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Abstract

Input estimation is a signal processing technique associated with deconvolution of measured signals after filtering through a known dynamic
system. Kitanidis and others extended this to the simultaneous estimation of the input signal and the state of the intervening system. This
is normally posed as a special least-squares estimation problem with unbiasedness. The approach has application in signal analysis and
in control. Despite the connection to optimal estimation, the standard algorithms are not necessarily stable, leading to a number of recent
papers which present sufficient conditions for stability. In this paper we complete these stability results in two ways in the time-invariant
case: for the square case, where the number of measurements equals the number of unknown inputs, we establish exactly the location of
the algorithm poles; for the non-square case, we show that the best sufficient conditions are also necessary. We then draw on our previous
results interpreting these algorithms, when stable, as singular Kalman filters to advocate a direct, guaranteed stable implementation via
Kalman filtering. This has the advantage of clarity and flexibility in addition to stability. En route, we decipher the existing algorithms in
terms of system inversion and successive singular filtering. The stability results are extended to the time-varying case directly to recover
the earlier sufficient conditions for stability via the Riccati difference equation.
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1 Introduction
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Fig. 1. SISE estimation as posed in this paper.
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Figure 1 depicts the Simultaneous Input and State Estima-
tion (SISE) problem formulation: using the measured out-
put signal yt ∈ Rp, construct estimates of both plant input
signal dt ∈ Rm and plant state xt ∈ Rn. Plant matrices
[A,G,C,H] are assumed known and wt and vt are indepen-
dent zero-mean white noises of known covariances, Q ≥ 0
and R > 0. The idiosyncrasy of this specification lies in the
feature that no specific statistical model of the signal dt is
provided. — it is effectively treated as white noise. Denote
the dt-to-yt transfer function

Zd(z) = H + C(zI −A)−1G. (1)

Input reconstruction or estimation from output measure-
ments is a standard signal processing problem of deconvolu-
tion [1–3] and, when possible, may be performed by Zd(z)
inversion. SISE augments this by including state estimation.

A number of related SISE algorithms has been developed,
each reflecting the delay structure of Zd in the latency, `,
of the input estimate, d̂t|t+`. Thus: Kitanides [4] and Gilli-
jns & de Moor [5] present an algorithm for delay one, i.e.
H = 0 and rankCG = m; Gillijns & de Moor [6] also pro-
vide an algorithm for delay zero, rankH = m; and Yong,
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Zhu & Frazzoli [7] an algorithm (ULISE) for mixed zero-
one delays, where H might be less than full rank rank but[
H CG

]
= m. Other variations are possible [8,9] and time-

variation and more complicated delay structure are readily
incorporated because of the connections to Kalman filtering.
We do not rederive these algorithms here but, rather, study
their stability properties. In Section 5, we present a novel
construction for guaranteed stable SISE based on inner-outer
factorization and the recovery of an estimate of an all-pass-
filtered version of dt from which dt can be recovered by
different non-real-time means.

In each algorithm, the absence of a statistical model for dt
is accommodated by d̂t|t+` being a finite impulse response
of the filtered or predicted output error, as appropriate for `.
The dt estimate is then used in the innovations of the state
estimator. Such a strategy also appears in the white noise
estimators which seek to reconstruct the process noise, wt,
from smoothed state estimates [10]. These rapid estimators
are related to singular filtering; Kalman filtering with fixed
process noise covariance Q ≥ 0 and measurement noise co-
variance R = 0 exactly [11]. This corresponds to noise-free
measurements and, in this case, a number of elements is esti-
mated using geometric construction. The limiting filter with
Q ≥ 0 and R +→ 0 is also the singular filter when the plant
is minimum phase. This is explored in the dual minimum
variance control context using the Return Difference Equal-
ity in [12]. In [13], SISE, when stable, is shown to conform
to the Kalman filter with fixed R > 0 and Q−1 → 0, which
is an equivalent description of this limiting filter. The con-
nection to SISE with be drawn again here, since singular fil-
tering also is connected with system inversion and its allied
stability concerns. Indeed, one of our proofs draws directly
from Loop Transfer Recovery/cheap/singular control [14].

There have been a great number of recent papers on these
algorithms, with a recent subset [15–17,7] focusing on con-
ditions for stability. Since SISE presumes that no model
is available for the disturbance signal, the algorithm pro-
ceeds without an explicit description of the disturbance sig-
nals’ statistical properties. Thus techniques such as extended
state observers [18] and augmented Kalman filters [19,20]
are inapplicable, as both rely on disturbance models. A re-
cent paper by the authors [13] establishes that, when stable,
the linear system SISE algorithm of [5] coincides with the
Kalman filter with {dt}modeled by white Gaussian noise of
unbounded variance. Various approaches consider first esti-
mating the state [15] and then using the state recursion to
reconstruct dt, or estimating the disturbance first and then
reconstructing the state [5–7]. These methods rely on geo-
metric approaches and system inversion, although there is a
strong overlap with least-squares state estimation concepts
of unbiasedness and optimality.

