
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 

 

  

Abstract—As computing systems continue to increase in 

complexity, energy optimization plays a key role in the design and 

implementation of heterogeneous systems. Although the energy 

consumed by off-chip memory accounts for a large proportion of 

the total power consumed by the system as a whole, current 

research on energy optimization mainly focuses on optimizing the 

energy consumed by the processors. This paper explores the 

coordinated optimization of the holistic performance of the 

processors and memory system for heterogeneous systems with 

energy constraints. A communication–computing pipeline model 

for parallel executions is characterized to optimize program 

performance by simultaneously scaling the voltage and frequency 

of the processors and memory using task allocation strategies. A 

synergistic load-balancing optimization approach is presented to 

resolve the load imbalance among graphics processing units. Our 

experimental results substantiate the effectiveness of the approach 

in terms of execution times and throughputs with the energy 

constraints. 

 
Index Terms—Energy-constrained optimization, task 

assignments, load-balancing, multiple co-processors, 

heterogeneous system.  

I. INTRODUCTION 

CHEIVING high performance in heterogeneous hardware 

platforms is imposing new challenges to the design of 

computing systems. Conventionally, power optimization has 

been mainly focused on the average energy consumed by the 

system. Moreover, as the scale of high-performance computer 

systems has continued to increase, energy consumption has 

become one of the most important constraints affecting their 

design, operation, and management [1, 2]. In more recent times, 

research interest has focused on the problem of maximizing the 

execution performance of a system while not exceeding some 

predetermined energy constraints [3–5]. However, stringent 

power constraints are gradually starting to hinder system 

performance which affects their design and implementation. 

Mainstream methods of optimization are aimed at optimizing 

the energy consumed by the processors of a heterogeneous 

 
Zhuowei Wang is with the School of Computers, Guangdong University of 

Technology, Guangzhou 510006, China, and the Wuhan Donghu University, 

Wuhan 430074, China. E-mail: wangzhuowei0710@163.com. 
Xiaoyu Song is with the Department of Electrical and Computer 

Engineering, Portland State University, Portland, OR 97207, USA. E-mail: 

songx@pdx.edu. 
Lianglun Cheng is with the School of Computers, Guangdong University of 

Technology, Guangzhou 510006, China. E-mail: llcheng@gdut.edu.cn. 

Hao Wang is with department of Computer Science, Norwegian University 
of Science and Technology, Gjøvik, Norway. E-mail: hawa@ntnu.no. 

 

system [6, 7]. Such methods involve the scaling of the voltage 

and frequency of the processors (mainly by inserting a 

voltage-scaling instruction into the code during its compilation). 

This helps designers realize their goal of reducing the energy 

consumption of the processors. In general, therefore, these 

methods involve establishing analysis models to delineate the 

voltage-setting and -scaling problems. Thereafter, the optimal 

solution is obtained using the solver for programming problems 

by virtue of the description methods appropriate to linear (or 

nonlinear) programming. For example, Hsu et al. [8] explored 

the possibility of stepping down the voltage in a 

partially-overlapping code segment and described the scaling 

optimization problem using a nonlinear programming approach. 

In this way, they managed to calculate the optimal solution. 

Using an integer linear programming method, Saputra et al. [9] 

determined the optimal voltage class required in each loop 

nesting. Xie et al. [10] studied the optimization of a dynamic 

voltage-scaling strategy during compilation and proposed a 

realistic model to comprehensively consider the characteristics 

of the programs and dynamic voltage-scaling characteristics. 

However, the research mentioned above merely focuses on 

optimizing the energy consumed by the processors and ignores 

that associated with the off-chip memory. Research in more 

recent years has clearly demonstrated that the off-chip memory 

needs to be considered as well when optimizing energy 

consumption. For example, Fan et al. [11] showed that a better 

optimization result for the system as a whole can be achieved 

by incorporating memory with low power consumption into the 

energy optimization process. Indeed, the energy saved via 

voltage scaling alone (i.e. merely considering the processors) 

amounted to just 39%. On the other hand, that saved by 

simultaneously considering voltage scaling of the processors 

and use of power-aware memory reached 89%. 

The main contributions of this work are as follows. First, we 

characterize the processor and memory as the objects of 

energy-constrained optimization. We propose a novel 

performance optimization method. Both the processors and 

memory are used in the energy optimization process are 

included. The method employs the parallel program OpenMP 

as the optimization object and simultaneously scales the 

voltage and frequency of the processors and memory using a 

software control method. The results correspond to the optimal 

system performance under the energy-constrained conditions. 

Second, we propose an energy-constrained modelling through 

analyzing the communication-computing pipeline. Depending 

on whether processor or memory idling occurs during the 

parallel execution of program tasks partitioned on different 

processors, program performance is optimized by 

Activity-driven Task Allocation in Energy 

Constrained Heterogeneous GPUs Systems 

Zhuowei Wang, Xiaoyu Song, Senior Member, IEEE, Lianglun Cheng, and Hao Wang, Member, IEEE 

A 

mailto:wangzhuowei0710@163.com
mailto:llcheng@gdut.edu.cn


IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 

 

simultaneously scaling the voltage and frequency of the 

processors and memory. Third, we design an algorithm for 

synergistic energy-constrained of task assignment. Various 

conditions leading to a load imbalance among processors are 

analyzed theoretically in the heterogeneous multi-processor 

environment. Corresponding optimization methods to tackle 

load imbalance are provided. 

The rest of the paper is organized as follows. Section 2 

overviews work related to the current work. Section 3 presents 

the architecture of the target system and Section 4 introduces 

the task partitioning method used for energy-constrained 

optimization. Then, we provide a detailed description of 

energy-constrained modeling process in Section 5. Section 6 

gives the algorithm used for the synergistic energy-constrained 

optimization process used in task assignment process and 

Section 7 analyzes the experimental results. Finally, Section 8 

presents our conclusions. 

II. RELATED WORK 

In recent years, as the peak power consumed by processors 

has increased, progressively more research has focused on how 

to optimize program performance under given maximum power 

constraints [12-13]. Annavaram et al. [14] were the first to 

consider the problem of optimizing the performance of 

multi-core processors with maximum power constraints and 

hence formulated the EPI throttling maximum power 

management method.  

Isci et al. [15] described a prediction-based management 

method based on MaxBIPS. In their work, by determining the 

power consumed by concurrent tasks at different operating 

frequencies of the processors, the frequency combination with 

the highest system throughput could be selected. Furthermore, 

the power constraints could be adapted by reducing the 

operating frequency of the processors. Sartori et al. [16] 

proposed a hierarchical method of power control based on 

optimal ascent. This involved dividing the multi-core 

processors into groups and adopting a two-level independent 

power-control mechanism within and between groups. As a 

result, the control complexity could be effectively reduced. 

Meng et al. [17] also presented a power management method 

which combined regulating the frequency of the processor core 

and adjusting the shared cache space. This allowed program 

execution performance to be optimized by combining two 

management strategies subject to the power constraints. Ma et 

al. [18] considered the criticality of different threads in a 

multi-threaded program oriented towards a multi-program 

execution environment. Based on existing methods of 

evaluating thread criticality, power could be preferentially 

allocated to processor cores with higher criticality for 

optimization purposes. Overall, there is an improvement in 

program execution performance. Cebri et al. [19] proposed a 

power-allocation strategy based on power tokens. In this case, 

power is preferentially allocated to processor cores with higher 

power requirements to improve parallel execution 

performance.  

In the abovementioned research, performance optimization 

and power management were mainly proposed based on the 

constraints placed on energy consumption. The performance 

optimization problems were not modeled and analyzed subject 

to the constraints placed on energy consumption. Compared 

with general-purpose microprocessors, acceleration 

components such as graphics processing units (GPUs), 

field-programmable gate arrays (FPGAs), and many-integrated 

core (MIC) architectures have higher integration and operating 

power consumptions High-performance computer systems 

based on accelerated processors therefore generate larger 

amounts of heat per unit volume. This, of course, raises the 

energy requirements of the power supply and cooling systems. 

The maximum power consumed by the control system will 

become one of the most important issues for the power 

management of heterogeneous parallel systems in the future. 

Therefore, modeling the performance optimization process 

subject to limited energy consumption is a necessary and 

important step for low power design. The biggest difference 

between this paper and the abovementioned research is that it 

establishes an optimization model for the performance of a 

heterogeneous system under the condition of limited energy 

consumption. 

The continuous improvement in transistor and system 

structure technology has led to processors entering a multi-core 

era. However, although the emergence of multi-core processors 

has improved computing speed, it has also widened the speed 

gap between processor and memory, leading to serious 

‘memory wall’ problems [20, 21]. In recent years, optimizing 

the power consumption of storage systems has received more 

and more attention from researchers. Some researchers have 

pointed out that the effect of combining the optimization of the 

memory and processor at the same time is much better than that 

of just optimizing the processor [22]. With the progress made in 

architecture technology, energy-aware storage systems have 

emerged (e.g. configurable register files, partially closed caches, 

and memory with independent control memory) and there have 

been a large number of studies on the optimization of the frontal 

power consumption of storage systems [23, 24, 25]. A 

load-balancing method has also been proposed to coordinate 

the energy-constrained optimization of the task assignment 

process [26]. 

However, in the research work carried out on low-power 

optimization, the main focus has been the energy optimization 

of the processor. Little research has focused on the 

simultaneous energy optimization of the processor and off-chip 

memory. Moreover, the energy consumed by the off-chip 

memory accounts for a large proportion of the total energy 

consumed by the system and so it is of great significance in the 

energy optimization process. The work in [11] discusses the 

influence of different memory control strategies on processor 

frequency setting decision-making, to achieve the purpose of 

reducing system energy consumption. In this paper, the 

frequency regulation of the processor and memory is 

asynchronous. Based on the characteristics of application 

program execution, we determine the optimal processor and 

memory frequencies by analyzing the distribution of the 

communication computing pipeline, thus achieving the optimal 

performance under the condition of satisfying energy 

consumption constraints. In our previous research [25-26], the 

target system was to include the same computing capability of 

homogeneous multi GPUs. In such a system, due to the same 

type of GPUs, the task partition granularity was the same.  



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 

 

Core Core Core Core

Memory + Interconnect

CPU

SM

Memory + Interconnect

GPU 1

SM SM SM SM ... SM SM

Memory + Interconnect

GPU N

SM SM SM SM ... SM 

Memory + Interconnect

M
C

D
R

A
M

 

Fig. 1. Schematic diagram of a heterogeneous processor with integrated GPUs on a single chip. 

Each GPU completes all tasks in the same or similar time, and 

there was no load imbalance. In this paper, our target system is 

to include the heterogeneous multi GPUs with different 

computing capabilities. Therefore, from the perspective of task 

partition, the task allocation of GPUs with different computing 

capabilities should be different, which will lead to the waste of 

power consumption due to the unbalanced load. This paper 

analyses the conditions of load imbalance between GPUs and 

proposes the load balance optimization method. 

III. TARGET SYSTEM ARCHITECTURE 

Fig. 1 shows a heterogeneous system architecture that 

includes a CPU and multiple GPUs on one chip. Both the CPU 

and GPU have their own memories. When the program is 

running, the CPU can send Direct Memory Access (DMA) 

commands and a DMA engine completes the data transfer 

between the main and GPU memories. Each GPU shares the 

main memory, so the CPU is only allowed to transmit data to 

one GPU at a time. The multiple GPUs can run independently. 

In this architecture, the CPU and GPUs share the same physical 

memory and memory controller. Therefore, the process of 

transferring data from the main CPU processor to a certain 

GPU is actually realized through memory.  

To develop processor parallelism among multiple GPUs, the 

thread space of the kernel function can usually be divided and 

different subspaces are formed into different sub-kernels. These 

can then be assigned to different GPUs for simultaneous 

execution. Each sub-kernel needs the main processor to 

transmit the corresponding input data it requires, so the data 

communication process is serial. Furthermore, the calculations 

occurring in different GPUs can overlap. At the same time, as 

the DMA component is executed by a processor that is 

independent of the GPUs, the transmission of the next block of 

data and the calculation involving the previous block of data 

can also overlap within the same GPU. 

GPUs generally contain multiple stream multi-processors 

(SMs). In order to make full use of the parallel processing 

performance of a single GPU, the tasks should be partitioned so 

that they have a basic granularity to ensure that each SM on 

each of the participating GPUs is assigned at least one thread 

block.  

