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Abstract
We investigate the wavelet spaces Wg(Hπ ) ⊂ L2(G) arising from square integrable
representations π : G → U(Hπ ) of a locally compact group G. We show that the
wavelet spaces are rigid in the sense that non-trivial intersection between them imposes
strong restrictions. Moreover, we use this to derive consequences for wavelet trans-
forms related to convexity and functions of positive type.Motivated by the reproducing
kernel Hilbert space structure of wavelet spaces we examine an interpolation problem.
In the setting of time–frequency analysis, this problem turns out to be equivalent to the
HRT-conjecture. Finally, we consider the problem of whether all the wavelet spaces
Wg(Hπ ) of a locally compact group G collectively exhaust the ambient space L2(G).
We show that the answer is affirmative for compact groups, while negative for the
reduced Heisenberg group.

Keywords Time–frequency analysis · Abstract harmonic analysic · Reproducing
kernel Hilbert spaces · Representation theory

1 Introduction

In recent years there have been several fruitful connections between time–frequency
analysis and abstract notions in both representation theory [14,23,24] and non-
commutative geometry [3,30,34,35]. This is mutually beneficial: The abstract machin-
ery can illuminate many results in time–frequency analysis. On the other hand, the
concrete setting of time–frequency analysis provides a useful playground for testing
general conjectures. Building on this viewpoint, we consider a generalization of the
Gabor spaces

Vg(L
2(Rn)) ⊂ L2(R2n),
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where Vg f is the short-time Fourier transform (STFT) of f ∈ L2(Rn) with respect to
a non-zero window function g ∈ L2(Rn). The Gabor spaces have appeared explicitly
in the time–frequency literature several times, e.g. [1,29], as well as being implic-
itly present in much of the literature concerning the STFT. We refer the reader to
[21, Proposition 3.4.1] where the connection between a certain Gabor space and the
Bargmann–Fock space in complex analysis is described. Despite their importance, it
is only recently that some of the basic properties of Gabor spaces have been examined
in [36]. Our goal is to derive results that are of interest both in the general setting and
in the case of Gabor spaces.

Let us briefly describe the general setup of the paper. Consider a square integrable
representation
π : G → U(Hπ ) of a locally compact group G on a Hilbert spaceHπ . We investigate
the wavelet spaces

Wg(Hπ ) ⊂ L2(G), Wg f (x) := 〈 f , π(x)g〉,

where g ∈ Hπ is an admissible vector and x ∈ G. The classical Gabor space
Vg(L2(Rn)) is up to a phase-factor thewavelet space corresponding to the Schrödinger
representation of the reduced Heisenberg groupHn

r . Wavelet spaces have appeared in
the theoryof coorbit spaces [15–17] andhavebeen independently studied in [20,25,41].
The following result illustrates the rigidity of wavelet spaces.

Theorem 1.1 Let π : G → U(Hπ ) and ρ : G → U(Hρ) be two square integrable
representations with admissible vectors g ∈ Hπ and h ∈ Hρ . Assume that the corre-
sponding wavelet spaces intersect non-trivially, that is,

Wg(Hπ ) ∩ Wh(Hρ) �= {0}.

ThenWg(Hπ ) = Wh(Hρ) and there exists a unitary intertwining operator T : Hπ →
Hρ satisfying T (g) = h.

A special case of Theorem 1.1 reduces to the result in [20, Theorem 4.2]. There
are also two other noteworthy consequences of Theorem 1.1 related to functions of
positive type and convexity.

Corollary 1.2 Let π : G → U(Hπ ) and ρ : G → U(Hρ) be square integrable
representations with admissible vectors g ∈ Hπ and h ∈ Hρ , respectively. Then
Wgg − Whh is never a non-zero function of positive type.

Corollary 1.3 Let π : G → U(Hπ ) be a square integrable representation of a uni-
modular group G with admissible vectors g, g1, g2 ∈ Hπ . Assume we can writeWgg
as a convex combination

Wgg = t · Wg1g1 + (1 − t) · Wg2g2,

for some t ∈ [0, 1]. Then t ∈ {0, 1} and we either have g = cg1 or g = cg2 for some
c ∈ T.
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It is well-known that any wavelet space carries the structure of a reproducing kernel
Hilbert space. This allows us to consider an interpolation problem for the wavelet
spaces as follows:Consider distinct points {x1, . . . , xm} ⊂ G andpossibly non-distinct
scalars λ1, . . . , λm ∈ C. We investigate whether there exists a function F ∈ Wg(Hπ )

that interpolates these points, that is, F(xi ) = λi for all i = 1, . . . ,m. When this
problem is always solvable the wavelet space Wg(Hπ ) is called fully interpolating.
This is a notion that has been extensively investigated in the reproducing kernel Hilbert
space literature, see [39, Chapter 3]. However, in the case of the wavelet spaces the
interpolation problem is to our knowledge only briefly mentioned in [25].

We show in Proposition 5.4 that no wavelet space corresponding to a compact or
abelian group can be fully interpolating. In the Gabor case, the interpolation problem
turns out to be equivalent to the HRT-conjecture regarding independence of time–
frequency shifts. We will review the HRT-conjecture in Sect. 6 and show how it
relates to the interpolation problem in Proposition 6.1. The partial results obtained for
the HRT-conjecture in the literature gives concrete examples of wavelet spaces that are
fully interpolating. On the other hand, the interpolation problem gives an alternative
view of theHRT-conjecture that allows the tools from reproducing kernel Hilbert space
theory to be applied.

A theme throughout the paper is to utilize the theory of reproducing kernel Hilbert
spaces to deduce properties of wavelet spaces. As an illustration of this, we will give a
short proof of the following folklore result showing that tensor products are naturally
incorporated in our setting.

Proposition 1.4 Let π : G → U(Hπ ) and ρ : H → U(Hρ) be two square integrable
representations with admissible vectors g ∈ Hπ and h ∈ Hρ . There is an isomorphism
of reproducing kernel Hilbert spaces

Wg⊗h(Hπ ⊗̂Hρ) 
 Wg(Hπ )⊗̂Wh(Hρ).

Finally, wewould like tomention a problemwhere we are only able to obtain partial
results. For a square integrable representation π : G → U(Hπ ) we letAπ denote the
equivalence classes of admissible vectors in Hπ modulo rotations by elements of T.
We let ̂Gs denote the equivalence classes of square integrable representations of G
and consider the possibly non-direct sum of vector spaces

⊕

π∈̂Gs

span
g∈Aπ

{Wg f : f ∈ Hπ

} ⊂ L2(G).

Is this sum dense in L2(G)when ̂Gs �= ∅? Phrased conceptually, we question whether
the wavelet spaces are collectively large enough to approximate any square integrable
function. We say that a locally compact group G is wavelet complete when

⊕

π∈̂Gs

span
g∈Aπ

{Wg f : f ∈ Hπ

} = L2(G).
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For compact groups the affirmative answer follows directly from Peter-Weyl theory.
Since commutative locally compact groups G only have ̂Gs �= ∅ whenever they are
compact, the conjecture is primarily interesting for non-abelian groups. The following
result shows that wavelet completeness is a non-trivial notion.

Proposition 1.5 The reduced Heisenberg groups Hn
r are not wavelet complete.

The structure of the paper is as follows: in Sect. 2 we review the nessesary material
regarding square integrable representations and reproducing kernelHilbert spaces. The
examination of wavelet spaces starts in Sect. 3 where we discuss basic properties. In
Sect. 4 we show the disjointedness of the wavelet spaces and the resulting convexity
consequence by utilizing abstract notions from the theory of functions of positive
type. The interpolation problem for the wavelet spaces will be taken up in Sect. 5. We
present the connection between the interpolation problem and the HRT-conjecture in
Sect. 6. Finally, we examine wavelet completeness in Sect. 7. The author would like
to thank Are Austad, Stine M. Berge, Franz Luef, Eirik Skrettingland, Keith Taylor,
Jordy Timo van Velthoven, and the anonymous referee for valuable input.

