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Abstract

Coorbit theory is a powerful machinery that constructs a family of Banach spaces,
the so-called coorbit spaces, from well-behaved unitary representations of locally
compact groups. A core feature of coorbit spaces is that they can be discretized in a way
that reflects the geometry of the underlying locally compact group. Many established
function spaces such as modulation spaces, Besov spaces, Sobolev—Shubin spaces, and
shearlet spaces are examples of coorbit spaces. The goal of this survey is to give an
overview of coorbit theory with the aim of presenting the main ideas in an accessible
manner. Coorbit theory is generally seen as a complicated theory, filled with both
technicalities and conceptual difficulties. Faced with this obstacle, we feel obliged to
convince the reader of the theory’s elegance. As such, this survey is a showcase of
coorbit theory and should be treated as a stepping stone to more complete sources.

Keywords Coorbit spaces - Integrable representations - Atomic decompositions -
Large scale geometry - Modulation spaces - Shearlet spaces

1 Introduction

Whenever a new mathematical theory is developed, one of two things usually happens:
On the one hand, the theory might not be sufficiently interesting. Together with the
failure to generate non-trivial results in well-established special cases, this signals a
premature end. On the other hand, a newly developed theory might succeed in these
endeavours. What follows is a period of flourishing, where researchers from related
fields develop the theory to its fullest potential. However, there is a third and more
disheartening possibility as well; the theory is wonderful in all regards but is largely
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left unnoticed by the mathematical community. This was the case for the theory of
coorbit spaces, developed in the late 80s in a series of papers [33—-35] by Hans Georg
Feichtinger and Karlheinz Grochenig. However, with the turn of the century, interest
in coorbit spaces has been growing rapidly. This is due to a plethora of reasons, the
most obvious one being the emergence of time-frequency analysis as a central topic
in modern harmonic analysis. Many results in time-frequency analysis can be either
proven or illuminated by the constructions in coorbit theory.

The goal of this survey is to provide an introduction to coorbit theory aimed at

non-experts. We have tried to strike a balance between providing sufficient details,
while at the same time prioritizing concepts over technicalities. The original papers
on coorbit theory are, although insightful, admittedly difficult for novices to digest.
More recent sources, e.g. [16,58,68], are either not fully devoted to coorbit theory
or include technicalities that distract most beginners from the core ideas. This is not
intended as critique of the above sources as their main aim is to derive new results. In
fact, we have the privilege of dwelling on pedagogical points precisely because we do
not aim for novelty. We hope this survey can establish a natural starting point to learn
coorbit theory for both students and researchers in neighboring fields.
Overview Before embarking, we give a brief overview of what coorbit theory is all
about. This requires the usage of terminology that might be unfamiliar to the reader;
if this causes bewilderment, then skip this part for now and return to it once you have
finished reading Chapter 2. We begin with a unitary representation 7 : G — Hy of a
locally compact group G on a Hilbert space H . Consider the wavelet transform

We : Hy = L¥(G), W f(x) = (f, m()g)n,,

where f, g € Hy and x € G. Under some assumptions on the representation 7 and
the element g € Hy, the transformation W, is actually an isometry from H; to the
Hilbert space L*(G). The inner mechanics of coorbit theory deal with the following
two points:

e We construct a collection Cog of Banach spaces for each 1 < p < oo called
coorbit spaces. Each space COZ contains the elements f € H; such that W, f
has a certain decay (depending on p) as a function on the group G. To make the
definition of the coorbit spaces Co’; precise, we will first need to extend the wavelet
transform to the distributional setting.

e By picking a suitable atom g € H, we can generate any f € Cog through the
formula

f=Y alHmg. (1.1

iel

where {x;}ic; C G is a collection of carefully chosen points and (c;);c; are
coefficients that depend linearly on f. This systematic decomposition is known as
an atomic decomposition. Intuitively, we decompose each element f € Co’; into
its atomic parts relative to the chosen atom g € H. The selection of the points
{xi}ier C G depends heavily on the structure of G, giving the theory a geometric
flavor.
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Two classes of coorbit spaces that have appeared prominently in the literature are
the homogeneous Besov spaces in classical harmonic analysis and the modulation
spaces in time-frequency analysis. One can obtain a deeper appreciation for these
seemingly different spaces by realizing that they are both special cases of the coorbit
theory machinery. These two examples will be returned to time and time again to
illustrate the concepts presented.

Existing Literature There are sources in the literature that deal with coorbit spaces
from a somewhat expository viewpoint. We emphasize three of them as they deserve
a special mention:

e The Ph.D. thesis [68] of Felix Voigtlaender is very helpful, especially for technical
aspects. Although the first chapters of [68] are more advanced than this survey,
they nevertheless introduces all the main ideas in a clear manner.

e Thebook [16]is acollection of survey papers written by various authors. Especially
Chapter 2 (written by Filippo De Mari and Ernesto De Vito) and Chapter 3 (written
by Stephan Dahlke, Soren Hiuser, Gabriele Steidl, and Gerd Teschke) is useful
for comprehending the basics of coorbit theory.

e The paper [9] is mostly an expository account of different aspects of coorbit theory.
Itis both well-written and useful, although it assumes more background knowledge
from the reader than we do. A drawback is that [9] has, due to its publication date,
no modern examples and directions in coorbit theory.

As coorbit theory is a popular topic nowadays, there have been several advances
of the theory in the last five years. Most of these topics are not discussed outside
of their respective research papers. It is our belief that the community would benefit
from having these results more easily available. We will go through some of the recent
developments in Sect. 3.8 and Chapter 4. In Sect. 4.4 we give references to many
recent works on coorbit theory.

Unconventional Topics

e Reproducing Kernel Hilbert Spaces This is included in Sect. 2.4 since the wavelet
transform automatically produces reproducing kernel Hilbert spaces, see Proposi-
tion 2.30. These reproducing kernel Hilbert spaces have received interest recently
in [3,45,61,66]. The reproducing kernel approach also illuminates the reproducing
formula in Theorem 2.32, which is central to the theory. It should be noted that
reproducing kernel Hilbert spaces are often implicitly present in works on coorbit
theory.

e Large Scale Geometry We have included certain definitions from large scale geom-
etry in Sect. 3.6. Large scale geometry has had little intersection with coorbit theory,
except for in [58] where it is utilized successfully. Both [58] and the papers [2,4]
uses large scale geometry to analyze decomposition spaces, which is a family of
spaces that are related to coorbit spaces. We hope that large scale geometry can
provide a conceptual framework that might bring new ideas to the table.

We have chosen to omit Wiener amalgam spaces from the survey. This choice is
a difficult one; although Wiener amalgam spaces are a useful tool, they are also a
conceptional hurdle for some and not always needed in practical applications of coorbit
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theory. We refer the reader to [27] and the survey [53] for more details on Wiener
amalgam spaces.
Outline:

e Chapter 2 We introduce locally compact groups and unitary representations in
Sects. 2.1 and 2.2, respectively. In addition to fixing notation, this allows us to
require few prerequisites from the reader. The wavelet transform is a central player
in coorbit theory and is introduced in Sect. 2.2. We go through the orthogonality
relation for the wavelet transform in Sect. 2.3. In Sect. 2.4 we review reproducing
kernel Hilbert spaces and show that such spaces naturally arise when consider-
ing the wavelet transform. Finally, we derive the reproducing and reconstruction
formulas for the wavelet transform in Sect. 2.5.

e Chapter 3 We introduce the integrable setting in Sect. 3.1 and extend the wavelet
transform to the distributional level in Sect. 3.2. This allows us to define the
coorbit spaces in Sect. 3.3 in a rigorous manner. Basic properties of coorbit spaces
are derived in Sect. 3.4 with the help of the correspondence principle given in
Theorem 3.20. In Sect. 3.5 we discuss weighted coorbit spaces. We show that
the coorbit spaces have extraordinary sampling properties in Sect. 3.6 through
a general procedure called atomic decompositions. Terminology borrowed from
large scale geometry will be used to make the main result in Theorem 3.40 more
transparent. Finally, we discuss Banach frames and a recent kernel theorem for
coorbit spaces in respectively Sects. 3.7 and 3.8.

o Chapter 4 We solidify the results presented in previous chapters by giving non-
trivial examples of the theory. This includes shearlet spaces in signal analysis in
Sect. 4.1, Bergman spaces in complex analysis in Sect. 4.2, and coorbit spaces
built on nilpotent Lie groups in Sect. 4.3. We end in Sect. 4.4 by giving refer-
ences to recent developments related to embeddings between coorbit spaces and
generalizations of coorbit theory.

2 Starting Out

We start by giving an overview of preliminary topics, namely locally compact groups,
unitary representations, and basic properties of the (generalized) wavelet transform.
Most of this material is fairly standard, and is mainly collected from the books [16,
23,39,41,47]. We aim for a suitable generality and present concrete examples as we
go along.

