.6, this is done with Nearest Neighbor algorithm with FLANN library to increase effi-

ciency. The distance for the descriptor is computed for both vocabularies.
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3.8.1 Classification of Image Features

The next step of the test approach is to classify each descriptor into one of the two categories.

The distance between the descriptor to each cluster centre in ship vocabulary is compared with

the distance to the cluster centres of non-ship vocabulary. Equation 3.1 show the computation

of the distance between descriptor and cluster centres. di st t
j k (di st b

j k ) is the distance between

the j-th descriptor and the k-th ship (non-ship) cluster centre, desc j (n) is the n-th element of

the j-th descriptor, centk (n) is the n-th element of the k-th cluster centre, and p is the size of

the descriptor vector. t is ship and b is non-ship. The descriptor is classified as either ship or

non-ship depending on which vocabulary it is closest to regarding distances.

di st t ,b
j k =

p∑
n=1

[
desc j (n)− cent t ,b

k

]2
(3.1)

It is desirable to classify descriptors into one of the categories only if there is some certainty

that the classification is correct. By this it is meant that the distances to the ship and non-ship

vocabulary should be different from each other. If the distances are similar to each other, it is

not obvious if the descriptor is a ship or a non-ship. This decision is shown in Equation 3.2.

decision =


ship, min[di st t

j k ] << min[di st b
j k ]

non-ship min[di st t
j k ] >> min[di st b

j k ]

not classified otherwise

(3.2)

where min[di st t
j k ] (min[di st b

j k ]) is the smallest distance value between the descriptor and the

ship (non-ship) centroids. The much larger sign is defined by a threshold T. A descriptor belong

to ship if the distance between descriptor and ship vocabulary is larger than distance to non-

ship, and the difference between the distances are larger than T. Considering that the descriptor

is a compact representation of an image patch, image patches are also classified. For each test

image, the number of ship image patches and non-ship image patches was counted. The image

is classified based on the number of patches in each category. If most of the patches in the image

is classified as ship, then the object is classified as ship.
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3.8.2 Detection of Ship

For ship detection it was first experimented with images consisting of one object and no back-

ground noise to evaluate if the model was able to distinguish between ship and non-ship ob-

jects. Then it was tested on real scenario images consisting of multiple objects and categories.

During testing is was used 9 unseen test images to evaluate the performance of the model. The

model was evaluated with different vocabularies consisting of SIFT and HoG descriptors.

For the single-object images, a predicted bounding box was generated by enclosing all the cor-

rectly classified patches. The predicted bounding box was considered as the minimum rectangle

that encloses all classified patches. The detector was evaluated based on a confidence score and

Intersection over Union (IoU). The confidence score reflects how likely the predicted bounding

box contains an objects. The score was computed from the ratio between the total number of

patches and the number of classified patches. So if the image consists of mostly ship classified

patches, then the confidence score is defined as:

confidence score = Number of classified patches

Total number of patches
(3.3)

Then IoU was used to evaluate the localization of the detected object. The results are visualized

on three different output images; (1) An image visualizing the original image with the extracted

patches and their classified label. (2) An image showing only the patches classified as ship. (3)

An image showing the input image with predicted bounding box and ground truth box.

These evaluation measurements are only implemented for single-object detection. When eval-

uating the multi-object images, it was only used output images to visualize the classification of

the image patches. Thus, image (1) and (2) was used for visualization. It was not created a com-

plete algorithm for detecting multiple objects in the image due to complications when trying to

implement it. Based on the observed results during experimentation, the author did not have

time or programming experience to implement it. Thus, this was set as future work.
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Results and Discussion

In this chapter the results gathered from conducting experiments on the BoVW approach is in-

troduced. The results gathered from feature extraction and vocabulary size experimentation will

first be presented. Then, results from experimenting with ship detection will be given. Object

detection is divided into two approaches; single-object classification and multi-object classifi-

cation.

4.1 Feature extraction approaches

The best features from ship and non-ship categories were gathered through experiments. The

aim of this section was to compare the two feature extraction methods to see which gave the

best image features.

4.1.1 Interest point feature extraction with SIFT

In the first approach, SIFT was used as feature extractor. Figure 4.1 illustrate where SIFT interest

point are detected on different images. The interest points shown in the figure consists of a

centre point and a red circle indicating its size. For this thesis it was of interest to extract parts

of the ship that made sense for human assessment. This means that it should be possible to

understand which part of the object the patch represent (e.g part of the mast or window). It was

observed that many of the interest points represented only edges and corners, thus being too

small in size.

38
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Figure 4.1: Sample images from SIFT detector

To handle this the smallest interest points were removed by using a threshold on the size of

the interest point. Figure 4.2 show the effect of using a threshold of 5 and 10. Utilizing this

the interest points with a size smaller than the threshold were ignored. The bottom images of

Figure 4.2a and 4.2b show only the extracted patches from the input image. By selecting a larger

threshold, more interest point were removed which results in only the largest remaining. For the

rest of the experiments, the threshold was set to 10.

