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Abstract—The industrial demands of immersive videos for 

virtual reality/augmented reality applications are crescendo, 

where the video stream provides a choice to the user viewing object 

of interest with the illusion of “being there”. However, in industry 

4.0, streaming of such huge-sized video over the network consumes 

a tremendous amount of bandwidth, where the users are only 

interested in specific regions of the immersive videos. 

Furthermore, for delivering full excitement videos and minimizing 

the bandwidth consumption, the automatic selection of the user’s 

Region of Interest in a 360° video is very challenging because of 

subjectivity and difference in contentment. To tackle these 

challenges, we employ two efficient convolutional neural networks 

for salient object detection and memorability computation in a 

unified framework to find the most prominent portion of a 360° 

video. The proposed system is four-fold: preprocessing, intelligent 

visual interest predictor, final viewport selection, and virtual 

camera steerer. Firstly, an input 360° video frame is split into three 

Field of Views (FoVs), each with a viewing angle of 120°. Next, 

each FoV is passed to object detection and memorability 

prediction model for visual interestingness computation. Further, 

the FoV is supplied as a viewport, containing the most salient and 

memorable objects. Finally, a virtual camera steerer is designed 

using enriched salient features from YOLO and LSTM that are 

forwarded to the dense optical flow to follow the salient object 

inside the immersive video. Performance evaluation of the 

proposed system over our own collected data from various 

websites as well as on public datasets indicates the effectiveness for 

diverse categories of 360° videos and helps in the minimization of 

the bandwidth usage, making it suitable for industry 4.0 

applications. 

Index Terms—Virtual reality, Industry 4.0, Deep learning, 

Saliency, Immersive videos, AR industry, View selection, IoT 

I. INTRODUCTION 

360° camera provides a complete view of the immersive 

world, which makes it dominant over the traditional 

cameras. These cameras are adopted by the current emerging 

technologies and industrial applications in Virtual Reality (VR) 

[1, 2] and Augmented Reality (AR) [3, 4] because of their 

delightful experience to the users. Due to its high demand, 360° 

videos are also created and supported by the tech and social 

media giants, i.e., Facebook [5], YouTube, and Google [6]. 

Recently, more than one million of 360° video contents and 25 

 

 
Fig. 1. Spherical view of 360° frame using Head-Mounted Display (HMD) 
device, where a) shows the object of interest in a 360 frame, while b) is the 

current FoV of the viewer. 

million 360 images are uploaded to Facebook. YouTube also 

started supporting and creating 360° content since 2015 that 

delivers exotic viewing experience to the end-users. Similarly, 

Google also provides development toolkits for multiple 

platforms to create 360° content that could be watched over 

smartphones. Further, in the industrial sector, the sales of VR 

and Mixed Reality headsets likewise boosted the popularity of 

360° contents. In comparison to conventional videos, 360° 

videos give the users an exciting experience through the illusion 

of being there in the virtual environment [7, 8]. This new video 

genre has attracted users, huge industries, and researchers, 

however, at the same time created new challenges in its 

exploration for various applications [9]. In 360° contents, 

different problems are encountered due to the large field of 

view, bandwidth consumption [10], and the limited FoV of the 

human perception towards such visual contents. Foremost, it is 

very strenuous for a user to find the choice of “where to look” 

because of spacious coverage of a 360° video. Specific manual 

techniques make it possible to navigate current FoV in a 360° 

video. These involves mouse clicks and HMDs, where the 

sensors in such devices navigate in the video with the help of 

head movements. A typical example of manually viewing a 

360° video using HMD is shown in Figure 1. But these methods 

produce mental stress and VR sickness where viewer feels 

discomfort while watching a 360° video [11]. To overcome 

these challenges, automatic virtual camera for 360° videos [12] 

is an appealing field where novel techniques are designed to 
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minimize bandwidth usage and process an unedited video for 

generating visually alluring and pleasant events.  

In the current literature, there exists several methods for 

virtual camera selection in 360° videos. Further, recent deep 

learning approaches such as reinforcement learning has also 

been explored for big data analytics [13-15]. Further, Yu-Chuan 

et al. [16] proposed a conventional algorithm that creates a 

virtual camera within 360° video for controlling the viewing 

angle of the viewer to watch 360° videos. However, their 

method lacks salient object detection in the video. Similar work 

is presented by Hou-Ning et al. [17] via leveraging deep 

learning-based approach called “deep 360 pilot", an agent that 

navigates viewing angle in 360° sports videos. However, their 

method is only adaptable for sport videos (skateboard). 