The application SWIM can be used as an example to 

illustrate the basic granularity of tasks. The SWIM program 

consists of three core processes, namely, CALC1, CALC2, and 

CALC3. We call these three core processes ‘three tasks’, each 

of which consists of a double parallel loop, and its iteration 

space is 2048 × 2048. We divide the original iteration space 

with a subspace of size 32 × 2048 as the granularity, and each 

task has 65 partitioning strategies (2048/32+1). Assume that 

each GPU contains 4 SMs. We set the size of each thread block 

on the GPU to 8 × 2048. When the number of thread blocks 

allocated to the GPU is not an integer multiple of the number of 

SMs, a load imbalance will occur, and some SMs will become 

idle. Therefore, during the execution of this application, the 

basic division granularity of tasks is 𝑘 = 4 × (8 × 2048). If 

there are more computing tasks 𝑟 ∙ 𝑘 (𝑟 = 1,2, … ,65) divided 

for a GPU than the basic division unit 𝑘, that is, when each SM 

can be divided into more than one thread block, the 

computational density inside the SM can be improved to certain 

extent. 

In this paper, the actual platform and simulation platform are 

used for experimental verification. The actual platform is a 

heterogeneous system consisting of an Intel i7 920 quad-core 

CPU and 2*AMD 4870 GPU. The simulation platform is a 

GPU power simulator based on GPGPU-Sim. The 

programming model of the actual platform is OpenMP + 

brook+. The programming model of the simulation platform is 

GPGPUSim + nvcc. 

IV. TASK PARTITIONING FOR ENERGY-CONSTRAINED 

OPTIMIZATION  

Our objective is to optimize the performance of a 

heterogeneous system using processor–memory coordination 

subject to energy constraints. Our method involves task 

partitioning and frequency scaling and is capable of producing 

satisfactory execution times and processor profits while 

satisfying the given energy constraints. The task division 

process proposed in this paper uses thread blocks as the basic 

unit for task division. The energy-constrained model target 

communication is between inter-GPU tasks.  

We need to define the following parameters in the 

energy-constrained optimization problem. 𝑘 refers to the basic 

task partition unit. 𝑟 ∙ 𝑘  denotes that the computation tasks 

partitioned to a co-processor are larger than the basic task 

partition unit 𝑘. 𝜇 denotes the number of cyclic iterations of the 

parallel program OpenMP. 𝑓𝑐 refers to the processor frequency. 

𝑓𝑚 refers to the memory frequency. 𝑐𝑜𝑚𝑝(𝑘)  represents the 

amount of calculation required to complete the calculation task 

𝑘. 𝐷𝑎𝑡𝑎(𝑘) corresponds to the amount of data that the CPU 

needs to transmit to the GPU in order to complete the 

calculation task 𝑘 . 𝐶𝑐(𝑐𝑜𝑚𝑝(𝑘))  denotes the number of 

processor clock cycles taken to complete the calculation task 𝑘. 

𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟 ∙ 𝑘)) denotes the number of processor clock cycles 

taken to complete the calculation task 𝑟 ∙ 𝑘 . 𝐶𝑚(𝐷𝑎𝑡𝑎(𝑘)) 
denotes the number of data access delay clock cycles generated 

by the transmission of the data amount 𝐷𝑎𝑡𝑎(𝑘) in order to 

complete the calculation task 𝑘. 

We note that there may be various relationships between the 

amount of calculation and amount of data required for the 

calculation. Take, for example, matrix multiplication: 𝑪 =
𝑨 × 𝑩, each assumed to be 𝑀 ×𝑀 in dimension. Suppose we 

choose to divide the B and C matrices and keep the A matrix 



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 

 

intact in each GPU. The basic division unit 𝑘 is also chosen as a 

column for calculating the C matrix. Therefore, the amount of 

calculation 𝑐𝑜𝑚𝑝(𝑘) is equal to 𝑀 × (𝑀 + (𝑀 − 1))  at this 

time, and the amount of data to be transmitted for the 

calculation task  𝐷𝑎𝑡𝑎(𝑘) is equal to 𝑀 × 𝑀 +𝑀 . If the 

calculation task assigned to a GPU is doubled, e.g. when 

calculating two columns of the C matrix, the calculation 

amount becomes 𝑐𝑜𝑚𝑝(2𝑘) = 2𝑀 × (𝑀 + (𝑀 − 1)), and the 

required data amount becomes 𝐷𝑎𝑡𝑎(2𝑘) = 𝑀 × 𝑀 + 2𝑀 . 

Thus, in this case, the calculation space is three-dimensional, 

and the storage space is two-dimensional. Therefore, the 

calculation volume increases faster than the data transmission 

volume.  

The amount of data transmitted does not depend linearly on 

the number of tasks. Without loss of generality, we relate 

the 𝐷𝑎𝑡𝑎(𝑟 ∙ 𝑘) required in order to complete the task 𝑟 ∙ 𝑘 to 

𝐷𝑎𝑡𝑎(𝑘) via the function R: 

 𝐷𝑎𝑡𝑎(𝑟 ∙ 𝑘) = 𝑅(𝑟, 𝐷𝑎𝑡𝑎(𝑘))  (1) 

Accordingly, 𝐶𝑚(𝑅(𝑟, 𝐷𝑎𝑡𝑎(𝑘))  denotes the number of 

clock cycles of memory access latency caused by transmitting 

data of size 𝐷𝑎𝑡𝑎(𝑟 ∙ 𝑘). 
In OpenMP parallel programs, parallel loops are divided and 

mapped on heterogeneous processors for execution. As there 

are no data dependencies between iterations of parallel loops, 

each loop iteration can be mapped to multiple processors for 

parallel execution. When scheduling parallel loops 

(irrespective of whether the loop is nested or not), we only 

parallelize the outermost loop iterations and call these 

outermost loop iterations scheduling units.  

Assuming that there are N different types of GPU in the 

system, the iteration space of doall is divided according to the 

task 𝑟 ∙ 𝑘 (when a GPU divides more tasks than the basic unit 𝑘) 

and map it to a heterogeneous processor, recorded as: 

 𝐹𝑑𝑜𝑎𝑙𝑙 = < 𝑟1 ∙ 𝑘1, 𝑟2 ∙ 𝑘2, ⋯ , 𝑟𝑁 ∙ 𝑘𝑁 > 

where 𝑟𝑖 ∙ 𝑘𝑖  (1 ≤ 𝑖 ≤ 𝑁) represents a subset of the doall loop 

iteration set and is mapped to the i-th processor. We also use 𝜇𝑖 
to represent the size of the subset 𝑟𝑖 ∙ 𝑘𝑖, which is equal to the 

number of iterations. 

A practical heterogeneous system consists of multiple 

heterogeneous co-processors. The heterogeneity is reflected in 

different ways: the task partition granularity, communication 

performance, and computation performance. We discuss each 

of these in turn: 

(i) Task partition granularity – Task assignments to GPUs of 

different computing capability should be different. As already 

indicated, to avoid load imbalance in the SMs of a GPU, we 

define the basic granularity of the task division (k) to be the 

number of tasks when each SM in the GPU is assigned to a 

thread block. Therefore, different types of GPU will have 

different basic task division granularities. Assuming that there 

are N different types of GPU in the system, the granularity of 

the basic task division of these GPUs can be expressed in the 

form 𝑘1, 𝑘2, ⋯ , 𝑘𝑁. When more tasks are assigned to each SM 

in the GPU than the basic granularity k, the granularity of tasks 

divided by the N different types of GPU can be similarly 

expressed in the form 𝑟1 ∙ 𝑘1, 𝑟2 ∙ 𝑘2, ⋯ , 𝑟𝑁 ∙ 𝑘N . 

𝑇(𝑟1, 𝑟2, ⋯ 𝑟𝑁) is used to denote the program execution time 

when the N GPUs use 𝑟1, 𝑟2, ⋯ , 𝑟𝑁 as the granularity of the task 

division process. 

 (ii) Communication performance – As the off-chip DRAM 

chips used in different types of co-processor probably have 

different configurations, transmission times can differ for a 

given data size. The number of clock cycles required for 

communication using the i-th type of co-processor is given by 

𝐶𝑚(𝑅(𝑟𝑖 , 𝐷𝑎𝑡𝑎(𝑘𝑖))). 
(iii) Computation performance – Apart from their 

computation capacities, different types of co-processor may 

also have different on-chip memory hierarchies. Thus, the 

manner in which the computation time increases with task load 

will also be different. The number of clock cycles required for 

computation using the i-th type of co-processor is given by 

𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟𝑖 ∙ 𝑘𝑖)) when it is assigned 𝑟𝑖 basic tasks. 

The communication–computation time–space diagram needs 

to be analyzed taking into account the energy constraints. Two 

types of operation are involved: data communication and 

computation. We define a new function, RIO, corresponding to 

the ratio of the computation time to the communication time, 

i.e. 

 𝑅𝐼𝑂𝑖(𝑟𝑖 , 𝑘𝑖) =
𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟𝑖∙𝑘𝑖)) 𝑓𝑐

𝑖⁄

𝐶𝑚(𝑅(𝑟𝑖,𝐷𝑎𝑡𝑎(𝑘𝑖)) 𝑓𝑚
𝑖⁄

 

This ratio is the basic factor determining the distribution of 

the spatio-temporal diagram.  

Different co-processors will generally refer to GPUs with 

different computing capabilities, that is, different types of GPU. 

Fig. 2 presents three spatial-temporal diagrams. In each case, 

the vertical axis in the pipeline represents the different 

heterogeneous GPUs and the horizontal axis represents 

execution time. A dotted box indicates a process in which the 

CPU processor is transferring data to the memory of a GPU. A 

solid box represents the time it takes for a GPU to execute a 

task. Clearly, the internal calculation parts in any given line in a 

spatial-temporal diagram cannot overlap. However, 

calculations in different lines, that is, in different GPUs, can 

overlap. As each GPU shares the same main memory, only the 

main processor is allowed to transmit data to a certain GPU at 

any given time. Therefore, memory access delays caused by 

data transmission cannot overlap in the entire pipeline. At the 

same time, the transmission of the next data block and 

calculation using the previous data block can also overlap 

within the same GPU as the DMA component is executed 

independently in the GPU. 

Based on these basic construction rules, the total task amount 

of the program is assumed to be F and that the granularities of 

the task division process in the 𝑁 GPUs are 𝑟1, 𝑟2, ⋯ , 𝑟𝑁. Also, 

considering the need for load balancing, the same type of GPU 

is assumed to use the same task granularity. However, different 

types of GPU will use different task granularities and so three 

different pipeline distribution situations may occur.  

As an example, consider the situation in which there are two 

different types of GPU (Fig. 2). In this case, the two GPUs have 

task granularities of 𝑟1 and 𝑟2. The task computing times of the 

two GPUs under the two task division granularities are 

therefore 𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟1 ∙ 𝑘1))/𝑓𝑐
1

 and 𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟2 ∙ 𝑘2))/𝑓𝑐
2
 

where 𝑓𝑐
1
 and 𝑓𝑐

2
are the core frequencies of the two GPUs. 

Similarly, 𝐶𝑚(𝑅(𝑟1, 𝐷𝑎𝑡𝑎(𝑘1)))/𝑓𝑚
1  and 

𝐶𝑚(𝑅(𝑟2, 𝐷𝑎𝑡𝑎(𝑘2)))/𝑓𝑚
2  are the two communication times 



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 

 

required by the GPUs to transfer the amount of data they 

require to complete the computation tasks when the task 

division granularities are 𝑟1 and 𝑟2. (This is the fetch latency 

and 𝑓𝑚
1
 and 𝑓𝑚

2
 are the fetch frequencies of the two GPUs). 

The corresponding spatio-temporal diagrams for the 

communication-computation pipelines are shown in Fig. 2. 

In the case shown in Fig. 2(a), the task computing times of 

each co-processor are less than the sum of the task transferring 

times of the two co-processors. That is,  

 {

𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟1∙𝑘1))

𝑓𝑐
1 <

𝐶𝑚(𝑅(𝑟1,𝐷𝑎𝑡𝑎(𝑘1)))

𝑓𝑚
1 +

𝐶𝑚(𝑅(𝑟2,𝐷𝑎𝑡𝑎(𝑘2)))

𝑓𝑚
2

𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟2∙𝑘2))

𝑓𝑐
2 <

𝐶𝑚(𝑅(𝑟1,𝐷𝑎𝑡𝑎(𝑘1)))

𝑓𝑚
1 +

𝐶𝑚(𝑅(𝑟2,𝐷𝑎𝑡𝑎(𝑘2)))

𝑓𝑚
2

 (2) 

Under these conditions, the total execution time of the 

program is determined by the memory access delay time (i.e. it 

is Communication-intensive), that is,  

 𝑇𝑎(𝑟1, 𝑟2) =
𝐹

𝑟1∙𝑘1+𝑟2∙𝑘2
∑

𝐶𝑚(𝑅(𝑟𝑖,𝐷𝑎𝑡𝑎(𝑘𝑖)))

𝑓𝑚
𝑖 + 𝜀2

𝑖=1  (3)

 where 𝜀 represents the time taken up by the final part of the 

computation (as the pipeline is evacuated). However, as long as 

the task load is large enough, this part of the computation time 

can be ignored in comparison to the overall time. The processor 

core is not a critical path restricting the performance of the 

program. Therefore, a reduction in processor frequency can 

save energy. The processor frequency can be adjusted until the 

boundary conditions shown in Eq. (2) are reached. However, 

the situation becomes computing-intensive if the processor 

frequency is further reduced. At this time, there will be a need 

to adjust the frequency of the memory in order to obtain the 

optimal energy result and best performance subject to the 

condition of limited energy consumption. However, as long as 

Eq. (2) is still satisfied, the computing time of each GPU is 

hidden by the memory access delay. This guarantees partial 

energy saving without performance loss. Under these 

conditions, the different types of co-processor do not show load 

imbalance. This is because the execution time of each 

co-processor is limited by the data communication latency. The 

difference in the computation capacities of these co-processors 

is hidden in the waiting time. 

