
A teamwork effectiveness model for agile software
development

Diane Strode1 & Torgeir Dingsøyr2,3 & Yngve Lindsjorn4

Accepted: 29 December 2021/
The Author(s) 2022

Abstract
Teamwork is crucial in software development, particularly in agile development teams
which are cross-functional and where team members work intensively together to develop
a cohesive software solution. Effective teamwork is not easy; prior studies indicate
challenges with communication, learning, prioritization, and leadership. Nevertheless,
there is much advice available for teams, from agile methods, practitioner literature, and
general studies on teamwork to a growing body of empirical studies on teamwork in the
specific context of agile software development. This article presents the agile teamwork
effectiveness model (ATEM) for colocated agile development teams. The model is based
on evidence from focus groups, case studies, and multi-vocal literature and is a revision of
a general team effectiveness model. Our model of agile teamwork effectiveness is
composed of shared leadership, team orientation, redundancy, adaptability, and peer
feedback. Coordinating mechanisms are needed to facilitate these components. The
coordinating mechanisms are shared mental models, communication, and mutual trust.
We critically examine the model and discuss extensions for very small, multi-team,
distributed, and safety-critical development contexts. The model is intended for re-
searchers, team members, coaches, and leaders in the agile community.

Keywords Agile leadership . Agilemethods . Agile teamworkmodel . Agile teams . Big five
model of teamwork .Mutual performance monitoring . Peer feedback .Redundancy .Scrumteams .

Teamworkmodel . Teamwork theory

Empirical Software Engineering (2022) 27:56
https://doi.org/10.1007/s10664-021-10115-0

Communicated by: Vittorio Cortellessa

* Diane Strode
diane.strode@whitireia.ac.nz

Torgeir Dingsøyr
torgeir.dingsoyr@ntnu.no

Yngve Lindsjorn
ynglin@ifi.uio.no

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10115-0&domain=pdf
http://orcid.org/0000-0002-8419-592X
https://orcid.org/0000-0003-0725-345X
https://orcid.org/0000-0003-1202-0052
mailto:diane.strode@whitireia.ac.nz

1 Introduction

Teamwork is crucial in software development. A recent book on teams in software develop-
ment states that ‘the speed, frequency, complexity, and diversity of changes needed for modern
software-rich systems means that teams are essential’ (Skelton and Pais 2019, p. 44).
Although teamwork is crucial, studies of software development teams report challenges with
communication, coordination, learning, prioritizing work tasks, team orientation, and team
leadership (Moe et al. 2010; Stray et al. 2011).

Agile software development methods are centred on teams (Baham and Hirschheim 2021;
Chow and Cao 2008) that perform knowledge-intensive work (Tiwana 2004). Team members
need expertise and problem-solving abilities to translate complex requirements into software
solutions. Agile teams are cross-functional to cope with this situation, bringing together
experts from different domains who work intensively together to produce a cohesive software
system to solve a business or social problem (Project Management Institute and Agile Alliance
2017). In addition, agile teams aim to be empowered, autonomous, self-reflecting, and self-
adjusting (Stray et al. 2018). These team characteristics differ from team structures where
coaches and leaders are central controlling leadership figures (Hoda et al. 2013).

There is much advice available for agile development teams to help improve their effec-
tiveness. This advice is available in development methods, ongoing discussions in the agile
community, and published research on teamwork in general and agile teamwork in particular.
However, it can be difficult for a team to navigate all this advice and select the best advice to
apply to their situation when they want to become and remain effective. A whitepaper from
scrum.org, for example (Overeem 2016), lists 25 characteristics of ‘a great development team’,
including ‘trust each other’ and ‘pursues technical excellence’ to ‘don’t need a definition of
done’.

Theoretical models of teams and teamwork are often general and are assumed to be relevant
to all types of teams (e.g. (Hoegl and Gemuenden 2001; Mathieu et al. 2008; Salas et al.
2005)). They also tend to include more abstract factors such as ‘communication’, ‘coordina-
tion’, ‘balance of member contribution’, and ‘cohesion’ (Lindsjørn et al. 2016) and do not
explain how effective teams should behave or what practices might support effective teams.
One well-regarded general model that includes both abstract factors and specifies appropriate
behaviours is the Salas et al. (2005) model of effective teamwork. The model specifies the core
components of teamwork and the coordinating mechanisms needed for teamwork and de-
scribes behaviours that effective teams commonly display, termed behavioural markers by
Salas et al. (2005). The specific relevance of these abstract factors, mechanisms, components,
and behaviours in the context of agile software development teams is unclear although some
studies of agile teamwork indicate that many of them might be relevant (Dingsøyr et al. 2016;
Lindsjørn et al. 2016; Moe et al. 2010; Strode 2015).

There is no one comprehensive model that combines both abstract factors and explicit
indicators of what constitutes effective agile teamwork. Therefore, this study develops a model
of teamwork effectiveness for agile software development that is based on empirical studies
and knowledge in the research and practitioner literature and is tailored specifically for the
agile practice domain. To develop a comprehensive model of agile teamwork effectiveness, we
address the following research question:

What are the coordinating mechanisms, core components, and behavioural markers for
effective teamwork in agile software development?

 56 Page 2 of 50 Empirical Software Engineering (2022) 27:56

http://scrum.org

Section 3 explains how coordinating mechanisms, core components, and behavioural markers
form a teamwork effectiveness model.

In addressing the research question, this study draws on the agile teamwork literature and
findings from two sources of empirical evidence, a focus group study in Europe and case
studies in New Zealand. Based on a review of existing team and teamwork effectiveness
models, we propose a revision of the general teamwork effectiveness model, the Big Five
model of effective teamwork (Salas et al. 2005), into the Agile Teamwork Effectiveness Model
(ATEM).

The article is organized as follows. First, in Section 2, we define teamwork in general and
for agile teams specifically. Second, we review the pertinent literature on teamwork and
teamwork studies of agile software development. Section 3 describes our research design
and the details of the two sources of empirical support, focus groups and case studies, and also
describes the theory development. In Section 4, we synthesize the evidence on coordinating
mechanisms and core components and revise the behavioural markers. In Section 5, we present
the complete ATEM and then critically examine the model, discussing extensions to the core
model to encompass very small teams, multi-team projects, distributed development, and
safety-critical development. We present limitations and implications for theory and practice
and suggest further work. Section 6 concludes by summarizing the contribution and high-
lighting contributions for various groups of users of this research.

Note: In the remainder of this article, we refer to the Salas et al. (2005) teamwork
effectiveness model as the Salas Big Five model; we refer to agile software development
teams as agile teams.

2 Teams, Teamwork, and Team Effectiveness

In this section, we explain the scope of our study, define agile teams and teamwork, define
team effectiveness, and present three influential team effectiveness models. Finally, we
summarize the research on teamwork in agile software development from academic and
practitioner sources.

The scope of our study is single agile teams where the teams work full time to develop a
single product; work independently within an organization, such as Team A in Fig. 1; and are
colocated and making software that is not safety-critical. This is the context for which agile
software development methods were originally intended (Williams and Cockburn 2003). We
do not address dependencies with other teams (such as Teams B and C), overlapping teams
(such as Teams D and E), or teams who are a part of a larger project with external resources
(such as Team D). We also do not focus on knowledge sharing between teams through
individual participants, such as in a community of practice used in many organizations, or
on external roles, such as agile coaches.

The team can be organized as a project or as a standing team (a team that works
continuously on one product) responsible for a product.

2.1 Teams and Teamwork

In organizational psychology, Kozlowski and Bell (2012, p. 6) define teams as

(a) composed of two or more individuals,

Empirical Software Engineering (2022) 27:56 Page 3 of 50 56

(b) who exist to perform organizationally relevant tasks,
(c) share one or more common goals,
(d) interact socially,
(e) exhibit task interdependencies (i.e., workflow, goals, outcomes),
(f) maintain and manage boundaries, and
(g) are embedded in an organizational context that sets boundaries, constrains the team, and

influences exchanges with other units in the broader entity.

These characteristics distinguish teams from groups of people working together. This defini-
tion is also used in an extensive review of teamwork and team effectiveness studies by
Mathieu et al. (2008).

Agile teams meet each of the seven criteria, (a) to (g). In software development, a
team size (a) of 4 to 6 members is described as the ‘best size’ in Sommerville’s
textbook on software engineering (Sommerville 2016). Small team size is supported
by Rodriguez et al. (2012), who report software team sizes of 9 or less correlate with
improved productivity based on a study of 195 software projects’ data held in a
repository by the International Software Benchmarking Standards Group. Moreover,
the agile community typically recommends that teams have from 5 to 9 members
(Project Management Institute and Agile Alliance 2017; Sutherland and Schwaber
2020). Small teams are recommended because they make team communication simpler
and increase trust among team members.

Agile teams perform organisationally relevant tasks (b) that are usually described in a
product backlog where teams either jointly plan work for an iteration or select high-priority
work tasks if they use a method such as kanban (Kniberg 2011).

Agile teams have goals (c) and often define them at the iteration level. For example, in a
scrum team, sprint goals are used to focus the team on appropriate task work during a sprint
(Schwaber and Beedle 2002). The list of features to be included in a product (‘product
backlog’ in scrum) decomposes the goal into work tasks defined and prioritized by a product
owner. This list of features usually takes the form of user stories that the team interprets as a
goal to achieve during an iteration of development (Cohn 2004).

Fig. 1 Independent teams, such as Team A, are the focus of this study

 56 Page 4 of 50 Empirical Software Engineering (2022) 27:56

In agile teams, the degree of social interaction (d) will depend on the development method.
Methods with much ‘ceremony’ (method-specific activities) such as scrum involve more
formal social interaction than, for example, a kanban team. Social interaction is supported in
scrum ceremonies, including daily stand-up meetings, retrospectives, planning meetings, and
product demonstrations (Schwaber and Beedle 2002). In addition, social interaction and
information sharing are supported by colocating agile teams in a single workspace
(Cockburn 2002).

For software teams, including agile software teams, there will typically be task interdepen-
dencies (e), some that can be foreseen when planning the work and some the team discovers
during their work. Task dependencies are one of three forms of dependency identified in agile
teams, along with knowledge and resource dependencies (Strode 2016). Task interdepen-
dencies between software development teams and other teams also occur. For example, a team
developing features might depend on one or more teams maintaining a platform (Skelton and
Pais 2019).

In agile teams, (f) maintaining and managing boundaries is usually allocated to a particular
team member. In scrum, the team member who maintains and manages the boundaries
between the team and the organization is the scrum master. The scrum master maintains team
boundaries by protecting the team from interruptions from people external to the team (Shastri
et al. 2021): ‘The Scrum Master helps those outside the Scrum Team understand which of their
interactions with the Scrum Team are helpful and which aren’t’ (Schwaber and Sutherland
2017, p. 7).

As for organizational context (g), agile teams are typically embedded within organizations
and are affected by organizational culture and structure (Iivari and Iivari 2011; Strode et al.
2009). Although agile teams are autonomous, this autonomy may be limited by organizational
routines, tool choices, decisions on who are team members, and organizational decisions on
the use of physical workspace (Moe et al. 2009a).

Agile teams fit the definition of Kozlowski and Bell (2012), but in management science,
other definitions of team emphasize complementary skills. Team members have common
performance goals and ‘hold themselves mutually accountable’ (Katzenbach and Smith 2005).
In software engineering, Sommerville states that ‘putting together a group that has the right
balance of technical skills, experience, and personalities is a critical management task’
(Sommerville 2016, p. 657). In agile development, the teams are expected to be ‘cross-
functional’, which means that within the team, team members have all the skills needed to
accomplish team tasks (Project Management Institute and Agile Alliance 2017). Regarding
common performance goals, in practice, individuals in software teams often do not have the
same performance goals, as can be seen in teams composed of people from several organiza-
tions with different incentive systems, such as in the Perform programme (Dingsøyr et al.
2018). Finally, regarding mutual accountability, in agile development, the team is committed
to achieving tasks (Project Management Institute and Agile Alliance 2017), so, in principle,
team members in an agile team hold each other mutually accountable.

This analysis of agile teams against recognized team characteristics shows that if agile
teams live up to the expectations expressed in the methods, they are true teams, not just groups.

Agile teams employ specific practices during software development that are designed to
facilitate effective teamwork. Teamwork is concerned with how a team works together
(Crawford and LePine 2013; Salas et al. 2014), and encompasses shared behaviours, attitudes,
and cognitions, whereas task work includes the specific tasks teams carry out to achieve their
goals (Salas et al. 2014). Task work in agile teams includes the development tasks and may

Empirical Software Engineering (2022) 27:56 Page 5 of 50 56

also include agile practices. Teamwork and task work facilitate one another and are entwined
(Crawford and LePine 2013).

2.2 Team Effectiveness and Teamwork Effectiveness Models

In this study, we develop a teamwork effectiveness model. Salas et al. (2005) proposed the Big
Five teamwork model, distinguishing between team effectiveness and team performance.
Team performance is defined as the outcome of a team’s actions regardless of how they
accomplish their task, which in a software development context can be meeting project goals,
budget, and schedule as well as the quality of the software developed (Dingsøyr et al. 2016). In
contrast, team effectiveness is defined more holistically (Salas et al. 2005) by including how
the team interacts when accomplishing their task. In our context, such team interaction could
be through meetings for planning, review, and retrospectives; pair programming; or artefacts
for the coordination of work such as iteration backlogs and product backlogs. This broad
definition of team effectiveness includes the team members’motivation to work together, often
measured by job satisfaction. See Fagerholm et al. (2015) for further aspects of how software
teams see performance, including factors such as communication, team spirit, and team
identity.

Many theories, models, and frameworks focus on teams and teamwork. Hollenbeck et al.
(2012) identified 42 different team types and more than 130 models and frameworks that
explain team effectiveness (Burke et al. 2007). Three influential widely accepted models are
commonly referred to in the general teamwork and agile team literature; the ‘Big Five’ model
(Salas et al. 2005), the Teamwork Quality model (Hoegl and Gemuenden 2001), and the Input-
Process-Output model (Mathieu et al. 2008).

The three models and examples of their use in studies of software development are
described in Table 1. In Section 3, Research Design, we explain the Salas Big Five model
in more detail and why we chose this model as a basis for the ATEM rather than either of the
other two models.

2.3 Teamwork in Software Development and Agile Methods

Studies of software teams provide detailed models that relate aspects of teamwork quality to
team effectiveness. In addition to the models presented in Table 1, we find models in Janz
(1999), Moe et al. (2010), and Dingsøyr et al. (2016) and studies on project success and
performance of agile teams (Drury-Grogan 2014; Schmidt 2016).

These studies demonstrate the importance of cooperative learning in project success for
software development teams (Janz 1999), discuss the challenges with achieving team leader-
ship and team orientation in a scrum development team (Moe et al. 2010), and identify five
particularly important factors also identified in prior studies on software teams: team coordi-
nation, goal orientation, team cohesion, shared mental models, and team learning (Dingsøyr
et al. 2016). In addition, coordination and teamwork/collaboration and process/design were
found to be focus areas in a recent mapping study of research on software engineering teams
(DeFranco and Laplante 2018).

The literature on agile teams appears in both academic and practitioner-based outlets.
Tables 2 and 3 summarize key studies from each of these sources. Table 2 focuses on post-
2000 empirical studies that specifically address aspects of teamwork in agile software devel-
opment. The studies are mainly taken from DeFranco and Laplante (2018). We have excluded

 56 Page 6 of 50 Empirical Software Engineering (2022) 27:56

Table 1 General team effectiveness models used in studies of software engineering teams

Model Description Source Use in software
development

Salas Big Five model The ‘Big Five’ model has five components
that lead to effective teamwork: team
leadership, mutual performance
monitoring, backup behaviour,
adaptability, and team orientation. Each
of the ‘Big Five’ is required for team
performance, but each component may
be manifested differently across teams
because of constraints of team tasks and
varying needs of the team. The ‘Big Five’
are facilitated by three coordinating
mechanisms: shared mental models,
closed-looped communication, and mu-
tual trust. This framework is based on a
literature review of 20 years of literature
from 1985 to 2005 on teamwork, team
effectiveness, and team performance.
More than 20 studies were analysed to
develop the ‘Big Five’ framework.

(Salas et al.
2005)

(Dingsøyr and Lindsjørn
2013; Moe and
Dingsøyr 2008;
Strode 2015)

Teamwork Quality
(TWQ)

The TWQ model focuses on the quality of
collaborative work within teams and has
six sub-constructs: communication,
coordination, the balance of member
contribution, mutual support, effort, and
cohesion. The TWQ is significantly
associated with team performance,
measured as project success. The model
was tested in a questionnaire
administered to 145 German software
teams.

Hoegl and
Gemuenden
(2001)

(Lindsjørn et al. 2016;
Poth et al. 2020)

Input-Process-Output
(IPO)

The IPO is a framework for studying team
effectiveness. Inputs are antecedent
factors that enable and constrain team
member interactions. Inputs include
individual team member characteristics;
the structure of tasks; and the influence of
external leaders, organizational design,
and environment complexity.

Processes are the functions and interactions
individual team members must perform
to accomplish team tasks. Processes
include transition phases (mission
analysis, goal specification), action
phases (task accomplishments,
monitoring progress, coordinating
members), and interpersonal processes
(conflict management, motivation, and
confidence building).