Moreover, for the wild 360° videos, a virtual viewing angle 

technique is developed by Cheng [12] via computing saliency-

based heat maps for predicting the most salient scenes. Xu et al. 

[18] utilized eye-gaze data, measuring the saliency score of the 

object that helps to control “where to look” of the viewer in the 

360° videos. The current problem of “where to look” is further 

studied by Li et al. [19] by proposing a virtual camera called 

“viewport”. All these methods are domain-specific that only 

work for sports and wild videos where these systems have 

limitations dealing with other diverse 360° video categories. 

Furthermore, 360° videos are the primary source of 

entertainment and to the best of our knowledge, no such system 

exists that finds interesting and visually pleasant FoV in 360° 

videos.  

In this paper, we propose “Deepview” a novel deep learning-

based intelligent visual interest predictor (IVIP) architecture, 

which creates a virtual camera presenting visually interesting 

and pleasant scene in 360° videos. In the proposed system, an 

input 360° video is split into three 120° FoV’s, where each 

scene is passed to the IVIP architecture for saliency 

computation. Deep learning based IVIP architecture calculates 

a score for each FoV based on the memorability and objects 

present in the scene. FoV with highest saliency score is further 

processed to compute the visual features using YOLO and 

LSTM. Next, dense optical flow controls the viewing angle of 

the virtual camera via tracking the salient objects inside an 

immersive video. For the evaluation of Deepview, we have 

included well-known 360° video categories, such as sports, 

entertainment, tour, wild, and cartoons. The proposed system 

also minimizes the bandwidth consumption supplying only a 

salient portion of the immersive contents. Following are the 

main contributions of this work. 

1. A 360° video provides coverage of the entire surrounding 

environment that makes it difficult for a user to choose the 

choice of “where to look”. It requires physical efforts and 

creates mental stress for users when the region of interest is 

outside of the current FoV. To tackle these challenges, we 

propose an intelligent and novel framework that finds the 

salient object and controls viewing angle by following the 

object inside the immersive videos.  

2.  360° videos are main source of the entertainment, however, 

manually controlling viewing angles inside these contents is 

very tedious. Existing methods rely on hand-crafted 

heuristics, which produce VR sickness to the viewer. To 

overcome these challenges, two Convolutional Neural 

Networks (CNNs) are used to detect salient objects and 

compute their memorability score. Further, the measured 

scores of the salient objects are intelligently fused to find the 

most prominent FoV in the 360° videos.  

3. To automatically control motion of the virtual camera inside 

a 360° video, we extended a state-of-the-art (SOTA) CNN 

model (i.e., ROLO). For the virtual camera steering, YOLO 

and LSTM are used to extract visual features and learn 

sequence pattern, respectively, providing the location of the 

objects. Finally, the location of the salient objects is passed 

to the dense optical flow to control the viewing angle of the 

virtual camera inside a 360° video. 

The rest of the paper is organized in three sections. Section II 

consists of the proposed system, where the detailed overview 

and flow of the proposed framework is described. Section III 

describes the experimental results, where the system efficiency 

is evaluated using different experimental schemes comparing 

with other SOTA techniques. Section IV wraps up the paper 

with conclusion and future directions. 

II. PROPOSED FRAMEWORK 

The proposed methodology is divided into four main steps: 

A) the mechanism of splitting a 360° video into 120° FoVs as a 

preprocessing, B) IVIP describes CNN architectures used to 

compute the saliency score of the FoVs, C) final viewport 

selection, and D) virtual camera steerer that allows to control 

viewing angle of the user based on the salient object motion. 

Figure 3 shows a detailed overview of the proposed framework. 

 

A. Preprocessing 

In computer vision, resolution is referred to the video 

dimensions but in the case of 360° videos, it is a bit complicated 

due to its panoramic view. In immersive videos, contents are 

stretched over 360° horizontally and 180° vertically, while the 

whole scene is stretched between two eyes of the viewer. This 

phenomenon enables the viewer to freely move inside 360° 

videos. However, due to the limited normal field of view 

(NFoV) of humans and VR devices, only 120° FoV can be seen 

by a viewer at the same time. As a result, the viewer misses 

most of the salient objects and entertainment events in the 

immersive videos. To overcome these challenges and provide 

high-resolution FoV to the viewer, an input 360° frame is split 

into three FoVs, each with a 120° view. Further, 360° videos 

are created in different resolutions ranging from 2k to 16k 

resolutions as shown in Figure 2. For the user’s NFoV, the input  

 