2 Preliminaries

We will begin by reviewing the two settings of interest, namely square integrable
representations of locally compact groups and reproducing kernel Hilbert spaces.
This is done to fix notation and terminology, as well as to make the rest of the paper
accessible to a broader audience. Background information for both topics can be found
respectively in the books [6,9,10,12,18,39].

2.1 Square integrable representations

Let G be a locally compact group, that is, a Hausdorff topological space that is also a
group such that the multiplication map (x, y) �→ xy and inversion map x �→ x−1 are
both continuous. Themost important result when it comes to locally compact groups is
the existence of a unique left-invariant Radon measure μL on G called the (left) Haar
measure onG.Whenever there is anymeasure-theoretic construction onG mentioned,
it will always be with respect to the left Haar measure. In particular, the integrability
spaces L p(G) for 1 ≤ p ≤ ∞ consist of measurable functions f : G → C such that

‖ f ‖L p(G) :=
(∫

G
| f (x)|p dμL(x)

) 1
p

< ∞.

Moreover, given f , g ∈ L1(G) the convolution between f and g is given by

( f ∗G g)(x) :=
∫

G
f (y)g(y−1x) dμL(y), x ∈ G.

We mention that the convolution product on L1(G) is commutative if and only if the
group G is abelian.
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Analogously to the left Haar measure, there exists a right Haar measure μR on G
that is right-invariant. How much the two measures μL and μR deviate is captured in
themodular function� onG. Its precise definition [18, Sect. 2.4] need not concern us.
However, it is worth knowing that μL = μR precisely when � is identically one. In
this case, we write μ := μL = μR and say that G is unimodular. Unimodular groups
are abundant as they include abelian groups, compact groups, and discrete groups.

Definition 2.1 Let U(Hπ ) denote the unitary operators on the Hilbert space Hπ . A
group homomorphism π : G → U(Hπ ) of a locally compact group G is said to be a
unitary representation if the function

Wg f (x) := 〈 f , π(x)g〉Hπ

is continuous onG for any fixed f , g ∈ Hπ .We refer toWg f as thewavelet transform
of f with respect to g.

The terminology for the wavelet transform is motivated by the classical continuous
wavelet transform in wavelet analysis, see e.g. [10]. It is clear thatWg f is a bounded
function on G since

|Wg f (x)| ≤ ‖ f ‖Hπ
‖π(x)g‖Hπ

= ‖ f ‖Hπ
‖g‖Hπ

, x ∈ G, f , g ∈ Hπ .

We will often fix g ∈ Hπ and consider the map Wg : Hπ → Cb(G) given by
Wg( f ) := Wg f , where Cb(G) denotes the continuous and bounded functions on
G. The spaces of primary interest for us will be Wg(Hπ ) as g varies. However, as it
stands now the conditions are to loose to deduce nice properties of the spacesWg(Hπ ).
Firstly, we will require that the representation π is irreducible, that is, there does not
exist any non-trivial closed subspaces M ⊂ Hπ such that π(x)η ∈ M for every
x ∈ G and η ∈ M. The main tool when working with irreducible representations is
Schur’s lemma [18, Chapter 3]:

Lemma 2.2 Let π : G → U(Hπ ) be a unitary representation of a locally compact
group G. Then π is irreducible if and only if every bounded linear operator T : Hπ →
Hπ satisfying T ◦ π(x) = π(x) ◦ T for all x ∈ G is in fact a constant multiple of the
identity transform IdHπ

.

Bounded linear operators T : Hπ → Hπ satisfying T ◦ π(x) = π(x) ◦ T for all
x ∈ G are called intertwining operators. The second requirement we need on π is one
of integrability.

Definition 2.3 Let π : G → U(Hπ ) be an irreducible unitary representation of a
locally compact group G. We say that a non-zero vector g ∈ Hπ is square integrable
ifWgg ∈ L2(G). Similarly, we say that π is square integrable if there exists a square
integrable vector inHπ .

If g ∈ Hπ is square integrable, then it actually follows that Wg f ∈ L2(G) for
all f ∈ Hπ . Moreover, the irreducibility of π implies with little effort that the map
Wg : Hπ → Cb(G) is one-to-one. An improvement of these remarks is the following
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result ofM.Duflo andC. C.Moore [13] showing that themap f �→ Wg f is essentially
an isometry.

Proposition 2.4 Let π : G → U(Hπ ) be a square integrable representation. There
exists a unique positive, densely defined operator Cπ : dom(Cπ ) ⊂ Hπ → Hπ with
a densely defined inverse such that

• A non-zero element g ∈ Hπ is square integrable if and only if g ∈ dom(Cπ ).
• For g1, g2 ∈ dom(Cπ ) and f1, f2 ∈ Hπ we have the orthogonality relation

〈Wg1 f1,Wg2 f2〉L2(G) = 〈 f1, f2〉Hπ
〈Cπg1,Cπg2〉Hπ

. (1)

• The operator Cπ is injective and satisfies the invariance relation

π(x)Cπ = √

�(x)Cππ(x),

for all x ∈ G where � denotes the modular function on G.

The operator Cπ is called the Duflo-Moore operator.

We can always normalize a square integrable vector g ∈ Hπ such that ‖Cπg‖Hπ
=

1. A square integrable vector g ∈ Hπ satisfying ‖Cπg‖Hπ
= 1 is said to be admis-

sible. This condition is mainly one of convenience, and we will primarily work with
admissible vectors. When G is a unimodular group, then any square integrable repre-
sentation π of G satisfies dom(Cπ ) = Hπ and Cπ = cπ · I dHπ

for some cπ > 0. In
this case, any non-zero vector g ∈ Hπ is square integrable and admissibility simply
reads ‖g‖Hπ

= c−1
π .

2.2 Reproducing kernel Hilbert spaces

AHilbert spaceH consisting of functions f : X → C on a set X does not need to relate
pointwise notions with the abstract Hilbert space structure. For instance, convergence
of a sequence fn → f in the norm onH does not need to imply pointwise convergence
fn(x) → f (x) for every x ∈ X . However, by imposing that the natural evaluation
functionals Ex ( f ) := f (x) for f ∈ H and fixed x ∈ X are bounded one obtains a
strong relation between pointwise notions and the Hilbert space structure.

Definition 2.5 A reproducing kernel Hilbert space is a Hilbert space H consisting of
functions f : X → C on a set X such that, for each x ∈ X , the evaluation functionals

Ex ( f ) := f (x), f ∈ H,

are bounded. If the collection {Ex }x∈X is uniformly bounded in norm we refer to H
as uniform.

Examples of well-known reproducing kernel Hilbert spaces are the Paley-Wiener
spaces PW[−A,A] for A > 0 and the Hardy space H2(D). We refer the reader to [39]
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for a detailed discussion of these examples, while [6] gives examples of reproducing
kernel Hilbert spaces related to stochastic processes.

