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Abstract. Checklists are used to aid the fulfillment of safety critical
activities in a variety of different applications, such as aviation, health
care or labour inspections. However, optimizing a checklist for a spe-
cific purpose can be challenging. Checklists also need to be trustworthy
and user friendly to promote user compliance. With labour inspections
as a starting point, we introduce the Checklist Construction Problem.
To address the problem, we seek to optimize the content of labour in-
spection checklists in order to improve the working conditions in every
organisation targeted for inspections. To do so, we introduce a hybrid
framework called BCBR to construct trustworthy checklists. BCBR is
based on case-based reasoning (CBR) and Bayesian inference (BI) and
constructs new checklists based on past cases. A key novelty of BCBR
is the use of BI for constructing new features in past cases. The aug-
mented past cases are retrieved via CBR to construct new checklists,
which ensures justification for the content of the checklists and promotes
trust. Experiments suggest that BCBR is more effective than any other
baseline we tested, in terms of constructing trustworthy checklists.

Keywords: Bayesian CBR · Feature construction · Checklist.

1 Introduction

Fig. 1. Conceptual view of NLIA’s procedure

Context. Every year more than
three million workers are victims
of serious accidents causing more
then 4000 deaths due to poor work-
ing conditions in EU alone.3 World-
wide, it has been estimated that
there are at least 9.8 million people
in forced labour (2005) [2]. The most important measure to prevent poor work-
ing conditions is regulations. Regulations are usually enforced through labour

3 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:
52014DC0332
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inspections, which make them a vital part of the strategy employed by many
countries to ensure good health, safety, decent work conditions and well-being
for workers (see UN’s SDGs 3, 8 and 164). Hence it is important to carry out
labour inspections efficiently at large scale.

To identify poor working conditions, labour inspection agencies use surveys
to check individual organisations for non-compliance [24]. Such procedures vary
between different countries and we will use the Norwegian Labour Inspection
Authority (NLIA) as an example. NLIA’s inspection procedure is shown in Fig-
ure 1. It consists of a checklist which is a set of control points that are answered
during the inspection. Every control point is a question that corresponds to a
specific regulation. The answer to each question indicates whether the inspected
organisation is compliant or not. These answers provide a basis for reactions if
non-compliance is found. Checklists for ensuring health and safety are also used
in other domains such a surgery or flight procedures to ensure high accuracy of
due diligence, and success often relies on correctly applying checklists [5].

Challenges with Checklists. Currently, labour inspection agencies operate
with a limited, fixed number of static procedures or checklists targeting spe-
cific industries that organisations belong to. The inspectors select the checklist
they subjectively believe is most relevant to the organisation they are visiting.
A drawback with this approach is that the selected checklist can be poorly opti-
mized for its target, while also being limited in terms of scope. This may prevent
the inspections from fulfilling their purpose of addressing high risks to the work-
ers’ health, environment and safety. Checklists used for other applications such
as aviation and health care may have similar problems where poorly optimized
checklists can suffer from compatibility issues with users or contexts [5, 7]. This
can have a negative effect on the users’ motivation to use the checklists.
Contributions. We introduce the Checklist Construction Problem (CCP): Sup-
pose that we have N unique questions with yes/no answers, where the answer
to each question has an unknown probability distribution. Given the questions,
construct a checklist for a target entity by selecting K unique questions that
maximize the likelihood for obtaining no-answers to every selected question.

This problem could be applied to any domain where checklist optimization
is an issue, such as healthcare or aviation. In these domains, the N unique
questions may be designed to accomplish a specific task such as surgery or flight
check and the target entity may be a patient or an aircraft. Any question with
a likely no-answer should then be on the surgery or flight checklist so that yes-
answers are obtained instead. However, this work focuses on solving CCP for
labour inspections and introduces a new data set as a starting point to do so.

To solve CCP, we introduce BCBR, which is a framework based on Bayesian
inference (BI) and case-based reasoning (CBR) for constructing new checklists
optimized for a target organisation (entity). BCBR uses CBR to retrieve ques-
tions from checklists which have been used in past cases to survey organisa-
tions similar to the target organisation. BI is used to construct features in past
cases which ensures that the retrieved questions have high probabilities for non-

4 https://sdgs.un.org/
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compliance. The approach starts with a data set of cases containing organisations
and questions from previously used checklists. New features are then constructed
by means of BI and added to each row in the data set to create augmented cases.
The augmented cases are added to a case base which is queried using similarity
based retrieval. The query contains a target probability and organisation, which
is used to retrieve cases containing the questions for a new checklist (solution).