 
Fig. 2. Resolution of different standard displays and 360° videos. 
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Fig. 3. Detailed overview of the proposed framework. Step 1: input 360° video frames are split into three 120° FoVs. Step 2: IVIP architecture predicts the saliency 

object based on the memorability score and objects present in each FoV. Objects and memorability score of each FoV are stored into saliency matrix. Step 3: 

Objects and memorability score of each FoV are fused and forwarded to a viewport selection module, where the FoV with high saliency is selected. Step 4: High-

level features are extracted from the viewport using visual features of the YOLO and LSTM for objects motion estimation, where motion of the virtual camera is 

controlled using dense optical mechanism inside a 360° video. 

 
Fig. 4. Panoramic view of a 360° frame. Each input 360° frame is split into three FoVs while its resolution is adjusted according to the size of the input frame, e.g., 

the input 360° 12k frame is split into three 120 FoVs with 4k resolution. 
 

frame is automatically adjusted according to the input 

resolution. However, the resolution of the user’s NFoV varies 

as 360° videos come in various sizes. Table 1 shows different 

NFoV for various input sizes of the 360° videos where Figure 

4 shows a panoramic view of the 360° frame. 

 

B. Intelligent Visual Interest Predictor Architecture 

In 360° videos, interesting FoV is a 120° view that is enriched 

with objects and memorable sceneries depending upon the 

video category [20]. The 360° videos are divided into several 

categories, including sports, entertainment, and tour videos, 

among others. A survey conducted by Nikon [21] suggests that 

90% of the immersive consumers are interested in the 360° 

videos because of the improved experience. In the survey, it is 

also stated that 60% of the immersive consumers prefer to 

watch sports and travel contents in a 360° view as compared to 

the traditional videos. Moreover, the survey states that 

entertainment videos gained an interest of 55% as compared to 

other categories of immersive videos. The IVIP architecture is 
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further divided into two subsections i) Salient Object Detection 

using SSDLite and ii) Memorability Measurement. 

 

i. Salient Object Detection using SSDLite 
The common aspect of all these 360° videos in which the 

viewer is interested are salient objects and stunning sceneries. 

To select the FoV with salient objects, it is necessary to detect 

different types of objects in each scene. Towards this end, we 

employed an existing deep learning object detection model 

called SSDLite [22], which is a modified version of a Single 

Shot Detector (SSD) [23]. In contrast with SSD, SSDLite is 

lightweight version with modified kernel size including depth 

and pointwise separable convolutions that make the model 

efficient in terms of accuracy and time complexity. In the 

proposed system, to retain the object shape and prevent it from 

deformation, the input 360° video is converted into an 

equilateral form. Then, we employ a pre-trained SSDLite model 

where each FoV is fed, producing a vector consisting of salient 

objects classes and their corresponding confidence values. In 

the output vector, human has the top precedence followed by 

animals and vehicles. 
TABLE 1 

RESLUTION OF DIFFERENT 360° VIDEOS 

Horizontal View Vertical View Resolution of NFoV of 120o 

2000 1000 ~ 720x1000 

4000 2000 ~ 1320x2000 

6000 3000 ~ 2000x3000 

8000 4000 ~ 2600x4000 

10000 5000 ~ 3320x5000 

12000 6000 ~ 4000x6000 

16000 8000 ~ 5200x8000 

 

ii. Memorability Measurement 
Most images have certain characteristics that attract human 

attention and are easier for them to remember as compared to 

other humans. These images contain notable events including 

people and objects with natural landscapes. In the literature, 

researchers have suggested many techniques that measure the 

memorability of images using different approaches [24]. A 

detailed study of these approaches suggests that images 

containing salient events or objects have popularity, aesthetics, 

emotion, and memorability. In the context of 360° videos, 

objects enriched scenes always fascinate viewers thus, 

memorability scores of these scenes are very high, enabling 

efficient detection of the salient scenes in immersive contents. 

In addition, we used an existing SOTA hybrid-AlexNet model 

that is fine-tuned with a large annotated image memorability 

dataset called LaMem [25]. This model can recognize 

memorability score of various classes including humans, 

animals, and beautiful natural sceneries. In the proposed 

framework, we compute the memorability score of each FoV 

based on the trained weights and fused it with other modules for 

salient and interesting FoV selection. Finally, objects with their 

accuracy and memorability score are mapped into the saliency 

matrix for each FoV using Eq. 1. 

