
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Maria Gilje

Implementing Bluetooth LE on a
MATLAB controlled nRF52840 robot

Master’s thesis in Cybernetics and Robotics
Supervisor: Tor Onshus
June 2022

M
as

te
r’s

 th
es

is

Maria Gilje

Implementing Bluetooth LE on a
MATLAB controlled nRF52840 robot

Master’s thesis in Cybernetics and Robotics
Supervisor: Tor Onshus
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Problem description

The objective of this thesis is to implement Bluetooth LE on a MATLAB controlled
nRF52840 robot and make it operative and able to receive and follow instructions from
a server. The robot was constructed as a part of a larger SLAM project and will work
together with other robots to provide the server with environment data which it uses to
create a cohesive map of an area. Without Bluetooth, the MATLAB robot is disconnected
from the SLAM project. This thesis will examine how to implement Bluetooth on the
MATLAB robot, in an effort to include it into the SLAM project. Following the initial
examination, Bluetooth will be implemented on the MATLAB robot. The implementation
will need testing, and the performance of the robot will be evaluated. The final product
of this thesis should be a robot which contributes to the SLAM project while also being
controlled from MATLAB.

i

Summary and conclusion

The robot project consists of several robots working in concert with a server application
written in Java to map out an area. Within this project, the MATLAB robot exists. This
specific robot is based on an nRF52840-DK and is partially programmed from MATLAB.
That is, the controller and estimator is implemented in MATLAB and MATLAB Coder
is used to generate C code from the implemented MATLAB functions. The generated C
code is used within an application for the robot which is written in C code.

The first iteration of the MATLAB robot did not have Bluetooth functionality, which
caused Bluetooth implementation to be a central part of the objective for this thesis. The
implementation was performed in alternating stages characterized by code merging and
testing the edited application on the robot.

The final product from this thesis is a robot with a controller and estimator created in
MATLAB, which is able to connect to the Javaserver and receive commands from it. The
robot is able to partially follow only the first command from the server. When the robot
receives further commands it gets stuck in a program loop where it periodically turns 90
degrees on its own axis and does not move laterally. The reason for this program loop
was investigated, but no clear cause was found.

To conclude, the MATLAB robot is able to include a control system implemented in
MATLAB as well as a stable Bluetooth functionality. The observable behaviour of the
robot changed during the work, with reasons for the change being a combination of the
robot application and the hardware.

ii

Oppsummering og konklusjon

Robotprosjektet består av flere roboter som jobber sammen med en serverapplikasjon
skrevet i Java for å kartlegge et område. Som del av dette prosjektet eksisterer MATLAB-
roboten. Denne roboten er basert på et nRF52840-DK og er delvis programmert med
MATLAB. Mer spesifikt, så er regulatoren og estimatoren implementert i MATLAB
og MATLAB Coder blir brukt til å generere C-kode fra de implementerte MATLAB-
funksjonene. Den genererte C-koden blir brukt inni et program laget til roboten som er
skrevet i C-kode.

Den første utgaven av MATLAB-roboten hadde ikke Bluetooth-funksjonalitet, som førte
til at implementasjon av Bluetooth på roboten er hovedarbeidet i denne rapporten. Imple-
mentasjonen ble utført i vekslende stadier som består av sammenfletting av eksisterende
robot-program og jevnlig testing av det redigerte programmet mens det var under endring.

Sluttproduktet fra denne oppgaven er en robot med en regulator og estimator fra MAT-
LAB som kan koble seg til Javaserveren og ta imot kommandoer fra den. Roboten klarer
kun å delvis følge den første kommandoen fra serveren. Når roboten mottar flere kom-
mandoer, setter den seg fast i en gjentakende bevegelse som innæbærer at den roterer 90
grader om sin egen akse, og beveger seg ikke framover. Grunnen til denne gjentakende
bevegelsen ble undersøkt, men ingen definitiv årsak ble funnet.

Avslutningsvis fungerer MATLAB-roboten når den består av et reguleringssystem im-
plementert i MATLAB i tillegg til å ha en stabil Bluetooth-funksjonalitet. Den synlige
oppførselen til roboten endret seg under arbeidet, og årsakene til endringen var en kom-
binasjon av robotapplikasjonen og maskinvare.

iii

Preface

This report is a master’s thesis which contributes 30 credits to my master’s degree. It is a
continuation of my specialization project from the spring of 2021. Before and during the
work of this thesis, the available hardware was: a robot1 based on an nRF52840-DK and
named NRF_3, and an nRF51 dongle. The software used was MATLAB R2021b, nRF5
SDK 15.0.0, J-Link V7.58b, Apache NetBeans 12.1, Java 8.0, and OptiTrack: Motive
Tracker. All previous theses within the Robot project, as well as their associated delivery
files, were available during the work leading up to this report.

The journey from formulating a problem description to finishing this report has been
challenging on several levels. I have needed a lot of support, both academically and
personally. Without all the support during this time, this thesis would not have been
finished. For this reason I wish to thank some people who has been pivotal during my
production of this thesis.

Primarily, I want to thank my supervisor, Tor Onshus, for his endless patience and in-
valuable guidance during my work on this thesis. Secondly, I want to thank my guidance
counsellor, Ellen Beate Hove, for helping me with pushing my deadline when the previous
ones was not obtainable. Next I want to thank the other students at GF313b for helpful
discussions and a good work environment.

On a more personal level, I am eternally grateful for the love, encouragement, and faith
my partner, family and friends have shown me. I want to particularly thank my wonderful
partner, Tom Andre, for proofreading this report, and my best friend, Marte, for helping
me to better understand the code and for being a great support throughout. Last, but
not least, I want to thank the Sit master group for the inspiration, tools, and methods
the course and participants has given me, both for the writing process as well as for life
outside of the master’s thesis. I wish you all the best of luck going forward!

1Five (5) reflective spheres, four (4) infrared sensors, two (2) wheels, motors, batteries, and power
switches, and one (1) nRF52840-DK, servo, custom chassis, IMU, and custom shield.

iv

Contents

Problem description i

Summary and conclusion ii

Oppsummering og konklusjon iii

Preface iv

1 Introduction 1
1.1 The robot project . 1

1.1.1 The nRF52 robot . 2
1.1.2 The MATLAB robot . 2

1.2 Motivation . 2

2 Previous work 4
2.1 Hardware . 4
2.2 Software . 4

2.2.1 Server application . 5
2.2.2 Robot application . 5

2.3 Specialization project . 5

3 Theory and definitions 6
3.1 Simultaneous Localization and Mapping 6
3.2 Coordinate frames . 6

3.2.1 Body coordinate frame . 7
3.2.2 Central coordinate frame . 7

3.3 Estimator . 7
3.4 Controller scheme . 7

3.4.1 Turning controller . 8
3.4.2 Necessary parameters . 8
3.4.3 Constraints . 9
3.4.4 Distance controller . 9

4 Method and implementation 11
4.1 System overview . 11

CONTENTS vi

4.1.1 Central modules . 12
4.1.2 Sensor tower . 13

4.2 Implementation and testing . 14
4.2.1 Choice of IDE . 15
4.2.2 Initial available code resources . 15
4.2.3 Choice of application to expand . 15
4.2.4 Choice for direction of code merging 16
4.2.5 FreeRTOS task requirements . 16
4.2.6 Setpoint storing and datatype casting 16
4.2.7 Testing method . 16
4.2.8 Function creation and initial issues 17
4.2.9 Issues while testing . 18
4.2.10 Timing issue solution . 18