SISE algorithms go back to least to Kitanidis [4] with an-
tecedents [21,10,22] concentrating on input signal recon-
struction. Here, we follow the formulation from Yong, Zhu
and Frazzoli [7], which in turn builds on [5,6]. We consider

linear time-invariant systems to add clarity and to explore
the connection to optimal estimation before extending to
uniformly time-varying systems.

Input estimation is a signal processing technique for the re-
covery of signals after filtering through a known dynamic
system. Examples include the estimation of rainfall given
river flow and the calculation of salinity in the ocean accom-
modating for sensor dynamics [23]. Here, the central objec-
tive is to estimate the driving disturbance signal dt and there
is little interest in the sensor state. The algorithm should be
stable, however. Our particular driving problem, on the other
hand, is the estimation of generator states in part of a power
grid when the interconnection signals are unknown [24].
Here the priority is to estimate network generator states in
the face of unmodeled and unmeasured consumption, which
is treated as the disturbance signal. In spite of these distinct
objectives, the same algorithms are used.

Contributions & organization

Our objective in this paper is to attempt to bring some clar-
ity and unity to this picture by establishing precisely the
connection to system inversion and optimal estimation by
deriving necessary and sufficient conditions for stability us-
ing explicit system inverse formulæ and algebraic Riccati
equations, starting with the time-invariant case. Earlier sta-
bility conditions were sufficient only but derived in the time-
varying situation. We recover these. Further, when stabil-
ity is not achieved by these SISE algorithms, we propose a
modification based on inner-outer factorization, which main-
tains state estimation performance at the expense of simple
disturbance recovery. This can be compared with the tech-
niques advanced in [15] for approximate system inversion
with delay. Beyond this work, we know of no other which
addresses estimation when the stability conditions fail.

Section 2 presents the SISE problem for a linear time-
invariant system. Section 3 studies the zero direct
feedthrough case and the corresponding SISE of [5] and
shows that, in the square case where the number of mea-
surements equals the number of disturbance channels, the
input estimator is the inverse of the dt-to-yt system and the
state estimator is a plant simulation. Stability depends on
the transmission zeros of the former system. These neces-
sary and sufficient stability conditions then are extended
to the non-square case with more measurements. This in-
volves the Riccati difference equation and a detectability
condition. Section 4 expands this analysis to the full-rank
direct feedthrough case and comments on the non-full-rank
case of [7]. Section 5 draws connections to earlier works of
singular filtering and introduces an accommodation to cir-
cumvent stability issues using the inner-outer factorization.
It also contains the extension to time-varying systems via
the Riccati equation. Section 6 reinforces the connections
to system inversion and concludes. The Appendix contains
the proofs.
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2 Problem statement

SISE algorithms have been formulated for linear time-
varying systems [5–7] and for nonlinear time-varying
systems [23,25]. However for clarity of development, we
consider the linear, time-invariant system with zero known
control input,

xt+1 = Axt +Gdt + wt, (2)
yt = Cxt +Hdt + vt, (3)

with xt ∈ Rn, dt ∈ Rm, yt ∈ Rp. Zero-mean white
noises {wt} and {vt} are independent and independent from
{dt} and x0. The covariance of wt is Q ≥ 0 and the co-
variance of vt is R > 0. Denote the signal measurements
Yt , {yt, yt−1, . . . , y0}. The aim is to produce from Yt,
a recursive filtered state estimate, x̂t|t, and filtered and/or
smoothed estimates, d̂t|t or d̂t−1|t, depending on the proper-

ties of G and
[
C H

]
. We make the following assumption.

Assumption 1 System (2-3) has [A,C] observable, [A,Q]
reachable, and R > 0.

Full-rank direct feedthrough, i.e. rank(H) = m, is treated in
[6]; zero direct feedthrough,H = 0, in [5] with rank(CG) =
m; and, [7] provides a generalization, ULISE, with mixed
rank properties between H and CG. A noise-free variant is
treated in [15].

3 Zero direct feedthrough

For H = 0 in (3), SISE from [5] is the recursion.

Xt = APt−1A
T +Q, (4)

Kt = XtC
T (CXtC

T +R)−1, (5)

Mt = [GTCT (CXtC
T +R)−1CG]−1

×GTCT (CXtC
T +R)−1, (6)

Pt = (I −KtC) [(I −GMtC)Xt

×(I −GMtC)T +GMtRM
T
t G

T
]

+KtRM
T
t G

T , (7)

d̂t−1|t = Mt(yt − CAx̂t−1|t−1), (8)

x̂t|t = Ax̂t−1|t−1 +Gd̂t−1|t +Kt

× (yt − CAx̂t−1|t−1 − CGd̂t−1|t), (9)
cov(xt|Yt) = Pt, (10)

under the following structural condition.

