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Abstract
The decarbonization of the transport sector requires a rapid expansion of global battery
production and an adequate supply with raw materials currently produced in small volumes. We
investigate whether battery production can be a bottleneck in the expansion of electric vehicles and
specify the investment in capital and skills required to manage the transition. This may require a
battery production rate in the range of 4–12 TWh/year, which entails the use of 19–50 Mt/year of
materials. Strengthening the battery value chain requires a global effort in many sectors of the
economy that will need to grow according to the battery demand, to avoid bottlenecks along the
supply chains. Significant investment for the establishment of production facilities (150–300
billion USD in the next 30 years) and the employment of a large global workforce (400k–1 million)
with specific knowledge and skillset are essential. However, the employment and investment
required are uncertain given the relatively early development stage of the sector, the continuous
advancements in the technology and the wide range of possible future demand. Finally, the
deployment of novel battery technologies that are still in the development stage could reduce the
demand for critical raw materials and require the partial or total redesign of production and
recycling facilities affecting the investment needed for each factory.

1. Introduction

Electric light duty vehicles (LDVs) are becoming increasingly popular among consumers. As of 2020, the elec-
tric vehicle (EV) stock surpassed 10 million units, or 1% of the total LDV stock, with 65% being battery electric
vehicles (BEVs) and the remainder plug-in hybrid EVs [1]. The scope of the ambitious climate targets entails
that EVs, coupled with renewable energy sources, become the dominant technology in the road transport sec-
tor. The widespread adoption of EVs can bring several benefits, with the most notable positive effects being
the reduction of greenhouse gases and particulate matter released into the atmosphere. However, the future
uptake of electric LDVs is dependent on the ability of the battery market to sustain the future high demand for
EVs. Current EVs rely on Li-ion batteries (LIBs) for energy storage, which is a technology already widely used
in portable electronics. The size of LIBs in EVs is significantly larger than the current LIBs in electronic devices.
Hence, the full (or partial) replacement of the current LDV fleet with EVs will require the quick expansion of
the production capacity of the battery industry, which in turn requires robust value chains for primary raw
material mining and processing. The likely future raw material demand and the challenges related to the supply
required for the transition to electric mobility have been covered in several reports and peer-reviewed articles
[2–15]. Current estimates on the global installed production capacity for LIBs span from 250 GWh/year [16]
to 640 GWh/year [6]. This wide range suggests significant uncertainty due to the lack of accessible, up-to-date
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Figure 1. Capacity and material flows of LIBs in EVs. (a) Inflows to the EVs stock until 2050 in each scenario. Scatter plots
identify reported forecasts of future manufacturing capacity in TWh installed to 2030. Primary y-axis depicts capacity inflows in
TWh/year, while the secondary y-axis, with values from (b) depicts yearly material inflows in Mt. (b) Outflows of LIBs from EV
stock until 2060 in light of the survival curve created for this study, assuming an average lifetime of EVs of 11 years.

and transparent data. Furthermore, several reports present forecasts on the planned production capacity in
2025 or 2030, but the reported values differ considerably (figure 1) [6, 16, 17]. The scattered reported values
highlight how the possible future gaps between LIB supply and demand can occur under the quick adoption
of EVs.

To ensure the required supply of raw materials and batteries, it is important to quantify likely future LIB
demand and in-/out-flows, to identify the industrial and economic requirements for a smooth and rapid
transition from fossil-fueled vehicles to EVs. Given the current evolution of the LIB as a technology and eco-
nomic sector, deep electrification scenarios can potentially introduce challenges within the area of (1) capital
investment for the construction of manufacturing facilities; (2) potential million-ton demand for primary
materials requiring a quick ramp-up in mining activities; and (3) recycling plants ready to efficiently pro-
cess the future outflows of LIBs reaching end-of-life (EOL) to reduce the pressure on the primary supply
sector.

To the best of our knowledge, the peer-reviewed literature has not yet provided an assessment of the com-
bined economic implications and industrial challenges of the quick transition to EVs needed to attain the
ambitious transport electrification targets set. Here, we present an analysis of future battery demand and
its possible implications under deep electrification scenarios of the passenger vehicle sector. The scenarios
assessed are aligned with the mitigation of the global temperature rise target, commonly known as the 2 ◦C
target.

This study builds upon the scenarios defined by the authors of the open dynamic material sys-
tems model for the resource efficiency-climate change nexus (ODYM-RECC) [18–21], also used by the
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International Resource Panel [22]. The ODYM-RECC model encompasses six socioeconomic-climate policy
scenarios. To be precise, there are two climate policy scenarios (Baseline and the Representative Concentra-
tion Pathway—RCP2.6—with the latter that ensures reaching the 2 ◦C target [23, 24]) and three socioeco-
nomic pathways (SSP1, SSP2 and LED) [25–28], which together provide a combination of climate policy
and socioeconomic pathway. In RCP2.6, the atmospheric concentration of greenhouse gases reaches around
490 parts per million CO2-equivalent, which corresponds to 2.6 W m−2 by 2100, before declining again
[23, 24]. The shared socioeconomic pathways (SSPs) describe a range of possible future developments, on
a societal level, that lead to either high or low socioeconomic challenges for mitigation and adaption in the
context of climate change [29]. In this context, in the SSP1 narrative, the adaptation and mitigation to cli-
mate change pose low challenges, while the SSP2 narrative represents a ‘middle-of-the-road’ with respect to
mitigation and adaptation challenges [25]. The low-energy demand (LED) scenario, which does not belong to
the originally developed SSP narratives presented in O’Neill et al [29], describes a future in which the focus
on energy end-use, efficiency and demand reduction allow the attainment of the climate change mitigation
targets without the deployment of negative emission technologies, Carbon Capture and Storage or nuclear
power [26].

