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Abstract

As the share of renewable energy sources increases, the control methods for grid-connected convert-
ers need to be improved to ensure stable and reliable operation. New control methods are replacing
conventional proportional plus integral control as they have been shown to be faster, more robust,
and more accurate. Among numerous control methods, the use of artificial intelligence, and more
specifically the use of artificial neural networks is increasingly drawing attention in research for
improved converter control.

This thesis investigates various artificial intelligence technologies for the inner current control
for the grid-connected voltage source converter. Amongst these, four different artificial neural
network (ANN)-based control methods are designed and investigated. The first controller consists
of a feedforward neural network which is trained using simulation data from a conventional PI
controller, which is referred to as PI-ANN control. Similarly, the second controller is also based on
the feedforward neural network, but in this case it is trained using data from a model predictive
controller (MPC-ANN controller). The third controller consists of a recurrent neural network
(RNN) which is trained using dynamic programming approximating optimal control, this is referred
to as RNN-based control. The fourth and last controller consists of two feedforward neural networks
which are trained using direct heuristic dynamic programming (dHDP).

While the RNN-controller needs further improvements to complete the implementation, the other
three controllers are fully developed and implemented in the Matlab/Simulink simulation envir-
onment. The performance of the PI-ANN, MPC-ANN and dHDP controllers is evaluated and
compared, using simulation results obtained from Matlab/Simulink. Whilst the PI-ANN control-
ler shows no improvement compared to the conventional PI controller, the MPC-ANN and the
dHDP perform significantly better with less oscillations, improved dynamic response, and robust-
ness against parameter changes. In addition, the performance of the PI, PI-ANN, MPC and the
MPC-ANN controllers has been validated through comparison with OPAL RT hardware-in-the-
loop simulations.
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Sammendrag

Ettersom andelen fornybare energikilder øker, m̊a kontrollmetodene for nett-tilknyttede omformere
forbedres for å sikre stabil og p̊alitelig drift. I forskning for forbedret omformerkontroll rettes det
økende oppmerksomhet mot kunstig intelligens-baserte metoder, og særlig bruken av kunstige
nevrale nettverk.

Denne oppgaven undersøker ulike teknologier innen kunstig intelligens for strømregulering av en
nett-tilkoblet spenningskildeomformer. Blant disse har fire kunstig nevrale nettverk (ANN)-baserte
kontrollmetoder blitt designet og undersøkt. Den første regulatoren best̊ar av et feedforward nev-
ralt nettverk som trenes ved bruk av simuleringsdata fra en konvensjonell proporsjonal integral
(PI)-regulator, kontrollmetoden omtales PI-ANN-regulator. Tilsvarende best̊ar ogs̊a den andre
regulatoren av et FFNN, men i dette tilfellet trenes nettverket ved bruk av data fra en modellpre-
diktiv kontroller (MPC), omtalt som MPC-ANN regulator. Den tredje regulatoren best̊ar av et
tilbakevendende (recurrent) nevralt nettverk (RNN) som trenes ved hjelp av dynamisk program-
mering som tilnærmer optimal kontroll. Kontrollmetoden omtales som RNN-basert regulator. Den
fjerde og siste regulatoren best̊ar av to feedforward nevrale nettverk som trenes ved hjelp av direkte
heuristisk dynamisk programmering (dHDP).

Ytelsen til PI-ANN-, MPC-ANN- og dHDP-regulatorene er blitt evaluert og sammenlignet ved
hjelp av simuleringsresultater hentet fra Matlab/Simulink-simuleringsmiljøet. Mens PI-ANN-
kontrolleren ikke viser noen forbedring sammenlignet med den konvensjonelle PI-kontrolleren, yter
MPC-ANN og dHDP betydelig bedre, og oppn̊ar mindre oscillasjoner, forbedret dynamisk re-
spons og robusthet mot parameterendringer. Ytelsen til PI-ANN og MPC-ANN-regulatorene har
blitt verifisert ved å sammenligne simuleringsresultatene fra Matlab/Simulink med resultater fra
OPAL-RT.
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1
Introduction

1.1 Motivational Background

In 2020, the share of renewables in global electricity generation was 29%, and the renewable
generation was expected to expand by more than 8% in 2021. This represents the fastest yearly
growth since the 1970s [1]. This transition of the global power grid corresponds to an increased
number of grid-connected nonlinear devices, which can result in reduced power grid inertia and
stability issues unless measures are taken [2].

The integration of renewable energy sources into the power grid requires grid-connected converters,
the control of which must provide fast, robust and reliable operation. The use of proportional
plus integral (PI) control with pulse-width modulation remains a popular control method due
to its simplicity, strong adaptability and reliability [3, 4]. This control method is designed in the
synchronously rotating (dq) reference frame, where one PI controller is independently applied to the
d- and q-axis currents by use of appropriate decoupling terms [3, 5]. This coordinate transformation
enables the successful application of linear PI controllers to DC components and results in a linear-
time-invariant system. Although this highly simplifies the control, assumptions such as linearity
and time-invariance limit the overall system performance. In response, a considerable effort has
been made in recent years by the scientific and industrial communities to address the research
challenge of improving VSC control [6]. As a consequence, there exist numerous control methods,
which can be broadly classified as linear, non-linear, predictive and artificial intelligence (AI)-based
approaches.

Unlike the linear control methods (e.g. decoupled PI control) the nonlinear strategies exploit
the fact that the averaged VSC model is non-linear by directly compensating for the nonlinear
dynamics. These methods have shown improved dynamic performance, compared to the linear
PI controller. However, unless advancements are implemented, they produce a variable switching
frequency, which results in disadvantages such as resonance problems and reduced efficiency [6, 7].

Among the predictive control methods, model predictive control (MPC) has recently evolved as
a promising method. The MPC principle is to predict the process output at future time instants
and compute an optimal control signal that minimizes a cost function while ensuring that sys-
tem constraints are met. Advantages include improved dynamic performance, easier handling of
multiple-input, multiple-output cases, and increased flexibility compared to conventional control
methods [8, 9].

AI-based control methods have in recent years become a heated research topic for power electronic
systems. The development of the number of publications on the application of AI-based technology
within design, control and maintenance of power electronic systems is plotted in Figure 1.1. Here
it can be seen that since the sudden increase in 2007, the number of AI publications has been
continuously increasing [10]. Today, there exist numerous AI-based technologies which provide
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1. Introduction

Figure 1.1: The development of AI-applications in power electronic systems, since 1990 (from [10]).

promising control methods for grid-connected converters. AI technologies aim to imitate human-
like learning and reasoning [10]. One of the major AI techniques is machine learning. Approaches
within machine learning can be classified as supervised learning (SL), unsupervised learning (UL)
and reinforcement learning (RL). In SL the agent’s goal is to learn the correct input-output mapping
based on labeled data. This learning approach tries to emulate a behaviour defined by the user, and
is relevant for control applications. UL, on the other hand, aims to discover a pattern in unlabeled
data sets, and is primarily used for data clustering. RL, from a control aspect, is broadly related
to SL, except that the agent is not fed labeled data. An RL agent learns by a reinforcement signal
which either rewards or penalizes the agent’s actions during interacting with the environment.
By trial and error, the agent will eventually learn the correct input-output mappings, aiming to
maximize the rewards.

Both the SL and RL approaches are employed for control applications. For both learning ap-
proaches, the use of artificial neural networks (ANNs) is increasingly drawing attention. In SL,
common ANN-based control approaches consist of feeding the network with the inputs and out-
puts of an existing control method, such as linear, nonlinear or predictive controllers. In addition,
through dynamic programming the network is fed the inputs and outputs of a user-defined op-
timal controller. Once the network is fully trained offline it is implemented as the controller.
Within RL, one approach is to use the adaptive-critic ANN approach to develop approximately
optimal ANN controllers [11]. In this approach the RL-based networks continue their training after
implementation in the real system.

1.1.1 Problem Formulation

This thesis focuses on evaluating the performance of ANN-based control methods for the inner-
loop current control of a grid-connected voltage source converter. Different control methods will
be developed based on a literature review of prominent artificial neural network controllers. The
controller performance will be analyzed using simulation results from the Matlab/Simulink envir-
onment and validated in the OPAL-RT simulation environment.

1.1.2 Related Work

The study of more robust, reliable and faster control for the grid-connected voltage source converter
has been an important topic for several decades. Today, artificial intelligence is one of the most
pertinent research areas, and much success has been achieved using artificial neural networks for
grid-connected converter control.