2.1 Prelude on Locally Compact Groups

The first order of business is to get acquainted with locally compact groups.

Definition 2.1 A locally compact group is a locally compact Hausdorff topological
space G that is simultaneously a group such that the multiplication and inversion
maps

(x,y) — xy, x»—)x_l, x,y €@,

are continuous.
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Recall that a Radon measure is a Borel measure that is finite on compact sets, inner
regular on open sets, and outer regular on all Borel sets. Do not worry if you are
rusty on the measure-theoretic nonsense; we will never use these technical conditions
explicitly. The important point is that each locally compact group G can be equipped
with a unique (up to a positive constant) left-invariant Radon measure pr, that is,
wr satisfies up (xE) = pp(E) for all x € G and every Borel set E C G. We call
the measure p;, the left Haar measure on the group G. The existence of the left
Haar measure implies that any locally compact group is canonically equipped with a
measure-theoretic setting.

As the terminology indicates, there is also a right Haar measure g on any locally
compact group. How much the two measures w7 and pug deviate is captured by the
modular function A : G — (0, 00) defined as follows: For x € G the measure
Ux(E) := ur(Ex) is again a left-invariant Radon measure. Therefore, the uniqueness
of the left Haar measure implies the existence of a number A(x) € (0, co) such that

px(E) = A(x)pur(E),

for every Borel set E C G. It is straightforward to see that ;u;, = g precisely when
A = 1. Motivated by this observation, groups where (;, = g are called unimodular.
When this is the case, we use the abbreviation u := u; = ug and refer to u as the
Haar measure on the group G. It is clear that commutative locally compact groups
are unimodular. Moreover, locally compact groups that are either compact or discrete
are also unimodular, see [39, Chapter 2.4].

Example 2.2 The reader has surely seen plenty of locally compact groups previously.
Two elementary ones are R” with the usual vector sum and R* := R\ {0} with the
usual product. On R”, the Haar measure is the Lebesgue measure dx, while on R*
the Haar measure is dx/|x|. To exemplify the last claim, we see for E = (r, s) with
s >r > 0and x > 0 that

nwxE) = [xs ﬂ = log(xs) — log(xr) = log (i) = u(E).
X t r

r

Example 2.3 There are many locally compact groups of interest that are not unimod-
ular. As an example, we consider the (full) Affine group Aff = R x R* with the group
multiplication

(b,a)-(b',a") == (ab' + b, ad"), (b,a), (b',a) € Aff.

The group operation models the composition of affine maps, and can equivalently be
realized as 2 x 2 matrices of the form

ab
(0 1) , (b, a) € Aff,

where the group operation is matrix multiplication. Notice that the group operation is
not commutative. Moreover, the affine group is not unimodular: The reader can verify
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that the left and right Haar measures on Aff are respectively given by

dbda dbda

pr(b,a) = ——,  prb,a)= .
a la

Remark 1f you find yourself in the situation where you have a locally compact group
G but no obvious candidate for a Haar measure, then do not despair; there are several
ways of constructing the Haar measure on many locally compact groups. We refer the
reader to [39, Proposition 2.21] for a concrete example.

For a locally compact group G, we can form the spaces LP(G) for1 < p < oo
consisting of equivalence classes of measurable functions f : G — C such that

1 e = (/G |f(x)|PdML(X))p < 0.

The case p = oo also has the obvious extension from the familiar Euclidean case.
For locally compact groups that are not unimodular, some authors use the notation
L?(G, ) for clarity. However, we will always consider the left Haar measure, and
thus boldly use the abbreviated notation L” (G). The spaces L? (G) are Banach spaces
for all 1 < p < oco. Moreover, when p = 2 we even have a Hilbert space structure
given by the inner product

(. 8) 2 = /G FOF0) dur (x).

We have for each y € G the left-translation operator Ly given by Ly f(x) =
f(y~x) for x € G. The reason for the inverse is so that we have LyoL, =Ly, for
v, z € G. This detail is important when we study unitary representations in Sect. 2.2.
We define foreach y € G the right-translation operator Ry by the formula R, f (x) :=
Ay fxy D forx € G.

Definition 2.4 For f, g € L'(G) we can form the convolution between f and g given
by

F o g = fG FO8O™ ) dur ().

Notice that, in contrast with the usual convolution of functions on R”, the convolution
is generally not commutative. In fact, the convolution is commutative precisely when
the group operation on G is commutative [23, Theorem 1.6.4]. Moreover, it follows
from [39, Proposition 2.40] that the convolution inequality

I/ *6 gllLre) < 1 fliLe)llgliLrG)
is valid for all f € L'(G) and g € L?(G) with 1 < p < 0.
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Example 2.5 A group that will be of central importance for us is the (full) Heisenberg
group H". As a set we have H" = R"” x R" x R, while the group multiplication is
given by

(x,a),t) . (x/,a)/, t’) = (x +x o4+, t+1 + %(x/w —xw’)) .

Although what we have described is strictly speaking one group for each dimension
n, we collectively refer to these groups as the Heisenberg group for simplicity. In
Sect. 2.3 we will use a different realization of the Heisenberg group due to integrability
issues. The Heisenberg group is unimodular and the Haar measure on H" is the usual
Lebesgue measure on R>"*!. We refer the reader to [54] for an excellent exposition
on the ubiquity of the Heisenberg group in harmonic analysis.

Example 2.6 When working with locally compact groups, it is advantageous to have
both continuous and discrete examples in mind. Most discrete examples arise from
letting G be any countable group with the discrete topology. Let us briefly consider
G = Z to see what the convolution looks like in this case: The Haar measure on Z
is the counting measure. It is common to use the notation [”(Z) := L?(Z) for all
1 < p < oo. Per convention, we use sequence notation a = (ay),cz With a, := a(n)
for functions a : Z — C. The convolution between a, b € I'(Z) is precisely the
well-known Cauchy product given by

o0

(a x7 b), = Z amby_m.

m=—0oQ

2.2 Unitary Representations and the Wavelet Transform

We will now consider unitary representations of locally compact groups. This will give
rise to the (generalized) wavelet transform that we will examine closely. Ultimately,
we use the wavelet transform to construct the coorbit spaces in Chapter 3. Given a
Hilbert space ‘H we let U ({) denote the group of all unitary operators from H to itself.

Definition 2.7 Let G be a locally compact group and let H, be a Hilbert space. A

unitary representation of G on Hj is a group homomorphism 7 : G — U(Hy) such
that the transformation

Gox+— nm(x)g € Hy 2.1

is continuous for all g € H.

It turns out that the continuity requirement (2.1) is equivalent to the seemingly
weaker requirement that

Goxr— W f(x) = (f,m(x)g) 2.2)
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is a continuous function on G for all f, g € Hy. The function W, f is called the
(generalized) wavelet transform of f with respect to g. Hence W, f : G — C
is a continuous function by assumption whenever we have a unitary representation.
Moreover, we have that W, f is a bounded function on G since

WefOI=I(f,m) < IfIllmgll = 1fIlgl  xeG.

We often take the view that g € H; is fixed and consider the map W, : H; —
Cy(G) sending f to W, f, where Cj, (G) denotes the set of complex valued continuous
functions on G that are bounded. The wavelet transform has a central place in coorbit
theory, and much of the theory revolves around understanding subtle properties of this
transformation.

Example 2.8 An example of a unitary representation on any locally compact group G
is the left regular representation L : G — U(L*(G)) given by

LO)fx) =Ly f(x) = f(y'x),

forx,y € Gand f € L>(G). The fact that L y is unitary follows from the computation

Loy = [ Lo f @R s = [ 1767 0P dues o)

= /G |f@P dur@) = 1172

For the continuity assertion (2.1), we refer the reader to [39, Proposition 2.42].

Definition 2.9 Let 7 : G — U(H,) be a unitary representation of a locally compact
group G.

e We say that a closed subspace M C H is an invariant subspace if w(x)g € M
for all g € M and x € G. When this happens, the restriction | is a unitary
representation of G on M and we call w|zq : G — U(M) a subrepresentation
of .

e If there are no non-trivial (other than {0} and ) invariant subspaces of H, then
7 is called irreducible. Otherwise, we say that 7 is reducible.

For any unitary representation # : G — U(H) we have for f,g € H, and
x,y € G that

W, (m(30) )(x) = (T f. (1) g) = W (/) (v~ x) = Ly [W, ()] (x). (2.3)
The simple calculation (2.3) should not be underestimated; it shows that the wavelet
transform gives us a way to relate the representation 7 and the left regular represen-

tation L in Example 2.8. This notion is formalized in the following definition.
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Definition 2.10 Let G be a locally compact group and consider two unitary repre-
sentations 7 : G — U(Hy) and 7 : G — U(H,). We say that a unitary operator
T : Hy — 'H: is a (unitary) intertwiner between w and 1 if T or(x) = t(x) o T
for every x € G. If an intertwiner exists between 7 and 7, then 7 and t are called
equivalent.

