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Abstract

This is the second part of a two-article series investigating the presence of an inverse response in the measurement of the
ingot radius in the Czochralski process for monocrystalline silicon production, when the ingot radius is deduced from a
camera image of the bright ring at the meniscus connecting the solid crystal to the silicon melt. Such inverse responses
are known to pose a fundamental limitation in achievable control performance. However, for the bright ring radius
measurement, the inverse response is an artefact of the measurement technique and does not appear in the physical
variable one wants to control (the actual crystal radius). The present article addresses control for the mitigation of the
inverse response behaviour, using a combination of parallel compensation and feedback control. The proposed design is
validated against simulations where the production process is subjected to temperature disturbances.
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1. Introduction

The Czochralski (Cz) process is the industrially dom-
inant process for the production of monocrystalline sili-
con ingots. The ingots produced are cut into thin wafers,
which are the basis for the production of photovoltaic cells
and computer chips. Any variation in the ingot radius will
increase the material waste in the subsequent production
steps and might also initiate defects in the crystal structure
during growth. Good control of the ingot radius is, there-
fore, important. Unfortunately, the quantity measured for
feedback control, the bright ring radius, is affected by an
inverse response behaviour [1]. That is, when the crystal
pulling speed is increased, the radius measurement at first
increases and thereafter decreases. However, in general,
the steady-state effect of the increased pulling speed is a
decreased radius measurement, and vice versa. The term
inverse response refers to the phenomenon when the initial
response of the controlled variable is in the opposite direc-
tion of the steady-state response. Such inverse responses
are one appearance of what in control parlance is termed
non-minimum phase behaviour, and causes fundamental
limitations in achievable control performance [2]. This pa-
per presents a control design approach, where a conven-
tional PID feedback controller is combined with a so-called
parallel compensator to circumvent the limitations on feed-
back control caused by the non-minimum phase dynamics
of the system.
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1.1. Paper Organization
A description of the Cz process is given in the first

part of this article series [3], where the model relevant
for the control of crystal growth is developed. The model
combines rigorous descriptions of the meniscus shape and
the camera-based radius measurement with simplified tem-
perature dynamics. The analysis of the developed model
verifies the presence of the inverse response from pulling
speed to radius measurement. Based on this, the present
paper is structured as follows: Section 2 studies the dy-
namics of the crystal radius control problem, elucidating
the requirements and limitations in relevance to the con-
trol design. For this purpose, the heat transfer from the
heaters to the melt is of minor significance, and a reduced
model with a constant melt temperature is used. This
model is linearized in Section 3 so that in Section 4 the
linear controller and parallel compensator can be designed.
In Section 5, the controller design is verified in simula-
tions involving the overall system model from [3], and it
is shown that the controller achieves stable control also
of the nonlinear dynamics, as well as good suppression of
disturbances entering through the temperature dynamics.

2. Cz growth model and inverse response behaviour

In the first part [3] of this article series, two models
for the crystal growth and radius dynamics are developed.
These two models differ in how the heat transfer from the
melt to the melt/crystal interface are modelled:

I. In this model, the heat transfer across the meniscus
is modelled based on conductive flows, whereas the
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transfer of heat from the melt bulk to the meniscus is
governed dominantly by convective flows.

II. Here, the overall heat transfer from the bulk of the
melt to the melt/ crystal interface is dominated pri-
marily by the convective heat flow.

Of course, the two models are clear simplifications of
reality, with the actual heat transfer across the meniscus
likely to be somewhere between pure conduction and pure
convection.

As a consequence of these assumptions for Model I,
the overall heat transfer to the interface depends on the
meniscus height (cf. Eq. (8) in part I of this article series),
while in Model II, the heat transfer to the interface is
independent of the meniscus height (cf. Eq. (12) of part
I). The same holds for the growth rate since it directly
depends on this heat transfer (cf. Eq. (1e) in part I).

To illustrate the difference between the two models,
both models are simulated with the smooth profile for
the crystal pulling speed shown in Fig. 1 while the heater
power is kept constant. The resulting responses of the two
models are depicted in Figs. 2 and 3 for models I and II,
respectively.
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Figure 1: Applied pull speed profile

It is apparent that a decrease in pull speed causes the
crystal radius to increase. However, the measurement of
the bright ring radius, (which is used as an estimate of the
crystal radius) initially moves in a direction opposite to
that of the actual crystal radius, thereby confirming the
presence of inverse response. Moreover, the heat flux into
the interface based on convective heat transfer (Model II)
yields a constant growth rate vg, whereas it varies with
height for the case with pure conductive heat transfer
across the meniscus (Model I).