There exists for each x ∈ X a function kx ∈ H such that Ex ( f ) = 〈 f , kx 〉H for
all f ∈ H. We refer to kx as the point kernel corresponding to x ∈ X . The function
K : X × X → C given by

K (x, y) := 〈ky, kx 〉H = ky(x)

is called the reproducing kernel of H. If fn → f in the norm on H, then

| fn(x) − f (x)| = |〈 fn − f , kx 〉| ≤ ‖ fn − f ‖H‖kx‖H = ‖ fn − f ‖H‖Ex‖H∗ → 0.
(2)

There are two general properties of reproducing kernel Hilbert spaces we will need in
the sequel:

• [39, Proposition 2.13] The reproducing kernel K of a reproducing kernel Hilbert
space is a kernel function: Given any finite set of points � := {x1, . . . , xm} ⊂ X ,
the matrix

K� := {K (xi , x j )}mi, j=1 (3)

is positive semi-definite, that is, the eigenvalues of K� are all non-negative.
• [39, Proposition 2.3 andTheorem2.4] The reproducing kernel uniquely determines
the resulting reproducing kernel Hilbert space: IfH1 andH2 are both reproducing
kernelHilbert spaces on a set X with the same reproducingkernel K , thenH1 = H2
and ‖ · ‖H1 = ‖ · ‖H2 . Conversely, if two reproducing kernel Hilbert spaces H1
andH2 coincide with equal norms, then the reproducing kernels for the spacesH1
and H2 are equal.

Remark 2.6 The reader should be aware that there is little consensus in the literature
regarding the terminology positive definite: Some authors, e.g. [39], use the term
positive definite for the case K� ≥ 0, while the majority will use the term positive
definite to indicate that K� > 0.Hencewe adopt the terminologypositive semi-definite
for K� ≥ 0 and strictly positive definite for K� > 0 to minimize the possibility for
any confusion.

It is important to note that the matrices K� in (3) do not need to be invertible. If all
the matrices K� are strictly positive definite, then we refer to the reproducing kernel
Hilbert space H as fully interpolating. The reason for this terminology will be clear
in Sect. 5.

3 Basic properties of wavelet spaces

In this section we will define wavelet spaces and give their basic properties. This
will connect the two topics reviewed in Sect. 2 as the wavelet spaces have a natural
reproducing kernel Hilbert space structure.
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Definition 3.1 Let π : G → U(Hπ ) be a square integrable representation of a locally
compact group G and fix an admissible vector g ∈ Hπ . The space

Wg(Hπ ) ⊂ L2(G)

is called the (generalized) wavelet space corresponding to the representation π and
the admissible vector g.

The terminology is againmotivated by the continuouswavelet transform in classical
wavelet analysis. Notice that the wavelet space Wg(Hπ ) is a Hilbert space since it is
a closed subspace of L2(G). Moreover, the norm Wg(Hπ ) inherits from L2(G) can
be written by using (1) as

‖Wg f ‖L2(G) = ‖ f ‖Hπ
, f ∈ Hπ .

An important property of the wavelet transform is that Wg is a unitary intertwining
operator between π and the left-regular representation on the spaceWg(Hπ ): Let Lx

denote the left translation on functions F ∈ Wg(Hπ ) by x ∈ G, that is, Lx F(y) =
F(x−1y) for y ∈ G. Then

Wg(π(y) f )(x) = 〈π(y) f , π(x)g〉 = 〈 f , π(y−1)π(x)g〉 = Wg( f )(y
−1x) = LyWg( f )(x),

for x, y ∈ G and f ∈ Hπ . This shows that the wavelet spaces are left-invariant
subspaces of L2(G).

Example 3.2 Consider the reduced Heisenberg group H
n
r := R

n × R
n × T with the

product

(

x, ω, e2π iτ
)

·
(

x ′, ω′, e2π iτ ′) :=
(

x + x ′, ω + ω′, e2π i(τ+τ ′)eπ i(x ′·ω−x ·ω′)
)

,

for x, x ′, ω, ω′ ∈ R
n and τ, τ ′ ∈ R. The groupHn

r is non-abelian and unimodular with
Haar measure equal to the usual product measure on Rn × R

n × T. The Schrödinger
representation ρr : Hn

r → U(L2(Rn)) is the irreducible unitary representation given
by

ρr

(

x, ω, e2π iτ
)

:= e2π iτ eπ i x ·ωTxMω,
(

x, ω, e2π iτ
)

∈ H
n
r , (4)

where Tx and Mω are the time-shift and frequency-shift operators on L2(Rn) given by

Tx f (y) := f (y − x), Mω f (y) := e2π iy·ω f (y), x, ω ∈ R
n .

A straightforward computation shows that the n-dimensional Gaussian function
gn(x) := e− π

2 x
2
for x ∈ R

n is square integrable for the Schrödinger representa-
tion. Hence the Duflo-Moore operator satisfies Cπ = cπ · I dL2(Rn) for some cπ > 0
sinceHn

r is unimodular. In fact, we have cπ = 1 due to [21, Theorem 3.2.1]. Thus any
normalized function in L2(Rn) is admissible.
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It is common in time–frequency analysis to consider the short-time Fourier trans-
form (STFT)

Vg f (x, ω) :=
∫

Rn
f (t)g(t − x)e−2π i t ·ω dt,

for (x, ω) ∈ R
2n and f , g ∈ L2(Rn). The STFT is related to the wavelet transform of

the reduced Heisenberg group by the formula

Wg f
(

x, ω, e2π iτ
)

= e−2π iτ eπ i x ·ωVg f (x, ω),
(

x, ω, e2π iτ
)

∈ H
n
r . (5)

The phase-factor e−2π iτ eπ i x ·ω in (5) is often irrelevant. Hence we will for the most
part consider the STFT and the Gabor spaces

Vg(L
2(Rn)) ⊂ L2(R2n),

for g ∈ L2(Rn) with ‖g‖L2(Rn) = 1.

3.1 Wavelet spaces as reproducing kernel Hilbert spaces

The fact that the wavelet spaces have a reproducing kernel Hilbert space structure
originally appeared in the influential paper [25]. Since then, it has been used in both
special cases [1] and in the general setting [40]. We provide the statement and brief
proof for completeness as our assumptions are slightly different than in [25] and
include minor additions.

Proposition 3.3 Let π : G → U(Hπ ) be a square integrable representation with
admissible vector g ∈ Hπ . The wavelet space Wg(Hπ ) is a uniform reproducing
kernel Hilbert space. The point kernel kx corresponding to x ∈ G is the function
kx = Wg(π(x)g), while the reproducing kernel K : G × G → C is given by

K (x, y) = 〈π(y)g, π(x)g〉 = Wg(π(y)g)(x), x, y ∈ G.

If fn → f in the norm onHπ , then

Wg fn(x) → Wg f (x) (6)

uniformly for all x ∈ G. Moreover, if h ∈ Hπ is another admissible vector then

g,h : Wg(Hπ ) → Wh(Hπ ) given by


g,h
(Wg f

) := Wh f , f ∈ Hπ , (7)

is an isomorphism of Hilbert spaces.
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Proof For F ∈ Wg(Hπ ) we have that F(x) = Wg

(

W∗
g F

)

(x) since Wg is an

isometry. Hence

F(x) = Wg

(

W∗
g F

)

(x) =
〈

W∗
g F, π(x)g

〉

= 〈

F,Wg (π(x)g)
〉

.

Since kx := Wg (π(x)g) ∈ Wg(Hπ ) the wavelet spaceWg(Hπ ) is a reproducing ker-
nel Hilbert space. The reproducing kernel K can be written by using the orthogonality
relations (1) as

K (x, y) = 〈ky, kx 〉 = 〈Wg (π(y)g) ,Wg (π(x)g)
〉 = 〈π(y)g, π(x)g〉.

If Ex is the evaluation functional at the point x ∈ G then

‖Ex‖ = ‖kx‖ = ‖Wg (π(x)g) ‖ = ‖π(x)g‖ = ‖g‖.