If we are only considering one unitary representation 7 : G — U(Hy), then a
unitary operator T : H, — Hy satisfying T o w(x) = w(x) o T is simply referred
to as a (unitary) intertwiner of w. We leave it to the reader to verify that if 7 is
an irreducible unitary representation and 7 is an intertwiner between 7 and another
unitary representation t, then 7 is also irreducible.

It is tempting, but slightly premature, to reformulate (2.3) in the following way:
The wavelet transform W, is, for any choice of g € H, an intertwiner between 7 and
the left regular representation L given in Example 2.8. The problem is that in general
the wavelet transform W, f is not in L*(G) as the following example shows.

Example 2.11 Consider the left regular representation L : R — U(L?>(R)) on G = R.
Then for f, g € L>(R) and x € R the wavelet transform has the form
o0
Wef e = [ Fgtr =0y = 00,
—00
where g(x) := g(—x). Let us now pick

) = g(0) = F (e ol 7F) (0.

where F denotes the Fourier transform. Then one can check that f, g € L*>(R) and
Wef ¢ L*(R).

We will in Sect. 2.3 work with additional assumptions on the representation 7 and
the fixed vector g € Hy sothat W, f € L?(G) forall f € H,.In that case, a natural
question emerges that we will answer in Sect. 2.3:

Q Is W, an intertwiner between 7 and some subrepresentation of the left regular
representation L?

Example 2.12 Let us revisit the Heisenberg group H" in Example 2.5 and describe its
irreducible unitary representations. First of all, we have the family of one-dimensional
representations of H" given by

Xa.p(x, @, 1) 1= 2 FhO) 1), a,BeR”, (x,w,t) € H".

The central characters xq g are obviously irreducible, unitary, and non-equivalent.
We refer the reader to [47, Chapter 9.2] for an explanation of why x g are called the
central characters of H”".
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Let 7, and M, be respectively the translation operator and modulation operator
on L>(R") given by

Tof() = f(y—x), Muf():=ef(y), x,y,0eR". (24

These operators can be combined to form the Schridinger representation p : H" —
U(L?*(R™)) given by

P, , 1) f(y) = T M, £ (). 2.5)

It can be verified that the Schrodinger representation is an irreducible unitary represen-
tation of H", see [47, Theorem 9.2.1]. Moreover, one can generate new non-equivalent
irreducible unitary representations by dilating the Schrodinger representation

o(x,w, 1) == p(hx, w, At), A e R\ {0].

And that’s it! The Stone—von Neumann Theorem [47, Theorem 9.3.1] states that any
irreducible unitary representation of H" is equivalent to either g forsomec, 8 € R"
or p; for some A € R\ {0}.

The following result shows a fundamental relationship between irreducible unitary
representations and (not necessarily unitary) intertwiners.

Lemma 2.13 (Schur’sLemma) Letw : G — U(Hy ) be a unitary representation. Then
7 is irreducible if and only if every bounded linear map T : H, — Hy satisfying
Ton(x)=nx)oT forall x € G is a constant multiple of the identity Id_.

We refer the reader to [39, Theorem 3.5] for a proof of Schur’s Lemma. One of the
main uses of Schur’s Lemma is showing that certain irreducible representations are
impossible. The following result illustrates this.

Corollary2.14 Let m : G — U(Hy) be a unitary representation of a commutative
locally compact group G. If w is irreducible, then dim(H;) = 1.

Proof Notice that for all x, y € G we have

() (y) = (xy) = w(yx) = w(y)mw(x).

Thus 7 (x) € U(H) is in fact an intertwiner of . Hence Schur’s Lemma implies that
7w (x) = Cy - Idy, forall x € G, where Cy is a constant dependent on x. However, it
is now clear that any closed subspace of H is invariant. This can only be the case,
under the assumption of irreducibility, when H, does not have any closed subspaces
other than {0} and H. O

Let us try to construct an invariant subspace of a unitary representation 7 : G —
U(H). Fix a non-zero vector g € H, and form the subspace

Mg :=span{m(x)g : x € G} C Hy.
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Notice that M, is a closed subspace of 7, that is non-trivial since g = m(e)g € Mg,
where e € G is the identity element of G. Moreover, M, is clearly invariant under
the action of 7r. We call M, the cyclic subspace generated by g € H. If Mg = Hy,
then the vector g is said to be cyclic. If this is not the case, then the representation 7 is
reducible as M, would be a non-trivial invariant subspace. Conversely, assume that
every non-zero vector g € H is cyclic and let M C H, be a non-trivial invariant
subspace. Fix a non-zero g € M and notice that M, C M. Since g is cyclic this
forces M = Hj so that 7 is irreducible. We summarize this discussion for later
reference in the following proposition.

Proposition 2.15 A unitary representation w : G — U(Hy) is irreducible if and only
if every non-zero vector g € Hy is cyclic.

The following result shows that cyclic vectors are of central importance for the
wavelet transform.

Lemma 2.16 Consider a unitary representation w : G — U(Hy) and fix a non-zero
vector g € Hy. The wavelet transform Wy : Hy — Cp(G) is injective if and only if
g is a cyclic vector.

Proof Assume by contradiction that g is a cyclic vector and W, is not injective. Pick
f € Hx \ {0} such that W, f is the zero function on G, that is,

We f(x) = (f,m(x)g) =0,
forallx € G.Thisimplies that f is orthogonal to the cyclic subspace M. In particular,
My # Hy and we have a contradiction. Conversely, assume that g is not cyclic so

that M, # H. By picking f € ./\/lj; \ {0} we have that (f, w(x)g) = 0 for all
x € G.Hence W, : Hy — Cp(G) is not injective. O

2.3 Square Integrability and Orthogonality

We want to examine the wavelet transform W given in (2.2) in more detail. It is
instructive to look at a concrete example first to see what we might expect.

Example 2.17 Let us consider the Schrodinger representation p of the Heisenberg
group H" given in (2.5). The wavelet transform corresponding to this representation
is given by

W f(x,w,0) = (f, p(x, 0, 1)g) = e "1™ (f M, Tyg), (2.6)

for f, g € L>(R"). We can recognize the term ( f, M,, T, g) as the short-time Fourier
transform (STFT), which is usually denoted by

ng(x, w) = (f, M,Tyg) = /Rn f(t)me*b'ritw dt.
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Hence the wavelet transform for the Schrodinger representation is, up to a phase factor,
the short-time Fourier transform. The STFT satisfies two important properties:

Orthogonality For fi, f», g1, g2 € L*>(R") we have the orthogonality relation

(Ve f1. ngf2>L2(R2n) = (/f1, fz)Lz(Rn>(g1, gz)Lz(Rn)~ 2.7

Reconstruction Fix g € L?(R") with ||g|| 2@ = 1. Givenany f € L2(R™), we
can reconstruct f from V, f through the formula

(foh) 2@y = /Rz" Vo f (x, ©)Veh(x, ) dx do, (2.8)

forany h € L2(R").
The proofs can be found in [47, Theorem 3.2.1] and [47, Corollary 3.2.3], respectively.

We postpone discussing the reconstruction property (2.8) to Sect. 2.5. It turns out
that the STFT is a best case scenario; not all generalized wavelet transforms exhibit
such a simple orthogonality relation. From (2.7) we see that V,, : L2(R") — L2(R?*")
is an isometry for any normalized g € L?>(R"). Generalizing this observation, we
would like to answer the following question in this section:

Q Under which conditions on a general unitary representation 7 : G — U(H)
and a non-zero vector g € H,; can we ensure that the generalized wavelet transform
We : Hy — L?(G) is an isometry?

Notice that this question is precisely the same as the question we asked in Sect. 2.2
regarding whether WV, is an intertwiner between 7 and a subrepresentation of the left
regular representation L. Given a unitary representation w : G — U(H ) we first
of all need that W, is injective. By Proposition 2.15 and Lemma 2.16 this will be
satisfied for all non-zero vectors g € H, whenever 7 is irreducible. Henceforth we
will require that 7 is irreducible. Secondly, we need a condition on g to ensure that
W, f € L*(G) forall f € Hy.

Definition 2.18 Let 7 : G — U(H,) be an irreducible unitary representation. We say
that a non-zero vector g € Hy; is square integrable if Wy g € L*(G). Explicitly, we
require that

/G g, T(x)g)* dpr (x) < o0.

The representation 7 is said to be square integrable if there exists at least one square
integrable vector for 7.

Remark Pay attention to the fact that a square integrable representation i of a locally
compact group G is both unitary and irreducible by definition. These assumptions are
implicit whenever we say that a representation 7 : G — U (H) is square integrable.
A stronger requirement one could impose is for a non-zero vector g to be integrable in
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the sense that W, g € L 1(G). It follows from the inclusion L' (G)NL*®(G) C L*(G)
that every integrable vector is square integrable. We will return to this more stringent
condition in Chapter 3.