In [6] an ANN of the feedforward type (FFNN) is trained on samples obtained by a model predictive
controller (MPC) of the fixed control set (FCS) type. The resulting offline-trained network replaces
the original FCS-MPC current controller in the system consisting of the voltage source converter
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(VSC), a DC voltage source and a load. The simulation results show that the network controller
has an improved performance compared to the original FCS-MPC. The total harmonic distortion
(THD) is reduced and the transient response is faster and safer. A similar approach is used in [12]
for a single-stage grid-connected photovoltaic (PV) system, but now for an MPC of the continuous
control set (CCS)-type. The simulation results show that the CCS-MPC trained FFNN-based
controller is able to efficiently extract the maximum power from the PV system while maintaining
stable output signals under transient conditions.

In the aforementioned examples the network controller is trained using simulation data from an
existing controller. In [13] a recurrent neural network (RNN) is employed as a current controller
for the VSC. The network is offline-trained using a combination of the Levenberg-Marquandt (LM)
algorithm and the forward accumulation through time (FATT) algorithm, to approximate optimal
control. The simulation results and hardware experiments demonstrate better performance than
conventional methods and show robust abilities concerning parameter changes. The RNN is also
used in [14] to generate the reference current for the current controller of the VSC. The RNN is
trained using an LM-based backpropagation algorithm, using the error signals between measured
and reference current as input data. The training targets are new reference signals which remove
the PI-generated steady state errors. The RNN-based controller simulation results are compared
with conventional PI current control and show improved dynamic performance in terms of damping
the oscillation introduced by the DC-link dynamics of the VSC.

There have also been developed network controllers which are further trained online after the initial
offline training phase. In [15] a current controller consisting of two feedforward neural networks
is trained using direct heuristic dynamic programming (dHDP). The controller is implemented in
parallel to the conventional decoupled PI controller. Simulation results compare the performance
to the original PI controller and show improvements in THD and transient response. The dHDP
control method has also been applied to a power system stability control problem in [16], and for
nonlinear tracking in [17, 18].

1.2 Scope and Objective

This thesis focuses on methods for improving the control of grid-connected converters using artificial
intelligence techniques. The focus is limited to the inner-loop current control of the three-phase two-
level voltage source converter. The objective of this thesis is to provide state-of-the-art ANN-based
control methods for grid-connected converters, and evaluate and compare the control performances.
The aim of this thesis can be summarized by two objectives:

1. Develop and implement different ANN-based control methods for the inner-loop current
control for a grid-connected converter. Explore both the use of different network types and
different network training methods.

2. By use of simulation results, evaluate and compare the performance of the chosen controllers
for different control scenarios. Simulations will be performed using the Matlab/Simulink
environment and validated using the OPAL RT environment.

Other elements which could improve the performance of the converter such as grid-synchronization
techniques, filter design and digital signal processing, are outside the scope of this thesis.

1.3 Outline

Chapter 1 describes the motivational background of this thesis, which leads to the problem formu-
lation. Related work is briefly described outlining relevant ANN-based control methods. Finally,
the thesis’ scope and objectives are stated.

Chapter 2 presents the theoretical background and is separated into four sections. First, important
principles of the operation and control of the VSC are described. Next, an overview of relevant
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AI technologies for converter control is made. The third section explains fundamental principles
of artificial neural networks, including design- and training aspects. The fourth and final section
gives a description of concepts and methods within reinforcement learning.

Chapter 3 describes the design and implementation of a PI-trained artificial neural network control-
ler, denoted PI-ANN controller. First, the development of the decoupled PI control is described.
Next, the architecture and training of the neural network is developed and the implementation is
described. The performance of the PI-ANN controller is evaluated and compared to the conven-
tional decoupled PI controller using simulation results from the Matlab/Simulink environment. In
addition, a validation of the control performance is done by comparing it to corresponding simu-
lations in the OPAL RT environment. Finally, all aforementioned results during both the design
phase and the performance evaluation are discussed and important remarks are given.

Chapter 4 describes the design and implementation of a model predictive control trained artificial
neural network (MPC-ANN) controller. The chapter starts by introducing the MPC, including
its operation principles and existing approaches. Secondly, the design of the continuous control
set (CCS) MPC type is thoroughly described. The third section gives the design of the network
architecture of the MPC-ANN controller. The fourth section presents simulation results from the
Matlab/Simulink environment. Based on these results the performance of the MPC-ANN controller
and the CCS-MPC controller is evaluated and compared. In the next section the performance is
validated by comparing the Maltab/Simulink simulation results to OPAL RT simulations. This
chapter’s final section discusses all previous observations.

Chapter 5 describes the design and implementation of a dynamic programming trained recurrent
neural network (RNN)-based controller. The chapter starts by describing dynamic programming
principles. Next, the RNN architecture is described. In the final section of this chapter the network
training algorithm is described.

Chapter 6 describes the design and implementation of a direct heuristic dynamic programming
(dHDP)-based controller and is comprised of three sections. First, the control design including
an explanation of the dHDP algorithm and network architecture is described. Second, the con-
troller parameters are determined by evaluating the controller performance for different values.
The next section presents the simulation results obtained from the Matlab/Simulink environment,
and the dHDP-based controller performance is evaluated. The final section discusses all previous
observations.

Chapter 7 compares the performance of the PI-ANN, MPC-ANN and the dHDP controllers based
on the simulation results from the Matlab/Simulink environment. This evaluation is separated
into three parts, which consider different performance aspects. The performance of the different
controllers are compared first during a varying reference current, second during a short circuit fault
at grid-side, and finally for modified system parameters. The final section of this chapter discusses
all observations.

Chapter 8 summarizes the main observations and concludes this thesis’ results. In addition, pro-
posals for further work are given.

1.4 Publication

Parts of the results of this project has been submitted for publication in [1].

[1] E. G. Øxnevad, P. R. Bana and M. Amin, ‘Performance evaluation of ann-based control of
a grid-connected converter with different training datasets’, submitted to IEEE ACCESS,
2022.
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2
Theoretical Background

This chapter serves as a background for all control methods studied in the following chapters.
First, the operation and control of the voltage source converter will be thoroughly described in
Section 2.1, next an overview of relevant artificial intelligence-based control methods is given in
Section 2.2. In Section 2.3 essential elements of artificial neural networks are described. Finally,
in Section 2.4 fundamental reinforcement learning concepts are explained and examples of relevant
reinforcement learning methods for converter control are given.

In conjunction with this thesis a preceding specialization project was conducted and a scientific paper
was submitted for publication. The topics and research described in this thesis include elements of
both works.

2.1 Operation and Control of the Voltage Source Converter

This section introduces fundamental principles for the operation and control of the voltage source
converter. In addition, an overview of some of the most commonly used current control methods
is given.

2.1.1 Topology

The voltage source converter (VSC) can be classified depending on the topology used. The topology
is specified by the number of phases and levels. For medium voltage converters for three-phase
transmission it is common to use either two or three levels, whereas for high voltage applications the
modular multilevel converter (MMC) is the ultimate choice [19–21]. In Figure 2.1 three different
topologies are illustrated. The number of phases are defined by the number of legs, while the
number of levels are defined by the number of transistors on each leg. The transistor usually
consists of an insulated gate bipolar transistor (IGBT) and an anti-parallel diode, as is shown
here.

A key property of all VSCs is the ability to self-commutate. This property is achieved by using fully
controllable semiconductor switches, i.e. transistors [22]. Fully controllable means that the switches
can be turned both on and off, such as the IGBT, integrated gate commutated thyristor (IGCT),
gate turn-off thyristor (GTO) and metal-oxide-semiconductor field effect transistor (MOSFET).
Most often, the choice is made between MOSFETs and IGBTs. The IGBTs are suitable for
medium to high power applications and a frequency in the range of 20 kHz. On the other hand,
MOSFETs are used for lower power, below 20kW, and a higher frequency in the range 20-800kHZ
[23]. In this thesis the IGBT is chosen as this device is suitable for numerous applications. In fact,
together with the pulse-width modulation (PWM) technique it is today one of the most widely
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A
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B C

A
B

C

(a) Two level single phase VSC (b) Two level three-phase VSC 

(c) Three level three-phase VSC 

Figure 2.1: Examples of different voltage source converter topologies.

used configurations [24].

2.1.2 Operation

The operation of the VSC is best understood by investigating the output voltage vc at each phase-
leg independently. As illustrated for the two-level, three-phase VSC in Figure 2.1(b) each leg
corresponds to each phase voltage, where the first leg provides the voltage pattern of phase a,
the second leg corresponds to phase b and the third leg corresponds to phase c. Phase a of the
converter output voltage vc,a at each switch position is shown in Figure 2.2. In (a) the upper
switch is conducting and the voltage vc,a equals 1

2VDC . Figure (b) shows the commutation from
switch to diode, here vc,a equals zero. In (c) the upper switch is turned off and the lower diode
is conducting, this results in a voltage equal to − 1

2VDC . The reverse commutation from the lower
diode to the upper switch is shown in (d). At each instant a maximum one switch is turned on. If
both switches on one phase leg were simultaneously conducting this would lead to a short circuit
with current values that could potentially damage the equipment. The above analysis considers
the VSC operation in inverter mode, therefore at all times the upper diode and lower switch is
turned off. For rectifier mode the upper switch and lower diode would remain off, while the upper
diode and lower switch would be turned on and off subsequently. This bidirectional power flow is
the reason why the VSC consists of anti-parallel diodes and switches.

