
N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r t

ek
ni

sk
 k

yb
er

ne
tik

k

Marius Udnæs

Semantic Dataset Generation and
Detection For Industrial
Environments

Masteroppgave i Kybernetikk og Robotikk
Veileder: Konstantinos Alexis
Medveileder: Nikhil Khedekar
Juni 2022

M
as
te
ro
pp

ga
ve

Marius Udnæs

Semantic Dataset Generation and
Detection For Industrial Environments

Masteroppgave i Kybernetikk og Robotikk
Veileder: Konstantinos Alexis
Medveileder: Nikhil Khedekar
Juni 2022

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for teknisk kybernetikk

Semantic Dataset Generation and Detection For
Industrial Environments

Marius Udnæs

June, 2022

Abstract

Point cloud acquisition and semantic segmentation is an essential tool in the digi-
talization of industrial plants, yet much of this work remains manual. In collabora-
tion with Cognite, who provides Cognite Data Fusion (CDF) to gather and process
enormous volumes of data for industrial customers, this master thesis aims to in-
vestigate the use of semantic segmentation for autonomy in industrial zones. We
focus our efforts on the lack of annotated data, and present a novel Synthetic Se-
mantic Dataset Generator (SSDG) to be able to create valuable 3D point cloud
datasets for training semantic segmentation networks. Particularly focus is placed
on closing the reality gap between real-world and synthetically generated data
by employing domain randomization, data augmentation, and increasing resem-
blance by modeling a real-world lidar with noise.

No ready-labeled large open-source industrial point cloud exists to date. To
enable the usage and deployment of deep learning methods in the context of
3D semantic segmentation in industrial zones, as well as validating the proposed
SSDG method, this thesis builds a high quality industrial LiDAR dataset contain-
ing 3.7 million data points collected from a set of four commonly found object
categories. To validate the industrial dataset, we present point cloud segmenta-
tion results and a qualitative analysis from state-of-the-art segmentation networks
and assess the quality and usability of the dataset. The results demonstrate that
the best segmentation network achieves a good overall segmentation mIoU of
87.88%. Our method produces a useful industrial semantic point cloud dataset
that can be employed in future perception pipelines for Simultaneous Localiza-
tion and Mapping (SLAM), visual place recognition and the like. The Synthetic
Semantic Dataset Generator (SSDG) is publicly available, enabling researchers to
generate new labeled datasets tailored to their needs.

iii

Sammendrag

Punktskyinnhenting og semantisk segmentering er et viktig verktøy i digitaltalis-
eringen av industrianlegg, men mye av dette arbeidet forblir idag manuelt. I
samarbeid med Cognite, som leverer Cognite Data Fusion (CDF) for å samle og
behandle enorme mengder data for industrielle kunder, har denne masteropp-
gaven som mål å undersøke bruken av semantisk segmentering for autonomi
i industrielle soner. Vi fokusere på mangelen av dataset, og presentere en ny
Syntetisk Semantisk Dataset Generator (SSDG) for å kunne lage verdifulle 3D-
punktsky datasett for trening av semantiske segmenteringsnettverk. Det settes
spesielt fokus på å lukke virkelighetsgapet mellom virkelige og syntetisk genererte
data ved å bruke domenerandomisering og data augumentasjon. Det finnes idag
ingen open-source industrielle punktskyer. For å muliggjøre bruk og distribusjon
av dyplæringsmetoder for 3D semantisk segmentering i industrisoner, samt valid-
ering av det foreslåtte SSDG-metoden, bygger vi et høykvalitets industrielt LiDAR-
datasett som inneholder 3,7 millioner datapunkter. For å validere det industrielle
datasettet presenterer vi resultater og en kvalitativ analyse av state-of-the-art seg-
menteringsnettverk trent på datasettet. Resultatene viser det det beste nettverket
oppnår en god mIoU på 87,88%. Metoden vår produserer et nyttig industrielt se-
mantisk punktskydatasett som kan brukes i fremtidige persepsjonsrørledninger
for simultan lokalisering og kartlegging (SLAM), visuell stedsgjenkjenning og lig-
nende. Den Syntetiske Semantisk Dataset Generatoren (SSDG) er offentlig tilgjen-
gelig, noe som gjør det mulig for forskere generere nye datasett skreddersydd for
deres behov.

v

Contents

Abstract . iii
Sammendrag . v
Contents . vii
Figures . ix
Tables . xiii
Acronyms . xv
1 Introduction . 1

1.1 Background and Motivation . 1
1.2 Aim and Scope of Thesis . 3

1.2.1 Scope . 3
1.2.2 Aim . 3
1.2.3 Contributions . 4

1.3 Thesis Outline . 4
2 Background and Related Work . 5

2.1 Light Detection and Ranging (LiDAR) 5
2.1.1 The LiDAR sensor . 5
2.1.2 Point Cloud . 6
2.1.3 LiDAR Image . 7

2.2 Deep Learning . 7
2.2.1 Neural Networks . 7
2.2.2 Convolutional Neural Networks 9
2.2.3 Training Neural Networks . 11
2.2.4 Improving neural networks . 11
2.2.5 Loss functions . 13
2.2.6 Regularization . 15
2.2.7 Normalization . 16
2.2.8 Metrics . 17
2.2.9 Deep Learning Libraries . 18

2.3 Semantic Segmentation . 19
2.3.1 Projection-based methods . 21
2.3.2 Point-based networks . 26

3 Method and Implementation . 29
3.1 Synthetic Semantic Dataset Generator (SSDG) 29

3.1.1 Pipeline Overview . 30

vii

viiiMarius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

3.1.2 Simulation Libraries and Tools 30
3.1.3 Gazebo Simulation . 32
3.1.4 Labelling Node . 39
3.1.5 Bridging the reality gap . 42

3.2 Industrial Segmentation Dataset . 47
3.2.1 Dataset format . 48
3.2.2 CAD Models . 49
3.2.3 Sequence creation . 52
3.2.4 Overview of the resulting dataset 53

3.3 Segmentation Models . 56
3.3.1 Network considerations . 56
3.3.2 Implementation Details . 58

4 Results . 61
4.1 Experimental Setup . 61
4.2 SqueezeSegV3 . 62
4.3 SalsaNext . 62
4.4 SqueezeSegV3 and SalsaNext Comparison 63
4.5 Final model analysis . 64

4.5.1 Quantitative Results . 64
4.5.2 Qualitative Analysis . 65

4.6 ROS Node . 68
5 Discussion and Further Work . 69

5.1 Summary . 69
5.2 Synthetic Semantic Dataset Generator (SSDG) 70

5.2.1 Reality gap . 70
5.2.2 Prospects for future research 71

5.3 Industrial Dataset . 71
5.4 Segmentation Networks . 72
5.5 Further work in semantic autonomy . 73

6 Conclusion . 75
Bibliography . 77

Figures

1.1 An Oil refinery model. 1

2.1 An example of the Ouster OS0 LiDAR with sample configurable pa-
rameters. α is vertical FOV, θ is vertical resolution, β is horizontal
FOV and φ is horizontal resolution. 1 5

2.2 Point cloud of a staircase, generated using method in Section 3.1.
3D CAD model from the ModelNet40 [5] dataset. 6

2.3 2D Range image of a an industrial scene. Colors stem from a se-
mantic label, but can also be given by intensity or RGB channels
from a camera. 7

2.4 The perceptron model, here consisting of 4 inputs, 4 weights and
a single neuron. 8

2.5 The Multi-layer perceptron, with an input layer, hidden layer, and
ouput layer. 9

2.6 An example of a CNN architecture, with an input layer, feature-
extraction layer and classifcation layer. The feature-extraction layer
in this particular example uses ReLU as activation and MaxPooling
for downsampling. 9

2.7 Three Activation functions: Linear, Sigmoid and ReLU 12
2.8 The ReLU function and its counterpart LeakyReLU [9]. 13
2.9 The Intersection over Union. 17
2.10 From top to bottom: input image, prediction, and ground truth.

Input color is based on intensity, and grey represents tanks, blue
represents stairs, red represents chimneys while green represents
other objects. The neural networks predicts large parts of the tank
wrong, but since most of the image is black the reported accuracy
will still be high. This is the reason accuracy is not always a good
evaluation metric. 18

2.11 A semantically labelled point cloud of a refinery, where each color
represents a category. Created using SSDG. 19

2.12 One of the stairs from ModelNet40 [5] projected onto a spheri-
cal projection. The image is a combination of two projections: the
top image presents the intensity-based image, while the bottom
presents the label map. 21

ix

x Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

2.13 The ResNet blocks used in the encoder layers. They consist of a 2D
Convolution along with LeakyRELU activation function, and batch
normalization. The double skip connection is added at the end of
the block. 25

2.14 The novel combination of dilated convolutions introduced in Sal-
saNext. The dilated convolutions have a rate of 2, meaning that
there is one space between each kernel element both row-wise and
column-wise. 26

2.15 The PointNet architecture. Taken from R. Qi et al. [18] 27

3.1 Converting a raw point cloud (left) to a semantically labeled point
cloud (right) using SSDG. The colors from the raw point cloud stem
from z-value, while the colors on the semantic point cloud repre-
sent different object categories. 29

3.2 An example of using the segmentation camera included in Ignition
Sensors, with the label map on the right hand side. 31

3.3 An overview of the simulation setup. 32
3.4 An overview of a refinery gazebo world with the pertaining point

cloud gazebo generates on the left. 33
3.5 Ouster OS0-128 Specifications. 2 . 35
3.6 An example showing the labelling node colorizing the point cloud.

The industrial tank on the left is labelled in red, and the two other
objects are labelled in pink. Note that the original lidar point cloud
is also displayed with red points. 39

3.7 On Callback . 40
3.8 The gazebo simulation corresponding to the point cloud in Figure 3.6 41
3.9 An example of instance segmentation, with each object assigned a

separate instance and color. 42
3.10 An example of a synthetically generated world comprising multi-

ple parametric shapes. The black objects represent the domain ran-
domization objects while the white object is a simple model of an
industrial tank. 44

3.11 From left to right: pallet, cone, electrical box and pallet box. 46
3.12 The same industrial tank, with different scaling factors showing the

data augmentation technique . 47
3.13 Comparison of our dataset folder structure with SemanticKITTI. . . 49
3.14 A sample of the tanks, rendered in Ignition gazebo 50
3.15 A sample of the stairs, rendered in Ignition gazebo 50
3.16 A sample of the chimneys, rendered in Ignition gazebo 51
3.17 The stairs from ModelNet40 that were used in the industrial dataset. 51
3.18 A staircase from the industrial dataset. 54
3.19 An industrial chimney from the industrial dataset. 55
3.20 A tank from the industrial dataset. 55
3.21 Another tank from the industrial dataset. 56

Figures xi

3.22 Multi-object scan from the industrial dataset. 56
3.23 Reported runtimes of several SOTA models. Image taken from Sal-

saNext [28]. 57

4.1 Comparison of mIoU, pixelwise accuracy and cross entropy loss for
SSVG3-21 and SSVG3-53. 62

4.2 Comparison of mIoU, pixelwise accuracy and cross entropy loss for
Salsanext with image sizes of 1024x128 and 512x128. 63

4.3 Comparison of mIoU, pixelwise accuracy and cross entropy loss for
SalsaNext and SSVG3-53. 63

4.4 mIoU, pixelwise accuracy and cross entropy loss for final model. . . 64
4.5 Class-wise Intersection over Union (IoU). 65
4.6 A small cone found in the ground in front of the tank (in grey) is

predicted incorrectly. 66
4.7 An object created by the domain randomization scheme occludes

the tank (in grey) and is predicted incorrectly. 66
4.8 . 66
4.9 A correct prediction mask with occluded stairs (red). 66
4.10 A correct prediction mask containing industrial chimneys (blue). . . 66
4.11 . 66
4.12 A prediction on a tank (gray) with random objects surrounding. . . 67
4.13 A prediction on a staircase with random objects surrounding. 67
4.14 . 67
4.15 Segmented point cloud from sequence 240 of the validation set . . 67
4.16 Segmented point cloud from sequence 241 of the validation set . . 67

Tables

3.1 Specifications for Collision Avoidance LiDAR 34
3.2 Specifications for the simulated Segmentation LiDAR, modelled from

the Ouster OS0-128. 35
3.3 Camera Info . 36
3.4 Specifications for Segmentation Cameras. 36
3.5 Topics shared between ROS Ignition Transport. 37
3.6 Initialization . 40
3.7 Overview of point cloud datasets for semantic segmentation. 48
3.8 Overview of semantic classes in the industrial dataset. learning_map

label is simply the one-hot encoding used by the SemanticKITTI
dataset format . 48

3.9 Frequency of the four different semantic labels in the industrial
dataset . 53

3.10 An overview of the sequences and their object categories, created
for the industrial dataset. 54

4.1 Summary of hyperparameters used for training. 61
4.2 Comparison of Final IoU between SqueezeSegV3-53 and SalsaNext. 64
4.3 Reported inference times of SalsaNext-ROS on a CPU. 68

xiii

Acronyms

BEV Bird-Eye-View. 24, 25

CAM Context Aggregation Module. 23
CDF Cognite Data Fusion. iii
CNN Convolutional Neural Network. ix, 7, 9, 10, 21,

22
CRF Conditional Random Field. 20, 22, 23, 57, 58,

65
CUDA Compute Unified Device Architecture. 18, 19,

68
cuDNN CUDA Deep Neural Network library. 19

FC Fully-Connected Layer. 11
FOV field-of-view. ix, 5, 6
FPS Farthest Point Sampling. 28

GPU Graphics Processing Unit. 18

IoU Intersection over Union. xi, 14, 17, 53, 63–65,
73

kNN k-nearest neighbors. 23, 28, 57–59, 65

LeakyReLU Leaky Rectified Linear Unit. 13
LiDAR Light Detection and Ranging. iii, vii, xiii, 1, 2,

4–7, 21, 23, 24, 30–35, 37, 42, 43, 57, 58, 62,
66, 70–73

LocSE Local Spatial Encoding. 28

mIoU mean Intersection over Union. iii, 17, 57, 62,
64, 73

xv

xviMarius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

MLP Multilayer Perceptron. 8, 27, 28

ReLU Rectified Linear Unit. 12
RNN Recurrent Neural Network. 22
ROS Robotic Operating System. 31, 32
RS Random Sampling. 28

SAC Spatially-Adaptive Convolution. 24
SDF SDFormat. 32
SFV Spherical-Front-View. 24, 25
SGD Stochastic Gradient Descent. 11, 23
SLAM Simultaneous Localization and Mapping. iii, 1–

3, 23, 59, 61, 63, 68, 69, 75
SOTA state-of-the-art. iii, xi, 2, 7, 48, 57, 75
SSDG Synthetic Semantic Dataset Generator. iii, ix, x,

3, 4, 19, 29, 30, 43, 69–73, 75

TSDF Truncated Signed Distance Field. 57

Chapter 1

Introduction

1.1 Background and Motivation

Figure 1.1: An Oil refinery model.

The emerging market opportunities in robotics have enabled the technological
advances within 3D sensing to greatly improve in the last couple of years. Light
Detection and Ranging (LiDAR) and RGB-D cameras have become increasingly
available with more affordable prices, and a wide range of competitors allows
for better and cheaper sensor units than before. Within LiDARs we find Ouster,
Velodyne and Livox amongst others all competing on resolution, range, size and
price. This has allowed 3D vision to flourish within topics such as Simultaneous
Localization and Mapping (SLAM), 3D object reconstruction, and many more. The
large point clouds generated by these 3D sensors can be interpreted further than
their location in a 3-dimensional space, in order to understand the environment at
a higher level. Semantic segmentation is the act of giving each point in the cloud
a semantic label, giving the point cloud a new dimension. As this thesis is written

1

2 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

in collaboration with Cognite, we focus mainly on semantic segmentation in the
industrial domain.
The motivation for providing 3D semantic segmentation in industrial areas is two-
fold. Firstly, point cloud segmentation in the industrial sector can facilitate the
creation of drawings and digital twins, an otherwise arduous and labor intensive
process. By assigning semantic labels such as "pipe" or "valve" to each point in
the cloud, digital twinning can be automated and manual labor cost drastically
reduced.
Second to this, an environmental understanding and perception is key to realizing
robotic autonomy without human intervention. A robot navigating and inspecting
industrial zones needs to be able to reason on its environment to a certain ex-
tent for fully autonomous operations. For example, if the robot can semantically
understand staircases, it knows it will be moving in an upwards or downwards
trajectory. This understanding can be crucial for enabling robust localization and
map-creation as it can be included as a valuable prior in the optimization step.
The segmentation of stairs is also beneficial for motion-planning over complex
environments, as it will allow the robot to plan a trajectory over multiple levels
in a building. LiDAR-based solutions have proven to perform well in most envi-
ronments, and are not affected by the same external influences that typically dis-
turb camera sensors, such as obscurants, motion blur, and illumination changes.
However, as most LiDAR-only SLAM algorithms rely on some form of scan-to-scan
matching, their robustness to dynamical objects such as humans is often lacking.
It must be able to filter out such data associations, and can be achieved by using a
semantic understanding of the environment. Additionally, place recognition and
loop closures can become more robust to seasonal changes by including semantics.
For instance, snow or leaves falling from a tree will lead to entirely mismatched
point clouds of the same spot, but by including the semantics of the objects in
the place recognition framework, rather than the raw point cloud itself, the de-
scriptiveness of the scene is substantially improved. We therefore establish that a
semantic scene understanding can be used to give the robot an understanding be-
yond the spatial domain, in order to increase the robustness of the SLAM pipeline.
The reasons for using semantics in a perception pipeline are clear, but semantics-
based 3D autonomy is still a relatively new field. SemanticKITTI [1] has paved the
way for semantics-based autonomous driving in urban scenarios by providing an
open-source dataset containing millions of manually-labelled points consisting of
categories such as car, road, pedestrian etc. This has paved the way for some of the
state-of-the-art semantic SLAM algorithms such as SuMA [2], SA-LOAM [3] and
SegMap [4] incorporating varying amounts of segmentation in their frameworks.
However, no such open-source dataset exists for industrial zones, and few or no
semantics-based algorithms tailored towards industrial autonomy is developed to
date. The next step towards allowing robotic autonomy within industrial settings
is creating high-quality large scale datasets for training and evaluation. As such,
labelled industrial data creation becomes the focus of this thesis.