Thus Wg(Hπ ) is uniform since the admissible vector g ∈ Hπ is fixed. The compu-
tation (2) shows that the convergence in (6) is uniform. The map 
g,h is an isometry
since

‖Wh f ‖Wh(Hπ ) = ‖ f ‖Hπ
= ‖Wg f ‖Wg(Hπ ),

for all f ∈ Hπ . Finally, 
g,h is surjective as every element inWh(Hπ ) is of the form
Wh f for some f ∈ Hπ . ��
Remark 3.4 The fact that themap
g,h in (7) is an isomorphism shows that the wavelet
spaces corresponding to different admissible vectors can not be too different, e.g. their
dimensions coincide. However, the wavelet spaces are still different as reproducing
kernel Hilbert spaces since the map 
g,h does not in general preserve the reproducing
kernels.

The wavelet transform Wg : Hπ → L2(G) is an isometry when g ∈ Hπ is an
admissible vector. Hence the projection from L2(G) toWg(Hπ ) is given byWg ◦W∗

g .
A classical result in coorbit theory [16] known as the reproducing formula describes
this projection in terms of convolutions: The orthogonal projection from L2(G) to
Wg(Hπ ) is explicitly given by

Wg ◦ W∗
g (F) = F ∗G ke, F ∈ L2(G),

where ke(x) = Wgg(x) is the point kernel corresponding to the identity element
e ∈ G. The following basic result shows that the wavelet spaces automatically exhibit
integrability properties that are not shared by general subspaces of L2(G).

Proposition 3.5 Let π : G → U(Hπ ) be a square integrable representation and fix
an admissible vector g ∈ Hπ . The wavelet spaceWg(Hπ ) is continuously embedded
into L p(G) for all p ∈ [2,∞]. However, the wavelet spaceWg(Hπ ) is not in general
contianed in L1(G).
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Proof Notice that Wg(Hπ ) is continuously embedded in both L2(G) and L∞(G):
The first claim is obvious, while the second follows from the computation

‖F‖L∞(G) = sup
x∈G

|〈kx , F〉| ≤ sup
x∈G

‖kx‖Wg(Hπ )‖F‖Wg(Hπ ) = ‖g‖Hπ
‖F‖Wg(Hπ ),

for F ∈ Wg(Hπ ). This observation implies that Wg(Hπ ) is continuously embedded
into the intermediate spaces L p(G) for p ∈ (2,∞) as well since

‖F‖L p(G) =
(∫

G
|F(x)|p−2|F(x)|2 dμL (x)

) 1
p ≤ ‖F‖

p−2
p

L∞(G)‖F‖
2
p

Wg(Hπ )
≤ ‖g‖

p−2
p

Hπ
‖F‖Wg(Hπ ).

Counterexamples to the last statement can be found in the time–frequency setting
since the STFT satisfies Vgg ∈ L1(R2n) only when g is a continuous function on R

n

by [21, Proposition 12.1.4]. ��

Throughout the paper, we aim to emphasize how the reproducing kernel Hilbert
space structure of the wavelet spaces is paramount. As a first example, we have the
following existence result.

Proposition 3.6 Let π : G → U(Hπ ) be a square integrable representation of a
second countable locally compact group G and fix an admissible vector g ∈ Hπ .
There exists a countable set � ⊂ G such that the discrete set of vectors {π(λ)g}λ∈�

is complete inHπ .

Proof The second countability ofG is by [11,Theorem2] equivalent to the requirement
that L2(G) is separable. Whence the subspace Wg(Hπ ) ⊂ L2(G) is also separable.
By [6, Lemma 11] there exists a countable set � ⊂ G such that the collection of point
kernels kλ = Wg(π(λ)g) for λ ∈ � is dense in Wg(Hπ ). Hence for f ∈ Hπ the
criterion

〈Wg f ,Wg(π(λ)g)〉 = 0

for all λ ∈ � forces Wg f ≡ 0. The orthogonality relations (1) and the injectivity
of the Duflo-Moore operator implies that 〈 f , π(λ)g〉 = 0 for all λ ∈ � only when
f = 0. ��

Remark 3.7 The second countability condition in Proposition 3.6 is only a sufficient
requirement. In the proof of Proposition 3.6 we need that the wavelet spacesWg(Hπ )

are separable. This can happen when the ambient space L2(G) is not separable. In par-
ticular, the conclusion of Proposition 3.6 holds for all square integrable representations
corresponding to compact groups since the wavelet spaces are then finite-dimensional
by [18, Theorem 5.2].



18 Page 12 of 26 E. Berge

3.2 Tensor product of wavelet spaces

Our setting involves both square integrable representations of locally compact groups
as well as reproducing kernel Hilbert spaces. Both of these categories have a natural
notion of a tensor product. We will use reproducing kernel Hilbert space arguments
to show that these operations are compatible. Let us first briefly recall the different
notions or tensor products involved.

Consider two reproducing kernel Hilbert spaces Hi of functions on sets Xi with
reproducing kernels Ki : Xi × Xi → C for i = 1, 2. We can form the tensor product
H1 ⊗ H2 of Hilbert spaces in the usual way by requiring that

〈 f1 ⊗ f2, g1 ⊗ g2〉H1⊗H2 := 〈 f1, g1〉H1〈 f2, g2〉H2 ,

where f1, g1 ∈ H1 and f2, g2 ∈ H2. This extends to an inner-product on H1 ⊗ H2
that is not in general complete. The completion ofH1 ⊗H2 with this inner-product is
denoted byH1⊗̂H2 and called the tensor product of theHilbert spacesH1 andH2. Not
surprisingly, the tensor product H1⊗̂H2 can be identified with a reproducing kernel
Hilbert space on the set X1×X2 as follows:Any element u = ∑n

i=1 fi⊗gi ∈ H1⊗H2
can be identified with the function on X1 × X2 given by ũ(x, y) := ∑n

i=1 fi (x)gi (y).
This association extends to the completion H1⊗̂H2 and gives a well-defined linear
isometry betweenH1⊗̂H2 and the reproducing kernel Hilbert space on X1 × X2 with
reproducing kernel

K ((x1, y1), (x2, y2)) := K1(x1, x2)K2(y1, y2), x1, x2 ∈ X1, y1, y2 ∈ X2.

In the setting of unitary representations of locally compact groups we also have a
notion of a tensor product. Consider two unitary representations π : G → U(Hπ )

and ρ : H → U(Hρ) where G and H are locally compact groups. We can consider
the tensor product representation π ⊗ ρ given on elementary tensors f1 ⊗ f2 by

(π ⊗ ρ)(x, y)( f1 ⊗ f2) := π(x) f1 ⊗ ρ(y) f2,

for x ∈ G, y ∈ H , f1 ∈ Hπ , and f2 ∈ Hρ . This extends to arbitrary elements in
Hπ ⊗̂Hρ and hence defines a unitary representation π ⊗ ρ : G × H → U(Hπ ⊗̂Hρ).
The following result shows that the two tensor product constructionswe have described
are compatible in a natural way.

Proposition 3.8 Let π : G → U(Hπ ) and ρ : H → U(Hρ) be two square integrable
representations with admissible vectors g ∈ Hπ and h ∈ Hρ . There is an isomorphism
of reproducing kernel Hilbert spaces

Wg⊗h(Hπ ⊗̂Hρ) 
 Wg(Hπ )⊗̂Wh(Hρ).

Proof The tensor product representation π ⊗ ρ is irreducible by [18, Theorem 7.12].
Let us check that π ⊗ ρ is square integrable and that g ⊗ h ∈ Hπ ⊗̂Hρ is admissible.
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For x ∈ G and y ∈ H we have

∥

∥Wg⊗hg ⊗ h
∥

∥

2
L2(G×H)

=
∫

G×H
|〈g ⊗ h, (π ⊗ ρ)(x, y)(g ⊗ h)〉|2 dμG×H

L (x, y)

=
∫

G×H
|〈g, π(x)g〉〈h, ρ(y)h〉|2 dμG×H

L (x, y)

=
∫

G
|〈g, π(x)g〉|2 dμG

L (x)
∫

H
|〈h, ρ(y)h〉|2 dμH

L (y)

= ‖Wgg‖2L2(G)
‖Whh‖2L2(H)

< ∞.