Among the six scenarios assessed, three are consistent with the 2 ◦C target (RCP2.6 scenarios), while the
remaining three scenarios follow the assumption that no new climate policies are put in place after 2020.
Therefore, a business-as-usual trend is evaluated.

Hereafter, when referring to all the scenarios aligned with climate change mitigation targets
(RCP2.6—SSP1, SSP2 and LED), we use the naming convention ‘high-penetration scenarios’ while the other
scenarios are defined as ‘low-penetration scenarios’. In this study, taking the inflows of EVs in the ODYM-
RECC model [30] as the entry point to our calculations, we calculate the projected global demand for LIBs,
key materials and economic implications of the global transition to electrified LDV technologies. The time-
frame analyzed in this study starts in 2020 and ends in 2050. We show a spectrum of pathways regarding
the evolution of the EV fleet and its implications for the LIB industry. Full numbers for the passenger vehi-
cle fleet can be found in the supplementary information (http://stacks.iop.org/ERIS/2/011002/mmedia), and
additional information on assumptions concerning the fleet composition can be found in the methods section.

2. Methodology and scenarios

2.1. EV fleet and battery scenario definition
The analysis for the global EV fleet (BEVs and PHEVs) presented in this article is based on the ODYM-RECC
model [18, 30, 31], which uses the IAM-based narratives for the trends driving the deployment of EVs. From the
publicly available ODYM-RECC output files [30, 32], we used the yearly inflows of EVs into the stock, defined
in million units per year. The total size of the LDV stock varies according to the socioeconomic pathway (SSP1,
SSP2 and LED), while the penetration (intended as a total share of the stock) of BEVs and PHEVs depends on
the climate policy scenario (RCP2.6 or baseline). The stock, according to the projections of the model, amounts
to 1.2 billion (LED), 2 billion (SSP1) and 3.4 billion (SSP2) vehicles in 2050 (table 1). Under the baseline climate
policy scenarios, the share of EVs and PHEVs reach 5% and 8%, respectively, by 2050 (table 1). On the other
hand, in the RCP 2.6 scenarios the share of EVs and PHEVs reaches 45% and 17%, respectively, by 2050 [30]
(table 1).

To estimate the outflows of EVs from the stock, we use a Weibull distribution with an average lifetime of
11.5 years [33], based on the European average, and a maximum retirement age of 25 years. Due to the lack of
statistically significant data on the current and future residence time of EVs, this assumption is based on his-
torical data on conventional vehicles. However, as a result of developments in battery chemistry and in battery
management systems, it is possible that future LIBs may achieve a longer cycle life without significant capac-
ity fade, delaying the replacement of the vehicles. This will consequently affect both the outflows and inflows
presented in this analysis. On the other hand, consumer behavior, e.g. yearly distance driven and charging
patterns, and regional climate conditions can negatively affect the cycle life of LIBs and consequently the EVs
[34–36].

For the definition of the different vehicle sizes, we used the European car segment classification [37], exclud-
ing the M-(multi-purpose) and S-(sport) segments. Data on the market share of each vehicle class was taken
from the ICCT EU vehicle market statistics, and applied to the global fleet inflows [38], which reports the
following market share for both BEVs and PHEVs: A-segment (microcars)-8%, B-segment (small cars)-21%,
C-segment (medium cars)-27%, D-segment (large cars)-7%, E-segment (executive cars)-3%, F-segment (lux-
ury cars)-0.2%, J-segment (sport utility vehicles)-35%. For simplicity, we assumed this market share applies
to all the modeling years (2015–2060). Battery sizes largely vary across and within vehicle sizes available on the
market. Regarding the battery size for the starting year (2015), we collected the average battery size across the
vehicles belonging to each segment from the EV database website [39]. Advancements in the energy density of
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Table 1. Composition of the LDV stock in 2050 by technology.

Climate
policy
scenario

Socioeconomic
pathway

Total
stock

(Mln units)

EV
stock

(Mln units)
EV

stock (%)

PHEV
stock

(Mln units)
PHEV

stock (%)

Baseline
SSP2 3379 165 5% 260 8%
SSP1 2005 100 5% 154 8%
LED 1173 63 5% 92 8%

RCP2.6
SSP2 3379 1528 45% 586 17%
SSP1 2005 900 45% 346 17%
LED 1173 526 45% 203 17%

LIB chemistries can result in an overall increase in the battery size in each BEV segment with the same overall
weight of the battery pack [12]. In this work, we assumed that in 2050 the size of the battery packs will reach
the capacity forecast in Baars et al [12], which is an assumption corroborated by the International Council
on Clean Transportation in a factsheet reporting that the average battery capacity in BEVs has been increas-
ing over time [40]. Furthermore, given the uncertainty on the future technological development of LIBs, we
assumed the same material loading throughout the entire analyzed timeframe. For PHEVs, we assumed that
the battery size remains constant in the period 2015–2050.