Chapter 1: Introduction 3

1.2 Aim and Scope of Thesis

1.2.1 Scope

This thesis is written as a collaboration between Cognite and the Autonomous
Robots Lab1, who aim to create resilient autonomous robotic systems capable
of long-term operations in complex, and degraded environments. To give these
robotic systems a higher level understanding of their environments in the form
of semantic labels, real-time segmentation networks can be trained on domain-
specific datasets. This thesis will focus on generating the semantic segmentation
data for training these segmentation networks. The original intent was creating
a synthetic semantic dataset for use within the industrial domain. However, as
no sufficient method for the creation of synthetic semantically-labelled datasets
exists to date, we instead expand our scope to creating a general framework for
generating semantic datasets, which can be used in a multitude of domains and
tasks. By focusing on the general framework rather than keeping it specific to
our industrial domain, and open-sourcing our repository, we are able to further
develop the field and contribute to the community.

1.2.2 Aim

The main objective of this work is to create a method for generating semantic
point clouds, and additionally assess the capabilities of semantic segmentation
networks on a dataset generated by the method, to verify that they can be used
in real-world settings. We aim to create a general framework, named Synthetic
Semantic Dataset Generator (SSDG), and demonstrate its usefulness by producing
an industrial dataset. We further asses the semantic quality and use of the dataset
by training and validating a set of segmentation networks. The general aim of this
work can be summarized in the following objectives:

• Objective 1: Design a scalable method for generating synthetically labelled
point cloud datasets where the label creation process is automated, Syn-
thetic Semantic Dataset Generator (SSDG).

• Objective 2: Design a novel domain randomization scheme to reduce the
disparity between real world and computer simulated data for 3D point
cloud segmentation.

• Objective 3: Construct industrial 3D CAD objects and use them for gener-
ating a high-quality industrial-based dataset from the method described in
objective 1.

• Objective 4: Investigate and train different segmentation networks on the
proposed dataset to validate its use.

• Objective 5: Design a ROS Node for direct usage of the projection-based
networks in a SLAM pipeline.

1https://www.autonomousrobotslab.com/

4 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

1.2.3 Contributions

This thesis makes contributions to synthetic semantic segmentation dataset cre-
ation, as well as 3D semantics-based domain randomization. An industrial dataset
is generated using the proposed method, and evaluated using two open-sourced
segmentation networks.

The repository containing the source code of the Synthetic Semantic Dataset
Generator (SSDG) implementation is made publicly available, and can be found
under the following URL: https://github.com/ntnu-arl/semantic_simulator

1.3 Thesis Outline

Chapter 1 Introduction

Chapter 2 Background - Provides the theoretical background for the material pre-
sented, and related works. The chapter includes theory within the fields of
LiDAR sensing, deep learning and semantic segmentation. Particular em-
phasis is placed on projection-based segmentation and related work.

Chapter 3 Method and Implementation - Presents the Synthetic Semantic Dataset
Generator (SSDG) method, followed by an industrial dataset generated us-
ing SSDG. Implementation details for semantic segmentation of the indus-
trial dataset with two segmentation networks is presented at the end of the
chapter.

Chapter 4 Results - Presents the results obtained from the segmentation experi-
ments on the industrial dataset.

Chapter 5 Discussion and Further Work - Summarizes and discusses the results
observed, and provides suggestions for further works and potential exten-
sions to the proposed synthetic dataset generator.

Chapter 6 Conclusion

Chapter 2

Background and Related Work

In this chapter, we present some background theory and related work. The chapter
begins with a brief presentation of the LiDAR sensor and some of its data repre-
sentations. This is followed by an overview of deep learning, before we move into
deep learning-based segmentation networks. The chapter attempts to cover the
key background theory in topics of deep learning and segmentation, but since
these are hugely spanning fields we focus mainly around topics surrounding deep
learning-based 3D point cloud segmentation.

2.1 Light Detection and Ranging (LiDAR)

In this section we present some of the core theoretical knowledge behind the
LiDAR sensor.

2.1.1 The LiDAR sensor

Figure 2.1: An example of the Ouster OS0 LiDAR with sample configurable pa-
rameters. α is vertical FOV, θ is vertical resolution, β is horizontal FOV and φ is
horizontal resolution. 1

The Light Detection and Ranging (LiDAR) sensor has been the subject of much
research in the past decade, particularly due to their robustness to illumination

1Images modified from https://ouster.com/products/scanning-lidar/os0-sensor/

5

6 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

changes and obscurants. A LiDAR works by emitting pulsed light waves into its
surroundings and uses the time for each pulse to return to calculate the distance
each pulse travels. By repeating this thousands of times per second, a LiDAR is
able to create a precise, real-time 3D map of the environment. There are a num-
ber of configuration parameters that determine the size and accuracy of the map,
including horizontal and vertical field-of-view (FOV), see Figure 2.1. Horizontal
and vertical resolution is also configurable to some extent. A LiDAR is able to pro-
vide a 360° field-of-view by mechanically spinning a mirror around, and most
LiDARs today produce a full horizontal FOV using this scanning effect. The con-
figurations of LiDAR systems differ in suppliers and models, and for this thesis we
base our work on the Ouster OS0-128 LiDAR.2

2.1.2 Point Cloud

Figure 2.2: Point cloud of a staircase, generated using method in Section 3.1. 3D
CAD model from the ModelNet40 [5] dataset.

The point cloud format is the common data representation for LiDAR data and is
often used for localization and mapping.A point cloud is a set of points formed
by the hit positions of the laser beams on a physical object. Every point in a point
cloud consists of coordinates x , y , and z with additional information such as re-
flective intensity sometimes included.

2https://ouster.com/products/scanning-lidar/os0-sensor/

Chapter 2: Background and Related Work 7

2.1.3 LiDAR Image

Figure 2.3: 2D Range image of a an industrial scene. Colors stem from a semantic
label, but can also be given by intensity or RGB channels from a camera.

Another LiDAR data representation is the LiDAR image, which can be constructed
from the elevation and azimuth measurements generated by a LiDAR. It can be
seen as a parametrized image representation of LiDAR data. Each vertical beam
from the sensor will have a row, and the consecutive measurements from each
beam comprise that particular row. As such, we can construct a 1024x128 image
from an Ouster OS0-128 which has 128 vertical rays. A LiDAR image can be con-
structed from both intensity channels and range. 2D LiDAR images are a much
more compact representation of the 3D geometrical world, and as such more effi-
cient operations may be performed on it. Particularly for large-scale scenes, the 2D
representations are much more computationally efficient than working directly on
the 3D point cloud.

2.2 Deep Learning

In this chapter, deep learning theory will be presented to provide theoretical depth
behind the neural networks used for semantic segmentation. Recently, deep learn-
ing networks and Convolutional Neural Networks have become more common in
the semantic segmentation literature, and most state-of-the-art algorithms today
use some form of deep learning. According to [6], their success in the field stems
partly from their strong ability to yield hierarchies of features.

2.2.1 Neural Networks

Neural networks and deep learning is based around the ability to use large-scale
datasets to extract patterns and structures to model nonlinear processes. Neural
networks can be used for pattern recognition, 3D reconstruction, medical diagno-
sis and classification and more. The name and intuition behind them are inspired
from biological neurons that we find in the human brain. A brain neuron can be
excited from other cells by a electrical signal, or synaptic potential. Similarly, an
artificial neuron will sum a set of weighted inputs x i , representing synaptic po-
tential, and pass it to an activation function f which will output a final value
y .

8 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

Figure 2.4: The perceptron model, here consisting of 4 inputs, 4 weights and a
single neuron.

Figure 2.4 presents a fundamental unit of neural networks, the perceptron. It
consists of a single neuron receiving a set of inputs from which it outputs a final
value y . It adds a weight to each input value, and uses the weighted sum of all
the inputs and a potential bias b which is passed to an activation function. During
learning, the weight of both the input and bias will change. This is what allows the
neuron to learn what to distinguish between, and connections between neurons
to learn shapes and patterns. The output is calculated by taking the weighted sum
of the n inputs and passing it through an activation function f , Equation (2.1).
The perceptron in Figure 2.4 consists of 4 inputs, meaning it will have 4 trainable
weights and 1 trainable bias, giving a total of 5 trainable values.

z =
n
∑

i=1

x iwi + b , y = f (z) (2.1)

By combining neurons in a layer-wise fashion, we can create deeper neural
networks that are able to learn and generalize for more complex predictions. The
Multilayer Perceptron (MLP) Figure 2.5 (also known as a feed forward network)
consists of an input layer, one or more hidden layers and an output layer. Except
for the input layer and output layer, these layers are built up by connections of
neurons that input and output values from and to each other in the different lay-
ers. Each neuron will have its own set of trainable weights and biases allowing the
network to "learn" by using a method called backpropagation, see Section 2.2.3.

Chapter 2: Background and Related Work 9

Figure 2.5: The Multi-layer perceptron, with an input layer, hidden layer, and
ouput layer.

2.2.2 Convolutional Neural Networks

Convolutional Neural Networks are special type of neural network that employs
convolution kernels or filters along with pooling and more traditional layers to
extract features. They are designed for multi-dimensional data and their location
invariance make them a popular choice for computer vision tasks [7]. They typi-
cally consist of three types of layers, the input layer, one or more feature-extraction
layers and a classification layer, Figure 2.6.

Figure 2.6: An example of a CNN architecture, with an input layer, feature-
extraction layer and classifcation layer. The feature-extraction layer in this par-
ticular example uses ReLU as activation and MaxPooling for downsampling.

10 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

Convolution Layer

The convolutional layer consists of multiple convolution filters, kernels that each
are iterated with a given st r ide across the width and height of the input. The
filters have arbitrary sizes M xN but are typically square size in neural networks.
At each position along the input data, the mathematical convolution is calculated.
This is not a traditional matrix multiplication, but an expression for how the shape
of a function is modified by another.

Each element of the kernel represent a separate learnable weight that is up-
dated during training. The output of the convolution between the kernel and the
input in the iterated location is an activation map which gives the response of
the filter at that particular location. By backpropagating and updating the filter
weights, the network will learn filters that activate when they see a particular vi-
sual feature or cue. By training on a large dataset these filters will correspond to
features that activate when the feature maps correspond to the desired output.

Each convolutional layer will contain an entire set of such filters that each pro-
duce a separate activation map. By combining these the neural network constructs
meaningful features that can be extracted to for example classify an image.

Pooling Layer

Most feature-extraction layers will at some level include a downsampling opera-
tion. This helps reduce the number of parameters, and prevents overfitting. The
most common method to achieve this is using pooling layers. A pooling operation
will downsample the input which causes information loss, but simultaneously al-
lows for the network to extract features of higher levels. MaxPooling calculates
the largest value in a patch of each feature map and dumps the other values.
A 2x2 MaxPooling layer would reduce an equally sized 2x2 matrix as in Equa-
tion (2.2) to a single digit, and as with convolution kernels they can slide across
an input matrix to downsample the whole matrix. The MaxPooling outputs the
highest value in the input window the kernel is placed in, which in Equation (2.2)
would correspond to the value 4.

�

1 2
3 4

�

−→ 4 (2.2)

Equation 2.2: An example of the output from a 2x2 MaxPooling layer on a 2x2
matrix.

Fully-Connected Layer

The final classification layer is responsible for converting the features from the
hidden layers into predictions that result in the output of the CNN. For classifica-
tion and segmentation tasks, the output should contain the class scores and should

Chapter 2: Background and Related Work 11

be a one-dimensional vector. To convert from a multi-dimensional input (such as
an image), Fully-Connected Layers FC are used. Each neuron in a fully-connected
layer is connected to all the neurons in the previous layer to flatten the output.
Each neuron multiplies the input by a set of learnable weights and adds a bias. In
most cases, the FC will be used in the last layer to convert the output from previ-
ous convolutional layers to a meaningful output vector, but they can be employed
throughout the network.

2.2.3 Training Neural Networks

Training neural networks requires large datasets that contain training data with
the correct output for each given input. By calculating the difference between the
desired output and given output as given by a loss function (Section 2.2.5) for
an iteration of the training, a learning algorithm can decide how to update the
weights and biases of the hidden layers in the network. The optimization problem
of minimizing the error function (loss function) is solved by the backpropagation
algorithm. The backpropagation algorithm calculates the gradient of the error
function with respect to the weights of the hidden layer and is a direct application
of the chain rule for derivatives [7]. The calculation of the gradients is applied
repeatedly starting from the output at the top all the way to the bottom where
the input is fed. The gradients with respect to the weights can then be calculated
for each module, and the weights be updated accordingly. The gradient vector for
each weight indicates how the error would change if the weight was increased by
a small amount. The backpropagation algorithm finally adjusts the weight vector
in the negative direction of the gradient vector.

Stochastic Gradient Descent (SGD)

In practice, the de facto standard is not to use traditional backpropagation on a set
(or batch) of the training data. Instead, a much faster method known as Stochastic
Gradient Descent (SGD) is used. Whereas batch learning uses an entire batch to
compute a gradient, SGD uses stochastic (online) learning on a single randomly
chosen example at each iteration. The true gradient is then estimated based on
the error of that example. The estimation may lead to noise in the model, but
according to [7] this can be advantageous as it may lead to the optimization to
jump over local minima basins. For more information on SGD, see [7].

2.2.4 Improving neural networks

Activation Functions

Each neuron in a network contains an activation function, and they are fundamen-
tal part of a neural network that help define the output of a node. Also known as
transfer functions, their function and effect on learning have been researched in

12 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

depth and is still the subject of research. In biological neurons the activation func-
tions represents the abstraction that makes the neuron fire or not. The activation
function within a neural network is what enables the nonlinearity between the
input and output values to the network.
The most simple form of an activation function is the identity function. This is
known as a Linear activation function. Here the activation is simply proportional
to the input, and no nonlinearity is introduced. Due to this, backpropagation will
not yield results as the derivative is a constant with no relation to the input x . In
other words, it reduces the network into a linear regression model. By introduc-
ing a nonlinear activation function such as the Sigmoid function, which provides
a smooth gradient, the stacking of multiple layers of neurons will provide a non-
linear combination and create a complex mapping between the input and output
from the network.

−10 −5 0 5 10

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0 linear

−10 −5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0 sigmoid

−10 −5 0 5 10

0

2

4

6

8

10 ReLU

Common Activation Functions

Figure 2.7: Three Activation functions: Linear, Sigmoid and ReLU

As we see in Figure 2.7 the output of the sigmoid function will approach either
zero or one in the negative and positive directions respectively. This will yield
a gradient of zero if you traverse far enough in one direction and as such the
network will cease to learn if the input value is not in the correct range. This is
what is called the Vanishing gradient problem.

LeakyReLU

A computationally cheaper and faster activation function is the Rectified Linear
Unit (ReLU) [8]. Even thought it may at first seem like a linear function in Fig-
ure 2.7, it is not. The function returns 0 if the input is negative and acts like a linear
transformation if positive. It avoids and rectifies the vanishing gradient problem,
and since it only acts upon positive values only a few neurons will be activated
at a time. One issue caused by the rectification is that fragile gradients may die

Chapter 2: Background and Related Work 13

resulting in dead neurons. To combat this, a modification of the ReLU aptly called
Leaky Rectified Linear Unit (LeakyReLU) is introduced in [9]. Figure 2.8 illustrates
the modification, where a small slope is introduced to keep the updates alive.

−4 −2 0 2 4

0

1

2

3

4

5

LeakyReLU and ReLU Activation Functions
LeakyReLU
ReLU

Figure 2.8: The ReLU function and its counterpart LeakyReLU [9].

Softmax

Often times the final layer of a neural network is expected to produce a proba-
bility distribution over the set of C classes, and as such a set of input numbers
need to be converted to a set of probabilites. The Softmax function calculates the
relative probabilities based on the normalized exponentials of the input numbers
to determine a final output probability value.

Softmax(z j) =
ez j

∑C
c=1 ezc

= ŷ j (2.3)

Where z j is the output from the j th neuron. After softmax has been applied, each
component will be in the interval (0,1).

2.2.5 Loss functions

The loss functions are a way of describing how close or far away a network is
from its ideal state. An ideal network will give the correct prediction given an
input and ground truth set, and the loss functions explain how far away from the
correct response the neural network is.

Softmax Cross-Entropy Loss

A common loss function is the Softmax Cross-entropy loss. This cross-entropy loss,
also known as log loss, measures the performance of a classification model where

14 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

the output is a probability p ∈ [0, 1]. A perfect model will have a low log loss, while
a bad prediction will result in a high loss value. The cross-entropy is defined as

L(y, ŷ) = −
n
∑

i=1

p(yi) log(p(ŷi)) for n classes (2.4)

Where yi is the ground truth label and ŷi the predicted label of the i th class. For
binary classification, the entropy would be defined as

L(y, ŷ) = −
n
∑

i=1

p(yi) log(p(ŷi)) (2.5)

= −[y log(p) + (1− y) log(1− p)] (2.6)

where the ground truth label y will be either 0 or 1, and pi is the softmax prob-
ability for the class. Note that for binary classification the probability of the other
class is simply 1− p.