From a technical perspective, the use of augmented cases is a key novelty of
BCBR that can be viewed as a data-driven approach that uses feature construc-
tion to embed solution knowledge in cases for case retrieval in CBR [8, 15, 18].
The use of BI to estimate probability ensures transparency because the estimates
are made by counting cases in the data set. The use of similarity based retrieval
also promotes trustworthiness and ensures justification of the BI estimates be-
cause they are related to past cases. Trustworthiness is important to ensure user
compliance with the checklists. The core contributions of this paper are:

– We introduce a formal definition of the Checklist Construction Problem and
a new data set of previously used questions (control points) collected from
NLIA’s labour inspections between 2012 and 2019.

– We present the details for BCBR, which is designed for constructing check-
lists based on CBR and Bayesian inference.

– We establish an approach for evaluating the checklists constructed by BCBR.
The framework is then empirically compared to baselines. The results show
that BCBR constructs more efficient checklists than the baselines.

2 Related Work

Hybrid Frameworks Based on CBR and BI. There are multiple examples
of frameworks with combinations of CBR and BI to address uncertainty for
applications where some prior belief or information is available. Such frameworks
also provide explanations, where CBR has been used to achieve explanation
goals [22] (such as transparency and justification) or generate explanations [19].
Nikpour et al. [18] use Bayesian posterior distributions to modify or add features
to input case descriptions to increase accuracy of similarity assessments in case
retrieval. They also use the same approach to provide explanations for case
failures in different domains [17]. This approach is similar to BCBR, but BCBR
constructs new features which are also added to the case base-cases rather than
modifying input cases. Kenny et al. [12] also use a combination of BI and CBR to
exclude outlier cases from case retrieval and to provide explanations by examples.
The purpose of the framework is to predict grass growth for sustainable dairy
farming. Gogineni et al. [9] combines CBR and BI to retrieve and down-select
explanatory cases for underwater mine clearance.
Similarity Based Retrieval for Trustworthiness. Lee et al [13] replaced the
output layer of a neural network with k-nearest neighbour (kNN) to generate
voted predictions and find the nearest neighbour cases to explain the predictions.
This also guarantees that every prediction can be justified by a relevant past
explanatory case. The justification via explanatory cases increases the reliability
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of the neural network predictions and promotes trustworthiness. BCBR is also
based on the same principle where BI predictions are justified by being embedded
in past cases as features.

Trustworthy Case-Based Recommender Systems. BCBR aims to select a
subset of all possible questions for a new checklist. Similarily, in recommender
systems, a user is recommended a subset of items from the space of all pos-
sible items. Such systems can be divided into two classes: collaborative and
case-based (content or user-based) recommender systems [3], where the latter
approach could relate to our work. The case-based approach has been used to
predict running-paces for different stages in ultra races, based on cases from sim-
ilar runners in past cases [16]. CBR has also been used to provide explanatory
cases for black-box recommender systems to achieve justification [4, 10]. Expla-
nations for such systems can also be created through relations between features
(concepts) [11]. However, the quality of explanations for black-box systems in
terms of transparency, interpretability and trustworthiness can still be question-
able [20]. Some authors also suggest to avoid explainable black box models in
cases where they are not needed [21] and to use transparent, interpretable models
for high-stakes decision making [20].

3 Case and Problem Definition

Table 1. Description of a case in the data set

Name Description Type

xisc Industry subgroup code Ordinal
xigc Industry group code Ordinal
xic Industry code Ordinal
xiac Industry area code Ordinal
ximac Industry main area code Nominal
xmnr Municipality number Ordinal
xfyl Fylke (county) Nominal
e Question Nominal
l Non-compliance Binary

In this section we introduce the
formal case and problem definition
used for the rest of the paper.

Data Set and Cases. A data set
D for variables Z is a finite length
tuple where a case dj ∈ D is an in-
stantiation of Z [6]. A case is a tuple
d = (e,x, l) where e denotes a ques-
tion from a checklist, x is an entity
and l ∈ {0, 1} denotes the answer of
the question. A case in the data set
is a past experience where a ques-
tion e has been applied to x to obtain the answer l. A case description is shown
in Table 1.

Fig. 2. Industry and location hi-
erarchies of an organisation

Entity. Every case d in the data set contains
an entity description in the form of an organi-
sation x, defined by its location and industry.
The features are organised according to Figure
2. An organisation can be implicitly defined as
x = (xmnr, xisc), since the other features of x
are located higher in the hierarchies.