4.3 Application . 18
4.3.1 MATLAB functions . 19
4.3.2 Robot application . 19

4.4 Running the application . 20
4.4.1 Building and flashing . 20
4.4.2 Method for expected behaviour . 20

5 Results 22
5.1 Connection between robot and server . 22
5.2 Trajectory and reference path . 22

6 Discussion 24
6.1 MATLAB generated functions . 24
6.2 Choice of controller scheme . 26
6.3 Hardware . 26
6.4 Robot performance . 27

7 Further work 29
7.1 Improving vApiTask() . 29
7.2 Sensor tower MATLAB module . 29
7.3 Extended Kalman filter . 29

List of Figures

4.1 Graphical representation of robot application. MATLAB is shown in blue,
hardware in green, and the server in red. All other blocks are from the
robot application. 12

4.2 Visualization of the data flow between the three central parts of the system. 13
4.3 Visualization of function relation in MATLAB. 19

5.1 The robot’s path when instructed to move to (X, Y) = (30, 0) [cm]. 23

List of Tables

4.1 Categorization of information flow between the three central modules. Sup-
plement to Figure 4.2 where the labels A-D corresponds to the arrows la-
beled A-D in the figure. 14

Listings

6.1 api() deciding on distance or turning controller 27
1 Implementation of vApiTask(). 31

Chapter 1

Introduction

This thesis is an extension of the specialization project at the department of Engineering
Cybernetics at NTNU, spring 2021 by the author of this thesis, Maria Gilje[1]. The
specialization project was a study on how to implement Bluetooth Low Energy (Bluetooth
LE)1 on a robot which was controlled with a controller and estimator implemented in
MATLAB. For simplicity, all future references to this specific robot will be the MATLAB
robot. The MATLAB robot is a part of a larger project, dubbed the robot project, and the
following sections will describe the robot project, the MATLAB robot, and the motivation
for this iteration of a robot within the robot project.

1.1 The robot project

The robot project was started in 2004 by Tor Onshus, and is supervised by him to this
day. Starting out, the project consisted of one robot built out of LEGO with LEGO
Mindstorms as the computing device. This initial iteration of the project was dubbed
the LEGO project. It has since been expanded in several stages to where it is today, i.e.
several robots which is based on a variety of microcontrollers. The inclusion of different
computing devices inspired a name change for the project, resulting in the current title,
the robot project. The objective of the project is to have the robots cooperate on mapping
out an unknown area by driving around and sending their sensor data to a server. The
server stitches the data from the different robots together to create a map.

1Bluetooth and Bluetooth LE is used interchangeably during the course of this thesis

1

CHAPTER 1. INTRODUCTION 2

1.1.1 The nRF52 robot

The first robot application was made for a previous iteration of an nRF52 robot, and has
been modified to fit the newer nRF52 robot built by Jølsgård. nRF52 – and nRF51 –
microcontrollers are programmed in C code, and nRF5 Software Development Kit (SDK)
is used to create applications for them.

The nRF52 robot consists of components which can be categorized into three areas: hard-
ware, software, and firmware. The hardware components are the robot with all its parts
– including the nRF52840-DK – and the nRF51 dongle, the software is nRF5 SDK and
the server, and the firmware is the SoftDevice, and the compiled robot and dongle appli-
cations.

1.1.2 The MATLAB robot

The first iteration of the MATLAB robot was developed by three students during their
specialization project in the fall of 2020 [2, 3, 4]. The components for the MATLAB robot
is as described in Section 1.1.1, except MATLAB was an additional software component.
This iteration consisted of a controller, estimator and simulator written in MATLAB as
well as the pre-existing code base for the robot. The simulator was used in the development
phase and is not part of the robot application. To make the integration of the MATLAB
code into the robot application simple, only one function was used to generate C code
from. This function made a function call to a manager task, which called the estimator
and controller functions. The generated code was combined with the robot application in
Visual Studio Code (VS Code). VS Code was the chosen IDE for this project.

In the specialization project leading up to this master’s thesis, the objective was to im-
plement Bluetooth LE on the MATLAB robot. This objective was not fulfilled, and
therefore transferred to this master’s thesis. The system implemented during the special-
ization project was unfinished and there were a significant amount of issues with timing
and Bluetooth stability. Even though the application was not functioning as desired, the
familiarization of the robot project – and the MATLAB robot in particular – obtained
during the specialization project was sufficient for further work to be done during this
master’s thesis.

1.2 Motivation

The motivations for the MATLAB robot fall into three categories: health and safety,
using high level languages, and using MATLAB. The nRF52 robot is of a relatively small

CHAPTER 1. INTRODUCTION 3

size, which makes it able to access areas which are too small for humans to enter. The on-
board IR-sensors also enables the robot to map out an area which is obscured by e.g. an
opaque gas. These two capabilities could make such a robot important in ensuring health
and safety for people while collecting needed information about an area. The resulting
mapping can be used to more efficiently move a robot without SLAM capabilities through
the same area.

The nRF52840 microcontroller, which the robot is based on, needs to be programmed
with C – a low-level programming language. However, most specialization branches at the
Cybernetics and Robotics (C&R) study program focus on using high level programming
languages. Developing a system where C&R students can develop applications for a
microcontroller using a high level language, could bridge the gap between the two areas
and introduce the students to the low level world from a high level perspective. This can
be obtained without needing the same focus on the lower level programming languages as
the students who chooses a specialization within the embedded world. The breadth this
bridge provides, contributes to a wider knowledge base within the already narrow field of
C&R.

A common language which is used in C&R at NTNU is MATLAB. This language has
libraries with functions which can be used to create complex systems with fewer lines of
code compared to C. Within the MATLAB IDE there are also an abundance of extensions
which have a broad range of functionality. One of those extensions is the MATLAB
Coder, which can use an implemented MATLAB function and generate code in another
programming language. In the case for the nRF52 robot, the MATLAB Coder was used
to generate C code.

Chapter 2

Previous work

The various components of this system has different and several creators and authors.
The current robot hardware was put together by Jølsgård [5]. The robot application was
originally made for the first version of an nRF5x robot, and the latest revision before
the MATLAB robot was for the nRF52840 robot and was created with the three robots
NRF1, NRF2 and NRF3 in mind. The Javaserver and the application for the nRF51
dongle was created by previous students as well.

2.1 Hardware

The robot was built by Eivind Jølsgård[5], and is described in detail in his specialization
project report. To summarize; it is based on an nRF52840-DK and a shield which inter-
faces the DK with actuators and sensors. Communication between the Javaserver and the
robot is obtained by connecting the nRF52840-DK to an nRF51-dongle. The dongle is
inserted into a computer and is connected via a COM port to the Javaserver. The source
code for the dongle is unchanged and pre-compiled before the start of this thesis.