2.1.3 Reference-Frame Theory

Reference-frame theory is today the basis for electric-drive simulation, analysis, and control design
[25]. Reference-frame theory started when R. H. Park proposed a new method for analysing
the synchronous machine [26]. The method consisted of replacing the voltages, currents and flux
linkages, associated with the synchronous machine’s stator windings, with variables associated with
fictious windings rotating at the electrical angular velocity of the rotor. This led to a number of
different transformations which in 1965 was proven to be contained in one general transformation
which eliminates all position-varying inductances [27]. Today all control methods use one of three
reference frames. The natural reference frame where all variables are in the original abc-coordinates,
stationary reference frame where the variables are given in αβ-coordinates and the synchronous
rotating reference frame where the variables are given in the dq-coordinates. Considering the
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Figure 2.2: Basic operation of the voltage source converter.

general transformation, the stationary reference frame is obtained by referring the stator and
the rotor variables to a frame of reference that rotates at zero angular velocity. The synchronous
rotating reference frame, on the other hand, rotates at an angular velocity equal to the fundamental
frequency of the grid.

Stationary Reference Frame

The stationary reference frame is obtained by transforming the three-phase voltages and currents
into the two αβ-components, this is illustrated in Figure 2.3. This transformation is done using
Clarke transformation which is defined by Equation 2.1. For a symmetric system xγ = 0.
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Synchronous Rotating Reference Frame

The synchronous rotating reference frame is obtained by transforming the αβ-components into
dq-components. As illustrated in Figure 2.4 the reference frame is rotating synchronously with
the grid voltage and the current and voltage now behave as direct current (DC)-components. The
transformation from αβ components to dq is done using Park transformation defined by Equation
2.2.

[
xd

xq

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
xα

xβ

]
(2.2)
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Figure 2.4: Rotating synchronous reference frame.

2.1.4 Pulse-Width Modulation

There are various PWM methods, where the two most widely used techniques for the VSC are
the carrier-based sinusoidal PWM and the space vector PWM (SVPWM) [28], where linear con-
trol methods employ sinusoidal PWM and nonlinear control use SVPWM. There exist numerous
discussions on the different PWM techniques, and for a more detailed description please refer to
the following publications [29, 30].

Sinusoidal PWM

In sinusoidal PWM the the inner-loop current controller produces a control signal which is a
sinusoidal modulation signal for each of the three phases. These are fed to the modulator as control
signals with a frequency equal to the fundamental frequency. In the modulator these control signals
are compared with a triangular carrier with a frequency equal to the desired switching frequency.
This comparison leads to logical signals (high or low) which define the switching instant of each
phase-leg. Since the two switches on each leg are operated in a complimentary manner, the
switching state of all six switches SA1, ..., SC2 is easily determined. Sinusoidal PWM is illustrated
for one of the three modulators in Figure 2.5, where the red signal is the control signal, i.e. output
signal of inner-loop current controller, and the blue signal is the triangular carrier.

Space Vector PWM

SVPWM is another method for controlling the PWM of the converter. In this switching scheme, the
voltages vabc are first transformed to the stationary reference frame and are defined by Equation
2.3. Each of the three phase legs SA, SB and SC consists of two switches, and can either be
connected to the positive terminal or the negative terminal depending on each switching state.
This results in two possible states for each phase leg. The phase leg SA is equal to 1 if the upper
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2.1. Operation and Control of the Voltage Source Converter

Figure 2.5: Sinusoidal PWM.

switch SA1 is turned on and SA2 is turned off. SA is equal to zero and is connected to negative
terminal if SA2 is turned on and SA1 turned off. Two switches on a phase leg can never be turned
on simultaneously, which results in only these two possible states. Since the voltage vector in
Equation 2.3 is a function of the states of all phase legs, the total number of possible voltage
vectors is 23 = 8, as presented by Figure 2.6. Here the voltage vectors v0 and v7 is the situation
when all phase legs are connected to the negative terminal or the positive terminal, which results
in a voltage equal to zero.

vαβ =
2

3
VDC

(
Sa + αSb + α2Sc

)

α = ej
2π
3

(2.3)

�-axis

�-axis

v1(1,0,0)
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v

v5(0,0,1)
v6(1,0,1)

Figure 2.6: Space vectors.

2.1.5 Phase-Locked Loop

The phase-locked loop (PLL) is the most extensively employed grid synchronization technique
[31] and is illustrated in Figure 2.7. The aim of the PLL is accurate tracking of the actual grid
frequency fg. Since the filtered converter output voltage vf should be synchronized with the grid,
these voltage measurements are implemented in the control loop. First the dq-axis voltages are
obtained and passed through a low-pass filter (LPF). The actual phase angle error ∆θ is obtained
using the inverse tangent function on the filtered dq-axis voltages, vPLL,dq. Since the voltage should
be aligned with the d-axis the desired ∆θ is zero, as is shown to the left of the summation. The
proportional-integral (PI) controller takes ∆θ as input and appropriately decreases or increases
the angular speed ωPLL. [24, 31]
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Figure 2.7: Phase Locked Loop.

There exist numerous grid synchronization techniques, where some of the most popular methods
are the PLL-based technique, the zero-crossing method, filtering techniques and adaptive notch
filter-based techniques [32]. In this thesis the PLL is chosen and testing of other techniques are
considered outside the scope.

2.1.6 Cascaded Control

The standard control method for VSCs is to use cascaded control. An example of a cascaded
control structure is presented in Figure 2.8. Here the converter control consists of an outer control
loop which regulates the dc-voltage (vdc and v∗dc) and the reactive power (vf and Q∗), and an
inner control loop which regulates the converter current ic. The task of the current controller
is to regulate the current ic such that it tracks the reference signal i∗c obtained from the outer
loop. This is done by comparing the reference and the actual measured signal, and based on the
deviation generate appropriate modulation signals. Therefore the current controller is responsible
for both error compensation and determination of appropriate switching [33]. The modulation
signals m are then used to generate the switching pulses by use of PWM. The control strategy
applied to grid-side converters usually consists of a fast inner current control loop which regulates
the converter current and an outer loop which regulates the active power and the voltage/reactive
power [34, 35].
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Figure 2.8: Cascaded control of the VSC.

2.1.7 Current Control Methods

Today, the control methods for the grid-connected converter can be broadly characterized as linear,
nonlinear, predictive, and AI-based. The classification is shown in Figure 2.9, where in the lowest
layer, some of the most common control methods are given. Among the linear control methods,
an example is the aforementioned decoupled PI controller. This control method is designed in the
synchronous rotating (dq) reference frame, which results in separate d- and q-axis error components
which are regulated independently through a PI controller. This coordinate transformation enables
a successful application of linear PI controllers to DC components and results in a linear time
invariant (LTI) system with zero steady-state error. However, if a DC disturbance occurs in the
three-phase system, steady-state errors will occur. As a remedy, the proportional resonance (PR)
controller has been suggested [36]. This controller consists of a proportional term and a resonant
term, and is designed in the stationary (αβ) frame. Compared to the PI controller, the PR offers
a high tracking performance of the sinusoidal reference and rejection of disturbances [37].
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Current Control Methods for the VSC

Linear Nonlinear

PI PR SMCHysteresis

Predictive

MPCDBC

AI-based

FLANN

Figure 2.9: Classification of control methods for the current control of the VSC.

Unlike the linear controllers, the nonlinear control schemes exploit the nonlinear behaviour of the
averaged VSC model by directly compensating for the nonlinear dynamics. Nonlinear control
methods were first proposed in [38], and have been further developed in [39] and [40]. More
robust nonlinear control has been achieved using sliding-mode control (SMC) [4, 41]. Although
such nonlinear control strategies have been proven to improve the dynamic performance, unless
advancements are implemented, they have the major disadvantage of producing a variable switching
frequency which creates resonance problems and reduces the overall efficiency [6, 7].