3. Linearized model

For the approach presented in this paper, it is neces-
sary to linearize the nonlinear model around a steady-state
crystal radius. While the equations describing the menis-
cus dynamics and temperature effects are given in closed
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Figure 2: Nonlinear plant response for Model I subjected to the
applied input shown in Fig. 1, crystal radius (rc), bright ring radius
(rbr) and crystal growth angle (αc) in top-left and right panes, re-
spectively, the meniscus height (hc) and the growth rate (vg) in the
bottom-left and right panes, respectively.
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Figure 3: Nonlinear plant response for Model II subjected to the
applied input shown in Fig. 1, crystal radius (rc) and bright ring
radius (rbr), crystal growth angle (αc) in top-left and right panes
respectively, the meniscus height (hc) and the growth rate (vg) in
the bottom-left and right panes, respectively.

form, the dependency of the measured bright ring radius
on the crystal radius and the pulling speed is not. Hence,
a full-model numerical perturbation linearization is car-
ried out around a steady-state crystal radius of 87.5 mm
and a pulling speed of 1.2 mm min−1. The obtained linear
ordinary differential equations are then transformed into
a corresponding transfer function G(s) in the complex-
valued Laplace domain with the complex-valued Laplace
variable s (cf. Section Appendix A.1). This transfer func-
tion describes the linear response of the bright ring radius
Rbr to changes in the crystal pulling speed Vp, where the
uppercase written variables indicate being in the Laplace
domain.

It will prove useful in this paper to formulate this trans-
fer function as a series connection of the process dynamics
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Gp(s) between pulling speed and crystal radius Rc(s) and
the measurement dynamics Gm(s) between the crystal ra-
dius and the bright ring radius, cf. Fig. 4 also:

G(s) =
Rbr(s)

Vp(s)
=
Rbr(s)

Rc(s)
· Rc(s)
Vp(s)

= Gm(s) ·Gp(s).

Figure 4: Series connection of the transfer functions describing the
pulling speed - crystal radius dynamics Gp(s) and the measurement
dynamics Gm(s).

For model I, one has

Gp,I(s) =
−0.0047626

(s− 8.78× 10−6) (s+ 1.684× 10−3 )
(1a)

Gm,I(s) = −47.1864s+ 1.0041, (1b)

and for model II

Gp,II(s) =
−0.0048849

(s− 4.63× 10−7) (s− 7.602× 10−6)
(2a)

Gm,II(s) =
Rbr(s)

Rc(s)
= −46.0050s+ 1.0043. (2b)

The units are omitted here for the sake of clarity. The
static gain of (1a) and (2a) is in min, while that of (1b) and
(2b) is dimensionless. The roots of the numerator polyno-
mial of a transfer function are called zeros, the roots of the
denominator polynomial poles. These roots are real-valued
or occur in complex conjugate pairs, since the coefficients
of the polynomials are real. Their unit is in rad s−1. A
system is stable if a finite perturbation in any input sig-
nal results in a finite response in all output signals. For
a pole at s = pi, the corresponding dynamics are stable if
Re(pi) < 0, i.e., if the pole pi is in the left half plane of the
complex plane. If Re(pi) > 0, the corresponding dynam-
ics is unstable. Unstable poles are often called Right Half
Plane (RHP) poles. The system is stable if all poles are
in the left half plane. Clearly, stability (possibly through
control) is a basic requirement for operation of any system.
The two models differ in their pole configuration: Model I
has one RHP pole at 8.78× 10−6 rad s−1, while in Model
II both poles are unstable with p1 = 7.602× 10−6 rad s−1

and p2 = 4.63× 10−7 rad s−1.
A real-valued zero s = zi for which Re(zi) > 0 is

called a RHP zero, and will cause an inverse response
from the control input to the measurement. All RHP zeros
cause fundamental limitations in achievable control perfor-
mance1. It is apparent from (1b) and (2b) that both mod-
els have a RHP zero at ≈ 0.021 rad s−1, as expected based

1Also complex conjugate RHP zeros, which do not necessarily
cause an inverse response, see [2].

on the nonlinear simulations. The location of the right
half-plane zero is nearly independent of the heat transfer
mechanism characterizing the heat flux into the interface.