2.2 Software

The software component of the MATLAB robot consists of three parts: the server, the
robot application, and the MATLAB functions. The server and the MATLAB functions
are unchanged from the beginning, throughout the duration, and until the end of the
thesis work. The robot application has gone through significant changes during the thesis
work. All parts will be described further in their own sections.

4

CHAPTER 2. PREVIOUS WORK 5

2.2.1 Server application

The server application is written in Java, and developed and run with Apache Netbeans
IDE. The set up and project files used during the work on this thesis are sourced from
Jølsgård’s delivery folder [5], made available for the author by Onshus.

2.2.2 Robot application

The robot application is made as a project within version 15.0.0 of the nRF5 SDK, and
includes drivers, functions, and definitions needed to interface the physical components of
the robot. The application includes drivers and configurations for interfacing the DK with
the rest of the hardware as well as a collection of tasks which run concurrently with the
help of FreeRTOS. Some of these tasks were included in the source code the author started
with, and others were designed during the thesis work. In the resulting system, the tasks
which are most central to the robot’s visible performance are vMainCommunicationTask,
vMainSensorTowerTask, and vApiTask.

MATLAB group

Three students collaborated on controlling, estimating and simulating the nRF52 robot
via MATLAB. They created separate MATLAB functions which they combined with a
manager task and generated C code of this combined function. The generated function
was called from a function implemented directly in C, API(), which in turn was started as
a FreeRTOS task. Before calling the MATLAB generated function, api(), a route for the
robot was set up, i.e. a one metre square. Readings from the hardware was also fetched,
and the input parameters needed for api() was created and initialized before a function
call for api() was performed within API(). After api() was called, the drivers were used
to update the hardware to reflect the change the controller had put out.

2.3 Specialization project

The set up and familiarization with the SLAM project and the robot itself was done in
the author’s specialization project[1]. A short summary is included here for context.

The work done in the specialization project was mainly a study on how to introduce
Bluetooth to the MATLAB robot. The Bluetooth set up was from the application deliv-
ered by Berglund in his specialization project [6]. The merge was not successful, and will
therefore be continued in this thesis.

Chapter 3

Theory and definitions

There are four areas of this work which need some theoretical backing. These areas are:
Simultaneous Localization and Mapping (SLAM), coordinate frames, the estimator, and
the controller. Each area has their own dedicated section in this chapter.

3.1 Simultaneous Localization and Mapping

SLAM is a method where a mobile object is estimating its position and collecting data
from its surroundings at the same time. The data collected is used to create a map of the
surrounding area.

In the case of this thesis the SLAM system consists of separated units working together.
The mobile part, i.e. the nRF52 robot, has an on board estimator which uses encoder data
to estimate how far the robot has traveled from the starting point and its orientation in
terms of coordinates and an angle. The calculations as well as the data from the on-board
IR sensor tower is sent to a server over Bluetooth LE and compounded into a map.

3.2 Coordinate frames

The coordinate frames used for the robots and the environment are a standard cartesian
XY coordinate system. This coordinate system is used in two areas: for the robot and
for the server. Further details on each of them is described in the following sections.

6

CHAPTER 3. THEORY AND DEFINITIONS 7

3.2.1 Body coordinate frame

The robot’s coordinate frame is placed with its origin at the geometric centre of the
robot with X pointing in the direction of the robot’s movement. The positive rotation
is counterclockwise. The starting position of the sensor tower servo is defined to be at 0
degrees.

3.2.2 Central coordinate frame

The Javaserver has a map layout which represents the ground plane. When establishing
a connection between a robot and the server, the orientation and position of the robot
needs to be specified by the operator to ensure that the mapping is close to reality.

3.3 Estimator

The estimator was designed and implemented by Eivind Sjøvold, and is described in detail
in his specialization project report[4]. The estimator type is a direct encoder estimator,
which is a simple estimator sensitive for model inaccuracies. The equation for the estimate
is shown in Equation (3.1) and with the explaining expressions in Equations (3.2) to (3.4). ˙̂x

˙̂y

ω̂

 =

v∆t cos(θ)

v∆t sin(θ)

ω

 (3.1)

vdirection = [mm per tick]
Ticksdirection

∆t
(3.2)

ddirection = vdirection∆t (3.3)

ω =
dright − dleft

length of wheelbase
(3.4)

3.4 Controller scheme

This controller was designed by Eystein Gulbrandsen in his specialization project from
the fall of 2020[3]. The full derivation and implementation of the controller is described in
detail in his report. A summary of the derivation is included in this thesis to contribute
to a cohesive report.

CHAPTER 3. THEORY AND DEFINITIONS 8

The robot has two forms of movement: lateral and rotational. Both forms are in need of a
controller, and this is the reasoning for deriving a controller which can be divided into two
parts. The respective parts are named the turning controller and the distance controller.
The turning controller will output a bidirectional output vector meant to cause the robot
to turn on its current point. The distance controller will output a vector which moves the
robot in a straight direction, or in a slight curve if the current trajectory is off-kilter. For
ease of computation, the distance controller consists of two parts: one for the traversing
and one for angle correction. The latter works similarly to the turning controller, with
the difference of the output not being bidirectional, but instead having a difference in
magnitude. The output from each of the main controller schemes is on the form shown in
Equation (3.5), where ul and ur are the outputs for the left and right motor, respectively.

U = [ul, ur] (3.5)

The error correction term for the whole robot is calculated from the estimated position and
the reference position. Equation (3.6) expresses this calculation, in which x represents the
state, X is a vector containing all state variables, r denotes the reference, k is a discrete
timestamp, and X̂ is the estimated state.

ex[k] = Xr − X̂[k] (3.6)

3.4.1 Turning controller

For the turning, the general error correction term in Equation (3.6) can be simplified to
the scalar case for the angle. Simplifying the term makes computation faster. The new
expression can be found in Equation (3.7), where k is a discrete timestamp, r denotes
reference, and θ̂ is the estimated angle.

eθ[k] = θr − θ̂[k] (3.7)

3.4.2 Necessary parameters

The parameters needed for computing controller outputs are the position estimate, start-
ing position, reference point, and the previous angle estimate. The starting position is
specified by the operator on starting the robot and connecting it to the server. The body
coordinate frame described in Section 3.2.1 is initialized upon connecting the robot to
the server. The reference point is specified by the operator or by the server’s exploration
function. The position and previous angle estimates is calculated by the estimator.

CHAPTER 3. THEORY AND DEFINITIONS 9

3.4.3 Constraints

On the grounds that the controller will be implemented on physical motors, constraints
need to be taken into account. The motors are controlled with a PWM input which need
to be in the range 15−50% to be sufficient and within voltage limits. A too low percentage
will not be sufficient for the motors to move the weight of the robot, while a too high
percentage will cause overvoltage in the motors.

3.4.4 Distance controller

The equation for the distance controller is shown in Equation (3.8), where ux1 and ux2 are
calculated below in their own dedicated sections for the traversing and angle correction,
respectively.