Outputs are types of team performance and
team members’ affect and viability.

This model was proposed by McGrath
(1964) and used by Mathieu et al. (2008)
in a thorough literature review.

(Mathieu et al.
2008;
McGrath
1964)

(Melo et al. 2013)

Empirical Software Engineering (2022) 27:56 Page 7 of 50 56

findings on team effectiveness models because the most influential are shown in Table 1. The
studies indicate that agile methods positively influence team effectiveness through psycholog-
ical safety, transparency, communication, emphasis on face-to-face communication, and
contribution to team wellbeing. Table 3 focuses on seminal sources written by practitioners
that we believe are influential in the practitioner community. These sources are not peer-
reviewed, they are what is commonly referred to as ‘grey literature’, but they indicate, for
example, that face-to-face communication is seen as the most efficient form of communication,
and they also include concepts from the research literature such as psychological safety. As we
explain in the research method section on theory development, we synthesize findings from
our empirical studies from the research literature on agile software development as well as this
grey literature in our arguments and evidence for a revised model of teamwork effectiveness.

3 Research Design

The purpose of this study was to develop a theoretical model of team effectiveness for agile
software development. To ensure a broad basis of support for our model, we drew on various
sources, which is a recommended strategy for empirically based theory-building research
(Eisenhardt and Graebner 2007; Gregor 2006; Sjøberg et al. 2008). The sources were multi-
vocal literature (Garousi et al. 2019) and empirical evidence. The supporting literature was

Table 2 Empirical studies of agile software development teams and teamwork

Study aim Main findings Source

Influence of agile team practices on
productivity

‘Social’ agile practices (daily meetings, pair
programming, reviews and retrospectives, etc.)
positively influence psychological safety,
transparency, communication, and ultimately
productivity.

(Hennel and
Rosenkranz
2020)

Influence of task interdependence on
teamwork quality and project
performance

Task interdependence is significantly associated with
teamwork quality.

Teamwork quality (coordination, cohesion, and
learning) mediates the relationship between task
interdependence and project performance.

(Kuthyola et al.
2017)

Influence of shared mental models and
backup behaviour on performance

Agile development practices positively influences the
sharedness of team members’ mental models as
well as degree of backup behaviour.

If task complexity is high, backup behaviour has a
positive and significant impact on team
performance.

(Schmidt et al.
2014)

Influence of pair programming on
team performance

Pair programming helps teams establish backup
behaviour by improving the shared mental models
among the team’s developers. Backup behaviour
reduces the negative effect of task novelty on
performance.

(Kude et al.
2013)

Influence of agile development
methods on communication

Scrum and extreme programming (XP) practices
improve both formal and informal communication.

(Pikkarainen
et al. 2008)

Mental models and developer work
habits

Face-to-face communication leads to fewer task
switches over instant messaging and email.

(LaToza et al.
2006)

Influence of agile methods on the
wellbeing of team members

Agile methodology (XP) has a positive effect on the
level of enthusiasm of the software developers in
the most dynamic projects.

(Syed-Abdullah
et al. 2006)

 56 Page 8 of 50 Empirical Software Engineering (2022) 27:56

Table 3 Grey literature on agile software development teamwork

Model or method and source Main claims regarding teams

The Scrum Guide (booklet) (Sutherland and Schwaber
2020)

‘Scrum is a lightweight framework that helps people,
teams, and organizations generate value through
adaptive solutions for complex problems’.

A scrum team includes developers, a product owner,
and a scrum master. The qualities and values of a
scrum team are: learn through inspection, be
transparent about problems and progress, adapt
based on learnings, commitment to goals, support
and respect teammates, be open about challenges, be
capable and independent people, have the courage to
do the right thing and work on tough problems, build
trust.

Scrum team properties are: cross-functional and self--
managing, typically 10 or fewer people responsible
for all product-related activities from stakeholder
collaboration, verification, maintenance, operation,
experimentation, research and development, and
anything else required, manage their work, work in
sprints at a sustainable pace, accountable for creating
a valuable, useful increment every sprint.

Team Topologies: Organizing Business and
Technology Teams for Fast Flow (book) (Skelton
and Pais 2019)

Organizations use four fundamental team types to
achieve effective software delivery.

A team is defined as ‘a stable grouping of five to nine
people who work towards a shared goal as a unit’ (p.
44).

The four team types are a stream-aligned team, an
enabling team, a complicated sub-system team, and a
platform team. These team types are based on
Conway’s Law, which proposes that the software
architecture of a system will reflect the communica-
tion structures of the organization where the system
was developed. The team types are viewed as ef-
fective organization designs when coupled with ap-
propriate software boundaries and team interactions.
Software teams should be small (max. 9); have long
lifespans; support stable, trusting relationships; and
manage the cognitive load on the team. Teams have
three interaction modes: collaborating, facilitating,
and X-as-Service.

Agile Practice Guide (booklet) (Project Management
Institute and Agile Alliance 2017), pp. 168)

The agile manifesto is a key source for this book
published by the PMI (Project Management
Institute). The content is developed by volunteers
from the agile community. The guidelines are not
restricted to the software development context. The
book focuses on team composition and team
leadership. Key points on teams include the
following:

• Leadership follows the servant–leader model, and
teams should be empowered.

• Teams are colocated in a team space, dedicated rather
than involved in multiple projects, self-managing,
and cross-functional.

• Teams include generalists and specialists.
• Teams have collective ownership of the work and are

collaborative.
• Teams have fewer than 10 people.

Empirical Software Engineering (2022) 27:56 Page 9 of 50 56

Table 3 (continued)

Model or method and source Main claims regarding teams

• Teams should have stable working environments.
• Agile teams include team members, a product owner,

and a team facilitator.
Guidance for multi-teams and distributed teams extend

these founding ideas.
Google re: Work (Rozovsky 2015)
(Duhigg 2016)

This model of software teams is based on two articles.
Google re: Work proposes five key factors observed
to set successful teams apart from other teams at
Google:

1. Psychological safety
2. Dependability
3. Structure and clarity (of goals, roles, and plans)
4. Meaning of work (personally meaningful work)
5. Impact of work

Agile Software Development with Scrum
(book) (Schwaber and Beedle 2002)

Scrum has a team-oriented philosophy primarily based
on studies by Takeuchi and Nonaka (1986) of suc-
cessful new product development (NPD) projects in
Japan and the USA.

Teams in scrum must show commitment, focus,
openness, respect, and courage.

Based on an IPO (input process output model), scrum
involves a self-organizing team using the
technology, requirements, and multi-learning as in-
put to the development process, called a sprint,
which is controlled using observation and adjust-
ment of progress. The output is an increment of the
total software product.

‘Scrum deals primarily at the level of the team’ (p. 2).
‘Scrum is about deep social interactions that build
trust among team members’ (p. 106).

Scrum is designed to enable teams, guided by
knowledge and experience, to cooperate effectively
to produce complex, sophisticated products rather
than following a formal project plan.

Scrum’s empirical process control techniques are
designed to enable management to carry out control
by observation and incremental adjustment while the
team carries out the development unhindered.

Team size is recommended at 7+− 2; teams are
cross-functional; all members are responsible for
analysis, design, coding, testing, and user documen-
tation. All members work on all tasks. Only the team
can change the contents or estimates of a sprint
backlog during a sprint. Teams must attend a daily
scrum meeting.

Guidelines for large projects involve setting up multiple
teams who work from the same product backlog.
Each team has its own scrum master.

Agile Manifesto 2001 Team-related principles include the following:
The most efficient and effective method of conveying

information to and within a development team is
face-to-face conversation.

The best architectures, requirements, and designs
emerge from self-organizing teams.

At regular intervals, the team reflects on how to become
more effective, then tunes and adjusts its behaviour
accordingly.

 56 Page 10 of 50 Empirical Software Engineering (2022) 27:56

multi-vocal because we included teamwork research, agile software development teamwork
research, and literature published for the practitioner community (grey literature) on agile
software development.

To select a basis for an agile teamwork effectiveness model, we reviewed the three models
presented in Table 1. After comparing the three models, we selected the Salas Big Five model
for the following reasons:

& Solid basis in literature: The Salas Big Five model is well-grounded in the team literature.
The model is based on a literature review and analysis of research on teams published over
20 years, from 1985 to 2005. The review included both empirical studies and theoretical
models of team effectiveness. The TWQ model, although tested on empirical evidence
from a study of software engineering teams, has a somewhat less well-grounded basis in
the team literature than the Salas Big Five model because the contributing research ranges
from 1982 to 1995.

& Practical applicability: The Salas Big Five model is practically applicable and potentially
measurable because the model describes observable behaviours (referred to as behavioural
markers) and includes testable propositions. The TWQ model focuses more narrowly on
team internal collaboration and specifically excludes leadership factors, which the Big Five
includes. The IPO model lacks practical applicability because it is a framework for
categorizing team effectiveness factors rather than studying actual teams in specific
contexts.

The Salas Big Five model of effective teamwork has eight interacting factors and propositions
that state the relationships between the factors. Three factors are coordinating mechanisms and
include shared mental models, closed-looped communication, and mutual trust. These
coordinating mechanisms facilitate five teamwork components. The teamwork components
are team leadership, mutual performance monitoring, backup behaviour, adaptability, and team
orientation.

Each component and coordinating mechanism in the Salas Big Five model has an associ-
ated set of behavioural markers. Klampfer et al. (2001, p. 10) defined behavioural markers as
‘observable, non-technical behaviours that contribute to superior or substandard performance
within a work environment (for example, as contributing factors enhancing safety or in
accidents and incidents in aviation); observable behaviours of teams or individuals; usually
structured into a set of categories’. Behavioural markers are used for training and assessing
behaviour in the aviation industry (Flin and Martin 2001), intensive care units (Dietz et al.
2015), and crisis management (Gatfield 2008). Behavioural markers are short descriptive

Table 3 (continued)

Model or method and source Main claims regarding teams

Extreme Programming Explained:
Embrace Change (book) (Beck 2000)

Extreme programming (XP) assumes that development
work is best carried out in small colocated teams to
aid with communication. Communication is neces-
sary to project viability because it reduces misun-
derstandings and problems. High team morale and a
good working environment are recommended.
Teams must have the courage to make changes they
see are necessary to the software they develop.

Empirical Software Engineering (2022) 27:56 Page 11 of 50 56

statements derived from the ‘analysis of data from multiple sources regarding performance
that contributes to successful and unsuccessful outcomes’ (Klampfer et al. 2001, p. 10). A
good marker has the following characteristics:

& It describes a specific, observable behaviour, not an attitude or personality trait, with a
clear definition (enactment of skills or knowledge is shown in behaviour).

& It has demonstrated a causal relationship to the performance outcome.

– It does not have to be present in all situations.
– Its appropriateness depends on context.

& It uses domain-specific language that reflects the operational environment. It employs
simple phraseology.

& It describes a clear concept.

The Salas Big Five model, by including behavioural markers to indicate the observable
behaviours associated with a coordination mechanism or component, has immediate value
for practitioners who can use the markers to evaluate whether their teamwork is effective.

The empirical evidence for our study extends the findings from two independent sources: a
focus group study of teamwork in agile environments (Dingsøyr and Lindsjørn 2013) and case
studies of agile teams (Strode 2015). The focus groups provide material that was based on the
participants’ experience on many teams, whereas the case studies provide in-depth perspec-
tives on single-team contexts. Combining the findings from these two studies increases the
international nature of the research and improves the breadth and depth of the evidence for the
ATEM. The two studies were carried out independently. Each study had different researchers
and was carried out in different parts of the world, at different times, and with different
research methods, but both studies focused on evaluating the Salas Big Five team effectiveness
model in agile software development.

The focus group study was reported to the Norwegian Centre for Research Data. Whitireia
Polytechnic, New Zealand provided ethical approval for the case study.

We present the two studies and discuss their limitations in the following sections. Finally,
we describe our approach to theory development.

3.1 Focus Groups

Focus groups enable researchers to quickly obtain detailed information on emerging phenom-
ena through structured, moderated discussions with small groups of practitioners. The re-
searcher can interact directly with respondents to clarify responses or ask follow-up questions.
In addition, the focus group participants can react to and build upon responses from other focus
group members (Stewart et al. 2007).

The motivation of the focus group study was to investigate what fosters and what hinders
effective teamwork in agile software development teams and relate the results of the partici-
pants’ input to the Salas Big Five team effectiveness model. Before participants were presented
with the team effectiveness model, they carried out a brainstorming session, writing stickers
(as many as possible), where they wrote down what they thought fostered and what they
thought hindered effective teamwork. Each sticker recorded one relevant item.

 56 Page 12 of 50 Empirical Software Engineering (2022) 27:56

3.1.1 Participant Selection

In total, 111 persons participated in 22 focus groups, with 4 to 6 participants in each group. In
addition to 11 conference-based focus groups conducted at three conferences on agile software
development, we conducted focus groups in four companies in Norway. In two of the
companies, the participants represented development teams in actual ongoing projects. In the
third company, we divided the whole development department into three focus groups.
Finally, in the fourth company, participants were recruited for a focus group held after working
hours, resulting in another two groups with members from a variety of projects.

3.1.2 Data Collection

We developed a plan for each focus group workshop which included a schedule and a set of
exercises for the participants to carry out. Each focus group workshop was planned for 90 min
and followed the same schedule (see Appendix 1).

During the focus group activity, each participant filled in a context questionnaire (see
Appendix 2). The questionnaire showed that the participants were mainly software developers
(39%), followed by scrum masters (18%), team leaders (12%), and project managers (10%).
Most of the participants were using the scrum software development method (59%), followed
by kanban (22%), lean software development (9%), and XP (8%). As for gender, 65% were
male, and 35% were female. The participants worked in teams with 3 to 20 members (average
8.4, standard deviation 3.2). The teams had on average 6.6 full-time members (standard
deviation 3.1). The teams the participants worked in were collaborating with up to 35 other
teams. However, 55 participants were working in teams that did not collaborate with other
teams. The participants had, on average, 11.9 years of experience with software development
(standard deviation 8.4) and 4.3 years with experience with agile software development
(standard deviation 2.5).

To document our results, we took minutes of all the focus group meetings and pictures of
the final results, showing groups of items that foster or inhibit team effectiveness. This was
documented for each teamwork component in the Salas Big Five model, and we also
documented items that did not fit into the model. Figure 2 shows an example of results from
one group at the XP2012 conference workshop.

3.1.3 Data Analysis

In total, the groups found seven items that did not fit into the model. The researchers classified
these items. Examples of such items were ‘team size’ and ‘too difficult work tasks’, which
were moved to team leadership. All participants received the minutes. Then, we recorded the
items and whether they were marked as fostering or hindering teamwork in a spreadsheet. The
items on four stickers were unreadable in the minutes, and this left a total of 1426. These items
were first read to check that the topics identified were categorized into the correct Salas Big
Five teamwork components. Seventeen items were moved by the second and third authors
from one component to another.

The analysis was both quantitative and qualitative. The quantitative analysis consisted of
counting the number of items marked as fostering or hindering teamwork. The qualitative
analysis consisted of a thematic grouping of items allocated to each teamwork component.

Empirical Software Engineering (2022) 27:56 Page 13 of 50 56

The limitations of this focus group study include the limited depth of the material collected
because the individual terms included no explanatory text. Another limitation was a potential
issue with external validity. There is a potential bias in participants as most responded to the
invitation to the focus group meeting and might be more interested in teamwork than the
average person working with software development. Most respondents were also working in a
Scandinavian country, which might influence their opinion of teamwork factors. A potential
threat to construct validity is that we rely on first the participants’ understanding of the
teamwork components and then the researchers’ interpretation of the items when checking
consistency. We have sought to ensure reliability through detailed descriptions of data
collection and analysis and through showing traceability to the data material in the results
section.

3.2 Case Studies

A positivist case study method was used to evaluate the applicability of the Salas Big
Five model of effective teamwork to the agile context. Positivist case study research
is a genre of qualitative research (Eisenhardt 1989; Eisenhardt and Graebner 2007;
Keutel et al. 2014; Paré 2004; Yin 2018). Sarker et al. (2018, p. 761) characterize
positivist case studies as representing a fact-based shared reality, using inductive or
deductive data analysis, and often used to validate or refute an existing theory.
Positivist case studies are distinct from interpretive, ethnographic, or grounded theory
forms of qualitative research (Sarker et al. 2018). Further, the case study method
provides detailed and current information on participants’ experiences, knowledge,
activities, and understandings in a specific bounded context (Yin 2018). The specific
bounded context for each case was ongoing agile software development project teams.

The cases reported in this study are part of a broader multi-case study of coordination and
dependencies in agile software development projects. Interview data containing material that
focused on team issues was identified and analysed and contributed to this study.