Weighted Cross-Entropy Loss

Most datasets will have an imbalance between different classes. For instance, a
large industrial zone will contain a lot more pipes than industrial tanks. This will
make the network more biased towards the pipes and as such yield significantly
poorer network performance. To address the imbalance in the training sets be-
tween classes, a weighted cross-entropy loss can be employed. Each class is given
a weight based on how often the class appears in the set. The weighted cross-
entropy with the inverse square root of the class frequency is defined as

L(y, ŷ) = −
n
∑

i=1

αi p(yi) log(p(ŷi)) for n classes (2.7)

αi = 1/
Æ

fi (2.8)

Where yi and ŷi are the true and predicted labels respectively, and fi is the fre-
quency of class. This loss function will reinforce the networks response for the less
frequent appearing classes and improves performance on imbalanced datasets.

Lovász-Softmax Loss

In evaluation of image segmentation, the Intersection over Union (IoU) (See Sec-
tion 2.2.8) is a commonly employed metric. The IoU metric is a discrete, non-
derivable metric and as such cannot be directly employed as a loss. The cross-
entropy loss on a validation set is often a poor indicator of the segmentation
quality, and the Jaccard index (IoU) would be a better performance indicator for
training the model. Berman et al. [10] presents the Lovász-Softmax, adopting the
IoU metric using the Lovász extension of submodular losses. Based on submodu-
lar analysis of set functions, the Jaccard index is extended to provide a smooth

Chapter 2: Background and Related Work 15

extension of the otherwise discrete loss. The Lovász-Softmax loss (Lls) can be for-
mulated as

Lls =
1
|C |

∑

c∈C
∆Jc
(m(c)) and (2.9)

mi(c) =

¨

1− x i(c), if c = yi(c)
x i(c), otherwise

(2.10)

where |C | is the class number, ∆Jc
defines the Lovász extension of the Jaccard

index, and x i(c) and yi(c) respectively hold the class probability and ground truth
label of pixel i for class c. m(c) represents the vector of errors constructed from
each pixel i and class c ∈ C in Equation (2.10). For further information, see [10].

2.2.6 Regularization

Regularization is an action of introducing additional information to prevent Over-
fitting, which is when a model fails to generalize the features or patterns in the
training data. Often times, deep neural networks will have million of parameters
and will try to learn any features or patterns it can find in the training set and
can therefore be prone to overfitting, if for example the training set is too small.
Overfitting is said to be caused by noise in the training being learned by the net-
work as a feature or underlying concept. As such, when the model sees new data
the performance will drop significantly. Regularization techniques aim to prevent
this and improve the generalization ability of the network. Poor performance from
machine learning models is often attributed to overfitting or underfitting. Under-
fitting refers to when a model is not able to properly model the data with poor
performance both on the training set as well as the validation set. Typically this is
a sign that the model is not a fit for the data, and new models should be explored.
This section will cover some of the techniques used to deal with overfitting.

Data augmentation

Data augmentation is a method of enlarging a dataset by generating new data
from the existing data by adding changes or perturbations. The most simple tech-
niques of data augmentation for computer vision includes translation, whitening,
scaling, flipping and rotation. It has a limited effect since completely new data is
never introduced, but it is an easy and simple technique for enlarging a dataset
without creating entirely new data.

L1 and L2 regularization

Another method of regularization is using Lasso Regression (L1) and Ridge Re-
gression (L2). Both introduce a penalty on weights in the loss function, in order
to reduce the absolute sum of the weights. By adding Equation (2.11) or Equa-
tion (2.12) to a loss function, the absolute value of the weights are penalized and

16 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

reduces the likelihood that noise in the training data will be learned by the model.
By decreasing the number of parameters in the model, the L1 and L2 regression
simplify the model and is an often used method for regularization.

L1 = λ
N
∑

i=1

|wi| (2.11)

In addition to the Lasso Regression (L1), we have Ridge regression, which
squares the L2 norm of the weights and uses this as a penalty. The L2 term is
defined as:

L2 = λ
N
∑

i=1

w2
i (2.12)

Dropout

The key idea behind droput is to randomly drop units and connections from a
neural network during training. The technique was introduced in [11] as a simple
way to prevent overfitting. By randomly dropping units in the hidden layers at
different points in time, unique thinned versions of the network are being trained
that are only slightly different versions of the others. The resulting final model
will pick up only the key properties from each of the thinned networks created
during training. The technique is an efficient method of reducing the overfitting
of networks and has been prove to increase performance of neural networks on a
number of tasks [11].

2.2.7 Normalization

Normalization is another technique against overffiting, that aims to bring the
dataset to a common scale without distorting its shape. Normalizing the data en-
sures that the model can generalize appropriately. An independent and identically
distributed dataset will allow the neural network to converge faster and stabilize
the learning process.

Batch normalization works in two steps. The input is first normalized to ensure
the data have the same mean and variance and thus fits the same distribution. The
data is transformed to have a mean of zero and a standard deviation of one. During
this normalization step, a smoothing term ⌉ is added to ensure numerical stability.
The final operation is re-scaling and offseting of the input, by using two learnable
parameters re-scaling (γ) and shifting (β) as in Equation (2.13). The normalized
output of the batch normalization yi is then passed onto subsequently layers of
the network, while the normalized output x̂ i remains internal to the current layer.

yi = γ x̂ i + β (2.13)

Chapter 2: Background and Related Work 17

2.2.8 Metrics

To report and compare classifcation between different methods and datasets, a
number of assessment criteria have been developed. While loss functions provide
a valuable tool for network training, evaluation metrics must be constructed to be
able to validate the results.

IoU

The Intersection over Union (IoU) (also known as the Jaccard index) is the most
commonly used metric to for evaluation of segmentation performance. The In-
tersection over Union metric describes the extent of which two bounding boxes
overlap. In the world of segmentation, IoU determines how well an image is seg-
mented by comparing the pixels in the target and prediction masks. A high IoU
value is synonomous with a good overlap between target and prediction, while a
low IoU value represents a low percentage of overlap.

Figure 2.9: The Intersection over Union.

The IoU score is calculated for each class separately and averaged over all
classes to provide a mean Intersection over Union (mIoU) of the semantic seg-
mentation prediction.

Accuracy

As an alternative metric to IoU, the pixel accuracy is sometimes reported. To evalu-
ate the semantic segmentation, the percentage of pixels correctly classified are re-
ported for each class separately and combined to provide a global accuracy metric.
The metric can sometimes be misleading if a class representation is small within
an image, as this will result in the metric being biased mainly towards identifying
negative cases.

18 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

Figure 2.10: From top to bottom: input image, prediction, and ground truth. In-
put color is based on intensity, and grey represents tanks, blue represents stairs,
red represents chimneys while green represents other objects. The neural net-
works predicts large parts of the tank wrong, but since most of the image is black
the reported accuracy will still be high. This is the reason accuracy is not always
a good evaluation metric.

Figure 2.10 illustrates the issue with the accuracy metric. The network predicts
the objects in the scene wrong, but since most of the image is black, the reported
accuracy will be upwards of 95%.

2.2.9 Deep Learning Libraries

Implementation of deep neural networks are centered around two main frame-
works, PyTorch [12] and TensorFlow[13]. TensorFlow was released by Google
Brain in 2015 and designed to replace Theano [14]. It is often times used in com-
bination with Keras [15]. PyTorch is based on the Torch library, and is primarily
developed by Facebook’s AI Research Lab. Both the frameworks are open-source
and present an end-to-end platform for creating and training machine learning
models.

In recent years, the usage of Graphics Processing Unit (GPU) originally in-
tended for display devices have been used to accelerate deep learning networks.
Their highly parallel structure make them perfect for DL implementations as it
allows them to speed up computations that involve matrix operations. In addi-
tion, a number of accelerated libraries have been implemented by manufacturers
to directly access the parallelism of GPUs. Compute Unified Device Architecture
(CUDA) is a platform developed by NVIDIA [16] for general computing on GPUs.
It allows the user to create high performance GPU-accelerated applications which

Chapter 2: Background and Related Work 19

can be used for linear algebra and tensors, image and video processing and more.
On top of CUDA, NVIDIA have developed CUDA Deep Neural Network library
(cuDNN) [17] specifically designed for training deep neural networks. It provides
low-level implementations for convolutions, pooling, normalization and activa-
tions with high efficiency. Both CUDA and cuDNN are both free to use and fre-
quently used by DL practitioners.

2.3 Semantic Segmentation

Figure 2.11: A semantically labelled point cloud of a refinery, where each color
represents a category. Created using SSDG.

In computer vision, 2D segmentation is a well-known problem that has been stud-
ied extensively and refers to the process in which a pixel is assigned a semantic
label (i.e. car, person, road). For a long time, advances within semantic segmenta-
tion were exclusively focused on images, and impressive results have been shown
over a wide range of segmentation tasks including satellite imaging, medical imag-
ing and robotic perception using traditional machine learning algorithms. Recent
advances in the field of deep learning have enabled the image segmentation tasks
to evolve and progress even further.

While deep learning has been used successfully in the past to solve 2D Vision
problems, it is still relatively new in the 3D domain due to its processing chal-
lenges. Given an input point cloud, the goal of 3D semantic segmentation is to
give each separate point in the cloud a label. Due to point clouds irregular for-
mat however, current 2D convolutional deep learning and other popular image
segmentation techniques can not be exploited directly with point clouds. Point
clouds unstructured and unordered form means it is not trivial to perform stan-

20 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

dard convolutions on them, and neural networks need to provide transformation
and permutation invariance in order to succesfully segment the 3-dimensional in-
put data. Two main directions have been taken in a push to enable accurate 3D
semantic segmentation. Point-wise methods directly process the point cloud, often
by using shared multi-layer perceptrons and providing transformation and permu-
tation invariance by exploiting certain network layers and operations. Today they
are largely considered inefficient for large-scale point clouds and as such only
used for offline segmentation. Faster methods are found within the projection-
based networks, which instead transform the 3D point cloud into various other
formats such as voxel cells or 2D range images. 2D rendered image representa-
tions are denser and as such computationally cheaper, and is therefore the most
selected approach among real-time segmentation techniques.
This section on semantic segmentation is divided as follows. We first note some im-
portant properties of point clouds and give a general problem formulation for the
segmentation of a 3D point cloud. This is followed by a presentation of several of
the most efficient, open-sourced and accurate works within projection-based and
point-based networks. Many of the projection-based methods foundations stem
from previous generation models. For this reason, the SqueezeSeg, RangeNet and
SalsaNet family of neural networks will all be presented, as the novelties each
bring are collectively used by the others. A subsection is also dedicated to a brief
review on Conditional Random Fields. The pioneering work within point-wise net-
works, PointNet, will be presented, along with a more lightweight and efficient
neural architecture named RandLa-Net.

Properties of point clouds

Motivated by Qi et al. [18], we note the following important properties of point
clouds in Rn. They form the basis of architectural choices for point-wise methods,
but do not afflict the projection-based methods.

1. The point cloud is unordered, meaning the set of points come in no specific
order.

2. The points are not isolated and form local meaningful subsets.
3. invariance under transformations. The learned representation of the point

cloud should be invariant to certain transformations.

Problem Formulation

Using the properties of a point cloud as a general foundation we can define a
problem formulation for the point cloud segmentation task as follows.

Consider the unordered set S containing all the points defining a point
cloud, where each point Pi is a vector containing its coordinates (x , y, z):

S = {P0, P1, ..., Pi} where Pi = (x , y, z) (2.14)

Chapter 2: Background and Related Work 21

For the segmentation task, each point from the input cloud is taken
as input and the output is the classification scores for each label xk
in k number of classes. The output will therefore be a matrix of size
nxk for each of the points n and semantic label k. Note that vector Pi
may be extended to include features such as point intensity, color and
ambience.

Output = [x0, x1, .., xn] n ∈ k (2.15)

2.3.1 Projection-based methods

Projection-based networks generally work by transforming a point cloud into a
2D grid, infering labels, and reprojecting the segmented 2D grid back onto the 3D
point cloud. This allows them to take advantage of recent advances in state-of-the-
art image segmentation by using techniques such as 2D Convolutional Neural Net-
works (CNN). These methods can be categorized into two general methodologies:
multi-view projection and spherical projection. Multi-view representations suffer
from occlusions and sensitivity to viewpoint selection. As such, the following sub-
sections will only introduce works within spherical representations for point cloud
segmentation.

Figure 2.12: One of the stairs from ModelNet40 [5] projected onto a spherical
projection. The image is a combination of two projections: the top image presents
the intensity-based image, while the bottom presents the label map.

The spherical projection works by projecting the unstructured point cloud onto
a spherical surface. This generates a range view image, and each raw LiDAR point
(x , y, z) is mapped to an image coordinate (u, v):

�

u
v

�

=
� 1

2[1− arctan(y, x)π−1]w
[1− (arcsin(z, r−1 + fdown f −1]h

�

(2.16)

22 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

This represents the standard method of converting a point cloud for spherical-
projection based methods.

SqueezeSeg

To achieve fast and accurate point cloud segmentation, Wu et al. introduced Squeeze-
Seg [19], an end-to-end approach based on a Convolutional Neural Network and
Conditional Random Field (CRF). The proposed network is based on SqueezeNet
[20], a lightweight CNN which achieves AlexNet-level accuracy on ImageNet with
50x fewer parameters. To achieve real-time inference speed and reduce computa-
tional complexity, the model is pruned by replacing convolution and deconvolu-
tions with fireModules [20].
The authors behind SqueezeSeg noted that in line with image segmentation down-
sampling operations, the label maps in spherical projections tended to be blurry
using the SqueezeSeg network. To combat this, SqueezeSeg and SqueezeSegV2
uses CRFs to refine the label map generated by the CNN. The RNN formulation
of the CRF is trained together with the CNN model in an end-to-end fashion as a
single-stage pipeline, giving a fast and accurate model.

Conditional Random Field (CRF)

Down-sampling operations such as MaxPooling inevitably cause a loss of low-level
details as described in Section 2.2.2. In image segmentation tasks, this causes seg-
mentation masks to get blurry boundaries when using models that utilize down-
sampling operations. To combat the blurry boundaries that tend to be predicted
by CNN models, many segmentation models utilize Conditional Random Fields
(CRF).
CRF arranges data points as nodes V and creates edges E between nodes to rep-
resent dependency between datapoints. For instance, two points in a point cloud
with similar intensity and position measurements will likely belong to the same
object and label. To ensure this, we can construct an energy function E(c) that
values a points likelihood of a class as well as its difference from neighbouring
points as:

E(c) =
∑

i

ϕ(ci) +
∑

i

φ(ci , c j) (2.17)

Where ci denotes the predicted label for point i. The unary potentials ϕ contains
local information for a point i.e. the predicted probability from the classifier, and
the pairwise potentials φ defines the "penalty" for assigning different labels to a
point based on its neighbourhood. This enforces consistency within the neighbour-
hood of a point with the intention of removing blurry boundaries. By maximizing
the energy function we ensure that both the labels with the highest probability are
chosen and at the same time ensuring local consistency. The CRF energy function
can not be minimized exactly, but a mean-field iteration algorithm proposed in
[21] efficiently provides an adequate approximation. Furthermore, [22] reformu-
lates the mean-field iteration as a Recurrent Neural Network (RNN).

Chapter 2: Background and Related Work 23

SqueezeSegV2

To further improve the model structure of SqueezeSeg, combat domain shift and
increase robustness against dropout noise, SqueezeSegV2 [23] was introduced.
It presents an unsupervised domain-adaptation training pipeline to combat the
domain shift observed on models trained with synthetic data tested on real-world
data. The domain-adaptation training employs three significant strategies to deal
with the domain shift problem: learned intensity rendering, a geodesic correlation
alignment and a progressive domain calibration. The domain-adaptation pipeline
nearly doubles the test accuracy on real-world data. Real-world LiDAR point cloud
data will always contain some missing points, known as dropout noise. This can
be caused by limited sensor range, reflections or jitter of the incident angle, and
can corrupt the output of early convolution filters. SqueezeSegV2 introduces a
Context Aggregation Module (CAM) to reduce the sensitivity of the network to
dropout noise.

RangeNet

One of the most influential projection-based methods that achieves fast and accu-
rate LiDAR segmentation is RangeNet [24]. It addresses several of the limitations
of the SqueezeSeg (Section 2.3.1) framework and is the most frequently used
segmentation network for real-time semantics-based SLAM. The following two
novelties are presented:

• The projection is extended to include the full range of the LiDAR scan, in
lieu of the frontal 90° approach used by SqueezeSeg.

• A novel kNN is presented to reduce discretization errors

While the CRF-based approach to infer semantics and reduce bleeding used by
SqueezeSeg helps in 2D, it does not suffice for the re-projection to the 3D space.
Two points stored in the same pixel from the range image will for instance be given
the same semantic label. To solve this problem, Milioto et al. proposed a novel k-
nearest neighbors (kNN) search operating on the point cloud. For each point in the
semantic cloud, a point is labeled using a consensus vote based on the k closest
points to it in 3D. A cut-off threshold sets the maximum allowed distance for a
point to be considered a near neighbor using an absolute range distance in lieu
of a Euclidean distance, due to computational efficiency. The novel kNN search
improves the result by recovering important information around boundaries that
is lost during the lossy discretization and back-projection of the laser scans. With
the inclusion of the GPU-enabled kNN search, the name of RangeNet is extended
to RangeNet++.