Assumption 2

rankCG = m. (11)

An immediate observation is that SISE contains no spe-
cific information related to a model for the unmeasured
disturbance dt. Indeed, it is frequently claimed that sig-
nal {dt : t = 0, 1, . . . } possesses no model whatsoever.
Although, for bounded covariance Xt, i.e. when the algo-
rithm is stable, the authors derived this version of SISE
in [13] as a Kalman filter with {dt} modeled as a white
noise process of unbounded variance. We shall return to this
point later. Evidently, Assumption 2 requires p ≥ m and
rankC ≥ rankG = m. Firstly, we treat the square case,
p = m, where the number of measurements equals the di-
mension of the disturbance input. Then we shall derive more
general results.

3.1 Square zero-feedthrough case

From Assumption 2 when p = m, CG is invertible. Since,
from (6), MtCG = I or Mt = (CG)−1, we have

d̂t−1|t = (CG)−1(yt − CAx̂t−1|t−1), (12)

0 = yt − CAx̂t−1|t−1 − CGd̂t−1|t, (13)

x̂t|t = Ax̂t−1|t−1 +Gd̂t−1|t, (14)

= [I −G(CG)−1C]Ax̂t−1|t−1 +G(CG)−1yt.
(15)

This estimation algorithm:

– is time-invariant;
– does not depend on Q or R, the noise variances;
– is independent from the covariance calculations;
– has zero x̂t|t innovations (13), (9).

SISE reduces to (12-15). Note that, using the matrix inver-
sion lemma, we may rewrite the SISE yt-to-d̂t−1|t transfer
function as

(CG)−1

− (CG)−1CA(zI −A+G(CG)−1CA)−1G(CG)−1

=
[
CG+ CA(zI −A)−1G

]−1
,

=
[
zC(zI −A)−1G

]−1
, (16)

which is the inverse of the one-step-advanced dt-to-yt trans-
fer function Zd(z) in (1). The filtered state estimate error
satisfies

x̃t|t , xt − x̂t|t,
= [I −G(CG)−1C]Ax̃t−1|t−1

+ [I −G(CG)−1C]wt−1 −G(CG)−1vt.

The stability of SISE, i.e. the boundedness of the covariance
of x̃t|t, depends on the eigenvalues of [I −G(CG)−1C]A.
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Theorem 1 For system (2-3) with p = m and subject to
Assumption 2, the eigenvalues of the SISE estimator system
matrix,

[
I −G(CG)−1C

]
A, lie at the transmission zeros of

the square transfer function zC(zI −A)−1G. Accordingly,
the SISE estimator is asymptotically stable if and only if the
transmission zeros of T (z) all lie inside the unit circle.

The proof of this theorem follows immediately from (16).
An alternate is given in the Appendix for completeness and
to establish connections to singular filtering. We note that
condition (11) in Assumption 2 implies that zC(zI−A)−1G
possesses exactly n finite transmission zeros with exactly m
at zero.

We see that, in the square case, the poles of SISE can be
located precisely at the transmission zeros of the dt-to-yt
transfer function. SISE therefore is performing system in-
version to recover d̂t−1|t from Yt. The dependent recursion
(14) for x̂t|t is a simulation of the state equation (2) driven
by d̂t−1|t. Effectively all the information in Yt is used in
generating the disturbance estimate, leaving simulation (14)
to generate the state estimate.

When SISE is stable, it was shown in [13] that the state esti-
mation algorithm implements a Kalman filter with a model
for {dt} as a white noise of unbounded variance, D. In this
case, the state estimation problem has driving noise variance
Q+GDGT and measurement noise variance R. The identi-
cal filter, but not the covariances, will be achieved by taking
driving noise GDGT for finite D and R→ 0. That is, SISE
is a singular filter. The connection to [14] in the proof is to
the equivalent result in Loop Transfer Recovery for LQG
control. When one selects R = 0, as opposed to R → 0
from above, then the poles are placed at the transmission
zeros. The limiting operation, on the other hand places the
poles at the stable transmission zeros and the inverses of the
unstable transmission zeros [11].

3.2 Non-square zero-feedthrough case

From Assumption 2, we take p ≥ m and make a transfor-
mation of the output signal as follows. This is a variation on
the technique of [7]. Take the singular value decomposition
of p×m CG.

svd(CG) = UΣV T ,

=
[
Um Up−m

] [Σ

0

]
V T .

Define the p× p transformation

T =

[
UT
m − UT

mRUp−m(UT
p−mRUp−m)−1UT

p−m

UT
p−m

]
, (17)

and transform the original output signal, call it ȳt,

yt = T ȳt =

[
C1

C2

]
xt +

[
v1,t

v2,t

]
, (18)

yielding

det C1G 6= 0, C2G = 0, cov

[
v1,t

v2,t

]
=

[
R1 0

0 R2

]
.