Moreover, we see from the above computation that we have the pointwise equality

Wg⊗hg ⊗ h(x, y) = Wgg(x)Whh(y), x ∈ G, y ∈ H ,

as functions on G × H . Since the reproducing kernels for the spaceWg⊗h(Hπ ⊗̂Hρ)

and the spaceWg(Hπ )⊗̂Wh(Hρ) coincide, the result follows from the uniqueness of
reproducing kernels given in Sect. 2.2. ��

Example 3.9 Consider the Gabor space Vgn (L
2(Rn)) where gn(x) = e− π

2 x
2
is the

n-dimensional Gaussian function. Then Theorem 3.8 implies that

Vgn
(

L2(Rn)
)

⊗̂ Vgn
(

L2(Rn)
)


 Vgn⊗gn

(

L2(Rn) ⊗ L2(Rn)
)


 Vg2n
(

L2(R2n)
)

,

where g2n is the 2n-dimensional Gaussian function. Although this is folklore
knowledge, we emphasize the the simplicity of its derivation from the theory of
reproducing kernel Hilbert spaces. Many function spaces in complex analysis, e.g.
the Hardy spaces and Bergman spaces, satisfy similar tensorization rules [39, Propo-
sitions 5.13 and 5.14]. This is maybe not so surprising given the connection between
the Gabor space Vgn (L

2(Rn)) and complex analysis given in [21, Proposition 3.4.1].

4 Rigidity of wavelet spaces

In this section we will investigate how wavelet spaces associated with (potentially)
different representations are related. The main result in Theorem 4.2 have several
noteworthy consequences. The first consequence in Corollary 4.3 is a new proof of
one of the main results in [20, Theorem 4.2]. The other consequences, Corollaries 4.6
and 4.7, are new and illustrate the broad utility of Theorem 4.2. Let us first consider
an example of the general setting where things are greatly simplified.

Example 4.1 LetG be a locally compact group that is abelian and let π : G → U(Hπ )

be a square integrable representation. It follows from Schur’s Lemma 2.2 thatHπ 
 C

and U(Hπ ) 
 T. We make these identifications and view π as a map from G to T.
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What requirements do the square integrability impose? For z ∈ C\{0} we have that
∫

G
|〈z, π(x)z〉|2 dμ(x) = |z|4μ(G).

Hence π is square integrable if and only ifμ(G) < ∞. This is the case precisely when
G is compact. Since G is unimodular, it follows from Proposition 2.4 that the Duflo-
Moore operator Cπ is a positive constant multiple of the identity. That the constant
is equal to one can be seen by direct verification, or by an application of Peter-Weyl
theory [12, Example 12.2.7]. Hence a complex number z ∈ C is admissible if and
only if z ∈ T. The wavelet spacesWz(C) for z ∈ T are one-dimensional subspaces of
L2(G) that are spanned by the elementsWz z. Moreover, all the wavelet spacesWz(C)

coincide since Wz z = W11 for all z ∈ T.

Notice that everything said in Example 4.1 is independent of the representation
in question: In the abelian case, all the wavelet spaces coincide even when we have
two different representations π : G → T and ρ : G → T. On the other hand, we
always have that any two admissible vectors z, w ∈ T (regardless of the choice of
representations) are related by z = cw for some c ∈ T. These elementary remarks
motivate the following general result.

Theorem 4.2 Let π : G → U(Hπ ) and ρ : G → U(Hρ) be two square integrable
representations with admissible vectors g ∈ Hπ and h ∈ Hρ . Assume that the corre-
sponding wavelet spaces intersect non-trivially, that is,

Wg(Hπ ) ∩ Wh(Hρ) �= {0}.

ThenWg(Hπ ) = Wh(Hρ) and there exists a unitary intertwining operator T : Hπ →
Hρ satisfying T (g) = h.

Proof Notice that the subspace Wh(Hρ) ∩ Wg(Hπ ) ⊂ Wg(Hπ ) is invariant under
translations. Since π is irreducible andWg : Hπ → Wg(Hπ ) is a unitary intertwiner
we have thatWh(Hρ) = Wg(Hπ ). The norms onWg(Hπ ) = Wh(Hρ) both coincide
with the restriction of the L2(G)-norm. HenceWg(Hπ ) andWh(Hρ) are reproducing
kernel Hilbert spaces that coincide with equal norms. By the uniqueness statements
given in Sect. 2.2 the two reproducing kernels coincide

Wg(π(y)g)(x) = Wh(ρ(y)h)(x), x, y ∈ G.

Since Wg(π(y)g)(x) = LyWgg(x) and Wh(ρ(y)h)(x) = LyWhh(x), all the infor-
mation we need is contained in the equality

Wgg(x) = Whh(x), x ∈ G. (8)

To define the map T : Hπ → Hρ we first require that T (g) = h. Moreover, for T
to be an intertwining operator, we need that

T (π(x)g) = ρ(x)h, x ∈ G.
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Since π is irreducible the set Mg := span{π(x)g}x∈G is dense in Hπ . To see that
T extends to all of Hπ we will show that it is an isometry on the subspace Mg: For
x, y ∈ G we have

〈T (π(x)g), T (π(y)g)〉Hπ
= 〈ρ(x)h, ρ(y)h〉Hπ

= 〈h, ρ(x−1y)h〉Hπ
= Whh(x−1y).

Hence we obtain from (8) that

〈T (π(x)g), T (π(y)g)〉Hπ
= Wgg(x

−1y) = 〈π(x)g, π(y)g〉Hπ
.

The map T is surjective since span{ρ(x)h}x∈G is dense inHρ due to the irreducibility
of ρ. Hence T is a unitary map. For g ∈ Hπ we can write g = ∑∞

i=1 ciπ(xi )g for
constants ci ∈ C and elements xi ∈ G. Then for x ∈ G it follows that

T (π(x)g) = T

(

π(x)
∞
∑

i=1

ciπ(xi )g

)

=
∞
∑

i=1

ci T (π(xxi )g) =
∞
∑

i=1

ciρ(xxi )h = ρ(x)T (g).

��
Notice that Theorem 4.2 trivially implies that whenever π and ρ are not equivalent,

then we necessarily have trivial intersection

Wg(Hπ ) ∩ Wh(Hρ) = {0},

for any admissible vectors g ∈ Hπ and h ∈ Hρ . The first application of Theorem 4.2
is a new proof of the result [20, Theorem 4.2] which we state in Corollary 4.3 below.
This was originally proved by utilizing the orthogonality relations (1) for the wavelet
transform. Recently, the result has been re-proven in the Garbor case in [36, Lemma
3.3] with the use of quantum harmonic analysis. For us, the result follows immediately
from Theorem 4.2 together with Schur’s Lemma 2.2.

Corollary 4.3 Let π : G → U(Hπ ) be a square integrable representation with admis-
sible vectors g, h ∈ Hπ . If Wh(Hπ ) ∩ Wg(Hπ ) �= {0} then Wh(Hπ ) = Wg(Hπ )

and h = cg for some c ∈ T.

Remark 4.4 The orthogonality relations (1) shows that the wavelet spaces Wg(Hπ )

and Wh(Hπ ) are orthogonal if and only if

〈Cπg,Cπh〉 = 0,

where Cπ is the Duflo-Moore operator. When 〈Cπg,Cπh〉 �= 0 the wavelet spaces
still intersect trivially by Corollary 4.3 except in the case h = cg with c ∈ T.