𝐹𝑜𝑉𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦 = ∑ (𝜙𝑖 + 𝑎𝑐𝑐𝑖 + 𝛼)𝑋
𝑖=1 + ∑ (𝜑𝑗 + 𝑎𝑐𝑐𝑗 + 𝛽) + ∑ (𝛿𝑘 +

𝑍
𝑘=1

𝑌
𝑗=1

𝑎𝑐𝑐𝑘 + 𝛾) +𝑀 (1) 

Here ϕi denotes the ith person, acci is confidence value of ϕi, 

φj denotes jth animal, accj is confidence value of φj, δk denotes 

kth vehicle, and acck is confidence value of δk. Further, X, Y, Z, 

and M is the total number of persons, animals, vehicles, and 

memorability score of the FoV, respectively. Moreover, α, β, 

and γ are the balancing weights assigned to three classes: 

persons, animals, and vehicles. Description of parameters are 

given in Table 2. Further, from the study conducted by Rai et 

al. [26], it can be perceived from the heatmaps that users were 

more interested in humans as compared to other categories. 

Therefore, we introduced a balancing weight 1 where half of 

the weight is assigned to α, and the remaining half is distributed 

at a ratio of 0.3 and 0.2 between β and γ, respectively. 

Moreover, to reduce false detection of the SSDLite model, the 

confidence value acc is limited to a fixed value. All the objects 

with lower acc are ignored. This mechanism helps us to 

improve the system’s effectiveness in terms of accuracy and 

false detection. 

TABLE 2 

DESCRIPTION OF PARAMETERS 

Parameter Description 

A Accuracy 

P Precision score 

R Recall 

F1 F1-score 

M Memorability score 

Aes Aesthetic score 

Mem Memorability score 

Obj Salient object 

Mem+Aes Fusion of memorability and aesthetic score 

Aes+Obj Fusion of aesthetic salient object score 

Mem+Obj Fusion of salient object and memorability score 

acc Confidence score 

ϕ Person 

φ Animal 

δ Vehicle 

α, β, and γ Balancing weights 

 

C. Viewport Selection 

The most important phase of our proposed system is the 

pleasant and exciting FoV selection based on the saliency 

matrix generated via IVIP architecture. Eq. 2 chooses the most 

important FoV as a viewport for the user. 

𝑣𝑖𝑒𝑤𝑝𝑜𝑟𝑡 = 𝑚𝑎𝑥( 𝐹𝑜𝑉1, 𝐹𝑜𝑉2, 𝐹𝑜𝑉3)    (2) 

 Here FoV1, FoV2, and FoV3 are saliency score of each 120° 

FoV. The equation provides saliency score of the salient objects 

present in each FoV. The Viewport is the maximum saliency 

score based FoV that is used as a final NFoV for the users. The 

highest saliency score-based viewport is further passed to the 

virtual camera steerer for controlling the viewing angle of the 

user via following the salient object inside the 360° video. 

 

D. Virtual Camera Steerer 

After the measurement of most salient FoV, our next aim is to 

create a virtual camera that could steer the salient FoV for the 

viewer inside an immersive video. Inspired by the recent 

success of the recurrent neural networks in various domains of 

computer vision, we extend a SOTA deep model ROLO [27] to 

control the virtual camera inside immersive videos. For the 

motion estimation of the salient FoV, we obtain the rich visual 

features and primary location of the objects via YOLO [81]. At 

the end, YOLO adopts fully connected layers to transform 

regressing features representation into regions predictions. The 
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returned tensor is coded as U × U × (B × 5 × C) where U × U 

indicates the number of image slices, B is the number of 

bounding boxes in each slice with 5 location including row, 

column, width, height, and confidence score C. C represents the 

class label of each bounding box. In the proposed work, we 

adopted the same setup as in the YOLO model and set U = 7, B 

= 2, and C = 20. Our focus is to detect the salient object and to 

control the viewing angle by following the object. Therefore, 

we drop the class labels and confidence score as: 

𝐵𝑡 = (0, 𝑥, 𝑦, 𝑤, ℎ, 0)        (3) 

Where x, y, w, and h represent the x-axis, y-axis, width, and 

height of the bounding box, respectively.  