Theorem 2 For system (2-3) with p ≥ m and sub-
ject to Assumptions 1 and 2, if and only if the pair
[A(I − G(C1G)−1C1), C2] is detectable then the filtered
state covariance, Pt, is bounded and converges to a limit
P∞ as t→∞.

The corresponding gain matrices, K∞ and M∞, yield the
limiting SISE system matrix, (I −K∞C)(I − GM∞C)A,
with all its eigenvalues strictly inside the unit circle.

The proof of this result appears in the Appendix and is
based on proving that the state covariance satisfies a Ric-
cati Difference Equation. Although this condition is not
strictly the same as the condition in [7], the theorem con-
dition implies theirs. Hence, their condition is also neces-
sary. Theorem 2 similarly extends the condition in [16]. The
sufficient stability result in [25] is predicated on Pt being
bounded a priori. We already know from Theorem 1 the
eigenvalues of A(I −G(C1G)−1C1) are stable if and only
if zC(zI −A)−1G is minimum-phase.

We see that, when p > m, the surfeit of measurements
beyond those strictly needed to produce d̂t−1|t are brought
to bear on estimating xt. The stability of SISE depends
on either the square case yielding stability via Theorem 1,
i.e. via stable transmission zeros, or there being sufficient
information in the additional measurements to stabilize the
estimator.

When SISE is stable, then the algorithm implements a singu-
lar filter, as explained above. However, now the correspond-
ing singular filter is partially singular, a term introduced
in [26]. That is, the process noise variance is finite but the
measurement noise variance, R, is less than full rank rather
than zero. The approach of [26], under the banner of stable
optimal filtering, in this case involves precisely a succession
of a singular estimator and followed by a regular estimator,
as in SISE. The result in [13] derives this stable (partially)
singular filter when the plant satisfies the conditions of The-
orem 2.

4 Nonzero direct feedthrough

When H 6= 0 in (3), SISE alters. Gillijns and De Moor [6]
provide a SISE algorithm, subject to the following, for the
time-invariant case.
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Assumption 3 RankH = m.

Subject to this assumption, the SISE formulation for time-
invariant system (2-3) is

x̂t|t−1 = Ax̂t−1|t−1 +Gd̂t−1|t−1, (19)

P x
t|t−1 =

[
A G

] [P x
t−1|t−1 P

xd
t−1|t−1

P dx
t−1|t−1 P

d
t−1|t−1

][
AT

GT

]
+Q,

R̃t = CP x
t|t−1C

T +R,

Mt = (HT R̃t
−1H)−1HT R̃−1t ,

d̂t|t = Mt(yt − Cx̂t|t−1), (20)

P d
t|t = (HT R̃t

−1H)−1,

Kt = P x
k|k−1C

T R̃−1t ,

x̂t|t = x̂t|t−1 +Kt(yt − Cx̂t|t−1 −Hd̂t|t), (21)

P x
t|t = P x

t|t−1 −Kt(R̃t −HP dHT )KT
t ,

P xd
t|t =

(
P dx
t|t

)T
= −KtHP

d
t|t.

When rankH < m, [7] provide ULISE, a carefully devel-
oped SISE algorithm which uses the singular value decom-
position as in Subsection 3.2 but more widely to handle the
more complicated interaction between filtered and smoothed
estimates for dt.

4.1 Square full-rank case

As with the H = 0 case, we consider first rankH = m
and m = p. That is H is invertible and, since MtH = I ,
Mt = H−1. Then SISE reduces to the recursion

d̂t|t = H−1(yt − Cx̂t|t−1)

0 = yt − Cx̂t|t−1 −Hd̂t|t, (22)

x̂t+1|t = Ax̂t−1|t−1 +Gd̂t−1|t−1, (23)

= (A−GH−1C)x̂t|t−1 +GH−1yt,

x̃t+1|t = (A−GH−1C)x̃t|t−1 + wt −GH−1vt.

Theorem 3 For system (2-3) subject to Assumption 3,
the eigenvalues of the SISE estimator system matrix,
A − GH−1C, lie at the transmission zeros of the square
transfer function H + C(zI − A)−1G. Accordingly, the
SISE estimator is asymptotically stable if and only if these
transmission zeros all lie inside the unit circle.

Proof:Applying the matrix inversion lemma to the square
transfer function between dt and yt,[
H + C(zI −A)−1G

]−1
= H−1 −H−1C(zI −A+GH−1C)−1GH−1.

The poles of the square direct feedthrough SISE lie at the
transmission zeros of the dt to yt transfer function. 2

Again, this result adds necessity to that of [7] in this case.
Further, the result does not rely on optimality arguments. As
in the square zero feedthrough case, the SISE estimator is
time-invariant and independent from Q and R, and the state
estimate filter innovations is zero. The condition rankH =
m ensures that all n transmission zeros are finite. We note
again that the state innovations sequence (22) is zero and
the filter (23) simulates x̂t+1|t from d̂t|t.