Before moving on, we show how we can combine Corollary 4.3 with abstract
results regarding functions of positive type to deduce concrete results for the wavelet
transform.
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Definition 4.5 A function f : G → C on a locally compact group G is said to be a
function of (strictly) positive type if for any finite subset � := {x1, . . . , xm} ⊂ G, the
matrix

{

f
(

x−1
j xi

)}m

i, j=1

is (strictly positive definite) positive semi-definite.

Let π : G → U(Hπ ) be a square integrable representation with an admissible
vector g ∈ Hπ . Then Wgg is a function of positive type due to Proposition 3.3 and
the equality

Wgg(x
−1
j xi ) = Lx jWgg(xi ) = Wg(π(x j )g)(xi ), xi , x j ∈ G. (9)

Corollary 4.6 Let π : G → U(Hπ ) and ρ : G → U(Hρ) be square integrable
representations with admissible vectors g ∈ Hπ and h ∈ Hρ , respectively. Then
Wgg − Whh is never a non-zero function of positive type.

Proof Assume thatWgg−Whh is a function of positive type. Then Aronszajn’s inclu-
sion theorem [2, Theorem 1.7.1] in reproducing kernel Hilbert space theory implies
thatWh(Hρ) ⊂ Wg(Hπ ). Hence Theorem 4.2 implies thatWh(Hπ ) = Wg(Hπ ) and
that h = T (g) for some unitary intertwining operator T : Hπ → Hρ . This implies
for x ∈ G that

Wgg(x) − Whh(x) = 〈g, π(x)g〉 − 〈T (g), ρ(x)T (g)〉
= 〈g, π(x)g〉 − 〈T (g), T (π(x)g)〉
= 〈g, π(x)g〉 − 〈g, π(x)g〉
= 0.

��
For a locally compact group G we let Pc denote the functions f : G → C of

positive type such that f (e) = c ∈ C, where e is the identity element of G.

Corollary 4.7 Let π : G → U(Hπ ) be a square integrable representation of a uni-
modular group G with admissible vectors g, g1, g2 ∈ Hπ . Assume we can writeWgg
as a convex combination

Wgg = t · Wg1g1 + (1 − t) · Wg2g2,

for some t ∈ [0, 1]. Then t ∈ {0, 1} and we either have g = cg1 or g = cg2 for some
c ∈ T.

Proof Notice that Wgg ∈ Pc−1
π

(G) where Cπ = cπ · I dHπ
since

Wgg(e) = ‖g‖Hπ
= c−1

π .
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It follows from [5, Theorem C.5.2] that the functions Wgg are extreme points in the
bounded convex set Pc−1

π
(G). This implies that t = 0 or t = 1 and hence Wgg =

Wg1g1 or Wgg = Wg2g2. Although what is said so far is well known, we can now
apply Corollary 4.3 to conclude that g = cg1 or g = cg2 for some c ∈ T. ��
Example 4.8 Let us check that everything works out for the STFT. Assume for nor-
malized vectors g, g1, g2 ∈ L2(Rn) that

Vgg(x, ω) = t · Vg1g1(x, ω) + (1 − t) · Vg2g2(x, ω), (10)

for some t ∈ [0, 1] and for all (x, ω) ∈ R
2n . Then by multiplying with e−2π iτ eπ i x ·ω

on both sides we obtain

Wgg
(

x, ω, e2π iτ
)

= t · Wg1g1
(

x, ω, e2π iτ
)

+ (1 − t) · Wg2 g2
(

x, ω, e2π iτ
)

,
(

x, ω, e2π iτ
)

∈ H
n
r .

We can now apply Corollary 4.7 to see that g = cg1 or g = cg2 for some c ∈ T.
In this specialized setting we describe an alternative proof using quantum mechan-

ical reasoning. Assume again that (10) holds for some t ∈ [0, 1]. For g ∈ L2(Rn) the
Wigner distribution Wg in quantum mechanics can be defined through the STFT by
the formula

Wg(x, ω) := 2ne4π i x ·ωVI(g)g(2x, 2ω), I(g)(x) := g(−x).

Hence (10) is equivalent to

Wg(x, ω) = t · Wg1(x, ω) + (1 − t) · Wg2(x, ω),

for all (x, ω) ∈ R
2n . One can now use the Weyl-quantization to go between functions

onR2n and operators on L2(Rn). In this correspondence the Wigner distributionsWg
for g ∈ L2(Rn) correspond to the positive rank-one operators g ⊗ g given by

(g ⊗ g)( f ) := 〈 f , g〉 · g, f ∈ L2(Rn).

Hence we obtain

g ⊗ g = t · g1 ⊗ g1 + (1 − t) · g2 ⊗ g2.

One can easily see by evaluation that this forces the same conclusion, namely that
g = cg1 or g = cg2 for some c ∈ T.

5 Interpolation in wavelet spaces

Wehave seen onmultiple occasions that the reproducing kernel Hilbert space structure
of the wavelet spaces is immensely useful. We now focus in on that structure by
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considering a non-trivial interpolation problem. In this section we will describe the
interpolation problem and show that the answer is not always affirmative. As we will
see in the Sect. 6, the interpolation problem turns out to be equivalent to the HRT-
conjecture for the Gabor spaces.

Definition 5.1 Let X be a set and consider the distinct points � := {x1, . . . , xm} ⊂ X
and possibly non-distinct scalars λ1, . . . , λm ∈ C. We say that a function F : X → C

interpolates these points whenever F(xi ) = λi for all i = 1, . . . ,m. The function F
is called an interpolating function.

The question in interpolation theory iswhetherwe can find an interpolating function
with additional requirements. Typically, we have a Hilbert space H of functions on
X and ask whether we can choose F ∈ H as an interpolating function. When H is a
reproducing Hilbert space, we can give an explicit criterion through the reproducing
kernel. We state this result for the case we have investigated.

Proposition 5.2 Let π : G → U(Hπ ) be a square integrable representation and fix
an admissible vector g ∈ Hπ . Consider distinct points � := {x1, . . . , xm} ∈ G and
possibly non-distinct scalars λ1, . . . , λm ∈ C. There exists an interpolating function
F ∈ Wg(Hπ ) if and only if the vector (λ1, . . . , λm)T ∈ C

m is in the image of the
m × m matrix

K� := {

K (xi , x j )
}m
i, j=1 ,

where K is the reproducing kernel for the wavelet space Wg(Hπ ).

The proof of Proposition 5.2 follows from Proposition 3.3 together with [39,
Theorem 3.4]. We remarked in Sect. 2.2 that the matrices K� are always positive
semi-definite. The interpolation problem in Proposition 5.2 have a unique solution for
all � = {x1, . . . , xm} ⊂ G and λ1, . . . , λm ∈ C if and only if the matrices K� are all
strictly positive definite. This is the case if and only if the functionWgg is a function
of strictly positive type. This is the motivation for the terminology fully interpolating
given in Sect. 2.2. Notice that for the point kernels kx1, . . . , kxm we can write

m
∑

i, j=1

αiα j kx j (xi ) =
〈

m
∑

j=1

α j kx j ,
m

∑

i=1

αi kxi

〉

=
∥

∥

∥

∥

∥

m
∑

i=1

αi kxi

∥

∥

∥

∥

∥

2

≥ 0,

for α1, . . . , αm ∈ C. HenceWg(Hπ ) is fully interpolating precisely when there are no
non-trivial linear combinations between the point kernels kx1, . . . , kxm for any points
x1, . . . , xm ∈ G.