Finally, note that the transfer functions in (1b) and
(2b) are not physically realizable because they contain a
direct differentiation of the input signal. They only make
sense when multiplied with the corresponding terms in (1a)
and (2a), respectively.

4. Design of a parallel compensator and feedback
controller

Using the linear models derived in Section 3 a parallel
compensator and stabilizing controller can be designed.

Figure 5: Illustration of a simple feedback control system with the
transfer function G(s) of the system to be controlled, the transfer
function K(s) of the controller and the transfer function of the dis-
turbance model Gd(s).

4.1. Basic feedback controller design
Feedback control is the most common type of control,

illustrated in Fig. 5. This basic feedback schematic dia-
gram shows a measurement Y (s) being affected by a dis-
turbance V (s) through the dynamics Gd(s) and by the
control input U(s) through the dynamics G(s). The mea-
surement signal Y (s) is fed back and compared with its
reference/ desired value R(s) such that the difference, al-
ternatively called error E(s), is used as an input to the
controller K(s), which in turn calculates the control sig-
nal U(s).

Feedback control is a remarkably powerful concept. It
can stabilize unstable systems, i.e. moving the unstable
system poles to the left half of the complex plane, and
provide good performance, for example a quick response
of the controlled quantity y(t) to changes in the reference
r(t), no or only limited overshooting of y(t) or proper dis-
turbance rejection. However, it is not without caveats.
In particular, poorly designed feedback control may also
cause instability, even for systems G(s) which are stable
on their own. Furthermore, and most important for this
paper, system zeros are unaffected by feedback.

A common way to determine suitable parameters of
the controller is to utilize the frequency response L(jω) =
K(jω)G(jω) of the so-called open-loop system plotted in a
Bode diagram. An illustrative example of a Bode diagram
is shown Fig. 6. The Bode diagram consists of two plots,
the first showing the magnitude |L(jω)| in a logarithmic
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Figure 6: Illustrative and simplified sketch of a Bode diagram show-
ing the frequency response of the open-loop system with L(s) =
K(s) · G(s) and s = jω. The frequency axis is drawn in linear
scale for sake of simplicity. The transfer function G(s) of the sys-
tem to be controlled is assumed to have two RHP poles denoted by
p1, p2 (among other stable poles) and one RHP zero denoted by z1.
For a stable closed-loop system showing acceptable performance the
crossover frequency ωc should be roughly within the grey region and
the phase margin ϕm must be positive.

scale2 of the open-loop system depending on the frequency
ω and the second one showing the phase of L(jω).

A well-designed feedback control system will have an
open-loop frequency response with large magnitude at low
frequencies, but small magnitude at high frequencies. Let
ωc denote the crossover frequency, i.e., the frequency where
|L(jωc)|dB = 0. Assume that |L(jω)|dB > 0 ∀ω < ωc, and
|L(jω)|dB < 0 ∀ω > ωc. Then, the so-called Bode stabil-
ity criterion states that the phase margin ϕm = 180◦ +
∠L(jωc) must be positive. Although some sources present
the Bode stability criterion only for open-loop stable sys-
tems, it can also be applied to open-loop unstable systems
– as the Cz system under discussion – provided the number
of open-loop unstable poles is known and the steady-state
phase is adjusted accordingly. Each RHP pole contributes
a phase of −180◦ at ω = 0. A small phase margin indicates
that the system may become unstable for a small error in
the system model, and is also an indication of poor per-
formance, e.g., large overshooting. Most control engineers
will insist on a phase margin of at least 45◦.

Additional criterions can be utilized to improve closed-
loop performance: For example, as a rule of thumb, ωc
should be about at least twice as large as the fastest un-
stable pole to ensure that any unstable dynamics is prop-
erly ‘caught’. In case of non-minimum phase systems – as
discussed here – another restriction comes into play: ωc
should be about less than half the slowest zero so the con-
troller action is not dominated by any inverse response.
Clearly, the last two requirements show that the presence
of a RHP zero will introduce a typical conflict of objec-

2dB or the base-10 logarithm are commonly used.

tives imposing fundamental limitations on achievable per-
formance for feedback control. An extensive exposition
of these issues can be found in [2], where further details,
more precise statements and theoretical justification can
be found. Also refer to Appendix A.2 for an explanation
of the term non-minimum phase system.