RangeNet is trained using SGD and weighted cross-entropy loss as described in
Section 2.2. It presents a fast and accurate framework for semantic segmentation
and can infer semantic segmentation using any CNN as backbone. Its most notable
novelty is the introduction of a kNN search algorithm that is frequently put to use
by later works.

24 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

SqueezeSegV3

SqueezeSegV3 [25] is the newest generation of squeeze networks, building upon
the network architecture of RangeNet, introducing a novel Spatially-Adaptive Con-
volution (SAC). When LiDAR images are converted by spherical projection, the
feature distribution varies drastically at different locations. Observing that the pro-
jection introduce strong spatial priors, Xu et al. proposes the Spatially-Adaptive
Convolution (SAC) designed to be spatially-adaptive and content-aware.
Previous methods treat LiDAR images as RGB images, using the standard 2D im-
age convolutions. The Spatially-Adaptive Convolution uses adaptive convolutions
that change the weights according to the input as well as location in the image.
The spatially-adaptive operator processes different parts of the image with dif-
ferent filters, and the filters adapt to feature variations. The Spatially-Adaptive
Convolution (SAC) can be described as the following:

Y [m,p,q] = σ(
∑

i,j,n

W(X0)[m, n, p, q, i, j]×X[n, p+ î, q+ ĵ]) (2.18)

Where W(·) is the convolution weight. It is content-aware since it is a function of
the raw input X0, and spatially-adaptive since it depends on the location (p, q).
The backbone of SqueezeSegV3 is built on RangeNet, with five stages containing
several convolution blocks. Several of the convolutions in the original framework
are replaced with versions of SAC, and the last two downsampling operations are
removed. For more information, the reader is referred to [25]. SqueezeSegV3 is
trained on a multi-layer cross-entropy loss where each of the five stages ouput are
included in the loss function. The total loss is a sum of the weighted cross-entropy
loss Lwce of each of the five stages as following:

L=
5
∑

i=1

Lwce (2.19)

SalsaNet

SalsaNet [26] is a simple and fast network that uses an encoder-decoder type
architecture on either Bird-Eye-View (BEV) or Spherical-Front-View (SFV) pro-
jections. Since SalsaNext (the continued generation of SalsaNet) uses only the
spherical (SFV) projection, only this approach will be described. For further infor-
mation, the reader is referred to [26].

Chapter 2: Background and Related Work 25

Figure 2.13: The ResNet blocks used in the encoder layers. They consist of a 2D
Convolution along with LeakyRELU activation function, and batch normalization.
The double skip connection is added at the end of the block.

The Encoder part aims to encapsulate the information in the input to provide
meaning features for the decoder. The 2D projected image is directly used as the
input and is fed into the encoder. The encoder structure is built up of multiple
residual blocks as Figure 2.13 shows. Every block in the network is additionally
combined with dropout and pooling layers, except for the very last layer. The max
pooling layers employ a kernel size of 2, which brings the total downsampling fac-
tor to 16 at the end of the encoder. The feature channels of the convolutions within
the blocks are equal. Their value increases along the architecture with values of
32, 64, 128, 256 and 256 used respectively. The double layer skip connection we
see in Figure 2.13 reduces the impact of the vanishing gradient and allows the gra-
dient to more freely move through the network. The ResNet blocks in SalsaNet are
based on the work behind ResNets. For more information on residual networks,
the reader is referred to [27].

The Decoder part is responsible for upsampling the feature maps and combin-
ing them with corresponding skip connections from the Encoder. This is done by
using a sequence of de-convolution layers which is combined the corresponding
layer from the Encoder, followed by a stack of three convolution layers. This was
introduced to capture more precise spatial cues which can be used in the higher
layers. The final layer applies a 1x1 convolution with channels equal to the num-
ber of semantic classes.

After the projected image has been fed through the Encoder-Decoder archi-
tecture, it is fed into a soft-max classifier, which returns a pixel-wise classification
of the image. SalsaNet is trained with the weighted cross-entropy loss which the
ablation study shows increases accuracy for the model. Additionally the ablation
study showed that the SFV contains redundant information and the paper con-
cludes BEV projection is more appropriate.

SalsaNext

SalsaNext [28] is the next generation of SalsaNet, ranked first on the semanticKITTI
leaderboard when published in 2020. This state-of-the-art neural network intro-
duces a novel architecture that performs uncertainty-aware semantic segmenta-

26 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

tion in real-time. The architecture of the network is improved in the following
ways:

• A contextual module is introduced.
• The receptive field is increased by replacing the ResNet blocks with a set of

novel dilated convolution blocks.
• A pixel-shuffle layer replaces the transposed convolution layer in the decoder
• A central encoder-decoder dropout approach is utilized, where dropout is

inserted in every encoder-decoder layer except the first and last one
• Average Pooling is introduced in lieu of having stride convolutions in the

encoder, to alleviate memory usage.

To gather contextual information throughout the network, a contextual mod-
ule is introduced before the encoder part of the architecture. The context blocks
consists of a 1x1 followed by a 3x3 convolution and a 3x3 dilated convolution.
This allows for the fusion of the large receptive field of the first convolution with
smaller ones to help capture the global context along with detailed spatial infor-
mation. By placing three such residual dilated convolution stacks at the begin-
ning of the network, global context information can be embedded in the network.
As the author notes, this is important for learning complex correlations between
classes.
The pixel-shuffle layer is introduced to avoid checkerboard artifacts in the upsam-
pling process. It directly uses the feature maps to upsample the input by shuffling
the pixels from the channel dimension to the spatial dimension, and is cheaper
computationally than transpose convolutions.

Figure 2.14: The novel combination of dilated convolutions introduced in Sal-
saNext. The dilated convolutions have a rate of 2, meaning that there is one space
between each kernel element both row-wise and column-wise.

To further enhance the segmentation accuracy, the model is optimized using
a combination of weighted cross-entropy loss Lwce and Lovász-Softmax loss Lls as
described in Section 2.2.5. The total loss will be

L= Lwce +Lls (2.20)

2.3.2 Point-based networks

Point-based networks work directly on the irregular 3-dimensional point cloud.
PointNet [18] introduced in 2016, is considered the pioneering neural network
within 3D Classification and Segmentation as it was the first neural network to

Chapter 2: Background and Related Work 27

perform convolutions directly on 3D point clouds. It was later extended to Point-
Net++ [29] and forms the basis for many of the consequent deep-learning based
segmentation methods.

PointNet

The PointNet algorithm works in two parts, a classification part and a segmen-
tation part, as we see in Figure 2.15. Its three main modules are a max-pooling
layer, a local and global information combination structure, and two joint align-
ment networks.

Figure 2.15: The PointNet architecture. Taken from R. Qi et al. [18]

The classification network computes global feature descriptors by convolution
kernels, shared multilayer perceptrons (MLP) and a max-pooling layer. After the
global point cloud feature vector has been computed, it is concacenated with the
point features and based on the combined point features a new per point fea-
ture is computed, based on both local and global informatino. This is what the
segmentation network in Figure 2.15 depicts.

To provide transformation invariance, the PointNet network predicts an affine
transformation matrix which is then applied directly. Because the predicted trans-
formation is now applied to the neural network, the learnt representation will
be invariant to geometric transformations. This joint alignment network is per-
formed on both the input points as well as the point features, to enable invariance
throughout. To reduce the complexity of the optimization, the feature transforma-
tion matrix is constrained by adding a regularization term in the training loss.

A final max-pooling layer enables permutation invariance and combines all
the features to provide a global feature. Permutation invariance implies that if
the point cloud was to be rearranged such that the order of the points in the set
changed, it would give the same result. This is an important remark as a main
impediment of 3D semantic segmentation is the unordered set property.

PointNet++ [29] extended PointNet with a hierarchical feature learning ar-
chitecture. Instead of the single max pooling layer being applied to the whole
point set as in PointNet, PointNet++ groups points and incrementally abstracts
larger and larger local regions along the hierarchy. Each abstraction level is com-
posed of a smapling layer, a grouping layer and a PointNet layer. The sampling

28 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

layer consists of the iterative Farthest Point Sampling (FPS) to select a subset of
points, and compared to random sampling this allows for a better coverage of the
entire point set given the same number of centroids. The grouping layer takes in
the point set along with the coordinate of the centroids and will output groups
of point sets based on their region. Instead of the traditional k-nearest neighbors
(kNN) algorithm for grouping, ball query is used to find points within a radius of
the queried point. Ball query is particularly better suited at higher dimensions due
to it guaranteeing a fixed region scale. This will in turn make local region feature
more generalizable, and make ball query more preferable for semantic point la-
beling. The PointNet layer consists of the network described in [18] which is used
to learn local features.

RandLA-Net

To efficiently segment large-scale 3D point clouds, expensive sampling techniques
and processing steps must be replaced with more efficient techniques. RandLA-Net
[30] is the to-date most efficient and accurate point cloud semantic segmentation
that works directly on the 3D point cloud. RandLA-Net distinguishes itself from
other point-based networks in the following ways:

• The network only relies on random sampling
• A proposed local feature aggregator obtains larger receptive fields by con-

sidering explicitly the local spatial relationship and point features
• The network consists only of shared MLPs and no kernelisation or graph

construction, enabling efficient segmentation

Random Sampling (RS) is the key enabler for the efficiency of the network. It
uniformly selects K points from the original set of N , and with a computational
complexity of O(1) is both scalable and extremely efficient regardless of input size.
Due to this, the RS technique is the most suitable approach for efficient processing
of large-scale point clouds. While the Random Sampling is an efficient tool it may
also discard key information, particularly on objects with few points. To counteract
this, a local feature aggregation module is proposed. The module consists of three
neural units: a Local Spatial Encoding block (LocSE), an Attentive Pooling block,
and a dilated residual block. The dilated residual block contains a stack of LocSE
and Attentive Pooling units with a skip connection, inspired by ResNets [27]. By
combining Random Sampling (RS) with the local feature aggregation module,
RandLA-Net is able to efficiently and accurately segment a point cloud directly,
citing a speed improvement of 200x over existing approaches.

Chapter 3

Method and Implementation

3.1 Synthetic Semantic Dataset Generator (SSDG)

Figure 3.1: Converting a raw point cloud (left) to a semantically labeled point
cloud (right) using SSDG. The colors from the raw point cloud stem from z-value,
while the colors on the semantic point cloud represent different object categories.

The impressive results of deep learning networks in tasks such as semantic seg-
mentation are in large attributed to the availability of massive datasets with high-
quality precise labels. Impressive work has been done on labelling tools and ready-
labelled datasets such as SemanticKITTI, but most of the existing benchmarks
today are tailored towards autonomous driving. To the best of the authors knowl-
edge, very few or no open-source ready-labelled large industrial point cloud exists
to date. It could be suspected that this is due to privacy concerns and data protec-
tion, or simply because of the complexity of the data collection process in heavy

29

30 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

industry areas. Some previous work has focused on creating synthetically labelled
datasets to deal with this. [31] presents a plugin for the GTA-V computer game
that rapidly creates point clouds with accurate per-points labels. Notably, Squeeze-
SegV2 [23]mentioned in Section 2.3.1 exploits this plugin for data augmentation.
The method is however meant for usage within urban scenes and as such is not
suitable for our industrial use-cases. As no sufficient method for semantic dataset
generation exists to date, we expand our original intent of creating an industrial
dataset and instead create a novel method for general synthetic semantic datasets.
The method, Synthetic Semantic Dataset Generator (SSDG), is presented in the
following chapter.

3.1.1 Pipeline Overview

SSDG creates a simulated world in which a robot travels around, mounted with
LiDAR and segmentation cameras.Using these sensors, the method creates a real-
istic labelled point clouds of the 3D models in the simulation viewed from multiple
different angles. By using the segmentation cameras mounted on the robot, each
point generated by the LiDAR is given a semantic label by projecting the 3D cloud
onto the 2D image plane. The 2D image from the segmentation cameras contains
a label map which is used to give each pixel a semantic value, and can thus be
used to give corresponding points from the cloud its correct semantic label.
In this way, SSDG generates a dataset that closely resembles what a real robot
would produce in a similar environment to the simulation. The method can be
used for a broad range of use-cases, and is not meant for merely autonomous
driving or industrial areas. Furthermore, the method may be extended to include
an unlimited set of categories and 3D models, and tailored to the use of the prac-
titioner.
At its core, the software consists of the following modules: A Gazebo world, a col-
lision avoidance node, a labelling node for point cloud segmentation, and finally a
ROS IGN Bridge to connect the labelling node with the Gazebo world. First, some
of the tools and libraries required is presented in Section 3.1.2. Following this,
implementation details of the nodes are presented. Our efforts focuses on closing
the reality gap and creating realistic data, notably by using a LiDAR sensor that
is directly modelled from the specifications of an Ouster OS0-128 as described
in Section 3.1.3. The reality gap is further investigated in Section 3.1.5, using
techniques within data augmentation and domain randomization.

3.1.2 Simulation Libraries and Tools

This section presents some of the libraries and tools used by SSDG to create the
semantic point clouds.

Chapter 3: Method and Implementation 31

Ignition Gazebo

For our simulations we employ Ignition Gazebo. It offers an efficient simulation
environment for robots with a built-in physics engine and graphical interface.
Gazebo remains one of the most common simulation environments in robotic re-
search. One of its main advantages is its ease of integration of simulated robots
and sensors in experiments. For more information, see [32].

Ignition Sensors

Within the Ignition Gazebo world, the Ignition sensors component provides sensor
models that can be used to generate realistic data from the simulation environ-
ment. A noise modelling tool is also provided to introduce noise models in the
sensor data. This thesis builds on the Ignition LiDAR sensor and Segmentation
Camera included in the package. The Segmentation Camera creates a label map
where each pixel contains the label of the object in that pixel, and a colored map
which contains either instance or label of object depending on whether or not
panoptic segmentation is chosen.

Figure 3.2: An example of using the segmentation camera included in Ignition
Sensors, with the label map on the right hand side.

ROS

The Robotic Operating System (ROS) is an increasingly popular robot middleware
platform that allows for the systemization and ease of communication between a
robot and its software applications. It presents an open-source standardized soft-
ware platform that allows users to share packages that can be cross-compiled and
distributed across systems. This has allowed ROS to become the de-facto operat-
ing system for robotic systems, and a global community that helps develop and
support the platform. For more information on ROS, see [33].

32 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

TF Transform

To keep track of the diffferent coordinate frames and their relative transformations
over time, ROS uses the tf package. The package keeps the relationships between
the coordinate frames in a tree-like structure, and can be used to transform points
between coordinate frames such as lidar-to-camera transformations.

RViz

RViz is a 3D visualization tool for allowing users to visualize information like
sensor data, robot pose and point cloud data. In this thesis it is mainly used to
visualize the point cloud ported from Gazebo, as well as the labelled point cloud
stemming from the labelling node in Section 3.1.4.

Ros IGN bridge

To be able to port the simulation environment from Gazebo to ROS, we use the
ros_ign_bridge. It holds packages that provides integration between ROS and
Gazebo, namely for transportation of images, point clouds and transformations.

SDFormat

To describe a simulation to be loaded, Both Gazebo Classic and Ignition Gazebo
uses the SDFormat (SDF) [34]. An SDF file loads the plugins chosen for the sim-
ulation, as well as defining the world environment and the robot.

3.1.3 Gazebo Simulation

(a) Birds-eye view of the simula-
tion. The white object in the center
is the CAD model and the blue bor-
ders are walls.

(b) First-person view of the robot
traversing the environment. The
white object is an industrial tank,
and the blue vehicle is the robot
with mounted LiDARs and segmen-
tation cameras.

Figure 3.3: An overview of the simulation setup.

Chapter 3: Method and Implementation 33

At the main core of the simulation, a gazebo world with containing elements is
created from a ROS launch file. The launch file sets up three nodes: the gazebo
node, the ROS bridge, and the labelling node. By using a launch file, roslaunch
is able to set up all nodes in a single setup making it a seamless task to create
pipelines for running and closing simulations. The simulation setup is shown in
Figure 3.3 containing a 3D CAD object in the model, and surrounding walls to
keep the robot from moving too far away for segmentation of the object.

Gazebo Node

Figure 3.4: An overview of a refinery gazebo world with the pertaining point
cloud gazebo generates on the left.

The Gazebo world is set up from the SDF file containing the elements for the sim-
ulation. It contains a simple ground plane model and a sun. It additionally loads
plugins needed for the simulation, such as ogre2 for rendering, a physics system,
ignition sensors, and the label system plugin used by the segmentation camera.
To create a realistic dataset that simulates a robot autonomously navigating in
an industrial environment, a robot with mounted lidar and segmentation camera
sensors is spawned in gazebo. It consists of a square chassis and two separate
wheels on each side, that can be controlled to drive and turn the robot by sending
an ignition::msgs::Twist message over the /cmd_vel topic.
The robot is mounted with two LiDAR sensors, one for creating the segmentation
point cloud, and one for collision avoidance. The collision avoidance lidar only
publishes points that are in front of the robot, and is used to keep the robot from
hitting obstacles. The specifications for this LiDAR can be found in Table 3.1. Note
that the minimum range of the collision avoidance lidar is 1.7 meters so it does
not risk confusing the chassis of the robot with an obstacle.