Now consider the case shown in Fig. 2(b). In this case, the 

data computing time of each co-processor is greater than the 

sum of the data transferring times of the two co-processors: 

 {

C𝑐(𝑐𝑜𝑚𝑝(𝑟1,𝑘1))

𝑓𝑐
1 ≥

𝐶𝑚(R(r1,Data(k1)))

𝑓𝑚
1 +

𝐶𝑚(R(r2,Data(k2)))

𝑓𝑚
2

C𝑐(𝑐𝑜𝑚𝑝(𝑟2,𝑘2))

𝑓𝑐
2 ≥

𝐶𝑚(R(r1,Data(k1)))

𝑓𝑚
1 +

𝐶𝑚(R(r2,Data(k2)))

𝑓𝑚
2

 (4) 

Under these conditions, all the task communications are 

hidden by the computation tasks, except for the construction 

period of the pipeline. Due to the differences in performance of 

different types of co-processor this will probably lead to load 

imbalance. The overall execution time of the program is 

determined by the co-processor with the longest execution time, 

that is: 

 𝑇𝑏(𝑟1, 𝑟2) = max𝑖=1
2 {

𝐹

𝑟1∙𝑘1+𝑟2∙𝑘2

𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟𝑖,𝑘𝑖))

𝑓𝑐
𝑖 } + 𝜀 (5) 

where 𝜀 now denotes the data communication time in the initial 

period during the construction of the pipeline. As before, this 

time can be ignored in comparison with the overall time, as 

long as the task load is large enough. In this case, the total 

execution time of the program is determined by the calculation 

time (i.e. it is Computing-intensive). In other words, the fetch 

time is not a critical path that restricts the performance of the 

program. We can therefore reduce the memory frequency to 

obtain a reduction in energy consumption. However, the 

frequency reduction must be appropriate: one cannot continue 

to reduce the memory frequency because eventually a 

memory-intensive situation will arise. That is, one cannot 

achieve further energy reduction without performance loss. At 

this time, however, decreasing the frequency of the processor 

by an appropriate amount can further reduce energy 

consumption. It is clear that the frequencies of both 

components need to be adjusted to obtain the optimal 

performance result subject to the condition of limited energy 

consumption. However, as long as the conditions shown in 

Eq. (4) are still satisfied, the memory access latency of each 

GPU will be hidden by the calculation time. Therefore, it is 

guaranteed that partial energy savings can be obtained without 

performance loss.  

 

time

GPU 1 T1 C1 T3 C3 T5

T2 C2 T4 C4 T6

T Data transfering C Data Computing

GPU 2

Case (a) 

time

GPU 1 T1 C1 C3T3

C2 C4T2 T4GPU 2

Case (b) 

time

GPU1 T1 C1

T2

T3 C3 T5

C2 T4 C4T4GPU2

Case (c) 
Fig. 2. Schematic spatio-temporal diagrams illustrating three 

communication–computing pipeline cases. 

Finally, the situation is considered, as shown in Fig. 2(c). In 

this case, the task computing time of one co-processor is less 

than or greater than the sum of the task transmission times of 

the two co-processors: 

 {

C𝑐(𝑐𝑜𝑚𝑝(𝑟1,𝑘1))

𝑓𝑐
1 <

𝐶𝑚(R(r1,Data(k1)))

𝑓𝑚
1 +

𝐶𝑚(R(r2,Data(k2)))

𝑓𝑚
2

C𝑐(𝑐𝑜𝑚𝑝(𝑟2,𝑘2))

𝑓𝑐
2 ≥

𝐶𝑚(R(r1,Data(k1)))

𝑓𝑚
1 +

𝐶𝑚(R(r2,Data(k2)))

𝑓𝑚
2

 (6) 

This time, the time consumed by one computation task in the 

first co-processor cannot hide the total time required for data 

communication between itself and the second co-processor. 

Therefore, the execution time of the first co-processor is 

determined by the overall data communication time. For the 



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 

 

second co-processor, (except for the construction period of the 

pipeline) the data communication latency is completely hidden 

by the computation time, so the execution time of the second 

co-processor depends on the overall computation time. Thus, it 

is clear that the execution time of the second co-processor is 

larger than that of the first. Under such conditions, the overall 

execution time of the program is  

 𝑇𝑐(𝑟1, 𝑟2) =
𝐹

(𝑟1∙𝑘1+𝑟2∙𝑘2)
∙
𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟2,𝑘2))

𝑓𝑐
2 + 𝜀 (7) 

where 𝜀 now represents the data communication time in the 

initial period during the construction of the pipeline. As in case 

(b) above, as long as the task load is large enough, this part of 

the communication time can be ignored in comparison with the 

overall time. There is also an obvious load imbalance among 

the co-processors. 

At this point, we will discuss the two GPUs separately. The 

execution time of the first GPU is determined by the total data 

fetch time. In other words, the data fetch time of the first GPU 

is a critical path that restricts the execution time of the program. 

In this case, we can appropriately reduce the processor core 

frequency and increase the processor calculation time. As long 

as the condition shown in Eq. (6) is still satisfied, the 

calculation time of the first GPU will be hidden by the fetch 

delay. Partial energy savings can thus be guaranteed for the first 

GPU without performance loss.  

In contrast, the execution time of the second GPU is 

determined by the total computation time. In other words, the 

computation time of the second GPU is a critical path that 

restricts the execution time of the program. In this case, we can 

appropriately reduce the frequency of the second GPU memory 

and increase the fetch time. As long as the conditions shown in 

Eq. (6) are still satisfied, the fetch time of the second GPU can 

be hidden by the calculation time. Therefore, the second GPU 

can be guaranteed to have partial energy savings without 

performance loss.  

Eq. (6) shows that the execution time of the second GPU is 

always greater than that of the first GPU. Therefore, the total 

execution time of the program will be determined by the 

execution time of the second GPU. So, we can also coordinate 

the processor core frequency and memory access frequency in 

case (c) in order to improve the performance of the program 

(provided the energy consumption does not exceed the given 

energy constraint). 

Eqs. (3), (5), and (7) can be used to calculate the overall 

execution times of a program corresponding to the three 

communication–computing pipeline conditions shown in Fig. 2. 

They can also be extended to systems consisting of a larger 

number of heterogeneous co-processors. For case (c), for 

example, this can be realized by replacing the quotient 

𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟2, 𝑘2)) 𝑓𝑐
2⁄  appearing in Eq. (7) with the largest 

quotient satisfying the expression: 

 
𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟𝑖,𝑘𝑖))

𝑓𝑐
𝑖 ≥ ∑

𝐶𝑚(𝑅(𝑟𝑖,𝐷𝑎𝑡𝑎(𝑘𝑖)))

𝑓𝑚
𝑖

𝑁
𝑖=1  (8) 

It can also be seen that case (b) is actually a special example 

of case (c). Therefore, the program execution time of a system 

consisting of N co-processors can be represented by the 

following piecewise function:  

 

T(𝑟1, 𝑟2,⋯ 𝑟𝑁) = {
𝑇𝑎(𝑟1, 𝑟2,⋯ 𝑟𝑁) ∀𝑖 ≤ 𝑁: 𝑐𝑜𝑛𝑑 9.1

𝑇𝑐(𝑟1, 𝑟2,⋯ 𝑟𝑁) ∀𝑖 ≤ 𝑁: 𝑐𝑜𝑛𝑑 9.2

𝑐𝑜𝑛𝑑 9.1: 
𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟𝑖,𝑘𝑖))

𝑓𝑐
𝑖 < ∑

𝐶𝑚(𝑅(𝑟𝑖,𝐷𝑎𝑡𝑎(𝑘𝑖)))

𝑓𝑚
𝑖

𝑁
𝑖=1

𝑐𝑜𝑛𝑑 9.2: 
𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟𝑖,𝑘𝑖))

𝑓𝑐
𝑖 ≥ ∑

𝐶𝑚(𝑅(𝑟𝑖,𝐷𝑎𝑡𝑎(𝑘𝑖)))

𝑓𝑚
𝑖

𝑁
𝑖=1

  (9) 

V. ENERGY-CONSTRAINED MODELING 

The energy-constrained optimization problem can be 

succinctly described as follows: given an OpenMP parallel loop 

segment, L, and a heterogeneous system with dynamically 

scalable voltage and frequency, we seek the optimal 

frequencies of the processors (𝑓𝑐 ) and memory components 

(𝑓𝑚). In addition, an appropriate task partition, P, is sought with 

which the thread space of L can be divided into multiple 

subspaces that can be distributed to, and then executed by, the 

multiple heterogeneous processors. The ultimate goal is to 

realize given optimal performance objectives (minimization of 

the execution time or maximization of processor profit) during 

program execution subject to keeping the energy consumption 

less than a given energy budget, 𝐸𝑏𝑢𝑑𝑔𝑒𝑡 . 

In this context, we clarify the meaning of certain variables:  

Minimization of program execution time, T: the minimum 

time that elapses between the beginning of the program and the 

end of the program. 

The actual time taken by processors, 𝑇∗: The working time 

of processors. 

Processor utilization, U: the ratio of the actual time taken by 

processors for program execution to the overall time consumed 

by program execution. In general, 0 ≤ 𝑈 ≤ 1. 

Processor profit, G: the ratio of the optimized processor 

utilization, 𝑈𝑝, to the utilization before optimization, 𝑈𝑛𝑝. 

To accurately describe performance optimization subject to 

energy constraints, we have the following legitimate 

assumptions relating to the program, architecture, and circuit 

implementation. (i) The logic behavior of programs does not 

change with frequency. (ii) The frequencies of the processors 

and memory are scaled asynchronously. That is, we suppose 

that the frequency scaling of the processors and memory are 

independent of each other and have their own scalable ranges. 

(iii) The frequencies of the processors and memory are 

continuously scalable. (iv) The time and energy consumed 

during frequency conversion are not taken into account. 

The performance optimization objectives and energy 

constraints of the problem are elaborated in detail on the basis 

of these assumptions. The consumption of energy can be 

broadly divided into the consumption of ‘dynamic’ and ‘static’ 

energy. Static power consumption is related to the operating 

voltage and temperature of the chip and is ever-present during 

the operation of the processor. This decomposition means that 

the assignable power consumption range is the difference 

between the energy constraints placed on the system and the 

static power consumption. The phrase ‘maximum power 

consumption’ in this research therefore refers to the maximum 

dynamic power consumption, unless otherwise stated. The 

dynamic energy consumption, 𝐸𝑑 , consists of the energies 

associated with computations performed by the processors, 𝐸𝑐, 
and that used for memory access, 𝐸𝑚, and so we write: 

 𝐸𝑑 = 𝐸𝑐 + 𝐸𝑚 (10) 



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 

 

For a task partition of granularity k, the power consumed by 

the processors operating at frequency 𝑓𝑐 is given by 𝑝𝑐(𝑓𝑐) and 

the time consumed by the computation of the processors in one 

iteration is 𝐶𝑐(𝑘) clock cycles. Then, the energy consumed by 

the processors for computational purposes in 𝜇 iterations is 

 𝐸𝑐 = 𝑝𝑐(𝑓𝑐) ∙
𝐶𝑐(𝑐𝑜𝑚𝑝(𝑘))

𝑓𝑐
∙ 𝜇 (11) 

Similarly, the energy consumed due to memory access in 𝜇 

iterations is 

 𝐸𝑚 = 𝑝𝑚(𝑓𝑚) ∙
𝐶𝑚(𝐷𝑎𝑡𝑎(𝑘))

𝑓𝑚
∙ 𝜇 (12) 

so that 

 𝐸𝑑 = 𝑝𝑐(𝑓𝑐) ∙
𝐶𝑐(𝑐𝑜𝑚𝑝(𝑘))

𝑓𝑐
∙ 𝜇 + 𝑝𝑚(𝑓𝑚) ∙

𝐶𝑚(𝐷𝑎𝑡𝑎(𝑘))

𝑓𝑚
∙ 𝜇 (13) 