Question. Each case in the data set contains
a question (control point) e with a yes/no an-
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swer. The question is used to survey the entity
x in the case. A specific question can appear in multiple checklists.
Checklist. A checklist y is defined as a set of yes/no questions constituted by
cases in the data set, so that y = (e1 ∈ d1, e2 ∈ d2...end ∈ dnd). A question can
only appear once per checklist such that ei 6= ej for every ei ∧ ej ∈ y.
Answer. The label l of a case is the observed answer from applying the question
e to the entity x. The answer l = 1 means that non-compliance has been found,
while l = 0 means that x is compliant.

Fig. 3. An overview of CCP.

The Checklist Construction Problem. The
problem is shown on Figure 3. Let there be a set
of N unique questions and a new target entity
xcnd. Each question has an unobserved answer l
about xcnd that belongs to an unknown distri-
bution. Given the N questions, a modelM first
needs to correctly estimate the probability for
observing l = 1 for each question.M then needs
to select K unique questions (e1, e2, ..., eK), with
the highest estimated probability, for a candidate checklist ycnd. The goal is to
observe as many l = 1 answers as possible when applying ycnd to xcnd.

4 BCBR Framework

An overview of the BCBR framework is shown in Figure 4. The motivation for the
framework is to solve the CCP problem while also ensuring that every question
ei ∈ ycnd can be justified by a relevant past experience (see Section 5.3). The
framework can be described by the following three steps: (1) A naive Bayesian
inference method is used to generate two probability estimates (θbexisc

and θbexmnr
)

for every case dj ∈ D. The estimates are generated by counting the cases in
the data set with the same question and entity description as dj . This is done
because many of the cases in the data set contains identical questions and/or
identical target entities. Using Bayesian inference also ensures transparency for
the estimates. (2) A case base CB of augmented CBR cases cj is created. Each
case cj ∈ CB is created by adding both estimates as features to each dj ∈ D. (3)
A query q is defined, which contains a target entity xcnd and target values for
the probability estimates. The query is used to retrieve a selection of K cases
from CB. Each case contains a question ei for the candidate checklist ycnd.

4.1 Bayesian Inference

We use empirical distributions of the data set D to estimate the probability for
observing l = 1, to achieve transparency for the BCBR framework. When prior
knowledge or belief about l is available, BI can be used instead of the standard
maximum likelihood method. An advantage with BI is that it (to some extent)
can be used to address inaccurate empirical estimates caused low or zero case
counts (”Zero count problem”) [6]. The problem may have a negative impact
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Fig. 4. An overview of the BCBR framework. The creation of augmented cases and
the case base happens offline. The case base is used for the construction of checklists
in the online-part.

on the quality of the K answers selected by BCBR. To further deal with this
problem we use Naive Bayesian inference (NBI) which generates two probability
estimates instead of just one. A derivation for this follows below.
Estimating the Empirical Probability for Non-compliance (l). By using
the definitions from Section 3, the empirical distribution of the data set D can
be defined as:

θD (α) =
D#(α)

N
(1)

where D#(α) is the number of cases in the data set D which satisfy the event α
andN is the number of cases inD [6]. We denote the event L = 1 as observing the
outcome l = 1 and L = 0 for l = 0. From the expression above, the probability
for L = 1 can then be calculated given x and e:

θD (L = 1|α) =
θD (L = 1 ∧ α)

θD (α)
=
D#(L = 1 ∧X = x ∧ E = e)

D#(X = x ∧ E = e)
(2)

where α = (X = x)∧ (E = e). That is, the event where the entity description is
given as x and the question is given as e.
Naive Bayesian Inference for Estimating Empirical Probability (l). The
posterior probability for an event L = 1|α can be expressed as the mean of a
Beta distribution [6]:

θbe(L = 1|α) =
D#(L = 1 ∧ α) + ψL=1|a

D#(L = 1 ∧ α) + ψL=1|a +D#(L = 0 ∧ α) + ψL=0|α
(3)

where ψ is a set of prior belief parameters and where (D#(L = 1∧α) +ψL=1|a)
and (D#(L = 0 ∧ α) + ψL=0|a) are the parameters for a Beta distribution.

From the components xisc and xmnr of x, two NBI probability estimates θbexisc

and θbexmnr
can be obtained from Equation 3 by substituting α: θbexisc

= θbe(L =
1|(Xisc = xisc ∧ E = e)) and θbexmnr

= θbe(L = 1|(Xmnr = xmnr ∧ E = e)).
Using two probability estimates instead of one is an effective measure against
low case counts because D#(Xisc = xisc ∧ E = e) ≥ D#(X = x ∧ E = e) and
D#(Xmnr = xmnr ∧ E = e) ≥ D#(X = x ∧ E = e). The approach is ”naive”
since it assumes that xmnr and xisc are independent given l and e.