Remark 5.3 It is straightforward to check that Proposition 5.2 is also valid for theGabor
spaces Vg(L2(Rn)). In that case, the point kernel corresponding to (x, ω) ∈ R

2n is
k(x,ω) = Vg(MωTxg). Notice however that we get the extra phase-factor

Vg(MωTxg)(s, t) = e−2π i x ·(t−ω)Vgg(s − x, t − ω), (s, t) ∈ R
2n, (11)

in contrast with (9).
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When G = {e} the only wavelet space associated with G is the one-dimensional
space L2(G). This is fully interpolating for trivial reasons. We exclude this case in
future examples and refer to a locally compact group G as non-trivial when G has
more than one element. The next result shows that a large class of wavelet spaces are
not fully interpolating.

Proposition 5.4 Let G be a non-trivial locally compact group. If G is either abelian
or compact then no wavelet space associated to G is fully interpolating.

Proof Anabelian locally compact groupG possesses square integrable representations
if and only if the group is compact. In this case, the representation theory of compact
groups shows that any irreducible unitary representation of G is finite-dimensional
[18, Theorem 5.2]. Any irreducible unitary representation of G is also automatically
square integrable due to the compactness of G. If G is an infinite group, then we can
always pick � = {x1, . . . , xm} ⊂ G to have larger cardinality than the dimension of
the representation considered. Then there is no way that kx1, . . . , kxm can be linearly
independent. If G is a finite group, then the same argument goes through unless G
have an irreducible representation whose dimension is greater or equal to the order
of the group G. This is not possible since the class equation in finite representation
theory gives that

|G| =
∑

[π ]
dim(Hπ )2,

where the sum runs over all equivalence classes of irreducible representation π of G.
Since we have excluded G from being the trivial group, the result follows. ��

Example 5.5 For the n-dimensional Gaussian function gn(x) := e− π
2 x

2
we will show

that the Gabor space Vgn (L
2(Rn)) is fully interpolating. A straightforward computa-

tion reveals that

Vgn gn(x, ω) = e−π i x ·ωe− π
4 x

2
e−πω2

, (x, ω) ∈ R
2n .

Assume by contradiction that there is a linear dependence between the point kernels
k(xk ,ωk ) corresponding to distinct points (xk, ωk) ∈ R

2n for k = 1, . . . ,m. The linear
dependence explicitly gives

m
∑

k=1

αke
2π i xk ·ωk e−2π i xk ·ωe−π i(x−xk )·(ω−ωk )e− π

4 (x−xk )2e−π(ω−ωk )
2 = 0,

where α1, . . . , αn ∈ C are not all zero. By setting βk = αkeπ i xk ·ωk e− π
4 x

2
k e−πω2

k we
obtain

e−π i x ·ωe− π
4 x

2
e−πω2

m
∑

k=1

βke
−2π i xk ·ωeπ i(x ·ωk+ω·xk)e

π
2 x ·xk e2πω·ωk = 0.
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Fig. 1 The real part of the interpolating function F(x, ω) in Example 5.6

We can divide by the non-zero function e−π i x ·ωe− π
4 x

2
e−πω2

and set ω = 0 to get the
simplified equation

m
∑

k=1

βke
x ·( π

2 xk+iωk) = 0. (12)

Notice that the coefficients βk satisfy βk = 0 if and only if αk = 0. The equation
(12) contradicts the independence of the exponential functions x �→ ex ·λk , see e.g. [7,
Lemma 13.1], since λk = π

2 xk + iωk are distinct complex numbers.

Example 5.6 To illustrate that the Gabor space Vg1(L
2(R)) ⊂ L2(R2) is fully inter-

polating we consider the points x1 = (0, 0), x2 = (1, 0), and x3 = (0, 1) in R2 along
with λ1 = λ2 = λ3 = 1. Then there exists F ∈ Vg1(L

2(R)) such that F(xi ) = λi
for i = 1, 2, 3. Moreover, the function F ∈ Vg1(L

2(R)) with minimal norm that
interpolates these points will be on the form

F(x, ω) = α1Vg1g1(x, ω) + α2Vg1g1(x − 1, ω) + α2Vg1g1(x, ω − 1),

for some α1, α2, α3 ∈ C by [39, Theorem 3.4]. It follows by straightforward compu-
tations that α1 
 0.6218, α2 
 0.7360, and α3 
 0.9876.

Remark 5.7 The function Vgn gn onR
2n is not strictly positive definite even though the

Gabor space Vgn (L
2(Rn)) is fully interpolating. This discrepancy is due to the extra

phase-factor in (11). In fact, the function Vgg(x, ω) is not even positive definite: If this
was the case, then the Fourier inverse F−1(Vgg) would be a positive function on R2n

byBochner’s Theorem [39, Theorem 10.4]. However, the functionF−1(Vgg)(x, ω) =
e−π(x2+ω2)e2π i x ·ω is clearly not even real valued.



Interpolation in wavelet spaces and the HRT-conjecture Page 21 of 26 18

6 Connection with the HRT-conjecture

The question of whether the Gabor spaces are fully interpolating turns out to be
equivalent to the infamous HRT-conjecture. Recall that a subset A ⊂ H of a vector
space H is said to be linearly independent if every finite subset F ⊂ A is linearly
independent in the classical sense. The following open conjecture reveals how little is
understood about time–frequency shifts.

Conjecture (HRT) Is the set

{MωTxg}(x,ω)∈R2n

linearly independent in L2(Rn) for all non-zero g ∈ L2(Rn)?

The HRT-conjecture was originally posed back in 1996 by C. Heil, J. Ramanathan,
and P. Topiwala in the paper [27]. There have been many significant developments on
the conjecture during the years, where techniques from von-Naumann algebras [33],
spectral theory [4], ergodic theory [26], and representation theory of the Heisenberg
groups [8] have been used. We refer the reader to the introduction of the paper [38]
for a reasonably extensive list of contributions to the HRT conjecture. Moreover, we
recommend the survey papers [26,28] on the HRT-conjecture written by one of its
founders. The following result shows that the HRT-conjecture can be reformulated to
a problem regarding reproducing kernel Hilbert spaces.

Proposition 6.1 The HRT-conjecture is equivalent to the statement that the Gabor
spaces are fully interpolating.

Proof Let us fix elements (x1, ω1), . . . , (xm, ωm) ∈ R
2n and consider the collection

{Mωk Txk g}mk=1. (13)

We henceforth assume that ‖g‖L2(Rn) = 1 since normalizing g ∈ L2(Rn) does not
change whether the collection (13) is linearly independent.

Assume first that the collection (13) is linearly dependent, that is, there exist
α1, . . . , αm ∈ C not all zero such that

m
∑

k=1

αkMωk Txk g = 0.

We can take the inner-product with the function MωTxg to obtain

m
∑

k=1

αk
〈

Mωk Txk g, MωTxg
〉 =

m
∑

k=1

αkVg(Mωk Txk g)(x, ω) =
m

∑

k=1

αkk(xk ,ωk )(x, ω) = 0.

This gives a linear dependencebetween k(x1,ω1), . . . , k(xm ,ωm ), showing thatVg(L2(Rn))

is not fully interpolating.
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Conversely, assume that Vg(L2(Rn)) is not fully interpolating. Then there exists
a linear dependence between the point kernels k(x1,ω1), . . . , k(xm ,ωm ) for some points
(x1, ω1), . . . , (xm, ωm) ∈ R

2n . Retracing the steps we took previously we conclude
that

m
∑

k=1

αk
〈

Mωk Txk g, MωTxg
〉 = 0,

where α1, . . . , αm ∈ C are not all zero. The proof of Proposition 3.6 shows that the
collection {MωTxg}(x,ω)∈R2n is complete in L2(Rn). This implies the linear depen-
dence

m
∑

k=1

αkMωk Txk g = 0.