34 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

Collision Avoidance LiDAR
Update rate 60 Hz
Max range 10.0 m
Min range 1.7 m

Range resolution 0.03
Horizontal samples 100

Horizontal ray max angle π
2 rad

Horizontal ray min angle −π2 rad
Horizontal ray resolution 1

Vertical samples 100
Vertical max angle 1 rad
Vertical min angle 0 rad
Vertical resolution 0.1

Table 3.1: Specifications for Collision Avoidance LiDAR

The other LiDAR is responsible for creating the point cloud that is assigned
labels by the labelling node and used as dataset. To create a segmentation network
that can work on real-world data, the LiDAR is configured as the Ouster OS0-128
LiDAR. The OS0-128 has a 90° vertical Field-of-view, a vertical resolution of 128
and a configurable horizontal resolution of 512, 1024 or 2048. The specifications
for the LiDAR can be found in Table 3.2.

Chapter 3: Method and Implementation 35

Segmentation LiDAR
Update rate 10 Hz
Max range 50.0 m
Min range 1.7 m

Range resolution 0.03
Horizontal samples 512

Horizontal ray max angle π rad
Horizontal ray min angle −π rad
Horizontal ray resolution 1

Vertical samples 128
Vertical ray max angle π

4 rad
Vertical ray min angle −π4 rad

Vertical resolution 0.1
Noise ∼N (0,0.008)

Table 3.2: Specifications
for the simulated Segmen-
tation LiDAR, modelled
from the Ouster OS0-128.

Figure 3.5: Ouster OS0-128 Specifica-
tions. 1

Along with the two LiDARs a set of 16 segmentation cameras are mounted on
the robot. The cameras are responsible for creating label maps that are used by the
labelling node (3.1.4) to give each point in the point cloud a label. The cameras are
mounted in the same spot as the LiDAR, but pointing in different directions. This
is done to semantically label every point in the full 360°cloud. The specifications
for the segmentation cameras are found in Table 3.4 and Table 3.3.

1Retrieved from http://www.oxts.com/wp-content/uploads/2021/01/Ouster-datasheet-revc-
v2p0-os0.pdf

36 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

Camera Settings
frame_id: "vehicle_blue/semantic_camera_link_1/semantic_segmentation_camera_1"
height: 240
width: 320
distortion_model: "plumb_bob"
D: [0.0, 0.0, 0.0, 0.0, 0.0]
K: [277.0, 0.0, 160.0, 0.0, 277.0, 120.0, 0.0, 0.0, 1.0]
R: [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0]
P: [277.0, 0.0, 160.0, -0.0, 0.0, 277.0, 120.0, 0.0, 0.0, 0.0, 1.0, 0.0]
binning_x: 0
binning_y: 0
roi:

x_offset: 0
y_offset: 0
height: 0
width: 0
do_rectify: False

Table 3.3: Camera Info

Segmentation Camera
Update rate 30 Hz
Max range 50.0 m
Min range 1.7 m

Image width 320
Image height 240

Table 3.4: Specifications for Segmentation Cameras.

In addition to the robot and sensors, the Gazebo world will contain the objects
to be labelled. The code snippet below presents the model for a tank. On line 6-8
the label system is used to give a semantic label to the object, in this case 150.
The SDF model also contains the uri for the object file (Collada/OBJ/STL) on line
12, and the scaling factor on line 11.

1 <model name=" tank ">
2 <pose>0 0 0 0 0 0</pose>
3 <s ta t i c>true</s ta t i c>
4 < l i n k name=" body ">
5 <v i s u a l name=" v i s u a l ">
6 <plug in f i lename=" i g n i t i o n −gazebo−l abe l−system " name="

i g n i t i o n : : gazebo : : systems : : Label ">
7 <l abe l >150</ l abe l>
8 </plugin>
9 <geometry>

10 <mesh>
11 <sca le >0.112334 0.198570 0.169766</ sca le>
12 <ur i>tanks / tank_20 . STL</ur i>
13 </mesh>

Chapter 3: Method and Implementation 37

14 </geometry>
15 </v i sua l>
16 </ l ink>
17 </model>

ROS Bridge

To port the gazebo simulation to a platform that can be used for inference and
segmentation, the ROS IGN bridge is employed. The package bridges the network
between a ROS core and Ignition Transport from the Gazebo world. We employ
a unidirectional bridge, where ROS is the subscriber and Ignition the publisher.
The bridge is responsible for transporting two central components for the labelling
node, the LiDAR point cloud and the label map. To correctly overlay the pointcloud
to the label maps, the TF transformations are also included, as well as the camera
info used by the cameras. The gpu_lidar_collision_avoidance/points topic is used
by the collision avoidance node (Section 3.1.3) algorithm for robot movement.

Topic ROS type Ignition Transport type

lidar sensor_msgs/LaserScan ignition::msgs::LaserScan
lidar/points sensor_msgs/PointCloud2 ignition::msgs::PointCloudPacked

gpu_lidar_collision_avoidance/points sensor_msgs/PointCloud2 ignition::msgs::PointCloudPacked
panoptic/camera_info sensor_msgs/CameraInfo ignition::msgs::CameraInfo

model/vehicle_blue/pose tf2_msgs/TFMessage ignition::msgs::Pose_V
panoptic/labels_map sensor_msgs/Image ignition::msgs::Image

panoptic2/labels_map sensor_msgs/Image ignition::msgs::Image
panoptic3/labels_map sensor_msgs/Image ignition::msgs::Image
panoptic4/labels_map sensor_msgs/Image ignition::msgs::Image
panoptic5/labels_map sensor_msgs/Image ignition::msgs::Image
panoptic6/labels_map sensor_msgs/Image ignition::msgs::Image
panoptic7/labels_map sensor_msgs/Image ignition::msgs::Image
panoptic8/labels_map sensor_msgs/Image ignition::msgs::Image
panoptic9/labels_map sensor_msgs/Image ignition::msgs::Image
panoptic10/labels_map sensor_msgs/Image ignition::msgs::Image
panoptic11/labels_map sensor_msgs/Image ignition::msgs::Image
panoptic12/labels_map sensor_msgs/Image ignition::msgs::Image
panoptic13/labels_map sensor_msgs/Image ignition::msgs::Image
panoptic14/labels_map sensor_msgs/Image ignition::msgs::Image
panoptic15/labels_map sensor_msgs/Image ignition::msgs::Image
panoptic16/labels_map sensor_msgs/Image ignition::msgs::Image

Table 3.5: Topics shared between ROS Ignition Transport.

Collision Avoidance Node

To keep the robot within segmentation distance of the 3D object, a set of walls
surround the object. The robot movement is controlled from a collision avoidance
node which gives the robot random trajectories to follow, and keeps the robot from
hitting the object and walls. The node subscribes to the gpu_lidar_collision_avoidance
topic and on callbacks checks the range of all rays to decide whether the robot is

38 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

too close to an object or not. If the object is within 4 meters of the object, the
node publishes a message to rotate the robot, otherwise it publishes a message to
move forward with a random slight rotation. A random number generator is used
to decide the direction of the robot, with the aim of letting it see the object from
as many random angles as possible. The algorithm for the collision avoidance is
described in Algorithm 1. x and z is the forward and rotational speed respectively,
and once the state of the robot has been determined, a ignition::msgs::Twist mes-
sage containing the new angular and linear speed is published to the "/cmd_vel"
topic.

Algorithm 1 Robot movement algorithm

if all_ranges < 4.0 then ▷ Rotates the robot until no object is in front
x ← 0.0
z← 0.5

else ▷ Robot moves forward with random direction
x ← 1.5
z← random(−0.3,0.3)

end if

Chapter 3: Method and Implementation 39

3.1.4 Labelling Node

Figure 3.6: An example showing the labelling node colorizing the point cloud.
The industrial tank on the left is labelled in red, and the two other objects are
labelled in pink. Note that the original lidar point cloud is also displayed with red
points.

The labelling node is responsible for assigning labels to each point in the generated
point cloud. It subscribes to the topics described in Table 3.5 and uses the label
map to give each point in the pointcloud a semantic label. The method can be split
into two steps: initialization and callback handling. For initialization the following
steps are carried out:

40 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

Table 3.6: Initialization

1. Initialize the ROS node: "labelling_node".
2. Set up a pinhole camera model for projections.
3. Subscribe once to "camera_info" topic to update the pinhole camera model

based on the segmentation camera configurations.
4. Subscribe to image and lidar topics described in Table 3.5.
5. Set up tf2 transform listener and pointcloud publisher.
6. register a callback based on an approximate time synchronizer. The approx-

imate time synchronizer module synchronizes multiple messages over the
ROS topics and triggers callbacks when all have arrived. This guarantees
that the point cloud and label maps are from the same point in time, within
a given limit of 0.1 secs.

After initialization is successful, the approximate time synchronizer callback
triggers the following:

Figure 3.7: On Callback

1. Read point cloud using fields ("x","y,"z","intensity") and filter out points with
NaN values.

2. For all 16 images, convert type sensor_msgs/Image to numpy array for fast
indexing.

3. For all 16 images, look up segmentation camera transformation.
4. For the x∈ [1,16] sets of [point cloud, transform_link_x, image_x]:

a. Transform the point cloud to the camera frame using the tf transfor-
mation.

b. Map each point p from the 3D point cloud to the 2D image plane ap-
plying the pinhole camera model

c. Retrieve label from image_x for all projected points that are within the
image frame i.e. (0< x < wid th and 0< y < height)

d. For all points with a valid label within the image, add the original point
p and its corresponding label

5. Publish the colorized pointcloud to ROS, as well as saving it to file. Note that
multiprocessing is used to process all 16 sets [point cloud, transform_link_x,
image_x] simultaneously.

Chapter 3: Method and Implementation 41

Figure 3.8: The gazebo simulation corresponding to the point cloud in Figure 3.6

In Figure 3.6 we see the colorized pointcloud overlaid on the original lidar
pointcloud. In this example, the industrial tank is labelled with the color red,
and the other objects are labelled with the color pink. The corresponding gazebo
simulation is shown in Figure 3.8. The segmentation cameras are panoptic, and
can deliver instance segmentation in addition to label segmentation. An example
of instance segmentation can be seen in Figure 3.9, and can be developed further
to provide a panoptic segmentation dataset.

42 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

Figure 3.9: An example of instance segmentation, with each object assigned a
separate instance and color.

3.1.5 Bridging the reality gap

An important step in generating synthetic data that can be used in real-world
situations is reducing the disparity between the computer generated environment
and the real world environment. This discrepancy between the real world and
simulated world is often referred to as the reality gap. To bridge this disparity, this
thesis focuses on three main approaches: increasing resemblance to real-world
data, domain randomization and data augmentation.

Increasing resemblance to real-world data

Some efforts on increasing the resemblance between real-world and synthetic data
is carried out to reduce the reality gap. By using the Ignition Gazebo simulation
world with a physics engine that closely emulates the physical world, our method
generates highly realistic data. We simulate a Ouster OS0-128 LiDAR sensor di-
rectly adapted from the specifications from Ouster, increasing the likeness to the
real-world domain. Moreover, the sensor is infused with gaussian noise according
to Table 3.2 to increase the likeness to the physical world, as LiDAR sensors are
not perfect and inevitably contain both fragments and sensor noise.

Chapter 3: Method and Implementation 43

Mesh Sampling

Another matter that can alter the resemblance between a physically collected
dataset and a synthetic dataset is how the synthetic objects are converted to point
cloud objects. A naive approach would be to convert the 3D CAD models to point
cloud meshes directly, without a simulated world. This presents several issues.
Firstly, a mesh sampling is too perfect: a LiDAR will never provide a fully precise
point cloud of a real-world object like mesh sampling will, but rather create a
viewpoint-specific noisy point cloud with outliers and artifacts. Additionally, the
mesh-converted point cloud will not capture the object from multiple viewpoints.
To create a complete dataset that captures what a LiDAR would see in the real
world, the object needs to be captured from as many point of views as possible so
the segmentation network can correctly label the object no matter which side of
the object it is viewing. The object will likely not be found alone, and as such all
contextual information is also lost by doing a mesh sampling of a single model.
This is one of the reasons why our method SSDG is of a more hybrid domain than
what a mesh conversion would be. Note also that the LiDAR does not see through
objects, and as such natural effects such as occlusions occur, and only the parts of
an object within line-of-sight are captured.

44 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

Domain Randomization

(a) A cube (b) Two spheres on top of an oblong cube.

(c) A small sphere on top of a rectangular
cube.

(d) A large sphere in the middle of a rectan-
gular cube.

(e) Two cubes in close proximity.

(f) Birds view of the simulation setup, with
domain randomization objects in random ar-
eas.

Figure 3.10: An example of a synthetically generated world comprising multiple
parametric shapes. The black objects represent the domain randomization objects
while the white object is a simple model of an industrial tank.

Chapter 3: Method and Implementation 45

Few synthetic 3D domain randomization schemes for segmentation exists to date.
This is perhaps no surprise as there exists very few synthetic 3D point cloud seg-
mentation datasets. In the following section, we introduce our attempt at design-
ing a domain randomization scheme to generate robust 3D segmentation models
and improve the results and resilience for future real-world use.
We follow the work by Borrego et al. [35] on applying domain randomization to
synthetic data, and introduce a novel method that randomly generates a new set
of objects to the simulation. The goal behind the method is to synthetically induce
random data into the dataset to introduce non-essential variances in the environ-
ment. This high variability of the environment will allow the network to become
robust towards disturbances. The end goal of the domain randomization scheme
is that a model trained on the simulated domain perceives the variation between
the simulated and a real domain as mere disturbance.
The method works in the following fashion. In each sequence containing a new
unseen world and 3D CAD model of a labelled object, we introduce a set of ex-
tra objects based on different combinations of parametric shapes. The objects are
created based on two parametric shapes: a sphere, and a cube. Their shapes are
varied in both radius, form and their location relative to each other, and these
variables are randomly generated for each new object. In Figure 3.10 we see a se-
lection of random objects that has been generated using this method. There exists
a multitude of combinations that creates vastly different objects. In Figure 3.10a
we see a simple cube, in Figure 3.10b two spheres on an oblong cube, while Fig-
ure 3.10e is instead a small sphere on top of a rectangular cube. We consequently
imply that the model is able to generate high variation within the shapes of the
generated objects.

The implementation is based around the entity creation found within the Ig-
nition Gazebo framework2. This service allows creating entities in the scene such
as cubes, spheres, lights, etc. We generate a string for each object, for example
sphereStr for a sphere, that contains an SDF-style spherical model with random-
ized location and radius. This is then parsed through the entity creation module
embedded in the Gazebo framework, and we can create an array of randomized
shapes in this way. To generate the complete objects, consisting of several para-
metric shapes, we construct several of the parametric shapes and deviate their
poses slightly from each other. In this way, an object consisting of for example
two spheres and one cube will be formed by constructing a pose for the first para-
metric shape, and deviating this pose for the next two.
The parametric shapes create a set of new dissimilar objects in each instance.
Between each of the sequences in the dataset, the scene is destroyed and a new
created with new randomized objects. As such, no sequences will have the same
parametric objects. Our method for domain randomization reduces the amount
of non-essential and unrealistic data which the robot will believe to be essential,
but is in fact not.

2Documentation can be found at https://gazebosim.org/api/gazebo/4.3/entity_creation.html

46 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

Figure 3.11: From left to right: pallet, cone, electrical box and pallet box.

In addition to the random objects, we introduce 4 industrial objects to increase
the variation in the dataset. The cone [36], pallet box [37], pallet [38], and elec-
trical box [39] were retrieved directly from the Ignition Fuel3 web application.
They represent random objects that the robot could come across in industrial ar-
eas and introduce both variation and contextualization to the point cloud. Since
we only include four objects, the variation this induces will be relatively small.
Nonetheless, we provide an easily extendable method for creating a highly vary-
ing environment in which a robot can traverse and generate point cloud data. The
main intention behind these objects is showing a proof-of-concept and presenting
the potential possibilities for further use of the method, more than just usage for
this particular industrial dataset.

Data Augmentation

An alternative to manually creating more CAD models to increase dataset size is
to generate additional synthetic data from copies of already existing CAD models.
In this thesis, the set of CAD models for the object categories tanks and chimne ys
were augmented since only 20 tanks and 20 chimneys were created.

The data augmentation was done in the following fashion. Each set of 20
tanks and 20 chimneys were augmented in two different fashions, creating a total
of 60 unique tanks and 60 unique chimneys. By sampling a random distribution

3https://app.gazebosim.org/dashboard

Chapter 3: Method and Implementation 47

transform in a pre-determined range, each object is given a new scaling factor in
x , y, z directions. For the first data augmentation, each object is given a scaling of
x = y = U(4− 7) and z = U(4− 7). For the second augmentation transform, the
scaling values are x = y = U(1− 4) z = U(1− 4). Note that the x and y values
have corresponding values to not warp the general object form in a manner where
e.g. a chimney could look like a tank.

Figure 3.12: The same industrial tank, with different scaling factors showing the
data augmentation technique

3.2 Industrial Segmentation Dataset

Only recently has the semantic annotation of LiDAR scans taken a big leap due to
the releases of annotated large-scale datasets such as SemanticKITTI, Paris-Lille-
3D [40] and Oakland3D [41]. The otherwise hugely extensive task of annotating
thousands of points in a point cloud means these public datasets have facilitated
the development of numerous LiDAR-based semantic segmentation techniques.
However, most of them cater only to the task of autonomous driving in urban
scenes and many are in relative small spatial scale and have limited semantic
annotations. Due to the expensive cost of data annotation and acquisition, the
development of semantic understanding in 3D point clouds is mainly limited by a
lack of data.