Bayesian Feature Construction for Case-Based Reasoning 7

4.2 Case Base Creation and CBR Engine

Algorithm 1 Creation of a case base
CB with cases cj

Input: D;
Output: CB ← ();
for each dj ∈ D do

//(xisc,j , xmnr,j , ej) ∈ dj

θbexisc
← θbe(L = 1|(xisc,j , ej));

θbexmnr
← θbe(L = 1|(xmnr,j , ej));

κxmnr ← D#(L = 1 ∧ Xmnr =
xmnr,j ∧ E = ej);

κxisc ← D#(L = 1 ∧ Xisc =
xisc,j ∧ E = ej);

cj ← Join(dj , θ
be
xmnr

,θbexisc
,

κxmnr , κxisc);
CB ← Join(CB, cj);

end for
return CB;

This section defines the details for the
augmented CBR cases, case base and
similarity based retrieval from Figure 4.

Augmented CBR Case and Case
Base. Algorithm 1 shows the creation
of a case base CB with augmented cases
c. The algorithm includes two additional
features: κxmnr

and κxisc
. The features

are included to adjust for the case counts
of the probability estimates when retriev-
ing cases. The values for the θbe and the
κ-features are estimated from D, given
xmnr,j , xisc,j and ej from dj ∈ D. The
features are added to dj to form a case
cj for CB. An example showing the spe-
cific features of the augmented cases can
be found in Section 4.3.

Case Retrieval and Similarity Function. To retrieve questions ei for the
candidate checklist ycnd, a query case q and similarity function is used. The
query consists of the target entity xcnd and the desired values for both the
probability estimates and the case count features. A similarity function assigns
a score Sim(·, ·) ∈ [0, 1] to every pair (q, cj ∈ CB). A set of unique ei for ycnd is
then retrieved from the K cases with the highest similarity score. The similarity
function is defined according to the equation below:

Sim(q, cj) =
1∑
wi

∑
i

wi · simi(q, cj). (4)

Where wi is a weight, simi is a local similarity function and i denotes a feature
common to the query and the case. Each local similarity function in Equation
(4), yields a score [0, 1] for each feature (i) according to the similarity simi(q, cj)
between the cases q and cj . The local similarity functions and the weights are
defined by a domain expert for the purpose of this work (see Section 5.1).

4.3 Example: NBI Estimates, Case Retrieval and CBR Case

NBI Estimates. Let xisc = 22.230, xmnr = 1507 be features of an entity
description x and e =“Did the employer make sure to equip all employees who
carry out work at the construction site with a HSE card?” be a question of a case
d ∈ D. The prior parameters are ψL=1|α = 1 and ψL=0|α = 5 because l = 1 is

observed in approximately 1 of 6 cases. Given this information, θbexisc
is estimated

by counting cases d in data set D which satisfy Xisc = xisc and E = e. Applying
α = (Xisc = xisc ∧ E = e) to Equation 3 yields: θbexisc

= 1+1
1+2+6 ≈ 22%.
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This estimate is more accurate than the empirical probability estimate, which
is θxisc

= 1
1+2 ≈ 33% (Eq. 2). The difference can be explained by low case count,

which affect the quality of both the Bayesian and empirical estimates.

Table 2. Description of case features, similarity
weights, query and retrieved case for the example.

Feature w Query 1 Case 1 Query 2 Case 2

xisc 1 22.230 22.230 22.230 22.230
xigc 2 22.23 22.23 22.23 22.23
xic 2 22.2 22.2 22.2 22.2
xiac 2 22 22 22 22
ximac 2 C C C C
xmnr 2 1507 1507 1507 1507
xfyl 2 MoM MoM MoM MoM
l 0 - 0 - 0
e 0 - e1 - e2
θbexisc

9 100% 22% - 7%

θbexmnr
4 100% 32% - 7%

κxisc 1 70 1 - 0
κxmnr 1 70 89 - 30
Sim - 0.546 - 0.448

The same procedure is used
to calculate: θbexmnr

= 89+1
89+186+6 ≈

32%. In this case the Bayesian
estimate is approximately the
same as the empirical proba-
bility estimate, since the case
count is high. The estimates are
used to create an augmented
CBR case c.
Case Retrieval and Aug-
mented CBR Case. For this
example we assume that a case
base of CBR cases has been cre-
ated and that K = 1, for the
sake of brevity. The case re-
trieval starts by defining a query
case (Query 1), shown in Ta-
ble 2. θbexisc

and θbexmnr
are set to

100%, which is the target value for the retrieved cases. Both κxisc and κxmnr are
set to 70 so that case counts of 70 or higher yield full similarity scores, according
to Figure 5.