Example 2.19 An irreducible unitary representation is not automatically square inte-
grable: Consider the trivial representation w : G — U(C) given by 7 (x) = Id¢ for
all x € G. Then for z € C\ {0} we have

/G (2 7)) dpa (x) = /G (2 2) P du () = |21 1L (G).

Hence the trivial representation of G is square integrable if and only if uz (G) < oo.
This in turn happens if and only if G is compact by [23, Proposition 1.4.5]. Since the
wavelet transform is continuous, it is clear that any irreducible unitary representation
of a compact group is automatically square integrable. In fact, it is not terribly difficult
to show that a locally compact group G has a square integrable representation on a
finite dimensional vector space if and only if G is compact, see [65, Proposition 16.4].

Example 2.20 The wavelet transform (2.6) for the Schrodinger representation is not
square integrable. This is due to the last component {0} x {0} x R being only present
in the phase factors. Notice that p(x, w, 1) = Id;2gn) precisely whenever (x, w, 1) =
(0,0, n) for n € Z. Hence we can consider the quotient group H! := H"/ ker(p) =~
R" x R" x T with the Haar measure dx dw dt and the product

. s/ 0 ! . ! _ /
(x, o, eth) . (x/7 w/’ eanr) — (x +x/’ o +a)/, eZm(t-i—r )em(xw xw)) ,

for x, x’, w, @ € R" and 7, v’ € R. The group H” is called the reduced Heisenberg
group.

The Schrodinger representation p : H* — U (L%(R")) descends to an irreducible
unitary representation p, : H! — U (L2(R™)) given by

or ()C, o, eZm’r) f(y) — ezmre”iwaxwa(y), (x’ o, e27rir> c H?’

where T, and M,, are given in (2.4). Although sloppy, it is common to refer to p,
as the Schrodinger representation as well. In contrast with p, the representation p, is
square integrable: For any non-zero g € L>(R") we have

1
IWegll 72y = /O /R ) / WVeg, )P dxdwdt = Iglagny,  (29)

where we used the orthogonality relation (2.7) of the STFT. Hence the map W is an
isometry from L2(R") to L?(H") when glz2rny = 1.

At first glance, the condition that g € H is square integrable seems slightly weaker
than the requirement desired, namely that W, f € L%(G) for all f € H,. However,
it turns out that they are in fact equivalent.
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Proposition 2.21 Let m : G — U(Hy) be a square integrable representation with a
square integrable vector g € Hy. Then W, f € L%(G) forall f € Hy.

Proof Consider the subspace H, C H; consisting of those f € H such that W, f €
L?(G). Then 'H, is a non-trivial subspace since g € H,. The fact that H, is closed
in H,, is rather tricky, and we refer the reader to [72, Lemma 6.3] for the argument.
Notice that H, is an invariant subspace since (2.3) shows that

Wer () f = LWy f.  f €My y€G.

By irreducibility, we have H, = H; and the result follows. O

Remark There are several ways of characterizing square integrable representations
that we will not emphasize. One of the more elegant formulations [24, Theorem 2]
states that an irreducible unitary representation is square integrable precisely when it is
equivalent to a subrepresentation of the left regular representation. In the literature, e.g.
[41], such representations are sometimes referred to as discrete series representations.

The next result gives a complete answer to how the orthogonality relation (2.7)
generalizes to arbitrary square integrable representations.

Theorem 2.22 (Duflo-Moore Theorem) Let w : G — U(Hy ) be a square integrable
representation. There exists a unique self-adjoint, positive, densely defined operator
Cr : D(Cy) C Hy — Hy with a densely defined inverse such that:

e A non-zero element g € Hy is square integrable if and only if g € D(Cy).
e For g1, g» € D(Cy) and f1, f» € Hy we have the orthogonality relation

Wei f1. We, f2)12(6) = (f1: 201, (Cr 81, Cr g2) .- (2.10)

e The operator Cy is injective and satisfies the invariance relation

T(x)Cr =V AX)Crm(x), 2.11)
for all x € G where A denotes the modular function on G.

For readers interested in the details of this remarkable result, we recommend reading
the appendix in [51, Chapter 2.4] as well as the original paper [24]. We will refer to
the operator C;; in Theorem 2.22 as the Duflo-Moore operator corresponding to the
square integrable representation w : G — U(H). For our purposes, we record the
following consequence: The map W, : Hy — L?(G) is an isometry if and only if
g € Hj isinthe domain of the Duflo-Moore operator C and satisfies the admissibility
condition

ICrglln, = 1.

Anelement g € H,; that satisfies these conditions is said to be admissible. Notice that
any square integrable vector can be normalized to become admissible.
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Corollary 2.23 Let 7 : G — U(Hy) be a square integrable representation of a uni-
modular group G. Then the Duflo-Moore operator Cy is defined on the whole Hy
and satisfies C; = ¢y - 1dyy, for some c; > 0. In particular, every non-zero vector
g € Hy is square integrable.

Proof By looking at the invariance relation (2.11) when A(x) = 1 forall x € G, we
see that C;; is something akin to a densely defined intertwiner of the representation
7. This is only possible when C; = c; - Idyy, for some constant c¢; € C due to
a generalization of Schur’s Lemma, see [23, Proposition 12.2.2]. The constant ¢,
necessarily has to be positive since Cy is a positive operator. O

Remark We would like to point out that a converse to Corollary 2.23 is also valid:
If r : G — U(Hy) is a square integrable representation such that the Duflo-Moore
operator Cy; is defined on the whole of H, then the group G is necessarily unimodular.
To see this, one uses the invariance relation (2.11) together with the general fact
that the modular function A is either identically one or unbounded, see e.g. [39,
Proposition 2.24].

Example 2.24 1et us quickly verify that the Schrodinger representation p, does indeed
fit within this framework. We have previously mentioned that the reduced Heisenberg
group H” is unimodular. Hence Corollary 2.23 implies that the Duflo-Moore operator
C,, corresponding to p, is simply a constant multiple of the identity. We can gauge
from (2.9) that C;, = Id 2. Hence a function g € L2(R") is admissible for the
Schrodinger representation precisely when [|g|l ;2gn) = 1.

Example2.25 Let 7 : G — U(H,) be an irreducible unitary representation of a
compact group G. From Peter-Weyl theory, see e.g. [23, Theorem 7.3.2], it follows
that H, has to be finite dimensional. Moreover, any non-zero vector g € Hj is
square integrable since W, g is a continuous function on the compact space G. Thus
the Duflo-Moore operator satisfies C; = ¢ - Idy, for some ¢; > 0. What is the
constant ¢, ? It follows from [23, Example 12.2.7] that we have the elegant formula

1
Jdim(H,)

Example 2.26 Let us demonstrate how Theorem 2.22 can simplify concrete settings:
Consider two normalized vectors x, y € R” and a rotation R € SO (n). The quantity
[(y, Rx)|*> measures the square deviation from Rx and y being orthogonal. What is
the average of such orthogonality deviations when the normalized vectors x, y € R”
are fixed and R € SO (n) is allowed to vary? Unwinding the question, we are asking
for the value

/ (v, Rx)|* du(R), x,y eR", x| =yl =1
SO(n)

When n = 2 the answer should be 1/2 based on geometric considerations. This can be
verified by brute force since any R € SO (2) can be written as R = Ry for 6 € [0, 27)
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with

. (cos(8) —sin(9)
'_ <sin(0) cos(f) ) ’
Is there a more satisfactory approach that works for all n > 2? Look closely, there
is nothing up my sleeve: Consider the obvious representation 7 : SO (n) — U(R")
given by m(R)x := R - x for R € SO(n) and x € R". Then 7 is easily seen to be
square integrable. We can by Theorem 2.22 and Example 2.25 write

1
/ (v, Rx)[*di(R) = (y, y){Crx, Crx) = —. (2.12)
SO(n) n

In words, the formula above expresses the fact that in higher dimensions, two random
normalized vectors are more likely to be orthogonal to each other; there are simply
more ways to be orthogonal in higher dimensions.

We would like to end this section with an example of a square integrable repre-
sentation of a non-unimodular group. Although somewhat lengthy, we encourage the
fatigued reader to soldier on through the next example as most of the theory we have
developed is present in some way.

Example 2.27 1n this example we examine a unitary representation of the affine group
Aff given in Example 2.3. We have a family of dilation operators D, on L*(R) for
a € R* given by

1 X 2
Daf(x)i= —=f (Z> . felLl’*R). (2.13)

Together with the translation operator T}, in (2.4) we obtain a unitary representation
of the affine group 7 : Aff — U{/(L?*(R)) given by

7(b,a) f(x) i= Ty Dy f(x) = ﬁf (x ;b> . (b,a) € Aff.  (2.14)

It is common to refer to 7w as the wavelet representation. To see that a unitary represen-
tation is irreducible, it can often be a good strategy to jump straight to checking when
it is square integrable. For the wavelet representation, a formal computation using the
Fourier transform shows that

2
[ 1aewnr e = [1Foers [ FEO G s
Aff a R

R* |al
forany f, g € LZ(R). We refer the reader to [16, Example 2.48] for details of the

computation above. The right-hand side of (2.15) is always non-zero as long as we
choose f, g to be non-zero elements in L?(R). Hence g is a cyclic vector for all
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non-zero g € L*(R). This implies that the wavelet representation 7 is irreducible by
Proposition 2.15.