Among the predictive control methods, dead beat control (DBC) was one of the earliest employed
control methods [42, 43]. However in recent years, model predictive control (MPC) is receiving
most attention and has proved to be a promising control method due to advantages such as im-
proved dynamic performance, easier handling of multiple-input, multiple-output (MIMO) cases,
and increased flexibility compared to conventional methods [8, 9]. The MPC principle is to predict
the process output at future time instants and compute an optimal control signal which minimizes
a cost function while ensuring that system constraints are met. The MPC strategies can be clas-
sified as continuous control set MPC (CCS-MPC) and finite control set MPC (FCS-MPC). The
operating principles of these two control methods are principally similar but differ in the design
of the cost function and the optimization stages [44]. In FCS-MPC the discrete nature of the
converter is exploited and the control signals are switching signals which are directly applied to
the converter. In CCS-MPC the cost function and the control signals are continuous, and the
control signals are the modulation signals which are fed to a modulator. An MPC-based current
controller will be developed in Chapter 4, please refer to this chapter for more information.

Artifical intelligence (AI) is currently one of the most pertinent research areas. Common for all
AI technologies is the aim of producing intelligent systems which exhibit human-like learning and
reasoning [10]. More information about AI-based control methods will be given in the proceeding
section.

2.2 Artificial Intelligence Based Control for Converters

This section describes some of the most promising AI technologies for grid-connected converter
control. The technologies are presented and classified in Figure 2.10.

Artificial Intelligence

Fuzzy Logic Machine Learning

Mamdani Takagi-Sugeno-Kang Reinforcement LearningSupervised Learning

Figure 2.10: AI-technologies relevant for power electronic converter control.

2.2.1 Fuzzy Logic

As for all AI technologies, fuzzy logic (FL) tries to imitate human reasoning. It tries to model the
imprecise modes of reasoning, which play an essential role in the ability to make rational decisions
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in an environment of uncertainty and imprecision. Making such decisions depends on an ability
to infer an approximate answer to a question based on stored, inexact and incomplete knowledge
[45]. As an example, when determining a comfortable temperature level of the water before taking
a shower, it is not simply a question of hot or cold, there are several temperature levels of comfort
and discomfort in-between. Therefore, unlike Boolean logic which can only output two values; 1
for true, 0 for false, FL is multi-valued. The FL method consists of fours steps. First, the crisp
input value is transformed into fuzzy values in a process called fuzzification, which is based on
the information stored in the knowledge base. Next, the fuzzified inputs are aggregated with the
fuzzy IF-THEN rules in the inference module, which imitates the human reasoning. Finally, the
obtained fuzzy sets are transformed into crisp values in a process called defuzzification. This process
is illustrated in Figure 2.11. FL-based control can be further separated into the Mamdani-type
and the Takagi-Sugeno-Kang (TSK)-type. For further information, please refer to [46].

Fuzzy Logic System

crisp inputs crisp outputs

fuzzy output setsfuzzy input sets

Figure 2.11: Fuzzy logic framework.

In [47] FL is applied to a photovoltaic (photovoltaic (PV)) sourced boost converter. In order to
increase efficiency, the PV panels should be operated at the maximum power point, which varies
according to the time of day and environmental changes. The FL controller was used to track the
maximum power point, as it was able to rapidly respond to varying environmental conditions and
being robust to changes of circuit parameters.

In [48] an FL controller is employed for islanded operation of an electronically interfaced distributed
generation unit and its load. The controller regulates the voltage of the islanded system under
varying load and uncertainties. The major result was that the FL controller is able to efficiently
deal with the nonlinear system. The FL control design does not depend on the mathematical
model of the system, and the controller was less sensitive to parameter variations compared to
conventional controllers.

In [49] an FL-based current controller for the grid-connected VSC is proposed. The FL controller
regulates d-axis and q-axis current components and is designed based on its frequency response
on a bode diagram. The paper concludes that good control system performance can be achieved
using FL-based control.

Compared to conventional controllers, FL-based controllers are cheaper to develop and are able
to manage a wider range of operating conditions [50]. In addition, they are robust to parameter
changes and handle nonlinear systems. A disadvantage of the FL controller is that its adaptability
is limited which is due to the rule-based approach, i.e. it has no internal updating mechanism.
Another disadvantage is that the design of the FL requires expert knowledge, which makes this
method less available [51, 52].

2.2.2 Machine Learning

The machine learning (ML) category consists of three broad classes, supervised learning (SL),
unsupervised learning (UL) and reinforcement learning (RL). In supervised learning (SL) the goal
of the agent is to learn the correct input-output mapping based on labeled data, this learning
method is mainly used for function fitting problems. In UL the agent aims to discover a pattern
in unlabeled data sets, this method is mainly used for data clustering. In reinforcement learning
(RL) the agent learns by a reinforcement signal which either rewards or penalizes the actions taken
in an environment. Aiming to maximize the reward, the agent will eventually learn the correct
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input-output mappings.

The SL and RL approaches are particularly interesting for control applications. For both learning-
approaches the use of artifical neural networks (ANNs) for control related problems is increasingly
drawing attention. In SL the ANN-based control methods mainly consist of training the network
to approximate either an existing controller, as has been done in [6, 12] and [53] or an optimal one
as was done in [54]. Within RL, a common approach is to use the adaptive-critic ANN approach
to develop optimal network controllers [11]. This approach is within the large family of heuristic
dynamic programming (HDP) methods. HDP methods commonly use the Bellman optimality
principle to train the network to map inputs to actions (this will be further described in Section
2.4.1). Recently, the direct HDP (dHDP) method has shown to be a promising control method
and has been applied to a large power system stability control problem in [16] and for nonlinear
tracking in [17, 18].

These ANN-based control methods will be further described in Section 2.3, where the background
for designing and training the ANN is given. In Section 2.4-based control methods will be described.

2.3 Artificial Neural Network

The ANN is inspired by the human brain function. Similar to the networks in our brain, ANNs can
take different forms and sizes. However, most ANNs have a similar structure as presented in Figure
2.12, where the structure consists of an input layer, followed by hidden layers, which connect to
the output layer. Each layer in an ANN is defined by the number of neurons and the connections
between the layers are defined by activation functions. In Figure 2.13, a close up of the connection
from the first input p1 to the first neuron in the first layer a11 is illustrated. The inputs to each layer
come with a weight (wi,j) and is summed together with a bias b, the result is a net input n which
is fed to the activation function f . There are several activation functions, where the logarithmic
sigmoid (logsig) function and the hyperbolic tangent sigmoid (tansig) function given by Equations
2.4 and 2.5, respectively, are common choices for the connection from input to hidden layer and for
the connections within the hidden layer. For the connection from the hidden layer to the output
layer a linear function is the common choice, since this enables all input-output mappings.

logsig(n) =
1

1 + e−n
(2.4)

tansig(n) =
en − e−n

en + e−n
, (2.5)

p1

w
1 1,
1

wm-1Sm,Sm-1

wm-11,1

pR

y1

yQ

w 1
S,R

Hidden layersInput layer
Output layer

Figure 2.12: Fully-connected multi-layer feedforward neural network.
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a11p1 w11,1

1 b11

f
n
1

1

Figure 2.13: Single neural network connection, from the first input neuron p1 to the first neuron
in the hidden layer a11.

2.3.1 Types of Artificial Neural Networks

There are two main types of the neural networks, the feeedforward neural network feedforward
neural network (FFNN) and the recurrent neural network recurrent neural network (RNN). In the
feedforward type the information only flows in the forward direction. In Figure 2.14 an RNN is
presented, here the information can also flow backwards, illustrated by the dotted arrows, resulting
in a cyclic flow of information. A network may be defined as either static or dynamic depending
on the system it emulates. A system is considered static when the input-output relation is static,
and dynamic if the relations are dynamic or temporal. The FFNN is used for static systems while
the RNN is important for dynamic systems. The FFNN structure is the most widely applied in
power electronics and motor drives. In fact in [46] it is stated that 90% of ANN applications use
the feedforward type.

Hidden layersInput layer Output layer

Figure 2.14: Example of a recurrent neural network.

2.3.2 Determining Network Architecture

Determining the network architecture consists of choosing an appropriate ANN type, sufficient
number of inputs, outputs, the size of the hidden layers and the transfer functions between the
layers.

The first step of designing the ANN is to define the problem the network is to solve. There are
four major problem types; function fitting, pattern recognition, clustering and prediction. Since
the network is to replace a controller, the problem can be said to be of either the fitting-type or
the prediction type. Considering that the goal is to design a network which can perform as good
as an existing controller or an approximated optimal controller the problem can be classified as
function fitting.