Ux[k] =

[
ux1 [k]− ux2 [k]

ux1 [k] + ux2 [k]

]T

(3.8)

Traversing controller

The error between the reference point and the estimated position is calculated with the l2

norm, i.e. it is a calculation of the shortest distance between the two points. This results
in the error for the traversing distance controller being as shown in Equation (3.9).

ex1 [k] = ‖Xr[k]− X̂[k]‖2 (3.9)

The output function for the traversing distance controller is shown in Equation (3.10),
where KP1 is scalar and a proportional gain.

ux1 = KP1ex1 [k] (3.10)

Angle correction controller

The error for the trajectory angle has the same base form as the turning controller error
and is shown in Equation (3.11).

ex2 = θr − θ̂[k] (3.11)

CHAPTER 3. THEORY AND DEFINITIONS 10

Though this form is susceptible to cumulative growth, resulting in deviating values over
time. For that reason, an integral term will be considered as well. The resulting equation
for the angle correction controller is shown in Equation (3.12), whereKP2 is a proportional
gain and KI is the integral gain. Both Kα’s are scalar.

ux2 [k] = KP2ex2 [k] +KIeθ2 [k] (3.12)

Chapter 4

Method and implementation

Now that the theoretical and practical background is out of the way, the next part to be
presented is the methodology and overall implementation. This chapter will start with
an overview of the whole system, followed by a description of the work done. Next up is
an overview of the robot application and MATLAB functions, which is followed by quick
guide for running the robot application on the robot.

4.1 System overview

The system consists of components which are categorized into software, hardware, and
firmware. The software components are the Javaserver, MATLAB code, and robot appli-
cation in C. The hardware components are the nRF52840 robot and nRF51 dongle. The
firmware components are a precompiled hex-file for the dongle, a precompiled SoftDevice
hex-file for the robot, and a compiled hex-file from the robot application. A graphical
representation of the components and the information flow between them are shown in
Figure 4.1. It includes flow within the robot application as well as the functions and
interfaces which are connecting two different components.

From the beginning of this thesis to the end, some components has remained unchanged
and others has gone through significant changes. The components which have remained
unchanged are the Javaserver, the MATLAB code, and the precompiled hex-files for the
dongle and SoftDevice. For comprehension purposes, the structure of the MATLAB code
relating to the overall application is included, as well as some functionality related to the
dongle and Javaserver. The former is included in Figures 4.1 and 4.3 and Section 4.3.1 The
component which has gone through modifications is the robot application source code,
and by extension the resulting hex-file from the building of the application. The robot
application in general as well as the changes made within it will be described in detail.

11

CHAPTER 4. METHOD AND IMPLEMENTATION 12

update values

vMainCommunicationTask

user_task

vMainSensorTowerTask

vARQTask

commands

Javaserver
handshake

sensordataestimated

position

dependancy

 MATLAB Coder
estimator

manager

taskcontroller

api()

MATLAB

vApiTask api()

hardware

IMU

encoders

motors

Setpoint

initialize
fetch values

nRF51 dongle

position estimate

Figure 4.1: Graphical representation of robot application. MATLAB is shown in
blue, hardware in green, and the server in red. All other blocks are from the robot
application.

All the components which are interacting in some direct way are included in Figure 4.1.

4.1.1 Central modules

There are three central modules in this project: MATLAB generated C code, explicitly
written C code, and hardware. It is necessary that the explicitly written C code is between
the MATLAB generated C code and the hardware. This is because the drivers needed
to interface the physical hardware is implemented within the robot application. The
information flow between them can be described in three ways: Moving from MATLAB
generated C code to the hardware, moving from the hardware to the MATLAB generated
C code, moving back and forth between adjacent modules. These flow categories are
illustrated in Figure 4.2.

All arrows in Figure 4.2 indicate direction of information flow, either between different
components or functions, or across the interface of two different parts of the system.
The arrows labelled A-D classifies information flow which cross the same interface(s)
in the same direction. A and B represents information between the robot application
and the hardware or – in the case for Bluetooth – another physical component. C and D

CHAPTER 4. METHOD AND IMPLEMENTATION 13

MATLAB

generated C-code

Explicitly

written C-code

Hardware/

Physical

vMainSensorTowerTask()

api()

vMainCommunicationTask()

user_task()

vApiTask()

bluetooth

IR-sensors

IMU

motorsservo

encoder

C

BA

D

Figure 4.2: Visualization of the data flow between the three central parts of the
system.

represents flow which goes from MATLAB, via the robot application and to the hardware.
In Table 4.1, the specific information represented by the arrows is categorized into one of
the four groups. All function names corresponds to the names used in the code for the
final application. The dashed line symbolizes access to shared variables, which the origin
updates and the terminus fetches.

4.1.2 Sensor tower

The sensor tower consists of a servo motor on which four IR sensors are mounted. The
orientation is such that the axis of rotation is perpendicular to the ground plane and has
a positive direction upwards. The servo is located at the geometric centre of the robot
(seen from top-down view).

The tower is rotated 90◦anticlockwise and then back to the starting position. The IR sen-
sors send their readings to the DK which formats the data and forwards to the Javaserver.
When the robot is moving to a new location, the sensor tower is idle and at the starting
position.

CHAPTER 4. METHOD AND IMPLEMENTATION 14

C code −→ hardware flow
A origin termini
initialization of encoder,

user_task
peripherals which

servo, motors and IMU are initialized
messages which will be

vMainCommunicationTask bluetooth
sent to Javaserver

(a) Categorization of the information moving from C code to the hardware (physical).

hardware −→ C code flow
B origin termini
IR and servo readings IR and servo vMainSensorTowerTask()

(b) Categorization of the information moving from hardware to C code.

MATLAB −→ hardware flow
C origin termini
new motor outputs api() motors

(c) Categorization of the information moving from MATLAB to hardware (physical) via
C code.

hardware −→ MATLAB flow
D origin termini
IMU and encoder readings IMU and encoder api()

(d) Categorization of the information moving from hardware to MATLAB via C code.

Table 4.1: Categorization of information flow between the three central modules.
Supplement to Figure 4.2 where the labels A-D corresponds to the arrows labeled
A-D in the figure.

4.2 Implementation and testing

The implementation and testing of a new FreeRTOS task within the robot application was
performed in two alternating modes. These two modes were implementation or merging
of code, and testing on the hardware. Within the testing stage there were two phases
as well: testing the Bluetooth connection between the nRF52840 and the Javaserver via
the nRF51 dongle, and testing the response of the robot on receiving commands from
the server. A detailed overview and description of the implementation and testing of the
robot application will follow in this section and the subsequent subsections.

CHAPTER 4. METHOD AND IMPLEMENTATION 15

4.2.1 Choice of IDE

For the code implementation, VS Code was chosen as an IDE. The main reason for
this is familiarity with the interfaces, particularly the explorer interface within the IDE.
A number of included features such as the integrated terminal also contributed to the
selection of this IDE. Having these resources within the same program simplified moving
between files and versions of the robot application. It was also possible to maintain a
git repository from the terminal, making it simpler to work on test setups and backtrack
with ease if the changes made the application worse.