Which non-zero vectors g € L%(R) are square integrable? From (2.15), we see that
we need g to satisfy the condition

2
f mdu < 0. (2.16)

lal

The condition (2.16) is sometimes called the Calderon condition or the wavelet con-
dition. It is clear from (2.15) and the uniqueness statement of Theorem 2.22 that the
Duflo-Moore operator Cy is the Fourier multiplier given by

1
Crg=F"" (ﬁﬂgxa)) ,  §€D(Cy).

We know that g € D (Cy) is admissible if and only if ||Crgll 2w, = 1. Hence

g € L*(R) is admissible for the wavelet representation if and only if
F 2
[ a1, @.17)

|al

Elements in LZ(R) that satisfy (2.17) are sometimes called admissible wavelets in the
literature.
The wavelet transform for the wavelet representation is given explicitly by

Wef(b,a) = (f.TyDag) = /f( )g< > (2.18)

where (b,a) € Aff and f,g € L%(R). This is precisely the continuous wavelet
transform in wavelet analysis, see e.g. [21, Chapter 2]. In fact, this example is the
motivation for the terminology (generalized) wavelet transform. If g € L2(R) is an
admissible wavelet and fi, f» € Lz(R) are arbitrary, then Theorem 2.22 implies that
we have the orthogonality relation

/ We fi (b, )Wy o) & / A dx.

This example was popularized by I. Daubechies, A. Grossmann, and Y. Meyer in [22].

2.4 Reproducing Kernel Hilbert Spaces

In this section we define reproducing kernel Hilbert spaces and show that they naturally
occur in the setting of generalized wavelet transforms. We believe that reproducing
kernel Hilbert spaces can illuminate the theory and make results such as Theorem 2.32
in Sect. 2.5 more transparent. Although the theory of reproducing kernel Hilbert spaces
is often implicit in works on coorbit theory, it is seldom written out in detail.
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Definition 2.28 Let X be a set and let 7{ be a Hilbert space consisting of functions
f : X — C. We say that H is a reproducing kernel Hilbert space if the evaluation
functionals {E, },cx are bounded, where

Ex(f):=f(x), [feH
If the evaluation functionals { £, },cx are uniformly bounded, then we refer to H as a
uniform reproducing kernel Hilbert space.

Given a reproducing kernel Hilbert space H, we have by the Riesz representation
theorem that for each x € X there is a unique element k, € H such that

f@)={(f.ke), feH.

We refer to k, as the reproducing kernel for the point x € X. Since ky is again a
function on X, we can evaluate ky (y) for y € X and obtain ky (y) = (kx, ky) = ky(x).
The function K : X x X — C given by

K(x,y)= (ky9 ky)

is called the reproducing kernel for H.

Example 2.29 Consider the Paley—Wiener space PW 4 for a fixed A > 0 consisting
of functions f € L?(R) such that supp(F(f)) C [—A, A], where F denotes the
Fourier transform. This space plays a major role in sampling theory and classical
harmonic analysis. The elements in P W, are actually smooth functions since their
Fourier transforms have compact support. Moreover, the space P W4 is a Hilbert space
under the inner-product

(f 8 pwy =(f, 82w = (F(), f(g)>L2[—A,A]~

To see that the evaluation functionals { £ }xcr are bounded, we compute for f € PWyu
that

E(] = 1f 0] = |F7 F() )

A
= ‘ f F(f)(w)e*™ixe da)‘
—A

1

A 3 A 3
2
< (/_A F() )| dw) (/_A dw)

=V2A- | fllpw,.

Since A > 0 is fixed, we conclude that P W, is a uniform reproducing kernel Hilbert
space. To find the reproducing kernel K4 : R x R — C, notice that

A
J&) = (f k)pw, = /Af(f)(w)f(kx)(w)dw-
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In view of the Fourier inversion f = F~! (F(f)) it follows that F (k) (w) = e~ 27*®,
Hence

I x—y

A 1sinCrAx—y)) if x # y
Ka(x,y) =ke(y) = F (e i) (y) = . .
24, ifx=y

A useful feature of reproducing kernel Hilbert spaces is that convergence in norm
implies pointwise convergence. To see this, let f,,, f € H and assume || f;, — f|| — O.
Then

[fn () = fO = Ufa = fro k)l = I1fu = F1 lAx]l = 0. (2.19)

If ‘H in addition is a uniform reproducing kernel Hilbert space, then (2.19) shows that
convergence in norm implies uniform convergence. The reader can consult [63] for
more examples and properties of general reproducing kernel Hilbert spaces.

We now return to the setting of square integrable representations 7 : G — U(Hy)
to illustrate how they naturally give rise to reproducing kernel Hilbert spaces. Pick
an admissible vector g € Hy so that W, : H; — L%(G) is an isometry. We will
consider the image space

W, (Hz) C L*(G).

Notice that, since W, is an isometry, we have

Wi o W, = Idy, and Wy o W) = Idyy, (31,)- (2.20)

W, (Hx)

Proposition 2.30 Let 7 : G — U(Hy) be a square integrable representation with
an admissible vector g € Hy. The space W, (Hy) is a uniform reproducing kernel
Hilbert space with reproducing kernel

Kg(x,y) =W,eg(y 'x), x,yeG.

Proof The admissibility of g € H; ensures that W,(H) is a closed subspace of
L?(G). Thus W, (Hy) is a Hilbert space with the norm

IWe Fllw,(H) = W fll2y) = 1 fIH,  f € Ha.

For F' € Wy (Hy) and x € G we can thus write

F) =W, (WiF) @) = (Wi F. m(0g) = [F. W, ((0)g)).
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Since W, ((x)g) € W, (Hy) we have that W, (H;) is a reproducing kernel Hilbert
space. The reproducing kernel K, : G x G — C s given by

Ko(x,y) = (Wg (T(0)g) . Wy (m(x)8)) = (m(y)g, m(x)g)
= W, (m(»)g)(x) = Weg(y ™' x).

If E, is the evaluation functional for the point x € G then

IEx W, (o = Ikl (He) = We (&) W, () = IT ()8 NI, = 18I, -

It follows that W, (H ) is a uniform reproducing kernel Hilbert space since we have
fixed g. O

For a locally compact group G, we say that an element S € L2(G) is self-adjoint
convolution idempotent if S(x) = S(x~ 1) forall x € G and § xg S = S. It will
follow from Theorem 2.32 that the element W, g is self-adjoint convolution idempotent
whenever g € H, is admissible. A converse to this statement can be found in [41,
Proposition 2.38]. In [41, Theorem 2.45] the following generalization of a classical
result of Elke Wilczok [71] is derived.

Proposition 2.31 Let G be alocally compact group that is connected and non-compact.
Consider a square integrable representation w : G — U(Hy) and fix an admissible
vector g € Hy. If F € Wy(Hy) is supported on a set of finite Haar measure, then
F=0.

Remark The reader can consult [41, Chapter 2.5] for more interesting results regard-
ing self-adjoint convolution idempotents. We refer the reader to [3,45] for further
properties of the spaces We (Hy).

2.5 The Reproducing and Reconstruction Formulas

We end this chapter by providing two important results that tie up loose ends. Firstly, we
prove the reproducing formula in Theorem 2.32. This result has a simple interpretation
in the language of reproducing kernel Hilbert spaces. Secondly, we generalize the
reconstruction formula for the STFT in (2.8) to square integrable representations in
Corollary 2.34. Both of these results have short and elegant proofs that build on the
theory developed so far.

Theorem 2.32 (Reproducing Formula) Let 7w : G — U(H) be a square integrable
representation and fix an admissible vector g € Hy. Then Wy o W;f is the projection
from L%(G) to We (Hyz) and has the explicit form

We (W;F) = FxgWeg, FeL*G).
In particular, for F € Wq(Hyz) we have

F = F g W,g. 2.21)
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Proof The map W, : H, — L*(G) is an isometry since g € H,, is admissible. Hence
W o W;,“ is the projection from L2(G) to We(Hyz). Forx € Gand F € L%(G), an
initial computation using (2.3) shows that

We (WiF) (0) = V3 F.m(x)g) = (F, We(m(0)9)) = (F, LaWeg).