In a CMOS circuit, the dynamic power consumption, p, is 

directly proportional to the clock frequency, f, and square of the 

voltage, V, that is: 

 𝑝 ∝ 𝛼0𝐶𝑉
2𝑓 (14) 

where 𝛼0 represents the switching activity factor and 𝐶 is the 

switching capacitance. Furthermore, the voltage and clock 

frequency are related through the following expression [27]: 

 𝑓 ∝
(𝑉−𝑉𝑡)

𝛼

𝑉
 (15) 

where 𝑉𝑡 is the threshold voltage and 𝛼 is a technology-related 

factor. The latter is different for different systems but is 

generally found to be such that 𝛼 ∈ [1, 2]. When 𝛼 is 2, the 

frequency can be considered to be approximately directly 

proportional to the power supply voltage. In this case, the 

dynamic power consumption takes the (approximate) form  

 𝑝 ∝ 𝛼0𝐶𝑓
3 (16) 

The dynamic power consumed by the processors and 

memory can then be expressed in the form 

 𝑝𝑐(𝑓𝑐) = 𝛼1 ∙ 𝐶1 ∙ 𝑓𝑐
3 (17) 

 𝑝𝑚(𝑓𝑚) = 𝛼2 ∙ 𝐶2 ∙ 𝑓𝑚
3 (18) 

Substituting these into Eq. (13) yields:  

 𝐸𝑑 = 𝑀1𝑓𝑐
2𝐶𝑐(𝑐𝑜𝑚𝑝(𝑘))𝜇 + 𝑀2𝑓𝑚

2𝐶𝑚(𝐷𝑎𝑡𝑎(𝑘))𝜇 (19) 

where 𝑀1 = 𝛼1 ∙ 𝐶1 and 𝑀2 = 𝛼2 ∙ 𝐶2. 
Using Eq. (9), the first performance objective (minimizing 

the execution time) is formulated in the form:  

 min𝑇(𝑟1, 𝑟2, ⋯ 𝑟𝑁) = {
min 𝑇𝑎(𝑟1, 𝑟2, ⋯ 𝑟𝑁)   𝑖 = 1,… ,𝑁, 𝑐𝑜𝑛𝑑 9.1

min 𝑇𝑐(𝑟1, 𝑟2, ⋯ 𝑟𝑁)   𝑖 = 1,… ,𝑁, 𝑐𝑜𝑛𝑑 9.2
 (20) 

Next, the second performance objective (maximizing the 

processor profit G) is formulated. Processor utilization can be 

expressed as  

 𝑈𝑝(𝑖) = {

𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟𝑖,𝑘𝑖)) 𝑓𝑐
𝑖⁄

𝑇𝑎(𝑟1,𝑟2,⋯𝑟𝑁)
  𝑖 = 1,… ,𝑁, 𝑐𝑜𝑛𝑑 9.1

𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟𝑖,𝑘𝑖)) 𝑓𝑐
𝑖⁄

𝑇𝑐(𝑟1,𝑟2,⋯𝑟𝑁)
  𝑖 = 1, … , 𝑁, 𝑐𝑜𝑛𝑑 9.2

 (21) 

and the processor utilization 𝑈𝑛𝑝 before optimization is  

 ∀𝑖 ∈ [1, 𝑁]:𝑈𝑛𝑝(𝑖) =
𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟𝑖,𝑘𝑖)) 𝑓𝑐

𝑖⁄

𝐶𝑚(𝑅(𝑟𝑖,𝐷𝑎𝑡𝑎(𝑘𝑖))) 𝑓𝑚
𝑖⁄ +𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟𝑖,𝑘𝑖)) 𝑓𝑐

𝑖⁄
(22) 

The processor profit is defined as 𝐺(𝑖) = 𝑈𝑝(𝑖) 𝑈𝑛𝑝(𝑖)⁄ , and 

so the maximization of the processor profit (under energy 

constraints) can be formalized as 

 max𝐺(𝑖) = {

𝐶𝑚(𝑅(𝑟𝑖,𝐷𝑎𝑡𝑎(𝑘𝑖))) 𝑓𝑚
𝑖⁄ +𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟𝑖,𝑘𝑖)) 𝑓𝑐

𝑖⁄

𝑇𝑎(𝑟1,𝑟2,⋯𝑟𝑁)
  𝑖 = 1, … , 𝑁, 𝑐𝑜𝑛𝑑 9.1

𝐶𝑚(𝑅(𝑟𝑖,𝐷𝑎𝑡𝑎(𝑘𝑖))) 𝑓𝑚
𝑖⁄ +𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟𝑖,𝑘𝑖)) 𝑓𝑐

𝑖⁄

𝑇𝑐(𝑟1,𝑟2,⋯𝑟𝑁)
  𝑖 = 1,… ,𝑁, 𝑐𝑜𝑛𝑑 9.2

 (23) 

Now the two performance objectives have been obtained, we 

can formulate an expression for the energy constraints. The 

energy budget is taken to be 𝐸𝑏𝑢𝑑𝑔𝑒𝑡 . According to the total 

energy consumption given in Eq. (19), the energy constraint 

can be expressed in the form: 

 ∑ 𝑀1
𝑁
𝑖=1 (𝑓𝑐

𝑖)2𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟𝑖, 𝑘𝑖))𝜇 

+∑ 𝑀2
𝑁
𝑖=1 (𝑓𝑐

𝑖)2𝐶𝑚 (𝑅(𝑟𝑖, 𝐷𝑎𝑡𝑎(𝑘𝑖))) 𝜇 ≤ 𝐸𝑏𝑢𝑑𝑔𝑒𝑡 
 (24) 

So, the performance model under energy constraints can be 

expressed in the form: 

minT(𝑟1, 𝑟2, ⋯ 𝑟𝑁) = {
𝑚𝑖𝑛 𝑇𝑎(𝑟1, 𝑟2, ⋯ 𝑟𝑁) , 𝑖 = 1, … , 𝑁: 𝑐𝑜𝑛𝑑 25.1

𝑚𝑖𝑛 𝑇𝑐(𝑟1, 𝑟2, ⋯ 𝑟𝑁) , 𝑖 = 1, … , 𝑁: 𝑐𝑜𝑛𝑑 25.2

max𝐺(𝑖) =

{
 
 

 
 
𝐶𝑚(𝑅(𝑟𝑖,𝐷𝑎𝑡𝑒(𝑘𝑖)))

𝑓𝑚
𝑖 +

𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟𝑖,𝑘𝑖))

𝑓𝑐
𝑖

𝑇𝑎(𝑟1,𝑟2,⋯𝑟𝑁)
, 𝑖 = 1, … , 𝑁: 𝑐𝑜𝑛𝑑 25.1

𝐶𝑚(𝑅(𝑟𝑖,𝐷𝑎𝑡𝑒(𝑘𝑖)))

𝑓𝑚
𝑖 +

𝐶𝑐(comp(𝑟𝑖,𝑘𝑖))

𝑓𝑐
𝑖

𝑇𝑐(𝑟1,𝑟2,⋯𝑟𝑁)
, 𝑖 = 1, … , 𝑁: 𝑐𝑜𝑛𝑑 25.2

𝑇𝑎(𝑟1, 𝑟2, ⋯ 𝑟𝑁) =
𝐹

∑ 𝑟𝑖∙𝑘𝑖
𝑁
𝑖=1

∑
𝐶𝑚(𝑅(𝑟𝑖,𝐷𝑎𝑡𝑒(𝑘𝑖)))

𝑓𝑚
𝑖

𝑁
𝑖=1

𝑇𝑐(𝑟1, 𝑟2, ⋯ 𝑟𝑁) = 𝑚𝑎𝑥𝑖=1
𝑁 {

𝐹

∑ 𝑟𝑖∙𝑘𝑖
𝑁
𝑖=1

C𝑐(comp(𝑟𝑖,𝑘𝑖))

𝑓𝑐
𝑖 }

∑ 𝑀1
𝑁
𝑖=1 (𝑓𝑐

𝑖)2C𝑐(𝑐𝑜𝑚𝑝(𝑟𝑖 , 𝑘𝑖))𝜇 + ∑ 𝑀2
𝑁
𝑖=1 (𝑓𝑚

𝑖 )2𝐶𝑚 (𝑅(𝑟𝑖 , 𝐷𝑎𝑡𝑒(𝑘𝑖))) 𝜇 ≤ 𝐸𝑏𝑢𝑑𝑔𝑒𝑡

𝑐𝑜𝑛𝑑 25.1: 
𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟𝑖,𝑘𝑖))

𝑓𝑐
𝑖 < ∑

𝐶𝑚(𝑅(𝑟𝑖,𝐷𝑎𝑡𝑒(𝑘𝑖)))

𝑓𝑚
𝑖

𝑁
𝑖=1

𝑐𝑜𝑛𝑑 25.2: 
𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟𝑖,𝑘𝑖))

𝑓𝑐
𝑖 ≥ ∑

𝐶𝑚(𝑅(𝑟𝑖,𝐷𝑎𝑡𝑒(𝑘𝑖)))

𝑓𝑚
𝑖

𝑁
𝑖=1

{
 
 

 
 𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟𝑖,𝑘𝑖))

𝑓𝑐
𝑖 <

𝐶𝑚(𝑅(𝑟𝑖,𝐷𝑎𝑡𝑒(𝑘𝑖)))

𝑓𝑚
𝑖 (𝑖 = 1, … , 𝑁)  𝑐𝑜𝑛𝑑 25.1

𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟𝑖,𝑘𝑖))

𝑓𝑐
𝑖 ≥

𝐶𝑚(𝑅(𝑟𝑖,𝐷𝑎𝑡𝑒(𝑘𝑖)))

𝑓𝑚
𝑖 (𝑖 = 1, … , 𝑁)  𝑐𝑜𝑛𝑑 25.2

𝑓𝑐
′ ≤ 𝑓

𝑐

𝑖
≤ 𝑓𝑐

′′(𝑖 = 1,… , 𝑁)

𝑓𝑚
′ ≤ 𝑓𝑚

𝑖 ≤ 𝑓𝑚
′′(𝑖 = 1,… ,𝑁)

 (25) 

We give constraints {

𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟𝑖 ,𝑘𝑖))

𝑓𝑐
𝑖 <

𝐶𝑚(𝑅(𝑟𝑖 ,𝐷𝑎𝑡𝑒(𝑘𝑖)))

𝑓𝑚
𝑖 (𝑖 = 1,2,… ,𝑁)  𝑐𝑜𝑛𝑑 25.1

𝐶𝑐(𝑐𝑜𝑚𝑝(𝑟𝑖 ,𝑘𝑖))

𝑓𝑐
𝑖 ≥

𝐶𝑚(𝑅(𝑟𝑖 ,𝐷𝑎𝑡𝑒(𝑘𝑖)))

𝑓𝑚
𝑖 (𝑖 = 1,2,… ,𝑁)  𝑐𝑜𝑛𝑑 25.2

in 

formula (25), which guarantees that the type of the program 

will not be changed during the frequency adjustment process. 

In other words, if the program execution time on each 

coprocessor is initially determined by the time of data 

communication, after the frequency adjustment, the program 

execution time on each coprocessor is still determined by the 

time of data communication. If the program execution time on 

each coprocessor is initially determined by the data calculation 

time, after the frequency adjustment, the program execution 

time on each coprocessor is still determined by the data 

calculation time. Therefore, in the optimization of load 

balancing, we adjust the workload and always have to follow 

this constraint. Even if the load is changed, it does not affect the 

nature of the type of program. The constraints 𝑓𝑐
′ ≤ 𝑓𝑐

𝑖 ≤

𝑓𝑐
′′ (𝑖 = 1,2, … , 𝑁)  and 𝑓𝑚

′ ≤ 𝑓𝑚
𝑗
≤ 𝑓𝑚

′′ (𝑖 = 1,2, … , 𝑁)  limit 

the ranges over which the processor and memory frequencies 

vary (𝑓𝑐
′ and 𝑓𝑐

′′ represent the lower and upper bounds of the 

processor frequency, while 𝑓𝑚
′  and 𝑓𝑚

′′ are those of the memory 

frequency).  



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 

 

VI. ALGORITHM FOR SYNERGISTIC ENERGY-CONSTRAINED 

OPTIMIZATION OF TASK ASSIGNMENT 

The previous section reveals that load imbalance only occurs 

when a system contains a processor that finishes one 

computation and takes a longer time than the overall time for 

one communication by all processors. Two scenarios are 

considered below to illustrate how one can adjust the task 

partition to overcome this imbalance. The aim of the 

adjustment process is to basically assign balanced tasks to each 

processor when there is a large task load from the whole 

program. As a result, each processor can finish all its tasks at 

the same (or nearly same) time. 

In the first scenario, the time taken by each processor for one 

computation is longer than the total time taken by all processors 

for one communication. To improve load balance, more tasks 

need to be allocated to processors with faster execution speeds. 