Fig. 2 Partial results of a focus group for the teamwork component ‘trust’. Items that foster teamwork are in
green and those that hinder effective teamwork in yellow

 56 Page 14 of 50 Empirical Software Engineering (2022) 27:56

3.2.1 Case Selection

Three cases from a commercial bank in New Zealand were selected for this study. The unit of
analysis was an individual case of agile software development. The teams were all in the same
physical location in a single large room. Each project had a stable team over most of the
lifetime of the project. Because the teams were all in the same organization and location, they
were all working within the same organizational culture. All project team members had
volunteered to use agile software development, and all had received the same training in agile
values and practices from the same trainers. All teams had the same agile coach and
supervisory manager. All projects were resourced similarly. Furthermore, each project was
supported by the same IT infrastructure unit, used the same underlying mainframe system, and
complied with the same interface design guidelines and quality expectations.

When selecting cases for a multi-case study, the advice is to select cases showing variation
(Yin 2018). The cases were selected from a pool of nine ongoing and independent projects
carried out on the same floor of a large open-plan office. All agile development projects had
been moved into this shared space. Before the cases were selected, the coach was asked to
identify suitable cases that were technically complex, had several stakeholders, and varied in
how they adopted agile software development practices. From this set, the researcher selected
project teams that were creating a high-value business application where the software products
under development were distinctly different from each other. Each project was a typical agile
software development project with about 10 team members and was at least one-third complete
and ongoing at the time of data collection. Finally, the project team members had to be willing
to participate in a research project. The cases were code-named Globe, Tech, and Rock. Table 4

Table 4 Project profiles and interview information

Case Globe Tech Rock

Organization-level
interviews

Senior manager of all agile projects, including Globe, Tech, and Rock
Agile coach for all agile projects (external consultant working on site)

Roles of
interviewees

Business lead/product
owner [EC01]

Agile lead/scrum mas-
ter [EP01]

Business analyst/agile
lead [ET01]

Joint interview:
• Senior analyst

programmer [ET02]
• Tester [ET03]

Online banking business leader
(customer proxy) [FP01]

Test analyst [FT01]
Mainframe architect (domain

specialist) [FT02]
Mainframe developer [FT03]
Senior programmer/agile lead

[FT04]

Senior business analyst
[GP01]

Senior analyst
programmer [GT01]

Test analyst [GT02]
Technical designer

[GT03]

Team size 10 10 6 to 12 varying over the
project duration

Software product
profile

Foreign exchange
service

Transaction notification service Online statements

Agile method
adopted

Scrum Scrum Kanban-scrum hybrid

Key—The codes identify a specific person who was interviewed. These codes are used in the quotes in Section 4.
For example [EC01] represents project Globe (E), product owner (C), and an interview (01).

• Project code: E = Globe; F = Tech; G = Rock
• Role code: T refers to a team member engaged primarily in development, C and P refer to people with other

roles in the team such as product owner, agile lead, and customer proxy.
• 01–05 indicates a single individual.

Empirical Software Engineering (2022) 27:56 Page 15 of 50 56

shows the details of the cases and interviews. Each interviewed person received an information
sheet explaining the research project and signed a consent form to agree to be interviewed and
have their interview recorded.

3.2.2 Data Collection

Data collection followed a snowball approach. In each project team, the team leader was
interviewed and asked to nominate other project team members. These team members were
selected because they took different roles within the project and agreed to be interviewed. Up
to five people from each project were interviewed using a semi-structured interview schedule
(reproduced in Appendix 3 and published in Strode (2016). The data collection was restricted
to five people to minimize interruptions to the project’s work while providing an adequate
depth of information about the project and the team. Interviews were carried out over a week
for each case at times that suited the interviewees and in meeting rooms at the workplace. The
interviews were recorded and transcribed in full. Additional case data were collected by
observation and by taking notes at selected stand-up meetings and product demonstrations.
Further data included photographs of scrum wall boards showing stories; tasks and task
allocations; photographs of burn-down charts; publicly available data from the organization’s
website; and system and project documentation such as organization charts, interface designs,
and example kanban cards.

3.2.3 Data Analysis

Qualitative content analysis was used to analyse the data, as described by Schreier (2013). This
form of content analysis is a systematic method for analysing qualitative data and is carried out
by assigning segments of source material (where a segment is a phrase, sentence, or paragraph
in the interview transcripts) to the categories of a coding frame. Directed content analysis was
used, which is appropriate when the coding frame is based on an existing theory (Hsieh and
Shannon 2005). Following Schreier (2013), the Salas Big Five teamwork effectiveness theory
was the coding frame but with one adjustment. The coding frame was adjusted before use to
better align the component ‘team leadership’ with the philosophy of agile methods (Moe et al.
2009b) and autonomous teams as defined by Hollenbeck et al. (2012). These sources argue
that autonomous teams (agile teams aim for autonomy) require ‘shared team leadership’. So
the coding frame was adjusted to include shared team leadership rather than team leadership.
Schreier (2013) also advises that the qualitative content analysis method should include a pilot
analysis to assess the applicability of the coding frame. The pilot involves the coding frame
being tried out on a part of the material. The coding frame was found to be suitable because the
analysis provided evidence to support or refute each of the categories in the coding frame. The
coding was applied by a single coder over two points in time some weeks apart, which is a
mechanism to improve validity when multiple coders are not available. The coding frame was
applied to all of the interview data with the aid of the HyperResearch™ tool.

In a case study design, triangulation improves the validity of the study findings (Yin 2018).
Data triangulation is the use of different data sources to provide evidence on which to base
findings. Firstly, in this study, data were collected on the same topic from different sources of
the same type. The three data sources comprised three cases of agile software development.
Then, within each case, there were four or five data sources because up to five people in each
project were interviewed. The semi-structured interview technique followed a pre-designed

 56 Page 16 of 50 Empirical Software Engineering (2022) 27:56

schedule, including closed and open-ended questions, allowing for further probing questions
when necessary. Secondly, data were collected from different sources. The photographs,
observations, and collection of project documents were not analysed but confirmed the project
details, the use of agile practices, and teamwork in the teams. Reliability was achieved using a
transparent research process, as described here, so the findings can be traced from initial theory
to conclusions (Yin 2018). Reliability was also improved by applying an existing conceptual
framework (i.e. the coding frame) in the same manner to each case to identify instances of
evidence for teamwork concepts.

The case study method has limitations. The findings from the set of cases are based on data
from three cases within a single organization with a restricted number of interviews and
observations collected over a short time period for each case. More cases and extensive data
collection may have identified additional or disconfirming evidence. Another potential limi-
tation is the use of snowballing to identify interviewees. Although this technique was
necessary to locate knowledgeable and interested people on the team, this necessarily excluded
some people and therefore could have provided a biased or incomplete view of team activities.
We mitigated this issue somewhat by interviewing at least half of the project team members in
each case and by collecting additional non-interview data on the team activities. As a case
study, we generalize through use of theory (Yin 2018). The limitation of external validity due
to case context is addressed by combining evidence from these three cases, the focus group
study, and the research and grey literature in drawing final conclusions.

3.3 Theory Development

The ATEM was developed from independent analyses of the focus group and case study
material using the Salas Big Five model as an initial framework. We compared the original
description of each Salas Big Five coordinating mechanism and component and its behavioural
markers with our empirical findings and with the recent empirical studies of others and the
grey literature. This was done in a series of meetings where one of the two first authors drafted
a section on each coordinating mechanism and component, which was then discussed. We
sought to ensure that our revisions to the Salas Big Five model were primarily based on
research findings with the grey literature as secondary support. We used terminology common
in the software and agile practice field to ensure that the ATEM has practical relevance. We
also sought to comply with the characteristics of the behavioural markers listed at the start of
this section.

4 Revising the Salas Big Five: Components, Coordinating Mechanisms,
and Behavioural Markers

This section presents our arguments for the ATEM based on revisions to the Salas Big Five
teamwork effectiveness model. We explain our revisions of the three coordinating mechanisms
and then the five core components. Each mechanism and component has behavioural markers,
and we also revised these markers where we found evidence that this would better reflect agile
teamwork.

Each subsection starts with a definition of the mechanism or component, followed by 1)
empirical findings from the focus groups, case studies, and literature and 2) a discussion of
how the empirical studies support or refute the behavioural markers for each mechanism or

Empirical Software Engineering (2022) 27:56 Page 17 of 50 56

component. For some mechanisms or components, we both redefine behavioural markers and
also rename the mechanism or component. We argue that the new names better reflect agile
team research findings and the guidance in the grey literature. These names are also more
recognizable for software engineering practitioners. Where we have changed the name, the
section heading indicates this change by first stating the Salas Big Five model name followed
by ‘becomes’, then the new name. The arguments for the change are given at the end of the
discussion of each mechanism or component. The full ATEM is summarized and discussed in
Section 5.

4.1 Shared Mental Models

Shared mental models are defined as ‘An organizing knowledge structure of the relationships
among the task the team is engaged in and how the team members will interact’ (Salas et al.
2005, p. 560).

4.1.1 Empirical Findings on Shared Mental Models

The focus groups resulted in 200 items (of 1426; 14%) allocated to shared mental models. This
was the third most frequently occurring team effectiveness factor. The main sub-component
was ‘common understanding of goals’ (97). ‘Common understanding of tasks’, ‘common
understanding of process’, and ‘common understanding of the product’ were also reported
along with just ‘common understanding’. Table 5 shows the results for this component. Note
that in Table 5 and all of the focus group tables, items reported to foster and hinder team
effectiveness are shown along with the counts of items allocated to each sub-component (e.g.
97 items were categorized into the sub-component ‘common understanding of goals’ in the
analysis of the shared mental model component).

Table 5 Shared mental model sub-components with selected items that foster and hinder team effectiveness

Sub-component Items

Foster (total=126) Hinder (total=74)

Common understanding of goals
(97)

Agreement on goals
Common goals
Clear vision
Everyone understands goal

Lack of common goal
No clear common goal
Unclear goals
Unclear mission

Common understanding of tasks
(18)

Clearly defined tasks
Clear tasks
Well-defined needs

Disagreement on the distribution of tasks
Unclear tasks
Unnecessary work because needs are

misunderstood
Common understanding of the

process (10)
Good process
Team rules
Work agreement

Rules and standards
No process
Working in personal caves

Common understanding of the
product (8)

Knowledge of domain
Knowledge of technology
Understanding of what is to be

delivered

Mismatching expectations
No common understanding of deliverable
Poor specification

Other: ‘Common understanding of roles’, ‘knowledge of customer needs’,
‘colocation’, and ‘knowledge of scope’

 56 Page 18 of 50 Empirical Software Engineering (2022) 27:56

The case studies showed that certain agile development practices support shared mental
models, including 1) specification meetings, 2) planning meetings, and 3) stand-up meetings.
For example, shared mental models (1) were created during specification meetings, as one
team member explained: ‘the spec workshop, although I find it boring as hell sometimes, it’s
interesting, everybody’s getting an understanding of what’s supposed to be happening. I don’t
necessarily understand what they’re all talking about, but there’s clarity...between everybody.
So that nobody, theoretically, is thinking when I say “I want to change a rule in the host
system” that I’m saying I want to change a rule somewhere else. Because we’ve talked about
it, everybody has an understanding of what I want’ [EC01]. This quote indicates that a shared
mental model, in the form of a common understanding of the work process and tasks, has
formed among the team members. In another case, planning (2) and stand-up meetings (3)
increased the team’s shared mental model. A team member explained, ‘We’ve gone back to our
desks, and we’re gearing up for the real start of the coding and the developing, and it just
occurred to us that we just said it’s better for you to do these, it’s better for me to do these, and
you and you and you. So it’s like a Gentleman’s Agreement that the pieces of work are
grouped in. So in our minds, is not set or written, or anything, but what we have is in our inner
mind we already kind of talk about this piece of work is more suited for you’ [FT03]. This
could indicate a shared understanding of who knows what in the team or a shared understand-
ing of the skills and expertise of others on the team, which is one facet of a shared mental
model reported by Levesque et al. (2001).

The lack of a shared mental model was clear in Rock when a project leader said, ‘Another
thing that we probably could have done better, is had a bit more of an overview of ... what
we’re trying to do. But [new team members are] sort of thrust in and said “do this” with no
context...I know for some of the other [system] developers that came on, it would have
probably been really good for me to sit down with them and talk about the project and give
them a bit more context about what they’re actually doing, and why’ [GP01]. In this same
case, another team member reflected that stand-up meetings supported a shared mental model,
‘So the stand-up meeting I think contributed a lot to it. Because you’d know during those
meetings what people were working on, and who was working on what’ [GT01].

Studies of shared mental models in software development teams indicate that a
shared mental model has a positive impact on software team performance (Dingsøyr
et al. 2016; Schmidt et al. 2014) and can have a larger effect on performance than
age, tenure, or gender (Kang et al. 2006). In agile software development, Yu and
Petter (2014) argue that shared mental models result from adopting common agile
practices, including backlogs, sprints, meetings (e.g. daily stand-up retrospective,
planning), and having a customer on site.

4.1.2 Discussion of Behavioural Markers for Shared Mental Models

When a team establishes a shared mental model, team members can anticipate each other’s
needs and adjust their work strategies to adapt to changes in the team or team tasks (Salas et al.
2005). ‘Anticipating and predicting each other’s needs’ is the first behavioural marker for
shared mental models in the Salas Big Five model (see Table 6). Because evidence from the
case studies on shared mental models in agile teams supports this marker, we retained this
marker in the model.

We revised the second marker from ‘identifying changes in team, tasks, and teammates and
adjusting strategies as needed’ to explicitly focus on five common understandings that we

Empirical Software Engineering (2022) 27:56 Page 19 of 50 56

found contribute to a shared mental model in agile teams. The common understandings are
about goals, tasks, work process, product, and skills.

Many focus group participants associated a common understanding of goals as a part of a
‘shared mental model’. This finding is supported by the results from a study of systems
development teams, where ‘clarity of mission’ was positively related to team effectiveness (Lu
et al. 2011). Therefore, we added ‘common understanding of goals’ as a new marker.

General studies on teams describe shared mental models as composed of a shared under-
standing of tasks, work processes, and who knows what in the team (Converse et al. 1993).
The case study provides insight into team practices which can lead to a shared mental model
and evidence for a shared understanding of each team member’s expertise. Still, the focus
group studies provided support for markers that focus on the factors software teams perceived
as important; that is, teams exhibit a common understanding of goals, tasks, work process, and
product. From general studies and the case study, we included ‘individual skills and expertise’.
To keep the markers short, we did not include ‘adjusting strategies as needed’ as in the original
second marker, but we emphasize that the understanding should be updated when there are
changes. Table 6 shows the proposed new behavioural markers for the shared mental model
component.

4.2 Mutual Trust

Mutual trust is defined as the ‘shared belief that team members will perform their roles and
protect the interests of their teammates’ (Salas et al. 2005).

4.2.1 Empirical Findings on Mutual Trust

The focus groups resulted in 197 items (of 1426; 14%) allocated to trust. This was the fourth
most frequently occurring team effectiveness factor. Many focus group participants stated
simply that ‘trust’ is important (67). Table 7 shows the sub-components for mutual trust, which
were ‘respect’, ‘social climate’, ‘conflict’, ‘openness’, and ‘other’.

The trust sub-components show a diverse understanding of trust, focusing on the respect of
team members, a good social climate in the team, few conflicts, openness, and that team
members should feel safe when working in the team.

Table 6 Behavioural markers for shared mental model

Behavioural markers for shared mental models (Salas et al. 2005) New behavioural markers for shared
mental models

Anticipating and predicting each other’s needs Existing marker supported
Identify changes in the team, task, or teammates and implicitly

adjusting strategies as needed
Existing marker removed

Common understanding of goals
Common understanding of tasks
Common understanding of the work

process
Common understanding of the product
Common understanding of individual

skills and expertise

 56 Page 20 of 50 Empirical Software Engineering (2022) 27:56

The case studies provide support for mutual trust as a factor in team interactions. Trust in
the cases included 1) trusting team members, 2) trusting information, and 3) trusting that the
team had the skills and knowledge needed for the work. Trust that the team does their best (1)
was commented on by two participants: ‘But we have such a good team that everybody is just
communicating…and never says something bad about another person, we generally believe
that everybody does his best to develop something …’ [ET02], and ‘Best job to their abilities
and …we don’t really question people’s abilities. Everyone does their best’ [ET03]. The
following statement shows there was trust that the team would provide accurate information
(2): ‘So the negotiation in our team is possibly raising technical stories that have little or no
business benefit, even though it directly contributes to the end product, and is required. And
you negotiate with the business lead…I talk to [her] about it, obviously [she] trusts the
development people to give [her] accurate information about why it’s important and it’s very
easy and simple conversation’ [FT04]. Finally, one informant expressed trust in team members
having suitable skills (3): ‘The team dynamic. The core team members all understood, once
we’d got into the project, what was needed. The people doing all the coding were all on the
same page and all competent people with good skills’ [GT02].