A 2-layer FFNN was in [55] proven to be a universal function approximator, provided that the
activation function in the hidden layer is of sigmoid-type, the output layer function is linear and
that there are a sufficient amount of neurons in the hidden layer. Thus, this is one of the most
applied networks for such problems. In fact, already in 1993 it was suggested to use FFNN for
controlling a PWM boost converter [56]. Other FFNN-based control applications are found in
the publications [6, 12, 57, 58]. However, the RNN is also a promising candidate being widely
used to represent dynamic mapping of inputs and outputs. This is also possible using the FFNN
with tapped delays, obtaining what is commonly known as the focused network, represented by
Figure 2.15. To represent dynamic mapping this structure will however require a larger number of
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neurons than the RNN [59]. The use of RNN-based control is described in publications [14, 60–62],
to mention a few.

Hidden layersInput layer Output layer

D

D

Figure 2.15: Focused neural network with time-delayed input, adapted from [63]

Regarding the activation functions these are chosen based on the previously mentioned recom-
mendations regarding universal approximation. That is using one of the sigmoid functions in the
hidden layer and a linear output at the output. However, it is interesting to note that different
approaches have also been described in literature. In [57] the rectifier linear unit (ReLu) is used in
the hidden layer. If the input to the ReLu function is positive, then the output will equal the input,
if not the output is zero. At the output layer the Softmax function is chosen, this is a function
which modifies each element of an input vector so that the sum of them equals 1. This way, each
element can be interpreted as a probability. The choice of Softmax function at the output layer
was also made in [64] and [65].

The number of inputs and outputs are determined by either the controller the network is to replace
or the dynamic program used for generating training data. In [12] the network replaces and learns
from the MPC, the number of inputs is therefore 7 (ic,αβ , i

∗
c,αβ , vf,αβ and vdc) and the number of

outputs is 3 (mabc). Determining the number of hidden layers and the number of neurons within
these layers is not as straightforward. A rule of thumb is that the more complex the problem is,
the more layers and neurons are needed. However, as stated in [66] there is no theoretical reason
to use more than two hidden layers, and one hidden layer is sufficient for most practical problems.
Therefore a general approach is to start with one hidden layer and then increase the number of
neurons and/or layers if the network performance is insufficient. The number of neurons in each
hidden layer is usually determined by using trial and error.

2.3.3 Neural Network Training

The training of neural networks consists of updating the network parameters, i.e. the network
weights and biases, such that the outputs of the network become as close as possible to the targets.
The parameter vector is given by Equation 2.6, where each parameter xi represents either an
element in a weight or in a bias. Here the notation of the weight wk

i,j refers to the single weight
element between neuron j at layer k and the neuron i of the subsequent hidden layer, the total
number of layers is M and the number of neurons in layer m is Sm, and n is the total number
of elements in all weights and biases, which is defined in Equation 2.7. The choice of training
algorithm is firstly the definition of the updating rule. The rule is essentially the definition of the
performance index C(x), which is the measurement of how close the network outputs are to the
targets. A popular performance index is the mean squared error (MSE) between the output of the
network and the target. All performance indices are small when performance is good and large
when performance is bad. So finding the weights and biases such that performance is optimized,
is equivalent to finding the optimal parameter vector x such that C(x) is minimized.[63, p.12-22]

x⊤ =
[
x1 x2 . . . xn

]
=
[
w1

1,1 w1
1,2 . . . w1

S1,R b11 . . . b1S1 w2
1,1 . . . bMSM

]
(2.6)
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n = S1(R+ 1) + S2(S1 + 1) + . . .+ SM (SM−1 + 1) (2.7)

Generalization

A generalized network is a network that neither underfits nor overfits. Underfitting is when too few
neurons are used in the hidden layers, such that the network is not able to accurately map inputs
and outputs. As a consequence the network will have a poor performance both during training and
when new data is presented. On the other hand, when too many neurons are used in the hidden
layers, overfitting may occur. Then the network has a good performance during training, but
performs badly when new data is presented. The remedy to underfitting is to increase the number
of neurons. Inversely, the number of neurons may be decreased if overfitting occurs. However,
other measures may also be taken to avoid overfitting, namely regularization or early stopping.
Common for both methods is to restrict the magnitude of the weights and depend on setting aside a
portion of the training set. Both methods are well-described in [63, Chapter 13], and the following
is based on this.

The Early Stopping method is based on the fact that as training progresses, more of the weights are
used for each iteration. Thus the complexity of the network is effectively increased by increasing the
number of iterations used for training. Therefore, by ending the training before the final iteration
is performed the complexity can be reduced. To perform early stopping the data set must first
be separated into three subsets, one for training, one for testing and one for validation. Since all
sets must represent all possible situations in which the trained network is to operate, a common
procedure is to randomly distribute the data points among them. Typically 70 % of the data is
used for training, while 15% is used for validation and 15% for testing. During validation the
current training error is compared to the previous error. If this error is increasing for a specified
number of consecutive iterations the training ends, and the final weights and biases are determined
by the iteration before the error started to increase.

There are several regularization techniques, but common for all is to add a penalty term to the
performance index which should be the sum of squared errors (SSE). An example is given by
Equation 2.8. Here the complexity is controlled by α, which is made larger to achieve a smoother
network response. The different regularization techniques are identified by how the regularization
parameter (penalty term) is defined. In fact, for early stopping the regularization parameter is
defined by minimizing the squared error on the validation set. Another common technique is the
Bayesian regularization in which the parameter is set automatically. It has been proven in [67]
that the Bayesian regularisation technique is better than the early stopping to avoid overfitting.
Although this is perhaps an insufficiently detailed explanation of regularization techniques, Early
Stopping was chosen for this thesis.

C(x) =

Q∑

q=1

(tq − aq)
⊤(tq − aq) + α

n∑

i=1

x2
i (2.8)

The Early Stopping method was chosen for two reasons. First of all, it is significantly easier to
implement. Secondly, overfitting is in general a concern when the amount of data is limited. In
this project data availability did not impose a limitation, as there are numerous situations which
may be simulated, and corresponding data points which can therefore be stored.

Stopping Criteria

Ideally the network training ends when the training error converges to zero. In practical problems
this rarely happens, thus other stopping criteria are usually defined. Since it is difficult to find the
appropriate error value for which training is stopped, normal criteria are when either the gradient of

the performance index, i.e. the cost, ∂C(x
∂x or the performance index reduction C(xold)−C(xnew)

reaches some predefined value. For both criteria a very small value must be chosen to avoid too
early stopping. However, for most problems, when using the Early Stopping method, the validation
error will increase before any of the stopping criteria are reached. [63, chapter 22]
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2.4 Reinforcement Learning

RL is to learn how to map situations to actions in order to maximize a numerical reward signal.
The learner, commonly known as the agent, and in our case the controller, has no knowledge
of correct actions, but discovers the best actions by testing them and evaluating the reward for
doing so. This principle is illustrated in Figure 2.16. This makes RL different from SL which, as
previously explained in Subsection 2.2.2, is about learning from a labeled training set, and thus
represent the expert knowledge of an external supervisor. During training of such a SL-agent each
data point describes the situation defined by the inputs together with the correct actions to take
in such a situation, defined by the targets.

Environment

Controller

states,
reward

action

Figure 2.16: Principle of reinforcement learning.

The invent of RL was due to two large research topics, namely trial-and-error learning and optimal
control. The early research of trial-and-error learning was nested in psychology as the study of
behavioral psychology and became a known topic due to Edward Thorndike’s ’Law of effects’ [68].
The use of the trial-and-error learning in artificial intelligence dates back to the 1950s, where Farley
and Clark designed a neural network to use trial-and-error-learning [69] and Minsky presented
computational RL models [70]. Optimal control also began in the 1950s. In the beginning it
was used to describe the problem of designing a controller to minimize a measure of a dynamical
system’s behavior over time [71]. In the late 80s thanks to Werbos in [72] and Watkins in [73],
the merging of optimal control and trial-and-error learning resulted in what today is known as
reinforcement learning.

2.4.1 Elements of Reinforcement Learning

Before proceeding it is necessary to introduce some core concepts within RL. This introduction
gives a brief description and for an in-depth explanation please refer to [71].

Markov Decision Process

The Markov Decision Process (MDP) comes from dynamical systems theory and in RL is used
to formulate the control problem as an optimal control of an incompletely-known MDP. The idea
is to capture the fundamental aspects of the problem the agent is facing. The agent must have
knowledge of the state of the environment, and it must be able act in such a way that the sensed
states are affected. In addition the agent must have a goal which is related to these states. These
three aspects, sensing of states, action with impacts and goal-orientation, are all included in MDPs.
[71]

An MDP is normally described as a tuple ⟨S, A, T, R, γ⟩. Where S is a set of all states s, A
is the set of all actions a. T is a transition model, T : S × A × S → R. Normally it specifies a
conditional probability distribution, T(s, a, s′) = Pr(st = s|at−1 = s, at−1 = a). R is a reward
function, R : S × A → R. Where R(s, a) specifies how desirable it is to be in state s and take
action a. For continuous task the reward function is given as

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =

∞∑

k=0

γkrt+k+1.