In general, we suppose that there are N processors in the system 

with a given task partition granularity. The times taken by these 

processors for one communication and one computation can be 

expressed as: 

 [(
𝐶𝑚

𝑓𝑚
)
1
, (
𝐶𝑐

𝑓𝑐
)
1
] , [(

𝐶𝑚

𝑓𝑚
)
2
, (
𝐶𝑐

𝑓𝑐
)
2
] , ⋯ , [(

𝐶𝑚

𝑓𝑚
)
𝑁
, (
𝐶𝑐

𝑓𝑐
)
𝑁
] 

According to the assumption made for this scenario, we 

therefore have 

 ∀𝑥 ∈ [1,𝑁]: (
𝐶𝑐

𝑓𝑐
)
𝑥
≥ ∑ (

𝐶𝑚

𝑓𝑚
)
𝑖

𝑁
𝑖=1 . 

In order to achieve balance among the processors, we first 

seek the minimum common multiple, 𝐶𝑂𝑀 , of 

(𝐶𝑐 𝑓𝑐⁄ )1, (𝐶𝑐 𝑓𝑐⁄ )2, ⋯ , (𝐶𝑐 𝑓𝑐⁄ )𝑁 . We then calculate the 

quantities,  

  𝐶𝑂𝑀𝑥
𝐵 =

𝐶𝑂𝑀

(𝐶𝑐 𝑓𝑐⁄ )𝑥
 

for each processor. 𝐵  is a factor that describes the 

relationships between the two parameters (𝐶𝑐 𝑓𝑐⁄ )𝑥 and 𝐶𝑂𝑀. 

The relationship between COM𝑥
𝐵 and 𝑟𝑥 ∙ 𝑘𝑥 is that 𝑟𝑥 ∙ 𝑘𝑥 is the 

basic task assigned to GPU of type 𝑥. COM𝑥
𝐵  means that, in 

order to achieve load balance, the task proportion coefficient 

should be added to the basic task 𝑟𝑥 ∙ 𝑘𝑥 . So, the overall 

program execution time is 

 𝑇𝑏(𝑟1, 𝑟2, ⋯ 𝑟𝑁)
′ =

𝐹

∑ 𝐶𝑂𝑀𝑖
𝐵 ∙𝑟𝑖∙𝑘𝑖

𝑁
𝑖=1

∙
𝐶𝑐(𝐶𝑂𝑀𝑖

𝐵∙𝑟𝑖∙𝑘𝑖)

(𝑓𝑐)𝑖
+ 𝜀 (26) 

In the second scenario, some of the processors finish one 

computation using a longer time than the overall time 

consumed by all the processors for one communication, while 

others do not. In this case, optimizing load balance is 

complicated. A system consisting of two heterogeneous 

processors is taken as an example.  

The times used by the two processors for a single 

communication and a single computation are given 

by [(𝐶𝑚 𝑓𝑚⁄ )1, (𝐶𝑐 𝑓𝑐⁄ )1]  and [(𝐶𝑚 𝑓𝑚⁄ )2, (𝐶𝑐 𝑓𝑐⁄ )2] . Suppose 

that these times are such that (𝐶𝑐 𝑓𝑐⁄ )1 < (𝐶𝑚 𝑓𝑚⁄ )1 +
(𝐶𝑚 𝑓𝑚⁄ )2 and (𝐶𝑐 𝑓𝑐⁄ )2 ≥ (𝐶𝑚 𝑓𝑚⁄ )1 + (𝐶𝑚 𝑓𝑚⁄ )2. The given 

task partition granularities are 𝑟1 and 𝑟2. In this case, it is clear 

that the execution time of the first processor is the shorter of the 

two and so the overall execution time of the program depends 

on that of the second processor. Therefore, more tasks need to 

be assigned to the first processor.  

Under these circumstances, the possible situations occurring 

each time a task is added to the load of the first processor need 

to be discussed according to the ratio of the computation and 

communication times of the processors, RIO. To begin with, 

certain basic tasks are separately added to the two processors. 

As a result, the communication and computation times of the 

two processors will change with the increase in task load. The 

adjusted communication and computation times are recorded as 

[(𝐶𝑚 𝑓𝑚⁄ )1
′
, (𝐶𝑐 𝑓𝑐⁄ )1

′
] and [(𝐶𝑚 𝑓𝑚⁄ )2

′
, (𝐶𝑐 𝑓𝑐⁄ )2

′
].  

 
1. Algorithm: OTA 

2. Input: [(
𝐶𝑚

𝑓𝑚
)
1
, (
𝐶𝑐

𝑓𝑐
)
1
] , [(

𝐶𝑚

𝑓𝑚
)
2
, (
𝐶𝑐

𝑓𝑐
)
2
] ,⋯ , [(

𝐶𝑚

𝑓𝑚
)
𝑁
, (
𝐶𝑐

𝑓𝑐
)
𝑁
] 

3. Output:𝑇 

4.   𝐶𝑂𝑀 = The minimum common multiple of  
(𝐶𝑐 𝑓𝑐⁄ )1, (𝐶𝑐 𝑓𝑐⁄ )2,⋯ , (𝐶𝑐 𝑓𝑐⁄ )𝑁; 

5. for (𝑖 = 1; 𝑖 ≤ 𝑁; 𝑖 + +) 
6. 𝐶𝑂𝑀𝑖

𝐵 = 𝐶𝑂𝑀 (𝐶𝑐 𝑓𝑐⁄ )𝑖⁄ ； 

7. if (∀𝑖 ∈ [1, 𝑁]: (
𝐶𝑐

𝑓𝑐
)
𝑖
≥ ∑ (

𝐶𝑚

𝑓𝑚
)
𝑖

𝑁
𝑖=1 ) then 

8.     𝑇 =
𝐹

∑ 𝐶𝑂𝑀𝑖
𝐵∙𝑟𝑖∙𝑘𝑖

𝑁
𝑖=1

∙
𝐶𝑐(𝐶𝑂𝑀𝑖

𝐵∙𝑟𝑖∙𝑘𝑖)

(𝑓𝑐)𝑖
+ 𝜀; 

9. else  

10.    T =
𝐹

∑ 𝐶𝑂𝑀𝑖
𝐵∙𝑟𝑖∙𝑘𝑖

𝑁
𝑖=1

max {∑ 𝐶𝑂𝑀𝑖
𝐵 ∙ (

𝐶𝑚

𝑓𝑚
)
𝑖

𝑁
𝑖=1 , 𝐶𝑂𝑀𝑖

𝐵 ∙ (
𝐶𝑐

𝑓𝑐
)
i
} + 𝜀; 

11. end 
12. return 𝑇; 

Fig. 3. The OTA algorithm. 

The justification is that 𝑅𝐼𝑂1
′(𝑟1, 𝑘1) =

(𝐶𝑐 𝑓𝑐⁄ )1
′

(𝐶𝑚 𝑓𝑚⁄ )1
′  represents 

the ratio of the computation and communication times of GPU 

1 after adding tasks. At this time, it is necessary to consider the 

possible situation after increasing the amount of tasks assigned 

to GPU 1 each time according to 𝑅𝐼𝑂1
′(𝑟1, 𝑘1). Increase the 

task mount of GPU 1, if 𝑅𝐼𝑂1
′(𝑟1, 𝑘1) ≤ 1, i.e. (𝐶𝑐 𝑓𝑐⁄ )1

′
≤

(𝐶𝑚 𝑓𝑚⁄ )1
′
, when the task amount of GPU 2 is increased or not, 

there are (𝐶𝑐 𝑓𝑐⁄ )1
′
≤ (𝐶𝑚 𝑓𝑚⁄ )1

′
+ (𝐶𝑚 𝑓𝑚⁄ )2

′
. The 

communication consumption is a bottleneck to program 

execution for the first processor, and the time taken to execute 

basic tasks by the first processor is (𝐶𝑚 𝑓𝑚⁄ )1
′
+ (𝐶𝑚 𝑓𝑚⁄ )2

′
. 

If 𝑅𝐼𝑂1
′(𝑟1, 𝑘1) > 1 , then (𝐶𝑐 𝑓𝑐⁄ )1

′
≥ (𝐶𝑚 𝑓𝑚⁄ )1

′
+

(𝐶𝑚 𝑓𝑚⁄ )2
′
 will probably hold (but may not) after adjusting the 

task load. Under these conditions, the program execution time 

of the first processor is the larger one out of the communication 

and computation times. The execution time of the program of 

the first processor is  max {(𝐶𝑚 𝑓𝑚⁄ )1
′
+

(𝐶𝑚 𝑓𝑚⁄ )2
′
, (𝐶𝑐 𝑓𝑐⁄ )1

′
} . Two situations may also present 

themselves to the execution time of the second processor 

(dominated by the communication or computation time) and so 

the execution time of the program of the second processor is 

max{(𝐶𝑚 𝑓𝑚⁄ )1
′
+ (𝐶𝑚 𝑓𝑚⁄ )2

′
, (𝐶𝑐 𝑓𝑐⁄ )2

′
} . Therefore, the 

load-balancing optimization strategy is to find two additional 

coefficients 𝐶𝑂𝑀1
𝐵 and 𝐶𝑂𝑀2

𝐵 for basic tasks such that 

max{𝐶𝑂𝑀1
𝐵 (
𝐶𝑚
𝑓𝑚
)
1

+ 𝐶𝑂𝑀2
𝐵 (
𝐶𝑚
𝑓𝑚
)
2

, 𝐶𝑂𝑀2
𝐵 (
𝐶𝑐
𝑓𝑐
)
2

}         

=

{
 
 

 
 𝐶𝑂𝑀1

𝐵 (
𝐶𝑚
𝑓𝑚
)
1

+ 𝐶𝑂𝑀2
𝐵 (
𝐶𝑚
𝑓𝑚
)
2

,                                          𝑐𝑜𝑛𝑑 27.1 

max{𝐶𝑂𝑀1
𝐵 (
𝐶𝑚
𝑓𝑚
)
1

+ 𝐶𝑂𝑀2
𝐵 (
𝐶𝑚
𝑓𝑚
)
2

, 𝐶𝑂𝑀1
𝐵 (
𝐶𝑐
𝑓𝑐
)
1

} , 𝑐𝑜𝑛𝑑 27.2

 

𝑐𝑜𝑛𝑑 27.1: 𝑅𝐼𝑂1
′(𝑟1, 𝑘1)≤ 1 

𝑐𝑜𝑛𝑑 27.2: 𝑅𝐼𝑂1
′(𝑟1, 𝑘1)> 1                                                                          （27） 



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 

 

As a matter of fact, as (𝐶𝑐 𝑓𝑐⁄ )1
′
≤ (𝐶𝑚 𝑓𝑚⁄ )1

′
+ (𝐶𝑚 𝑓𝑚⁄ )2

′
 

exists when 𝑅𝐼𝑂1
′(𝑟1, 𝑘1) ≤ 1, the first scenario is a special 

case of the second one. Under these circumstances, the overall 

execution time of the program is  

 𝑇𝑐(𝑟1, 𝑟2, ⋯ 𝑟𝑁)
′ =

𝐹

∑ 𝐶𝑂𝑀𝑖
𝐵∙𝑟𝑖∙𝑘𝑖

𝑁
𝑖=1

max {∑ 𝐶𝑂𝑀𝑖
𝐵 ∙ (

𝐶𝑚

𝑓𝑚
)
𝑖

𝑁
𝑖=1 , 𝐶𝑂𝑀𝑖

𝐵 ∙ (
𝐶𝑐

𝑓𝑐
)
𝑖
} + 𝜀(28) 

The holistic algorithm for synergistic energy constrained 

optimization of task assignment (OTA) is shown in Fig. 3. We 

consider the following two cases in the load balancing 

optimization. Case 1 is the time taken by every processor for 

completing a computing task is longer than the total time taken 

by all the processors for completing a communication task. 

Case 2 is the time taken by some processor for completing a 

computing task is longer than the overall time consumed by all 

the processors for completing a communication task. The first 

else condition refers to Case 2. By incorporating Eq. (27) into 

Eq. (25), we arrive at the synergistic energy-constrained 

performance optimization model for task load balancing that 

we require. Therefore, the problem of optimizing the 

performance of heterogeneous multi-GPUs can be reduced to 

an M-extremum problem. That is, we need to find the task 

partitioning granularity 𝑘𝑖 (𝑖 ≤ 𝑁) for each type of GPU (using 

the same task partitioning granularity for the same type of GPU) 

that yields the shortest program execution time and highest 

processor profit. Generally speaking, the number of GPUs in 

the system is limited due to the limitations of the bus ports. 

Therefore, the number of heterogeneous GPUs is small and so 

the searching process is generally fast to carry out and the 

problem quickly solved.  

VII. EXPERIMENTS AND EVALUATION 

A. Experimental Platform and Test Cases 

In this paper, the actual platform and simulation platform are 

both used for experimental verification.  