Since Weg(x) = ng(x’]) we end up with
(F, LxW,g) = / F)Weg(y™ %) dup () = (F %6 Weg) (x).
G

]

Remark The special case (2.21) motivates the name reproducing formula, as we can
reproduce the values of F € W, (H) by convolving F with W, g € W, (H ). Notice
that W, g is precisely the reproducing kernel k. for the identity element e € G. Hence
(2.21) shows that the reproducing kernel W g is a (right) identity for W, (H) with
respect to the convolution product. The fact that the wavelet transform W, for any
admissible g € H; is an isomorphism

Wy He 5 W(Ho) = |F € LX(G) « F = F 6 W]

is a special case of the correspondence principle in Theorem 3.20.

We now take a brief detour to weak integrals so that uninitiated readers will be less
squeamish when encountering expressions on the form (2.24). Let ® : G — H be a
continuous function from a locally compact group G to a Hilbert space H. We need
to make sense of

/G P (x)dpr(x) (2.22)

as an element in . This can be done under a mild additional requirement. Specifically,
we require that the linear functional on H given by

f'—>/G<<I>(X),f> dpr(x) (2.23)

is well-defined. The boundedness of the functional (2.23) is immediate. Hence the
Riesz representation theorem implies the existence of an element in 7 denoted by
(2.22) such that

</G‘1>(X)d,uL(X),f>=fG(<1>(X),f)d/LL(X),

for every f € H. We refer to the element (2.22) as the weak integral of the function
.
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Proposition 2.33 Let m : G — U(Hy) be a square integrable representation and fix
an admissible vector g € Hy. Then for F € L*(G) we can represent W; (F) as the
weak integral

W;(F)=/GF(X)7T(X)ngL(x)- (2.24)

Proof Consider ®F : G — H,, givenby ®F (x) := F(x)7(x)g for F € L*(G). Then
& satisfies the required properties for a weak integral due to the assumed continuity
of 7 and the estimate

' /G (Fr)m (g, f) dur ()

< /G (FCom()g. )] dug ()

:/G|F(x)|~|ng(x)|duL(X)

< IFllz2)We fll2 )
= 1Fll 2 f 1 »

for f € H,. The claim hence follows from the computation

W F, fn, ZLF(X)ng(x)dML(x)=L<F(x)ﬂ(x)g7 frdpp(x).

O

By combining Proposition 2.33 with (2.20) we obtain the following generalization
of the reconstruction formula for the STFT given in (2.8).

Corollary 2.34 (Reconstruction Formula) Let v : G — U(H ) be a square integrable
representation and fix an admissible vector g € Hy. We can represent any f € Hy
as the weak integral

f=W; Wef) = fG We f ) (x)g dpr (x). (2.25)
Hence we have for any h € Hy that
oy = fG We £ COWh() dpur (x).

Example 2.35 Consider the wavelet representation 7 : Aff — U (L*(R)) given in
Example 2.27 and let f, g € L?>(R) with g admissible. Then the reconstruction for-
mula (2.25) takes the form

dbda
a?

f=/ We f (b, a)TpDag
Aff

Birkhduser



Journal of Fourier Analysis and Applications (2022) 28:2 Page 23 of 61 2

3 In the Midst of Coorbit Spaces

In this chapter we will define the coorbit spaces and derive their basic properties. The
coorbit spaces consist of elements 7 such that the wavelet transform W, 7 has suitable
decay as a function on the group G. However, the elements n will not be picked from
‘Hx, but rather from a larger distributional space. The aim of the first two sections in
this chapter is to make this notion precise. Once this is ready, we will define coorbit
spaces without weights in Sect. 3.3. The weighted versions will be introduced in
Sect. 3.5 so that we can initially introduce coorbit spaces with minimal technicalities.
Although this is an uncommon approach in the literature, we believe that what this
approach lacks in efficiency is made up for by increased clarity. In Sect. 3.6 we show
that the coorbit spaces can be discretized in a way that reflects the geometry of the
underlying group. Finally, we discuss Banach frames and kernel theorems for coorbit
spaces respectively in Sects. 3.7 and 3.8.

Restriction to o-compact groups For some results in this chapter, we will need
that the locally compact group G is o-compact, that is, there exists a sequence of
compact sets (K,),en With K, C G such that U,enK,, = G. Rather than explicitly
requiring this at individual points in the exposition, we henceforth restrict our attention
to o-compact groups. Whenever we refer to a representation 7 : G — U(Hy), it is
from now on implicitly assumed that G is a o-compact locally compact group. We
remark that o -compactness for locally compact groups is a mild condition: Any second
countable or connected locally compact group is o -compact. Moreover, we can always
find a subgroup of a locally compact group that is open, closed, and o -compact by
[39, Proposition 2.4].

3.1 Integrable Representations and Test Vectors

In this section we restrict our attention to the case of integrable representations. An
irreducible unitary representation ¥ : G — U(Hy) is said to be integrable if there
exists an integrable vector, that is, if there is a non-zero vector g € H, such that
Weg € L'(G). Then 7 is automatically square integrable since Weg € L'(G) N
L®(G) C L*(G). We use the notation

A= [g € Hy : Wyg € LI(G)}.

The set A is sometimes called the analyzing vectors in the literature [33]. Notice that
A contains all the integrable vectors as well as the zero vector. From now on, we will
require that .4 is non-trivial, that is, we require that the representation 7 is integrable.

Given an integrable vector g € A \ {0}, we can define the corresponding space of
test vectors

Hy={f et : Wef e L'@)].
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The terminology “test vectors” is not standard, although it has been used in [1,68].
We will explain in Sect. 3.2 why this terminology is suitable. The space H}g can be
equipped with the norm

1l = We iy, f €My

To see that this is a norm and not just a seminorm we assume that W, fll 1) = 0
for some f € Hi,. Then W, f is zero almost everywhere as a function on G. This

implies that W, f represents the zero equivalence class in L*(G). The injectivity of
We i Hy — L?(G) ensured by Proposition 2.15 and Lemma 2.16 gives that f = 0
as an element in H, and hence also as an element in H i,.

Proposition3.1 Let 7 : G — U(Hy) be an integrable representation and fix an
integrable vector g € A\ {0}. The restriction R|H}z acts by isometries on the test
vectors ’H;. Furthermore, the test vectors H}g is dense in Hy.

Proof 1t is clear that Hi, is a linear subspace of H, . Moreover, for f € H;, andx € G
we have that

7 () fllrgy, = IWem ) fll iy = ILeWe flliay = Ve FliLie) = 1S 1l

Hence the closure of H;, in the norm on H is a non-trivial closed subspace of H
where 7 acts by isometries. The irreducibility of = implies that H;, is a dense subspace
of H. O
Remark 1tis tempting, in light of Proposition 2.21, to attempt to show that H ;, is closed

in Hy. Then Proposition 3.1 would imply that H;, = H,. However, this is generally
false and we will give a concrete counterexample in Example 3.7. In fact, it will be
clear from Sect. 3.3 that coorbit theory is not very interesting whenever Hé = Hx.

Proposition3.2 Let 1 : G — U(Hy) be an integrable representation. Then for
any integrable vector g € A\ {0} the test vectors H; form a Banach space that is
continuously embedded into Hy.

Proof We begin by showing that the space H i, is continuously embedded into H, . For
fe Hé we have by the orthogonality relation in (2.10) that

1C2 &I, 1 £ 15y, = e Fli7ag) = /G [(f. T @)@ IWe f ()] dpar.(x)

< [ 1t I gl DV ) e )
= 1 £ 11, 1817, IWe fll L1 (6)-
Since Cr g # 0 due to the injectivity of C,; we obtain

&1l

£, <
ICxgll3,

IWe fliLic) = Tllfllnl- (3.1
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Let us now show that H;, is complete. Assume that { f, },en is a Cauchy-sequence
in H;. By completeness of L!(G) the sequence W fun converges to an element F' €

L'(G). Moreover, we see from (3.1) that there exists f € H,, such that f, converges
to f in Hy . Hence by the continuity of W, as a transformation from H to L*(G), the
sequence W, f, converges to W, f in L?(G). Since any norm-convergent sequence
in L2(G) has a subsequence which is almost everywhere convergent, this forces F =
W f. Hence f € H;, and f, converges to f in H}),. O

The main goal of this section is to show in Theorem 3.5 that H é does not depend on
the choice of integrable vector g € A \ {0}. To do this, we first need two preliminary
results given in Lemmas 3.3 and 3.4 regarding the Duflo-Moore operator C, and
integrable vectors. These technicalities are somewhat neglected in the original sources
[33-35] on coorbit theory. To our knowledge, this was first put on rigorous footing in
[68, Lemma 2.4.5].

Lemma3.3 Let m : G — U(Hy) be an integrable representation and let D(Cy)
denote the domain of the Duflo—-Moore operator. Then

Cr(A) C D(Cy).