4.2.2 Initial available code resources

From the time working on the specialization project[1], the delivery folder from the MAT-
LAB group was available for full use. Inside the folder, the MATLAB code as well as the
robot application was found. Additionally, the reports produced during the same semester
as the MATLAB group created their version of the robot application was accessed. The
reason for considering other reports and their versions of the robot application was to
examine how Bluetooth was implemented in those applications. The application version
which was chosen to continue working on was created by Gabriel Berglund[6]. The reason
for choosing Berglund’s version was its readability, overall structure, and the simplicity
included for changing the active robot: replacing the definition for NRF_ROBOT_2 to
NRF_ROBOT_3. In addition to replacing the robot definition, the default values for
NRF_ROBOT_3 was replaced by the tuned values from the MATLAB robot application.

4.2.3 Choice of application to expand

When comparing the MATLAB robot application to Berglund’s robot application, some
aspects with the latter stood out as preferable. The overall structure was clear and tidy,
and the naming convention was consistent, intuitive, and resembled the FreeRTOS nam-
ing convention. All functions which were made into FreeRTOS tasks were declared and
implemented in separate files with identifying titles. In the MATLAB robot application,
the function calling api() was implemented inside main.c and made into a FreeRTOS task
in main(). This implementation appeared less clear than Berglund’s. This is the reason
for using Berglund’s method for organizing and naming functions for the new function
created in this thesis work. The new function, vApiTask(), called the MATLAB generated
function, api(), after the parameters api() needed was initialized. Additionally, a delay
was included before and after api() was called to ensure that a Bluetooth timeout for the
Javaserver connection was not reached. Said timeout was defined in the configuration for
the project.

CHAPTER 4. METHOD AND IMPLEMENTATION 16

4.2.4 Choice for direction of code merging

In addition to Berglund’s application having the structural perks mentioned previously,
it also had the Bluetooth functionality implemented and functioning with his controller
and estimator. Previous experience with nRF52 programming includes the rule of thumb
of merging non-Bluetooth application into applications with Bluetooth instead of the
other way around. This rule of thumb adds to the list of reasons to choosing Berglund’s
application as the basis.

4.2.5 FreeRTOS task requirements

When constructing a FreeRTOS task, the function needs some amount of heap to function.
The original MATLAB code used a predefined route which was a one metre square. The
task then only needed to iterate four times, one for each corner of the square. When
modifying the setup to allow for the active setpoint to be updated during the runtime of
the application, the amount of heap required by the task changed. The final amount used
was found by experimenting. I.e. the original value for the MATLAB group’s task was
doubled, halved, maxed out (within the heap amount constraints of the microchip) and
made as small as possible.

4.2.6 Setpoint storing and datatype casting

Regarding the communication with the server, the commands entered for the robot to
follow was saved to a global struct variable in the robot application, and queues were used
from the controller and estimator tasks to fetch the updated data. Because the server
command was saved to a global variable, forwarding the coordinates to the MATLAB
generated estimator and controller was fairly simple. I.e. the same queue functionality
was used to get the updated values, and the X- and Y-coordinates was passed to the
MATLAB generated api() as input parameters. It was made sure that the variable type
matched by casting the members of the struct from the saved type: float, to the required
type: double. The datatype for the data received from the server was a signed integer.

4.2.7 Testing method

The testing was performed in two phases. The first test phase consisted of running the
robot application on the DK without any voltage provided to the peripherals (sensor
tower servo, IR sensors, IMU, motors). This method was utilized to exclude distracting
components while troubleshooting and developing the server connection to the desired

CHAPTER 4. METHOD AND IMPLEMENTATION 17

functionality. Additionally, this modularization allowed for a more gradual way of learning
how to implement a function meant for a FreeRTOS task from scratch. In particular, it
made setting up the hardware related variables and functions needed by the controller and
estimator simpler as well as more clear. The goal for this stage was to receive a command
from the server and output said command as a message in a serial terminal. By piecewise
including additional lines of code in vApiTask(), this goal was achieved.

The next phase was to examine whether the setpoints from the server could be passed to
api() to make the robot attempt to reach the setpoint. For this phase, voltage needed to be
provided to the peripherals. During this phase, it was discovered that one of the batteries
did not charge, and the rest of the work was performed with one battery. The physical
change of now providing the peripherals with voltage caused new timing issues, though
fortunately it was sufficient to include delays directly before and after calling api(), and
modifications within api() itself was not required. The timing seemed more vulnerable
when the peripherals were included into the mix than when they were out of the picture.
This added vulnerability makes logical sense, because including more components into
a system with several tasks running concurrently will put more pressure on the system
to ensure that all tasks still are able to perform their part as well as including the new
components into the mix.

4.2.8 Function creation and initial issues

Constructing the function which called the MATLAB generated api() consisted of first
setting up the variables needed by api(). Each stage of the construction was built and
flashed to the robot to ensure that the other active tasks all worked the same as before
any changes were made. In Section 4.4.1 it is explained how building and flashing is
performed. During the start phases, the functionality was not as it started out. Some
understanding of FreeRTOS’s scheduler was missing during this time, and a lot of trial
and error to get to a functioning system was gone through. One specific tactic during
the initial introduction of a new function was to have the only line of code in the new
function be to output a log to a serial terminal, i.e. NRF_LOG_INFO with a text string
as an input parameter. This tactic still yielded a stop of logging.

The observation from the serial terminal, J-Link RTT Viewer, was that the logging
stopped at an early point during the application. Some discussion with a co-student
working on the robot project, led to finding that the perpetrator was vApiTask() hoard-
ing all the resources from the microcontroller, causing no other FreeRTOS tasks to be
able to activate. This, of course, included the logger task, and the reason for why the
logging stopped was suddenly apparent.

CHAPTER 4. METHOD AND IMPLEMENTATION 18

4.2.9 Issues while testing

During the experimental function construction, these were the problems which ensued:

• The logging stopped after the application had run for a bit. Usually some initial-
ization functions were not registered as initialized, but others were.

• The robot did not show up on the Javaserver after restarting both the server and
the DK. It still was connected to the dongle.

• The robot disappeared from the server after being connected for a time. The con-
nection to the dongle was maintained.

• The robot turned around on its axis instead of idling or traversing.

The problems caused a lot of testing by varying the code composition. Some test setups
were only the communication skeleton and vApiTask() under construction, while other
setups omitted one or two functions which seemed to function as they should when not
including vApiTask(). Though the code was tested profusely, the majority of the problems
seemed to be caused by the timing issue.

One outlier was the first problem which – in addition to the timing – was caused by an
endless loop in vApiTask(). The loop was endless because of missing peripheral input
during the first testing phase.

The other outlier was the erroneous turning, which required meticulous testing and re-
search to arrive at a point where some hardware appeared to be the source of the error.

4.2.10 Timing issue solution

To prevent the vApiTask() from hoarding the resources, a delay was included in the
function. The result was the the other tasks were able to be activated during the pause
in the new function. From this point on, it was made sure that delays were included at
points in the code which had the potential of being computationally heavy.