Currently, there are three main types of LIBs used in EVs, LiFePO4 (LFP), LiNiCoAl (NCA) and
LiNixMnyCo1−x−y (NMC), with the latter being the most common chemistry. However, within the realm of
NMC chemistry, numerous variants exist with the main difference being the ratio of Ni, Mn and Co in the
active material. Earlier generations of NMC chemistry presented the same ratio of the three elements, but
the trend in recent years has been towards Ni-rich mixes, which can increase the energy density of the chem-
istry while decreasing the Co content [41, 42]. Furthermore, current R & D effort is towards developing novel
technologies that can bring better performance and safety, such as all-solid-state batteries, lithium-air and
lithium-sulphur chemistries [43]. However, the current technology readiness level of these technologies does
not make them competitive with the current state-of-the-art, and it is uncertain whether these technologies
will become competitive or when they will be available for large-scale deployment. Similarly, the future market
share of LIBs is challenging to quantify since breakthroughs in new battery chemistries may have a profound
impact on the market. Hence, our scenario for the future market share of LIBs estimates that until 2050, NMC
chemistry will be the dominant technology, with an increasing trend towards Ni-rich cathodes, such as NMC
811 and NMC 955. The available literature covering the current and historical market share (2015–2020) of
LIBs is rather scattered. In this work, we take an average market share for each chemistry from the sources
analyzed [4, 6, 7, 44–47], for the periods 2015, 2020 and 2030, combined with interpolations for the years
within this range to define yearly market share. In addition, we define two more reference years for the inter-
polations until 2050, more precisely defining market share for the years 2040 and 2050. Our estimates for the
years 2040 and 2050 follow the assumption that NMC 811 and NMC 955 LIBs will be the reference chemistries,
with NCA and LFP LIBs having a 7% share each. To evaluate the demand of materials embodied in the LIBs
included in our scenario, we keep track of key materials on both a cell and pack level, namely we calculate
future flows of Al, Co, Cu, graphite, Li, Mn, Ni, plastics and steel. We base the material content (kg kWh−1) on
the data presented in [13, 48] regarding the cathode material, on Dai et al [49] for the graphite content in the
anode and the Li loading in the electrolyte, and we take as reference the pack design from Ellingsen et al [50].
With regard to the battery pack, we worked under the simplified assumption that its material composition,
e.g. electronics and frame, does not change with the chemistry and over time, due to the lack of more detailed
data.

Both current and historical data on the CAPEX of LIB manufacturing facilities is rather scarce. A report
released in 2017 by the European Commission’s Joint Research Center provides investment costs for several
factories, resulting in an average specific investment cost of 144 Euro/kWh annual production capacity [51].
Similarly, the Rocky Mountain Institute assumes a CAPEX of approximately 140 USD/kWh in 2020 and a
constant drop until 2040 where the capital expenditure reaches 25 USD/kWh [52]. In this work, for each
scenario, we assumed a CAPEX of 140 USD/kWh in 2016, and we further calculated the CAPEX reduction
(in USD/kWh) over time for each scenario using Wright’s law [53] and an experience rate of 16% based on
Schmidt and colleagues [54].

A report by the Faraday Institution forecasts that 130 GWh of annual production by 2040 in the UK, with
26 000 employees involved in LIB manufacturing activities [55], will lead to an average of 200 employees/GWh
required to work in future LIB production facilities. In contrast, the European Commission’s Joint Research
Center reports an average of 106 workers/GWh. Our analysis assumed an average of 120 employees/GWh,
which is the average value reported [51, 55–57]. However, LIB production holds potential for the automation
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of some production steps [58]. Therefore, the future employment generated may be lowered by automation
and industry 4.0 trends, following the forecasts for the automotive sector as a whole [59, 60]. Here, we assume
that employment demand will reduce by 25% by 2040, leading to 98 employees/GWh.

3. Results

3.1. Global demand for LIBs and their key raw materials up to 2050
Scenarios consistent with the 2 ◦C target show that the global demand for LIBs in 2050 can reach ∼4 TWh/yr
(RCP2.6—LED scenario) to 13 TWh/yr (RCP2.6—SSP2 scenario), which consequently leads to total material
inflows ranging between 19 Mton/yr and 54 Mton/yr (figure 1). Conversely, low-penetration scenarios present
a significantly lower demand for LIB capacity and materials by 2050, with the maximum being 2 TWh/yr and
∼8 Mton/yr in the baseline—SSP2 scenario.

Estimates on the future installed LIB production capacity [6, 17, 61, 62] (figure 1) highlight the uncertainty
surrounding the future short-term expansion of the industry and how a fast-paced deployment of EVs could be
crippled due to the undersized annual LIB supply capacity. The projections in 2025 show a likely total battery
production capacity ranging from 605 GWh/year to 1.6 TWh/year. The more optimistic production capacity
forecast [6] is well aligned with the scenario encompassing the highest yearly addition of EVs. The possibil-
ity of supply failing to meet demand across all production capacity scenarios only occurs in two scenarios
consistent with the deep decarbonization of the passenger vehicle fleet. More precisely, two production capac-
ities reported [17, 61] an inability to sustain the growth in demand for EVs forecast in the RCP2.6—SSP2 and
RCP2.6—SSP1 scenarios. In contrast, the low-penetration scenarios do not highlight any potential bottlenecks
regarding installed production capacity.