Coming back to the Cz system, for Model II, the re-
quired crossover frequency will be determined mainly by
the faster RHP pole (the one furthest from the origin in
the complex plane). The faster RHP pole 7.602e−6rad s−1

in Model II is similar to the RHP pole 8.78e−6rad s−1 of
Model I. Therefore, the control limitations of the two mod-
els are similar, even though the number of unstable poles
is different. Further details can be found in [4].

4.2. Basics of parallel compensator design
The parallel compensator accounts for the anomalous

behaviour of the measurement signal, i.e., it moves RHP
system zeros into the left plane only without altering the
location of system poles [2].

Several authors have proposed combining feedback con-
trol with parallel compensation, thereby enabling the lat-
ter to remove the limitation in performance for feedback
control. Such a schematic, with combined feedback and
parallel compensator, is illustrated in Fig. 7. Here, a par-
allel compensator Gpc(s) is designed to ensure that the
transfer function from the input U(s) to the compensated
signal Z(s) = Y (s) + Ypc(s) does not possesses any RHP
zero to limit the performance of feedback control.

Unfortunately, in most physical systems with a control
configuration such as that depicted in Fig. 7, the use of
parallel compensation is not of much value. This is be-
cause despite achieving good control of Z(s), the physical
variable Y (s), of interest, cannot be alleviated of the un-
desired effects of the RHP zero(s).

Figure 7: Feedback control combined with parallel compensation to
remove performance limitations for feedback control caused by RHP
zeros.

However, as observed in Figs. 2 and 3, the inverse re-
sponse in the Cz process is merely associated with the
camera-based measurement of the ingot radius, whereas
the actual crystal radius is independent of the inverse be-
haviour. This opens an opportunity for using parallel com-
pensation to enable improved control of the crystal radius
rc, even though the control of the measurement rbr is not
improved.
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4.3. Compensator design
Instead of using generic time-/ Laplace-domain sym-

bols r(t)/R(s), u(t)/U(s) and y(t)/Y (s) as in Fig. 7 the
symbols specific to the Cz process will be used henceforth.

Figure 8: Basic block diagram of the feedback controlled Cz system
split into the pure plant model Gp(s) and the bright ring measure-
ment model Gm(s) together with a parallel compensator. The vari-
able Rc,ref defines the ingot radius reference and R̃ is the compen-
sated radius measurement. The ideal parallel compensator Gpc(s)
is augmented by a high pass filter Ghpf according to the procedure
described in Section 4.3. What is implemented in the real system is
the stable approximation of Gpc(s)Ghpf (s).

Fig. 8 shows a complete system block diagram that in-
cludes both the compensator and the controller connected
respectively in parallel and cascade with the plant. The
controller block marked as K(s) is the Automatic Diam-
eter Control (ADC) as discussed in part I of this article
series. The parallel compensator used is a stable approx-
imation of the ideal compensator with transfer function
Gpc(s) augmented by a high pass filter with transfer func-
tion Ghpf (s). The need for both, the stable approximation
and the high pass filter, will be explained later. The fol-
lowing two design requirements need to be met:

1. It is desired to keep the dynamics of the compensated
measurement as close as possible to the one of the actual
crystal radius, i.e., R̃(s) ≈ Rc(s).

2. The practices in the Cz industry rely on using the camera-
based measurement, followed by simply applying a bias
to the measurement signal. By this approach they ob-
tain the true steady-state crystal radius from the cam-
era measurement. The compensator design should al-
low the industry to continue applying the same bias to
the compensated measurement R̃(s). Hence, the com-
pensator obtained in step 1 needs to be modified ap-
propriately.

Under these conditions the compensator – based on
model I – can be designed as follows: Ignoring (for now)
the high pass filter Ghpf (s) in Fig. 8, the dependency of
R̃(s) on Vp(s) gives

R̃(s) =
(
Gm(s)Gp(s) +Gpc(s)

)
Vp(s). (3)

Hence, the ideal parallel compensator can be derived

as follows:

Gr̃(s)
!
= Gp(s)

Gp(s)Gm(s) +Gpc(s) = Gp(s)

⇔ Gpc(s) = Gp(s) (1−Gm(s)) (4)

It is apparent that the ideal parallel compensator as
given in (4) would contain the same poles as the plant
model Gp(s), including the unstable pole(s). Any system
that consists of two parallel branches, having identical un-
stable dynamics with common input and output, will not
be stabilizable by feedback as it will necessarily possess
hidden unstable mode(s) [2]. It is, therefore, necessary to
find a stable approximation to the ideal parallel compen-
sator Gpc(s), i.e., an approximation that removes the RHP
zero, but does not destabilize the control loop.