4.3 Application

It was stated in Sections 4.2.2 and 4.2.3 that several applications suitable for the robot
was available. At the beginning of the thesis, two of them were selected to be used as bases

CHAPTER 4. METHOD AND IMPLEMENTATION 19

api.m ManTask.m

Regulator.m

estimator.m

Figure 4.3: Visualization of function relation in MATLAB.

for a new application. The first of these was the MATLAB robot application, which was
evident because of the nature of the thesis objective. The second application chosen was
developed by Gabriel Berglund in his specialization project [6]. The general procedure for
merging the applications was to use the general setup created by Berglund and replace any
parts related to estimating and controlling the robot. This method was chosen because it
was not in the scope of this thesis to implement Bluetooth connection from scratch, but
rather to fuse a Bluetooth application together with the MATLAB control system.

4.3.1 MATLAB functions

The controller and estimator are implemented as MATLAB functions, estimator.m and
Regulator.m, and combined into one task with the manager task, ManTask.m – also
implemented as a MATLAB function. ManTask is called from the function api, which has
the parameters needed to both estimate the state and compute a control output. The
function relation is visualized in Figure 4.3, where the functions are depicted with boxes,
and a box which is inside another symbolizes that the bigger box calls the function in the
smaller box. Following the MATLAB Coder instructions for generating C code, api is
converted to C code, and ready to be used in the robot application.

4.3.2 Robot application

The application which is flashed to the robot – the nRF52840 DK – includes driver
initialization, connection establishment with the Javaserver, a controller and estimator
generated from MATLAB and ran as a unit, and a rotation pattern for the IR sensor
tower. The flow of the application is that most operations are placed within tasks which
are managed by the FreeRTOS scheduler. The scheduler makes it possible for tasks to run
pseudo concurrently when the application is running. Each task is given a heap amount

CHAPTER 4. METHOD AND IMPLEMENTATION 20

enabling it to perform its objectives. The microcontroller has a maximum amount of heap
which the sum of all heap amounts need to stay below for the application to be allowed
to run.

The api() is called from vApiTask() after the hardware and estimate related variables are
initialized and available as input parameters for api(). New estimates for the position
and the angle are calculated and passed to the controller module. The controller then
calculates new outputs for the motors by using the estimates as well as the active reference
point.

4.4 Running the application

When testing the system as a whole, the methods described in these sections were followed.
They describe how to build and flash the robot application to the robot, and how to power
up the system while making sure that each component functions as expected.

4.4.1 Building and flashing

The application is built with the C compiler cmake using a Makefile. The command for
compiling and subsequently programming the microcontroller is make flash, and needs
to be called in a prompt terminal from the project folder. When exclusively building, the
command is make. These commands can also be found in the Makefile and redefined if
needed. The commands are called in a prompt terminal from the folder the Makefile is
located.

4.4.2 Method for expected behaviour

When running the robot application together with the Javaserver, the order of the steps
needed is important for a successful run.

1. Begin with plugging the nRF51-dongle into the computer and launching the Javaserver
through Apache Netbeans. Choose the correct COM-port for the dongle.

2. Power up the robot with its power switch while the DK is off.

3. Plug in the DK to a power source and switch it on before pressing the reset button.

4. After a short amount of time, the robot appears in the server GUI, and can be
selected to connect to.

CHAPTER 4. METHOD AND IMPLEMENTATION 21

This order of execution will ensure that every component performs as expected, but other
orders may also result in a correctly performing system.

Chapter 5

Results

The two main objectives was to implement Bluetooth on the MATLAB robot, and to
make it able to follow instructions from the Javaserver. The Bluetooth implementation
was successful, and is presented in Section 5.1. The current robot application is not able
to follow all instructions from the Javaserver, though the results obtained are presented
in Section 5.2.

5.1 Connection between robot and server

The robot successfully connected to the Javaserver, and the sensor tower started its ro-
tation pattern when the connection had been established. The data from the IR sensors
were received by the server, and the classification of obstacles and clear paths were correct.
All coordinates entered into the UI were received by the robot.

5.2 Trajectory and reference path

The application implementation yielded a robot which was able to follow one instruction
on the form (X, Y) = (a, 0), where a was a positive constant, sent to it from the Javaserver.
After reaching this first setpoint, the robot started to rotate 90 degrees counterclockwise
in intervals. This rotation loop occurred both when another setpoint was sent from the
server to the robot and when the first setpoint was the only instruction sent to the robot.
The robot behaviour is visualized in Figure 5.1 where it is compared to the reference path
for the robot.

A somewhat different result occurred when the first instruction required the robot to
rotate before traversing. The format for such an instruction would be (X, Y) = (a, b),

22

CHAPTER 5. RESULTS 23

Figure 5.1: The robot’s path when instructed to move to (X, Y) = (30, 0) [cm].

where a, b ∈ R and also b 6= 0. In this case, the robot would rotate to face the correct di-
rection, but then would continue to rotate with the same pattern as described above. The
robot remained in this rotation pattern loop instead of traversing towards the instructed
coordinate.

The rotation loop motivated a meticulous troubleshooting which uncovered several pos-
sible sources of error. The main two observations was that the magnitude of θ̂ increased
each rotation and that the value of θ̂ would not wrap to zero when the robot had rotated
a full 360 degrees. This discrepancy was tracked to the error correction function within
api(). The troubleshooting also uncovered that the left encoder would sporadically output
high values whilst the motor was not active. This discrepancy was not tracked towards
its source, but the possibilities of its origin will be discussed in Section 6.4.

Chapter 6

Discussion

The discussion points are categorized into three groups: Choice, obstacle management,
and results. Falling into choice is the MATLAB generated functions and the controller
scheme, which are discussed in Sections 6.1 and 6.2 respectively. Obstacle management
is centered around the hardware and discussed in Section 6.3, and results includes an
analysis and a discussion of the robot performance found in Section 6.4.

6.1 MATLAB generated functions

The amount of functions generated from MATLAB decides which limitations, consid-
erations and possibilities exist for the overall implementation of the robot application.
Limitations include timing constraints and resource availability. Considerations consist of
cooperating tasks and minimal adjustments. The possibilities are independent develop-
ment and robustness. The two scenarios which will be taken into account are to generate
one or more than one function from MATLAB.

When generating a single function, two limitations and one consideration present them-
selves. The first limitation is a timing constraint related to the Bluetooth connection with
the Javaserver. The server demands periodic messages from the robot within a timeout
value declared in the application source code. When a code block within a FreeRTOS
task requires more time than the timeout value defines, the connection is terminated. To
avoid termination of the connection, the time consuming task needs to yield sufficiently to
let the other tasks run. If the MATLAB generated function – api() – executes many cal-
culations, it may exceed the defined timeout value. At its current stage, the computation
time required by api() is smaller than the timeout. However, the implemented estimator
requires a conservative amount of computation time. If the estimator is replaced by a
more accurate estimator – like the extended Kalman filter, the new api() could require a

24

CHAPTER 6. DISCUSSION 25

computation time exceeding the timeout value.