(a) Interest points with a size larger than 5
(b) Interest points with a size larger than
10

Figure 4.2: Effect of filter out small image patches with threshold
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SIFT interest points are detected at random and irrelevant locations which resulted in features

that do not represent specific ship parts. In addition, only a few interest points were remaining

after filtering out the smallest. This resulted in that not all features of the ship, or non-ship, is

covered at all times. An illustration of extracted patches are shown in Figure 4.3.

Figure 4.3: Sample images from SIFT detector. (Left) Detected interest points. (Right) Extracted
patches from interest points

Based on the observations, it was concluded that SIFT as feature detector did not fit the dataset

for this thesis. This was the main reason why sliding window technique was also implemented

for feature extraction. Although, SIFT does not extract features that are of interest to the thesis,

it computes a robust descriptor. The SIFT descriptor is the most used and most recommended

descriptor for feature matching. It is invariant to image scale, rotation and change in illumi-
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Table 4.1: Overview over features after feature extraction with interest point

Feature extraction summary
Number of images Number of features

Ship class 4146 206 755
Non-ship 2961 124 474

nation, noise, and minor changes in viewpoint. SIFT descriptor is also highly distinctive. The

HoG descriptor is not invariant to these properties. Because of this, it was done some more tests

with the interest point approach to see if the SIFT descriptor could perform better than sliding

window with HoG.

4.1.2 Feature Extraction using Sliding Window

In the next approach, feature extraction method using sliding window was used to slide through

all regions of the image to extract potential features. A variance threshold was used to select

image patches with interesting content.

As stated in Section 3.4.2, the variance threshold was empirically chosen based on two methods;

a histogram of variance frequencies and images containing only the patches extracted with the

threshold. The histograms from the ship and non-ship training set are shown in Figure 4.4,

respectively. Based on the histogram, three different threshold values were tested; 1000, 1500

and 2000.
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(a) Histogram of variances from ship training dataset

(b) Histogram of variances from non-ship training dataset

Figure 4.4: Histogram of variance frequencies. Used to determine variance threshold for the
whole training dataset

Figure 4.5 illustrate the affect of selecting different threshold values. As expected, less patches

were extracted with a high variance, while a lower variance extract more, but less interesting im-

age patches. A threshold of 1500 was selected for both ship and non-ship image sets (shown as

red, dotted line on histogram), since most of the target features were extracted without includ-

ing too much from the background. A threshold of 1000 could be too low and resulted in more

landscape elements being included in the training set, while 2000 could exclude too many of the

target features. Wanted a threshold that would fit for the whole training set. Sample images are

shown in Figure 4.6. The empirically chosen threshold also fits the results from the histogram

since it removes the first bar with the lowest variances.



CHAPTER 4. RESULTS AND DISCUSSION 43

(a) Variance threshold of 1000

(b) Variance threshold of 1500

(c) Variance threshold of 2000

Figure 4.5: Effect of using different variance thresholds on a sample image. The original image
is represented with different scales of the image pyramid.
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Figure 4.6: Sample image after different variance threshold extractions. From left: 1000, 1500,
2000.

During the feature extraction experimentation it was also tested with different step sizes of the

sliding window. In the figures above it was used a step size of 1/2 of the window size. Figure

4.7 show how features are extracted using a step size as large as the window. Used to avoid

overlapping image patches. However, based on the figure, less patches were extracted. A smaller

step is recommended since more features of the image are analyzed. Because of this, the stride

was selected to be 1/2 of the window size.
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(a) Variance threshold of 1000

(b) Variance threshold of 1500

Figure 4.7: Effect of different variance thresholds on a sample image. Patches extracted with a
step size equal to window size.

Therefore, it was decided to extract features using a sliding window with the following proper-

ties; window size of 64x64, step size of 1/2 of image size, and variance threshold of 1500. With

these properties the desired patches were selected for training.

After the extraction of image patches was completed, a HoG descriptor was computed for each

image patch. The window size resulted in a descriptor of length 1764. This is a large dimension

which comes with a high computationally cost when computing descriptor for each feature.

One way to deal with this is to use Principal Component Analysis (PCA) to reduce the dimension

of the vector without loosing information. However, this was not implemented for this thesis.

Table 4.2 show an overview of the number of features gathered using the sliding window tech-

nique discussed above. The last column (right) show the number of features after removing
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similar descriptors. Which in this thesis is referred to filtering of the descriptors. When using

HoG it was observed that descriptors in the ship and non-ship vocabulary had similar charac-

teristics in case of distance. Since the descriptor will later be used to generate a vocabulary it

was desired to filter out the descriptors in the ship and non-ship feature set that had a small

Euclidean distance. Figure 4.8 illustrate the difference in distance between similar and different

descriptors.

Figure 4.8: Distance between ship and non-ship patches. The numbers on top is the Euclidean
distance between the shown image patches

Based on this figure it was determined to create a lower bound threshold to remove similar de-

scriptors. The threshold was set to 4.5. This should develop training sets of unique ship and

non-ship descriptors. By using this threshold, the number of features were reduced from 538

994 to 457 782. An overview is shown in Table 4.2.