48 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

#scans #points (in millions) #classes sensor Use
Paris-Lille-3D [40] 3 143 9 Velodyne HDL-32E Urban scenes
Oakland3D [41] 17 1.6 44 SICK LMS Urban Scenes
SemanticKITTI [1] 43552 4549 25 Velodyne HDL-64E Urban scenes
Industrial (ours) 164851 3.7 4 Simulated Ouster OS0-128 Industrial scenes

Table 3.7: Overview of point cloud datasets for semantic segmentation.

In this paper, we present a industrial point cloud dataset with over 3.7 million
annotated points. Our dataset consists of 180 objects pertaining to 4 semantic
classes we consider essential in industrial facilities. In the dataset, each 3D point
is labeled as one of the four semantic classes based on the label map from the
segmentation cameras. We extensively evaluate the performance of two selected
state-of-the-art (SOTA) deep learning segmentation networks on our dataset and
provide an analysis of the results in Chapter 4. The four classes, their annotation
labels and colors is presented in Table 3.8. Note that the colors persist throughout
the visualizations for the whole thesis.

class Annotation label learning_map label BGR color map color (for visualization)
other-objects 10 1 [0, 255, 0] green

stairs 50 2 [0, 0, 255] red
chimneys 100 3 [255, 0, 0] blue

tanks 150 4 [125,125,125] gray

Table 3.8: Overview of semantic classes in the industrial dataset. learning_map
label is simply the one-hot encoding used by the SemanticKITTI dataset format

3.2.1 Dataset format

SemanticKITTI is per today the de-facto standard for benchmarking point cloud
semantic segmentation in autonomous driving scenarios. As such, to easily train
several segmentation model, we mirror the data structure used by semanticKITTI.

Chapter 3: Method and Implementation 49

(a) The folder structure for the in-
dustrial dataset.

dataset
sequences

00
velodyne

labels

poses.txt

000001.bin
000000.bin

000001.label
000000.label

(b) The SemanticKITTI folder struc-
ture.4

Figure 3.13: Comparison of our dataset folder structure with SemanticKITTI.

The industrial and semanticKITTI dataset structures are seen in Figure 3.13.
It contains a sequence folder, in which each sequence will contain a set of corre-
sponding labels and laser scans. The labels and laser scans are given subfolders,
and numbered sequentially. Two minor changes have been made from the original
KITTI structure:

• The label files do not include instance label, only a semantic label.
• A text file with object name and scaling factors are included in each se-

quence for traceability.
• The text file with poses is omitted.

Each 3D object is given a separate sequence, and thus the amount of sequences
will amount to the number of 3D objects provided.

3.2.2 CAD Models

For the industrial dataset, a total of 120 stairs were collected from ModelNet [5].
The industrial chimney and tank CAD models were created by the author, using
SolidWorks5. A total of 20 tanks and 20 chimneys were created in different sizes
and variations, closely mimicking models from real-world industrial facilities. The
resulting files were converted to STL files and directly imported to Gazebo.

4Retrieved from http://semantic-kitti.org
5https://www.solidworks.com/

50 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

Figure 3.14: A sample of the tanks, rendered in Ignition gazebo

Figure 3.15: A sample of the stairs, rendered in Ignition gazebo

Chapter 3: Method and Implementation 51

Figure 3.16: A sample of the chimneys, rendered in Ignition gazebo

Figure 3.17: The stairs from ModelNet40 that were used in the industrial dataset.

For the stairs stemming from ModelNet40 (3.17) a few extra steps were re-
quired to include the models in the simulation. ModelNet40 delivers model in the
Object File Format (OFF) which cannot directly be employed by Ignition Gazebo.
Therefore, a blender script was created to convert the files from OFF to Collada

52 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

(DAE) files. Additionally, a scaling factor is introduced to correct convert the sizes.
The script for the conversion is included below.

1 import os
2 import sys
3 import glob
4 import bpy
5 import time
6
7 s c a l e = 0.01
8 i f len (sys . argv) != 7:
9 p r i n t (" Must provide input and output path ")

10 else :
11 for i n f i l e in glob . glob (os . path . j o i n (sys . argv [5] , ’ * . o f f ’)) :
12 over r ide = bpy . contex t . copy ()
13 over r ide [’ s e l e c t e d _ o b j e c t s ’] = l i s t (bpy . contex t . scene . o b j e c t s)
14 bpy . ops . o b j e c t . delete (over r ide)
15 obj = bpy . ops . import_mesh . o f f (f i l e p a t h= i n f i l e)
16 bpy . ops . t ransform . r e s i z e (value=(sca le , s ca le , s c a l e))
17 bpy . contex t . v iew_layer . update ()
18
19 for ob in bpy . data . o b j e c t s :
20 x , y , z = ob . dimensions
21 ob . s c a l e = (10/x ,10/y ,10/ z)
22 bpy . contex t . v iew_layer . update ()
23 out f i lename = os . path . s p l i t e x t (os . path . s p l i t (i n f i l e) [1]) [0] + "

. dae "
24 bpy . ops .wm. co l l ada_expor t (f i l e p a t h=os . path . j o i n (sys . argv [6] ,

out f i lename))
25 time . s l eep (0 .1)

3.2.3 Sequence creation

To ease the process of data generation, scripts that run through a set of objects in
a folder and create a dataset were created. In this way, the otherwise manual work
of going through a set of files and running the method described in Section 3.1 is
automated. The script runs through the folder and generates the dataset following
the structure described in Section 3.2.1. The script can be summarized as follows:

1. Iterate through the folder and find all objects with the given format (Col-
lada/OBJ/STL).

2. Create the necessary folder structure.
3. For each object:

a. Create the ’meta.txt’ file included in each sequence, describing scaling
factor and object filename.

b. Edit the SDF file employed by the gazebo world to spawn the current
object being iterated.

c. Include a scaling factor for the object, based on the method described
in Section 3.1.5.

Chapter 3: Method and Implementation 53

d. Run the method described in Section 3.1. This is done by starting the
roslaunch file with the updated SDF file, and the domain randomiza-
tion creator described in Section 3.1.5.

e. Run the collision avoidance node to move the robot around the simu-
lation.

4. Run simulation for 30 minutes, close all processes and begin with the next
object.

3.2.4 Overview of the resulting dataset

In ths subsection, the resulting industrial dataset is presented, together with de-
tailed statistics. The dataset consists of around 3.7 million points, split up into four
semantic categories. Since a domain randomization scheme was included, a large
portion of the dataset is labelled as "other objects" which correspond to objects
from the domain randomization. The frequency of each category is presented in
Table 3.9. Class-balanced metrics in the form of weighted IoU or similar should be
employed by neural networks on the detection task for the dataset. The dataset is
well suited for applications in industrial facilities such as oil refineries.
For contextualization purposes, five multi-object worlds were created to augment
the dataset. This is due to the fact that a model trained only on simulations where
a single semantic object of importance is present will get a poor prediction accu-
racy on real-world datasets containing a multitude of objects bundled together.
We created five worlds that contain one staircase, one industrial tank, and one
industrial chimney, in addition to the domain randomization objects. Below we
present details and sample semantic point clouds from the dataset.

Type Class frequency
Other objects 54.15%

Stairs 24.99%
Industrial chimneys 9.67%

Industrial tank 11.19%

Table 3.9: Frequency of the four different semantic labels in the industrial dataset

The following table represents the generated sequences and their respective
object categories and whether or not they include data augmentation and domain
randomization schemes.

54 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

sequence number object data augmentation domain randomization
0-119 stairs no yes

120-139 chimneys no yes, but no industrial objects
140-160 chimneys yes yes, but no industrial objects
160-179 chimneys yes ye, but no industrial objects
180-199 tanks no yes
200-219 tanks yes yes
220-239 tanks yes yes
240-245 multi-object no yes

Table 3.10: An overview of the sequences and their object categories, created for
the industrial dataset.

Figure 3.18: A staircase from the industrial dataset.

Chapter 3: Method and Implementation 55

Figure 3.19: An industrial chimney from the industrial dataset.

Figure 3.20: A tank from the industrial dataset.

56 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

Figure 3.21: Another tank from the industrial dataset.

Figure 3.22: Multi-object scan from the industrial dataset.

3.3 Segmentation Models

In order to perform evaluation of the proposed industrial dataset, a segmenta-
tion architecture is required. This section provides a short discussion of model
considerations made, followed by short presentations of implementation details.

3.3.1 Network considerations

A myriad of different segmentation network architectures have been proposed in
the literature, all with a different set of features and applications. The main fac-

Chapter 3: Method and Implementation 57

tors for selecting a network for this thesis were accuracy, inference speed and
open-source availability. Due to the short time-span of this thesis, creating a new
implementation from scratch was considered too time-consuming and thus only
open-sourced models were considered. The segmentation networks were chosen
based on inference times and mIoU as reported on the SemanticKITTI dataset, but
only projection-based methods were explored. We briefly presents our reflections
behind the reasoning of excluding point-wise methods in the next paragraph.
A case could be made for including point-wise models in the evaluation as some
spatial information is inevitably lost in the 2D domain. There are also a number of
other shortcomings in projection-based methods, stemming mainly from the data
transformation. The projection-based methods use a 3D-2D projection which can
cause quantization artifacts, and reprojection errors occur when projecting pixel
labels back onto the point cloud. The point-wise methods evades these errors en-
tirely by working directly on the point cloud. Newer projection-based models are
able to mitigate these types of errors using the Conditional Random Field (CRF)
and kNN methods, but some error will always be present.

Figure 3.23: Reported runtimes of several SOTA models. Image taken from Sal-
saNext [28].

However, we argue there are still a number of challenges in point-wise meth-
ods. The most glaring fault is the inference times of these models. Figure 3.23
clearly presents the substantial variation in speed for some SOTA point-wise and
projection-based methods. Point-wise methods are therefore not suitable for real-
time semantic segmentation. In addition, point clouds can be sparse and ineffi-
cient and there will be a lot of unused space around objects, particularly for the
outdoors and large industrial areas. As such, we consider the computational cost
of working directly with LiDAR point clouds in outdoor areas too big. Further
research on point-wise methods may be able to reduce the computational cost,
perhaps by working on alternative representations such as voxels, surfels or Trun-
cated Signed Distance Field (TSDF).

The two projection-based models SqueezeSegV3 and SalsaNext were selected

58 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

due to their efficient point cloud segmentation and impressive accuracy and infer-
ence speed on the semanticKITTI dataset. As they are additionally open-sourced,
these two networks were chosen for our evaluation studies. Some modifications
were done to the networks to be able to train on our generated industrial dataset.

3.3.2 Implementation Details

For the sake of reference and reproducibility, we report implementation details as
well as the system specifications used for generating the results in Chapter 4.

Data processing. We pre-process all the points by spherical projection, and
the 2D LiDAR images are then input to the models to get a 2D prediction label
map. This is then restored back to the 3D space in a post-processing step involving
CRF and kNN if this is employed by the model. This post-processing step is not
included in the training. During training, the SGD optimizer is employed with a
warm-up strategy for the learning rate.

Training. The training pipeline follows the proposed input pipeline by se-
manticKITTI and RangeNet++, and uses the PyTorch Dataset extension6 for read-
ability and modularity of dataset loading. This enables us to easily modify the
code for our industrial dataset. RangeNet++ provides a easy-to-use open-source
training and evaluation scripts for semantic segmentation, mainly based around
PyTorch, OpenCV, and Tensorflow. This forms the basis of the training pipeline.

Multi-GPU implementation. To be able to efficiently train and use two sepa-
rate GPUs for training and evaluation, data parallelism is employed. Using torch.nn.

DataParallel the models are wrapped so batches of samples can be split into multiple
smaller batches and computed separately on multiple GPUs.

Class-balanced evaluation metrics. The industrial dataset contains around
twice as many stairs as tanks and chimneys. A number of domain randomization
objects are in each scene that contains only one of the stair/chimney/tank objects.
As such, the dataset will contain an uneven number of objects from the different
semantic classes. To cope with the imbalanced class problem, both the models in-
corporate a weighted softmax cross-entropy loss that considers the class frequency.
Custom Loss Functions. While both methods employ the class-balanced metric,
their implementation is different. SqueezeSegV3 uses a multi-layer cross-entropy
loss which calculates the loss at each of the five layers of the network. SalsaNext
uses a combination of weighted cross-entropy loss Lwce and Lovász-Softmax loss
Lls.
More details behind implementation details and custom parameters are spared
for the reader and can be found at our open-sourced repositories customized to
fit our industrial dataset:

• SqueezeSegV3: https://github.com/mariusud/SqueezeSegV3
• SalsaNext: https://github.com/mariusud/SalsaNext

6https://pytorch.org/tutorials/beginner/basics/datatutorial.html

Chapter 3: Method and Implementation 59

ROS Node

For ease of use and inclusion in SLAM pipelines and perception tasks, a ROS node
consisting of a projection-based semantic segmentation pipeline was developed.
It is an extension on SalsaNext [28] and directly subscribes and converts a lidar
topic in ROS. By projecting the point cloud into a 2D spherical image and in-
ferring with a chosen model, we can achieve fast runtime and integration with
ROS-based methods and SLAM pipelines. The method reprojects the generated
semantic point cloud and publishes to a new topic "/colored_points" with infer-
ence times as presented in Section 4.6. We use the SalsaNext model, but note that
any spherical-projection based model can be used. kNN post processing is also
included with reported runtimes.

The ROS Node is open sourced and can be found at:
https://github.com/mariusud/SalsaNext-ROS

Hardware

All experiments and training have been completed on a workstation with the fol-
lowing techical specifications:
Processor: AMD Ryzen Threadripper PRO 3975WX 32-Cores
Graphics Card: 3x Nvidia GeForce RTX 3090

Chapter 4

Results

This chapter presents the results of the conducted experiments. We present the re-
sults of training both the SalsaNext and SqueezeSegV3 networks on the industrial
dataset, as well as the results of varying image sizes on SalsaNext and backbones
on SqueezeSegV3. This was done to study the effect of image size and backbones
on the overall performance. A final results section of the final chosen model is pro-
vided, with a qualitative presentation of visual examples that has been generated
by the model. Finally, we present inference times and the ROS Node developed for
future SLAM pipelines. Note that color guidelines for the figures follow Table 3.8.

4.1 Experimental Setup

This section presents the experimental setup. The models were trained on a train-
ing set with validation and test performed on separate validation/test data. The
train/test/validation split was set to 80/10/10, where the training set contains
80% of the data. The validation is done after each epoch, while the test set is used
to inform us about performance on new data.

Hyperparameter Value (SalsaNext / SqueezeSegV3) Explanation
Epochs 25 Varied between experiments, see plots

Optimizer SGD
Learning rate 0.01 / 0.005 SGD learning rate

Warm-up 1 Warmpup during first XX epochs
Momentum 0.9 SGD Momentum

Learning rate decay 0.99 Learning rate decay per epoch after initial cycle
Weight decay 0.0001

Batch size 4
ε 0.001 Class weight w= 1

content+ε
Workers 12 Number of threads to get data

Table 4.1: Summary of hyperparameters used for training.

61

62 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

4.2 SqueezeSegV3

Figure 4.1 presents the results from the two different backbone configurations we
tested for SqueezeSegV3. We followed the proposed backbones by the original
paper [25] and test two backbones that are adapted versions of Darknet53 and
Darknet21. The two backbones form the respective networks SqueezeSegV3-53
(SSGV3-53) and SqueezeSegV3-21 (SSGV3-21). As can be seen from these figures,
the models perform moderately well, and SSVG3-53 narrowly outperforms SSVG-
21. The reported pixelwise accuracy is high, but this is not a good metric for
evaluation as sparse images will naturally have higher accuracies.

Figure 4.1: Comparison of mIoU, pixelwise accuracy and cross entropy loss for
SSVG3-21 and SSVG3-53.

4.3 SalsaNext

Figure 4.2 presents the results of training SalsaNext on the industrial dataset.
The time-consuming process of training multiple configurations of deep-learning
models and continued hyperparameter tuning was not the focus of this thesis. We
therefore only experimented with varying the 2D image sizes for the SalsaNext
segmentation network. We chose to focus on image size of the LiDAR image as
it influences the inference speed, an important factor for real-time segmentation
networks. The larger image size performs slightly better on mean Intersection
over Union while the pixelwise accuracy is nearly matching. The cross entropy
loss landscape looks similar for both networks.

Chapter 4: Results 63

Figure 4.2: Comparison of mIoU, pixelwise accuracy and cross entropy loss for
Salsanext with image sizes of 1024x128 and 512x128.

4.4 SqueezeSegV3 and SalsaNext Comparison

To determine a model for final evaluation and further use in a SLAM pipeline
in the form of a ROS Node, we compare the two segmentation networks. Fig-
ure 4.3 presents the model comparison between SalsaNext and SqueezeSegV3-
53. Compared to SqueezeSegV3-53, SalsaNext performs distinctly better on mean
IoU but both models perform satisfactorily. Interestingly, SqueezeSegV3 performs
better on pixelwise accuracy than SalsaNext and has higher spikes in the loss
curve. Table 4.2 presents the final IoU value for both models, and we see that Sal-
saNext clearly outperforms SqueezeSegV3. The final model analysis is therefore
conducted using the SalsaNext model.

Figure 4.3: Comparison of mIoU, pixelwise accuracy and cross entropy loss for
SalsaNext and SSVG3-53.

64 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

Model Final IoU (%)
SalsaNext 87.88%

SqueezeSegV3 72.53%

Table 4.2: Comparison of Final IoU between SqueezeSegV3-53 and SalsaNext.