In this case, the frequency of the RHP zero is higher
than the frequencies of the RHP pole(s) (cf. Section 3).
Hence, the main interest is to have a good approxima-
tion of the unstable system at high frequencies to remove
the effects of the RHP zero. The unstable dynamics are
therefore suppressed by augmenting Gpc(s) with a high
pass filter Ghpf (s), designed to cut off frequencies signifi-
cantly below the frequency corresponding to the RHP zero.
With the RHP zero at ≈ 0.021 rad s−1 the transfer func-
tion Ghpf (s) of the high pass filter is chosen as

Ghpf (s) =
5000 s

5000 s+ 1
(5)

with the cutoff frequency at 2× 10−4 rad s−1.
Then, a stable/ unstable decomposition is performed

on the augmented parallel compensator. This means that
the transfer function Gpc(s)Ghpf (s) is split into two trans-
fer functions connected in parallel, one containing the sta-
ble dynamics, while the other, the unstable dynamics. The
procedure is sketched in Appendix A.3. Since the unsta-
ble dynamics are slow, the augmentation of the high pass
filter makes the unstable part smaller compared to the sta-
ble part. Hence, it is reasonable to use only the stable part
of this decomposition in the final implementation.

Finally, design requirement 2 has to be met. The stable
part of the decomposition is therefore adjusted to have zero
steady-state gain such that R̃ = Rbr in steady state. One
ends up with the following parallel compensator transfer
function for model I

Gpc,real(s) =
Ypc(s)

Vp(s)
=

−0.22517s

(s+ 1.684× 10−3)(s+ 2× 10−4)
.

(6)
In the time domain, (6) is written as

ÿpc(t) + 1.884× 10−3 ẏpc(t)

+3.368× 10−7 ypc(t) = −0.22517 v̇p(t)

and this has to be implemented in the control system com-
puter.
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4.4. Controller design
The design of a stabilizing feedback controller follows

the compensator design. A PID controller is used in this
work because it is easy to implement in the existing in-
dustrial control setup. The PID controller, represented by
K(s) in a series/interacting form is given by

K(s) =
Kp (Tis+ 1) (Tds+ 1)

Tis
(
1 + Tds

N

) . (7)

The tuned parameters for the PID controller and the re-
sulting cross over frequency are given in Table 1.

Proportional gain (Kp) 0.01 s−1

Integral Time const. (Ti) 5000 s
Derivative Time const. (Td) 650 s

Filter coefficient (N) 100
Crossover frequency (ωc) 0.032 75 rad s−1

Table 1: Parameters of the PID controller K(s).

The achieved crossover frequency ωc ≈ 0.032 75 rad s−1

is much higher than half of the zero at ≈ 0.02 rad s−1 which
would have been the limiting factor in control design with-
out parallel compensation. So the limitations imposed by
the RHP zero is quite clearly mitigated and a higher sys-
tem bandwidth is achieved. The frequency response in
Fig. 9 shows that the proposed PID controller with the
compensator stabilizes both models, as the phase margin
of the compensated plant is around 74◦ for both models.
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1010
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Figure 9: Frequency response of the compensated plants (models I
and II) with a feedback controller.

4.5. Closed-loop performance
The closed-loop testing of nonlinear Cz growth dynam-

ics, in the presence of both parallel compensator as well as
the feedback controller (K), is schematically illustrated in
Fig. 10.

Figure 10: Block diagram for the closed-loop testing of nonlinear Cz
growth dynamics.

In Fig. 10, δ vp and δ rbr are the deviation variables,
whereas vpo and rbr0 are the steady-state values (points
at which linearization was performed) such that the input
to and the output from the nonlinear Cz dynamics are
vp = vpo + δ vp and Rbr = rbr0 + δ rbr, respectively.

In order to determine the extent to which the nonlin-
earities in the Cz system may be excited, the responses to
two different crystal radius reference trajectories are sim-
ulated.