Table 4.2: Overview over number of features after filtering out similar descriptors

Feature extraction summary

Number of images Number of features
Number of features

(after filtering)

Ship class 4146 538 994 457 782

Non-ship 2961 231 902 196 805
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4.2 Selecting Vocabulary Size Experiments

Based on the two descriptor sets from computing HoG and SIFT on all image patches, a vocab-

ulary is created from both descriptor types. In addition, a vocabulary is generated for both ship

and non-ship descriptor lists. In this section, each vocabulary will be inspected.

4.2.1 Vocabulary Generation using SIFT descriptors

A more thorough experimentation has been done with the sliding window technique since SIFT

did not gather desired ship and non-ship features. However, some tests were done to compare

the constructed vocabularies.

Figure 4.9 show the vocabulary from clustering SIFT descriptors with 100 clusters. It can be

shown that some of the clusters consists of similar features. Cluster number 2 to 4 from the

top share a darker color. However, besides color there is not much similarities between the

patches in each cluster. In addition, it is not possible to determine what kind of ship features

are presented based on the content of the patches. Therefore, it was tested with a much larger

vocabulary size for both ship and non-ship to see if it would generate better clusters. This is

shown in Figure 4.10.

Figure 4.9: Vocabulary from ship descriptors. k = 100
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(a) Vocabulary from ship descriptors, k = 500

(b) Vocabulary from non-ship descriptors, k = 500

Figure 4.10: Vocabulary generated from SIFT descriptors

As observed, the clusters did not improve with a vocabulary of size k = 500. From the vocabu-

laries it is observed that there is no similarities between the image patches. Neither of the ship

or non-ship vocabulary give any information about the features that were clustered. The reason

behind this could be that it was selected a k-value that were too large for the SIFT descriptors.

The aim of the k-means cluster algorithm was to cluster descriptors that share similar proper-

ties. Unfortunately, this was not achieved with SIFT. Based on this, it was concluded that SIFT

features did not fit for this project and thus no more experiments of this approach was con-

ducted. However, it was done small tests of object detection to check the performance of the

model with vocabularies of size k = 100, 500, 5000. This is later shown in the chapter.
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Together with the feature extraction part, the creation of the vocabulary was the most time con-

suming step of the project regarding implementation. The author worked first on implementing

feature extraction using interest point extractors. Unfortunately, this created a deviation in the

progress since SIFT did not give desired results. It was used too much time on trying to imple-

ment and improve the vocabulary with SIFT descriptors. Therefore, it was necessary to start

with a new approach using sliding window and experiment with different parameters of that

approach. This made less time for the next step of the method which is implementing a test

approach of object detection.

4.2.2 Vocabulary Generation using HoG descriptors

Figure 4.11 show vocabularies of size k = 100 from ship and non-ship. The following vocabularies

were generated before filtering descriptors was implemented.
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(a) Ship vocabulary, k = 100

(b) Non-ship vocabulary, k = 100

Figure 4.11: Vocabulary generated from HoG descriptors

From these figures it was more obvious to see what kind of pattern each cluster represent. Figure

4.12 illustrate 10 clusters with similar image patches. This vocabulary indicate that k-means

manage to group similar patches based on the relative distances of the defined features.
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Figure 4.12: Top 10 best visual clusters from ship vocabulary, k = 100

Figure 4.13 show samples of clusters where patches are different and similar to each others,

respectively.

(a) Samples of clusters with not so similar patches

(b) Samples of clusters with similar patches

Figure 4.13: Cluster samples from ship vocabulary, k = 100

Based on the figure above, the clustering achieved desirable results. Unfortunately, this was

tested before object detection was implemented. Thus, object classification and localization is

not tested with these vocabularies.

The final vocabularies, which are generated after filtering out similar descriptors, are shown in

Figure 4.14 to Figure 4.16. It is observed that the vocabularies did not cluster similar patches

like the previous vocabulary did. The reason for this change is that many of the patches in the
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"good" clusters shown in 4.12 are similar to non-ship vocabulary. Patches in clusters 2, 3, 6, and

7 have similarities to the non-ship descriptors. This was illustrated in Figure 4.8 where it was

shown the difference between distances. Therefore, there will not be as many similar patches

as compared to before filtering. With these vocabularies the model performance was tested on

unseen images later in the chapter.

(a) Ship vocabulary, k = 100

(b) Non-ship vocabulary, k = 100

Figure 4.14: Vocabulary using sliding window, k = 100
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(a) Ship vocabulary, k = 500

(b) Non-ship vocabulary, k = 500

Figure 4.15: Vocabulary using sliding window, k = 500
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(a) Ship vocabulary, k = 1000

(b) Non-ship vocabulary, k = 1000

Figure 4.16: Vocabulary using sliding window, k = 1000

4.3 Comparison between sliding window and interest point ap-

proaches

After implementing the different feature extraction methods some remarks are made. It was

observed that sliding window gather more features from the target objects compared to SIFT

feature extraction. Numerous features are desired since it gathers a larger training set. In ad-

dition, the features extracted with sliding window represented specific parts of the ship and

non-ship images. The SIFT extractor extracted local features (i.e edges and corners) which were

not ideal to use as training samples. The local features were extracted from random places of the
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target object. Sliding window give the opportunity to decide where to extract patches since it it-

erates over all regions of the image and store image patches with a variance higher than a given

threshold. Sliding window is the method of choice for feature extraction in the BoVW approach.