4.2 Non-square full-rank case

The careful derivation of ULISE to accommodate rankH ≤
m is a central contribution of [7] and involves separation
into subspaces. Take the singular value decomposition of
p×m H possessing rank r.

svd(H) = UΣV T ,

=
[
Ur Up−r

] [H̄ 0

0 0

]
V T .

Matrices take on the (r, p− r) structure.

H =

[
H̄ 0

0 0

]
, C =

[
C1

C2

]
, G =

[
G1 G2

]
,

Kt =
[
K1,t K2,t

]
, Mt =

[
M1,t M2,t

]
.

As earlier in (17) and (18), define the p× p transformation

T =

[
UT
r − UT

r RUp−r(UT
p−rRUp−r)−1UT

p−r

UT
p−r

]
,

and transform the original output signal, call it ȳt,

yt = T ȳt =

[
C̄1

C̄2

]
xt +

[
H̄

0

]
dt +

[
v̄1,t

v̄2,t

]
.

yielding det H̄ 6= 0 and cov

[
v̄1,t

v̄2,t

]
=

[
R̄1 0

0 R̄2

]
. When

rankH = m, H̄ is m×m and we have the following result
stemming from M1,tH̄ = Im.

Theorem 4 Subject to Assumptions 1 and 3, p ≥ m, SISE
with feedthrough is stable if only if [A − GH̄−1C̄1, C̄2] is
detectable.

The proof of this result is in the Appendix. This extends the
detectability condition 1 of Theorem 5 of [7] to a necessary
and sufficient condition for stability of SISE in this case. It

1 Note that [7] uses p to denote our m.
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also is the analog of Theorem 2 for the full-rank feedthrough
case.

An alternative way to view necessity is to write the system
matrix of SISE as

A− [AKt + (G−AKtH)Mt]C

= A−GH̄−1C̄1

− (AK2,t +GM2,,t −AK1,tH̄M2,t)C̄2.

For this matrix to be stable, a multiple of C̄2 must stabilize
A−GH̄−1C̄1.

4.3 Less than full rank feedthrough

We build again on the decomposition above of [7] and make
the following assumption.

Assumption 4 rank C̄2G2 = m− rank H̄.

This assumption guarantees that the transfer function Zd(z)
in (1) has delay no greater than one and so the input might
be reconstructed from filtered and one-step-smoothed data.
In [7], the authors derive a sufficient condition for stability
which we now extend to necessity.

Theorem 5 Subject to Assumptions 1 and 4, general
feedthrough SISE is stable if only if [A−G1H̄

−1C̄1, C̄2] is
detectable.

This detectability condition is shown in [7] to be sufficient
for stability by using the filter recursion for x̂t|t. If one
calculates the alternative recursive prediction, x̂t|t−1, then it
is evident that the ULISE system matrix is again of the form

(A−G1H̄
−1C̄1)(I − L̃tC̄2)(I −G2M2,tC̄2)

= A−G1H̄
−1C̄1 +WtC̄2,

for appropriate Wt. Evidently, this can be stable only if the
detectability condition holds.

The development in [7] is conducted in the time-varying
case and uses corresponding time-varying decompositions
and uniform detectability conditions [33]. To be fair, in this
more challenging time-varying case, sufficiency of the sta-
bility condition is all that is conceivable. The restriction
to time-invariant systems admits both the necessity and the
possibility of using transfer functions to define transmission
zeros, a connection made in [9].

5 Upshots

5.1 Stability and singular filtering

The preceding analysis provides necessary and sufficient
conditions for the stability of linear SISE algorithms. Fur-
ther, for the square cases, it yields the precise locations on

the algorithm poles and demonstrates that the emphasis is
on dt-to-yt system inversion to recover dt followed by best
efforts to estimate the state. We have pointed out the succes-
sive estimation nature of SISE, as have others. The question
remains as to actions to be taken when SISE proves to be
unstable, noting these central properties:

(i) SISE is stable when the dt-to-yt system is stably in-
vertible.

(ii) When SISE is stable, it corresponds (at least in the zero
feedthrough case) to a singular Kalman filter.

(iii) Subject to: detectability of [A,C], stabilizability of
[A,Q

1
2 ], and R +→ 0; this limiting Kalman filter is a

stable estimator by construction.
(iv) The stability conditions for the limiting Kalman filter

are more relaxed than Assumptions 2, 3 or 4, which
pertain for the exact R = 0 singular filter.

(v) When SISE proves to be unstable, it (of course) differs
from the Kalman filter.

5.2 Kalman filtering for input and state estimation

Denote the transfer function from dt to yt by T (z). As
derived in earlier sections, when T (z) has all its transmission
zeros inside the unit circle, then SISE is guaranteed stable
and is equivalent to a specific stable singular Kalman filter.
Compute a discrete-time inner-outer factorization 2 [28,29].