In the first case, referred to as (case-A) in Fig. 11, the
response to a smooth reduction in the crystal radius refer-
ence of 2.5 mm is simulated. In the second case (case-B), a
scaled version of the same smooth crystal radius reference
trajectory is applied, changing the reference by 0.5 mm.
In Fig. 11, the responses of case-B are scaled by a factor
of 5 to make them easily comparable to the responses of
case-A. Fig. 11 shows that the system with the proposed
control is relatively insensitive to nonlinearities for smooth
reference changes of reasonable magnitude.

5. Responses to temperature disturbances

Hitherto, the simulated growth rate variations did not
take temperature dynamics into account. However, tem-
perature variations are a major source of disturbances to
the crystal growth rate and thereby also to the crystal
radius control. To assess control performance in the pres-
ence of growth rate variations caused by temperature dis-
turbances, the overall Cz model (with both growth and
temperature dynamics) needs to be used. A qualitative
heater model augmented with the crystal growth dynam-
ics has been presented in Section 3 of the preceding article
[3]. Thus, in the following, the overall Cz dynamics (both
the growth model as well as heater model) are under the
combined influence of the two system inputs, i.e., pulling
speed vp and heater input QH .

5.1. Temperature effects on the overall system performance
During a typical growth cycle in the body stage, a feed-

forward temperature (target temperature) trajectory is ap-
plied to the temperature controller to compensate for the
slow temperature dynamics. In an actual process, the tem-
perature feedforward trajectory has an increasing trend
(typically in the range of ≈ 0.1 K min−1) to compensate for
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Figure 11: Comparison of system responses to rc,ref with large am-
plitude change (case-A) and small amplitude change (case-B: re-
sponses are scaled up by a factor of 5 ). Top row: compensated
measurement r̃, second row: meniscus height hc, third row: cone
angle αc, last row: control input vp.

the following phenomena occurring throughout the growth
cycle within the Cz growth chamber:

• A gradual uplift of the crucible, therefore progressively
reducing the crucible exposure to the heaters.

• With the ongoing crystallization, the crystal continues
to protrude into the colder areas above the heat shield,
thereby increasing the heat transfer away from the in-
terface.

The perfect temperature feedforward trajectory is hard
to establish, due to effects such as aging and continual re-
placement of components in the hot zone, variations be-
tween pullers, etc. An imperfect temperature trajectory
will act as a disturbance to the crystal growth rate and
hence also affects the crystal radius control. Note that
the heater model in this work is qualitative, and therefore
does not include the afore-mentioned phenomena causing
a need for an increasing feedforward trajectory under ac-
tual growth conditions. However, effects of an imperfect
temperature trajectory can be simulated3, since changes
to the temperature controller reference will affect the melt
temperature in the model and hence also affect the crystal
growth rate. That is, in our simulation on the simplified
model, the temperature feedforward trajectory does not
represent the actual feedforward trajectory, but rather the
error in the feedforward trajectory in an actual plant.

To investigate the effects of temperature disturbances
on crystal radius control, the reference for temperature T1

(sensed by pyrometer) is increased linearly (at the rate of

3High accuracy not claimed here though.
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Figure 12: Temperature responses for model I. Top pane: tempera-
ture sensed by the pyrometer T1 versus the target temperature tra-
jectory T1,ref . Bottom pane: temperature of the bulk Tbulk of the
melt contained within the crucible.

0.5 K min−1) to simulate the variation in the target tem-
perature trajectory.

Compared to the typical difference between the actual
and the ideal feedforward trajectory, the simulated feedfor-
ward trajectory must be considered to represent a rather
strong disturbance. The resultant responses for temper-
atures in different lumped volumes (cf. lumped heater
model given in [3]) is shown in Fig. 12. These temperature
changes, in turn, affect the radii responses (rc, rbr, r̃) via
variation in growth rate vg.

For the given change in heater set-point trajectory as
depicted in top pane of Fig. 12, the resulting system re-
sponses at the crystallization growth interface are shown
in Figs. 13 and 14 for models I and II, respectively.

It is apparent from the radii responses (cf. Figs. 13
and 14) that the designed controller and parallel compen-
sator have successfully overcome the temperature varia-
tions leading to a change in the growth rate, and that the
resulting variation in crystal radius is small.