The actual platform is a heterogeneous system consisting of 

an Intel i7 920 quad-core CPU and AMD 4870 GPU is 

employed as the experimental platform (Table I). In the system, 

the CPU and GPU have their own independent memory spaces. 

 
TABLE I 

CHARACTERISTICS OF THE PROCESSORS USED IN THIS WORK 

Parameter Intel i7 920 CPU AMD 4870 GPU 

Processor frequencies 
(GHz) 

2.67, 2.4, 2.0, 1.6 0.75, 0.65, 0.55 

Memory frequencies 

(GHz) 
1.33 (DDR3) 

0.9/0.7/0.5 

(GDDR5) 

Cache 

L1: I32  kB, D32  kB;  

L2: 256  kB; L3: 

8  MB 

– 

Memory (GB) 8 1 

Compiler 
Intel Ifor/Icc 

v11.1-OpenMP -fast 
Brook+ Brcc v1.4 

 

At present, the number of GPUs included in actual systems is 

small, and most systems only contain homogeneous GPUs. 

Therefore, in this section, a simulation method is adopted in 

order to better test the impact of energy consumption 

constraints and load balancing strategies on the performance of 

a heterogeneous system. 

GPGPU-Sim is a relatively mature GPU simulator [28]. 

GPGPU-Sim divides the GPU into five main modules: shader 

cores, interconnection network, L2 cache, DRAM, and memory 

controller. In this article, we use the Wattch power 

consumption model available in the GPGPU-Sim simulator to 

implement the power consumption modeling of the shader 

cores, L2 cache, memory controller, and other components in 

the GPU. For the interconnection network, we use the power 

modeling method used in PowerRed [29]. A modeling method 

available in the literature is used for the DRAM [30]. For each 

component, the simulator counts the activity and accumulates 

the power consumption within the clock cycle. Finally, it sums 

the results up to get the total GPU power consumption. We 

modified the simulator, on the basis of GPGPU-Sim, adding 

performance statistics to the data communication part and 

implementing a simple simulator at the application layer to 

simulate the simultaneous execution of multiple GPUs in an 

event-driven manner.  
TABLE II 

PARAMETER SETTINGS USED IN THE 

 QUADRO FX 5600 GPU POWER SIMULATOR 

SM 4 Network Crossbar 

Warp size 32 SIMT width 32 

Max blocks per 

SM 
8 

Max threads per 

SM 
1024 

Shader Clock 1.35 GHz Core Clock 600 MHz 

Network Clock 650 MHz DRAM Clock 800 MHz 

Memory Clock 1.6 GHz Memory Size 1.5 GB 

Memory Bandwidth 76.8 GB/s 

Software 
GPGPU-Sim 2.1.1b, NVCC 2.2, 
GCC 4.3 

 
TABLE III 

TEST CASES 

Application Description  Scale a Kernel program 

HotSpot 
Thermal 
simulation tool 

2048*2048  Hotspot 

k-means 
Clustering 

algorithm 

819,200 (34 

features) 
Cluster 

MGRID 
Poisson equation 
solver 

256*256*256  
RESID, PSINV, 
RPRJ3, INTERP 

SWIM 
Shallow water 

modeling solver 
2048*2048  

CALC1, CALC2, 

CALC3 

BS BlackScholes 256*256 BS 

LP Laplace 16*16*2048 LP 

aNumber of data points. 

GPGPU-Sim configures the simulated GPU by reading 

configuration files at runtime. Here, the configuration file 

parameters were set to represent a Quadro FX 5600 GPU. We 

maintained a global event list in the program. Each event 

contained a timestamp, GPU number, event type, and 

parameter list. (‘Time stamp’ indicates the clock cycle when 

the event occurred; ‘GPU number’ refers to the GPU to which 

the event belongs; ‘Event type’ includes four types: task 

communication start event, task communication end event, task 

computing start event, task computing end event. ‘Parameter 

list’ is a list of parameters required by the program to call 

communication and calculation operations.) We harnessed the 

event-driven simulation, taking the event with the smallest time 



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 

 

stamp from the global event list each time. Table II shows some 

of the parameter settings used in the Quadro FX 5600 GPU 

power simulator. 

Six applications were selected to use as test cases (Table III). 

MGRID and SWIM were chosen from the SPECOMP2001 

benchmark test set and utilized as a Poisson equation solver and 

shallow water modeling solver, respectively. The other two, 

HotSpot and k-means, were selected from the Rodinia program 

set which is mainly used for assessing heterogeneous parallel 

systems. The HotSpot application was employed to simulate a 

chip temperature model while k-means was adopted in a form 

commonly used in data mining (as a clustering algorithm). 

BlackScholes (BS) was selected from the AMD APP SDK and 

the Laplace transform (LP) application is one commonly used 

in the scientific computing field. These applications are 

characterized by a large number of loop iterations in the kernel 

function. Abstract the loop iteration space as a task. Different 

task granularity is set to divide tasks, and different task load is 

mapped to multiple GPUs. It can meet the basic conditions of 

load balancing optimization. 

B. Compiler Implementation and Example Code 

We design and implement a source to source compiler model 

MPtoStream based on GCC compiler. The compiler model 

implemented in this work is one that we introduced in Ref. [23]. 

The compiler implementation is valid for both the actual 

platform and simulation platform. 

 
//Insert frequency-scaling code 
//Load input data into GPU space 

Astream.Read(A); 
//Set kernel execution domains 

KerName. mv_kernel1(uint2(0, 𝑁𝑜𝑝𝑡 − 1)); 

KerName. mv_kernel2(uint2(𝑁𝑜𝑝𝑡 , 2𝑁𝑜𝑝𝑡 − 1)); 

//Call GPU kernel 

KerName (Astream, Bstream, Cstream); 

//CPU execution 
!OMP PARALLEL DO 

Do I = 2𝑁𝑜𝑝𝑡, 2048 

   Do J = 1, 2048 
      C(J,I) = A(J,I)*B(J,I) 

   End do 

End do 
//Write output data computed by GPU to CPU Space 

Cstream.domain(int2(0,0), int2(0,total)).write(C) 

Fig. 4. Matrix Multiplication implemented using parallel loop scheduling 
code. 

The applications derived from SPECOMP2001 and Rodinia 

involve a large number of matrix operations. Fig. 4 presents a 

fragment of parallel loop scheduling code related to the 

implementation of matrix multiplication. The outer loop 

consists of 2048 iterations. Eq. (25) is used to derive the 

optimal task partition granularity 𝑟𝑜𝑝𝑡 ∙ 𝑘. The granularity of 

this task corresponds to the number of loop iterations that the 

application maps to the processor. Note that if the number of 

loop iterations mapped to the GPU is 𝑁𝑜𝑝𝑡, then 𝑁𝑜𝑝𝑡 = 𝑟𝑜𝑝𝑡 ∙ 𝑘. 

We assume that the system contains two GPUs at this time. 

Hence, the subset of iterations (0, 𝑁𝑜𝑝𝑡 − 1) is assigned to the 

first GPU, (𝑁𝑜𝑝𝑡 , 2𝑁𝑜𝑝𝑡 − 1) is assigned to the second GPU, 

and the remaining cycles, (2𝑁𝑜𝑝𝑡 , 2048), are allocated to the 

CPU for execution. The execution code is shown in Fig. 4. First, 

the GPU data stream space is declared and the data loaded. 

Then, the iteration spaces mapped onto the GPUs are specified. 

Finally, the GPUs are called to perform the calculations. The 

CPU then completes the calculations using the remaining 

iteration space (so its iteration index starts from 2𝑁𝑜𝑝𝑡). The 

kernel calculation process is completed on the GPU and the 

output results saved back to the CPU storage space. This 

completes the parallel loop partitioning process of the CPU–

GPU heterogeneous parallel system. Experimental Results and 

Analysis 

In this section, we report the implementation experiments 

and analyze the results from different perspectives. The two 

subsections C.1 and C.2 do not consider load imbalances 

situation, and do not need to simulate multiple heterogeneous 

GPUs environments. Therefore, the experimental contents of 

these two sections are completed on a real AMD cores platform. 

Subsection C.3 considers load imbalances situation and 

perform load balancing tests on multiple heterogeneous GPUs. 

However, the actual system contains fewer GPUs, and most 

systems only contain homogeneous GPUs. Therefore, in order 

to better test the impact of heterogeneous system load balancing 

strategies on performance under energy constraints, the 

experimental results of subsection (3) are completed on the 

GPGPUSim simulation platform. 

The frequency assignment and task allocation policy can be 

implemented dynamically. By estimating the increase of power 

consumption, the appropriate frequency and task partition 

granularity are calculated to guide the real-time voltage 

regulation and task partition of the processor, to achieve the 

optimal power consumption. The data can be sampled 

periodically. The repetition period is set up in the process, each 

repetition period contains multiple sampling periods and a 

sampling guidance period. Through the statistics of the 

sampling period, the proper frequency values of processor and 

memory are calculated to guide the tasks for the rest of the 

sampling period. Assume that heterogeneous systems contain 

N GPUs with different configurations. Different types of GPUs 

have a different granularity of basic task partition: 𝑟1 ∙ 𝑘1, 𝑟2 ∙
𝑘2, ⋯ , 𝑟𝑁 ∙ 𝑘𝑁 (𝑖 = 1,… , 𝑁) , where 𝑟𝑖 ∙ 𝑘𝑖  represents the 

amount of tasks assigned to GPU of type 𝑖 , and the 

corresponding number of thread blocks is 𝑚𝑖. At this time, the 

number of the thread blocks allocated on N different types of 

GPUs is 𝑚1, 𝑚2, …𝑚𝑁. The data are gathered every 𝑚𝑖 threads 

on the type i GPU. The length of time that every 𝑚𝑖 threads use 

is called a repetition cycle. During the repetition cycle, if the 

condition 25.1 (25.2) is met, the first 𝑛𝑖 (𝑛𝑖 < 𝑚𝑖) threads are 

executed in the state of allowing to adjust the task partition. 

Thus, the task execution time is assigned to 𝑇𝑎(𝑟𝑖 ∙ 𝑘𝑖) (𝑇𝑐(𝑟𝑖 ∙
𝑘𝑖)) , the processor computing power to 𝑃𝑎𝑐(𝑟𝑖 ∙ 𝑘𝑖) (𝑃𝑐𝑐(𝑟𝑖 ∙

𝑘𝑖)), and the memory access power to 𝑃𝑎𝑚(𝑟𝑖 ∙ 𝑘𝑖) (𝑃𝑐𝑚(𝑟𝑖 ∙

𝑘𝑖)), respectively. The next 𝑛𝑖 threads are executed under the 

condition that the task partition are not allowed to be adjusted. 

In this case, the task execution time is assigned to 𝑇𝑎
′(𝑟𝑖 ∙

𝑘𝑖) ( 𝑇𝑐
′(𝑟𝑖 ∙ 𝑘𝑖)) , the processor computing power to 𝑃𝑎

′(𝑟𝑖 ∙
𝑘𝑖) (𝑃𝑐𝑐

′(𝑟𝑖 ∙ 𝑘𝑖)), and the memory access power to 𝑃𝑎𝑚
′(𝑟𝑖 ∙

𝑘𝑖) (𝑃𝑐𝑚
′(𝑟𝑖 ∙ 𝑘𝑖)) , respectively. Performance gains are 

calculated by 𝑔𝑎𝑖𝑛 = [𝑇𝑎
′(𝑟𝑖 ∙ 𝑘𝑖) − 𝑇𝑎(𝑟𝑖 ∙ 𝑘𝑖)] (𝑔𝑎𝑖𝑛 =

[𝑇𝑐
′(𝑟𝑖 ∙ 𝑘𝑖) − 𝑇𝑐(𝑟𝑖 ∙ 𝑘𝑖)]). In the remaining sampling guidance 

period of（mi − 2 × ni）, if gain > 0, the optimal processor and  



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 

 

 
Fig. 5. Increase in performance loss (in terms of program execution time) as a function of energy constraint imposed. 

memory frequencies (fc
′(i), fm

′(i)) can be adjusted under the 

current task partition ri, or  the task partition algorithm can 

determine the optimal task partition strategy ri
′  under the 

current frequency ( fc(i), fm(i) ). If gain < 0 , the remaining 

threads are executed in the current task division mode ri with 

the frequency (fc(i), fm(i)). 
1) Performance loss (in terms of program execution time) 

In the experiments performed, the performance loss changes 

when energy constraints are applied. As a result, the power is 

consumed when the highest frequency used for parallel 

execution of each program is chosen to use as a benchmark. 

The change in performance loss (with respect to objective 

parameter 1: program execution time) when constraints are 

added is shown in Fig. 5 for each of the applications used. 