4.2.2 Discussion of Behavioural Markers for Mutual Trust

Organizations have increased their focus on trust because of the emergence of self-directed
teams and reliance on empowered workers (Costigan et al. 1998). This change is emphasized
in the practitioner literature. For example, a principle behind the agile manifesto states, ‘Build
projects around motivated individuals. Give them the environment and support they need, and
trust them to get the job done’ (Williams 2012, p. 72). Trust and respect are organizational
conditions needed for a team’s psychological safety (Edmondson et al. 2004). Psychological
safety ‘refers to a climate in which people are comfortable being (and expressing) themselves’
(ibid, p. 1) (see also Table 3 where psychological safety is a factor in the Google teamwork
model). The Salas Big Five model has two behavioural markers for trust: 1) information
sharing and 2) willingness to admit mistakes and accept feedback. We found evidence for the
first marker in the case studies and the second marker in the focus groups. In addition, we

Table 7 Mutual trust sub-components with selected items that foster and hinder team effectiveness

Sub-component Items

Foster (total=115) Hinder (total=82)

Respect (28) Respect for the team members’ competence Hostility between team members
Respect for each other Intolerance
Politeness Lack of respect

Social climate (20) Beers on Friday Negative climate
Good atmosphere between team members No empowerment
Social activities

Conflict (18) Few conflicts Many conflicts within the team
Someone’s need to have control
Large cultural differences

Openness (17) The team accepts diverging views Dread to be open/honest
Open to others’ views Blame game
Feeling safe Insecurity

Other ‘Safety’, ‘engagement’, ‘belonging’, ‘stress’, ‘balance in team’, ‘collaboration’

Empirical Software Engineering (2022) 27:56 Page 21 of 50 56

added a third, new marker for mutual trust named ‘supportive team social climate’ due to
evidence originating from the focus group responses. Table 8 shows the new markers for
mutual trust.

4.3 Closed-Loop Communication Becomes Communication

Closed-loop communication is defined as ‘the exchange of information between a sender and
a receiver irrespective of the medium’ (Salas et al. 2005, p. 561).

4.3.1 Empirical Findings on Communication

The focus group resulted in 244 items (of 1426; 17%) allocated to communication. This was
the second most frequently occurring team effectiveness factor. Many items simply described
‘communication’ (60). The sub-components that many focus group participants noted were
‘colocation’, ‘openness’, ‘communication infrastructure’, ‘visualising status and progress’, and
a ‘friendly atmosphere’. Table 9 shows the sub-components of closed-loop communication.

While the Salas et al. (2005) definition of ‘closed-loop communication’ focuses on
information exchanged between ‘a sender and a receiver’, the case study findings suggest that
communication in an agile team setting is oriented towards the whole team and not a single
receiver. As one case study participant said, ‘I send communications to... the developers as a
whole’ [FP01]. The focus group findings show the perceived importance of colocation for
achieving close-loop communication.

The case study material supported the focus group findings on the link between colocation
and communication. ‘Because we help each other, we communicate a lot, and we always can
jump in and say, “Oh can you please have a quick look here for me”, or approach [Carlos],
like this morning and say, “I think I’ve got it right. Can you just come and have a look to make
sure that I’ve got it right?” And he just comes and look over my shoulder and just says, “Yep,
yep, yep”’ [ET02]. Further, communication for achieving understanding was supported by
colocation: ‘I send communications to... the developers as a whole. I’ll also talk to the host
developers...or else I’ll go and talk to...the BA. There might be something I don’t fully
understand in the acceptance criteria. Or the...business lead if I...have a question there. I
receive communications from everyone on the team... I communicate with everyone on the
team and I receive communications from everyone on the team’ [FP01]. Communication for
problem-solving was also supported by colocation: ‘If I had an issue or a problem, then I
would go straight to, he was just sitting right in front of me, [Valor]. And [Kate] was...on my
left...So we did have those conversations… face to face always helps. We were able to explain
right away and the turnaround was quick. The tester was beside me as well. So you had the
test analyst, you had the three components people...right beside each other’ [GT01].

Table 8 Behavioural markers for mutual trust

Behavioural markers for mutual trust (Salas et al. 2005) New behavioural markers for mutual trust

Information sharing Existing marker supported
Willingness to admit mistakes and accept feedback Existing marker supported

Supportive team social climate

 56 Page 22 of 50 Empirical Software Engineering (2022) 27:56

Agile teamwork studies of communication report that face-to-face communication
can lead to fewer task switches for developers when compared to communication over
instant messaging and email (LaToza et al. 2006) and that agile practices can have a
positive effect on communication and team productivity (Hennel and Rosenkranz
2020; Pikkarainen et al. 2008).

4.3.2 Discussion of Behavioural Markers for Communication

We argue that communication is key to efficient software development in agile teams.
We decided, however, to reduce the focus on one-to-one communication by renaming
the Salas Big Five model component ‘closed-loop communication’ as ‘communica-
tion’. We removed ‘Following up with team members to ensure the message was
received’ and replaced it with a marker that focuses on the whole team’s responsi-
bility: ‘The team follows up on the progress of tasks’. We also incorporated findings
from agile development practice in the behavioural markers. We replaced the focus on
one-to-one communication with what many practitioners express as important for
communication, namely to ‘visualise project information’ by using agile task boards
or making sketches of architecture or work processes during team interaction. This
change is also supported by studies of collaboration in agile development teams which
show how agile teams use artefacts such as stickers and physical boards to facilitate
coordination and communication (Sharp and Robinson 2006). Therefore, we added the
behavioural marker, ‘facilitate informal communication’ to emphasize the need for
physical infrastructure such as a team room and easy physical access to other team
members and business experts. Table 10 shows the behavioural markers for
communication.

Table 9 Sub-components of closed-loop communication with selected items that foster and hinder team
effectiveness

Sub-component Items

Foster (total=142) Hinder (total=102)

Colocation (48) Physical presence People are distributed
Colocation Distance
Physically placed together Not colocated

Openness (21) Open communication Secrecy
Openness in the team Retaining information
Open dialogue

Communication infrastructure (15) Process support tools Bad tools
Suitable office spaces Bad office facilities
Tools that work

Visualizing status and progress (10) Informative workspace No whiteboards
Visualize things that go well
Whiteboard/task board

Friendly atmosphere (14) Good atmosphere Scolding
Fun Antisocial environment
Friendly tone Bad atmosphere

Other ‘frequent communication’, ‘absence of conflicts’, ‘absence of
interruptions’, ‘absence of introverted team members’, ‘customer
available’, ‘common language and culture’, ‘team leadership’, ‘slow
response’, and ‘follow-up’

Empirical Software Engineering (2022) 27:56 Page 23 of 50 56

4.4 Team Leadership Becomes Shared Leadership

Team leadership is defined as the ‘Ability to direct and coordinate the activities of other team
members, assess team effectiveness, assign tasks, develop team knowledge, skills, and abilities,
motivate team members, plan and organize, and establish a positive atmosphere’ (Salas et al.
2005, p. 560).

4.4.1 Empirical Findings on Shared Leadership

Leadership was a primary concern in the focus groups, with 289 items (of 1426; 20%)
concerned with aspects of leadership. In total, 79 of the 1426 items simply reported ‘leader-
ship’. Table 11 shows the top five sub-components of leadership identified in the analysis:
‘planning’, ‘shielding from interruptions’, ‘work process’, ‘adequate resources’, and ‘infra-
structure’. Table 11 shows the results for the team leadership component.

The leadership items concerned leadership within the team, across the team-organization
boundary, and project planning. Intra-team leadership is indicated by the sub-component
‘work processes’ because the items in this category focus on functions within a team. The
sub-components concerned with boundary-spanning include ‘shielding from interruptions’,
‘adequate resources’, and ‘infrastructure’. Shielding involves a leader removing interruptions

Table 10 Behavioural markers for communication

Behavioural markers for closed-loop communication (Salas et al. 2005) New behavioural markers for
communication

Following up with team members to ensure the message was received The team follows up on the
progress of tasks

Acknowledging that a message was received. Clarifying with the sender of the
message that the message received is the same as the intended message

Visualize project information

Facilitate informal
communication

Table 11 Eight main sub-components of team leadership with items that foster and hinder team effectiveness

Sub-component Items

Foster (total=178) Hinder (total=111)

Planning (24) Good planning Bad planning
Participative planning Too-thorough planning
Adequate planning Short-sighted planning

Shielding from interruptions (24) Reduce unnecessary interruptions Interruptions
Shielding the team Workday split up
Someone protecting the team Change the agreed content

Work processes (15) Slack to think big Heavy process
Responsibility process in place Unnecessary processes

Adequate resources (16) Full-time members Part-time resources
Capacity Lack of resources
Availability Resource allocation

Infrastructure (14) Working infrastructure Lack of tools
Good work conditions Lack of technical infrastructure
Access to tools Unnecessary tools

 56 Page 24 of 50 Empirical Software Engineering (2022) 27:56

to the team by non-team actors. Provisioning adequate resources and infrastructure requires a
leader or team member to interact with the organization. The project planning sub-component
of leadership included ‘good planning’, ‘adequate planning’, and ‘participative planning’.

The case studies showed that the participants viewed leadership from an intra-team
perspective. In these colocated teams, leadership was shared with no single acknowledged
team leader; that is, the team members would allocate themselves to tasks rather than being
assigned to tasks by a specific leader. This was shown in comments from Globe and Tech,
such as, ‘… not peer pressure as such, but it’s almost team responsibility and someone has to
do it … normally what happens is someone will say, “Oh yeah, I can do that”. They will
delegate themselves’ [ET01]. ‘Well, it’s not assigned, you take it, …we’ll have a bunch of
stories that are mainframe centred, and a bunch of tasks that are all related to those stories,
and obviously there’s got to be some order in the tasks because you can’t test before you build.
But nevertheless, we’ll decide just between ourselves, and we might say, “[Nick], you take that
one, [Livia], you take that, and I’ll do this one”’ [FT02]. Team members in Rock tended to
rely more on a central figure to ensure that work progressed and tasks were allocated and
completed by team members.

4.4.2 Discussion of Behavioural Markers for Shared Leadership

The Salas Big Five model has six behavioural markers for team leadership (see Table 12). We
found, however, no evidence for three of the Salas Big Five behavioural markers but evidence
for six new markers. Firstly, we found no evidence that leaders in agile teams synchronize and
combine individual team member contributions. This can be explained because in agile teams,
team member contributions are managed with task boards, the self-assignment of tasks, and
continuous integration of the software code (Fitzgerald and Stol 2017; Sharp and Robinson
2010).

Secondly, we found no evidence for leadership involved in clarifying team roles. We
propose that this is because roles tend to be defined by the chosen methodology (e.g. scrum or
XP) in agile project teams, and role differentiation is not the aim. In addition, among the team
members, there must be an appropriate assemblage of skills necessary for project and product

Table 12 Behavioural markers for shared leadership

Behavioural markers for team leadership
(Salas et al. 2005)

New behavioural markers for shared leadership

Facilitate team problem-solving The agile team facilitates team problem-solving
Provide performance expectations and

acceptable interaction patterns
The agile team determines performance expectations and acceptable

interaction patterns
Synchronize and combine individual team

member contributions
The agile team synchronizes and combines individual team member

contributions using agile practices combined with automated
tools

Seek and evaluate information that affects
team functioning

The agile team seeks and evaluates information that affects team
functioning

Clarify team member roles Agile values and methodologies determine team member roles
Engage in preparatory meetings and

feed-back sessions with the team
Agile values and methodologies determine the frequency and type

of preparatory meetings and feedback sessions
A servant leader facilitates a boundary-spanning function
Agile team practices provide a planning function

Empirical Software Engineering (2022) 27:56 Page 25 of 50 56

completion, and specific skills are more important than roles (Project Management Institute
and Agile Alliance 2017).

Thirdly, we found no evidence that leaders in agile teams engage in preparatory meetings
and feedback sessions with the team. We propose that this is because agile teams have a shared
form of leadership with no designated leader, and all team members are involved in prepara-
tory meetings and giving feedback to one another, such as in planning meetings, sprint
reviews, retrospective meetings, and daily stand-up meetings (Project Management Institute
and Agile Alliance 2017).

We renamed the Salas Big Five team leadership component based on these arguments and
supporting evidence from our material and the agile team literature. The revised name is
‘shared leadership’ because this name more accurately reflects the form of leadership adopted
by agile teams and better encompasses the six new behavioural markers we identified. These
new markers are shown in Table 12.

The lack of fit between the Salas Big Five model’s behavioural markers and our
findings can be explained by two characteristics of the agile approach. Firstly, specific
practices in the agile approach substitute for many of the leadership behaviours
proposed in the Salas Big Five model. Agile project teams aim to be self-directing
(i.e. self-organizing or autonomous) rather than directed and coordinated by a desig-
nated leader (Hoda and Murugesan 2016), and leadership tends to be shared among
the team members (Moe et al. 2009b). Rather than relying on a leader, agile teams
evaluate and plan changes to their performance in retrospective sessions, self-assign
tasks based on a prioritized product backlog, and synchronize and combine individual
contributions using software tools and task boards (Project Management Institute and
Agile Alliance 2017). In addition, agile teams develop and share team knowledge,
skills, and abilities using techniques such as pair programming and practices such as
colocation, and teams aim for generalist skill sets (Beck and Andres 2005; Kude et al.
2013).

The second characteristic of the agile approach that differs from the Salas Big Five model is
the role of a ‘servant leader’ in an agile team (Greenleaf 2003; Project Management Institute
and Agile Alliance 2017; Sutherland and Schwaber 2020; Van Dierendonck 2011). This role
facilitates team empowerment and motivation and performs boundary spanning between the
organization and the team; however, there is limited research into this aspect of agile teams
(Holtzhausen and de Klerk 2018). The key idea is that initially, a servant leader empowers the
team and then steps back once this team-level state has been achieved. Due to the lack of
research on servant leadership in agile teams, we have not focused on servant leadership as a
factor but on shared leadership which evolves in mature agile teams.

Because team leadership has changed within agile teams to become shared leadership, we
redefined this component as follows. Shared leadership is the ‘ability of the team to direct and
coordinate their activities, assess team performance, assign tasks, develop team knowledge,
skills, and abilities, motivate one another, plan and organise, and establish a positive
atmosphere’.

4.5 Mutual Performance Monitoring Becomes Peer Feedback

Mutual performance monitoring is defined as the ‘ability to develop common understandings
of the team environment and apply appropriate task strategies to accurately monitor teammate
performance’ (Salas et al. 2005, p. 8).

 56 Page 26 of 50 Empirical Software Engineering (2022) 27:56

4.5.1 Empirical Findings on Peer Feedback

In the focus group material, this component had the smallest number of items (76 items of
1426; 5%) indicating that there is little awareness of its importance. The results from the focus
groups include items related to reflecting on work practice, giving each other feedback in the
team, that tasks have joint responsibility, and that the team is aware of their work effectiveness.
Table 13 shows the main sub-components of mutual performance monitoring.

The Salas Big Five model cites studies finding that mutual performance monitoring is
important in stressful situations where team members are more likely to make errors. Team
members are also often not aware of the errors they make, which can be remedied with
feedback. In the Salas Big Five model, mutual performance monitoring affects team perfor-
mance through effective backup behaviour. Further, mutual performance monitoring requires
an understanding of what others in the team are doing (i.e. part of a shared mental model) and
that the ‘monitoring’ is not perceived negatively by team members (i.e. there needs to be trust
within the team).

Mutual performance monitoring was evident in Globe and Tech but not in Rock. In Globe,
the team members ‘keep an eye on each other’ and on the task board to ensure that the agile
process is followed to avoid an unexpected backlog of testing. A team member explained, ‘We
have learnt from mistakes with sprints … say developers working on stories for 8 days out of
10 and then deliver everything to us in the last two days and we would have massive testing
tasks in a short time so that was like a mini Waterfall within the sprint and that’s not how it is
meant to happen. We are meant to finish the first story, then move on to the next one, and so on
or at least start a couple of stories but finish them before we move towards the bottom of the
wall. So, we keep an eye on each other and if we see that we tend to [take action]’ [ET02]. In
Tech, the team members were able to quickly assess whether a lack of communication about
changes in the software was affecting a team member and could take action. A team member

Table 13 Main sub-components of mutual performance monitoring with selected items that foster and hinder
team effectiveness

Sub-component Items

Foster (total=53) Hinder (total=23)

Reflect on practice (22) Joint reflection exercises Long feedback loops
Know own strengths and weaknesses Lack of self-awareness
Retrospectives

Joint responsibility of result (20) Ownership Conflicting incentives
Responsibility for result Focus on individual achievements
Result orientation Individual rewards

Feedback (9) Clear feedback Negative team members
Concrete feedback Poor feedback mechanisms
Constructive feedback

Measuring effectiveness (7) Regular check on progress No measure of effectiveness
Measurable effectiveness
Intention to improve

Other ‘Status’, ‘clear expectations’, ‘turnover’, ‘openness’, ‘recognition’,
‘demonstration’, ‘joint review’

Empirical Software Engineering (2022) 27:56 Page 27 of 50 56

said, ‘So the communication within the team I think is fundamental. And you see it when
someone forgets to tell someone something, that it interrupts what they were actively doing,
and they go “what’s just gone on here?” And quickly do a run around the team and find out
someone’s done something that’s impacted another person. So, communication is definitely the
biggest one. That doesn’t mean that it’s perfect … you still get small break downs that cause
interruptions’ [FT04].