T (z) = To(z)Ti(z),

with m×m Ti(z) an inner function, i.e. stable and all-pass,
and p×mTo(z) an outer function, i.e. all transmission zeros
inside the unit circle.

We note the following from the construction of the inner-
outer factors.

Lemma 1 If T (z) has realization

xt+1 = Axt +But +Gdt + wt,

yt = Cxt +Dut +Hdt + vt,

then To(z) has realization

xt+1 = Axt +But + Ǧďt + wt,

yt = Cxt +Dut + Ȟďt + vt,

where ďt is the output of Ti(z).

That is, for the same initial conditions, To(z) and T (z) have
the same states and have realizations which differ only in the
G andH matrices. This factorization is depicted in Figure 2.

2 Strictly speaking, this is a co-inner-co-outer factorization be-
cause of the ordering of Ti and To [27]. It can be obtained from
the inner-outer factorization of the transpose of T (z).
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T(z) Ti(z) To(z)dt ďt

ut, wt, vtut, wt, vt

yt yt

xt xt

dtT(z) Ti(z) To(z)dt ďt

ut, wt, vtut, wt, vt

yt yt

xt xt

dt

Fig. 2. System inner-outer factorization

Applying SISE or the singular/limiting Kalman filter for
the outer function To(z) to the signal {yt} yields estimates
of {ďt} and {xt} via a stable algorithm with guaranteed
statistical and optimality properties. This follows since To
is stably invertible by construction. Further, this stability
depends on the standard assumptions above for Kalman filter
stability. If one uses SISE, then depending on the delay
properties of To(z), i.e. its behavior as z →∞, a variation of
the algorithm and Assumption 2, 3, or 4 might be needed to
accommodate dt-to-yt invertibility. This is discussed further
in Section 6.

To recover estimates for original system inputs {dt} from
those for {ďt} requires deconvolution (input estimation)
without state estimation for the maximum-phase but stable
system Ti. If delay is not an issue, then this can proceed
stably via a fixed-interval smoother or reverse-time input es-
timation.

If the state estimates of xt themselves are the objective, then
the reconstruction of ďt versus dt is immaterial. This is the
nature of the problem addressed in partially-known power
system state estimation [24].

The singular filters derived by Shaked and co-authors
[11,26,30] rely on the Return Difference Equality and spec-
tral factorization for their calculation. In the case where the
transmission zeros are unstable, the filter solution replaces
them by their inverses akin to the inner-outer factorization.

The Kalman filter of [13] for To(z) may be derived from
the state-space model below with appropriate covariances,[

xt+1

ďt+1

]
=

[
A Ǧ

0 0

][
xt

ďt

]
+

[
In 0

0 Im

][
wt

δt

]
,

yt =
[
C Ȟ

] [xt
ďt

]
+ vt,

or using the direct construction as in [13], which avoids an
explicit model for dt but yields the same filter.

Marro and Zattoni [15] provide guidance on the recovery of
the disturbance input signal when the dt-to-yt system is non-
minimum-phase. Their approach involves the approximate
inversion of this system using a long delay to accommodate
the nominal instability of this inverse. Such techniques are
reminiscent of those advanced in [31]. While the approach
in [15] centers on state-estimation first, their development

is geometric and noise free and so, it is unclear how this af-
fects performance. Of course, the geometric analysis throws
up the same initial reliance on minimum-phase zeros for
stability and exact inversion.

5.3 Extension to time-varying systems

Developments so far have been limited to the time-invariant
case and have availed themselves of concepts of transmission
zeros, stable invertibility and inner-outer factorization, each
of which is problematic to extend to time-varying systems.
However, since alternative results have been phrased for the
time-varying case, we consider this extension now, relying
on examination of SISE recursions via Riccati difference
equations in the proofs of Theorems 2 and 4.

Appealing to [5,6] for the time-varying SISE algorithms in
the case of Theorem 2 and zero direct feedthrough, Riccati
equation (28) becomes

Xt+1 = ĀtXtĀ
T
t − ĀtXtC

T
2,t(C2,tXtC

T
2,t +R2,t)

−1

× (ĀtXtC
T
2,t)

T + Q̄t,

where,

Āt = At(I −Gt−1(C1,tGt−1)−1C1,t),

Q̄t = AtGt−1(C1,tGt−1)−1R1,t(Gt−1(C1,tGt−1)−1)TAT
t

+Qt,

and, in the case of full-rank feedthrough, (30) becomes

Xt+1 = ÂtXtÂ
T
t − (ÂtXtC̄

T
2,t)(C̄2,tXtC̄2,t + R̄2,t)

−1

× (ÂtXtC̄
T
2,t)

T + Q̂t,

where,

Ât = At −GtH̄
−1
t C̄1,t, Q̂t = Qt +GtH̄

−1
t R̄1,tH̄

−T
t GT

t .

with now time-varying quantities {At, Gt, . . . , }. We may
appeal to standard sufficient results, e.g. [32,19] and Theo-
rem 5.3 in [33], on the exponential stability of the Kalman
filter subject to uniform reachability and detectability. Sub-
ject to the uniform satisfaction of time-varying equivalents
of Assumptions 1, 2 and/or 3 as appropriate, this extends
these stability conditions to the uniformly time-varying case.
We note that the development of ULISE in [7] also is time-
varying and draws on precisely these techniques in [33] to
establish sufficient conditions for stability.