6. Conclusions

In continuation of the investigation of the inverse re-
sponse in the preceding article of this two-article series,
this work focuses on controller design for crystal radius
control. The proposed control involves compensation for
the inverse response behaviour with the use of a parallel
compensator, and a conventional PID controller for sta-
bilization and disturbance rejection. The performance of
the resulting system is assessed using nonlinear simulations
including temperature disturbances that alter the growth
rate. The results show that the designed controller sta-
bilizes the crystal radius and has satisfactory disturbance
rejection capabilities for the disturbances that typically
occur in the Cz process.
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Figure 13: Closed-loop responses for model I with a change in tem-
perature set-point trajectory shown in Fig. 12. Top row: crystal
radius rc, compensated measurement r̃ and bright ring radius mea-
surement rbr versus constant rc,ref . Middle row (left→ right): con-
trol input vp and meniscus height hc. Bottom row (left → right):
growth rate vg and growth angle αc.
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Figure 14: Closed-loop responses for model II with a change in tem-
perature set-point trajectory shown in Fig. 12. Top row: crystal
radius rc, compensated measurement r̃ and bright ring radius mea-
surement rbr versus constant rc,ref . Middle row (left→ right): con-
trol input vp and meniscus height hc. Bottom row (left → right):
growth rate vg and growth angle αc.
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Appendix A. Some control engineering background

This appendix will introduce some background to con-
trol engineering basics, aimed at making the contribution
of this paper accessible to people outside the control com-
munity. The descriptions will necessarily be imprecise and
incomplete, aimed at conveying the main ideas. Readers
desiring more information are referred to standard intro-
ductory textbooks on control, and to [2].

Appendix A.1. Time domain and transfer functions mod-
els

Control design and analysis is based on a dynamical
model of the system considered. The dynamical model
may be in either of the following two types:

Time domain model.. In this model, the system behaviour
is modelled using differential equations, most often ordi-
nary differential equations. Modeling based on first princi-
ples (physical and chemical laws/principles) results in this
type of model. The resulting models are generally of the
form:

ẋ = f(x,u) y = g(x,u) (A.1)

where the variables in the vector x are called state variables
(typically related to some conserved entity for some con-
trol volume, i.e., mass, energy, temperature, etc.), ẋ is the
time derivative of x, u denotes the input(s) to the system,
and y is the measurement(s). To simplify analysis and
design, the time domain model is often linearized around
some conditions of interest, usually a desired steady-state
operating point. Linearization involves deriving a Taylor
series expansion of the model with respect to x and u, and
terminating the expansion after the first order terms. If
the linearization is performed around a steady state, the
constant (zero order) term of the Taylor series will be zero,
and one is left with the linearized model, i.e., the first order
term from the Taylor series. With the linearized model,
presenting a linear approximation of the system dynam-
ics, deviated by a small neighborhood around the oper-
ating point, its mathematical representation in terms of
deviation variables is given as:

δẋ = A · δx + B · δu δy = C · δx + D · δu (A.2)

with constant matrices A,B,C,D of appropriate dimen-
sions. System (A.2) is stable if all eigenvalues of A have
a negative real part. It is noteworthy that the variables
δx, δy, δu in the linearized model are deviation variables,
representing the difference from the operating conditions.
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Transfer function model.. Using the so-called Laplace trans-
form, the linearized model can be transformed to an equiv-
alent model in the Laplace domain, resulting in a transfer
function model. The transfer function model describes the
dynamic effects of the input on the output in terms of the
complex-valued Laplace variable s. For a system with one
input and one output (measurement), the transfer function
model can be expressed as

Y (s) =
N(s)

M(s)
U(s) =(

C(sI −A)−1B + D
)
U(s) = G(s)U(s), (A.3)

where N(s) andM(s) are polynomials in the Laplace vari-
able s, with real coefficients and A, B, C, D from (A.2).
Throughout this paper, it is assumed that any common
terms inN(s) andM(s) have been cancelled, as such terms
represent dynamics that do not affect the input-output be-
haviour of the system.