In the last, we add LSTM with two inputs namely, features 

from the fully connected layers and detection from Bt,i. At a 

given time-step t, feature vector of length 4096 is extracted 

referred as Xt. Another input to the LSTM is the last time-step 

St-1. Output of the LSTM provides locations of the object, which 

are passed from the dense optical flow to estimate the overall 

motion of the objects in the FoV. The dense optical flow 

algorithm works very efficiently to estimate the motion of 

interesting features via comparison of the two adjacent frames 

in the video. Our final goal with the dense optical flow is to find 

the x and y coordinates of the virtual camera following the 

salient objects. The m × n window (i.e., size of the salient FoV) 

is taken assuming that all the pixels of the window have the 

same motion as represented in Eq. 4. 
∑ 𝐼𝑥(𝑞𝑖) 𝑉𝑥 + 𝐼𝑦(𝑞𝑖) 𝑉𝑦 = − 𝐼𝑡(𝑞𝑖)
𝑚×𝑛
𝑖=1      (4) 

Here m × n is the total number of pixels inside the window 

and Ix(qi), Iy(qi), and It(qi) are the partial derivatives of the frame 

I with respect to position (x, y) and time interval t for pixel qi at 

the current time. Hence our final goal is to control the motion 

of the overall virtual camera inside an immersive video via 

following the salient features. Suppose Vx and Vy are the vertical 

and horizontal axis of the virtual camera such that: 

[
𝑉𝑥
𝑉𝑦
] = [

∑ 𝐼𝑥(𝑞𝑖)
2

𝑖 ∑ 𝐼𝑥(𝑞𝑖)𝐼𝑦(𝑞𝑖)𝑖

∑ 𝐼𝑦(𝑞𝑖)𝐼𝑥(𝑞𝑖)𝑖 ∑ 𝐼𝑦(𝑞𝑖)
2

𝑖

]

−1

[
−∑ 𝐼𝑥(𝑞𝑖)𝐼𝑡(𝑞𝑖)𝑖

−∑ 𝐼𝑦(𝑞𝑖)𝐼𝑡(𝑞𝑖)𝑖
]    (5) 

where Vx = dx/dt represents the movement of the virtual 

camera along x-axis with time t and Vy = dy/dt denotes the 

movement of the virtual camera along y-axis over time t. 

Further, in the proposed system, we set the virtual camera 

height h = 640 and width w = 480 for all set of experiments.  

III. EXPERIMENTAL RESULTS 

This section describes the experimental setup and evaluation 

of the proposed system on different sets of videos. In the 

experimental evaluation, we conducted various tests for both 

the salient object detection module and virtual camera steerer 

module to find the adaptability of the proposed system in 

various domains of immersive contents. The detailed discussion 

of the collected videos and the results obtained from the 

proposed system are presented in the following subsections. 

 

A. Experimental Setup and Datasets 

The proposed system is implemented using Python version 3.6 

and an open-source image processing library OpenCV version 

4.0. Other necessary libraries that were used for pre- 

processing, training, and visualization include Numpy, Keras, 

Tensorflow (GPU version), Caffe (compiled for Python), 

Matplotlib, Scikit-image, and Scikit-learn. Several videos that 

belong to different categories including sports, tour, 

entertainment, cartoon, and documentary were downloaded 

from YouTube to evaluate the performance of the proposed 

system. These videos contain both static viewpoint (SVP) and 

moving viewpoint (MVP) where in SVP videos, the salient 

objects are static and in MVP videos, objects move around in 

the 360°. All videos were downloaded in equirectangular 

format with .mp4 extension at 30 frames per second (fps). The 

detail about each video is given in Table 3. To further evaluate 

the performance of the proposed system, we compared it with 

other SOTA systems using Salient-360 [26] dataset and PVS-

HM [28] dataset. The Salient-360 dataset consists of 19 videos 

containing eye tracking and head movements of 57 participants 

(32 males and 25 females). Later, both features (features from 

eye tracking and head movements) of participants watched FoV 

are fused to generate saliency maps. On the other hand, the 

PVS-HM dataset only consists of eye-tracking data of 58 

participants. 

 

B. Performance Evaluation over Salient Object Detection 

To analyze the performance of the proposed system, we 

carried out different schemes of experiments combining various 

deep learning models including memorability (Mem), SSDLite 

(Obj), and aesthetic (Aes). The evaluation metrics consist of 

accuracy A, precision P, recall R, and harmonic mean of the 

precision and sensitivity (F). Firstly, the aesthetic score of all 

three FoVs are calculated, and the FoV with a high aesthetic 

score is presented to the viewer. However, due to the variation 

in contents, objects, scenes, and lighting conditions in the 

videos, the best A score is only 0.52. Similarly, in the next test, 

the FoV carrying highest score is presented using memorability 

model. The memorability model produces the highest score for 

A as shown in Table 4, which is 0.56, but the FoV is not 

convincing in real scenario as shown in Figure 6. In the 

proposed system, we also utilized SSDLite object detection 

model presenting FoV based on the salient objects. The model 

raised overall A, P, R, and F scores to 0.60, 0.58, 0.55 and 0.61, 

respectively. Among these deep learning models, this was the 

highest possible score on a single network. 