The second limitation when generating a single function is related to resource availability
and execution time. The FreeRTOS scheduler is responsible for allocating time for each
task to be executed. However, each task also needs to assist the scheduler to ensure
that the internal timing in every task is appropriate. Similar to the first limitation, api()
requires a significant amount of time. When the FreeRTOS task which includes this time
consuming code is executed without any points of delay or yielding, all other tasks are
put on a permanent or extended hold. The paused tasks may contain important or useful
functionality like Bluetooth, logging, or hardware related tasks. To ensure that all tasks
receives their opportunities to run, the yielding in the task which encapsulates api() is
again central.

The consideration when generating a single function relates to incorporating the function
into the robot application. When there is only one function to incorporate, every input
parameter needed is seen from the one function implementation. This visibility simplifies
the incorporation compared to needing to take several functions into account. Other
necessary considerations to take during the incorporation is to maintain a consistent
datatype and unit for the variables which are created in the robot application and input
to api().

When generating several functions, one consideration and two possibilities arise. The
consideration is the requirement for the functions to cooperate. A decoupled control sys-
tem may involve the two central functions to have several internal modes of operation
depending on a few factors. These are; which variables are available and which point
of the process the control system as a whole has arrived at. The function cooperation
increases the complexity of the incorporation into the robot application, but simultane-
ously decreases the time requirement for each task – provided that the two components
are included in separate tasks inside the robot application.

The first possibility when generating several functions is independent development. Each
function can be revised and changed independently as long as the input and output
parameters remains unchanged. This independence makes it possible to develop new
iterations of function or module, while the other stays unchanged. The development
could also be performed in parallel for two independent modules, making collaboration
between developers organizationally simpler.

The second possibility is robustness. Generating several functions will result in each func-
tion being less computationally heavy compared to a single encompassing function. When
taking this into consideration with the timing requirement for the Bluetooth connection,
the application will gain robustness from incorporating several smaller functions. The
robustness will also contribute to the overall stability of the robot application.

CHAPTER 6. DISCUSSION 26

6.2 Choice of controller scheme

The choice made by the MATLAB group, specifically Gulbrandsen[3], was to decouple
the controller into two main parts, with the lateral controller again being decoupled into
two parts. This method is very tidy, and the controlling problem is simplified. Dividing
the movement into two separate parts makes for a cleaner movement, and is easier to
manage.

The current setup between the MATLAB robot and the server is that the robot should
fulfill one command at a time. The decoupled controller will result in the most efficient
route from a stopped position to the setpoint because the robot will attempt to move the
Euclidean distance between the two points.

A combined controller complicates the control problem which in turn may increase com-
putation time. For the current server–robot setup, this will doubtfully result in higher
performance, but may be beneficial in a more advanced system. This hypothetical system
could be based on an instruction queue from which the robot should calculate the most
efficient path. The complexity increase in the server–robot setup could also require an
even more complex controller than simply joining the turning and traversing controller
into one.

6.3 Hardware

The loss of a battery during the implementation phase, made further testing and work
flow more cumbersome. With only one working battery, the robot needed to be charged
daily if testing was also performed daily. Additionally, it was not possible to read the
battery percentage, and the voltage reported to the Javaserver was static, and never
changed. Evaluating when the battery was running was reduced to a game of evaluating
the performance of the robot on whether its faulty behaviour was caused by a functionality
breaking change in the application or low battery percentage. This method of checking
the battery levels, significantly slowed down both the testing and the implementation.

Though the method for evaluating the battery percentage was time consuming, and caused
some tests to be carried out twice, it was still preferable to measuring the voltage and
current with a multi-meter every day.

It was observed that the left encoder output erroneous values during one of the last
testing sessions. This output was a considerable source of error for the calculation for θ̂.
The most significant way the erroneous readings occurred was that they caused a great
discrepancy between the estimated θ̂ and the observed angle of the robot. The extra

CHAPTER 6. DISCUSSION 27

readings were sporadic and not consistent in neither value nor interval. These irregularities
made the troubleshooting complicated. With the irregularities in combination with the
time constraint towards the conclusion of the thesis, the reason for the erroneous encoder
readings was not discovered.

6.4 Robot performance

The results from Section 5.2 the updated θ̂ consistently increased in magnitude when
running the robot application with a test path of one point 30cm straight forward:
(X, Y) = (30, 0). Inside api() the if-statement in Listing 6.1 evaluated such that the
turning controller was executed the majority of the iterations as a consequence of this
increase.

Listing 6.1: api() deciding on distance or turning controller

er ror_theta = rt_atan2d_snf (error_y , error_x) − ∗gTheta_hat ;
i f (f abs (s c a l e) < 0.087266462599716474) {

// Distance c o n t r o l l e r code
} else {

// Turning c o n t r o l l e r code
}

The reference angle does not change for each magnitude increase of θ̂, which in turn causes
a magnitude increase for eθ. When eθ is large, the robot rotates with the minimum output
for the motors in repeating rotations instead of rotating once with a larger output. When
eθ is very large, this takes a lot of time. This inefficiency reads as an issue originating in
software. Though very large errors seems to only occur whilst the encoders are outputting
unrealistically high tick amounts, or outputting non-zero tick amounts whilst the robot
is idling – at least regarding rotational and lateral movement.

The left encoder put out high values when the motor was idle. The cause for this erroneous
output is likely to be caused by a hardware issue. Or it could be a delayed reading from
when the motor moved last. A delayed reading could be a software issue, or a combination
of hardware and software.

Some issues with the estimator was that the estimated theta kept increasing in magnitude
and not resetting at 2π radians. Code for this reset was not found in the code, though it
should be sufficient for the calculation of the reference angle to be an atan2 calculation.
The constants ε and radEps was decided by the MATLAB group, though a 5 degree
deviation in angle and a 15 mm deviation in distance seems fair enough.

CHAPTER 6. DISCUSSION 28

The comments in the MATLAB code includes that the previous and initial values need
to be changed for the robot to be able to move from one point to another. This directly
contradicts the behaviour of the robot when it was first handed over for the specialization
project of spring 2021. As an initial test, the robot was started, and it was able to drive
in a metre square – that is, it drove to four points. If the comment in the code was to be
taken as fact, the robot should not be able to follow that route.

The active setpoint may also be interpreted by the robot as the next setpoint as well,
even though the robot has already performed the instruction. With the initial position
and heading always being reset to zero, this may cause issues with calculating the outputs
in the controller.

It seems like the robot does not store its current orientation, and everything is calculated
with the starting orientation as the heading of the robot. What the robot actually needs
to do, is to calculate the error from its current heading to the next heading. The next
heading is calculated from the robots current coordinates and the setpoint coordinates.
Because of this method, there is no reason for the robot to store the initial position.
Though, the initial position and angle which the MATLAB code uses, is constant, and
does not change after the robot has followed an instruction and a new setpoint has been
given.