The expected value of the next reward is given by R(s, a, s′) = E [rt+1|st = s, at = a, st+1 = s′] γ
is a discount factor, 0 < γ ≤ 1.[74]
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Policy

The policy describes the behaviour of the agent for a specific time, and is essentially a mapping
from states s to actions a, π : S → A. The policy π, is essentially a function which specifies what
action to take in each state. Normally it is defined as a probability, where π(s, a) is the probability
of taking action a in state s under policy π. However, in some algorithms it is defined as a look-up
table. [74]

Value Functions

Most reinforcement learning algorithms consists of estimating the value functions. The state-value
function vπ(s) estimate how good it is for the agent to be in a given state s under the policy π.
This measurement is done by estimating the expected total reward and is defined by Equation 2.9.
Where Eπ denotes the expected value given that the agent follows policy π.

vπ(s) = Eπ

[ ∞∑

k=0

γkrt+k+1|st = s

]
(2.9)

The second value function is the action-value function qπ(s, a). This measures how the value of
taking action a in state s when following policy π. This is defined in Equation 2.10.

qπ(s, a) = Eπ

[ ∞∑

k=0

γkrt+k+1|st = a, at = a

]
(2.10)

Both value functions satisfy a recursive relationship which is commonly known as the Bellman
equation. This is shown for the vπ-function in Equation 2.11 and describes the relationship between
the value of a state and the values of possible replacing states.

vπ(s) =
∑

a

π(s, a)
∑

s′

T (s, a, s′) (R(s, a, s′) + γvπ(s′)) (2.11)

The Bellman equation sets the basis for the Bellman optimality equation which states that “the
value of a state s under an optimal policy π must equal the expected return for the best action
from that state”[71]. This equation is based on the optimal state-value function v∗ and the optimal
action-value function q∗, which are defined by Equation 2.12.

v∗(s) = max
π

vπ(s), q∗(s) = max
π

qπ(s, a) (2.12)

The optimal action value function gives the expected return for taking action a in state s under
the optimal policy π, thus it can be defined in terms of v∗. Vice versa, finding the maximum value
of qπ

∗
over all actions a ∈ A results in the optimal state-value function v∗. Using these relations

the Bellman optimality function for the v∗-function and q∗-function can be defined by Equations
2.13 and 2.14.

v∗(s) = max
a∈A(s)

qπ
∗
(s, a)

= max
a

E [rt+1 + γv∗(st+1)|st = s, at = a]

= max
a∈A(s)

∑

s′

T (s, a, s′) [R(s, a, s′) + γv∗(s′)]

(2.13)

q∗(s) = E [rt+1 + γv∗(st+1)|st = s, at = a]

= E
[
rt+1 + γmax

a′
q∗(st+1, a

′)|st = s, at = a
]

=
∑

s′

T (s, a, s′)
[
R(s, a, s′) + γmax

a′
q∗(s′, a′)

] (2.14)

Finding the explicit solution of the Bellman optimality equation is rarely done in RL algorithms.
Instead, many methods approximate the Bellman optimality equation, where actual measurements
replace the expected transitions [71]. This will be described in more detail in Subsection 2.4.3.
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Curse of Dimensionality

Normally, in control problems both states s and actions a are continuous. Thus, calculating the
optimal action-value function and the state-value function values becomes very difficult, as the
number of state-action pairs are approximately infinite [75]. In fact, the computational require-
ments grow exponentially with the number of state variables.

2.4.2 Classification of Reinforcement Learning Methods

Today there exist numerous RL-methods, which can broadly be separated into two categories,
model-based and model-free. A third emerging category [76] integrates model-free and model-based
methods, but is not considered in this thesis. Model-free methods are further separated based on
the iteration procedure, which is either value-based or policy-based. The model-based methods
are separated depending on whether the model is learned or already given. This classification is
shown in Figure 2.17, where some of the most popular methods are stated.

Reinforcement learning

Model-free Model-based

Value-iteration Policy-iteration Learn model Model given

Q-learning

Deep Q-learning

TD-learning

Policy gradient

Actor-Critic

Figure 2.17: Classification of RL methods.

Model-Free Methods

Model-free methods learn by acting in the real environment, and the agent relies on trial-and-error
experience for setting up the optimal policy. The two main approaches in this category are the
value-iteration approach and the policy-iteration approach.

The value-iteration methods update the action-value function q based on the Bellman equation in
2.14 [76]. Such methods include Q-learning, deep Q-learning, temporal difference (TD) learning
and many more. Q-learning is possibly the most popular RL-approach [69, 77]. According to [78],
which reviews the application of RL in energy systems, half of the publications reported the use
of Q-learning. In addition, many RL-algorithms use Q-learning as its underlying learning method
[79].

The policy-iteration, also known as policy-based, methods parameterize the policy as π(s, a|θ).
The target of such methods is to find an optimal θ either through gradient descent for an objective
function J(π) or by maximizing local approximations of J . This leads to the two methods policy
gradient and actor-critic. [80]

Model-Based Methods

Whilst model-free methods inductively solve the problem, by using the agent’s past experiences as
evidence and statistics to estimate the value of its action, model-based methods deductively solve
the problem, where the general understanding of the system is used by the agent to derive the most
optimal action. Thus, in model-based methods the agent has knowledge of the model, this enables
it to predict state transitions and future rewards. Provided that the model is correct this learning-
method is much more sample-efficient compared to the model-free methods [80]. The model-based
methods can be further separated into learn-model-method and given-model-methods. Although
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there are several advantages of model-based methods, major drawbacks are difficulty of learning
an appropriate model, and a worse asymptotic performance than the model-free approaches. The
latter is due to assuming that the learned model accurately represents the actual environment,
which results in model-bias [81]. Model-free approaches, on the other hand, can achieve better
performance since they do not depend on the accuracy of the model, however they have the
disadvantage of significantly higher sample complexity [82].

2.4.3 Relevant RL-Based Control Methods

Although there exist numerous RL-based control methods, there are few relevant examples. In
general, most applications of RL-based control methods are used to improve the maximum power
point tracking (MPPT) for renewable energy integration. The use of RL for MPPT is of course
relevant, but translating this methodology for current control for the VSC is difficult. Similar
observations are made in [78], where it is stated that “Most studies lack proper benchmarking” and
about the RL’s ability for problem solving it is stated that “only a limited number of publications
has discussed its broad application”.

Q-Learning Based Control

Q-learning is a model-free learning algorithm in which the environment is described by states s ∈ S.
The agent interacts with these states and chooses an action a ∈ A from which it receives a reward
r ∈ R. The goal is that the agent learns the mapping from the states to the long-term value of
taking a particular action. This mapping is learned by means of a Q-function, which usually is the
Bellman equation, as given by Equation 2.15, which is equivalent to Equation 2.14 with a slightly
different notation. From this an optimal Q-value Q∗

s,a is obtained and stored in a Q-table, indexed
by the corresponding state and action pair required to obtain this Q-value. This table is updated
every time an action is taken. [83]

Q∗(s, a) = E(r(s, a) + γmax
a′

Q∗(s′, a′) (2.15)

In Q-learning the learning is done off-policy, meaning that the Q-function directly approximates
the optimal Q-value, without considering the policy being followed. The policy only determines
which state–action pairs are visited and updated [71].

In [84] a combination of ANN and Q-learning is used for MPPT of a wind energy conversion system.
Here the MPPT algorithm is switched from the online Q-learning method to an optimal relation-
based online MPPT algorithm when the maximum power point (MPP) is learned, and it is switched
back again if the relation starts to deviate from the optimal relation. The method is compared
to the conventional P&O (Perturbe and Observe) MPPT. Simulations are done under varying
wind conditions and system aging conditions, the results show that when the wind is changed the
conventional method searches for the new MPP without considering previous experience, which
may lead to searches in the wrong direction and the efficiency is decreased. The proposed method
is able to learn by previous experience, which results in a higher MPPT efficiency, less deviation
from optimal values and the produced energy is higher, compared to the P&O method. Also in
[85] Q-learning is used to improve the MPPT of a wind energy conversion system. However, here
the authors use only Q-Learning and not ANN. In [86] and [87] RL is used to improve the MPPT
for PV sources.