Fig. 5. Local similarity functions.

After applying the similarity
function to every pair (q, c ∈
CB), the top K = 1 case with
highest similarity (Case 1) is re-
trieved for the candidate check-
list ycnd.

For comparison, we also de-
fine Query 2 in Table 2 where
θbexisc

, θbexmnr
, κxisc

and κxmnr
are

undefined. The K = 1 case re-
turned from CB is Case 2. Case
2 fully matches Query 2 in terms
of x, but θbexisc

and θbexmnr
suggest

that it is unlikely to observe l = 1 when e2 is applied to x. This is expected
because we removed the part of the query that maximizes the probability for
observing l = 1.

5 Experiments

In this section three experiments are presented. In the first experiment a sim-
ple label classification problem is introduced to establish a starting point for
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comparing ML methods as baselines for the labour inspection CCP. The second
experiment aims to measure the justification of checklists constructed by BCBR
and the two best-performing baselines from the first experiment. The third ex-
periment aims to measure the performance of BCBR against the baselines from
the second experiment.

5.1 Experimental Setup

Measure of Justification. We introduce Equation 5 to measure the justifi-
cation (J ∈ [0, 100%]) of a checklist y for a given entity x, according to the
proportion of questions ei ∈ y which also exist in past cases (ei,x, ·) ∈ D.

J(y,x,D) =
|{ei ∈ y : (ei,x, ·) ∈ D}|

|{ei ∈ y}|
(5)

The expression can be seen as an adaptation of Massie alignment score [14] that
measures the percentage of questions ei ∈ y with full alignment to the nearest
neighbour case in D.

BCBR Configuration. For the experiments, BCBR uses the same configura-
tion as in Section 4.3. The only difference is that K = 15 is used instead of
K = 1, so that the constructed checklists consist of 15 questions.

The weights and local similarity functions are set based on domain knowledge
and are shown in Table 2 and Figure 5 respectively. The weights are set according
to the importance of each feature, while the similarity functions are defined
to model the similarity according to the hierarchical relationship between the
ordinal features of the entity x (see Section 3). For the other features not shown
in Figure 5, the default option in the myCBR tool is used to define the local
similarity functions.

Baselines for the Experiments. The baseline methods used for the exper-
iments are: CBR (CBR-BL), Logistic Regression(LR), Decision tree (DT) and
Naive Bayes classifier (NBC), Conditional probability estimates (CP), Bayesian
inference (BI), Naive conditional probability (NCP) and NBI.

CBR-BL generates predictions from the label of the closest neighbour case
in the training data. CP generates predictions for any pair (e,x) according to
Equation 2. BI uses Equation 3 with ψL=1|α = 1, ψL=0|α = 5 and α = (X =
x ∧ E = e). NCP is based on Equation 2 and is defined as: θ (L = 1|e,x) =
θxisc

+θxmnr

2 . The baseline NBI estimates are calculated using ψL=1|α = 1 and

ψL=0|α = 5 according to: θ (L = 1|e,x) =
θbexisc

+θbexmnr

2 .

Environment. A Dell XPS 9570 with Intel i9 8950hk, 32GB RAM and Win-
dows 10 were used for the experiments. Every experiment is conducted in a
Python environment using Jupyter Notebook. NBI for BCBR, NBI, BI, CP and
NCP are implemented as MSSQL17 queries via PYODBC. The similarity based
retrieval for BCBR and CBR-BL are implemented via MyCBR [1]. The rest of
the methods are implemented via Scikit-learn 0.24.
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Data Set. For the experiments we introduce a new data set of questions used in
previous inspections conducted by NLIA.5 The data set is denoted as D for the
rest of this section and consists of 1,111,502 entries from inspections conducted
between 01/01/2012 and 01/06/2019. Embedded in these entries are N = 1, 967
unique questions from checklists used in 59,988 inspections. Each entry (case)
in D is also associated with an id6 which maps to a checklist y (past solution)
used to survey the organisation x in one of the 59,988 inspections within D.

