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Abstract

Quality assessment of images plays an important role in
different applications in image processing and computer vision.
While subjective quality assessment of images is the most accu-
rate approach due to issues objective quality metrics have been
the go to approach. Until recently most such metrics have taken
advantage of different handcrafted features. Similar (but with
a slower speed) to other applications in image processing and
computer vision, different machine learning techniques, more
specifically Convolutional Neural Networks (CNNs) have been
introduced in different tasks related to image quality assessment.
In this short paper which is a supplement to a focal talk given
with the same title at the London Imaging Meeting (LIM) 2021
we aim to provide a short timeline on how CNNs have been used
in the field of image quality assessment so far, how the field could
take advantage of CNNs to evaluate the image quality, and what
we expect will happen in the near future.

Introduction

For decades Image Quality Assessment (IQA) has been an
active field of research [1]. Naturally, the go to approach for as-
sessing the quality of images would be to perform different sub-
jective experiments. While subjective experiments has been the
gold standard in the field, such experiments are time consuming
and financially expensive. This has resulted in the introduction
of different objective Image Quality Metrics (IQMs) which aim
to model the subjective judgment of the image quality and are
now the go to approach when there is a need for IQA both in
the research and industrial community. A common approach for
categorising IQMs is how much access we have to the reference
image. That is, Full Reference (FR) metrics which have access
to the reference image, Reduced Reference (RR) metrics which
have access to partial information of the reference image and No
Reference (NR) metrics which do not have access or any infor-
mation of the reference image. Over the years a high number of
different IQMs have been proposed resulting in different studies
on evaluating the performance of the said metrics [2, 3,4, 5, 6, 7].

While in recent years the use of Convolutional Neural Net-
works (CNNs) and other state-of-the-art machine learning tech-
niques have taken over most computer vision and image process-
ing tasks the same could not be claimed in the case of IQA. In
fact, until recently most IQMs were based on the use of a few
handcrafted features [8, 9]. While such an approach had been
closely linked to the lack of a large-scale subjective dataset [10],
recently, through online platforms and crowdsourcing [11] few
large-scale datasets such as [12, 13, 14] have been introduced.
These datasets along with other approaches which we will dis-
cuss in the rest of the paper has resulted in the introduction of
different CNN based IQMs.

In this paper which is a supplement to a focal take given
with the same title we aim to have a short review on how over
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the years there has been an increase in the number of different
CNN based IQMs. Our hope is to provide a story line and link
the first studies in the field to its current state and try to have an
educated guess on what is waiting for us in the near future.

Initial CNN based IQMs

One of the first if not the first work which used CNNs to
evaluate the quality of an images dates back to 2014 [15]. In
this NR IQM, Kang et al. use a combination of feature learn-
ing and regression and calculate the average score of CNN qual-
ity estimates of the patches in the image. Due to the lack of a
large-scale dataset with sufficient size for training an entire CNN
from scratch, initially most CNN based IQMs were based on us-
ing pre-trained CNNs. In this type of approach the features ex-
tracted by the CNN were used in evaluating the quality of an
image [7, 16, 17, 18]. As an example, DeepBIQ [16] which is
also a NR IQM uses features extracted from the Caffe [19] net-
work architecture which is trained on the ImageNet dataset [20].
DeepBIQ then calculates the quality of a given image by aver-
aging the quality scores calculated for multiple regions of the
image.

When it comes to the first few FR IQMs which are based
on the use of CNN, pre-trained networks play a crucial role. For
example, Amirshahi et al. [7, 17] use AlexNet [21] which is pre-
trained on the ImageNet dataset to extract deep features from the
reference and test images. The comparison of feature maps are
then used to evaluate the quality of an image. This ranges from
a simple pyramidal approach to compare the strength of feature
maps in the test and reference image, similar to what was ini-
tially proposed in [22] for calculating the Pyramid Histogram of
Orientated Gradients (PHOG) to using traditional IQMs to com-
pare the similarity between corresponding feature maps. While
simple, the proposed approaches show a dramatic increase (up
to 23%) in the accuracy of IQMs such as Structural Similar-
ity Index (SSIM) [23], Mean Square Error (MSE), Peak Signal
to Noise Ratio (PSNR), Mean Average Error (MAE), Laplacian
Mean Square Error (LMSE), Normalized Absolute Error (NAE),
Maximum difference (MD), and Structural Content (SC).

Current CNN based IQMs

As mentioned earlier the size of the labeled data (in the case
of IQMs, size of the subjective dataset) we have access to plays
an important role in the performance of our CNN [24]. While
in recent years a few relatively large-scale subjective datasets
have been introduced, unfortunately, compared to other fields of
study like image classification and segmentation, the size of the
datasets are still too small. While in similar cases generating
data using different augmentation techniques is a go to approach,
keeping in mind the subjective nature of the image quality scores,
in such dataset generating augmented data in order to the increase
the size of our dataset is not the first go to option. Neverthe-



less, to address the lack of a dataset with large enough number of
images studies such as [25] artificially augment the datasets. In
their study Boss et al. train their network on a set of randomly se-
lected patches from subjectively evaluated images [25]. [26] uses
a similar patch-based approach. In their work a CNN model is
used to evaluate the quality of an image on a local scale (patches)
and then regression is used to evaluate the overall quality of the
image.