4.5 Final model analysis

For the final model analysis, SalsaNext with image size of 512x128 was selected,
as it had negligible accuracy difference and a lower inference speed than the
1024x128 input sized model. This section presents some quantitative and qualita-
tive results of the model over 25 epochs. We first present the quantitative results,
with mean Intersection over Union, loss and accuracy over the course of training
and at test time. We present the per-class IoU to inspect which of the four classes
are most challenging to the network and present some example predictions pro-
duced by the trained model for visual inspection and qualitative verification, both
in the 2D projection image as well as the backprojected 3D point cloud.

4.5.1 Quantitative Results

Figure 4.4 shows the performance of the model over the course of training. We
note that the loss curve is steadily falling in an exponential fashion, and that the
mean IoU improves only moderately after around 15 epochs. The pixelwise accu-
racy has a steady performance improvement over the course of the training.

Figure 4.4: mIoU, pixelwise accuracy and cross entropy loss for final model.

To investigate the network’s performance on individual classes, Figure 4.5
shows the individual IoU scores of each class during training. We see that the
variation is relatively high between epochs, but that the mean IoU is high for
all object categories. No object category stands out significantly even though the
dataset is class-imbalanced.

Chapter 4: Results 65

Figure 4.5: Class-wise Intersection over Union (IoU).

4.5.2 Qualitative Analysis

Lastly, we provide images of 2D image segmentation masks, as well as the seg-
mentation masks reprojected back onto the point cloud. This step includes the
post-processing methods included in the model, namely the Conditional Random
Field (CRF) and k-nearest neighbors (kNN). Figure 4.8 shows two segmentation
masks with errors stemming from occlusion. We see that the segmentation model
struggles when objects are occluded. When two occluded objects are in close prox-
imity, the intensity channel will not be able to provide enough information for the
model to determine that there are in fact two separate objects there. Additional
information from RGB channels or similar could provide enough information for
the model to distinguish such close-proximity and occluded objects.

66 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

Figure 4.6: A small cone
found in the ground in
front of the tank (in grey)
is predicted incorrectly.

Figure 4.7: An object
created by the domain
randomization scheme
occludes the tank (in grey)
and is predicted incorrectly.

Figure 4.8

The visual inspection of the predicted segmentation mask we see in Figure 4.11
and Figure 4.14 shows samples displaying cases where the model performs well.
There is enough information in the 2D LiDAR image for the model to separately
and correctly predict the stairs, industrial chimney and tanks as well as the domain
randomization objects. Figure 4.11 exhibits that occlusion does not always cause
a bad prediction, and in this particular example the stairs are correctly predicted
and distinguished from the random objects contained in the scene.

Figure 4.9: A correct pre-
diction mask with occluded
stairs (red).

Figure 4.10: A correct pre-
diction mask containing in-
dustrial chimneys (blue).

Figure 4.11

Chapter 4: Results 67

Figure 4.12: A prediction
on a tank (gray) with ran-
dom objects surrounding.

Figure 4.13: A prediction
on a staircase with random
objects surrounding.

Figure 4.14

The final figures, Figure 4.15 and Figure 4.16 provide an example of what the
semantic point cloud will look like. These particular samples are taken from pre-
diction on the multi-object simulations found in the test set, and as such contain
multiple labelled objects in the scene. We see that the model performs accurate
prediction in 3D on a multi-object dataset it has never seen before, indicating that
the model will be able to generalize well to new industrial zones and can used in
a perception pipeline.

Figure 4.15: Segmented point cloud from sequence 240 of the validation set

Figure 4.16: Segmented point cloud from sequence 241 of the validation set

68 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

4.6 ROS Node

Our final section covers the ROS Node and the results obtained from running
the SalsaNext network with this method. The network subscribes to the "/lidar/-
points" topic and publishes segmented point clouds to "/colored_points", and can
as such easily be included in a SLAM framework. We report the inference time of
running the network in a ROS Node, with post-processing steps included. To get a
picture of what the network will be able to infer on a lightweight hardware setup,
we report the speed on a CPU instead of GPU. Further inference speed improve-
ments could be induced in the future by running the model on a single or multiple
GPUs with CUDA. The inference times are presented in Table 4.3, and we deduce
that the model is able to perform real-time semantic segmentation of point clouds
on synthetic data.

Parameter Value
Avg Network inference ∼ 0.74sec

Avg kNN inference ∼ 0.24sec
CPU Processor Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz

Table 4.3: Reported inference times of SalsaNext-ROS on a CPU.

Chapter 5

Discussion and Further Work

The thesis is wrapped up with a summary of the experiments and results obtained
on the industrial dataset. Following this, a discussion of further work and exten-
sions to the SSDG method and the industrial dataset are proposed. We shortly
comment on the choice of segmentation networks, before we present a discussion
on further work within semantic autonomy.

5.1 Summary

Motivated by the lack of industrial semantic point cloud datasets, the goal of this
thesis was to investigate the usage of a synthetic annotated segmentation pipeline
for generating new segmentation datasets. The novel synthetic dataset generator
(SSDG) was proposed, utilizing the ROS and Gazebo frameworks. An industrial
dataset was created using the method, and evaluated using two real-time seg-
mentation networks. All experiments performed in this thesis were evaluated on
the industrial dataset. As our results in Chapter 4 indicate, the SSDG method can
successfully be used to generate a large high-quality dataset based on 3D CAD
objects that can be used to train segmentation networks.
Some effort was spent on minimizing the discrepancy between the simulation
and real-world domain. We attempted to diminish the reality gap by as closely
possible emulating a simulation resembling reality, and additionally implemented
a domain randomization scheme to achieve robustness to high variability in the
environment. Some data augmentation was also included in the dataset creation.

To be able to provide real-time segmentation and a higher level understand-
ing for Simultaneous Localization and Mapping (SLAM) algorithms, we chose two
efficient segmentation networks, SqueezeSegV3 and SalsaNext, to conduct exper-
iments on the industrial dataset. We experimented with varying the backbone of
SqueezeSegV3 and input image size for SalsaNext. A final qualitative analysis of
SalsaNext was presented, to give the reader an impression of the quality of seg-
mentation.

To include the trained model in a future SLAM pipeline and generally provide
an easy-to-use semantic network, we developed a ROS Node built on SalsaNext.

69

70 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

This gave us a general indication of the inference time that can be expected for
projection-based methods.

5.2 Synthetic Semantic Dataset Generator (SSDG)

This section will discuss the SSDG methodology, a brand new framework we pre-
sented for building synthetic semantic datasets. In order to generate datasets that
produces robust, generalizable and domain-adaptive segmentation networks in
the future, we present a discussion on the validity of the proposed method, before
proposing new directions for future works.

5.2.1 Reality gap

One of the main focuses of the thesis has been to emulate the real world as best
possible. In addition to focusing on perfectioning the emulation of the physical
world, we explore methods to train the models in more generic domains by in-
troducing variance in different forms. We note that while some newer researcher
focuses on the effects on 2D image segmentation [35] or real-world urban point
clouds [42], the applicability to the synthetic 3D domain remains undeveloped.
Yi et al. [43] presents a novel method within the 3D domain adaptation field, but
attempts to combat the real-world LiDAR domain discrepancies between different
LiDAR sensors instead of the synthetic-real domain discrepancy we focus on. By
recovering the underlying 3D surface and filling the point cloud from two different
LiDARs with more points, the proposed approach is able to increase transferability
between the LiDAR sensors used by the different datasets the experiments were
conducted on. A natural question to ask is whether a similar approach could be
applied to decrease the domain gap between synthetic and real-world data by
supplying the real-world data with more points from a completion network. We
leave it as a task for further work to test the validity of this approach on synthetic
SSDG-generated and real-world data from an Ouster OS0-128.

Our domain randomization scheme was based around Applying Domain Ran-
domization to Synthetic Data for Object Category Detection [35]. The paper presents
a randomization scheme for object category detection based on the Gazebo frame-
work, and note that a study on the applicability of domain randomization on seg-
mentation should be conducted. Our method SSDG does exactly this, and applies
domain randomization on the segmentation task in the same framework. How-
ever, we note that an in-depth study of the effects of the domain randomization
scheme we designed was not conducted due to time constraints. We propose a
study to be conducted in order to quantify the robustness our method induces to
the model, and verify its suitability for real-world 3D semantic segmentation tasks
in the future.

Chapter 5: Discussion and Further Work 71

5.2.2 Prospects for future research

The constrained time frame of the project limited the scope of the Synthetic Se-
mantic Dataset Generator (SSDG). In this section, we summarize some of the work
that time did not permit, and present directions for further research. We believe
that future work should focus on two main focus areas: domain discrepancy and
generalizability.

Domain discrepancy We believe more work should be carried out for assess-
ing the discrepancy between real-world data and the synthetically generated data
presented in Section 3.2. The evaluation should consider the differences in point
cloud density, class distributions and point intensities, amongst other variables.
If there exits distribution discrepancies between the synthetic and real data, the
trained model will in most cases fail to generalize to real data. Domain calibration
similar to [23] will help improve the model if this is the case. Extensive experi-
ments should be able to uncover discrepancies and should form the basis of future
method improvements and novelties. A key question that remains unanswered
due to lack of real data, is to what extent there will be a distribution discrepancy
between the real data and the synthetically generated LiDAR data generated by
SSDG.

Generalizability of the SSDG method. To verify the generalization ability of
networks trained on synthetic data, they should be tested on a real world dataset
such as semanticKITTI. Note however that semanticKITTI contains no shared la-
bels with the industrial dataset we created, and our models therefore cannot be
validated on it. It is therefore difficult to conclude on the generalizability of our
models in a real-world setting as there to-date exists no real-world industrial seg-
mentation dataset we can use to validate it. We have presented the first steps
towards a general goal of providing robust semantic autonomy in industrial use-
cases, but remark that there is still some work to be done. Particularly, a real-world
dataset should be constructed for validation purposes. This will allow for valida-
tion and confirmation of the dependability of our method and give a broader view
of the transferability of the trained models to a real-world setting. We therefore
propose that a real-world industrial dataset should be constructed for future re-
search and employed as a validation of our method.

5.3 Industrial Dataset

The constrained time frame of this project affected several key decisions for the
industrial dataset. In this section, we summarize some of the work that we would
have liked to improve given the time, and directions to further develop semantic
autonomy for industrial areas.

Quality of dataset. We argue that the quality of the dataset is good, but with
room for improvement. We note that there exists fragments in the scans, likely
due bordering issues in the matching of the 3D-2D projected point cloud and
label map. This induces artificial artifacts and fragments to the data, but means

72 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

the simulation is in actual fact closer to what a real LiDAR would produce as real
data naturally contains artifacts and dropout noise caused by the lidar sensor.
Nonetheless, this should be investigated further and either retained in a controlled
fashion, or eliminated from the method. Apart from these fragments, the data
looks convincing from a qualitative standpoint, and the induced sensor noise gives
the data a realistic look. We argue that our method presents an adequate way of
producing realistic synthetic semantic data.

Generalizability of models trained on the industrial dataset. We now dis-
cuss the generalizability of models trained specifically on the industrial dataset,
rather than the generalizability of the SSDG method discussed in the previous
section. We expect the generalizability of models trained on the industrial dataset
will be mediocre on real-world data. The reason for this is two-fold. Some fault
should be contributed to the SSDG method, but as discussed earlier this cannot be
validated due to the lack of real data to compare against. It is therefore difficult
to reason on the generalizability of the SSDG method. The domain randomiza-
tion scheme should increase the generalizability somewhat, but in the context of
shapes in industrial facilities, we believe generalization ability will in large be at-
tributed to the likeness between the simulated and real-world objects. Due to the
limited time of this thesis, very simple models were created of the industrial tanks
and chimneys. These models will not likely be close to what these objects look
like in a real-life industrial zone, but to some extent follow the general shape.
For instance, while industrial chimneys generally are understood as tall circular
objects, there can be a lot of smaller features embedded in their form that can
be captured by a segmentation network. The industrial chimneys the author cre-
ated in SolidWorks were very simple shapes, and could consist of just a single
cylindrical shape. The extent of the industrial dataset is therefore very small. This
was due to time limitations, but our dataset is nonetheless a solid step in the fu-
ture goal of achieving industrial point cloud segmentation. For future works, we
propose generating high-quality 3D CAD models. We believe the availability of
high-quality industrial objects may already exist at a large scale due to the recent
developments in digital twinning, but that they are not open-sourced. The usage
of these models in our SSDG framework will undoubtedly greatly increase the
applicability and generalization ability of the generated segmentation model. In
particular, if a digital twin exists of an industrial facility, the domain discrepancy
between the simulation and real-world will be drastically reduced. A segmenta-
tion network trained on a digital twin of an oil refinery will undoubtetly perform
very well in segmenting the same oil refinery in the real-world domain.

5.4 Segmentation Networks

In this section, an analysis of the segmentation models is performed along with a
discussion on their general architecture. The results in Chapter 4 form the basis
for the discussion in this section.

For the SqueezeSegV3 models, the deeper layered SqueezeSegV3-53 has a

Chapter 5: Discussion and Further Work 73

higher accuracy than SqueezeSegV3-21. This can be consider expected behaviour,
as generally more layers favours better accuracy at the loss of computational
speed. The pixelwise accuracy is higher for SqueezeSegV3 than SalsaNext despite
lower mIoU, and this will no doubt stem from the fact that SqueezeSegV3 does
not compute a form of IoU in its metric. The pixelwise accuracy is not a good eval-
uation metric for deciding 2D segmentation precision, as large parts of the image
will be black. We therefore have used miou as our evaluation metric of choice.
The increased mIoU in the SalsaNext network likely stems from the inclusion of
Lovász-Softmax in the loss function as it provides a method of including IoU in the
loss, directly affecting the network. Future works could try to include the Lovász-
Softmax in a SqueezeSegV3 network in an attempt to improve the mIoU of the
model. This could perhaps also reduce the spiking in the loss curve perceived on
the SqueezeSegV3 network, since the model may be able to learn better features
once IoU is incorporated in the loss function.

5.5 Further work in semantic autonomy

We wrap up the chapter by discussing prospects for further research in semantic
segmentation autonomy, and whether LiDAR-only semantic segmentation can be
considered satisfactory or multiple sensing modalities should be fused together.
Previously, it has been shown that multi-modal systems are successful in percep-
tion tasks, providing resilient and robust solutions such as [44]. While the seman-
tic segmentation task has predominantly been solved using RGB cameras in the
past, the task of transporting it to the 3-dimensional domain has been introduced
in line with the increased availability of 3D sensors such as RGB-D cameras and
LiDAR sensors.

Camera-LiDAR fusion. Compared with point clouds, camera images have
richer semantic information and contain more regular and dense pixels and con-
sidering the complementary of the two sensors, their fusion is a desired option to
explore further. Two main issues hinder the performance of such a fusion: how
to precisely align the camera image and point cloud in a spatiotemporal domain,
and how to effectively fuse them together. LIF-Seg [45] proposed in 2021, present
a coarse-to-fine fusion-based network that uses an offset rectification approach to
align the two-modality features. The method succesfully achieves better perfor-
mance than projection-based methods such as SalsaNext on the nuScenes dataset,
and considering that SalsaNext was our top performer on the industrial dataset,
we regard it as likely that the LIF-Seg network would improve the benchmark
on our dataset. Particularly for instances like Figure 4.8 the added RGB channels
will provide valuable information for the network, as it is easy to discern a bright
orange cone from a dark-colored tank.

Extending SSDG with RGB data. Considering that cameras are readily avail-
able in the Gazebo simulation, we propose further work using SSDG incorporate
RGB cameras into the method, to be able to generate datasets for multi-modal
pipelines. As many real-world resilient autonomy pipelines already contain both

74 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

sensing modalities, further work within the generation of synthetic semantic data
should involve both sensors to enable the fusion of the two modalities in real-
world settings.

Symbiotic relationship between robots and digital twins. We end this dis-
cussion by noting that semantic segmentation networks are used for both digital
twinning and semantic autonomy in the industrial domain, but interestingly no
literature can be found on bridging the gap between the two tasks. One could en-
vision further work focusing on using an autonomous robot running a semantics-
based autonomy pipeline that is able to work in a symbiotic relationship with a
digital twin of the industrial facility in which it is operating. In this way, both the
digital twin model and the autonomous robot benefit from their shared semantic
understanding of the facility.

Chapter 6

Conclusion

The goal of this thesis was to design and implement a framework that can be used
to create semantic datasets from 3D CAD models, and use the method to create
an industrial dataset for applications within robotic autonomy. The Synthetic Se-
mantic Dataset Generator (SSDG) method was presented, a system capable of
generating annotated point clouds from a Gazebo simulation. To close the reality
gap, we introduced a novel domain adaptation approach designed to overcome
the domain gap specifically in a semantic 3-Dimensional point cloud setting. We
show that by introducing a randomized set of 3D objects from parametric shapes,
we are able to introduce non-essential variation to the task, increasing the robust-
ness of the trained segmentation models.

By making a set of industrial 3D CAD models by hand, we generated a large
3D semantic point cloud industrial dataset using SSDG, containing 3.7 million
points from four semantic categories. Extensive experiments with two segmenta-
tion networks demonstrated that state-of-the-art models achieve good accuracy
on the dataset, and the pre-trained models could be used for semantic segmen-
tation of industrial facilities. Detection quality was overall good with a reported
accuracy of 87.88% for the best model.