5.2 Experiment 1: Answer Classification Performance (Baselines)

The goal of this experiment is to compare ML methods and select two of the best
as baselines for the labour inspection CCP. Because CCP is a complex problem,
we here study a new, simple classification problem as a stepping stone.
The Answer Classification Problem. Let each dj ∈ D be a case with a
two-class ground truth label lj . A model M is trained on the cases in D. For
any new case d = (e,x, l) where l = 0 (compliance) or l = 1 (non-compliance),
the problem goal is for M to correctly classify the value of l based on (e,x).
Method. Each model is validated on the data set D, using 8-fold cross validation
with the same partitioning of data for every model. Each model M outputs a
class prediction score for every (e,x). Thus, the classification threshold is set to
the median of M’s scores for each validation fold. The results are measured in
terms of accuracy, precision and recall which are calculated for per validation
fold: Acc = TP+TN

TP+FP+TN+FN , Prec = TP
TP+FP and Rec = TP

TP+FN .

Table 3. Results from the experiment. Time
is measured in seconds per validation fold.

Method Acc Prec Rec Avg Time

CBR-BL 0.677 0.178 0.246 0.367 60238
Random 0.500 0.161 0.500 0.387 -
CP 0.680 0.210 0.357 0.416 3.84
BI 0.760 0.270 0.288 0.439 3.89
DT 0.644 0.233 0.529 0.469 122.6
NCP 0.592 0.250 0.761 0.534 9.0
NBC 0.588 0.251 0.778 0.539 67.33
LR 0.591 0.252 0.782 0.542 68.4
NBI 0.605 0.261 0.790 0.552 10.4

Results and Discussion. The re-
sults are shown in Table 3 where
the baselines are sorted according
to Avg, which is the average score
of the preceding columns. In terms
of the Avg-score NBI performs bet-
ter then standard ML methods
such as LR, DT and NBC. NBI also
has the best recall and an average
runtime of 10.4 seconds per vali-
dation fold, which is significantly
less than NBC, DT, LR and CBR-
BL. BI has the best performance in
terms of accuracy and precision, but it also has poor recall which results in a
low average score. The worst performing method was CBR-BL where the size of
the training data was reduced to 100,000 cases due to long running time.

The results indicate that NBI yields the best average performance, which
motivates us to combine NBI with CBR. LR, NBC and NCP also perform well,
but we select NBI and LR as baselines for the next experiments. A limitation
for this experiment is that it cannot be used to evaluate BCBR, as BCBR is
designed for CCP and not ACP.

5 The data set is available at https://dx.doi.org/10.21227/m1t7-hg51
6 The id is a ”key” for identifying a past checklist/organisation pair (value) in D.

https://dx.doi.org/10.21227/m1t7-hg51
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5.3 Experiment 2: Trustworthiness of Constructed Checklists

The goal of this experiment is to measure justification of constructed checklists
ycnd for the CCP. This is done by measuring the average proportion of questions
ei ∈ ycnd which are justified by past cases. The experiment is based on Lee et al.’s
use of past cases to justify predictions and promote trust [13]. The experiment
is conducted on checklists constructed by BCBR and two of the baselines from
Section 5.2, NBI and LR.
Method. Each model M is trained on the data set D containing 1,111,502 en-
tries. An evaluation data setDV of 59,988 tuples (xcnd,y) of past entity/checklist
pairs is created using every unique id from D. For each xcnd ∈ DV ,M constructs
a checklist ycnd for xcnd as following depending on the model in question. For
M = NBI orM = LR:M generates a prediction score for every unique ej ∈ D.
The K = 15 questions with the highest prediction scores are selected as the can-
didate checklist ycnd for xcnd. For M = BCBR: a query containing xcnd is
defined to retrieve past cases, containing K = 15 unique questions for ycnd.

Each ycnd constructed by one of the models M then forms an evaluation
pair (ycnd,xcnd) with each corresponding xcnd from DV . Based on Equation 5,
the average justification (JM) for every pair (ycnd,xcnd) given M is:

JM(D,DV ) =

∑
(ycnd,xcnd) J(ycnd,xcnd,D)

|DV |
(6)

JM measures the average percentage of questions ei ∈ ycnd where at least one
corresponding explanatory case (ei,x

cnd, ·) exists in D. The purpose of the JM
score is to enable a fair comparison between the three models. A higher relative
score means higher justification of the checklists constructed by M.
Results and Discussion. The results are: JNBI = 0.6%, JLR = 4.8% and
JBCBR = 64%. This suggests that both LR and NBI perform poorly in terms of
justification of their constructed checklists. Qualitative assessments of some of
the checklists also reveal that many of their questions (ei ∈ ycnd) are unrelated to
and incompatible with the target entities. Because of the incompatibility issues
and that less than 5% of the items on the checklists are justified, LR and NBI are
not trustworthy. BCBR scored 64% which is significantly higher. Incompatible
questions also seam to appear less frequently in BCBR’s checklists.