Appendix A.2. Frequency analysis and non-minimum phase
systems

Frequency analysis. Frequency analysis involves evaluat-
ing the transfer function G(s) for s = jω, where j =√
−1 and ω is real (and usually nonnegative). The results

are often presented using the transfer function magnitude
|G(jω)| and phase ∠G(jω) = tan−1 Im(G(jω))

Re(G(jω)) . The fre-
quency analysis describes the stationary response of the
system to a sinusoidal input oscillating at frequency ω =
2π
tp
, where tp is the period for one complete oscillation. Due

to the linearity of the system, a sinusoidal input U(jω)
will cause a sinusoidal response in the output Y (jω) with
the same frequency ω. The transfer function magnitude
|G(jω)| describes the amplification throughG(s), i.e., |G(jω)|
= |Y (jω)|
|U(jω)| , whereas the phase ∠G(jω) describes the time

shift between the input and output oscillation. Most often
the oscillation in the output will lag behind the oscillation
in the input – which corresponds to a negative phase. If
the output lags the input by a full oscillation period, this
corresponds to a phase of −2π radians (= -360◦).

Non-minimum phase system. A major source of difficulty
in control design is that the magnitude and phase plots
in the Bode diagram are not independent. One goal of
frequency-domain control design is to achieve a large loop
gain at low frequencies and a small one at high frequen-
cies. The more quickly the transfer function magnitude
decreases with increasing frequency, the more negative the
transfer function phase will have to be. Considering the
Bode stability criterion, the magnitude plot cannot be very
steep in the region around the crossover frequency. For the
magnitude plot of any physically realizable transfer func-
tion, there is a corresponding minimum phase curve. Non-
minimum phase systems are systems with more negative
phase than what could be possible given the magnitude
plot, and considering the Bode stability criterion, it is clear

that such systems are therefore more difficult to control.
Of particular concern here is the non-minimum phase ef-
fect of RHP zeros, since they increase the magnitude while
making the phase more negative.

Appendix A.3. Stable-unstable decomposition of a trans-
fer function

The system (A.2) with a single input u and a single
output y can be written as(

δẋ
δy

)
=

(
A B
C d

)
·
(
δx
δu

)
(A.4)

with A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n and d ∈ R. By
applying the Schur decomposition, it is always possible to
decompose (A.4) into the following formδẋ1

δẋ2

δy

 =

A11 A12 B1

0 A22 B2

C1 C2 d


︸ ︷︷ ︸

=A∗

·

δx1

δx2

δu

 (A.5)

with δx1 ∈ Rn1 , δx2 ∈ Rn2 , n1 + n2 = n and the corre-
sponding dimensions of A11, A12, A22, B1, B2, C1 and
C2. System (A.5) has the special property that all eigen-
values ofA11 have a negative real part while all eigenvalues
of A22 have a nonnegative real part. This means that the
subsystem with states δx1 is stable while the subsystem
with states δx2 is unstable. To get the transfer functions
Gstable(s), Gunstable(s) representing the stable and the un-
stable part of (A.4), respectively, it is necessary to trans-
form (A.5) into the following form:δ ˙̄x1

δ ˙̄x2

δy

 =

A11 0 B1 −QB2

0 A22 B2

C1 C1Q + C2 d


︸ ︷︷ ︸

Ā∗

·

δx̄1

δx̄2

δu


(A.6)

with a transformation(
δx1

δx2

)
=

(
In Q
0 Im

)
︸ ︷︷ ︸

=:T

·
(
δx̄1

δx̄2

)
. (A.7)

Here In, Im are n × n and m × m identity matrices, re-
spectively, and Q is a n × m matrix which needs to be
determined to get a system of structure (A.6). From (A.6)
the output Y in the Laplace domain can be computed as
(cf. (A.3))

Y (s) =

c1(sI −A11)−1(B1 −QB2) +
d

2︸ ︷︷ ︸
Gstable(s)

U(s)+

(C1Q + C2)(sI −A22)−1B2 +
d

2︸ ︷︷ ︸
Gunstable(s)

U(s). (A.8)
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The matrix Q required for the transformation from (A.5)
to (A.6) can be computed as follows: Applying (A.7) to
(A.5) one obtains the matrix

T−1A∗T =A11 A11Q + A12 −QA22 B1 −QB2

0 A22 B2

C1 C1Q + C2 d

 (A.9)

which must be equal to Ā∗. This results in the condition
A11Q+A12−QA22 = 0 which is equal to solving the well-
known Sylvester equation AX + XB = C with A = A11,
X = Q, B = −A22 and C = −A12. This equation will
always have a unique solution Q since A11 and A22 do not
have common eigenvalues due to the Schur decomposition
mentioned above.
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