The demand for several TWh/yr of LIBs, as in high EV penetration scenarios, will drive the necessity to
supply high quantities of key battery raw materials to the appropriate refining sectors, which must then supply
the refined battery-grade materials to the battery production facilities.

The electrodes of current state-of-the-art LIBs rely on a handful of materials, namely Co, Li, Mn, Ni (posi-
tive electrode) and graphite (negative electrode). These materials are likely to be employed in battery packs for
at least the coming decade, due to the current and future market relevance of lithium nickel manganese cobalt
oxide (NMC) LIBs.

The demand for LIB materials, such as Al, Cu, Ni and Mn, does not represent a significant concern in
comparison to their respective current production rates. In contrast, graphite, Li and Co extraction in 2019
stood at 1.1 Mton, 82 and 144 kton, respectively [63–65]. With current and estimated future production rates,
the supply of these materials may fall short of demand in 2032 (graphite), 2033 (Li) and 2041 (Co) assuming the
LED scenario and the RCP2.6 climate policy, which represents the high electrification scenario characterized
by the lowest demand for LIBs, and consequently materials. On the other hand, a higher number of EVs, as in
the scenarios RCP2.6 SSP1 and SSP2, would significantly lower the point at which demand exceeds the current
and anticipated future supply rate capabilities (figure 2). Therefore, natural graphite, Li and Co may constitute
potential bottlenecks for LIB production due to the projected rapid growth in their demand and their current
production rates.

High electrification scenarios require a strong expansion of the mining capacity for these materials. While
the current and projected future extraction rates of graphite, Li and Co raise aconcern regarding the capacity of
the virgin material market to support LIB demand, there are no threats regarding the total resources available
in the ground [63, 64, 66, 67]. However, the geographical concentration of these resources, especially Co [10],
may represent an obstacle to the stability of the supply chains.

Natural graphite is rather abundant and is widely used in several applications, such as lubricants and
steelmaking [65]. While the European Commission includes natural graphite on its list of critical raw mate-
rials [68, 69], it is possible to produce synthetic graphite from hydrocarbon materials [67], with the down-
side of the cost that may be twice as high as natural graphite [13, 67]. Granted that the production cost of
synthetic graphite will drop, the future demand for graphite could be fulfilled by synthetic graphite, alle-
viating a potential shortage of natural graphite mines. In addition, silicon is considered a strong candi-
date material for negative electrodes in LIBs; if the challenges associated with its application are overcome,
the demand for graphite may be, partially or totally, cut with a simultaneous increase in performance of
LIBs [70–72].

Li mines are currently not operating at full capacity (∼50%), and by 2025 an almost doubling of the
total mining capacity installed will take place, according to forecasts [47]. Figure 2 shows that until 2025
the planned mining capacity for Li can potentially cover the demand for this material in most of the high
LIB demand scenarios. However, the supply may fail to meet the demand for battery-grade Li in the high-
est penetration scenario (RCP2.6—SSP2). Furthermore, it is important to note that while Li is a key com-
ponent in LIBs, its use is not limited to this sector [64], meaning that the entire mining capacity of this
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Figure 2. Li, Co and graphite flows to and from EV stock. Each line represents a different scenario while the gray area defines the
climate policy scenario range. Positive y-axis curves represent the inflows to the stock in Mt/yr, the dots depict either the
production rate in 2019 (black dot) or the forecast production capacity in 2025 [47] (blue dot). Curves across the negative y-axis
show the outflows from the EV stock, with these materials either available for recycling or stationary applications.

material is not dedicated to LIBs. Sudden demand growth of battery-grade Li could be detrimental to the
price of the commodity and subsequently to the cost of LIBs. In addition, it takes a few years to set up
new Li mines. Li production from brine requires only one year from the construction of the pond to the
complete evaporation of the saltwater [73]. In addition, processing plants for Li conversion to battery-grade
material require up to 2 years to be installed [73, 74], leading to a total of 2–3 years of response time to
establish new Li mines. However, recycled Li from LIBs reaching EOL could cover part of the future demand
for the resource. Historically, Li is not recovered from spent LIBs due to its low market value, but it could
become economically viable if the primary supply falls short of demand, causing a surge in the price of the
commodity.

Current estimates report that by 2025 the mining capacity of Co will reach ∼230 kt, with supply coming
from both the expansion of mining capacity and additional resources coming from recycling [47]. How-
ever, future Co availability is rather uncertain. Co is typically mined as a by-product of both Ni and Cu
mining [13], meaning that its production rate is often closely linked to the market of these two materials
[75, 76], and their future prices may indirectly affect Co supply and price. Furthermore, Co mining is mainly
located in the Democratic Republic of Congo and most of the refining occurs in China [75, 76]. There-
fore, a shock in the market, either due to a surge in the price of the commodity or to demand failing
to meet supply may generate a rush from battery producers in securing the supply of this material. This
could, in turn, cause a bottleneck in the industry’s overall output with the consequences affecting numerous
EV original equipment manufacturers.
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While total availability of battery-grade materials does not seem to represent a constraint to deployment
trajectories of EVs, strategic planning is required to establish the appropriate mining capacity, given the pos-
sibility of facing a tremendous increase in the demand for key raw materials. The expansion from surface to
underground mining may take several years. In contrast, building new mining activities requires significant
time from exploration to actual extraction of the ores. Time may vary depending on the country, mainly due
to permitting. However, from planning to extraction in a new mine, approximately more than 10 years may be
needed [10, 77]. Similarly, the refining capacity needed to convert virgin metals to their LIB-grade counterparts
needs to be in place to avoid bottlenecks along the value chain of the materials.