4.4 Ship Detection using Bag-of-Visual-Words

4.4.1 Object Detection with Interest Point approach

Figure 4.17 show samples images from testing dataset. The green and red rectangles indicate

the extracted interest points detected by SIFT. Green rectangular boxes indicate that the interest

point is classified as ship, while red indicate non-ship classification. Based on both figures it is

observed that it is challenging to define if the given object was a ship or not. In Figure 4.17a it is

not easy to determine if it is a building since too many green boxes are detected on the object.

Figure 4.17b show that most of the interest points detected on the ship is classified as ship. And

also, most of the interest points detected at the mountain is classified as non-ship. This indicate

that the interest point approach for the most part can be able to detect ship targets, however

more tests and better tuning is needed.
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(a) k = 100

(b) k = 100

Figure 4.17: Interest point classification using vocabulary of size 100 on images consisting of
only ship or non-ship

To make this happen, some changes was needed. It was implemented a threshold value to the

classification decision. If a descriptor was similar to both ship and non-ship vocabulary then the

descriptor would not be classified as either ship or non-ship. The patch would only be illustrated

as a blue rectangular box. The Figures 4.18 to 4.19 are used to illustrate the results of classifying

the descriptors with different vocabulary sizes.
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Figure 4.18: Interest point classification on image consisting of multiple objects. k = 5000

(a) k = 500 (b) k = 5000

Figure 4.19: Comparison between interest point classification using different vocabulary sizes

Comparing Figure 4.19a with Figure 4.19b it is observed that there is some improvements when

increasing the vocabulary size. However, more tests are needed to make a conclusion. This can

be seen at the front of the ship. Other than that, the results are not optimal for ship detection.

That is expected considering the lack of experimentation’s done with this approach. More re-

sults from single-object classification are shown in Appendix A while multi-object are shown in

Appendix B.
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4.4.2 Binary classification experiment

In this section the results from single-object detection with sliding window is presented.

The algorithm was first tested with a sample image shown in Figure 4.20. It is observed that

there are too many misclassifications. The model is struggling to distinguish between ship and

non-ship. Especially on the buildings in the background. Based on this it was implemented a

threshold like it was done with interest point approach.

Figure 4.20: Sample image illustrating classified image patches without threshold. Illustrate the
motivation between threshold

The model performance using a vocabulary of size 100 and with a threshold of 0.1 is illustrated

in Figure 4.21 to 4.24. Each image contains a sub-image illustrating the classification of the ex-

tracted image patches, sub-image showing only patches classified as ship, and sub-image with

ground truth and predicted bounding box. In the figures of non-ship it is observed that most of

the patches are either classified as non-ship or not classified at all (blue rectangles). However,

in Figure 4.22, too many patches are classified as ship as seen in the middle sub-image.
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Figure 4.21: Non-ship classification, k = 100

Figure 4.22: Non- ship classification, k = 100

Figure 4.23 and 4.24 show two images consisting of a single vessel. For these images, most of

the patches are classified as ship. In Figure 4.23, 40 patches are classified as ship, while 5 as

non-ship. This results in a confidence score of 0.89 as seen in the right sub-image. A majority

of the patches are extracted from the ship, resulting in a predicted bounding box with a IoU of

0.83. The left sub-image of Figure 4.24 consist of 28 ship patches and 5 non-ship patches giving

a confidence score of 0.85. The placement of the classified patches give a IoU of 0.9.
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Figure 4.23: Ship classification, k = 100

Figure 4.24: Ship classification, k = 100

These images give promising results, however misclassification can occur according to Figure

4.25. For this image 20 patches were classified as ship, while 24 were classified as non-ship. This

gives a confidence score of 0.55. In addition, the placement of patches generated a predicted

bounding box with a IoU of 0.7. Fortunately, the confidence score was lower compared to the

correctly classified images. This illustrate that the confidence score can be used to detect false

positive detections by using a threshold on the score.

Figure 4.25: Sample of wrongly classified object, k = 100

In the following Figures it is illustrated the effect of increasing the vocabulary size. In the above

experiment it was used k = 100, in the next experiment it was tested with k = 500, 1000, 5000.



CHAPTER 4. RESULTS AND DISCUSSION 61

(a) k = 500

(b) k = 1000

(c) k = 5000

Figure 4.26: Comparison of non-ship detection when increasing vocabulary size
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Table 4.3: Overview over classification for non-ship

Classification summary

Vocabulary size 500 1000 5000

Number positive patches 9 9 17

Number negative patches 16 9 4

Confidence score 0.64 0.5 0.81

IoU 0.7 0.51 0.74

Increasing vocabulary size for non-ship does not necessary improve classification of the patches.