4.5.2 Discussion of Behavioural Markers for Peer Feedback

The term ‘mutual performance monitoring’ is, to our knowledge, not used in studies
of agile software teams other than those explicitly using the Salas Big Five model.
However, we find many studies of practices that foster joint work and feedback, such
as in pair programming (Hannay et al. 2009), regular demonstrations (Schmitz et al.
2019), and retrospectives (Lehtinen et al. 2017). One could also argue that a practice
such as continuous build and test-driven development would lead to feedback and
awareness of errors. Also, daily meetings (Stray et al. 2016) could function as a
mechanism to provide feedback on work by others. We believe there is good support
in agile practices in achieving mutual performance monitoring, which might explain
the limited awareness of this factor. We do not think there is evidence for
recommending specific practices as behavioural markers, and we decided to keep
the behavioural markers in the Salas Big Five model (2005) for agile software
development teams. However, we decided to rename the factor to ‘peer feedback’
because we believe agile team members will find this name more understandable and
relevant to their team environments. In addition, the term ‘peer feedback’ does not
have the negative connotations of ‘monitoring’, which implies that team members are
constantly checking on teammates’ work or actions to correct them in some way. We
also propose that feedback be given ‘regularly’ and have rephrased the second marker
accordingly.

Because mutual performance monitoring is not evident in agile project teams, and
we propose the new factor ‘peer feedback’, we also developed a definition for peer
feedback that varies from the Salas Big Five model (2005). Peer feedback is ‘the
ability to develop common understandings of the team environment and based on
those understandings to give accurate peer feedback to team members’. Table 14
shows the behavioural markers for peer feedback.

Table 14 Behavioural markers for mutual performance monitoring/peer feedback

Behavioural markers for mutual performance
monitoring (Salas et al. 2005)

New behavioural markers for peer feedback

Identifying mistakes and lapses in other team members’
actions

Existing marker supported

Providing feedback regarding team member actions to
facilitate self-correction

Regular feedback regarding team member actions to
facilitate self-correction

 56 Page 28 of 50 Empirical Software Engineering (2022) 27:56

4.6 Backup Behaviour Becomes Redundancy

Backup behaviour is defined as the ‘ability to anticipate other team members’ needs through
accurate knowledge about their responsibilities. This includes the ability to shift workload
among members to achieve balance during high periods of workload or pressure’ (Salas et al.
2005, p. 560).

4.6.1 Empirical Findings on Redundancy

The focus groups resulted in 108 items (of 1426; 8%) allocated to backup behaviour. This was
the seventh most mentioned teamwork component. Table 15 shows the top six sub-
components of backup behaviour. These sub-components include ‘the right competence’,
‘distribution of tasks’, ‘time to work together’, ‘specialization’, ‘joint commitment to tasks’,
and ‘experience sharing’. Notably, ‘workload distribution’ is a sub-component that exactly
matches one of the Salas Big Five model behavioural markers. Table 15 shows the results for
this component.

The case study findings support each of the behavioural markers for backup behaviour
proposed in the Salas Big Five model (see Table 16). Workload distribution was a concern,
and the team members took action to shift work to underutilized team members. The team
members were able to take on the tasks of their teammates because of their broad skill sets. For
example, developers could take on testing tasks. In Tech, team members would ask their team
members if they could help. For example, a team member said, ‘When we are say, finished
with a task and there’s nothing more to do, then we’ll go and ask if there’s a sequence of things
that one person is intending to do if there’s some backlog or we ask the person if he is alright
or if it’s alright for us to jump into one of the tasks’ [FT03]. In Globe and Rock, the task board
provided a mechanism to identify when backup behaviour might be appropriate. In Globe, a
team lead explained, ‘there’s a bit of cross-work. Sometimes if there’s a lot of testing work

Table 15 Main sub-components of backup behaviour with selected items that foster and hinder team
effectiveness

Sub-component Items

Foster (total=58) Hinder (total=50)

The right competence (49) Everyone can contribute
Need for other people’s knowledge
Skilled team members

Lack of competence
Skewed competence profile in team
Too-similar competence

Distribution of tasks (15) Equal status of team members
Right task to right team member
Tandem working

Bottlenecks
Too many tasks in progress at once
Wrong people on tasks

Time to work together (9) Have time to work together
Pair programming
Pair working

Little pair work
‘Loners’ in team
Team members isolated

Specialization (8) Large diversity in skills
Little spread of knowledge
‘Experts’

Joint commitment to tasks (7) Empowerment
Give/take responsibility
Tasks given to pairs or group

No helping each other
One responsible per task

Experience sharing (6) Time to learn for all team members Little overlap on tasks

Empirical Software Engineering (2022) 27:56 Page 29 of 50 56

outstanding, the developers will help with some testing. And there are some tasks [on the task
board] that everyone on the team will work on, depending on who is free and who is available’
[EP01]. In Rock, a team member stated, ‘And some of it was at the wall [i.e. task board] …,
“Okay when are you going to be able to finish all that testing?” and I would say, “Well I’ve
got this and this and this to do”, and [Madhup] would say, “Well I’m just about finished this,
and I haven’t got anything coming for a week, so I can do something” [GT02].

Backup behaviour is recognized in agile team studies, but the focus is on how pair
programming supports backup behaviour; other factors or practices that might contribute to
backup behaviour are not considered. In one study, Kude et al. (2013) measured agile team
effectiveness based on role-focused questionnaire data from 62 colocated scrum teams. The
results showed that pair programming helps teams establish backup behaviour by improving
the shared mental models among the team’s developers and that backup behaviour reduces the
negative effect of task novelty on performance. Our findings also support the result that shared
mental models contribute to backup behaviour. Many sub-components in the focus groups that
fostered backup behaviour were activities that promote shared mental models, including
knowledge sharing, team or individual empowerment (which allows all members to contrib-
ute), having time to work together, and work in paired modes.

A study by Coman et al. (2014, p. 125) defines backup behaviour in agile teams simply as
‘the extent to which team members help each other perform their roles’. They identified
collaboration and cooperation as forms of backup behaviour occurring during pair program-
ming in a study of three software development projects. Cooperative backup behaviour was of
short duration and occurred when a developer helped a teammate on a small or isolated
subtask, whereas collaborative backup behaviour was of longer duration, occurred less often,
and arose when teammates worked together because they share the same goal when solving an
entire issue.

4.6.2 Discussion of Behavioural Markers for Redundancy

The findings in our focus groups mention pair programming as a mechanism to support
backup behaviour, whereas this is not mentioned in the case studies. However, the focus group
findings indicate a wider range of sub-components related to backup behaviour, including skill
sets (consisting of competence, specialization, and experience of sharing), task commitment,
and time to allow for helping behaviours. The case findings indicate that mechanisms for
initiating backup behaviour are to ask teammates if they need assistance and to use the
information displayed on task wallboards. Therefore, based on the focus group and case study
evidence, we agree with the behavioural markers in the Salas Big Five model and found no
evidence for new behavioural markers.

Table 16 Behavioural markers for backup behaviour/redundancy

Behavioural markers for backup behaviour (Salas et al. 2005) New behavioural markers for
redundancy

Recognition by potential backup providers that there is a workload distribution
problem in their team

Existing marker supported

Shifting of work responsibilities to underutilized team members Existing marker supported
Completion of the whole task or parts of tasks by other team members Existing marker supported

 56 Page 30 of 50 Empirical Software Engineering (2022) 27:56

We decided to rename backup behaviour as ‘redundancy’. We made this change because
the redundancy of skill sets in agile software development is necessary to enable backup
behaviour. Without suitable skills, there can be no effective backup behaviour. In agile teams,
the team members aim to be cross-functional, which means the team contains all of the skills
needed to achieve their goal (Project Management Institute and Agile Alliance 2017). Team
members also aim to be generalizing specialists (see Table 3), which means an individual team
member has not only a speciality but also a breadth of experience and multiple skills. This
generalizing specialist characteristic is necessary so that team members ‘can routinely help
each other’ or, in other words, provide backup behaviour (Project Management Institute and
Agile Alliance 2017, p. 42). We also renamed this component because the idea of redundancy
is more familiar to those involved in software development than the term backup behaviour.
Table 16 shows the behavioural markers for backup behaviour, now renamed ‘redundancy’.

4.7 Adaptability

Adaptability is defined as the ‘ability to adjust strategies based on information gathered from
the environment through the use of backup behaviour and reallocation of intra-team re-
sources. Altering a course of action or team repertoire in response to changing conditions
(internal or external)’ (Salas et al. 2005, p. 560).

4.7.1 Empirical Findings on Adaptability

The focus groups resulted in 118 items (of 1426; 8%), indicating that ‘adaptability’ is of relatively
low perceived importance as this component was ranked sixth of the eight teamwork components.
The main sub-components were ‘organizational constraints’, ‘team environment’, ‘collaboration

Table 17 Main sub-components of adaptability with examples of items that foster and hinder team effectiveness

Sub-component Items

Foster (total=58) Hinder (total=60)

Organizational constraints (37) Choosing own tools Dependencies outside team
Environment Limited resources
Suitable tools Bad technological choices

Team environment (30) Good atmosphere Bad atmosphere in team
Fun at work Egoism
Humour Internal competition

Collaboration culture (9) Rolling pair work Customer uncertainty
Willingness to solve problems Instability
Willingness to collaborate Lack of collaboration

Team focus (8) Good team dynamics Other or new tasks
Daily synchronization Disturbances
Continuous improvement

Right competence (6) Competence Team not proper for task
Lack of competence
Important persons outside team

Conflict (4) Internal conflicts
Conflicts

Other (24) ‘Joy of work’, ‘engaged team members’, ‘little priority to team tasks’, ‘team
composition’, ‘openness’

Empirical Software Engineering (2022) 27:56 Page 31 of 50 56

culture’, ‘team focus’, ‘right competence’, and ‘conflict’. Table 17 shows the main sub-
components of adaptability with examples of items that foster and hinder team effectiveness.

In Globe and Tech, the teams readily adapted to change when they encountered a problem.
In these cases, the teams experienced problems with the way their work was organized. They
recognized the problem and jointly decided to change how they were working to improve the
situation. For example, a team leader in Globe explained, ‘When we were first doing our Agile
Sprints, we would do … spec workshops, which is where you go through the stories to
understand the business intent of upcoming stories…we used to…have these meetings once
a week for a couple of hours…But…we found that when we got to the sprint and we decide
what we’ve going to do, sometimes the Business Lead will have changed her mind on what her
priorities were, or sometimes you couldn’t do what we thought we were going to do. And… all
that work had been wasted. So, we decided that rather than do the… workshop…two weeks in
advance, we would do it immediately before our Sprint planning. And that’s worked out better’
[EP01]. In Tech, the team acted when they recognized a problem with the product demon-
stration; the team leader explained, ‘So we failed…when we went to show it the test environ-
ment wasn’t up and running. So, we couldn’t actually demo it…we just had to talk about it…
everyone in the team was very upset about that because it … looks bad … So …one of the
decisions we made was that for the show and tell we’re going to move it to a different day, to a
Tuesday, and rearrange all those other meetings slightly to make it work. And … we were
going to put one person in charge of the show and tell and we’d rotate that. And…that person
was…responsible for checking things and chasing up if the environments were down, …
making sure the rooms are booked, and the video conferencing is working’ [FP01].

In Rock, the team found it challenging to adapt their work practices to incorporate more
agile practices although team members had had prior positive experiences with agile practices.
A team member explained, ‘Before this project, I was already involved in another agile
project where we had... Scrum… – but that was also more of a hybrid because we started off
with requirements that were meant to be from waterfall sense of development… But we ended
up making it an agile project. But the difference with that one and this one is that this one,
there we had the planning sessions … we had stories, and we had estimations for the stories,
and we kept to the how many hours you have within the Sprint, and then we did the actual
Sprints, and we did the actual show and tells. So, I had, in comparison to this one, it had more
Agile components in it’ [GT01].

4.7.2 Discussion of Behavioural Markers for Adaptability

The case findings support the behavioural markers proposed in the Salas Big Five model,
particularly the findings from Globe and Tech. In both cases, the teams encountered change,
specifically, changes in priorities and a failed product demo, and they developed a new plan to
deal with the changes, namely, reduced preplanning and rotating responsibility for show-and-
tell sessions. Therefore, we accept the behavioural markers proposed in the Salas Big Five as
appropriate to explain adaptability in agile software development project teams. Table 18
shows the behavioural markers from the Salas Big Five model.

Organizations adopt team structures to facilitate organizational adaptability (Burke et al.
2006). Burke et al. (2006) argue that team adaptability is emergent and ‘is manifested in the
innovation of new or modification of existing structures, capacities, and/or behavioral or
cognitive goal-directed actions’ (Burke et al. 2006, p. 1190). Although agile project teams are
explicitly designed to adapt to changing circumstances, research addressing agile team

 56 Page 32 of 50 Empirical Software Engineering (2022) 27:56

adaptability is scant. We found two studies. The first, by Salo et al. (2004), was a single case
study of an XP team reporting that adaptability can be achieved with little effort by adopting
post-iteration reviews (more commonly known as retrospectives) to reflect and plan adjust-
ments to practices and processes. The second study, by Grass et al. (2020), based on 44
interviews across three organizations, found that empowerment was the focal factor in team
adaptability. They found that leadership grants empowerment and that the agile team accepts
the empowerment, and this interaction underpins team adaptability. Based on the practitioners’
understandings, we see the practice of holding retrospective meetings at the end of each
development sprint or iteration as the formal mechanism by which agile teams reflect and then
adapt (Project Management Institute and Agile Alliance 2017).

Based on our findings and the limited support from the literature, we propose that team
adaptability is a factor in agile project teams as posed in the Salas Big Five.

4.8 Team Orientation

Team orientation is defined as the ‘Propensity to take other’s behaviour into account during
group interaction and the belief in the importance of team goal’s over individual members’
goals’ (Salas et al. 2005, p. 561).

4.8.1 Empirical Findings on Team Orientation

The focus groups resulted in 182 items allocated to team orientation (of 1426; 13%). Team
orientation was of relatively low perceived importance as this component was ranked fifth of
the eight teamwork components. The main sub-components were ‘team cohesion’, ‘team
environment’, ‘prioritisation of team tasks’, ‘team member respect’, ‘responsibility’, and
‘conflict’. Table 19 shows the main sub-components of team orientation with example items
that foster and hinder team effectiveness.

Two case studies provided evidence of a focus on team goals over individual goals. In
Globe, the team showed commitment to the tasks in the iteration backlog. The team lead
explained, ‘The Business Lead will want ten stories done and the project team will only want
to do five and there’ll be a bit of to-ing and fro-ing and they might agree to six, or they might
agree to seven, or they might only want to do five. But it’s up to the team. The Business Lead
will always try and put a bit of pressure on, which is her job. But it’s up to the team to commit
to something’ [EP01]. In Tech, the team members committed to the task they had selected, as
explained by a team member: ‘But there’s a sense of ownership, so if you pick something up [a
task] you tend to see it through’ [FT04].

Table 18 Behavioural markers for adaptability

Behavioural markers for adaptability (Salas et al. 2005) New behavioural markers for
adaptability

Identify cues that a change has occurred, assign meaning to that change, and
develop a new plan to deal with the changes

Existing marker supported

Identify opportunities for improvement and innovation for habitual or routine
practices

Existing marker supported

Remain vigilant to changes in the internal and external environment of the team Existing marker supported

Empirical Software Engineering (2022) 27:56 Page 33 of 50 56

The Salas Big Five model describes team orientation as an attitudinal dimension, unlike the
other dimensions that are described as behavioural. The authors point out that team cohesion is
different from team orientation; team cohesion is a desire to work in a particular team, while
team orientation is ‘a general preference to work in team settings’ (Salas et al. 2005).
However, teamwork studies on software development teams identify team cohesion as a factor
that strongly improves performance (Dingsøyr et al. 2016). This was also found in a study of
agile development teams (Kuthyola et al. 2017). Focus group participants described cohesion
with items such as ‘common goals’ and ‘members have ownership of the plans’. In the
teamwork literature, team cohesion is often defined as the team ‘sticks together and remains
united in the pursuit of its goals and objectives’ (Mudrack 1989, p. 781). Hoegl and
Gemuenden (2001) use team cohesion as a teamwork quality factor in their model and cite a
study by Mullen and Copper (1994) that distinguishes three types of cohesion: 1) interpersonal
attraction of team members, 2) commitment to the team task, and 3) group pride or ‘team
spirit’. Agile practices that involve frequent meetings, such as in daily meetings, joint
planning, demonstration, and retrospective meetings, and practices such as pair programming
and shared code ownership are likely to make the team members more ‘united’ and cohesive.
Further, agile methods emphasize team commitment to the product backlog. The backlog is a
project artefact that aids team cohesion as it provides the task work that leads to the goals and
objectives for the teamwork.

4.8.2 Discussion of Behavioural Markers for Team Orientation

There is broad agreement that team orientation is important for team effectiveness. The Salas
Big Five model explains that team orientation affects team effectiveness through team
members’ 1) willingness to engage in mutual performance monitoring and 2) acceptance of
feedback and/or assistance through backup behaviour.