In addition to the supply of virgin materials, part of the future demand for LIB materials may be covered
by recycled LIBs reaching EOL. The recycling infrastructure needs to grow accordingly with the deployment
of LIBs to ensure the highest recovery rates possible to ensure as much coverage of the material demand as
possible, and to avoid unsuitable disposal of LIBs such as landfilling. However, the yearly LIB retiring rate
is somewhat uncertain to predict given the possibility of using them in 2nd life applications. Therefore, the
demand for recycling facilities will follow the same logistic growth as the projected LIB demand curve (figure 1)
but with a time lag due to the high residence time of LIBs in the EV stock (∼11 years). In figure 1, we show the
total LIB material outflows from the EV stock and in the negative y-axis of figure 2, we show a forecast of the rel-
evant material outflows from the EV stock, specifically Co, Li and graphite. While not all the materials may be
available for recovery in the retirement year due to 2nd life applications, the LIBs produced will eventually need
to be recycled, allowing partial closing of the loop for battery-grade materials. In the short-term, recycling LIBs
would not suffice to cover a significant proportion of the demand for battery materials, but in the medium-/
long-term a significantly higher share of demand may be supplied by recycled materials. Low-penetration sce-
narios present the possibility of covering a high fraction of the demand earlier than high-penetration scenarios.
This is due to the low pace of deployment of EVs, which ultimately drives a rather constant demand, which
could provide less stress on the supply side and allow for more robust circular economy possibilities. In high
EV penetration scenarios the full implementation of circular economy practices (reuse, refurbishment, 2nd
life applications and recycling) plays an even more significant role since the high demand for raw materials
is substantially higher than lower-penetration scenarios. Within circular economy principles there are several
possibilities to avoid the recycling phase after 1st life, and thus extend the life of LIBs, or that allow high recov-
ery rates of active materials and their regeneration for further reuse in LIBs [78–80]. The adoption of circular
economy strategies in the LIB sector (due to the decreased demand for primary materials) could reduce the
vulnerability of relevant value chains and bring environmental benefits [79] to the sector. In addition, it is
likely that these strategies may reduce the production costs of LIBs, due to the cost of Co [79, 80]. Nonetheless,
to successfully achieve higher reuse and recovery rates, further development of the technologies, i.e. battery
performance, reuse and recycle, is required and this shift needs to be supported with appropriate policies and
where necessary, economic subsidies [79, 80].

3.2. Investment needed and job creation within the LIB industry
In addition to the challenges to the material supply, the transition to EVs may require the construction of
several LIB manufacturing facilities, which in turn can have significant direct economic consequences both
in terms of capital expenditure (CAPEX) needed to build the production facilities and concerning the skilled
employees needed to run these facilities. Figure 3 presents the yearly CAPEX, measured in billion USD needed
in each scenario assessed. The capital cost of transitioning to EVs in scenarios consistent with the RCP2.6 tra-
jectory amounts to cumulative investments of 150–300 billion USD by 2050, with yearly investment required
ranging from 4–10 billion USD. On the other hand, low-penetration scenarios induce a cumulative CAPEX of
41–81 billion USD by 2050, and yearly investment rather stable around 1–3 billion USD. In high-penetration
scenarios, the capital cost reduction is more pronounced, due to the significantly higher manufacturing capac-
ity installed, than in the low-penetration scenarios, leading to a steeper decrease in the CAPEX in USD/kWh.
Moreover, the CAPEX in 2050 for high-penetration scenarios ranges from 21 (SSP2) to 28 (LED) USD/kWh,
while in low-penetration scenarios it reaches 35–48 USD/kWh. Developments in LIBs and breakthroughs with
novel technologies may affect the investment

needed in the construction of LIB facilities.
While the CAPEX of manufacturing facilities is expected to decrease over time due to increased know-how

and economies of scale, the OPEX part remains rather uncertain. The active materials of an LIB represent a
significant fraction of the cost of producing a battery, with estimates ranging from 20% to 50% of the total
cost [81–83]. Co and Li prices fluctuate, and possible shortages in supply can generate a surge in their price
driving up the production costs of LIBs. However, the increase in prices can positively affect the recycling and
urban mining of materials, especially for Li.

The construction of several new battery manufacturing facilities will stimulate the demand for a skilled
workforce with specific training in electrochemistry, software development and mechanical engineering.
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Figure 3. Estimated annual CAPEX needed to install the required LIB manufacturing facilities, in billion $, until 2050.