TABLE 3 

VIDEOS USED IN THE EVALUATION 

Video Title Type 
Focus 

Point 

Starting 

offset 
FoV 

360° Degree Kitchen 

Home Tour 
SVP Persons 0:01 4k 

Kitchen 360° test tour MVP Person 0:01 4k 

Learning to skateboard in 
Venice (in 360° video) 

MVP Persons 0:01 2k 

GoPro VR: Tahiti Surf 

with Anthony Walsh and 

Matahi Drollet 

MVP Persons 0:15 4k 

Lions 360° National 

Geographic 
MVP Animal 0:07 2k 

Clash of Clans 360°: 

Experience a Virtual 
Reality Raid 

SVP Cartoon 0:04 2k 

360° Underwater National 

Park National Geographic 
MVP Animal 0:04 2k 
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Fig. 5. Sample frames from the videos, where the green squares show the 

correct and the red squares show the incorrect FoV predicted by the proposed 

system. 

To further improve the performance of the proposed system, 

we fused these networks in different orders. The highest 

possible A, P, R, and F scores are 0.72, 0.70, 0.68, and 0.71, 

obtained via the fusion of memorability and SSDLite model. 

Representative frames of the salient objects using the proposed 

system are shown in Figure 5. The overall performance of the 

single and fusion of different networks is illustrated in Figure 

6. 

 

C. Performance Evaluation of the Virtual Camera Steerer 

Immersive videos are dominant over the traditional videos that 

provide user the choice to move freely inside 360° 

environments, enabling them to be the primary source of 

entertainment in VR. To provide the users full excitement 

inside the VR environment, the proposed method designed a 

virtual camera to follow the salient objects inside the 360° 

videos. For the evaluation of the proposed virtual camera 

steerer, we used seven videos (Section III-A) to validate the 

performance of the proposed system. The heat maps of the 

salient objects and the viewing angle along the current time is 

demonstrated in Figure 7. Further, we used a second set of 

experiments and performance indicators including true positive 

rate (TPR), true negative rate (TNR), false negative rate (FNR), 

and accuracy to find the adaptability of the proposed system. 

We also compared the tracking capabilities of the proposed 

virtual camera steerer with SOTA trackers including Multiple 

Instance Learning (MIL), Kernelized Correlation Filters (KCF), 

Tracking Learning and Detection (TLD), MedianFlow, Mosse, 

CSRT, and GoTurn. Among these trackers, the worst 

performance is observed for the MedianFlow due to the 

tracking of the object’s failure. 

 
Fig. 6. Performance of the proposed system using single and fusion of different 

approaches. 

On the other hand, GoTurn tracker is unable to handle occlusion 

problems in the various videos. Performance of the virtual 

camera steerer with other SOTA trackers is demonstrated in 

Table 4. 

TABLE 4 

EVALUATION OF VIRTUAL CAMERA STEERER WITH OTHER SOTA 

TRACKERS 
Method TPR (%) TNR (%) FNR (%) Accuracy (%) 

MIL 36.87 35.74 36.57 61.21 

KCF 36.67 35.78 34.91 67.53 

TLD 35.84 36.23 34.58 69.56 

MedianFlow 39.21 40.75 37.57 61.21 

Mosse 31.24 29.46 27.68 73.56 

CSRT 19.27 21.35 20.78 81.24 

GoTurn 38.47 39.67 38.67 62.37 

Virtual Camera 

Steerer 
3.67 3.89 4.02 96.23 

 

D. Subjective Evaluation 

We also conduct a user study (subjective evaluation) to 

compare and investigate the usefulness of the proposed system 

using the user interaction with 360° videos in more detail. The 

devices used in this study are Samsung S6-edge smartphone for 

playing the 360° videos and Samsung Gear VR HMD for 

presenting the 360° videos to the users. After watching the 360° 

videos, the final generated FoV is also evaluated by the 

participants. A total of 20 participants are recruited from 

different departments. The ages of these participants are 

between 20 to 40 years. In this scheme of experiments, first 

users are allowed to watch videos on HMD device and find the 

interesting FoV through head movement using manual methods 

(head movements). In the next step, the output video of the 

proposed system is played to the users where they watch a video 

without manually searching the FoV. Before presenting each 

video to the users, interesting FoV of all the videos are 

generated using the proposed system. After watching the 

videos, a questionnaire is given to the user to rate them based 

on their satisfaction. In the questionnaire, five different types of 

questions are given to validate the performance of viewing 

angle as: 1) Excellent, 2) Good, 3) Satisfactory, 4) Needs 

improvement, and 5) Poor. The  
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Fig. 7. Visual results of the proposed IVIP, where first column shows the input videos, second column shows the motion of the salient objects, third column shows 

the tracked salient objects, and fourth column shows the final virtual camera steerer view for the users. 
 