5.4 Experiment 3: Evaluation of Constructed Checklists

The goal of this experiment is to evaluate the performance of the BCBR frame-
work against LR, NBI and the original past checklists from the data set. Since
BCBR uses similarity based retrieval, NBI and LR serve as non-similarity based
baselines to compare with. Due to the results in Section 5.3, a filter is applied to
both LR and NBI to ensure that every checklist can be justified by past cases.
This is necessary for the evaluation procedure, as it assumes that the questions
on the checklists can be justified by past similar cases.
Method. The evaluation approach is done on the data set D which contains
1,111,502 entries. The approach can be summarized as following: The data set
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D is partitioned into a training fold (DT ) and validation fold (DCB), where the
training fold is used to calculate probability estimates for the validation cases.
The validation fold is used as the case base and for performance evaluation. A
model M is trained on DT and the evaluation is done on every checklist ycnd

constructed by M.
A problem with the validation is that since every ycnd is a new checklist,

the ground truths l needed to evaluate ycnd can be missing. A common solution
to this problem is to collect the ground truth empirically [23], but this is not
an option for us. To get a meaningful validation result, the performance statis-
tics for the evaluation need to be estimated. To accomplish this, the following
assumption is made: Let dcnd = (−,xcnd,−) be a case without question com-
ponent or observed ground truth answer and d = (e,x, l) be any validation case
with ground truth. If xcnd and x are content-wise equal or similar, we assume
that the unobserved ground truth answer lcnd from applying e to xcnd is cor-
rectly estimated from an empirical distribution of l, conditioned on x, e and the
validation data fold. This is based on the assumption that similar problems have
similar solutions [15].

Based on the assumption, we introduce the following procedure to estimate
accuracy (Acc), precision (Prec)7 and recall (Rec) for every model M.

1. Let DT be the training fold and DCB be both the validation fold and case
base(for BCBR). Let DV be a set of past entity/checklist pairs (xcnd,y) from
DCB, created using every unique id in DCB. A model M is trained on DT .

2. For every xcnd ∈ DV ,M selects K unique questions (ei) for a checklist ycnd

to form a validation pair (xcnd,ycnd). The questions are selected from DCB.
3. For each pair (xcnd,ycnd) the number of true positives (TP ), false positives

(FP ), true negatives (TN) and false negatives (FN) are estimated by evalu-
ating each ei ∈ ycnd(predicted positives) and ej /∈ ycnd(predicted negatives).

4. For every question ei ∈ ycnd, both TPei and FPei are estimated using

the following function: f(l,x0, ei) = DCB#(L=l∧X=x0∧E=ei)
DCB#(X=x0∧E=ei)

, so that TPei =

f(1,x0, ei) and FPei = f(0,x0, ei). If DCB#(X = xcnd ∧ E = ei) > 0, then
x0 = xcnd is applied to f . If DCB#(X = xcnd ∧ E = ei) = 0, then x0 = xi
from the case (ei,xi, li), retrieved by BCBR8 for ycnd, is used because there
is no data to evaluate (ei,x

cnd). Each TPei and FPei is assigned a value
v ∈ [0, 1] via f so that TPei = 1− FPei .

5. For every unique question ej /∈ ycnd in DCB, both TNej and FNej are

estimated using the function: g(l, ej /∈ ycnd) =
DCB#(L=l∧X=xcnd∧E=ej)

DCB#(X=xcnd∧E=ej)
.

The function is used to obtain TNej = g(0, ej) and FNej = g(1, ej), so that
each TNej and FNej receives a value of v ∈ [0, 1] and that TNej = 1−FNej .

6. TP , FP , FN and TN for each candidate checklist ycnd ∈ (xcnd,ycnd) are
calculated as following: TP =

∑
ei
TPei , FP =

∑
ei
FPei , TN =

∑
ej
TNej

and FN =
∑
ej
FNej for every unique ei ∈ ycnd and ej /∈ ycnd from DCB.

7 An additional statistic Prec(gt) is included, which is precision calculated (step 4-8)
using only ei ∈ {ycnd ∩ y} from cases containing the original ground truth labels.