Numerous publications have analyzed the quantitative and qualitative effects on the job market of transition-
ing from non-renewable energy sources to renewable energy sources [84–88]. However, the same analysis has
not yet been performed on the transition to EVs and the production of LIBs, but a similar trend as for renew-
ables may be observed. Renewable energy sources can have net positive employment creation [84–86], under
certain conditions, but at the same time due to their novelty, they require a whole new set of skills with specific
training programs [87, 88]. LIB production involves a series of complex tasks, from electrode preparation to
pack assembly and testing. Employees working on the design and modeling of software, electrical circuits and
mechanical systems complement these positions. The latter are high- and medium-skilled positions already
existing on the market. However, the former tasks represent a new set of tasks needing specific training. The
race to educate employees may generate great competition amongst the largest LIB manufacturers, to get the
highest number of skilled workers and gain an edge on the production and efficiency side. This in turn may
lead to delay effects on other manufacturers, which may encounter a shortage of the required skilled workers
needed in the LIB production lines.

As a result of the yearly growth in the establishment of battery production facilities, the direct employment
generated in this economic sector can bring benefits in the areas where the facilities are located. In addition,
the growth of the LIB industry will have a handful of positive side-effects on the labor market, also due to the
complex value chain of LIBs. Among the strongest indirect effects on the employment market are (1) temporary
employment generated for the construction phase of the production facilities; (2) additional employment
generated in the surroundings of the facility for the provision of services [57, 89]; (3) employment in the
recycling sector, which needs to grow according to the production sector; and, (4) employment in the mining
sector to secure the supply of LIB materials. However, these additional jobs were not included in our analysis
due to the challenges in their quantification.

In high-EV-penetration scenarios, we estimate that in LIB production facilities the annual employ-
ment generated grows rapidly until approximately 2040, the year in which the demand for LIB yearly
addition reaches the maximum (figure 4). At its peak, the establishment of LIB production facilities can
drive the demand between ∼22 thousand (RCP2.6—LED) and ∼70 thousand (RCP2.6—SSP2) person
years. In 2040, employment peaks and the trend is reversed as production capacity levels off. Cumula-
tively, the production of LIBs in high-penetration scenarios leads to 400 thousand to 1 million perma-
nent jobs in manufacturing facilities, for the period 2020–2050. Low-EV-penetration scenarios show slower
growth in the yearly employment generated, which is also characterized by significantly lower absolute gen-
eration, with an average maximum of 3k (baseline—LED) to 10k (baseline—SSP2) reached in the peri-
ods 2045–2050. The low-penetration scenarios are estimated to generate in total 53–176 thousand jobs
by 2050.
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Figure 4. Annual permanent jobs generated for the operation of LIB production facilities in each scenario.

4. Discussion

The EV sector is growing quickly, providing high uncertainty regarding the future demand of LIBs and the
critical raw materials needed. Furthermore, several announcements are made every year regarding the con-
struction of new production facilities. However, as shown in this study, it is difficult to predict the long-term
demand for this commodity since there is a wide range of futures in which it is possible to achieve the LDV
decarbonization targets.

Compared to other key future sectors, such as wind or solar, the LIB sector does not require significantly
high investment to enable the transition to EVs. Between 2010 and 2020 the investment in solar PV has been
approximately 120–140 billion USD/year [90]. Annual expenditure in wind power grew from approximately
75 billion USD/year in 2010 to 144 billion USD/year, with an almost four-fold increase in the energy out-
put [90]. In contrast, to establish the required LIB production facilities between 2020 and 2050 entails total
investment up to 150–300 billion USD. Hence, the investment required in the LIB manufacturing sector can
be significantly lower than the investment in the renewable energy sector that has shown fast growth similar
to the growth in LIBs estimated in this analysis. In addition, our estimates only consider the improvements
over time due to learning rates, but economies of scale may help to achieve stronger CAPEX reduction. How-
ever, uncertainty related to long-term demand for LIBs may represent a major concern to investors, due to the
possibility of production overcapacity.

The expansion of LIB production will also generate the demand for skilled labor and this will likely follow
the same trend as in the renewable sector, where the jobs generated in this sector have grown significantly in
the past decade [91]. However, in the renewable energy sector it has been observed that there is a shortage
of employees with the required skillset [91], and this risk may also materialize in the LIB sector. To avoid
potential shortages of skilled workers, it is essential to develop skill development pathways, such as higher
education programs, on-site training and core-skills transition.

Research on LIB chemistries is at an all-time high with effort to improve the current state-of-the-art chem-
istry NMC and develop cheaper, high-performance and environmentally friendly technologies. The current
technology readiness level of the alternative chemistries is rather low, suggesting that NMC LIBs will keep dom-
inating the market share for EV applications in the coming decade. Reaching the full theoretical performance
of NMC LIBs is still an ongoing task, and the current focus is moving towards Ni-rich layers [92]. Together
with NMC LIBs, LiFePO4 (LFP) and LiNiCoAl (NCA) LIBs populate the current market [6]. Simultaneously,
different researchers seek to develop different chemistries (e.g. Li–S, Li-air, Na-ion and all solid-state), capable
of outperforming the current reference chemistry. While this analysis is mainly focused on the current refer-
ence technology and its development, i.e. NMC chemistry, the deployment of novel battery chemistries with
a different material composition can transform the LIB industry. The adoption of chemistries without Li and
Co could ease the concerns surrounding their value chains. At the same time, it is challenging to foresee the
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Figure 5. Evolution over time of the materials demand of the LIB industry compared to benchmark industries.

materials embodied in novel batteries and what effects these may have on the industry and its linked sectors.
Moving to newly developed battery technologies can have several effects on both the production and recycling
industries. As Duffner et al pointed out, future chemistries with higher energy densities employed in EVs can
potentially drive the partial redesign of manufacturing facilities, which can lead to a net increase in the cost of
the cells [61]. In spite of the challenges posed to the production and recycling sectors, new technologies can
induce a reduction in the environmental impacts of LIB value chains with the possibility of reducing supply
constraints due to more available materials.