The Salas Big Five model has two behavioural markers for team orientation. The first is
‘Taking into account alternative solutions provided by teammates and appraising that input to
determine what is most correct’ (Salas et al. 2005, p. 561). We find that the sub-component

Table 19 Main sub-components of team orientation with example items that foster and hinder team effectiveness

Sub-component Items

Foster (total=101) Hinder (total=81)

Team cohesion (42) Common goals
Good and healthy culture
Members have ownership of the plans
Understanding of the importance of all team

members

Lack of team cohesion
Lone wolves
Regular changes in direction
Unclear goals/demands

Prioritization of team tasks
(20)

High motivation level
Narrow focus
Time for group processes (retrospective …)

Failure to follow agreement
Lack of focus among team

members
Private agenda
Not prioritizing the team

Team member respect (19) Know the team
People solution-oriented
Respect for individuals

Large ego
Strong individualists
‘My way is best’

Other ‘Common understanding of roles’, ‘knowledge of customer needs’, ‘colocation’,
‘knowledge of scope’

 56 Page 34 of 50 Empirical Software Engineering (2022) 27:56

‘team member respect’ in the focus group material supports this marker. The second is
‘Increased task involvement, information sharing, strategizing, and participatory goal setting’
(Salas et al. 2005, p. 561). Here, we find that the sub-components ‘team cohesion’ and
‘prioritisation of team tasks’ in the focus group material support this marker. Globe under-
scores that the team is committing to tasks in the product backlog, while Tech shows
commitment to tasks at an individual level.

A significant obstacle to team orientation is conflict in a team. One of the focus group sub-
components was ‘conflict’, and prior studies have identified relational conflicts in the team
contributing to negative effectiveness (Dingsøyr et al. 2016). In contrast, Dingsøyr et al.
(2016) found that conflict over tasks positively influences effectiveness. Therefore, collabora-
tive management of conflicts can signify that a team is performing well.

We interpret the first behavioural marker as a sign of willingness to manage task conflicts
and that team cohesion is unlikely if there are relational conflicts in a team. We, therefore,
propose to keep the first behavioural marker. The second marker involves the following four
distinct features: Firstly, increased task involvement was central to the focus group member
perceptions of team effectiveness in prioritizing team tasks. Secondly, information sharing was
identified in focus groups but placed ‘experience sharing’ in backup behaviour. We suggest
keeping ‘information sharing’ here as well. Lastly, the focus group material on ‘common
goals’ and ‘ownership of plans’ is reflected in strategising and participatory goal setting. We,
therefore, decided to keep the second behavioural marker. Still, because prior studies of
software team effectiveness and perceptions from focus group participants identify team
cohesion as an important factor, we decided to add the cohesion marker ‘The team sticks
together and remains united’. Table 20 shows the behavioural markers for team orientation.

5 The Agile Teamwork Effectiveness model (ATEM)

This study sought to answer the research question ‘What are the coordinating mechanisms, core
components, and behavioural markers for effective teamwork in agile software development?’
We drew on a previously published teamwork effectiveness model, the Salas Big Five model,
which we carefully evaluated and then revised. We named this new model the ‘Agile Teamwork
Effectiveness Model’, or ATEM. The revision was based on insight from case study and focus
group material and support from multi-vocal sources that included the research and grey
literature on agile software development. Therefore, the ATEM is research-based and incorpo-
rates widely accepted practitioner knowledge for software development teams, as expressed, for
example, in the agile practice guide (Project Management Institute and Agile Alliance 2017).

Table 20 Behavioural markers for team orientation

Behavioural markers for team orientation (Salas et al.) Proposed new behavioural
markers

Taking into account alternative solutions provided by teammates and
appraising that input to determine what is most correct

Existing marker supported

Increased task involvement, information sharing, strategizing, and participatory
goal setting

Existing marker supported

The team sticks together and
remains united

Empirical Software Engineering (2022) 27:56 Page 35 of 50 56

Section 4 discussed each coordinating mechanism and component and their associated
behavioural markers. This resulted in the ATEM consisting of the following five core
components that can explain and predict agile team effectiveness: shared leadership, peer
feedback, redundancy, adaptability, and team orientation. Three additional mechanisms coor-
dinate the ATEM components: shared mental models, mutual trust, and communication. The
ATEM is depicted in Fig. 3.

The ATEM includes all of the components and coordinating mechanisms in the Salas Big
Five model, but we have revised and renamed some to better fit the knowledge garnered from
agile team research and practice and reflect common terms in the software engineering
domain. The complete list of behavioural markers for the coordinating mechanisms and
components of the ATEM, as defined in Section 4, are shown in Tables 21 and 22,
respectively.

ATEM is an explanatory model because it describes and explains the factors that make up
effective agile teamwork. The model also has a predictive aspect because teams can use it to
guide their actions (Gregor 2006). In particular the behavioural markers can guide agile teams
as to the behaviours they should support and encourage, whether by adopting particular agile
practices or by other means, because when these behaviours are at high levels then teamwork
is more likely to be effective.

In the following sections, we critically examine the ATEM. First, we discuss the model,
how we believe it can be adapted to different contexts, and how different groups can use it. We
end the discussion by discussing limitations and implications and suggesting further work.

Shared
leadership

Peer
feedback Redundancy Adaptability Team

orientat ion

Shared mental
models

Mutual
t rust

Communicat ion

Fig. 3 The ATEM with its five teamwork components and three coordinating mechanisms

Table 21 Coordinating mechanisms with behavioural markers in the ATEM

Teamwork coordination mechanism Behavioural markers

Shared mental models Anticipating and predicting each other’s needs
Common understanding of goals
Common understanding of tasks
Common understanding of the work process
Common understanding of the product
Common understanding of individual skills and expertise

Mutual trust Information sharing
Willingness to admit mistakes and accept feedback
Supportive team social climate

Communication The team follows up on the progress of tasks
Visualize project information
Facilitate informal communication

 56 Page 36 of 50 Empirical Software Engineering (2022) 27:56

5.1 A Critical Examination of the ATEM

Comparing the ATEM to previously published team and teamwork effectiveness models, one
could note that learning is part of previous models. Learning is necessary for teams to be
effective because they must learn both the application domain and technology during the
team’s lifespan (Tiwana 2004). Dingsøyr et al. (2016) show a direct relationship between team
learning and team performance, and Janz (1999) has ‘cooperative learning’ as a factor that
influences work outcome. Other team effectiveness models conceptualize ‘learning’ different-
ly; for example, Hoegl and Gemuenden (2001) treat learning as an outcome in their model as a
part of ‘team member success’.

Although we have not included learning as an independent component in the models,
learning is encompassed within shared mental models, redundancy, and peer feedback. We
argue that learning is a factor that influences many aspects of teamwork; therefore, we decided
not to include learning as a separate component in the model.

Second, why do we not focus on how a team develops teamwork over time? Prior studies
have investigated how agile teams mature over time (Gren et al. 2017). We have focused on
defining components, mechanisms, and behavioural markers and not critically discussed
advice on which factors to focus on first in teamwork development. In the original Salas Big
Five model, Salas et al. (2005) state that the ‘importance and prominence’ of the components
will vary through different stages of team development. They argue that team leadership and
team orientation will be important in the early stages, while peer feedback and redundancy
will be more important over time. Communication might change over time as studies have
found that experienced teams tend to communicate less than inexperienced teams (Salas et al.

Table 22 Teamwork components with behavioural markers, ATEM

Teamwork
component

Behavioural markers

Shared leadership The agile team facilitates team problem-solving
The agile team determines performance expectations and acceptable interaction patterns
The agile team synchronizes and combines individual team member contributions using

agile practices combined with automated tools
The agile team seeks and evaluates information that affects team functioning
Agile values and methodologies determine team member roles
Agile values and methodologies determine the frequency and type of preparatory meetings

and feedback sessions
A servant leader facilitates a boundary-spanning function
Agile team practices provide a planning function

Peer feedback Identifying mistakes and lapses in other team members’ actions
Regular feedback regarding team member actions to facilitate self-correction

Redundancy Recognition by potential backup providers that there is a workload distribution problem in
their team

Shifting of work responsibilities to underutilized team members
Completion of the whole task or parts of tasks by other team members

Adaptability Identify cues that a change has occurred, assign meaning to that change, and develop a new
plan to deal with the changes

Identify opportunities for improvement and innovation for habitual or routine practices
Remain vigilant to changes in the internal and external environment of the team

Team orientation Taking into account alternative solutions provided by teammates and appraising that input to
determine what is most correct

Increased task involvement, information sharing, strategising, and participatory goal setting
The team sticks together and remains united

Empirical Software Engineering (2022) 27:56 Page 37 of 50 56

2005). We do not have sufficient material in our data to add to this discussion but suggest this
as a topic for further work in studies of teamwork effectiveness in software development.

Third, why do we look only at colocated teams who develop non-safety critical software?
Colocated teams are the ‘original’ home ground for agile development methods (Williams and
Cockburn 2003), and the case study material is from colocated teams as well as most of the
focus group material. A team effectiveness model for distributed agile teams might need to
consider additional factors such as reducing the impact of temporal, geographic, and socio-
cultural distance (Ågerfalk and Fitzgerald 2006). In the following, we discuss what modifica-
tions we see for other types of agile teams.

Fourth, could the model apply to groups as well as teams? Although many organizations
label ‘groups’ as ‘teams’, they are different, and our model applies to agile teams rather than
groups. In the background section, we defined teams as typically having shared goals and task
interdependencies, whereas groups tend to have separate goals and tasks, although group
members might interact socially and be part of the same organizational structure. Groups, with
fewer or no interdependencies, might not need to develop a shared mental model nor need the
same level of trust, and communication may be less important. A group, however, would need
to establish effective leadership to distribute tasks to competent group members, whereas in
knowledge-based teamwork with a shared goal (i.e. to develop a single cohesive product such
as software), this is most effectively done through shared leadership. In conclusion, a group
might function well with a simplified model with less focus on the coordinating mechanisms.

Fifth, would this model be relevant to a non-agile team? The ATEM is based on a more
general model of teamwork effectiveness, and we believe non-agile teams would find the
factors in the Salas Big Five model more relevant, such as when they have a formal team
leader. A related question is, if you work in an agile team, would the degree of usage of agile
methods influence which factors are important in teamwork? An agile method with many
ceremonies, such as scrum, could both lead to and require more teamwork than a team using,
for example, kanban (Stray et al. 2011). For a kanban team, the flow of work tasks is
important, and special emphasis should be put on building redundancy to be able to give
priority to the most important tasks. A scrum team might need to focus on team orientation to
ensure that the team meets its goals during an iteration. Each team might need to decide on
these questions based on their context.

Finally, the Salas Big Five model states propositions about the relationships between the
components and the coordination mechanisms. For example, one proposition is that ‘effective
adaptability requires the existence of shared mental models’ (Salas et al. 2005, p. 583). Why
do we not include such relationships in our model? In revising the Salas Big Five model, we
rely on support from three data sources, including focus groups, case studies, and the literature.
The focus group material does not provide insight into relationships and the case studies only
limited evidence. Therefore, we have limited the scope of the work in this article to building a
strong case for the components, coordination mechanisms, and behavioural markers based on
all three sources. We suggest focusing on the relationships between components and coordi-
nation mechanisms in future research.

5.2 The ATEM Extensions – Outside the Comfort Zone

We have focused on a teamwork effectiveness model for collocated teams working on a single
product. What would be different if the model were to be used for small teams or in a multi-
team, distributed, or safety-critical setting?

 56 Page 38 of 50 Empirical Software Engineering (2022) 27:56

A very small teamwith three to four members would not face the same challenges in achieving
effective teamwork, as a larger team with, for example, nine members might. Communication,
establishing trust, and shared mental models would be easier with fewer team members. Agile
practices such as daily meetings and conducting retrospectives could be less time-consuming in
smaller teams. However, a small team would have trouble engaging on larger tasks
which would take more time. There might also be limited opportunity for peer feedback
because of a smaller variation in competence and soft skills in a small team. A small
team might rely more on external participation to ensure high-quality peer feedback.

In a multi-team setting, we believe all the components and coordinating mechanisms in the
model will also be important. If a team has dependencies with other teams, studies of multi-
team systems (Marks et al. 2005) suggest that coordinating across teams is needed for the
overall success of the set of teams (Bjørnson et al. 2018; Shuffler et al. 2014). Further, good
coordination within the team is important for overall coordination between teams (Firth et al.
2015). However, teamwork components have been found to affect team performance differ-
ently in the multi-team setting than in single-team settings (Lindsjørn et al. 2018) which used
the TWQ model (Hoegl and Gemuenden 2001). Which factors are particularly important in
multi-team settings is a topic we currently do not know enough about.

Distributed development provides particular challenges to agile development when teams cannot
rely on oral communication and tacit knowledge sharing (Ågerfalk and Fitzgerald 2006). Trust can
be difficult to developwithout physical meetings in a development team (Moe and Smite 2007), and
communication can be more prone to misunderstandings if it is text-based and asynchronous. A
shared mental model can be harder to develop if meeting points are few. Team orientation
might suffer due to different priorities in parts of an organization or among subcontrac-
tors. We think that all of the components and mechanisms are relevant for distributed
development but suggest that a team would have to work differently with each compo-
nent or mechanism in a distributed team or in a virtual agile team, which is a common
way of working during the recent global pandemic. Shared mental models, for example,
would normally be developed in synchronous meetings in a colocated team. If this is to
be developed asynchronously, it might require tasks to be added to the team backlog that
focus specifically on learning about the goals and tasks, processes and product, skills and
expertise of others, or issues affecting the work. Global development teams need to give
particular attention to additional challenges to effective teamwork due to temporal,
geographic, and sociocultural distance (Ågerfalk and Fitzgerald 2006; Smite et al. 2010).

Finally, in safety-critical development, there is more focus on quality assurance (Kasauli
et al. 2018), which would involve more work on peer feedback and possibly more redundancy
in competencies to ensure quality in decision making. Such teams will have stricter require-
ments for precise and accurate communication to ensure that team members do not breach
safety requirements. Shared mental models in the team may be more critical and could be
supported through the use of quality assurance tools to provide a safety net for developers or
through more frequent discussions of the exact definitions of ‘done’.

5.3 Limitations

We have described the main limitations of the focus groups and case studies in Section 3. There are
further limitations related to the model. We do not claim that the model is generalisable to all
contexts although this is mitigated somewhat because the evidence is drawn from two contributing
empirical studies that used different research methods, and the evidence was collected in different

Empirical Software Engineering (2022) 27:56 Page 39 of 50 56

countries and continents. We have also supported the arguments for our model by drawing on
evidence frommulti-vocal literaturewhenever possible. Further studies of agile teams and teamwork
using different research methods might lead to changes to the factors in the model, and we suggest
that for future research.Whenmerging our empirical evidencewith findings on teamwork in general
and teamwork in agile software development in particular, we had to interpret the meanings of a
range of concepts. A lack of a shared understanding of concepts in teamwork theory might have led
to the inaccurate coding of the datamaterial.We have sought to reduce the impact of potential errors
by showing the connection between the data material and our interpretations in Section 4. Further,
although we have built the ATEM on solid foundations by drawing on a range of sources, we have
not testedwhether thismodel can explain agile team effectiveness better than othermodelsmight do.
We suggest comparing the ATEMwith other models as further work. ATEMmight not account for
all teamwork factors in agile teams, although we have attempted to identify a ‘core’ set of factors.
Therefore, future adjustments to the model may be needed if new factors emerge. A further
limitation of the model is that we have not argued for the potential relationships between compo-
nents and coordinating mechanisms. The development of testable propositions would complete the
model, making it suitable for large-scale field testing.

5.4 How the Model Can be Used: Implications and Future Work

For theory development, the ATEM highlights the core components and coordinating mech-
anisms for agile software development teams and teamwork. These components and mecha-
nisms can be further examined to better understand why practices in agile development
methods are important for effective teamwork. For researchers, it can be easier to relate the
effects of development methods or practices to one or more ATEM components or mecha-
nisms than directly to team effectiveness. Further, the ATEM links the software engineering
literature to the teamwork literature, which is a source of relevant new insight. Using the
ATEM as a basis, we hope researchers will focus studies on topics clearly relevant to effective
teamwork and thus enable the research community to better understand the factors which
explain and predict agile team effectiveness. As described in the limitations, the model should
be tested to see whether it can explain what contributes to team effectiveness better than
previous models. Another line of future research would be to gain insight into relationships
between components and coordination mechanisms, such as building on propositions devel-
oped in the Salas Big Five model. Finally, another line of research could focus on team
development over time; for example, how do agile teams develop a shared mental model, or
how does an agile team achieve team orientation?

For practitioners, the ATEM could be used by agile teams to help them understand what
comprises effective teamwork in an agile context. For example, a prior study, using parts of the
focus group material appearing in this current study, found that many teams are unaware of the
importance of peer feedback for team effectiveness (Dingsøyr and Lindsjørn 2013). The model
and its components, coordinating mechanisms, and behavioural markers could be used by
agile team members or team facilitators in retrospectives as a set of topics to address over time
or by leaders or agile coaches as topics in internal competence development programmes. In
addition, the behavioural markers can be used to evaluate whether a team is acting effectively
while its work is underway. Finally, we think the ATEM could help agile teams understand
why some of the practices prescribed in the agile development methods are needed and useful,
or not, by understanding how a practice contributes to effective agile teamwork.