5.4 Extension to more complicated delay structure

Both [8] and [9] study delay structures for the dt-to-yt
system which are more detailed than Assumption 2-plus-
{H = 0} or Assumption 3. They consider reconstruction
of smoothed disturbance estimates d̂`t−`|t for the succes-
sive components of dt accessible with increasing smoothing
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` = 0, 1, . . . , L. The algorithms are developed in the time-
invariant case, iterate over the delay using singular value de-
compositions and have stability properties tied to the trans-
mission zeros. The inner-outer decomposition above could
also be applied to these algorithms to ensure estimator sta-
bility.

6 System Inversion and SISE

For the square cases of SISE satisfying Assumptions 1 or 2,
we were able to demonstrate that the SISE dt-estimator im-
plements exactly the left inverse of the yt-to-dt system. The
simultaneous xt-estimate is the state of the inverse system,
the stability of which depends on the transmission zeros of
the original system.

Conditions for left invertibility of a linear time-invariant sys-
tem are provided by Sain and Massey [34] and for stable
invertibility by Moylan [35] via the Rosenbrock system ma-
trix. Both papers construct the inverse system. Moreover,
in [34,36], left invertibility with delay, L, is studied, where

stacked measurements
[
yTt yTt+1 . . . y

T
t+L

]T
are used to es-

timate dt. Marro and Zattoni blend into this picture stable
approximate inversion with delay.

From [34], we see that, for any p ≥ m:

– Assumption 2 is the left invertibility condition for
C(zI −A)−1G with delay one.

– Assumption 3 is the left invertibility condition for H+
C(zI −A)−1G with delay zero.

– Assumption 4 is the left invertibility condition for H+
C(zI −A)−1G with delay one.

Given the input recovery objective of SISE, this is not sur-
prising. But it is interesting to tie these ideas more closely.
It is reasonable to expect that related connections to invert-
ibility and the delay structure of the dt-to-yt system in the
time-invariant case should hold for the more complicated
circumstances considered in [8,9], where estimator stability
properties is also proven tied to the transmission zeros.

It is worth remarking that many presentations of SISE algo-
rithms make connections to ‘unbiasedness’ and ‘optimality’
of the state estimate. As [15,13] demonstrate, the probabilis-
tic concept of unbiasedness is really tied to a geometric prop-
erty of the algorithms and the nature of certain subspaces.
The optimality of the state estimates is within the class of
estimators already satisfying the geometric constraints. As
is evident from, say, Theorems 1 and 2 and the Riccati equa-
tion proof, there is no degree of freedom left for the state
estimator in the square case and limited degrees of freedom
in the non-square case. Indeed, in the square cases, (14-23)
show that x̂t|t is computed by system simulation using the
estimated input; the measurements play no further part. The
detectability conditions on Theorems 2 and 4 show how the

remaining degrees of freedom are used in the Riccati differ-
ence equations (28) and (30).

In conclusion, the paper attempts to unify the collection of
SISE algorithms by revealing their explicit connections to
system inversion to recover the otherwise unmodeled distur-
bance input dt followed by their ‘best efforts’ subsequent
estimation of the state xt. The result has been to develop
necessary and sufficient conditions for stability, at least in
the linear time-invariant case, in terms of the transmission
zeros of the dt-to-yt plant and then the detectability of the
subsequent state estimator. As already stated, the prospect
for extension of necessity conditions to the time-varying
case is dim and the interpretation via zeros problematic.
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Appendix

Proof of Theorem 1

We loosely follow a calculation from Maciejowski [14].
From (15) and the system equations the (time-invariant)
transfer function from dt to x̂t|t via yt is given by

Ψ(z) =
{
zI −

[
I −G(CG)−1C

]
A
}−1

zG(CG)−1

× C(zI −A)−1G, (24)

= {zI − [I −Π]A}−1 zΠ(zI −A)−1G,

where we have used Π , G(CG)−1C. Write

[zI − (I −Π)A]
−1
zΠ

= [zI − (I −Π)A]
−1

[zΠ− zI + (I −Π)A] + I,

= − [zI − (I −Π)A]
−1

(I −Π)(zI −A) + I.