TABLE 5 

PERFORMANCE COMPARISION WITH STAT-OF-THE-ART METHODS 

Videos 
[17] [12] [16] Deepview (Ours) 

A P R F A P R F A P R F A P R F 

Video 1 0.55 0.54 0.49 0.51 0.53 0.54 0.53 0.54 0.52 0.53 0.51 0.53 0.75 0.73 0.66 0.73 

Video 2 0.34 0.36 0.51 0.32 0.35 0.37 0.36 0.35 0.37 0.34 0.35 0.34 0.71 0.72 0.70 0.69 

Video 3 0.84 0.87 0.79 0.82 0.83 0.84 0.79 0.80 0.38 0.36 0.34 0.33 0.69 0.71 0.67 0.72 

Video 4 0.86 0.84 0.81 0.86 0.85 0.86 0.82 0.79 0.36 0.37 0.37 0.37 0.72 0.70 0.70 0.70 

Video 5 0.35 0.34 0.30 0.31 0.37 0.33 0.33 0.35 0.86 0.87 0.85 0.83 0.71 0.69 0.71 0.69 

Video 6 0.51 0.53 0.49 0.50 0.51 0.52 0.50 0.49 0.51 0.57 0.54 0.57 0.76 0.72 0.68 0.75 

Video 7 0.53 0.36 0.33 0.34 0.34 0.34 0.34 0.31 0.35 0.39 0.37 0.34 0.72 0.70 0.69 0.70 

Average 0.56 0.54 0.53 0.52 0.54 0.52 0.52 0.51 0.52 0.49 0.47 0.47 0.72 0.71 0.68 0.71 

 
Fig. 8. Percentage of user’s satisfaction after watching each video using HMD 

device. 

participants then rate the video among the five options 

depending upon the user’s comfort and satisfaction after 

experiencing the video. In both MVP and SVP, the proposed 

system attracts more users than the manually searching for 

salient object in the video using HMD device. The overall 

percentage of SVP videos are slightly higher than the MVP 

videos as the FoV in the SVP was constant and more stable than 

the MVP videos. The percentage of user’s comfort and 

satisfaction on each video computed via the proposed system is 

illustrated in Figure 8. 

 

E. Comparison with State-of-the-art Techniques 

In this section, we validated the combined effect (salient object 

detection and controlling viewing angle inside 360° videos) 

with other SOTA methods including [12], [16], and [17]. 

Comparison of the proposed system with these SOTA methods 

[12][16][17] can be perceived from Table 5. Results of all the 

seven videos have been computed on SOTA methods. For video 

1, the performance of [17] is better than those of [12] and [16], 

however the proposed system outperforms all three methods. In 

Table 5, method [12] clearly outperforms all other methods, 

nevertheless, the proposed method outperformed [17] and [16]. 

The worst time complexity is observed for the method [17] 

where the system is heavily dependent on the Faster R-CNN 

and the very high resolution of the 360° videos result in poor 
 

TABLE 6 
COMPARISION WITH OTHER STATE-OF-THE-ART TECHNIQUES 

Method Average time complexity fps 

[17] 1.24 ~ 0.76 

[12] 0.12 ~ 8.04 

[16] 0.14 ~ 7.02 

Deepview (Ours) 0.31 ~ 3.07 
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performance. Furthermore, the minimum time complexity is 

observed for the method [12] as its system is focusing on salient 

object in the 360° videos. From Table 6, it can be perceived that 

the proposed system has settled good tradeoff among existing 

systems on both time complexity and frames per seconds and at 

the same time, achieving best performance.  