8 The condition DCB#(X = xcnd ∧ E = ei) = 0 only occurs if BCBR is used.



Bayesian Feature Construction for Case-Based Reasoning 13

7. Statistics are then calculated for each ycnd: Accycnd = TP+TN
TP+FP+TN+FN ,

Precycnd = TP
TP+FP and Recycnd = TP

TP+FN . Repeat from Step 2 until every

pair (xcnd,ycnd) is evaluated.
8. The average Acc, Prec and Rec of every checklist ycnd constructed byM is:

Acc =
∑

ycnd Accycnd

|DV | , Prec =
∑

ycnd Precycnd

|DV | and Rec =
∑

ycnd Recycnd

|DV | .

The procedure is used to evaluate BCBR and the other baselines. To evaluate
the original checklists, the procedure is applied to the past checklists in the
validation fold so that ycnd = y for y ∈ DV in Step 2. Step 2 for NBI and LR is
done by generating predictions for every unique question (see Sect. 5.3). Then
a filter is applied after prediction and before the selection of the questions for
ycnd. The filter excludes any question (e) from selection if (e,xcnd, ·) /∈ DCB.
This means that every ei ∈ ycnd is justified by a past case so that JNBI and JLR
is 100% (Eq. 6). The filter is necessary for the evaluation to ensure that NBI
and LR construct checklists that satisfy the assumption above. The models use
K = 15 and are validated using 4,8 and 16-fold cross validation.

Table 4. 8 fold cross validation results of the con-
structed vs. the original checklists (Org. CL).

Method Acc Prec (gt) Prec Rec Avg

Org. CL 0.337 0.170 0.181 0.622 0.328

LR 0.484 0.226 0.267 0.694 0.418

NBI 0.486 0.229 0.270 0.698 0.421

BCBR 0.574 0.259 0.343 0.718 0.474

Results and Discussion. The
results are shown in in Table
4. The Avg column shows the
average of the four preceding
columns, where the results sug-
gest that the checklists con-
structed by NBI, LR and BCBR
are more effective than the orig-
inal checklists. BCBR scores 0.474 which is significantly higher than the original
checklists and also higher than NBI and LR. Figure 6 shows the results for dif-
ferent numbers of validation folds. The figure suggests that BCBR consistently
outperforms NBI and LR in accuracy and precision. Also, both accuracy and
precision statistics tend to increase with the size of the validation data sets. We
believe this is caused by the fact that TP and TN increases compared to FP and
FN as the quality of the retrieved questions increases when more cases are avail-
able. Recall also decreases with the size of the validation data sets as the number
of predicted positives is fixed (K = 15), which entails that FN increases more
than TP when the size of the validation set increases. The experiment suggests
that BCBR is more effective for constructing checklists than LR or NBI.

Fig. 6. Crossvalidation results for different validation fold sizes

A limitation of this experiment is that the results are based on estimates
of Acc, Prec and Rec. For CBR frameworks, the validity of the evaluation re-
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sults partially depends on high similarity between the x-part of the query and
retrieved cases. This could be problematic when evaluating and comparing mul-
tiple CBR-based frameworks and should be investigated in future work.

6 Conclusion

In this paper we studied the problem of constructing checklists for safety criti-
cal applications, in particular labour inspections where constructing good high-
performance checklists manually is difficult. Thus, we proposed the CCP where
we consider the automatic construction of good, justifiable checklists. To address
the CCP we introduced BCBR, which uses naive BI to construct features in CBR
cases for retrieving questions for the checklists. We conducted three experiments
on a data set of past labour inspections, which we introduced for the paper.
Because CCP is a fairly complex problem, we conducted our first experiment
on a simple answer classification problem. The goal of the experiment was to
select two baselines for CCP, which was NBI and LR. In the second experiment
we measured the justification of the checklist constructed by BCBR, NBI and
LR, where we found that only BCBR constructs checklists which are justified by
past cases. Another conclusion from the experiment is that questions selected
for the constructed checklists should be justified in terms of prior use in similar
entities, because some questions may be closely related to the entities that they
originally were designed for. The results from the last experiment also suggest
that BCBR is the most effective method for constructing checklists to address
poor working conditions in inspected organisations. The checklists constructed
by BCBR also perform significantly better than the original checklists.

One of the things that could be addressed in future work is solution adapta-
tion, such as adapting questions after they have been retrieved for a checklist.
Another option is to explore data-driven approaches to derive the weights and
local functions for BCBR. It could also be interesting to see how BCBR perform
in other CCPs such as surgery or preflight checklists.
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