3D semantic segmentation has a broad range of use in industrial settings, as it
can improve digital twinning processes and increase resiliency and robustness of
SLAM algorithms by introducing a semantic dimension. Our method SSDG fills a
gaping hole in the literature, as industrial scene data are scarcely available to the
public, and few existing method exists for automating the creating of synthetic
labelled point cloud datasets. Seeing as 3D models are available in large quan-
titites online, our method will allow for the development of large-scale datasets
for a broad range of settings. SSDG opens the door for the development of more
advanced methods in new areas, but we also provide plentiful data to investigate
research within industrial point cloud segmentation. We hope that this thesis pro-
vides a foundation of which future semantic autonomy can be built upon, and
note that the work is developed with the Autonomous Robots lab, who will it as
a foundation for a future SLAM pipeline.

75

Bibliography

[1] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and
J. Gall, “SemanticKITTI: A Dataset for Semantic Scene Understanding of
LiDAR Sequences,” in Proc. of the IEEE/CVF International Conf. on Computer
Vision (ICCV), 2019.

[2] X. Chen, A. Milioto, E. Palazzolo, P. Giguère, J. Behley, and C. Stachniss,
“Suma++: Efficient lidar-based semantic SLAM,” CoRR, vol. abs/2105.11320,
2021. arXiv: 2105.11320. [Online]. Available: https://arxiv.org/abs/
2105.11320.

[3] L. Li, X. Kong, X. Zhao, W. Li, F. Wen, H. Zhang, and Y. Liu, “SA-LOAM:
semantic-aided lidar SLAM with loop closure,” CoRR, vol. abs/2106.11516,
2021. arXiv: 2106.11516. [Online]. Available: https://arxiv.org/abs/
2106.11516.

[4] R. Dubé, A. Cramariuc, D. Dugas, H. Sommer, M. Dymczyk, J. Nieto, R.
Siegwart, and C. Cadena, “Segmap: Segment-based mapping and localiza-
tion using data-driven descriptors,” The International Journal of Robotics Re-
search, vol. 39, no. 2-3, pp. 339–355, 2020. DOI: 10.1177/0278364919863090.

[5] Z. Wu, S. Song, A. Khosla, X. Tang, and J. Xiao, “3d shapenets for 2.5d ob-
ject recognition and next-best-view prediction,” CoRR, vol. abs/1406.5670,
2014. arXiv: 1406.5670. [Online]. Available: http://arxiv.org/abs/
1406.5670.

[6] E. Shelhamer, J. Long, and T. Darrell, Fully convolutional networks for se-
mantic segmentation, 2016. DOI: 10.48550/ARXIV.1605.06211. [Online].
Available: https://arxiv.org/abs/1605.06211.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–44, May 2015. DOI: 10.1038/nature14539.

[8] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th International Conference on
International Conference on Machine Learning, ser. ICML’10, Haifa, Israel:
Omnipress, 2010, pp. 807–814, ISBN: 9781605589077.

[9] A. L. Maas, “Rectifier nonlinearities improve neural network acoustic mod-
els,” 2013.

77

https://arxiv.org/abs/2105.11320
https://arxiv.org/abs/2105.11320
https://arxiv.org/abs/2105.11320
https://arxiv.org/abs/2106.11516
https://arxiv.org/abs/2106.11516
https://arxiv.org/abs/2106.11516
https://doi.org/10.1177/0278364919863090
https://arxiv.org/abs/1406.5670
http://arxiv.org/abs/1406.5670
http://arxiv.org/abs/1406.5670
https://doi.org/10.48550/ARXIV.1605.06211
https://arxiv.org/abs/1605.06211
https://doi.org/10.1038/nature14539

78 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

[10] M. Berman and M. B. Blaschko, “Optimization of the jaccard index for
image segmentation with the lovász hinge,” CoRR, vol. abs/1705.08790,
2017. arXiv: 1705.08790. [Online]. Available: http://arxiv.org/abs/
1705.08790.

[11] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Jour-
nal of Machine Learning Research, vol. 15, no. 56, pp. 1929–1958, 2014.
[Online]. Available: http://jmlr.org/papers/v15/srivastava14a.html.

[12] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, and S. Chintala,
Pytorch: An imperative style, high-performance deep learning library, Dec.
2019.

[13] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,
D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu,
and X. Zheng, “Tensorflow: A system for large-scale machine learning,” in
12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), 2016, pp. 265–283. [Online]. Available: https://www.usenix.
org/system/files/conference/osdi16/osdi16-abadi.pdf.

[14] R. Al-Rfou, G. Alain, A. Almahairi, et al., “Theano: A python framework for
fast computation of mathematical expressions,” CoRR, vol. abs/1605.02688,
2016. arXiv: 1605.02688. [Online]. Available: http://arxiv.org/abs/
1605.02688.

[15] F. Chollet et al. “Keras.” (2015), [Online]. Available: https://github.com/
fchollet/keras.

[16] NVIDIA, P. Vingelmann, and F. H. Fitzek, Cuda, release: 10.2.89, 2020. [On-
line]. Available: https://developer.nvidia.com/cuda-toolkit.

[17] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “Cudnn: Efficient primitives for deep learning,” CoRR,
vol. abs/1410.0759, 2014. arXiv: 1410.0759. [Online]. Available: http:
//arxiv.org/abs/1410.0759.

[18] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point
sets for 3d classification and segmentation,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017.

[19] B. Wu, A. Wan, X. Yue, and K. Keutzer, Squeezeseg: Convolutional neural
nets with recurrent crf for real-time road-object segmentation from 3d lidar
point cloud, 2017. DOI: 10.48550/ARXIV.1710.07368. [Online]. Available:
https://arxiv.org/abs/1710.07368.

https://arxiv.org/abs/1705.08790
http://arxiv.org/abs/1705.08790
http://arxiv.org/abs/1705.08790
http://jmlr.org/papers/v15/srivastava14a.html
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://developer.nvidia.com/cuda-toolkit
https://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
https://doi.org/10.48550/ARXIV.1710.07368
https://arxiv.org/abs/1710.07368

Bibliography 79

[20] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K.
Keutzer, Squeezenet: Alexnet-level accuracy with 50x fewer parameters and
lt;0.5mb model size, 2016. DOI: 10.48550/ARXIV.1602.07360. [Online].
Available: https://arxiv.org/abs/1602.07360.

[21] P. Krähenbühl and V. Koltun, “Efficient inference in fully connected crfs with
gaussian edge potentials,” 2012. DOI: 10.48550/ARXIV.1210.5644. [On-
line]. Available: https://arxiv.org/abs/1210.5644.

[22] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C.
Huang, and P. H. S. Torr, “Conditional random fields as recurrent neural
networks,” CoRR, vol. abs/1502.03240, 2015. arXiv: 1502.03240. [Online].
Available: http://arxiv.org/abs/1502.03240.

[23] B. Wu, X. Zhou, S. Zhao, X. Yue, and K. Keutzer, Squeezesegv2: Improved
model structure and unsupervised domain adaptation for road-object segmen-
tation from a lidar point cloud, 2018. DOI: 10.48550/ARXIV.1809.08495.
[Online]. Available: https://arxiv.org/abs/1809.08495.

[24] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss, “RangeNet++: Fast and Ac-
curate LiDAR Semantic Segmentation,” in IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2019.

[25] C. Xu, B. Wu, Z. Wang, W. Zhan, P. Vajda, K. Keutzer, and M. Tomizuka,
“Squeezesegv3: Spatially-adaptive convolution for efficient point-cloud seg-
mentation,” in European Conference on Computer Vision, Springer, 2020,
pp. 1–19.

[26] E. E. Aksoy, S. Baci, and S. Cavdar, “Salsanet: Fast road and vehicle segmen-
tation in lidar point clouds for autonomous driving,” CoRR, vol. abs/1909.08291,
2019. arXiv: 1909.08291. [Online]. Available: http://arxiv.org/abs/
1909.08291.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2016 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), Jun. 2016. DOI: 10.1109/cvpr.2016.90. [Online]. Available:
http://dx.doi.org/10.1109/cvpr.2016.90.

[28] T. Cortinhal, G. Tzelepis, and E. E. Aksoy, “Salsanext: Fast semantic segmen-
tation of lidar point clouds for autonomous driving,” CoRR, vol. abs/2003.03653,
2020. arXiv: 2003.03653. [Online]. Available: https://arxiv.org/abs/
2003.03653.

[29] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, Pointnet++: Deep hierarchical feature
learning on point sets in a metric space, 2017. arXiv: 1706.02413 [cs.CV].

[30] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and A. Markham,
Randla-net: Efficient semantic segmentation of large-scale point clouds, 2019.
DOI: 10.48550/ARXIV.1911.11236. [Online]. Available: https://arxiv.
org/abs/1911.11236.

https://doi.org/10.48550/ARXIV.1602.07360
https://arxiv.org/abs/1602.07360
https://doi.org/10.48550/ARXIV.1210.5644
https://arxiv.org/abs/1210.5644
https://arxiv.org/abs/1502.03240
http://arxiv.org/abs/1502.03240
https://doi.org/10.48550/ARXIV.1809.08495
https://arxiv.org/abs/1809.08495
https://arxiv.org/abs/1909.08291
http://arxiv.org/abs/1909.08291
http://arxiv.org/abs/1909.08291
https://doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.1109/cvpr.2016.90
https://arxiv.org/abs/2003.03653
https://arxiv.org/abs/2003.03653
https://arxiv.org/abs/2003.03653
https://arxiv.org/abs/1706.02413
https://doi.org/10.48550/ARXIV.1911.11236
https://arxiv.org/abs/1911.11236
https://arxiv.org/abs/1911.11236

80 Marius Udnæs: Semantic Dataset Generation and Detection For Industrial Environments

[31] X. Yue, B. Wu, S. A. Seshia, K. Keutzer, and A. L. Sangiovanni-Vincentelli,
“A lidar point cloud generator: From a virtual world to autonomous driv-
ing,” in Proceedings of the 2018 ACM on International Conference on Mul-
timedia Retrieval, ser. ICMR ’18, Yokohama, Japan: Association for Com-
puting Machinery, 2018, pp. 458–464, ISBN: 9781450350464. DOI: 10.
1145/3206025.3206080. [Online]. Available: https://doi.org/10.1145/
3206025.3206080.

[32] Open Robotics, Ignition gazebo, version Ignition Fortress, Sep. 2021. [On-
line]. Available: https://ignitionrobotics.org.

[33] Open Robotics, Robotic operating system, version ROS Noetic Ninjemys,
May 23, 2020. [Online]. Available: https://www.ros.org.

[34] Open Source Robotics Foundation, Sdformat, version 12.0.0, Sep. 30, 2021.
[Online]. Available: http://sdformat.org/.

[35] J. Borrego, R. Figueiredo, A. Dehban, P. Moreno, A. Bernardino, and J.
Santos-Victor, “A generic visual perception domain randomisation frame-
work for gazebo,” in 2018 IEEE International Conference on Autonomous
Robot Systems and Competitions (ICARSC), Apr. 2018, pp. 237–242. DOI:
10.1109/ICARSC.2018.8374189.

[36] adlarkin. “Construction cone label test,” Open Robotics. (Jun. 2021), [On-
line]. Available: https://fuel.gazebosim.org/1.0/adlarkin/models/
Construction%20Cone%20Label%20Test.

[37] MovAi. “Palletboxmobile,” Open Robotics. (Mar. 2022), [Online]. Avail-
able: https://fuel.gazebosim.org/1.0/MovAi/models/pallet_box_
mobile.

[38] MovAi. “Pallet,” Open Robotics. (Mar. 2022), [Online]. Available: https:
//fuel.gazebosim.org/1.0/MovAi/models/pallet.

[39] OpenRobotics. “Electrical box,” Open Robotics. (Mar. 2021), [Online]. Avail-
able: https://fuel.gazebosim.org/1.0/OpenRobotics/models/Electrical%
20Box.

[40] X. Roynard, J. Deschaud, and F. Goulette, “Paris-lille-3d: A large and high-
quality ground truth urban point cloud dataset for automatic segmentation
and classification,” CoRR, vol. abs/1712.00032, 2017. arXiv: 1712.00032.
[Online]. Available: http://arxiv.org/abs/1712.00032.

[41] D. Munoz, J. A. (Bagnell, N. Vandapel, and M. Hebert, “Contextual clas-
sification with functional max-margin markov networks,” in Proceedings of
(CVPR) Computer Vision and Pattern Recognition, Jun. 2009, pp. 975–982.

[42] Y. Zhang, P. David, and B. Gong, “Curriculum domain adaptation for se-
mantic segmentation of urban scenes,” CoRR, vol. abs/1707.09465, 2017.
arXiv: 1707.09465. [Online]. Available: http://arxiv.org/abs/1707.
09465.

https://doi.org/10.1145/3206025.3206080
https://doi.org/10.1145/3206025.3206080
https://doi.org/10.1145/3206025.3206080
https://doi.org/10.1145/3206025.3206080
https://ignitionrobotics.org
https://www.ros.org
http://sdformat.org/
https://doi.org/10.1109/ICARSC.2018.8374189
https://fuel.gazebosim.org/1.0/adlarkin/models/Construction%20Cone%20Label%20Test
https://fuel.gazebosim.org/1.0/adlarkin/models/Construction%20Cone%20Label%20Test
https://fuel.gazebosim.org/1.0/MovAi/models/pallet_box_mobile
https://fuel.gazebosim.org/1.0/MovAi/models/pallet_box_mobile
https://fuel.gazebosim.org/1.0/MovAi/models/pallet
https://fuel.gazebosim.org/1.0/MovAi/models/pallet
https://fuel.gazebosim.org/1.0/OpenRobotics/models/Electrical%20Box
https://fuel.gazebosim.org/1.0/OpenRobotics/models/Electrical%20Box
https://arxiv.org/abs/1712.00032
http://arxiv.org/abs/1712.00032
https://arxiv.org/abs/1707.09465
http://arxiv.org/abs/1707.09465
http://arxiv.org/abs/1707.09465

Bibliography 81

[43] L. Yi, B. Gong, and T. Funkhouser, “Complete label: A domain adapta-
tion approach to semantic segmentation of lidar point clouds,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2021, pp. 15 363–15 373.

[44] M. Tranzatto, F. Mascarich, L. Bernreiter, C. Godinho, M. Camurri, S. Khat-
tak, T. Dang, V. Reijgwart, J. Loeje, D. Wisth, S. Zimmermann, H. Nguyen,
M. Fehr, L. Solanka, R. Buchanan, M. Bjelonic, N. Khedekar, M. Valceschini,
F. Jenelten, M. Dharmadhikari, T. Homberger, P. D. Petris, L. Wellhausen, M.
Kulkarni, T. Miki, S. Hirsch, M. Montenegro, C. Papachristos, F. Tresoldi, J.
Carius, G. Valsecchi, J. Lee, K. Meyer, X. Wu, J. I. Nieto, A. Smith, M. Hut-
ter, R. Siegwart, M. W. Mueller, M. F. Fallon, and K. Alexis, “CERBERUS:
autonomous legged and aerial robotic exploration in the tunnel and urban
circuits of the DARPA subterranean challenge,” CoRR, vol. abs/2201.07067,
2022. arXiv: 2201.07067. [Online]. Available: https://arxiv.org/abs/
2201.07067.

[45] L. Zhao, H. Zhou, X. Zhu, X. Song, H. Li, and W. Tao, “Lif-seg: Lidar and cam-
era image fusion for 3d lidar semantic segmentation,” CoRR, vol. abs/2108.07511,
2021. arXiv: 2108.07511. [Online]. Available: https://arxiv.org/abs/
2108.07511.

https://arxiv.org/abs/2201.07067
https://arxiv.org/abs/2201.07067
https://arxiv.org/abs/2201.07067
https://arxiv.org/abs/2108.07511
https://arxiv.org/abs/2108.07511
https://arxiv.org/abs/2108.07511

N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r t

ek
ni

sk
 k

yb
er

ne
tik

k

Marius Udnæs

Semantic Dataset Generation and
Detection For Industrial
Environments

Masteroppgave i Kybernetikk og Robotikk
Veileder: Konstantinos Alexis
Medveileder: Nikhil Khedekar
Juni 2022

M
as
te
ro
pp

ga
ve

	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Acronyms
	Introduction
	Background and Motivation
	Aim and Scope of Thesis
	Scope
	Aim
	Contributions

	Thesis Outline

	Background and Related Work
	lidar
	The lidar sensor
	Point Cloud
	LiDAR Image

	Deep Learning
	Neural Networks
	Convolutional Neural Networks
	Training Neural Networks
	Improving neural networks
	Loss functions
	Regularization
	Normalization
	Metrics
	Deep Learning Libraries

	Semantic Segmentation
	Projection-based methods
	Point-based networks

	Method and Implementation
	Synthetic Semantic Dataset Generator (SSDG)
	Pipeline Overview
	Simulation Libraries and Tools
	Gazebo Simulation
	Labelling Node
	Bridging the reality gap

	Industrial Segmentation Dataset
	Dataset format
	CAD Models
	Sequence creation
	Overview of the resulting dataset

	Segmentation Models
	Network considerations
	Implementation Details

	Results
	Experimental Setup
	SqueezeSegV3
	SalsaNext
	SqueezeSegV3 and SalsaNext Comparison
	Final model analysis
	Quantitative Results
	Qualitative Analysis

	ROS Node

	Discussion and Further Work
	Summary
	Synthetic Semantic Dataset Generator (SSDG)
	Reality gap
	Prospects for future research

	Industrial Dataset
	Segmentation Networks
	Further work in semantic autonomy

	Conclusion
	Bibliography