Using a very large vocabulary size of 5000 decreased the performance in a way where more

patches were wrongly classified as ship. This is illustrated in the middle sub-image of Figure

4.27c. The best result is shown in Figure 4.26a with a vocabulary size of 500. For this image,

9 patches were classified as ship while 16 as non-ship. Resulting in a confidence score of 0.64

and IoU of 0.7. The model have more challenges with classifying non-ship patches compared to

ship. The model is more uncertain on these features giving a lower confidence score on the ob-

ject classification. The reason for this could be that some patches of building is similar to those

of ship. In addition, the non-ship category has less training samples. One way to deal with this

is to gather more training samples of non-ship. This was set as future work. A large dataset is

crucial in object detection tasks. Refer to Appendix A to see more results from the classification

on different test images. Another way of handling the poor classification is to use Support Vector

Machine (SVM) instead of Nearest Neighbor to distinguish between classes within the dataset.

The affect of this need to be tested, and thus set as future work.

In the following figures, the same experiment is illustrated for an image containing a single ship

object. In this case, increasing the vocabulary can improve the performance. Figure 4.27b gave

almost perfect results considering the classification of each image patch. In the left sub-image

it is shown that 27 patches were classified as ship while 5 were classified as non-ship, resulting

in a confidence score of 0.84 and IoU of 0.90. The results from each image is shown in Table 4.4.
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(a) k = 500

(b) k = 1000

(c) k = 5000

Figure 4.27: Comparison of ship detection when increasing vocabulary size

Table 4.4: Overview over classification for ship

Classification summary

Vocabulary size 500 1000 5000

Number positive patches 30 27 17

Number negative patches 1 5 8

Confidence score 0.97 0.84 0.68

IoU 0.44 0.9 0.85

A disadvantage with how the predicted bounding boxes are generated is that the IoU can be in-

accurate if not all the correctly classified patches are placed in the same region. Figure 4.27a

illustrate how one misclassified image patch can decrease the localization accuracy of the de-

tected object. It should have been implemented a method that detects false positive image

patches and ignores them before localizing the object. Another disadvantage that was observed

during testing with the sliding window approach is that in some cases, not enough patches are

extracted from the image. Figure 4.28 show the affect of this. The same variance threshold was
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used during testing. When using this threshold on the Figure shown below, it is impossible to

both classify and localize the object since few patches has been extracted.

(a) Classification of patches (b) Predicted bounding box

Figure 4.28: Sample image where less patches are extracted

Based on the classification results, changing the size of vocabulary does not improve the perfor-

mance. It works to an extend, but larger values of k does affect the performance in a negative

way. This observation was also presented in Section 3.5. The best results was achieved with a

ship vocabulary of size 1000 and non-ship of size 500. The difference in sizes makes sense since

there is more features in ship compared to non-ship.

It was also observed that the model classified non-ship features poorly. The model was more

unsure when classifying features from non-ship objects than ship features. This indicate that

the model is not able to perfectly distinguish between ship and non-ship features, even when

the target object is fairly easy to classify and locate. The reason that it was more challenging for

the model to classify non-ship features could be a result of the difference between the number of

features in the training set. Non-ship had less features compared to ship category. In addition,

some non-ship features were similar to ship. This makes it challenging to differentiate between

the two categories. The aim of the thesis is to detect vessel targets in cluttered environments.

Therefore the model also needed to be tested on images consisting of noisy background and

multiple objects. Given the results that have been presented in this Section, it is expected that

the model will perform poor on images with multiple objects.

4.4.3 Multi-class Classification Experiment

For multi-object detection, it was mainly focused on evaluating the model performance based

on visualization. Image showing the classified image patches and image showing only the cor-
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rectly classified patches were used to analyze the performance. A precise multi-object detection

model would return an output image consisting of only ship features.

Figure 4.29 show the object detection performance using a vocabulary of size 100 and a classifi-

cation threshold of 0.1. It was tested with different threshold values, however a larger threshold

would only result in less patches being classified. Therefore, loosing information about the tar-

get object. The top images show classified patches on the input image, while the bottom images

show the correctly classified image patches. This output image can also be used to localize the

ship target. On these images the ground truth boxes were added to show the correct location of

each ship target. From these images it can be observed that the ship objects are localized and

classified as ship, however a lot of background elements are classified too. This was expected

based on the results shown in previous section. Based on the bottom images, it is challenging to

locate the ship correctly in the image.

Figure 4.29: Sample images used to show multi-object detection. Ship and non-ship vocabulary
of size 100, Ground truth boxes of ship is shown on output image to visualize the target location

It was then experimented with the vocabularies which gave the best results on the single-object

test images. This is shown in Figure 4.30. A higher vocabulary does not show magnificent im-

provements. The results are similar, however more patches are wrongly classified when using a

larger vocabulary.
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Figure 4.30: Sample images used to show multi-object detection. Ship vocabulary of size 1000
and non-ship of size 500

During experimentation of different vocabulary sizes and classification thresholds, it was not

achieved a desirable detection result on the multi-object images. The model did not manage to

differentiate between the two categories, thus making it challenging to locate the ship objects.