One of the common methods for categorising different
IQMs is to divide the them to single-task [27, 28, 29] and multi-
task metrics [30, 31, 32, 33, 34, 35]. As an example, in the case
of [28] which is a single-task IQM a fully connected CNN is used
while [27] takes advantage of a Generative Adversarial Network
(GAN) [36]. When it comes to multi-task metrics, the mentioned
IQMs are mostly based on detecting the type of distortion af-
fecting the image quality and then evaluating the image quality
based on that. This is done either by using a single network for
both tasks or in the case of the Multi-task Rank-Learning Image
Quality assessment (MRLIQ) [32] a number of different IQMs
for different types of distortions is used.

Different studies have emphasized on the role of attention
for evaluating the quality of images and videos [37, 8, 38, 39].
In that order different saliency detection methods have been used
to evaluate the quality of images. This ranges from assigning a
weight to different regions in the image based on a saliency map
generated using saliency detection technique to only calculating
the quality of the most salient region in the image [37].

Finally, a common approach in CNN based FR IQMs is the
use of Siamese networks [40]. In such an approach the test and
reference images are processed in parallel using two different
networks with the matching specifications [25]. Ayyoubzadeh
and Royat [41] used an attention-based Siamese-Difference neu-
ral network to detect the difference between the reference and
test images. For the attention mechanism in their approach they
used the work by Wang and Shen [42].

What lies ahead

Having access to a large-scale labelled dataset is an impor-
tant issue when it comes designing and new CNN based IQM.
Unfortunately, when it comes to the field of IQA there are only
a limited number of subjective datasets available [10]. This is
mainly because of the fact that still most subjective datasets are
collected under controlled environment in a lab setting which
naturally will result in a lower number of rated images and par-
ticipating observers. In fact, different standards and guidelines
have been agreed on in the research community for collecting
such data [43, 44]. When it comes to using crowdsourcing for
collecting subjective data in an uncontrolled environment such
guidelines and standards are not yet available. A new guideline
should include subject reliability, difference in viewing condi-
tion, display device, visual acuity of the observers, how their cul-
tural background could affect the subjective scores, etc.. Apart
from creating large-scale dataset, recent studies have also fo-
cused on the possibility of merging different already available
datasets [45, 46] which still needs further studies.

When it comes to the IQMs themselves, although current
IQMs have shown great performance in evaluating the quality of
images, there exist room for improvement. Below some of the
future challenges in the field are introduced:

¢ Current IQMs are mostly focused on images affected by a
single distortion and their performance drop when multiple
number of distortions are present in the image. In the rare
case that an IQM is designed for a multi-distorted images

this is done by a predefined set of distortions which the
metric is already trained on. This issue is also what has
been pointed out in different studies [47, 48] as the future
direction they would like to take.

* An advantage of using CNN based IQM is the vast amount
of information it provides the users at different convolu-
tional layers and through the feature maps. This is a perfect
opportunity to gain a better understanding on how and why
such IQMs work and investigate the link between them and
the human visual system. As an example, [29] has proposed
to focus on the introduction of better sensitivity maps with
respect to the human visual system.

e Current IQMs mainly provide a single score to the image
that is been evaluated. While such scores could be used
as a way to find the distance between the quality of dif-
ferent images, by itself they do not provide the user with
interpretable information about the quality of each image.
Using CNNs we should be able to not only have a qual-
ity score representing the image quality but also provide a
descriptive evaluation of the image quality so the user is
able to better understand how, where, and to what extent
the quality of the image is affected. Such interpretation of
the image quality could also be useful in proposing bet-
ter image enhancement and image processing techniques in
general [49].

» With the increase in the size of subjective datasets and ad-
vances in machine learning techniques, in the near future
we should expect the introduction of personalized IQMs.
That is, the IQMs will not only provide the average quality
score for all observers but will also be able to predict the
quality score given by each individual observer.

* The content of the image plays an important role in the im-
age quality [50]. Over the years, not enough attention has
been paid on introducing IQMs which take into account the
content of the image [51]. One possible reason for this
could be the lack of a dataset which covers a wide range
of different content.

 Different studies have pointed out to how a combination of
handcrafted features and state-of-the-art machine learning
techniques could result in highly accurate IQMs [52].

Conclusion

This short paper which is prepared as a complement to the
focal talk given with the same time at the London Imaging Meet-
ing (LIM) 2021 we provided a short storyline on the use of Con-
volutional Neural Networks for evaluating the quality of images.
We provided information about what the field lacks and what lies
ahead.
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