 56 Page 40 of 50 Empirical Software Engineering (2022) 27:56

6 Conclusion

Teams and teamwork are central tenets of agile software development, which is the most widely
used approach to developing software systems. However, there is no comprehensive model to
explain or predict agile software development teamwork effectiveness. No model sets out the
behaviours that effective agile teams display during their teamwork. To address this problem, we
have revised a widely accepted general teamwork effectiveness model to fit the needs of agile
software development teams. We base our revision on findings from a focus group study, a multi-
case study, and a multi-vocal literature review. Our team effectiveness model for agile teams, the
ATEM, includes three coordinating mechanisms – shared mental models, communication, and
mutual trust – and five components – shared leadership, team orientation, redundancy, adaptability,
and peer feedback. We argue that these coordinating mechanisms and components strongly
influence team effectiveness.

We have shown how this model can be used by team members, agile coaches, and leaders
in software organizations. Further, this model opens new research directions for empirical
software engineering, enabling researchers to investigate why and how agile practices and
methods contribute to agile team effectiveness.

Appendix 1 – Agenda Workshop Focus Groups

1. Introduction: The researchers explained the purpose of and motivation for the workshop
and gave an overview of the planned activities.

2. Group exercise 1: This exercise included a brief introduction of all group members, then
each participant completed a context questionnaire. Next, participants carried out brain-
storming sessions focusing on ‘What fosters effective teamwork’ (documented on green
stickers) and then on ‘What hinders effective teamwork’ (documented on yellow stickers).

3. Presentation of a team effectiveness model: The group presented and explained the
research-based Salas Big Five model.

4. Group exercise 2: Groups presented the results of the brainstorming sessions and cate-
gorized the stickers according to the model of team effectiveness. The researchers
moderated the placement of stickers in discussion with the group members.

5. Summary: The focus groups concluded with a presentation of the group’s results, feed-
back on the workshop, the preparation of a meeting summary, and a discussion of further
research on teamwork.

Room setup: The rooms were set up with one table per group. Walls were covered with
flip-over charts with numbered areas for grouping stickers from the brainstorming
session. Groups were given stickers in the correct colour at the start of each task to
avoid participants confusing the colours. At stage 4, groups were given a sheet
explaining the teamwork model.

Moderation: The second author moderated the focus groups during agenda items 1 and 3
and the second and third authors during items 2 and 4. The moderation discussion mainly
involved deciding where to classify items in the team effectiveness model.

Empirical Software Engineering (2022) 27:56 Page 41 of 50 56

Gender Woman Man

Group no

Age (in years)

Education (specify the highest degree) Bachelor’s Master’s PhD

Other:

Experience (in years) with software engineering

Experience (in years) with agile methodology

How long have you worked in the team?

How much time do you spend on work in

this team?

Specify %

Specify your role in this team.

How many members are there in your

team?

How many team members are working

full time?

How many other teams are working with

the same product?

Which agile methodology are you using?

(possible to have more than one answer)

Scrum XP Kanban Lean

Other:

Specify average time (in months)

between each release.

Specify interval time between each

iteration.

Are the team members in your team

working in the same location?

To a very

small extent

To a small

extent

To a moderate

extent

To a great

extent

To a very

great

extent

To what extent does the team have daily

meetings (stand-up, etc.)?

To a very

small extent

To a small

extent

To a moderate

extent

To a great

extent

To a very

great

extent

To what extent is the whole team part of

the planning of every iteration?

To a very

small extent

To a small

extent

To a moderate

extent

To a great

extent

To a very

great

extent

To what extent does the team have

reviews/retrospectives after each

iteration?

To a very

small extent

To a small

extent

To a moderate

extent

To a great

extent

To a very

great

extent

Specify which collaboration tools you are

using in the team

No tool Task board

on the wall

Electronic task

board

Spread-sheet

(excel…)

Jira

Jira with

Green-

hopper

Bug-tracking Project

management

tools

Scrum special tools

(Scrumworks, etc.)

Other:

Appendix 2 – Context Questionnaire in the Focus Group Study

 56 Page 42 of 50 Empirical Software Engineering (2022) 27:56

Appendix 3 – Case Studies – Interview Schedule

The semi-structured interview schedule for the case studies, (Strode 2016).

1. Background questions

& Name, job title, years of IT experience, Educational background
& Describe your job (what is your role on this project) and its goals

2. What are your main work activities (3–5 activities) IN THIS PROJECT

& For each activity (this will depend on specialization/generalization of work)

– Main purpose of the activity
& Depending if work is broken down into distinct activities or not…

– How is work assigned to you?
– How do you know when to start the work/activity?
– Who do you work with to complete the activity [for stakeholder identification]

– Who do you send communications to?
– Who do you receive communications from?

– How do you share out/or delegate the work?
– How do you decide who to share out or delegate the work to?
– What resources (things or information) do you need to complete the activity?
– What technologies do you use to help you carry out the activity? (e.g., email, configura-

tion management tools, wiki, project database, on-line project plan, on-line specification)
– What forms or documents do you need to perform the activity? Examples?
– What is the product or partial product of the activity? (documents, information, software)

– Who relies on the product of this activity?

– Do any of your work products need to be integrated or fit in with other peoples’ work or
applications?

– Who waits for your work to be completed? [Ask for an example]

& Individual activities:

– How do you know when the activity is complete?
– How do others know when the activity is complete?
– What things hinder this activity

– What do you wait for?
– Negotiate for?
– Bid for?

Empirical Software Engineering (2022) 27:56 Page 43 of 50 56

– What would happen if this activity was not carried out?
– What alternative ways could the outputs or goal of this activity be achieved?

3. Dependency prompts:

& Who is your vendor(s) [for stakeholder identification]
& Who is your customer(s) [for stakeholder identification]
& What other business units do you interact with? [for stakeholder identification]
& Lifecycle (only used when multiple teams are working on same product for different

platforms) – how is this managed/organized?
& Big picture - how do you achieve an overview of how all of the parts of the system fit

together?
& Testing – test versions - how do you manage/organize this? What types of testing do

you do?
& Parallel development – when two or more people work on the same code module –

how do you manage/organize this?
& Change – when changes are made how does this impact other code modules,

documentation, testing?
& Expertise

– How do you all know what the product must do?
– How do you know what the other people on the team are doing on a daily basis

within the code?
– How do you know what the other people on the team are doing on a daily basis

within the documentation?
– How do you know what the other people on the team are doing on a daily basis

within the test bank?
– How do you come to know what the skills and capabilities of the other team members

are – how do you know who to ask about things?
& Historical understanding – how do you find out about previous decisions made that

impact

– The code?
– This project?
& Integration – how do you integrate the code and other components?

– Regularly, randomly, at the end of the project. To a schedule.
& What is the main source of bugs in the system?

Acknowledgements This work was partially supported by the project Agile 2.0 supported by the Research
Council of Norway through grant 236759 and by the companies DNV GL, Equinor, Kantega, Kongsberg
Defence & Aerospace, Sopra Steria, and Sticos. We are very grateful to the reviewers, who provided significant
advice in developing this article. In addition, we are very grateful to Anastasiia Tkalich at SINTEF Digital and
Marit Larsen at TechnipFMC Norway, who provided comments on earlier versions of the manuscript. We would
also like to thank everyone who contributed to the research’s focus groups and case studies.

 56 Page 44 of 50 Empirical Software Engineering (2022) 27:56

Authors’ contributions All authors contributed to the study conception and design. Material preparation, data
collection and analysis were performed by Diane Strode, Torgeir Dingsoyr, and Yngve Lindsjorn. The first draft
of the manuscript was written by Diane Strode and Torgeir Dingsoyr and all authors commented on subsequent
versions of the manuscript. All authors read and approved the final manuscript.

Funding This work was partially supported by the project Agile 2.0 supported by the Research Council of
Norway through grant 236759 and by the companies DNV GL, Equinor, Kantega, Kongsberg Defence &
Aerospace, Sopra Steria and Sticos.

Data availability The data from the case studies in New Zealand is from a prior conference paper which had
ethical approval from the relevant institute and copyright was with the single author (D.E. Strode) under the
Creative Commons Attribution. The data in the current submission is publically available in a prior conference
paper.

The data from the focus groups is available on request, but most of the material is in Norwegian.

Code availability There is no software or custom code associated with this submission.

Declarations

Conflicts of interest/competing interests There a no known conflicts or competing interests for any of the
three authors.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article's
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ågerfalk P, Fitzgerald B (2006) Flexible and distributed software processes: old petunias in new bowls?
Commun ACM 49(10):27–34

Baham C, Hirschheim R (2021) Issues, challenges, and a proposed theoretical core of agile software development
research. Inf Syst J. https://doi.org/10.1111/isj.12336

Beck K (2000) Extreme programming explained: embrace change. Addison-Wesley, Boston
Beck K, Andres C (2005) Extreme programming explained: embrace change, 2nd edn. Addison-Wesley, Boston
Bjørnson FO, Wijnmaalen J, Stettina CJ, Dingsøyr T (2018) Inter-team coordination in large-scale agile

development: a case study of three enabling mechanisms. In: Garbajosa J, Wang X, Aguiar A (eds) Agile
processes in software engineering and extreme programming XP2018. Porto, Portugal

Burke CS, Stagl KC, Salas E, Pierce L, Kendall D (2006) Understanding team adaptation: a conceptual analysis
and model. J Appl Psychol 91(6):1189

Burke CS, Sims DE, Lazzara EH, Salas E (2007) Trust in leadership: a multi-level review and integration.
Leadersh Q 18(6):606–632

Chow T, Cao DB (2008) A survey study of critical success factors in agile software projects. J Syst Softw 81(6):
961–971. https://doi.org/10.1016/j.jss.2007.08.020

Cockburn A (2002) Agile software development. Addison-Wesley, Boston
Cohn M (2004) User stories applied: for agile software development. Addison-Wesley Professional, Boston
Coman ID, Robillard PN, Sillitti A, Succi G (2014) Cooperation, collaboration and pair-programming: field

studies on backup behavior. J Syst Softw 91:124–134
Converse S, Cannon-Bowers J, Salas E (1993) Shared mental models in expert team decision making. In:

Individual and group decision making: current issues, pp 221–246

Empirical Software Engineering (2022) 27:56 Page 45 of 50 56

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1111/isj.12336
https://doi.org/10.1016/j.jss.2007.08.020

Costigan RD, Iiter SS, Berman JJ (1998) A multi-dimensional study of trust in organizations. J Manag Issues:
303–317

Crawford ER, LePine JA (2013) A configural theory of team processes: accounting for the structure of taskwork
and teamwork. Acad Manag Rev 38(1):32–48

DeFranco JF, Laplante P (2018) A software engineering team research mapping study. Team Perform Manag Int
J. https://doi.org/10.1108/TPM-08-2017-0040

Dietz AS, Rosen MA, Wyskiel R, Mendez-Tellez PA, Dwyer C, Salas E (2015) Development of a behavioral
marker system to assess intensive care unit team performance. In: Proceedings of the Human Factors and
Ergonomics Society Annual Meeting

Dingsøyr T, Lindsjørn Y (2013) Team performance in agile development teams: findings from 18 focus groups.
In: Baumeister H, Weber B (eds) Agile processes in software engineering and extreme programming, vol
149. Springer, Berlin, pp 46–60. https://doi.org/10.1007/978-3-642-38314-4_4

Dingsøyr T, Fægri TE, Dybå T, Haugset B, Lindsjørn Y (2016) Team performance in software development:
research results versus agile principles. IEEE Softw 33(4):106–110. https://doi.org/10.1109/MS.2016.100

Dingsøyr T, Moe NB, Fægri TE, Seim EA (2018) Exploring software development at the very large-scale: a
revelatory case study and research agenda for agile method adaptation. Empir Softw Eng 23(1):490–520.
https://doi.org/10.1007/s10664-017-9524-2

Drury-Grogan M (2014) Performance on agile teams: relating iteration objectives and critical decisions to project
management success factors. Inf Softw Technol 56:506–515

Duhigg C (2016) What Google learned from its quest to build the perfect team. The New York Times https://
www.nytimes.com/2016/02/28/magazine/what-google-learned-from-its-quest-to-build-the-perfect-team.
html. Accessed 18 Jan 2022

Edmondson AC (2004) Psychological safety, trust, and learning in organizations: a group-level lens. In: Kramer
RM, Cook KS (eds) Trust and distrust in organizations: dilemmas and approaches. Russel Sage Foundation,
New York, pp 239–272

Eisenhardt KM (1989) Building theories from case study research. Acad Manag Rev 14(4):532–550. https://doi.
org/10.2307/258557

Eisenhardt KM, Graebner ME (2007) Theory building from cases: opportunities and challenges. Acad Manag J
50(1):25–32

Fagerholm F, Ikonen M, Kettunen P, Münch J, Roto V, Abrahamsson P (2015) Performance alignment work:
how software developers experience the continuous adaptation of team performance in lean and agile
environments. Inf Softw Technol 64:132–147

Firth BM, Hollenbeck JR, Miles JE, Ilgen DR, Barnes CM (2015) Same page, different books: extending
representational gaps theory to enhance performance in multiteam systems. Acad Manag J 58(3):813–835

Fitzgerald B, Stol K-J (2017) Continuous software engineering: a roadmap and agenda. J Syst Softw 123:176–
189. https://doi.org/10.1016/j.jss.2015.06.063

Flin R, Martin L (2001) Behavioral markers for crew resource management: a review of current practice. Int J
Aviat Psychol 11(1):95–118

Garousi V, Felderer M, Mäntylä MV (2019) Guidelines for including grey literature and conducting multivocal
literature reviews in software engineering. Inf Softw Technol 106:101–121. https://doi.org/10.1016/j.infsof.
2018.09.006

Gatfield D (2008) Behavioural markers for the assessment of competence in crisis management Southampton
Solent. University [validated by Nottingham Trent University]

Grass A, Backmann J, Hoegl M (2020) From empowerment dynamics to team adaptability—exploring and
conceptualizing the continuous agile team innovation process. J Prod Innov Manag 1–28. https://doi.org/10.
1111/jpim.12525

Greenleaf RK (2003) The servant-leader within: a transformative path. Paulist Press, New York
Gregor S (2006) The nature of theory in information systems. MIS Q:611–642
Gren L, Torkar R, Feldt R (2017) Group development and group maturity when building agile teams: a

qualitative and quantitative investigation at eight large companies. J Syst Softw 124:104–119
Hannay JE, Dybå T, Arisholm E, Sjøberg DI (2009) The effectiveness of pair programming: a meta-analysis. Inf

Softw Technol 51(7):1110–1122
Hennel P, Rosenkranz C (2020) Investigating the “socio” in socio-technical development: the case for psycho-

logical safety in agile information systems development. Proj Manag J. https://doi.org/10.1177/
8756972820933057

Hoda R, Murugesan LK (2016) Multi-level agile project management challenges: a self-organizing team
perspective. J Syst Softw 117:245–257

Hoda R, Noble J, Marshall S (2013) Self-organizing roles on agile software development teams. IEEE Trans
Softw Eng 39(3):422–444. https://doi.org/10.1109/TSE.2012.30

 56 Page 46 of 50 Empirical Software Engineering (2022) 27:56

https://doi.org/10.1007/978-3-642-38314-4_4
https://doi.org/10.1109/MS.2016.100
https://doi.org/10.1007/s10664-017-9524-2
https://www.nytimes.com/2016/02/28/magazine/what-google-learned-from-its-quest-to-build-the-perfect-team.html
https://www.nytimes.com/2016/02/28/magazine/what-google-learned-from-its-quest-to-build-the-perfect-team.html
https://www.nytimes.com/2016/02/28/magazine/what-google-learned-from-its-quest-to-build-the-perfect-team.html
https://doi.org/10.2307/258557
https://doi.org/10.2307/258557
https://doi.org/10.1016/j.jss.2015.06.063
https://doi.org/10.1016/j.infsof.2018.09.006
https://doi.org/10.1016/j.infsof.2018.09.006
https://doi.org/10.1111/jpim.12525
https://doi.org/10.1111/jpim.12525
https://doi.org/10.1177/8756972820933057
https://doi.org/10.1177/8756972820933057
https://doi.org/10.1109/TSE.2012.30

Hoegl M, Gemuenden HG (2001) Teamwork quality and the success of innovative projects: a theoretical concept
and empirical evidence. Organ Sci 12(4):435–449

Hollenbeck JR, Beersma B, Schouten ME (2012) Beyond team types and taxonomies: a dimensional scaling
conceptualization for team description. Acad Manag Rev 37(1):82–106. https://doi.org/10.5465/amr.2010.
0181

Holtzhausen N, de Klerk JJ (2018) Servant leadership and the scrum team’s effectiveness. Leadersh Org Dev J
39:873–882

Hsieh H-F, Shannon SE (2005) Three approaches to qualitative content analysis. Qual Health Res 15(9):1277–
1288

Iivari J, Iivari N (2011) The relationship between organizational culture and the deployment of agile methods. Inf
Softw Technol 53(5):509–520. https://doi.org/10.1016/j.infsof.2010.10.008

Janz BD (1999) Self-directed teams in IS: correlates for improved systems development work outcomes. Inf
Manag 35(3):171–192

Kang H-R, Yang H-D, Rowley C (2006) Factors in team effectiveness: cognitive and demographic similarities of
software development team members. Hum Relat 59(12):1681–1710

Kasauli R, Knauss E, Kanagwa B, Nilsson A, Calikli G (2018) Safety-critical systems and agile development: a
mapping study. In: 2018 44th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA)