The detection model can not be used to detect ships that are partly covered by other ships or

objects. The method have good results when there the image is limited to only one ship in the

image, and there is less background noise. When ships are clustered together, like in Figure

4.30, the detection algorithm have trouble separating them. This is not surprising as it is hard

to make out the boats individually, also by human assessment. This is not desirable results

since the aim of the thesis was to locate ship objects in such environments. The reason behind

these results come from that the model is not able to differentiate between ship and non-ship

as stated in Section 4.4.2. There is a need for a larger dataset, both from ship and non-ship.

Another suggestion in addition to increasing the dataset, could be to train the model on different

ship classes. Instead of only having two classes, it could be extended to motorboat, sailboat

and motorboat with priority. The features of a sailboat will be different from a motorboat, so

trying to classify all the ship features as the same object might confuse the detector. In addition,

the similarities between the ship and non-ship features need to be improved such that more

unique features from both classes are used for generating the vocabulary. A way of solving this

could be to tune the HoG descriptor, because even after filtering out the most similar patches,

there still is some similarities between the descriptors. It was also noticed during testing that

the difference between the cluster centres in ship vocabulary is similar to the cluster centres in
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non-ship vocabulary. This is not desired when the classification is dependent on the distance

to the cluster centres in the vocabularies. If this is handled, then the difference between the

categories becomes greater. Although, the classification of the image patches are not precise,

the model still manage to detect the ship objects of the image. The detection is not precise, but

it does not miss a ship object. This means that the feature extraction approach performs well

and the variance threshold works. It can be observed in the left sub-images of Figure 4.30 that

most of the features are extracted from the ship and non-ship objects only. The sliding window

technique with variance threshold exclude patches with background elements i.e bushes and

ocean.

As stated in Section 3.8.2, evaluation measurements were not implemented for these experi-

ments due to the poor detection performance. Other methods would be necessary to imple-

ment in order to be able to create a complete detection algorithm for the results shown above.

The approach that has been chosen in this thesis to detect the object has its weakness. As

explained during the methodology chapter, the ship is detected based on the location of the

correctly classified patches. This works well as long as the patches are classified precisely and

if there is only one ship present. Therefore, the model was evaluated based on visual results

only. More evaluation measurements are set as future work when the image patch classification

become more precise. All results gathered from experiments with multi-object detection are

shown in Appendix B.
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Conclusion and Future Work

A method for detecting maritime vessels in camera images using a Bag-of-Visual-Words (BoVW)

approach has been presented. The method was based on feature extraction, vocabulary gener-

ation, and feature matching for completing the ship detection task. While the main method

relied on sliding window for feature extraction, the thesis also explored this step using Scale-

Invariant Feature Transform (SIFT), but with less success than the main method which was

better at obtaining ship features. In this project thesis, the challenges of object detection in

maritime environments have been analyzed. Evaluation of the object detection method was

presented, and the results for single-object detection indicated that the method is promising.

However, the method failed to handle the main task of this thesis, which were to implement

an object detector on real-life, cluttered maritime environments. The main challenge was to

achieve better and more precise classification of image patches. Unfortunately, the model had

trouble to distinguish between ship and non-ship features.

Even though there are some challenges that need to be addressed within the implementation,

the BoVW method still proved to be noteworthy and can be implemented in the future. The

approach has potential to contribute to the improvement of vessel detection in maritime har-

bour environments. However, this is something that needs to be investigated further. The BoVW

method may not reach up to its competitors within deep learning, but can be used together with

one of the deep architectures to tackle the problems within the maritime environments.

68
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5.1 Future work

Based on the reported results and discussion in Chapter 4, there are several suggestions for fu-

ture work.

• A larger dataset would be beneficial for generalizing the detector to both ship and non-

ship objects. The data should be gathered in relevant environments, containing different

boats, buildings and locations.

• Improved feature detection and descriptor methods are considered essential for further

continuation of using BoVW approach for object detection. It is needed to conduct more

tests to detect better features with sliding window technique. In addition, improving the

HoG descriptor or finding another option to represent the extracted image patches.

• Do more experiments with the vocabularies to see if it is possible to get better cluster

centres. Good cluster centres is crucial when classifying descriptors with nearest neighbor

algorithm.

• Implementing and testing with SVM to distinguish between classes in the dataset.

• Implementing object localization algorithm for multi-object images. This can be done by

computing the distribution of correctly classified patches in certain areas and using this

to create predicted bounding boxes. In addition, implementing evaluation measurements

like precision and recall to evaluate the overall performance of the method.

• There has not been implemented an orientation algorithm in this project. The labeling

of the ship parts are completed, but an algorithm for detection of these ship parts are

missing.