The computation segment executed merely by the CPU 

consumes much less energy than the energy constraints 

imposed and so this execution time is not affected by the energy 

constraint applied. To more clearly reveal the effect of 

optimization, therefore, it is necessary to consider the 

contributions made to the computation segment by the parallel 

execution times of the CPU and GPU (Fig. 5). To allow 

informative comparisons to be made, execution performance 

using a fixed task partition also needs to be considered (such 

results are given the label ‘Fixed’). In these experiments, just 

the operating frequency of the processor is scaled to meet the 

energy constraints while the task partition is fixed. The 

optimized results obtained using the method proposed in this 

research (coordinating task partition and frequency scaling) to 

satisfy the energy constraints are distinguished using the label 

‘Opted’). 

Fig. 5 shows that the performance of the programs suffers as 

the energy constraint placed on the system is decreased. (This is 

especially true for the more computationally-intensive 

applications like HotSpot, k-means, MGRID, and BS. However, 

the access-intensive application SWIM and LP are less 

significantly affected by energy constraint). As heterogeneous 

processing units have different trends in their power 

consumption and performance at different frequencies, a 

fixed-partition strategy fails to efficiently play to the 

advantages of the heterogeneous parallel processing 

methodology. In comparison, the Opted strategy coordinates 

task partitioning and frequency scaling which can effectively 

bring the advantages of heterogeneous parallel processing into 

full play. As a result, better execution performance is achieved 

when energy constraints are imposed. For example, when the 

energy constraint corresponds to 90%, the performance 

improvement gained using the Opted strategy is 7.3% above the 

performance of the Fixed strategy. 

The results imply that the execution performance of the 

Opted strategy is lower than that of the Fixed strategy in a few 

cases. The main reason is that the proposed method is the 

theoretical optimal results under the assumption that the 

processor frequency is continuously adjustable. However, in 

the real GPU systems, the processor only supports a finite 

number of discrete physical frequency values.  Therefore, we 

have to choose the maximum physical frequency value which 

does not exceed the optimal value of theoretical frequency. The 

state of discrete adjustable processor deviates from the 

theoretical optimal results when the energy constraint is 80%. 

The fixed method is to find the best frequency value in discrete 

space by traversing all frequency combinations of each 

processor. Therefore, in some cases, the Fixed method will get 

the better performance results.  

90% 80% 70% 60%

0%

5%

10%

15%

20%

25%

30%

35%

40%

P
e

rf
o
rm

a
n

c
e

 l
o

s
s

Energy constraints

HotSpot

 Opted

 Fixed

90% 80% 70% 60%

0%

5%

10%

15%

20%

25%

30%

35%

40%

P
e

rf
o
rm

a
n

c
e

 l
o

s
s

Energy constraints

Kmeans

 Opted

 Fixed

90% 80% 70% 60%

0%

5%

10%

15%

20%

25%

30%

35%

40%

P
e

rf
o
rm

a
n

c
e

 l
o

s
s

Energy Constraints

MGRID

 Opted

 Fixed

90% 80% 70% 60%

0%

5%

10%

15%

20%

25%

30%

35%

40%

P
e

rf
o

rm
a

n
c
e

 l
o

s
s

Energy constraints

SWIM

 Opted

 Fixed

90% 80% 70% 60%

0%

5%

10%

15%

20%

25%

30%

35%

40%

P
e

rf
o

rm
a

n
c
e

 l
o

s
s

Energy constraints

BS

 Opted

 Fixed

90% 80% 70% 60%

0%

5%

10%

15%

20%

25%

30%

35%

40%

P
e

rf
o
rm

a
n

c
e

 l
o

s
s

Energy constraints

LP

 Opted

 Fixed



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 

 

 
Fig. 6. Change in performance loss (in terms of processor profit) as a function of energy constraint imposed. 

 
Fig. 7. Energy consumption control precisions 

2) Performance loss (in terms of processor profit) 

Fig. 6 shows the way in which the processor profit of the 

programs varies with the energy constraint decreased (in terms 

of objective parameter 2: processor profit). Once again, the 

change in processor profit with energy constraint is shown 

using the execution of each program at the highest frequency 

setting as the benchmark.  

It can be seen from Fig. 6 that the Opted strategy generally 

provides a better execution performance than the Fixed strategy 

for a given energy constraint. For the access-intensive 

applications SWIM and LP, the optimal processor profit is 

always close to 2 irrespective of the energy constraint. In 

contrast, the processor profit drops in a simple manner in the 

computationally-intensive applications (HotSpot, k-means, 

MGRID, and BS) as the value of the energy constraint is 

decreased. As the experiments proceeded, it was found that the 

memory frequency remained at its lowest level (0.5 GHz) when 

performing the access-intensive applications. On the other hand, 

the processor frequency changed significantly, decreasing as 

the energy constraint decreased. 

In fetch-intensive programs (SWIM and LP), the fetch time 

is a crucial factor affecting processor revenue. When the energy  

90% 80% 70% 60%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

P
ro

c
e

s
s
o

r 
p
ro

fi
t

Energy Constraints

HotSpot

 Opted

 Fixed

90% 80% 70% 60%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

P
ro

c
e

s
s
o

r 
p

ro
fi
t

Energy constraints

Kemans

 Opted

 Fixed

90% 80% 70% 60%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

P
ro

c
e

s
s
o

r 
p
ro

fi
t

Energy constraints

MGRID

 Opted

 Fixed

90% 80% 70% 60%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

P
ro

c
e

s
s
o

r 
p

ro
fi
t

Energy constraints

SWIM

 Opted

 Fixed

90% 80% 70% 60%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

P
ro

c
e

s
s
o

r 
p

ro
fi
t

Energy constraints

BS

 Opted

 Fixed

90% 80% 70% 60%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

P
ro

c
e

s
s
o

r 
p

ro
fi
t

Energy constraints

LP

 Opted

 Fixed

60% 70% 80% 90% 100%

50%

60%

70%

80%

90%

100%

110%

A
c
tu

a
l 
e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n

Energy constraints

HotSpot

 DVFS-only

 Opted-only

60% 70% 80% 90% 100%

50%

60%

70%

80%

90%

100%

110%

A
c
tu

a
l 
e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n

Energy constraints

BS

 DVFS-only

 Opted-both

60% 70% 80% 90% 100%

50%

60%

70%

80%

90%

100%

110%

A
c
tu

a
l 
e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n

Energy constraints

LP

 DVFS-only

 Opted-both

60% 70% 80% 90% 100%
50%

60%

70%

80%

90%

100%

110%

A
c
t
u
a
l
 
e
n
e
r
g
y
 
c
o
n
s
u
m
p
t
i
o
n

Energy constraints
Kmeans

 DVFS-only
 Opted-both

60% 70% 80% 90% 100%
50%

60%

70%

80%

90%

100%

110%
A
c
t
u
a
l
 
e
n
e
r
g
y
 
c
o
n
s
u
m
p
t
i
o
n

Energy constraints
MGRID

 DVFS-only
 Opted-both

60% 70% 80% 90% 100%
50%

60%

70%

80%

90%

100%

110%

A
c
t
u
a
l
 
e
n
e
r
g
y
 
c
o
n
s
u
m
p
t
i
o
n

Energy constraints
SWIM

 DVFS-only
 Opted-both



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 

 

 
Fig. 8. Predicted and simulated minimum execution times for the heterogeneous multi-GPU environment (each normalized relative to the before-optimization 

time achieved using Configuration 1). 

constraint becomes to decrease; the memory frequency 

becomes very sensitive and will quickly fall to its lowest 

allowable value. The processor gain value is close to two. In 

calculation-intensive programs, the calculation time is the key 

factor affecting the processor’s revenue. Therefore, when the 

energy constraint becomes to decrease, the processor frequency 

is not as sensitive as the memory frequency. As a result, it 

gradually decreases as the energy constraint becomes smaller. 

At the same time, processor benefits decrease as processor 

frequency decreases.  

We can conclude from our experimental results on 

heterogeneous parallel systems that the memory can be better 

optimized as a part of the overall system energy optimization 

(rather than just optimizing the processor). This is especially so 

when the program involved is memory-intensive as adjusting 

the memory frequency can achieve significantly better 

performance optimization. 

The lower the energy constraint, the smaller the value of 

𝐸𝑏𝑢𝑑𝑔𝑒𝑡 . As a result, we need to reduce both the processor and 

memory frequencies to reduce energy consumption to keep it 

less than 𝐸𝑏𝑢𝑑𝑔𝑒𝑡 . Our approach is to determine the optimal 

processor and memory frequencies using a power-constrained 

performance optimization model. This entails inserting 

instructions to adjust the processor and memory frequencies at 

the appropriate point in the source code to obtain the final 

optimized code. This guides the processor and memory to 

adjust their frequencies. 

3) Energy consumption control precisions 

For the similar performance optimization model with limited 

energy consumption, we compare the energy optimization 

method proposed in this paper with the hierarchical maximum 

power management method proposed in reference [24]. In 

reference [24], we only use DVFS technology (DVFS-only) to 

optimize hierarchical maximum power management. In this 

paper, Opted-both is used to represent the optimization of 

combining DVFS and task partitioning. The experimental 

results are shown in Fig. 7. The figure shows the actual energy 

consumption of the system under different energy consumption 

constraints. The abscissa represents the given energy 

consumption constraint, and the ordinate is the actual energy 

consumption value. It can be seen from the figure that the 

proposed energy control method can approach the given energy 

constraint more accurately without exceeding the energy 

constraint compared with the hierarchical maximum energy 

control method, and the accuracy can be increased by about 

7%. 

4) Minimum Execution Times for the heterogeneous 

multi-GPU environment 

Actual systems contain only a few GPUs and most of these 

systems tend to be homogeneous in nature. Therefore, in this 

section, the GPGPU-Sim simulation method is used to test the 

impact of the heterogeneous load balancing strategy on the 

performance of a system subject to energy constraints. Except 

for the number of SMs, the other GPU parameters were set to 

those appropriate to a Quadro FX 5600 GPU. We modified the 

configuration files accordingly and varied the number of SMs 

from 4 (‘GPU A’) to 8 (‘GPU B’) to 16 (‘GPU C’). We thus 

simulated 4 different heterogeneous multi-GPU configurations. 

Configuration 1(1,1,1), Configuration 2(2,1,1), Configuration 

3(1,2,1), and Configuration 4(1,1,2). The three parameters in 

1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
in

im
a

l e
xe

cu
tio

n
 t
im

e

Config

HotSopt

 Before Opt Pre

 Before Opt Fix

 After Opt Pre

 After Opt Fix

1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
in

im
a

l e
xe

cu
tio

n
 t
im

e

Config

Cluster

 Before Opt Pre

 Before Opt Fix

 After Opt Pre

 After Opt Fix

1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
in

im
a

l e
xe

cu
tio

n
 t
im

e

config

RESID

 Before Opt Pre

 Before Opt Fix

 After Opt Pre

 After Opt Fix

1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
in

im
a

l e
xe

cu
tio

n
 ti

m
e

Config

PSINV

 Before Opt Pre

 Before Opt Fix

 After Opt Pre

 After Opt Fix

1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
in

im
al

 e
xe

cu
tio

n 
tim

e

Config

RPRJ3

 Before Opt Pre

 Before Opt Fix

 After Opt Pre

 After Opt Fix

1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
in

im
a

l e
xe

cu
tio

n
 t
im

e

Config

CALC1

 Before Opt Pre

 Before Opt Fix

 After Opt Pre

 After Opt Fix

1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
in

im
a

l e
xe

cu
tio

n
 t
im

e

Config

CALC2

 Before Opt Pre

 Before Opt Fix

 After Opt Pre

 After Opt Fix

1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
in

im
a

l e
xe

cu
tio

n
 ti

m
e

Config

INTERP

 Before Opt Pre

 Before Opt Fix

 After Opt Pre

 After Opt Fix

1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
in

im
a

l e
xe

cu
tio

n
 t
im

e

Config

CALC3

 Before Opt Pre

 Before Opt Fix

 After Opt Pre

 After Opt Fix

1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
in

im
a
l e

xe
cu

tio
n

 ti
m

e

Config

BS

 Before Opt Pre

 Before Opt Fix

 After Opt Pre

 After Opt Fix

1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
in

im
a
l e

xe
cu

tio
n

 ti
m

e

Config

LP

 Before Opt Pre

 Before Opt Fix

 After Opt Pre

 After Opt Fix



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 

 

the brackets represent the number of GPU A, GPU B and GPU 

C respectively. 