In addition, since the recycling phase profitability depends on the price of the materials embodied in
LIBs, the use of cheaper materials may diminish the economic viability of recycling facilities [93]. To date,
the pyrometallurgical treatment of spent LIBs is the most common, due to the high recovery rates of valu-
able metals, such as Ni, Cu and Co [94–96], while Li is lost in the slag. Li is often recovered either through
hydrometallurgical or direct recycling techniques [94, 95]. Hydrometallurgical recycling is less common due
to the greater challenges posed in recovering more valuable metals such as Co, Cu, Ni and Al [95]. However,
with the rise of Co and Li prices, this recycling strategy could see increasing adoption rates, together with direct
recycling. LIBs will likely be used in other sectors of the economy, such as in stationary energy storage appli-
cations, and the adoption of circular economy strategies calls for more efficient recycling strategies with the
possibility of reactivating the active materials for reuse within the LIB sector.

The current yearly demand for LIBs has not yet had a significant impact on automotive CO2 emissions.
However, concerns about the supply failing to meet the demand are already becoming prevalent. Recently,
several automotive manufacturers stated that production delays are due to production bottlenecks in the pack
assembly [58]. If the EV demand keeps growing at the rate observed in the past 5 years it is likely that other
original equipment manufacturers, as they move to a larger portfolio of EVs available, may face similar issues.
The competitiveness of EVs may be threatened by the shortage of key resources.

As EV adoption is quickly gaining momentum, the same is happening to the LIB market with constant
announcements regarding the construction of new LIB production facilities. However, as the current plans
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seem promising and total installed production capacity exceeds the current and short-term forecast demand,
high electrification scenarios call for significantly higher production capacity to be put in place. Figure 5 shows
how quickly the demand for LIBs will grow in the short- to medium-term, compared to reference industries.
Between high- and low-penetration scenarios, there are significant differences in the average yearly demand for
LIB materials, which can have different effects on the upstream sectors of interest, as discussed in the previous
sections of this manuscript.

Compared to similarly complex, fast-growing sectors, such as PV and smartphone production, the LIB
industry may potentially require significantly more materials (figure 5). With these trends, the upcoming
decade will be the cornerstone for LIB production know-how and recycling, and the establishment of strong
value chains that will lay the groundwork for the future fate of the transition to electrified mobility at a
pace that would allow the realization of the electrification targets of the transport sector. This rapid growth
requires significant capital investment along the supply chain, with the need for a synchronized expan-
sion of material processing activities, battery manufacturing plants and recycling facilities to avoid bottle-
necks that could potentially disrupt the supply chains and slow down the deployment of EVs. The potential
growth of the LIB value chain can create a multitude of jobs in various areas, from mining to construction
and R & D.

In addition, to harvest the highest emissions reduction potential it is essential to ensure that all these activi-
ties are performed in the most environmentally sound way. While the last stage of the battery production value
chain could be rather straightforward to decarbonize due to the possibility of producing the cells with renew-
able energy sources, there are significantly more challenges related to the value chain of the primary materials
used in LIBs, as the impact across the value chains is affected by several parameters [97].

5. Conclusion

As shown in this study, high electrification scenarios, regardless of the socioeconomic pathway, entail sub-
stantial effort for the supply of key battery materials, investment needed to build the necessary production
and recycling facilities, and the education of a skilled workforce. Our analysis highlights the effort needed
for the electrification of the transport sector in a manner both compliant with climate targets and sustainable
resource strategies. This combination entails significant investment to build the manufacturing capacity, which
consequently requires global coordination to ensure that batteries are properly recycled and mining activities
can supply enough materials. At the same time, it is challenging to make such estimates due to the uncer-
tainty related to the future EV uptake, particularly due to the data scarcity regarding the current estimates of
mine capacities, and production and recycling facilities in the pipeline. While there is no apparent shortage of
resources, the complexity of the supply chains involved in the LIB sector combined with the lack of enough
geographical diversification for key resources, both virgin and refined, can pose a future threat to the entire
supply chain. A shortage of either LIBs or materials for LIBs due to the disruption of the supply chain at any
random point may hinder the ability to fully electrify the fleet of passenger LDVs by 2050.
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[87] Dvǒrák P, Martinát S, der Horst D V, Frantál B and Turěcková K 2017 Renewable energy investment and job creation; a
cross-sectorial assessment for the Czech Republic with reference to EU benchmarks Renew. Sustain. Energy Rev. 69 360–8

[88] Lucas H, Pinnington S and Cabeza L F 2018 Education and training gaps in the renewable energy sector Sol. Energy 173 449–55
[89] Applied Economics 2014 Economic Impact of Tesla on Washoe and Storey Counties Nevada Governor’s Office of Economic