• Implement and test object detection algorithm on multiple ship classes (i.e motorboat,

motorboat with priority, sailboat)
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Appendix A

Results: Single-object Detection
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Total number of positive patches: 11 

Total number of negative patches: 10 

IoU ship: 0.19678801493669756 

 

 
Total number of positive patches: 24 

Total number of negative patches: 47 

IoU ship: 0.4702870887304985 

 

Specification 

variance_threshold_train 1500 

hog_param    [9, (8,8), (2,2)] 

diff_threshold    5 

N_clusters_ship   100 

N_clusters_nonship  100 

init    “k-means++” 

 

variance_threshold_test  1500 

T_classification   0.1 
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Total number of positive patches: 27 

Total number of negative patches: 25 

IoU ship: 0.9264117827998625 

 

 
Total number of positive patches: 40 

Total number of negative patches: 5 

IoU ship: 0.8273679402264348 

 

 
Total number of positive patches: 39 

Total number of negative patches: 7 

IoU ship: 0.6049372348498986 

 

 
Total number of positive patches: 28 

Total number of negative patches: 5 

IoU ship: 0.9015066065098292 
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Total number of positive patches: 20 

Total number of negative patches: 24 

IoU ship: 0.7130730050933786 

 

 
Total number of positive patches: 2 

Total number of negative patches: 1 

IoU ship: 0.28330084842925934 

 

 
Total number of positive patches: 77 

Total number of negative patches: 20 

IoU ship: 0.9362934968790106 
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Total number of positive patches: 12 

Total number of negative patches: 14 

IoU ship: 0.5244870613202798 

 

 
Total number of positive patches: 44 

Total number of negative patches: 66 

IoU ship: 0.4702870887304985 

 

 

Specification 

variance_threshold_train 1500 

hog_param    [9, (8,8), (2,2)] 

diff_threshold    5 

N_clusters_ship   100 

N_clusters_nonship  100 

init    “k-means++” 

 

variance_threshold_test  1500 

T_classification   0.05 
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Total number of positive patches: 37 

Total number of negative patches: 38 

IoU ship: 0.9264117827998625 

 

 
Total number of positive patches: 51 

Total number of negative patches: 10 

IoU ship: 0.8273679402264348 

 

 
Total number of positive patches: 48 

Total number of negative patches: 16 

IoU ship: 0.6049372348498986 

 

 
Total number of positive patches: 33 

Total number of negative patches: 7 

IoU ship: 0.7907201600355634 
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Total number of positive patches: 29 

Total number of negative patches: 39 

IoU ship: 0.8450939573484464 

 

 
Total number of positive patches: 3 

Total number of negative patches: 3 

IoU ship: 0.03577352289230299 

 

 
Total number of positive patches: 93 

Total number of negative patches: 26 

IoU ship: 0.9362934968790106 
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Total number of positive patches: 10 

Total number of negative patches: 9 

IoU ship: 0.8123186377763703 

 

 
Total number of positive patches: 43 

Total number of negative patches: 39 

IoU ship: 0.5618564039291986 

 

 

Specification 

variance_threshold_train 1500 

hog_param    [9, (8,8), (2,2)] 

diff_threshold    5 

N_clusters_ship   500 

N_clusters_nonship  500 

init    “k-means++” 

 

variance_threshold_test  1500 

T_classification   0.1 
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Total number of positive patches: 39 

Total number of negative patches: 21 

IoU ship: 0.9264117827998625 

 

 
Total number of positive patches: 52 

Total number of negative patches: 1 

IoU ship: 0.8345207094777183 

 

 
Total number of positive patches: 34 

Total number of negative patches: 13 

IoU ship: 0.5293052885200419 

 

 
Total number of positive patches: 30 

Total number of negative patches: 1 

IoU ship: 0.44612956479146637 
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Total number of positive patches: 34 

Total number of negative patches: 29 

IoU ship: 0.5340851401505257 

 

 
Total number of positive patches: 3 

Total number of negative patches: 1 

IoU ship: 0.3852346556600168 

 

 
Total number of positive patches: 81 

Total number of negative patches: 28 

IoU ship: 0.9362934968790106 
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Specification 

variance_threshold_train 1500 

hog_param    [9, (8,8), (2,2)] 

diff_threshold    5 

N_clusters_ship   500 

N_clusters_nonship  500 

init    “k-means++” 

 

variance_threshold_test  1500 

T_classification   0.2 
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Specification 

variance_threshold_train 1500 

hog_param    [9, (8,8), (2,2)] 

diff_threshold    5 

N_clusters_ship   1000 

N_clusters_nonship  1000 

init    “k-means++” 

 

variance_threshold_test  1500 

T_classification   0.1 
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Total number of positive patches: 9 

Total number of negative patches: 9 

IoU ship: 0.507047062119196 

 

 
Total number of positive patches: 47 

Total number of negative patches: 38 

IoU ship: 0.45829545454545456 

 

 
Total number of positive patches: 33 

Total number of negative patches: 27 

IoU ship: 0.9264117827998625 
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Total number of positive patches: 42 

Total number of negative patches: 7 

IoU ship: 0.6735560913997014 

 

 
Total number of positive patches: 33 

Total number of negative patches: 10 

IoU ship: 0.5935929953156477 

 

 
Total number of positive patches: 30 

Total number of negative patches: 1 

IoU ship: 0.44148661832236574 

 