For the performance comparison of the proposed system with 

SOTA, we also used other performance evaluation metrics, 

including AUC-JuDD, correlation coefficient (CC), normalized 

scan-path saliency (NSS), and Kullback-Leiber (KL) 

divergence. The AUC-JuDD is the predicted saliency of the 

system and ground truth, where the score for a perfect match 

(ground truth and system predicted score) is 1. The CC 

computes the linear correlation of the predicted saliency and 

ground truth. The highest score for the CC is 1 that indicates an 

exact match of the predicted saliency and ground truth. Further, 

the NSS score deals with the average normalized accuracy of 

the saliency map, and a higher NSS score means more 

effectiveness of the system. KL score measures the total 

distribution of the predicted saliency over the ground truth, 

where 0 represents a perfect match between both scores. 

However, for the effective evaluation of the proposed system 

on two different datasets, we computed average AUC, CC, 

NSS, and KL score of both the datasets and compared with 

SOTA methods as shown in Table 7. 
 

F. Quality of Service (QoS) 

State-of-the-art methods focus on bandwidth minimization 

and latency rate of the 360° videos. They use various techniques 

for users’ FoV to minimize bandwidth consumption. To 

evaluate this aspect of the proposed system (QoS performance) 

with respect to other SOTA methods, we created a simple 

server-client application using Python flask framework. In this 

set of experiments, we evaluated the latency and bandwidth 

consumption of the proposed method with other SOTA 

methods using local LAN and Wi-Fi services. The overall 

performance of our system with existing SOTA methods is 

illustrated in Table 8. In Table 8, the maximum bandwidth is 

consumed by [29], where the approach relies on the head and 

eye-tracking data of the users. On the other hand [30] consumed 

an average bandwidth of 13.01Mbps with an average latency 

rate of 10 ms. Our proposed system sends only salient and 

stunning FoV to the client, thereby consuming minimum 

bandwidth and latency rate among all the SOTA methods. 

 

G. Limitations 

The proposed system outperformed SOTA methods but it has 

certain limitations and is unable to recover from a number of 

failures. Firstly, IVIP only measures the saliency score at the 

start. 
 

TABLE 7 

PERFORMANCE EVALUATION WITH SOTA METHODS 

Method Dataset AUC CC NSS KL 

[28] PVS-HM 0.118 0.091 1.066 - 

[31] Salient-360 0.882 0.659 1.582 0.803 

[32] Salient-360 0.700 0.054 0.910 0.992 

[33] Salient-360 0.714 0.541 1.014 0.882 

[34] Salient-360 0.700 0.450 0.810 0.790 

Deepview 

(Ours) 

PVS-HM/ Salient-

360 
0.913 0.725 1.627 0.677 

 

TABLE 8 
AVERAGE BANDWIDTH AND LATENCY 

Method 
Average bandwidth 

(Mbps) 
Average latency (ms) 

CUR [29]  24.91 3 

DR [29] 23.97 10 

[29] 18.54 40 

[30] 13.01 10 

Deepview (Ours) 12.45 12 

 

However, if there is a scene change in the video, our system 

is unable to detect the change and hence it cannot measure the 

saliency score of the new scene. Furthermore, virtual camera is 

based on dense optical flow that limits the performance when 

there is an abrupt change in the motion and occlusion of the 

objects. A 360° video provides vast field of view where the 

object moves freely. However, when the objects move to the 

edges of the virtual camera, the shapes are deformed, and the 

virtual camera is unable to detect the objects and control the 

viewing angle. 

IV. CONCLUSION 

This paper focused on the visual saliency prediction of the 

360° videos to improve the user experience and minimize the 

bandwidth consumption while watching immersive videos. The 

input 360° frames were split into three 120° FOVs to predict 

salient objects and appealing scenes, and to reduce the overall 

bandwidth consumption over the network. We employed two 

CNN networks to extract saliency maps for this purpose from 

each FoV. Among the three FoVs, the most salient FoV was 

displayed to the viewer. Further, we extended a state-of-the-art 

CNN model by extracting visual features using YOLO and 

LSTM of salient objects. Moreover, the extracted features were 

passed to the dense optical flow algorithm to control the 

viewing angle of the user by following the salient object inside 

the 360° videos. We evaluated the performance of the proposed 

system on our own collected videos as well as on publicly 

available datasets. The extensive sets of experiments 

demonstrated the effectiveness of the proposed system in 

predicting more salient objects and improving QoS of the 

immersive videos, making it suitable for industry 4.0 

applications. In the future, we have intention to minimize the 

number of CNN models to reduce time and computation 

complexity. Furthermore, instead of only following the salient 

objects inside the immersive contents, we will facilitate users to 

experience immerse events. Moreover, we are keen to increase 

the admissible number of frames that could deliver real-time 

experience to users. 
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