Proof Due to the self-adjointness of Cy it suffices to show that C,(g) € D(C}) for
all g € A. To show this, we prove that the linear functional on D(C5) given by

[r—=ACaf . Cag)H, = ([, C7Cr8)H,

is bounded. For g = 0 the boundedness clearly holds. For g # 0 the claim follows
from the orthogonality relation (2.10) since

KCr [, Ca8)H, | = IIgIIQiI(ng, Wrg 2l
< llgllz. Wegll i) Vs glle )
< (Ugl3, Ngllzgy) - £l -
O
Lemma3.4 Let w : G — U(Hy) be an integrable representation and fix two inte-

grable vectors g1, go € A\ {0}. Then there exists an integrable vector g € A \ {0}
such that

(Crg,Crgi) #0, i=1,2.
Proof If (Cr g1, Crg2) # 0, then we can simply take g = g1. The injectivity of the
Duflo-Moore operator C,, ensures that (C, g1, Crg1) # 0. Hence we are left with the

case (Crg1,Crg2) =0.
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We point out that Lemma 3.3 allows us to consider C; (C (g2)). Notice that neither
Cr g2 nor C(C(g2)) can be zero due to the injectivity of C;. Since the collection
{m(x)g1}xec 1s dense in H,, there exists some fixed xg € G such that

0 # (m(x0)g1, Cx (Cr(g2))) = (Cr(mw(x0)81), Cr g2).

The desired element we need will be of the form
g:=g1+e€- -m(xp)g1

for some € > 0 that is yet to be determined. First of all, we need to check that
g € A\ {0} for every € > 0. This follows from the calculation

ng = ngg] +€- (Wg]ﬂ'(XO)gl + Wn(xo)glgl) + €’ Wﬂ(xo)gln(XO)gl
=Wg 81t€ - (onyvglgl"i_A(xO_l)Rxo’1 glgl) +e* - A(x()_l)RxglLXOngglv

together with the fact that L'(G) is both left-invariant and right-invariant. To see that
g satisfies the required properties, we first have that

(Crg, Crg2) =€ (Cr(mw(x0)g1), Cng2) #0.

Secondly, by choosing € sufficiently small we also have that

(Cx8 Crg1) = [Cxgil* + € - (Cx(m(x0)g1), Crg1) #O.
]

We can now state the main result of this section regarding the independence of the
test vectors Hi, of the chosen integrable vector g € A \ {0}.

Theorem 3.5 Let w : G — U(Hy) be an integrable representation. Given two inte-

grable vectors g1, go € A\ {0} the spaces H;q and H;,z coincide with equivalent

normis.

Proof Assume first that the two integrable vectors g1,g2 € A \ {0} satisfy
(Crg1,Crg2) # 0. We pick f € Hg,l and want to show that f € H! , that is,

g2’
we need to check that W, f € L 1(G). A short calculation reveals that

(Wer f %6 Werg2) (1) = fG (Fa g (g2 7O x)g2) dpr ()

= /G<f,ﬂ(y)g1>(JT(x)gz,n(y)gz>duL(y)

= (ng f, Wgz (n(x)g2)>L2(G)
= (Cx g1, Crg2) W, f ().
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Since (Cr g1, Crg2) # 0 we can rearrange and integrate so that

Wy, f *G Wg2g2”L1(G) - ||Wg282||Ll(G)

We, flliLre) = -
2 fllL16) (Crgt, Crga)l {Cxg1, Cng2)

|||Wg1f||L1(G)~

Let us now tackle the case where g1, go € A\ {0} satisfy (Cr g1, Crg2) = 0.
Again, we assume that f € H;I and we want to show that f € H;z. We can by
Lemma 3.4 pick an integrable vector g € A \ {0} such that (Cr g, Crg;) # O for
i = 1, 2. Performing similar calculations as previously, we obtain

(ngf *G ng) *G Wgzg2 = (Crg1, Cng>ng *G Wgzgz
= (Cx 81, Cr8)(Crg. Crg2)We, f -

We have conceptually used g as a stepping stone between g; and g». After a rear-
rangement, we can integrate and obtain

[We, [ x6 Weg *c WgngHLl(G)
{Cr g1, Cx&)I{Cr g, Crg2)l
||ng||L1(G)||Wg282||L1(G)

< We, fll11(6)-
[(Crg1, Cx@)|[(Crg. Crga)] &7 'O

We, fllLicy =

It clear from the arguments above that the norms on Hi,l and Hi,2 are equivalent. O

Due to the independence of the integrable vector g € A \ {0} we will use the
notation

1._ 941

H :="H,.
It follows from Theorem 3.5 that A € H! since g € A is in Hi, by definition. For
unimodular groups, the following result shows that we do not need to keep track of

both H! and A.

Proposition 3.6 We have the equality A = H' whenn : G — U(Hy,) is an integrable
representation of a unimodular group G.

Proof We fix f € H! and want to show that f € A. The orthogonality relation in
(2.10) for x € G gives that

(Cﬂgv Cﬂg>7‘[ﬂ (fv n(x)f)Hn = (ngv Wg(”(x)f)>L2(G) .

We take the absolute value and use the intertwining property (2.3) to get

ICgll3y, (> () fim, | < /G (We f DWW f = p) dp(y).
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Notice that ||Crg||*> # 0 since Cy is injective. Hence we can use Fubini’s theorem
and the right-invariance of the measure u to obtain

IWr flizie) < Wf / We FONIWe £ dp(y) dpe(x)

= 1 d ) d
IICngII2 fG Wef DI (/G We f(x " y)Idu(x) ) duly)

1

= e ) e/ GTHld /W du(y).
||cng||2/c' s f Dl dp(x) GI o FO)] di(y)

The substitution x > x~!, which is valid since G is unimodular, shows that feA
since

||Wff\|Ll(G) ||Wg

[ wercol auco [ wero| ano < PR

1
TG gll2 = ICxgl?

O

Example 3.7 Let us consider the Schrodinger representation p, of the reduced Heisen-
berg group H. It follows from (2.6) that for any g € L2 (R") we have Weg e L ! (H})
precisely whenever Vg € L'(R?"), where V denotes the STFT and )V denotes the
wavelet transform corresponding to p,. Motivated by this observation, we will work
with the STFT instead of the wavelet transform.

It is straightforward to check that Vg € S (R*") ¢ L'(R?") whenever g € S(R")
is a smooth and rapidly decaying function, for details see [47, Theorem 11.2.5]. Hence
pr 1s an integrable representation. We can by Theorem 3.5 and Proposition 3.6 unam-
biguously define the Feichtinger algebra

M@®Y =H' = A= {f e L’R" : V,f e LI(RZ")].

We obtain from Proposition 3.2 that M (R") is a Banach space. The Feichtinger
algebra M'(R") was first introduced in [28] and gained more widespread attention
after its appearance in [47]. We refer the reader to [55] for a detailed and modern expo-
sition on the Feichtinger algebra. In particular, functions in M !(R) are automatically
continuous by [55, Corollary 4.2]. Since there are plenty of non-continuous' elements
in L%(R™), this gives an example where H' # H,.

3.2 Reservoirs and the Extended Wavelet Transform

Let 7 : G — U(H,) be an integrable representation and fix an integrable vector
g € A\ {0}. In light of the previous section, we might prematurely define the coorbit
space Co’; for1 < p <ocotobeall f € H; such that W, f € L?(G). However, this
naive definition suffers from the following problem: We will obtain Co’; = H, for

I More precisely, there is a dense subset D C L%(R") of equivalence classes of functions that does not
have a continuous representative.
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every p > 2. Only having interesting coorbit spaces in the range 1 < p < 2 shatters
any dream of good duality results; see Proposition 3.23 for what we are missing out on.
The problem is that the space H is too small to accommodate a fullrange 1 < p < oo
of interesting spaces. In this section, we will fix this problem by introducing a larger
reference space R and ensuring that everything works the way it should. After this is
done, we can confidently define the coorbit spaces properly in Sect. 3.3.

Definition 3.8 Let 7 : G — U(H,) be an integrable representation. The space of
bounded anti-linear functionals on ! is denoted by R and called the reservoir space.

Remark Implicitly, we have chosen an integrable vector g € A\{0} and are considering
H;, and the space R, of bounded anti-linear functionals on H;,. However, due to
Theorem 3.5 we omit g from the notation as it is of minor importance. The reservoir
space R will seldomly consist of functions in any reasonable sense. If we want to
understand when two elements ¢, Y € R are equal, we need to test them on all the
elements in 7. This is the motivation for calling ' the space of test vectors.

Lemma 3.9 There are natural continuous embeddings
H' — H, — R.

Proof If € Rand g € H', we denote the dual pairing ¢ (g) by (¢, g). We can embed
H, into R by letting f € H, acton g € H! by

F (@) = (f,8H,-

To see that the inclusion H,; < R is continuous we compute for f € H; that

I{f, &)l g,
I/l = sup <| sup T LISl
geroy 181w eervjo) 181l

The claim follows from the continuity of the inclusion ! < 7, in Proposition 3.2.
]

Given an integrable representation m : G — U(H,;) we can let w act on the
reservoir space R through duality. More precisely, for x € G and ¢ € R we define
7(x)¢ to be the element in R that acts on g € H! by

(T@)P)(Q) = (), g) == (¢, m(x " )g).