Development
[90] International Energy Agency, IEA 2021 World Energy Investment 2021 (Paris IEA) https://iea.org/reports/world-energy-invest

ment-2021
[91] IRENA and ILO 2021 Renewable Energy & Jobs Annual Job Review International Renewable Energy Agency, International Labour

Organization
[92] Dominko R et al 2020 Battery 2030—Inventing the Sustainable Batteries of the future Battery 2030+ Working Group
[93] Wang X, Gaustad G, Babbitt C W and Richa K 2014 Economies of scale for future lithium-ion battery recycling infrastructure

Resour. Conserv. Recycl. 83 53–62
[94] Harper G et al 2019 Recycling lithium-ion batteries from electric vehicles Nature 575 75–86
[95] Chen M, Ma X, Chen B, Arsenault R, Karlson P, Simon N and Wang Y 2019 Recycling end-of-life electric vehicle lithium-ion

batteries Joule 3 2622–46
[96] Bai Y, Muralidharan N, Sun Y-K, Passerini S, Stanley Whittingham M and Belharouak I 2020 Energy and environmental aspects in

recycling lithium-ion batteries: concept of battery identity global passport Mater. Today 41 304–15
[97] Manjong N B, Usai L, Burheim O S and Strømman A H 2021 Life cycle modelling of extraction and processing of battery

minerals—a parametric approach Batteries 7 57

14

https://doi.org/10.3390/batteries5040068
https://doi.org/10.3390/batteries5040068
https://doi.org/10.1111/jiec.12607
https://doi.org/10.1111/jiec.12607
https://doi.org/10.1111/jiec.12607
https://doi.org/10.1111/jiec.12607
https://doi.org/10.1039/d1gc01639c
https://doi.org/10.1039/d1gc01639c
https://doi.org/10.1039/d1gc01639c
https://doi.org/10.1039/d1gc01639c
https://doi.org/10.1016/j.apenergy.2019.01.138
https://doi.org/10.1016/j.apenergy.2019.01.138
https://doi.org/10.1016/j.apenergy.2019.01.138
https://doi.org/10.1016/j.apenergy.2019.01.138
https://doi.org/10.1038/s41560-018-0130-3
https://doi.org/10.1038/s41560-018-0130-3
https://doi.org/10.1038/s41560-018-0130-3
https://doi.org/10.1038/s41560-018-0130-3
https://doi.org/10.3390/en12030504
https://doi.org/10.3390/en12030504
https://doi.org/10.1016/j.rser.2014.07.136
https://doi.org/10.1016/j.rser.2014.07.136
https://doi.org/10.1016/j.rser.2014.07.136
https://doi.org/10.1016/j.rser.2014.07.136
https://doi.org/10.1016/j.energy.2017.08.025
https://doi.org/10.1016/j.energy.2017.08.025
https://doi.org/10.1016/j.energy.2017.08.025
https://doi.org/10.1016/j.energy.2017.08.025
https://doi.org/10.1016/j.rser.2012.03.072
https://doi.org/10.1016/j.rser.2012.03.072
https://doi.org/10.1016/j.rser.2012.03.072
https://doi.org/10.1016/j.rser.2012.03.072
https://doi.org/10.1016/j.rser.2016.11.158
https://doi.org/10.1016/j.rser.2016.11.158
https://doi.org/10.1016/j.rser.2016.11.158
https://doi.org/10.1016/j.rser.2016.11.158
https://doi.org/10.1016/j.solener.2018.07.061
https://doi.org/10.1016/j.solener.2018.07.061
https://doi.org/10.1016/j.solener.2018.07.061
https://doi.org/10.1016/j.solener.2018.07.061
https://iea.org/reports/world-energy-investment-2021
https://iea.org/reports/world-energy-investment-2021
https://doi.org/10.1016/j.resconrec.2013.11.009
https://doi.org/10.1016/j.resconrec.2013.11.009
https://doi.org/10.1016/j.resconrec.2013.11.009
https://doi.org/10.1016/j.resconrec.2013.11.009
https://doi.org/10.1038/s41586-019-1682-5
https://doi.org/10.1038/s41586-019-1682-5
https://doi.org/10.1038/s41586-019-1682-5
https://doi.org/10.1038/s41586-019-1682-5
https://doi.org/10.1016/j.joule.2019.09.014
https://doi.org/10.1016/j.joule.2019.09.014
https://doi.org/10.1016/j.joule.2019.09.014
https://doi.org/10.1016/j.joule.2019.09.014
https://doi.org/10.1016/j.mattod.2020.09.001
https://doi.org/10.1016/j.mattod.2020.09.001
https://doi.org/10.1016/j.mattod.2020.09.001
https://doi.org/10.1016/j.mattod.2020.09.001
https://doi.org/10.3390/batteries7030057
https://doi.org/10.3390/batteries7030057

	Analysis of the Li-ion battery industry in light of the global transition to electric passenger light duty vehicles until 2050
	1.  Introduction
	2.  Methodology and scenarios
	2.1.  EV fleet and battery scenario definition

	3.  Results
	3.1.  Global demand for LIBs and their key raw materials up to 2050
	3.2.  Investment needed and job creation within the LIB industry

	4.  Discussion
	5.  Conclusion
	Author contributions
	Conflicts of interest
	Acknowledgments
	Data availability statement
	ORCID iDs
	References