Then, since (I −Π)G = 0,

Ψ(z) =

− [zI − (I −Π)A]
−1

(I −Π)(zI −A)(zI −A)−1G

+ (zI −A)−1G,

= − [zI − (I −Π)A]
−1

(I −Π)G+ (zI −A)−1G,

= (zI −A)−1G. (25)

From (24), Ψ(z) is the product of two transfer functions and
nominally should have 2n poles; those at the eigenvalues of
A and those at the eigenvalues of (I − Π)A. The transfer
function zC(zI − A)−1G has McMillan degree n with n
finite transmission zeros. We see from (25) that only poles
at the eigenvalues of A are present in Ψ. This implies that
the poles due to the eigenvalues of (I − Π)A cancel the
transmission zeros of zC(zI −A)−1G.
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Proof of Theorem 2

Define the following quantities.

Ht = GMt −KtCGMt +Kt, Z = C1G,

Y = (CXtC
T +R)−1 =

[
Y1 Y2

Y T
2 Y3

]
,

where Y is divided conformably with C and vt in (18).

From (8) and (9) the filtered prediction error satisfies

x̃t , xt − xt|t
= (I −HtC)Ax̃t−1 + (I −HtC)wt−1 −Htvt.

Whence,

Pt|t = cov(xt|Yt)

= (I −HtC)(APt−1|t−1A
T +Q)(I −HtC)T

+HtRHT
t .

Using (4) yields

Xt+1 = A
(
(I −HtC)Xt(I −HtC)T +HtRHT

t

)
AT

+Q. (26)

We show that this discrete Lyapunov equation is also a
Riccati difference equation by substituting for Ht using

CG =
[
ZT 0

]T
.

Ht = G

([
ZT 0

]
Y

[
Z

0

])−1 [
ZT 0

]
Y −Xt

[
CT

1 CT
2

]

Y

[
Z

0

]([
ZT 0

]
Y

[
Z

0

])−1 [
ZT 0

]
Y

+Xt

[
CT

1 CT
2

]
Y

=
[
GZ−1 GZ−1Y −11 Y2

]
+Xt

[
0 C2(Y3 − Y T

2 Y
−1
1 Y2)

]
.

(27)

Using partitioned matrix inversion with Y gives

(Y3 − Y T
2 Y

−1
1 Y2) = (C2XtC

T
2 +R2)−1

Y −11 Y2 = −(C1XtC
T
2 )(C2XtC

T
2 +R2)−1.

Substituting this into (27) and (26) gives the following Ric-
cati difference equation.

Xt+1 = ĀXtĀ
T − (ĀXtC

T
2 )(C2XtC

T
2 +R2)−1

× (ĀXtC
T
2 )T + Q̄, (28)

where,

Ā = A(I −G(C1G)−1C1),

Q̄ = AG(C1G)−1R1(G(C1G)−1)TAT +Q. (29)

Appealing to Theorem 14.3.1 [37] (p. 510), provided
[Ā, Q̄

1
2 ] is stabilizable and [Ā, C2] is detectable, then Xt

converges to the maximal solution of the algebraic Riccati
equation, which is stabilizing.

Now, since by assumption [A,Q
1
2 ] is stabilizable, there ex-

ists a K such that A−Q 1
2K is stable. Taking,

Q̄
1
2 =

[
Q

1
2 AG(C1G)−1R

1
2
1

]
,

and K̄ =
[
KT CT

1 R
−T

2
1

]T
,

Ā− Q̄ 1
2 K̄ = A(I −G(C1G)−1C1)

−
[
Q

1
2 AG(C1G)−1R

1
2

] [ K
R−

1
2C1

]
,

= A−Q
1
2K.

Thus, Ā− Q̄ 1
2 K̄ also is stable by construction. So stabiliz-

ability of [A,Q
1
2 ] implies stabilizability of [Ā, Q̄

1
2 ].

Proof of Theorem 4

The proof parallels that of Theorem 2. Substitute (20) and
(21) into (19) to yield

x̂t+1|t = (A− LtC)x̂t|t−1 + Ltyt,

where Lt = AKt −AKtHMt +GMt. Then

x̃t+1|t , xt − x̂t+1|t,

= (A− LtC)x̃t|t−1 + wt − Ltvt,

Xt+1 = (A− LtC)Xt(A− LtC)T + LtRLT
t +Q,

with Xt+1 , cov(xt+1|Yt). Dividing Kt and Mt

conformably with CT : Kt =
[
K1,t K2,t

]
, Mt =[

M1,t M2,t

]
, one arrives directly at the following Riccati

difference equation.

Xt+1 = ÂXtÂ
T − ÂXtC̄

T
2 (C̄2XtC̄2 + R̄2)−1C̄2XtÂ

T

+ Q̂, (30)

where,

Â = A−GH̄−1C̄1, Q̂ = Q+GH̄−1R̄1H̄
−TGT .

The proof follows as that for Theorem 2 using [37].
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