Despite an extensive search for Q-learning applied to current control for the VSC, only one pub-
lication was found. The publication [88] was the only relevant Q-learning method that was found.
Here a Q-learning-based control methodology is presented and applied for controlling buck and
boost converters. Simulation results showed that line and load regulation was achieved with the
proposed RL-controller. In addition, suggestions are given for enabling a more robust and versatile
controller. The paper states that the methodology can be extended to DC-AC converters, such as
the voltage source inverter (VSI). The proposed control strategy is given in Figure 2.18. Here the
first step is to initialize the system with a stable control policy which involves one of two strategies.
Either (1) implementing the optimal controller after all steps are completed for an initial open-loop
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2.4. Reinforcement Learning

control input. Or (2) the optimal controller is implemented using stabilized initial values. The
next step is to delay the progress such that a steady state is reached, the delay may be of several
samples and is important if the open-loop control input is to be used. The third step is to collect
measurements of the states i and v and the fourth step is to pre-process the data and find the
optimal solution in an iterative manner. The fifth and final step is to implement this optimal
controller by sending the control signal to the converter. Although it would be interesting to test
this method for the VSC, time was insufficient and for further details please refer to the original
publication in [88].

Initialize 
with stable 

control policy,
uinit(t)

Delay further 
progressing 

to reach 
steady-state

Collect 
state variables 
measurements, 

iL, v0

Preprocess 
collected data 

Iteratively solve 
for optimal control 

solution, using 
preprocessed data

Implement 
controller 

via u(t) signal 
sent to converter

Figure 2.18: The proposed Q-learning-based control methodology (adapted from [88]).

Adaptive-Critic Based Control

Adaptive-critic methods are typically classified as approximate/adaptive dynamic programming
(ADP), which are also commonly referred to as neurodynamic programming [89], and are defined
as the family of methods that seek to find an (approximate) optimal control policy for a stochastic
process whose model depends on unknown parameters [75, 90]. In these methods the curse of
dimensionality problem is avoided by use of a system, called the critic, which approximates the
dynamic programming cost function. The structure of the adaptive dynamic programming (ADP)
approach is illustrated in Figure 2.19. Here the agent consists of two neural networks; the actor
and the critic, which are both tuned online using the observed data. The critic approximates the
cost function, taking into account the system states and reinforcement signal, which results in an
updated policy. This policy update and the measured system states are then sent to the actor
which computes and implements the appropriate control actions.

System/
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Implements 

control policy control action
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Figure 2.19: Structure of the actor-critic methods (adapted from [89, 91]).

According to [92] adaptive control algorithms was already a topic in the 50s, and became a popular
research topic in the 1970s and 1980s. However the use of RL in such control methods is a fairly new
approach. The importance of doing so, is that RL provides an adaptive control which converges
to the optimal control. Thus, RL provides optimal adaptive controllers which learns online.

In [93] Werbos proposed two algorithms for implementing ADP, HDP and dual heuristic program-
ming (DHP). Where HDP is a method for estimating the cost function and DHP is a method
for estimating the gradient of the cost function. In addition, their corresponding action depend-
ent (AD) versions, resulting in action dependent HDP (ADHDP) and action dependent DHP
(ADDHP).
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2. Theoretical Background

Today, among numerous ADP-based methods, HDP is one of the most basic and widely used
structures [91]. The HDP principle is to estimate the cost function for a given policy. This
estimation only requires the the instantaneous reinforcement signal r(t) and is given in Equation
2.16. Note the equivalence to the previous value functions in Equations 2.9 and, The critic performs
this estimation by minimizing the prediction error defined in Equation 2.17 over time.

Ĵ(t) = r(t) + γĴ(t+ 1)

=

∞∑

k=t

γk−tr(t)
(2.16)

Ec =
1

2

∑

t

(
Ĵ(t)− U(t)− γĴ(t+ 1)

)2
(2.17)

The actor use the knowledge of the states and the sum of the estimated cost and reinforcement
signal to find optimal control action which are implemented to the model network. These steps
are illustrated in Figure 2.20, where J is a cost function estimate, x(t) are the measured states of
the actual system, here referred to as the plant. u are the control inputs, γ is a discount factor
and r(t) is the reinforcement signal.

x(t)

x(t)

x(t) x(t+1)u(t)

++

+
-

J(t+1)

J(t)

r(t)�Model Network

Figure 2.20: Principle of heuristic dynamic programming (adapted from [91]).

In [94] an HDP controller is used to control a boost converter. The paper states that the advantage
of the HDP is enabling the boost converters to easily cope with large disturbances, and that the
HDP with a well-trained critic and action networks can perform as an optimal controller for
the boost converter. HDP is also used for optimal control in [95], where it is used for virtual
inertia-based control of grid connected three-phase inverters. The paper shows that conventional
controllers are not suited for non-inductive grids, but that the HDP controller enables the system
to adjust itself to different conditions. Simulation results are included and confirm that the HDP
controller outperforms the traditional direct-fed voltage and/or reactive power controllers in virtual
inertia control schemes.

Recently, the direct HDP (dHDP) method has shown promising results. The dHDP estimates the
controller parameters directly, unlike indirect versions which estimate model parameters before
computing the control signals [89, 96]. The direct version avoids estimating the process, and
enables the use of a model-free controller which is robust with respect to model uncertainties. The
principle can be illustrated in Figure 2.20 by removing the model network.

In [16] the dHDP control method has been applied to a large power system stability control problem.
Here the stability control problem consists of three main challenges; nonlinearities, uncertainties,
and coordinate design. The paper proves that the direct HDP method can be employed to damp
low-frequency oscillations. The control approach uses real system responses instead of the exact
system model, and thus avoids influences of modeling for nonlinearities and uncertainties. A
similar approach is used in [15] where a dHDP controller is designed to improve transient response
and harmonics, in a system consisting of shunt active filters with current controlled VSCs. The
proposed dHDP controller works supplementary to the PI control and efficiently tracks the d- and
q-axis reference currents. Simulation results under different nonlinear load conditions are included
and prove that the proposed controller significantly reduces the total harmonic distortion (THD),
in addition to outperforming the conventional PI control method during transients.
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3
PI-Trained Artificial Neural Network
Control

In this chapter a PI-trained artificial neural network (PI-ANN) will be developed and implemented
as a current controller for a two-level three-phase grid connected voltage source converter. The
PI-ANN control design is separated into two parts. First, in Section 3.1 the decoupled PI controller
is developed, including mathematical equations, analytical model, and tuning method. Third, in
Section 3.2, the network design is described. This includes the training algorithm and architec-
ture of the neural network. In Section 3.3 the performance of the finalized PI-ANN controller
is evaluated by considering simulations results during different control scenarios. The controller
performance is validated through hardware-in-the-loop (HIL) simulations in Section 3.4. Finally,
in Section 3.5 the simulation results from both the design phase and the performance evaluation
are discussed, and important remarks are made.

3.1 Decoupled Proportional-Integral Control

This section provides an explanation of the decoupled PI control. The controller will be implemen-
ted using sinusoidal PWM and is based on the lectures in the specialization course ELK-21 [97].
In Subsection 3.1.1 the mathematical representation of the system dynamics, in addition to the
transformation from natural (abc) reference frame to synchronous rotating (dq) reference frame is
described. Subsection 3.1.2 gives a detailed description of the decoupling of the d- and q-axis, and
in Subsection 3.1.3 the tuning technique is described.

3.1.1 System Model

The topology of the converter considered in this project is the 2-level 3-phase VSC, where each
phase leg consists of two IGBTs and anti-parallel diode. This converter will from here on be
referred to as simply VSC. In Figure 3.1 the full system containing the grid-connected VSC is
presented. This system consists of three main components. First the converter which outputs the
three-phase converter voltage vc,abc and three-phase converter current ic,abc. Secondly, the LC-
filter represented by inductance Lf and capacitance Cf , in addition to a filter resistance Rf . At
the output of the LC-filter is the filtered output voltage vf,abc and current if,abc which are fed to
the grid through a transformer. The third component is the distribution grid which is represented
by resistance Rg, inductance Lg and the grid voltage vg,abc. The corresponding system parameters
are given in Table 3.1. In this project the carrier-based sinusoidal PWM method is used and grid
synchronization is ensured using the PLL-technique.
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3. PI-Trained Artificial Neural Network Control

Table 3.1: Parameters for the grid-connected VSC system

Symbol Description Value

Vg Grid voltage 280 V
Vdc DC-link voltage 500 V
P Rated power 10 kW
fsw Switching frequency 8000 Hz
Lf Filter inductance 1.55 mH
Rf Filter resistance 10 mΩ
Cf Filter capacitance 75 µF
Lg Grid inductance 0.266 mH
Rg Grid resistance 11.9 mΩ
Cdc DC-link capacitance 3 mF
Ts Sampling time 1 µs
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Figure 3.1: Topology of the grid-connected VSC.