This gives an isometric action on R since

_ [(r(x)p, g)| (¢, m(xDg)|
[r()pllr = sup ——————— = sup ——————— = |¢llR,
geHI\{0} llgllx geH\{0} Iz (x~ ") gl

where we used that 77 acts by isometries on !, see Proposition 3.1. We can now
extend the wavelet transform to a duality pairing between ! and R as follows:
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Definition 3.10 Let 7 : G — U(H) be an integrable representation. For ¢ € R and
g € H! we define the (extended) wavelet transform to be the function on G given by

Wed(x) = (§, m(x)g) = ¢ (1(x)g) = (x(x N)(g), «x€G.

Notice that the definition of the extended wavelet transform is well-defined since
H! is invariant under 7. Some authors, e. g. [16], change the notation for the extended
wavelet transform to emphasize its domain, while other authors [68] do not change the
notation. We have opted for the latter and will strive to make it clear what the wavelet
transform acts on.

Proposition 3.11 Letw : G — U(Hy) be anintegrable representationandfixg € H'.
Then Wy (R) C Cp(G) and we have the intertwining property

W (m(x)p) = Ly [ng)] ) (3.2)

forx € Gand ¢ € R.

Proof ConsiderthemapI'g : G — H! given by g (x) := m(x)g forx € G. The map
I", is continuous by Proposition 3.1 and the continuity of the left regular representation
on L1(G) since

7w (x)g =t (Mgllnt = ILxWeg — LyWegllp1g), X,y €G.

Hence Wy¢ = ¢ o I, is also continuous. The boundedness of W, ¢ follows from the
straightforward computation

Wy (WiF) () = Vi F. 1080 = (F 46 Weg) ().

Finally, the intertwining property is verified by the computation

(We(m(0)9)) (») = (x(x)p, T(Ng) = (p, T(x ' y)g) = LWeb(y), x,y €G.

m}

Remark Although the (extended) wavelet transform )V, is well-defined forall g € H!,
we will for the most part work with the setting where g € A C H! for convenience.
Hence we will primarily state results for W, when g € A, even though they are
sometimes valid for g € H! as well.

Example 3.12 We defined in Example 3.7 the Feichtinger algebra M ! (R") as the test
vectors corresponding to the STFT. The reservoir space R in this setting will be
denoted by M*°(R").

Let us do a concrete calculation in the case n = 1: The Dirac Comb distribution
387, is defined formally as acting on functions f : R — C by

Sz(f) = Y f. (33)

n=—oo
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The expression (3.3) is obviously not always well defined. It follows from [55, Corol-
lary 5.9] that §7 € M*>°(R). For g(¢) := e e S(R) ¢ M'(R) and (x, w) € R? we
have the explicit computation

o
Vebz(x, @) = b7 (M- T-g) = 8, (7210 (=07) = 3 72mion =0’
n=—oo
An interesting observation is that
Ve7(0, w) = ¥ (z, 1),
where T = i/m, 7 = —w, and ¥ is the Jacobi theta function omnipresent in complex

analysis.

Lemma3.13 Letnw : G — U(Hy) be an integrable representation and fix g € A\ {0}.
Then linear combinations of elements of the form w(x)g for x € G constitute a dense
subspace of H" with respect to the norm on H'. Moreover, if g is admissible then we
have the reproducing formula

Wg¢ = Wg¢ *G ng,

forany ¢ € R.

Remark Originally the density statement in Lemma 3.13 was proved by showing a
minimality statement regarding the space H!. More precisely, it was shown in [33,
Corollary 4.8] that ! is the minimal 7-invariant Banach space inside H, where
7 acts isometrically and such that A N H! # {0}. A different proof of the density
statement in Lemma 3.13 was given in [68, Lemma 2.4.7] using Bochner integration.
The reader can also find a proof of the convolution statement in [68, Lemma 2.4.8],
again using Bochner integration. We have opted to not present a proof of Lemma 3.13
as it is mostly a technical tool.

Corollary3.14 Let w : G — U(Hy) be an integrable representation and fix an inte-
grable vector g € A\ {0}. Then W, : R — L*°(G) is injective.

Proof Assume that W,¢ (x) = ¢ (7 (x)g) = 0 for almost every x € G. The continuity
of W, ¢ implies that W, ¢ (x) = O for all x € G. Then Lemma 3.13 shows that ¢ = 0
since the span of the elements 77 (x)g for x € G is a dense subspace of H!. O

Notice that for an integrable vector g € A\ {0} we have by definition that W, :
H! — L'(G). Hence we can consider the adjoint map Wy + L2(G) — R defined
by the relation

(W;F» Nrr = (FWe ) 1o6).L1(G)

_ /G FW, 0 dpu (x) = fG F)(m()g. f)dur (x),
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for F € L®°(G) and f € H'. The adjoint map W; : L°°(G) — 'R can hence be
written weakly as

W;F =/ F(x)m(x)gdur(x), F € L*(G).
G

Proposition3.15 Let m : G — U(Hy) be an integrable representation and fix an
integrable vector g € A\ {0}. The adjoint map Wy : L>(G) — R satisfies

We (WiF) = F 6 Weg,  WiWeg) = o,

for F € L*°(G) and ¢ € R.

Proof For x € G a straightforward computation shows that

Wy (WiF) () = Vi F. 1080 = (F 46 Weg) (). (.4)

Finally, we need to show that the map W;f oW : R — R isin fact the identity map.
For ¢ € R we have from (3.4) and Lemma 3.13 that

Wg(W;(Wg¢)) = Wg¢ *G ng = Wg¢~

The injectivity of W, : R — L°(G) ensured by Corollary 3.14 shows that
WiWed) = ¢, :

The following result reveals a deep connection between the extended wavelet trans-
form and convolutions on the group G.

Theorem 3.16 Let m : G — U(Hy) be an integrable representation and fix an inte-
grable vector g € A\ {0}. A function F € L°°(G) satisfies the convolution relation
F = F g Wqg precisely when it can be written uniquely as F = W,¢ for some
¢ €R.

Proof If F € L*°(G) is such that F = F xg W,g, then Proposition 3.15 shows that
F = W,¢ where ¢ := W;,“F . Moreover, the description F = W,¢ is necessarily
unique due to the injectivity of W, : R — L°°(G). Conversely, assume that F €
L*>(G) satisfies F = W, ¢ for some ¢ € R. Then we have from Proposition 3.15
that

Wi F = W5 (W) = ¢.

Thus W, (W, F) = Wy¢ = F. The claim follows from a final application of Propo-
sition 3.15. o
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Remark We mentioned in Example 3.7 that the space S(R") is included in the
Feichtinger algebra M ! (R"). Hence we have by Lemma 3.9 the inclusions

S®R" c M'(R") C L*R") € M¥[®R") C S'®R"),

where the set of tempered distributions S’ (R") is the dual space of S(R"). We can
view the pair (MI(R"), MOO(R”)) as a refinement of the pair (S(IR"), S/(R”)). A
time-frequency analysis enthusiast might even use the word “improvement since the
Feichtinger algebra M (R") is, in contrast with S(R"), a Banach space.

3.3 Coorbit Spaces and the Correspondence Principle

Now that all the pieces are in place we will define the coorbit spaces. These are the
main objects of study for this survey, and we spend a decent amount of time deriving
their basic properties.

Definition3.17 Let 7 : G — U(Hz) be an integrable representation and fix an
integrable vector g € A\ {0}. The coorbit space Co7, consists of all elements in the
reservoir space ¢ € R such that W, ¢ decays fast enough to be in L”(G). Precisely,
we define for each 1 < p < oo the space

Cop:={peR : Wyp e LP(G)},
with the norm
I#llcor = WebllLr(G)-

Notice that the group G is implicitly present in the notation COZ through the rep-
resentation . The observant reader will have noticed that we did not mention the
integrable vector g € A \ {0} in the notation Co’;. This is because, as probably sus-
pected, the coorbit spaces Co’; do not depend on the choice of integrable vector, see
[33, Sect. 5.2] for details.

Example 3.18 Let G be a compact group and let 7 : G — U(H,) be an irreducible
representation. Then 7 is automatically integrable since any g € H, satisfies

/G IWeg ()l dpr(x) < [WegllLxG) - nL(G) < oo.

Here we used that the Haar measure on a compact group is finite, see [23, Propo-
sition 1.4.5]. Moreover, it is clear that every g € H;; satisfies Wy,g € LP(G) for
all 1 < p < oo. Thus all the coorbit spaces coincide, that is, Co’; = H, for all
1 < p < oo. Moreover, we mentioned in Example 2.25 that H, is necessarily
finite-dimensional whenever G is compact. Hence coorbit spaces are rather dull when

considering compact groups.
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