��
Proposition 6.1 allows us to use the partial results available on theHRT-conjecture in

the literature to deduce that certain Gabor spaces are fully interpolating. In particular,
it was known from the beginning [27, Proposition 4] that the HRT-conjecture is true for
then-dimensionalGaussian function. InExample 5.5weproved, in light of Proposition
6.1, the same thing by brute-force calculations with the short-time Fourier transform.
We can use [27, Proposition 4] and Proposition 6.1 to conclude that the Gabor spaces
Vg(L2(Rn)) are fully interpolating whenever g is a Hermite function. It was shown
in [27, Theorem 1] that the collection in (13) is linearly independent when m ≤ 3. In
light of Proposition 6.1, this implies the following consequence for interpolation in
Garbor spaces:

Corollary 6.2 Consider three arbitrary points (x1, ω1), (x2, ω2), (x3, ω3) ∈ R
2n, three

arbitrary values λ1, λ2, λ3 ∈ C, and any normalized g ∈ L2(Rn). One can always
find f ∈ L2(Rn) such that

Vg f (xi , ωi ) = λi , i = 1, 2, 3.

Remark 6.3 A careful read of the proof of Proposition 6.1 reveals that the statement
is true in the generalized setting. More precisely, let π : G → U(Hπ ) be a square
integrable representation with an admissible vector g ∈ Hπ . Then the collection
{π(x)g}x∈G is linearly independent inHπ if and only if the wavelet spaceWg(Hπ ) ⊂
L2(G) is fully interpolating. Hence the problemofwhether thewavelet spaceWg(Hπ )

is fully interpolating is a convenient generalization of the HRT-conjecture. In this
reformulation, Proposition 5.4 states that the generalized HRT-conjecture is false for
compact or abelian groups. Moreover, the generalized HRT-conjecture is also false in
the classical wavelet setting [28] as a result of the scaling relation in wavelet theory.
Another generalization of the HRT-conjecture is considered in [32].

Recently there has been an effort to prove the HRT-conjecture for widely spaced
index sets [31,37]. In particular, it is showed in [31,Theorem1] that theHRT-conjecture
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holds for g ∈ C0(R
n) and points � := {(x1, ω1), . . . , (xm, ωm))} ⊂ R

2n that are
widely spaced apart relative to the decay of g. Through our approach, we can deduce
a similar result without the assumption that g ∈ C0(R

n) since the STFT satisfies
Vgg ∈ C0(R

2n) for all g ∈ L2(Rn).

Corollary 6.4 Let g ∈ L2(Rn) be a non-zero function. There exists R > 0 (depending
only on g and m ∈ N) such that for any collection of points (x1, ω1), . . . , (xm, ωm) ∈
R
2n with

min
i �= j

√

(x j − xi )2 + (ω j − ωi )2 ≥ R, i, j = 1, . . . ,m, (14)

the time–frequency shifts {Mωk Txk g}mk=1 are linearly independent.

Proof We assume that ‖g‖L2(Rn) = 1 as we can normalize gwithout altering the linear
independence. The claim is equivalent, by Proposition 6.1, to the fact that the matrix

�g := {〈

Vg(Mω j Tx j g), Vg(Mωi Txi g)
〉}m
i, j=1 = {

e−2π i x j ·(ωi−ω j )Vgg(xi − x j , ωi − ω j )
}m
i, j=1

is invertible. Notice that the diagonal terms of �g are all 1’s. Since Vgg is continuous
and vanishes at infinity, we can find R > 0 such that

m
∑

j=1

|Vgg(xi − x j , ωi − ω j )| ≤ 1, i = 1, . . . ,m,

for all points (x1, ω1), . . . , (xm, ωm) satisfying the condition (14). This guarantees
that the matrix �g is diagonally dominant and hence invertible. ��

Remark 6.5 Wewould like to bring up that Proposition 6.1 is implicitly commented on
in the paper [22] through frame theory terminology.More precisely, the author investi-
gates theGrammianmatrix corresponding to the time–frequency shifts {Mωk Txk g}mk=1.
The invertibility of the Grammian matrix is easily seen to be equivalent to the state-
ment that the corresponding Gabor space Vg(L2(Rn)) is fully interpolating. We hope
the connection with reproducing kernel Hilbert spaces adds a machinery that can help
shed light on some aspects of the HRT-conjecture.

7 Wavelet completeness

In this final section we will look at how much of L2(G) the wavelet spaces Wg(Hπ )

collectively fill up. Let π : G → U(Hπ ) be a square integrable representation and let
Aπ denote the equivalence classes of admissible vectors in Hπ modulo rotations by
elements of T. From Example 4.1 we see that the collection

span
g∈Aπ

{Wg f : f ∈ Hπ

} ⊂ L2(G)
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does not need to be dense in L2(G). To combat this we will start to vary the square
integrable representation π as well. If ̂Gs denotes the equivalence classes of square
integrable representations of G, then we consider

⊕

π∈̂Gs

span
g∈Aπ

{Wg f : f ∈ Hπ } ⊂ L2(G). (15)

It is straightforward to check that (15) is a well-defined direct sum, see [19, Lemma
2.24] for details.

Example 7.1 To make matters more concrete, let us first consider the group G = T.
Any unitary representation of T is equivalent through a unitary intertwining operator
to one of the representations πn : T → T for n ∈ Z given by

πn
(

eiθ
) := einθ , θ ∈ R.

For the representation πn we see that

W11
(

eiθ
) = 〈

1, πn
(

eiθ
)

1
〉 = e−inθ .

This gives precisely the Fourier expansion of square integrable periodic functions
since

⊕

π∈̂Gs

span
g∈Aπ

{Wg f : f ∈ Hπ

} =
⊕

n∈Z
span

{

einθ : θ ∈ R
} = L2(T).

Based on the observations above, we formulate the following conjecture.

Conjecture (Wavelet Completeness) Characterize the locally compact groups G that
satisfy

⊕

π∈̂Gs

span
g∈Aπ

{Wg f : f ∈ Hπ

} = L2(G). (16)

We say that a locally compact group G is wavelet complete if (16) holds for G.
For wavelet complete groups we can view the decomposition (16) conceptually as a
generalizedmultiresolution analysis.Anobvious condition that needs to be satisfied for
G to bewavelet complete is ̂Gs �= ∅.HenceZ and anyother abeliannon-compact group
is not wavelet complete. Any compact group is easily seen to bewavelet complete from
Peter-Weyl theory, see e.g. [18, Theorem 5.11]. The following example illustrates that
wavelet completeness is a non-trivial notion.

Proposition 7.2 The reduced Heisenberg groups Hn
r are not wavelet complete.

Proof Avariant of the Stone–vonNeumannTheorem [21, Corollary 9.3.5] implies that
the only square integrable representations of Hn

r are the Schrödinger representation
ρr given in (4) along with appropriate dilations

ρr ,m

(

x, ω, e2π iτ
)

:= e2π imτ eπ imx ·ωTmxMω,
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for m ∈ Z\{0}. We will show that any h ∈ L2(Hn
r ) on the form h

(

x, ω, e2π iτ
) =

h(x, ω) is orthogonal toWg f for all f , g ∈ L2(Rn) and all the representations ρr ,m .
We compute that

〈h,Wg f 〉L2(Hn
r )

=
∫

Hn
r

h(x, ω)Wg f (x, ω, e2π iτ ) dx dω dτ

=
∫ 1

0
e2π imτ dτ

∫

R2n
h(x, ω)e−π imx ·ωVg f (mx, ω) dx dω

= 0,

since m ∈ Z\{0}. ��
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