Fig. 8 shows the predicted and actual minimum execution 

times obtained using the four configurations. In each chart, 

‘Opt Pre’ indicates a result predicted by the performance 

optimization model proposed in this paper. Similarly, ‘Opt Fix’ 

is used to indicate the result obtained via GPGPU-Sim 

simulation. Two other labels are also added: ‘Before’ indicates 

the result obtained before the system is optimized to balance 

load and ‘After’ the result obtained after load balancing. As 

different applications have execution times that vary greatly, 

each set of data is normalized relative to the minimum 

execution time obtained using Configuration 1 before 

load-balancing optimization. The results shown in Fig. 8 

demonstrate that the pipeline model is able to effectively 

predict minimum program execution times in systems 

containing multiple heterogeneous GPUs. The programs were 

then guided to select the optimal processor and memory 

frequencies and task partition strategy to realize optimum 

performance under the given energy constraints. The minimum 

execution times subsequently predicted by the model are close 

to those obtained via simulation (the relative error is less than 

10%). Except for CALC2 and CALC3 (in the SWIM tests) and 

LP applications, the performances of all programs were 

effectively improved after load balancing optimization. As LP, 

CALC2, and CALC3 are all memory-intensive programs, the 

calculation process is very simple and the communication 

overhead becomes the bottleneck to program operation. The 

load of each GPU has already reached balance and so load 

balancing optimization has no effect on it. The results also 

show that the optimal task partition strategy is obtained using a 

basic task partition granularity in the range 5–10. This is mainly 

because a task partition granularity that is too small fails to 

fully exploit the instruction level parallelism and hide memory 

access latency. As a result, the GPU cannot fully exploit its 

computation capacity. 

VIII. CONCLUSION 

When optimizing processors, it is very important to also 

consider the power consumed by off-chip memory. That is, 

both of these parts need to be optimized together to reduce the 

energy consumed by the system as a whole. In this work, 

energy consumption is optimized by coordinating the 

processors and memory of an energy-constrained system. A 

communication–computation pipeline for parallel programs 

was constructed to optimize a program’s performance by 

simultaneously performing voltage and frequency scaling of 

the processors and memory and using an appropriate task 

partitioning strategy. The conditions that lead to load imbalance 

between GPUs were also discussed in the context of a 

heterogeneous multi-processor environment. Corresponding 

load-balancing optimization methods were subsequently 

proposed. Our experimental results indicate that our proposed 

method is capable of producing satisfying execution times and 

processor profits while meeting the given energy constraints. 

ACKNOWLEDGMENT 

This work was sponsored in part by the National Natural 

Science Foundation of China (grant numbers 61672168, 

61672172, 61772143, and 61803093), High Resolution Earth 

Observation Major Project (83-Y40G33-9001-18/20), and 

Provincial Agricultural Science and technology innovation and 

Extension project of Guangdong Province (2019KJ147). 

REFERENCES 

[1] R. Raghavendra, P. Ranganathan, V. Talwar, et al. “NO “power” 
struggles: coordinated multi-level power management for the data center,” 

Proc. 13th Int Conf. Architectural Support for Programming Languages 

and Operating Systems (ASPLOS’13), pp. 48-59, 2008. 
[2] J. Li, J F. Martinez, “Power-Performance Implications of Thread-level 

Parallelism on Chip Multiprocessors,” Proc. IEEE Int Conf. Symposium 

on Performance Analysis of Systems and Software (SPAS’05), 
Washington, DC, USA, pp. 124-134, 2005. 

[3] J M. Cebrian, L. Juan, Aragón, M. José, García, et al. “Efficient 

microarchitecture policies for accurately adapting to power constraints,” 
Proc. 23th IEEE Int Conf Symposium on Parallel and Distributed 

Processing (IPDPS ‘2009), pp. 1-12, 2009. 

[4] X. Wang, A. K. Singh, B. Li, Y. Yang, H. Li and T. Mak, “Bubble 
Budgeting: Throughput Optimization for Dynamic Workloads by 

Exploiting Dark Cores in Many Core Systems,” IEEE Transactions on 

Computers, vol. 67, no. 2, pp. 178-192, 2018. 
[5] R. Martin, P. Anuj, and H. Jörg, “Pareto-Optimal Power- and 

Cache-Aware Task Mapping for Many-Cores with Distributed Shared 

Last-Level Cache,” In Proceedings of the International Symposium on 
Low Power Electronics and Design (ISLPED ’18). New York, NY, USA, 

pp. 1–6, 2018. 

[6] H.B. Yang, “Power-aware Compilation Techniques for High 
Performance Processors,” Doctor dissertation. University of Delaware. 

Winter 2004. 

[7] R.C. Zhao, Z.M. Tang, Z.Q. Zhang, G.R. Gao, “Study on the Low Power 
Technology of Software Pipeline,” Journal of Software, vol. 14, no. 8, pp. 

876-880, 2003. 

[8] C.H. Hsu and U. Kremer, “Single region vs. multiple regions: A 
comparison of different compiler-directed dynamic voltage scheduling 

approaches,” Lecture Notes in Computer Science, vol. 2325, pp. 43-48, 

2002. 

[9] H. Saputra, M. Kandemir, N. Vijaykrishnan, M.J. Irwin, J. Hu, C. -H Hsu 

and U. Kremer, “Energy-conscious compilation based on voltage scaling,” 

in Proceedings of the joint conference on Languages, compilers and tools 
for embedded systems: software and compilers for embedded systems 

(LCTES/SCOPES’02), New York, NY, USA, pp. 2-11. 2002. 

[10] F. Xie, M. Martonosi and S. Malik, “Compile-Time Dynamic Voltage 
Scaling Settings: Opportunities and Limits,” in Proceedings of the ACM 

SIGPLAN 2003 Conference on Programming Language Design and 

Implementation, San Diego, California, USA, pp. 49-62, 2003.  
[11] X.B. Fan, C.S. Ellis and A.R. Lebeck, “The Synergy between 

Power-aware Memory Systems and Processors Voltage Scaling,” in 

Proceedings of the 3th Int conference on Power - Aware Computer 
Systems (PACS’03), San Diego, CA, pp. 164-179, 2003. 

[12] K.R. Basireddy, A.K. Singh, B.M. Al-Hashimi, et al. “AdaMD: Adaptive 

Mapping and DVFS for Energy-efficient Heterogeneous Multi-cores,” 
IEEE Transactions on Computer Aided Design of Integrated Circuits & 

Systems, pp.1–6, 2019. 
[13] B. Donyanavard, T. Mück, S. Sarma and N. Dutt, “SPARTA: Runtime 

task allocation for energy efficient heterogeneous manycores,” 2016 

International Conference on Hardware/Software Codesign and System 
Synthesis (CODES+ISSS), Pittsburgh, PA, pp. 1-10, 2016. 

[14] M. Annavaram, E. Grochowski, J. Shen, “Mitigating Amdahl’s Law 

through EPI Throttling,” Proc. 32th Int Conf. Symposium on Computer 
Architecture (SCA’05), Washington, DC, USA, pp.298-309, 2005. 

[15] C. Isci, A. Buyuktosunoglu, C-Y. Cher et al., “An Analysis of Efficient 

Multi-Core Global Power Management Policies: Maximizing 
Performance for a Given Power Budget,” Proc. 39th Annual IEEE/ACM 

Int Conf. Symposium on Microarchitecture (SCA’06), Washington, DC, 

USA, pp. 298-309. 2006. 
[16] J. Sartori, R. Kumar, “Distributed Peak Power Management for 

Many-core Architectures,” in Proceedings of Int Conference Design, 

Automation and Test in Europe. 3001 Leuven, Belgium, pp. 1556-1559, 
2009. 



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 

 
[17] K. Meng, R. Joseph, R.P. Dick, et al., “Multi-Optimization Power 

Management for Chip Multiprocessors,” in Proceedings of 15th Int 

Conference Parallel Architectures and Compilation Techniques. New 

York, NY, USA, pp. 177-186, 2008. 
[18] K. Ma, X. Li, M. Chen, X.R. Wang, “Scalable power control for 

many-core architectures running multi-threaded applications.” ACM 

SIGARCH Computer Architecture News. Vol. 39, No. 3, pp. 449-460, 
2011. 

[19] J.M. Cebri, J.L. Aragon, S. Kaxiras, “Power token balancing: Adapting 

cmps to power constraints for parallel multithreaded workloads,” in 
Proceedings of 2011 IEEE International Parallel & Distributed 

Processing Symposium. pp. 431-442, 2011. 
[20] Y. Yi, X. Ping, K. Jingfei, et al., “A GPGPU compiler for memory 

optimization and aprallelism management,” in Proceedings of the 2010 

ADM SIGPLAN conference on Programming language design and 
implementation. New York, USA, pp. 86-97, 2010. 

[21] J. Byunghyun, S. Dana, M. Perhaad, et al., “Exploiting Memory Access 

Patterns to Improve Memory Performance in Data-Parallel Architectures,” 
IEEE Transactions on Parallel and Distributed Systems, pp. 105-118, 

2011. 

[22] J. Chen, Y. Dong, X-j. Yang, et al., “A Compiler-Directed Energy Saving 
Strategy for Parallelizing Applications in On-Chip Multiprocessors,” in 

Proceedings of the 4th International Symposium on Parallel and 

Distributed Computing, Washington, DC, USA, pp. 147-154. 2005. 
[23] Z.W. Wang, H. Wang, W. Zhao, et al., “Energy optimization of parallel 

programs in a heterogeneous system by combining processor 

core-shutdown and dynamic voltage scaling,” Future Generation 
Computer Systems, vol. 92, pp. 198-209, 2019. 

[24] Z.W. Wang, H. Wang, W. Zhao, et al., “Three-level performance 

optimization for heterogeneous systems based on software prefetching 
under power constraints,” Future Generation Computer Systems, vol. 86, 

pp. 51-58, 2018. 

[25] Z.W. Wang, L.L. Cheng, H. Wang, et al., “Energy Optimization by 
Software Prefetching for Task Granularity in GPU-Based Embedded 

Systems.” IEEE Transactions on Industrial Electronics, vol. 67, no. 6, pp. 

5120-5131, 2020. 
[26] Z.W. Wang, T. Wang, G.P. Zhao, et al., “Coordinated optimization of the 

performance of processors and memory in a heterogeneous system under 

energy constraints,” in Proceedings of the 15th International Symposium 
on Pervasive Systems, Algorithms and Networks (I-SPAN), pp. 100-106, 

2018. 

[27] W. Liao, L. He, and K.M. Lepak, “Temperature and supply voltage aware 
performance and power modeling at microarchitecture level,” IEEE 

Transactions on Computer-Aided Design of Integrated Circuits and 

Systems, vol. 24, no. 7, pp. 1042-1053, 2005. 
[28] A. Bakhoda, G.L. Yuan, W.L. Fung, H. Wong, and T.M. Aamodt, 

“Analyzing CUDA workloads using a detailed GPU simulator,” in 

Proceedings of IEEE Int Symp Performance Analysis of Systems & 
Software, pp. 163-174, 2009. 

[29] K. Ramaniz, A. Ibrahim, S. Dan, “PowerRed: a flexible modeling 

framework for power efficiency exploration in GPUs,” Worskshop on 
Gpgpu, pp. 1-8, 2007. 

[30] Š. Tajana, B. Luca, D.M. Govanni, “Cycle-accurate simulation of energy 

consumption in embedded systems,” in Proceedings of the 36th annual 

ACM/IEEE Design Automation Conference. New York, NY, USA, pp. 

867–872, 1999. 
 

 

Zhuowei Wang received Ph.D. degree in 

computer system architecture from Wuhan 

University, Wuhan, China, in 2012. 

She is now an associate professor in the 

College of Computers at Guangdong 

University of Technology. Her research 

interests include high performance 

computing, low power optimization and 

distributed computing systems. 
 
 
 

Xiaoyu Song (M’99-SM’04) received the 

Ph.D. degree from the University of Pisa, 

Italy, in 1991. 

From 1992 to 1998, he was on the faculty 

at the University of Montreal, Canada. He 

joined the Department of Electrical and 

Computer Engineering at Portland State 

University in 1998, where he is now a 

professor. He was an editor of IEEE Transactions on VLSI 

Systems and IEEE Transactions on Circuits and Systems. He 

was awarded an Intel Faculty Fellowship from 2000 to 2005. 

His research interests include formal methods, design 

automation, embedded systems and emerging technologies. 
 

Lianglun Cheng has a master degree in 

automation from Huazhong University of 

Science and Technology. He received the 

Ph.D. degree in machinery manufacturing 

and automation, from Changchun Institute 

of Optical Precision Machinery and Physics, 

Chinese Academy of Sciences. 

He is now a professor in the College of 

Computers at Guangdong University of Technology. His 

research interests focus on IOT, CPS and sensor networks. 

 

Hao Wang has a Ph.D. degree and a B.Eng. 

degree, both in computer science and 

engineering, from South China University 

of Technology. 

He is an associate professor in the 

Department of Computer Science in 

Norwegian University of Science & 

Technology, Norway. His research interests 

include big data analytics, industrial 

internet of things, high performance computing, safety-critical 

systems, and communication security. 