Each instruction could be viewed as an instance of a controller sequence. That is, when
the robot is within the closeness-parameters set by the controller, the new initialization
is the setpoint and a calculation of the angle of the robot. This calculation will be
based on where in the coordinate system the previous instruction was in relation to the
starting posistion. This change would need to be an input parameter for the manager task
ManTask.m and then the values passed to Regulator() would be the active initialization
depending on which instruction the robot is handling. Seeing as ManTask() needs the
augmented initialization, it either needs to be created in api(), or be an input parameter
there as well.

Chapter 7

Further work

Following are a brief description of some suggestions for further development of the MAT-
LAB robot after this thesis.

7.1 Improving vApiTask()

Improvements which focus on improving vApiTask() to a state where the robot is able to
fulfill several instructions received from the Javaserver.

7.2 Sensor tower MATLAB module

To expand which parts of the Robot application which originates from MATLAB, a func-
tion for the behaviour of the sensor tower can be implemented. The functionality it would
entail could be a rotation pattern and robot status conditions where the behaviour of the
tower should change.

7.3 Extended Kalman filter

The extended Kalman filter is more suited than the direct encoder estimator because of
the non-linearity of the robot’s dynamics. Implementing it in MATLAB will make the
estimator more computationally heavy, but also contribute to a more precise system.

29

Bibliography

[1] Maria Gilje. Controlling an nRF52 Robot from MATLAB. Specialization project,
Norwegian University of Science and Technology, August 2021.

[2] Viljar G. Bliksvær. Simulation of the Matlab-controlled nRF52-robot. Specialization
project, Norwegian University of Science and Technology, December 2020.

[3] Eystein Gulbrandsen. Controlling the nRF52-robot using Matlab generated code.
Specialization project, Norwegian University of Science and Technology, December
2020.

[4] Eivind Sjøvold. Position Estimation on an nRF52-Robot Using Matlab. Specialization
project, Norwegian University of Science and Technology, December 2020.

[5] Eivind H. Jølsgård. Embedded nRF52 robot. Specialization project, Norwegian Uni-
versity of Science and Technology, December 2020.

[6] Gabriel Berglund. Embedded nRF52840 DK Robot. Specialization project, Norwegian
University of Science and Technology, December 2020.

30

Appendices

vApiTask()

Listing 1: Implementation of vApiTask().

void vApiTask (void ∗ arg){
vServo_setAngle (0) ;

struct sCar t e s i an Setpo int = {0 , 0} ;

double gX_hat = 0 . 0 ;
double gY_hat = 0 . 0 ;
double gTheta_hat = 0 . 0 ;
double gLe f t = 0 . 0 ;
double gRight = 0 . 0 ;
double l e f tU = 0 . 0 ;
double r ightU = 0 . 0 ;
double t i ck s_Le f t = 0 ;
double t icks_Right = 0 ;
uint8_t robotMovement = moveStop ;

while (t rue) {
vTaskDelay (2 0 0) ;
double X_hat = gX_hat ;
double Y_hat = gY_hat ;
double Theta_hat = gTheta_hat ;

encoderTicks Ticks = encoder_get_ticks_since_last_time () ;
t i ck s_Le f t = (double) Ticks . l e f t ;
t icks_Right = (double) Ticks . r i g h t ;

IMU_reading_t gyro ;

31

BIBLIOGRAPHY 32

IMU_reading_t a c c e l ;
IMU_read () ;
gyro = IMU_getGyro () ;
a c c e l = IMU_getAccel () ;
double gyro_x = gyro . x ;
double gyro_y = gyro . y ;
double gyro_z = gyro . z ;
double accel_x = ac c e l . x ;
double accel_y = ac c e l . y ;
double accel_z = ac c e l . z ;

i f (gHandshook) {
xQueueReceive (poseContro l lerQ , &Setpoint , 0) ;

vTaskDelay (1 0 0) ;
taskYIELD () ;

// Matlab genera ted C code
api ((double) Setpo int . x , (double) Setpo int . y , t i cks_Left ,

t icks_Right , gyro_x , gyro_y , gyro_z ,
accel_x , accel_y , accel_z , X_hat , Y_hat ,
Theta_hat , &gX_hat , &gY_hat , &gTheta_hat ,
&gLeft , &gRight , &le f tU , &rightU) ;

vTaskDelay (1 0 0) ;

// Cast to i n t b e f o r e sending to motor
int uR = (int) r ightU ;
int uL = (int) l e f tU ;

xSemaphoreTake (xPoseMutex , 1 5) ;
set_posit ion_est imate_heading (gTheta_hat) ;
set_posit ion_est imate_x (gX_hat /1000) ; // mm to m
set_posit ion_est imate_y (gY_hat /1000) ; // mm to m
xSemaphoreGive (xPoseMutex) ;

i f (che ckForCo l l i s i on () == true){
motor_brake () ;
robotMovement = moveStop ;
xQueueSend (scanStatusQ ,&robotMovement , 0) ;

}

BIBLIOGRAPHY 33

else {
robotMovement = moveForward ;
xQueueSend (scanStatusQ ,&robotMovement , 0) ;
vMotorMovementSwitch (uL ,uR) ;
taskYIELD () ;
i f (uL == 0 && uR == 0){

robotMovement = moveStop ;
xQueueSend (scanStatusQ ,&robotMovement , 0) ;
// break ;

}
}

} // end i f (gHandshook)
}

}

Acronyms

Bluetooth LE Bluetooth Low Energy. 1

C&R Cybernetics and Robotics. 3

DK Development Kit. 4

GUI Graphical User Interface. 20

IDE Integrated Development Editor. 5

IR Infrared. 13

PWM Pulse-Width Modulation. 9

RTOS Real Time Operating System. 5

SDK Software Development Kit. 2

SLAM Simultaneous Localization and Mapping. 5, 6

VS Code Visual Studio Code. 2, 15

34

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Maria Gilje

Implementing Bluetooth LE on a
MATLAB controlled nRF52840 robot

Master’s thesis in Cybernetics and Robotics
Supervisor: Tor Onshus
June 2022

M
as

te
r’s

 th
es

is

	Problem description
	Summary and conclusion
	Oppsummering og konklusjon
	Preface
	Introduction
	The robot project
	The nRF52 robot
	The MATLAB robot

	Motivation

	Previous work
	Hardware
	Software
	Server application
	Robot application

	Specialization project

	Theory and definitions
	Simultaneous Localization and Mapping
	Coordinate frames
	Body coordinate frame
	Central coordinate frame

	Estimator
	Controller scheme
	Turning controller
	Necessary parameters
	Constraints
	Distance controller

	Method and implementation
	System overview
	Central modules
	Sensor tower

	Implementation and testing
	Choice of IDE
	Initial available code resources
	Choice of application to expand
	Choice for direction of code merging
	FreeRTOS task requirements
	Setpoint storing and datatype casting
	Testing method
	Function creation and initial issues
	Issues while testing
	Timing issue solution

	Application
	MATLAB functions
	Robot application

	Running the application
	Building and flashing
	Method for expected behaviour

	Results
	Connection between robot and server
	Trajectory and reference path

	Discussion
	MATLAB generated functions
	Choice of controller scheme
	Hardware
	Robot performance

	Further work
	Improving vApiTask()
	Sensor tower MATLAB module
	Extended Kalman filter