 
Total number of positive patches: 36 

Total number of negative patches: 26 

IoU ship: 0.6099484698706489 
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Total number of positive patches: 3 

Total number of negative patches: 1 

IoU ship: 0.40877665673010777 

 

 
Total number of positive patches: 93 

Total number of negative patches: 23 

IoU ship: 0.9034719572682183 
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Total number of positive patches: 9 

Total number of negative patches: 16 

IoU ship: 0.7066712494018856 

 

 
Total number of positive patches: 37 

Total number of negative patches: 42 

IoU ship: 0.4702870887304985 

 

 

Specification 

variance_threshold_train 1500 

hog_param    [9, (8,8), (2,2)] 

diff_threshold    5 

N_clusters_ship   1000 

N_clusters_nonship  500 

init    “k-means++” 

 

variance_threshold_test  1500 

T_classification   0.1 
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Total number of positive patches: 44 

Total number of negative patches: 23 

IoU ship: 0.9264117827998625 

 

 
Total number of positive patches: 42 

Total number of negative patches: 7 

IoU ship: 0.6735560913997014 

 

 
Total number of positive patches: 32 

Total number of negative patches: 19 

IoU ship: 0.5935929953156477 

 

 
Total number of positive patches: 27 

Total number of negative patches: 5 

IoU ship: 0.9015066065098292 
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Total number of positive patches: 30 

Total number of negative patches: 33 

IoU ship: 0.7679648930334614 

 

 
Total number of positive patches: 2 

Total number of negative patches: 2 

IoU ship: 0.02984216158373462 

 

 
Total number of positive patches: 93 

Total number of negative patches: 23 

IoU ship: 0.9362934968790106 
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Total number of positive patches: 17 

Total number of negative patches: 4 

IoU ship: 0.7423185423650062 

 

 
Total number of positive patches: 44 

Total number of negative patches: 41 

IoU ship: 0.4570701909757704 

 

 

Specification 

variance_threshold_train 1500 

hog_param    [9, (8,8), (2,2)] 

diff_threshold    5 

N_clusters_ship   5000 

N_clusters_nonship  5000 

init    “k-means++” 

 

variance_threshold_test  1500 

T_classification   0.1 
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Total number of positive patches: 34 

Total number of negative patches: 21 

IoU ship: 0.9264117827998625 

 

 
Total number of positive patches: 39 

Total number of negative patches: 7 

IoU ship: 0.754541494484277 

 

 
Total number of positive patches: 44 

Total number of negative patches: 9 

IoU ship: 0.5293052885200419 

 

 
Total number of positive patches: 17 

Total number of negative patches: 8 

IoU ship: 0.8582046087617118 
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Total number of positive patches: 45 

Total number of negative patches: 20 

IoU ship: 0.6099484698706489 

 

 
Total number of positive patches: 1 

Total number of negative patches: 3 

IoU ship: 0.332280440265994 

 

 
Total number of positive patches: 107 

Total number of negative patches: 21 

IoU ship: 0.9362934968790106 
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Specification:  

SIFT_param    Default (contrastThreshold = 0.06) 

N_clusters_ship   100 

N_clusters_nonship  100 

init    “k-means++” 
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Appendix B

Results: Multi-object Detection
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Specification 

variance_threshold_train 1500 

hog_param    [9, (8,8), (2,2)] 

diff_threshold    5 

N_clusters_ship   100 

N_clusters_nonship  100 

init    “k-means++” 

 

variance_threshold_test  1500 

T_classification   0.1 
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Specification 

variance_threshold_train 1500 

hog_param    [9, (8,8), (2,2)] 

diff_threshold    5 

N_clusters_ship   500 

N_clusters_nonship  500 

init    “k-means++” 

 

variance_threshold_test  1500 

T_classification   0.1 
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Specification 

variance_threshold_train 1500 

hog_param    [9, (8,8), (2,2)] 

diff_threshold    5 

N_clusters_ship   1000 

N_clusters_nonship  1000 

init    “k-means++” 

 

variance_threshold_test  1500 

T_classification   0.1 
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Specification 

variance_threshold_train 1500 

hog_param    [9, (8,8), (2,2)] 

diff_threshold    5 

N_clusters_ship   1000 

N_clusters_nonship  1000 

init    “k-means++” 

 

variance_threshold_test  1500 

T_classification   0.2 
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Specification 

variance_threshold_train 1500 

hog_param    [9, (8,8), (2,2)] 

diff_threshold    5 

N_clusters_ship   1000 

N_clusters_nonship  500 

init    “k-means++” 

 

variance_threshold_test  1500 

T_classification   0.1 
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Specification 

variance_threshold_train 1500 

hog_param    [9, (8,8), (2,2)] 

diff_threshold    5 

N_clusters_ship   1000 

N_clusters_nonship  500 

init    “k-means++” 

 

variance_threshold_test  1500 

T_classification   0.2 
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Specification:  

SIFT_param    Default (contrastThreshold = 0.06) 

N_clusters_ship   5000 

N_clusters_nonship  5000 

init    “k-means++” 
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