Katzenbach JR, Smith DK (2005) The discipline of teams. Harv Bus Rev 83(7):162
Keutel M, Michalik B, Richter J (2014) Towards mindful case study research in IS: a critical analysis of the past

ten years. Eur J Inf Syst 23(3):256–272
Klampfer B, Flin R, Hausler R, Sexton B, Fletcher G (2001) Group interaction in high risk environment

(GIHRE) project. Behaviours Markers Workshop, Zurich, Switzerland
Kniberg H (2011) Lean from the trenches: Managing large-scale projects with Kanban. Pragmatic Bookshelf
Kozlowski SW, Bell BS (2012) Work groups and teams in organizations. In: Handbook of psychology, vol. 12:

Industrial and organizational psychology, 2nd edn. Wiley, London
Kude T, Mithas S, Schmidt C, Heinzl A (2013) How pair programming influences team performance: the role of

backup behavior, shared mental models, and task novelty. Inf Syst Res 30(4):1145–1163. https://doi.org/10.
1287/isre.2019.0856

Kuthyola KF, Liu JYC, Klein G (2017) Influence of task interdependence on teamwork quality and project
performance. In: Abramowicz W (ed) Business Information Systems BIS 2017 Lecture Notes in Business
Information Processing vol 288. Springer, Cham. https://doi.org/10.1007/978-3-319-59336-4_10

LaToza TD, Venolia G, DeLine R (2006) Maintaining mental models: a study of developer work habits. In:
Proceedings of the 28th International Conference on Software Engineering

Lehtinen TO, Itkonen J, Lassenius C (2017) Recurring opinions or productive improvements—what agile teams
actually discuss in retrospectives. Empir Softw Eng 22(5):2409–2452

Levesque LL, Wilson JM, Wholey DR (2001) Cognitive divergence and shared mental models in software
development project teams. J Organ Behav 22(2):135–144

Lindsjørn Y, Sjøberg DIK, Dingsøyr T, Bergersen GR, Dybå T (2016) Teamwork quality and project success in
software development: a survey of agile development teams. J Syst Softw 122:274–286. https://doi.org/10.
1016/j.jss.2016.09.028

Lindsjørn Y, Bergersen GR, Dingsøyr T, Sjøberg DIK (2018) Teamwork quality and team performance:
exploring differences between small and large agile projects. In: Garbajosa J, Wang X, Aguiar A (eds)
Agile processes in software engineering and extreme programming XP2018. Porto, Portugal

Lu Y, Xiang C, Wang B, Wang X (2011) What affects information systems development team performance? An
exploratory study from the perspective of combined socio-technical theory and coordination theory. Comput
Hum Behav 27(2):811–822

Marks MA, DeChurch LA, Mathieu JE, Panzer FJ, Alonso A (2005) Teamwork in multiteam systems. J Appl
Psychol 90(5):964

Mathieu J, Maynard MT, Rapp T, Gilson L (2008) Team effectiveness 1997-2007: a review of recent
advancements and a glimpse into the future. J Manag 34(3):410–476

McGrath JE (1964) Social psychology: a brief introduction. Holt, Rinehart and Winston, New York
Melo CDO, Cruzes DS, Kon F, Conradi R (2013) Interpretative case studies on agile team productivity and

management. Inf Softw Technol 55(2):412–427
Moe NB, Dingsøyr T (2008) Scrum and team effectiveness: theory and practice. In: Lecture notes in business

information processes XP2008. Limerick, Ireland
Moe NB, Smite D (2007) Understanding lacking trust in global software teams: a multi-case study. Lecture Notes

in Computer Science [Product-focused software process improvement, proceedings]. In: 8th International
Conference on Product-Focused Software Process Improvement, Riga, Latvia

Empirical Software Engineering (2022) 27:56 Page 47 of 50 56

https://doi.org/10.5465/amr.2010.0181
https://doi.org/10.5465/amr.2010.0181
https://doi.org/10.1016/j.infsof.2010.10.008
https://doi.org/10.1287/isre.2019.0856
https://doi.org/10.1287/isre.2019.0856
https://doi.org/10.1007/978-3-319-59336-4_10
https://doi.org/10.1016/j.jss.2016.09.028
https://doi.org/10.1016/j.jss.2016.09.028

Moe NB, Dingsøyr T, Dybå T (2009a) Overcoming barriers to self-management in software teams. IEEE Softw
26(6):20–26. https://doi.org/10.1109/MS.2009.182

Moe NB, Kvangardsnes Ø, Dingsøyr T (2009b) Understanding shared leadership in agile development: a case
study. In: 42nd Hawaii International Conference on System Sciences, Hawaii, USA

Moe NB, Dingsøyr T, Dybå T (2010) A teamwork model for understanding an agile team: a case study of a
scrum project. Inf Softw Technol 52:480–491. https://doi.org/10.1016/j.infsof.2009.11.004

Mudrack PE (1989) Defining group cohesiveness—a legacy of confusion. Small Group Behav 20(1):37–49.
https://doi.org/10.1177/104649648902000103

Mullen B, Copper C (1994) The relation between group cohesiveness and performance—an integration. Psychol
Bull 115(2):210–227. https://doi.org/10.1037//0033-2909.115.2.210

Overeem B (2016) Characteristics of a great scrum team. https://www.infoq.com/articles/great-scrum-team/.
Accessed 18 Jan 2022

Paré G (2004) Investigating information systems with positivist case research. Commun Assoc Inf Syst 13(1):18
Pikkarainen M, Haikara J, Salo O, Abrahamsson P, Still J (2008) The impact of agile practices on communication

in software development. Empir Softw Eng 13(3):303–337. https://doi.org/10.1007/s10664-008-9065-9
Poth A, Kottke M, Riel A (2020) Evaluation of agile team work quality. In: Paasivaara M, Kruchten P (eds)

Agile Processes in Software Engineering and Extreme Programming –Workshops, XP 2020, Lecture Notes
in Business Information Processing, vol 396 (pp. 101-110). Springer, Cham. https://doi.org/10.1007/978-3-
030-58858-8_11

Project Management Institute and Agile Alliance (2017) Agile practice guide. Project Management Institute,
Pennsylvania, USA

Rodriguez D, Sicilia MAEG, Harrison R (2012) Empirical findings on team size and productivity in software
development. J Syst Softw 85(3):562–570

Rozovsky J (2015) Five keys to a successful Google team. Retrieved 25 December from https://rework.
withgoogle.com/blog/fivekeys-to-a-successful-google-team/

Salas E, Sims DE, Burke CS (2005) Is there a “big five” in teamwork? Small Group Res 36(5):555–599
Salas E, Shuffler ML, Thayer AL, Bedwell WL, Lazzara EH (2014) Understanding and improving teamwork in

organizations: a scientifically based practical guide. Hum Resour Manag 54(4):599–622
Salo O, Kolehmainen K, Kyllonen P, Lothman J, Salmijarvi S, Abrahamsson P (2004) Self-adaptability of agile

software processes: a case study on post-iteration workshops. In: Eckstein J, Baumeister H (eds) 5th
International Conference on Extreme Programming and Agile Processes in Software Engineering, XP
2004, Garmisch-Partenkirchen, Germany (vol. LNCS 3092, pp 184–193). Springer, Cham

Sarker S, Xiao X, Beaulieu T, Lee AS (2018) Learning from first-generation qualitative approaches in the IS
discipline: an evolutionary view and some implications for authors and evaluators (PART 1/2). J Assoc Inf
Syst 19(8):1

Schmidt C (2016) Agile software development teams: the impact of agile software development on team
performance. Springer International Publishing. https://doi.org/10.1007/978-3-319-26057-0

Schmidt C, Kude T, Heinzl A, Mithas S (2014) How agile practices influence the performance of software
development teams:the role of shared mental models and backup. ICIS 2014 Proceedings

Schmitz K, Mahapatra R, Nerur S (2019) User engagement in the era of hybrid agile methodology. IEEE Softw
36(4):32–40. https://doi.org/10.1109/MS.2018.290100623

Schreier M (2013) Qualitative content analysis. In: Flick U (ed) The SAGE handbook of qualitative data analysis.
Sage, London, pp 170–184

Schwaber K, Beedle M (2002) Agile software development with scrum. Prentice Hall, Upper Saddle River
Schwaber K, Sutherland J (2017) The scrum guide. Scrum, Org and ScrumInc https://scrumguides.org/.
Sharp H, Robinson H (2006) Distributed cognition account of mature XP teams. In: 7th International Conference

on Extreme Programming and Agile Processing in Software Engineering, Oulu, Finland
Sharp H, Robinson H (2010) Three ‘C’s of agile practice: collaboration, co-ordination and communication. In:

Dingsøyr T, Dybå T, Moe NB (eds) Agile software development: current research and future directions.
Springer Verlag, Berlin, p 13

Shastri Y, Hoda R, Amor R (2021) Spearheading agile: the role of the scrum master in agile projects. Empir
Softw Eng 26(1):1–31

Shuffler ML, Rico R, Salas E (2014) Pushing the boundaries of multiteam systems in research and practice: an
introduction. In: Pushing the boundaries: multiteam systems in research and practice. Emerald Group
Publishing Limited, Bingley

Sjøberg DI, Dybå T, Anda BC, Hannay JE (2008) Building theories in software engineering. In: Guide to
advanced empirical software engineering. Springer, London, pp 312–336

Skelton M, Pais M (2019) Team topologies: organizing business and technology teams for fast flow. IT
Revolution Press. https://teamtopologies.com/book. Accessed 18 January 2022

 56 Page 48 of 50 Empirical Software Engineering (2022) 27:56

https://doi.org/10.1109/MS.2009.182
https://doi.org/10.1016/j.infsof.2009.11.004
https://doi.org/10.1177/104649648902000103
https://doi.org/10.1037//0033-2909.115.2.210
https://www.infoq.com/articles/great-scrum-team/
https://doi.org/10.1007/s10664-008-9065-9
https://doi.org/10.1007/978-3-030-58858-8_11
https://doi.org/10.1007/978-3-030-58858-8_11
https://rework.withgoogle.com/blog/fivekeys-to-a-successful-google-team/
https://rework.withgoogle.com/blog/fivekeys-to-a-successful-google-team/
https://doi.org/10.1007/978-3-319-26057-0
https://doi.org/10.1109/MS.2018.290100623
https://scrumguides.org/
https://teamtopologies.com/book

Smite D, Wohlin C, Gorschek T, Feldt R (2010) Empirical evidence in global software engineering: a systematic
review. Empir Softw Eng 15(1):91–118. https://doi.org/10.1007/s10664-009-9123-y

Sommerville I (2016) Software engineering, 10th edn. Boston, Pearson Education Limited
Stewart DW, Shamdasani PN, Rook D (2007) Focus groups: theory and practice. Sage Publications, Thousand

Oaks
Stray VG, Moe NB, Dingsøyr T (2011) Challenges to teamwork: a multiple case study of two agile teams. In:

Lecture Notes in Business Information Processing 12th International Conference on Agile Software
Development (XP2011), Madrid, Spain

Stray V, Sjøberg DI, Dybå T (2016) The daily stand-up meeting: a grounded theory study. J Syst Softw 114:101–
124

Stray V, Moe NB, Hoda R (2018) Autonomous agile teams: challenges and future directions for research. In:
Proceedings of the 19th International Conference on Agile Software Development XP, pp 1–5. ACM.
https://doi.org/10.1145/3234152.3234182

Strode D (2015) In: Burstein F, Scheepers H, Deegan G (eds) Applying adapted big five teamwork theory to
agile software development. Proceedings of the 26th Australasian conference on information systems, ACIS
2015, 30 Nov–4 Dec, Adelaide, Australia

Strode D (2016) A dependency taxonomy for agile software development projects. Inf Syst Front 18(1):23–46
Strode DE, Huff SL, Tretiakov A (2009) The impact of organizational culture on agile method use. In:

Proceedings of the 42nd Hawaii International Conference on System Sciences, pp 1–9. https://doi.org/10.
1109/HICSS.2009.436

Sutherland J, Schwaber K (2020) The scrum guide: the definitive guide to scrum—the rules of the game. https://
scrumguides.org/. Accessed 18 Jan 2022

Syed-Abdullah S, Holcombe M, Gheorge M (2006) The impact of an agile methodology on the well being of
development teams. Empir Softw Eng 11(1):143–167

Takeuchi H, Nonaka I (1986) The New New Product Development Game. Harvard Business Review, pp.
137-146

Tiwana A (2004) An empirical study of the effect of knowledge integration on software development perfor-
mance. Inf Softw Technol 46(13):899–906

Van Dierendonck D (2011) Servant leadership: a review and synthesis. J Manag 37(4):1228–1261
Williams L (2012) What agile teams think of agile principles. Commun ACM 55(4):71–76. https://doi.org/10.

1145/2133806.2133823
Williams L, Cockburn A (2003) Agile software development: It’s about feedback and change. IEEE Comput

36(6):39–43
Yin RK (2018) Case study research and applications: design and methods, 6th edn. Sage Publications, Thousand

Oaks
Yu X, Petter S (2014) Understanding agile software development practices using shared mental models theory.

Inf Softw Technol 56(8):911–921

Diane Strode is a senior lecturer in the School of Information Technology, Whitireia Polytechnic, New Zealand.
She is also a Research Fellow at The Open University in the United Kingdom. Diane has experience as a software
developer for Mobil Oil Australia. Her research focus is agile software development and coordination, and she
publishes in the domains of information systems and software engineering. Diane has a PhD from Victoria
University of Wellington, New Zealand.

Torgeir Dingsøyr is a professor in software engineering – agile at the Department of Computer Science,
Norwegian University of Science and Technology. He is further adjunct chief research scientist at the SimulaMet
research laboratory. His research has focused on teamwork and learning in software development, as well as
development methods for large software projects and programs. He has published in the software engineering,
information systems and project management fields.

Yngve Lindsjørn is an associate professor at the Department of Informatics, University of Oslo. He worked for
10 years as a researcher at Norwegian Computing Center from 1987 to 1997. He has 13 years of industry
experience as project manager and as a manager (CEO) of a software company within the IT industry. From 2009
to 2014 he was project manager for a research project investigating the effect of teamwork within and across
software development teams. His research include software development methods and teamwork factors
influencing software project success.

Empirical Software Engineering (2022) 27:56 Page 49 of 50 56

https://doi.org/10.1007/s10664-009-9123-y
https://doi.org/10.1145/3234152.3234182
https://doi.org/10.1109/HICSS.2009.436
https://doi.org/10.1109/HICSS.2009.436
https://scrumguides.org/
https://scrumguides.org/
https://doi.org/10.1145/2133806.2133823
https://doi.org/10.1145/2133806.2133823

Affiliations

Diane Strode1
& Torgeir Dingsøyr2,3 & Yngve Lindsjorn4

1 School of Information Technology, Whitireia Polytechnic, Wellington, New Zealand
2 Department of Computer Science, Norwegian University of Science and Technology, NO-7491 Trondheim,

Norway
3 Department of IT Management, SimulaMet, P.O. Box 134, 1325 Lysaker, Norway
4 Department of Informatics, University of Oslo, Oslo, Norway

 56 Page 50 of 50 Empirical Software Engineering (2022) 27:56

	A teamwork effectiveness model for agile software development
	Abstract
	Introduction
	Teams, Teamwork, and Team Effectiveness
	Teams and Teamwork
	Team Effectiveness and Teamwork Effectiveness Models
	Teamwork in Software Development and Agile Methods

	Research Design
	Focus Groups
	Participant Selection
	Data Collection
	Data Analysis

	Case Studies
	Case Selection
	Data Collection
	Data Analysis

	Theory Development

	Revising the Salas Big Five: Components, Coordinating Mechanisms, and Behavioural Markers
	Shared Mental Models
	Empirical Findings on Shared Mental Models
	Discussion of Behavioural Markers for Shared Mental Models

	Mutual Trust
	Empirical Findings on Mutual Trust
	Discussion of Behavioural Markers for Mutual Trust

	Closed-Loop Communication Becomes Communication
	Empirical Findings on Communication
	Discussion of Behavioural Markers for Communication

	Team Leadership Becomes Shared Leadership
	Empirical Findings on Shared Leadership
	Discussion of Behavioural Markers for Shared Leadership

	Mutual Performance Monitoring Becomes Peer Feedback
	Empirical Findings on Peer Feedback
	Discussion of Behavioural Markers for Peer Feedback

	Backup Behaviour Becomes Redundancy
	Empirical Findings on Redundancy
	Discussion of Behavioural Markers for Redundancy

	Adaptability
	Empirical Findings on Adaptability
	Discussion of Behavioural Markers for Adaptability

	Team Orientation
	Empirical Findings on Team Orientation
	Discussion of Behavioural Markers for Team Orientation

	The Agile Teamwork Effectiveness model (ATEM)
	A Critical Examination of the ATEM
	The ATEM Extensions – Outside the Comfort Zone
	Limitations
	How the Model Can be Used: Implications and Future Work

	Conclusion
	Appendix 1 – Agenda Workshop Focus Groups

	This link is 10.1108/TPM-2017-,",
	Appendix 3 – Case Studies – Interview Schedule
	References