By using Kirchoffs voltage law (KVL) on the grid side of the converter the mathematical repres-
entation of the system dynamics in Equation 3.1 is obtained.

vc,abc = Rf ic,abc + Lf
dic,abc
dt

+ vf,abc (3.1)

Then by using the Park transformation matrix, previously given by Equation 2.2, dynamics in
Equation 3.2 is obtained.

vc,αβ = Rf ic,αβ + Lf
dic,αβ
dt

+ vf,αβ (3.2)

For transforming the components to the dq-frame it is useful to note that the relationship between
the αβ-frame and the dq-frame is given by xαβ = xdqe

jθ, where x represents either current or
voltage. This results in Equation 3.3.

vc,dqe
jθ = Rf ic,dqe

jθ + Lf
d

dt
ic,dqe

jθ + vf,dqe
jθ (3.3)

By using the product rule for d
dtidqe

jθ and noting that the derivative of the phase angle dθ
dt equals

ω, the term ejθ is cancelled from both sides which results in Equation 3.4.

vc,dq = Rf ic,dq + jωLf idq + Lf
d

dt
ic,dqe

jθ + vf,dq (3.4)

By using that jid = −iq and jiq = id the system dynamics in dq-frame is obtained and given by
Equation 3.5.

vc,d = Rf ic,d − ωLf ic,q + Lf
dic,d
dt

+ vf,d

vc,q = Rf ic,q + ωLf ic,d + Lf
dic,q
dt

+ vf,q

(3.5)
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3.1. Decoupled Proportional-Integral Control

3.1.2 Decoupling of D- and Q-axis

The decoupled PI controller is designed in the synchronously rotating (dq) reference frame and
consists of two PI controllers. By use of decoupling terms each controller is independently applied
to each of the d- and q-axis current deviations εdq = i∗dq − ic,dq. This coordinate transformation
enables the successful application of linear PI controllers to DC components and results in a linear-
time-invariant system. [3, 5]

The development of the control starts with a Laplace transformation of the system dynamics
previously given by Equation 3.5. Rearranging in terms of the converter current results in Equation
3.6.

ic,d =
1

sLf +Rf
(vc,d − vf,d + ωLf ic,q)

ic,q =
1

sLf +Rf
(vc,q − vf,q − ωLf ic,d)

(3.6)

From this it is seen that the inductance terms ωLf ic,dq and voltage terms vf,dq must be fed forwards
in order to compensate for undesirable cross-coupling effects, this results in the mathematical
controller description in Equation 3.7.

v∗c,d =

(
Kp +

Ki

s

)
(i∗d − ic,d) + vf,d − ωLf ic,q

v∗c,q =

(
Kp +

Ki

s

)(
i∗q − ic,q

)
+ vf,q + ωLf ic,d

(3.7)

The obtained control signals v∗
c,dq must be transformed back to three-phase components v∗

c,abc

using an inverse Park transform. The modulation indices mabc are obtained after normalizing
v∗
c,abc with the gain 2

Vdc
. This is illustrated in Figure 3.2.
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Figure 3.2: Decoupled proportional plus integral control.

3.1.3 Modulus Optimum Tuning Method

The proportional and integral gainsKp andKi are determined using modulus optimum, a technique
based on cancelling the dominant time constant, while keeping the closed loop gain larger than unity
for as high frequencies as possible [98]. Modulus optimum achieves a fast response and is therefore
a popular tuning method for the inner current loop. The tuning of each gain is summarized in
Equation 3.8 for the per-unit value of filter inductance Lpu and resistance Rpu.

Kp,pu =
τpuRpu

2Ta
, τi = τpu =

Lpu

ωbRpu
, Ki =

Kp

τi
(3.8)

For this system this tuning technique results in the gains

Kp = 4.133, Ki = 25.8333
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3. PI-Trained Artificial Neural Network Control

3.2 Network Design and Training

The structure of the PI-ANN control method is given by Figure 3.3. First the PI controller is
used as an expert for generating the data needed for the offline training phase of the FFNN. The
inputs and outputs of the PI controller are stored during simulations. Next, the network is trained
using the simulation data. After completing the offline-training the network is implemented as
a controller, replacing the original PI controller. However, before the network can replace the
controller the training method and network structure must be determined. This will be described
in the following subsections.

PI Controller

+

control outputs, mabc

targets

inputs, ic,dq,i
*
dq,vf,dq,���

ic,dq,i
*
dq,vf,dq

Offline-trained network

inputs

network outputsinputs, 

Offline training

Online Operation

ic,abc
vg,abcvf,abc

Lf LgRf

Cf

vf,dq
ic,dq ���

mabc

mabc

s1,...,s6

weight update

Figure 3.3: PI-ANN control design.

3.2.1 Levenberg-Marquardt Algorithm

In this report the Levenberg-Marquardt (LM) algorithm is chosen for training the FFNN. This
algorithm was developed to solve nonlinear least square problems, and is based on a combination
of the steepest-descent (SD) algorithm and the Gauss-Newton (GN) algorithm. The LM algorithm
switches between these algorithms depending on whether the model is linear in its parameters x
or not. This way when the parameters are distant from the optimal values, the problem becomes
nonlinear and the SD method is employed. Conversely, when the parameters become close to their
optimal values, the problem is close to quadratic, and the GN method is employed [63].

The LM algorithm measures the network performance during training as the SSE between the
network outputs y and targets tk at sample k. The resulting cost function C(x) is given by
Equation 3.9 for a total of Q samples, R inputs, M layers and Si neurons in each layer i. The last
summation is the sum over all elements in the error vector vi, which is defined in Equation 3.10.
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3.2. Network Design and Training

Here SM is the number of neurons in the last layer, which gives a total of N = Q× SM errors.

C(x) =

Q∑

j=1

(y − tj)
⊤(y − tj)

=

Q∑

j=1

e⊤j ej =
N∑

i=1

v2
i

(3.9)

v⊤ =
[
v1 v2 . . . vQ vQ+1 . . . vQ×SM

]

=
[
e1,1 e2,1 . . . eSM ,1 e1,2 . . . eSM ,Q

] (3.10)

The aim of updating the weights and biases is to reduce the C(x). This is seen by Equations 3.11
and 3.12, where the new weight Wnew is the sum of the current weight Wold and the change in
weight ∆W , where the change in weight is a function of the Jacobian J. The Jacobian is defined
in Equation 3.13 as the derivative of the error vector v with respect to the network parameters
x, and thus represents the change in error due to change in network parameters, N is the total
number of errors and n is the total number of parameters as defined in Equation 2.7.

Wnew = Wold +∆W (3.11)

∆W = −(J⊤J+ µI)−1J⊤v (3.12)

J =




∂v1(x)
∂x1

∂v1(x)
∂x2

. . . ∂v1(x)
∂xn

∂v2(x)
∂x1

∂v2(x)
∂x2

. . . ∂v2(x)
∂xn

...
...

...
∂vN (x)
∂x1

∂vN (x)
∂x2

. . . ∂vN (x)
∂xn




(3.13)

The switching between the SD method and the GN method is determined by the LM blending
factor µ. If µ >> J⊤J, then (3.12) approximates to − 1

µJ
⊤v which is the SD update. If µ, on the

other hand, is small (3.12) becomes approximately −(J⊤J)−1J⊤v, which is a GN update. In LM
the cost function C(x) is evaluated after each iteration, if it has not decreased, then µ is increased
corresponding to a lower learning rate and a smaller step. If the performance has improved µ is
decreased, and a larger step is taken.

The LM algorithm is illustrated in Figure 3.4. Here three stopping criteria are defined. First to
stop the training after a fixed number of epochs, Epochmax. Secondly the training is stopped if
µ reaches a significant high value, µmax. Third and last stopping criterion is to stop the training

when a minimal value for the gradient of the cost function is reached,
[
∂C
∂w

]min
. Although the

process is simple, the computation of specific elements is somewhat complicated. For more details
of the computation details please refer to [63, Chapter 12].

In addition to the three aforementioned stopping criteria the Early Stopping method is used (Sec-
tion 2.3.3), where the data is separated into three sets: 70% is used as training data, 15% is used
for validation data and 15% is used for testing data. The number of validation errors is set to 6.

Initially, the SD algorithm was developed, this is slower than LM and was therefore not chosen for
training the networks. However, the implementation is much simpler and is given in Appendix B.
For the LM algorithm both embedded functions from the Matlab Deep Learning toolbox and an
open access code from Github [99] were tested. The ’open access code’ is slower than using the
embedded functions from the ’Deep Learning toolbox’, therefore the latter was used to produce
the thesis’ simulation results. In Appendix C the code for using the ’Deep Learning toolbox’ is
given.
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Figure 3.4: Levenberg-Marquardt algorithm.

3.2.2 Network Architecture

The design of the appropriate network architecture is concerned about choosing the appropriate
number of neurons and layers in the network. As stated in Section 2.3.2 the number of inputs and
outputs of the FFNN is the same as the number of inputs and outputs of the expert. However,
there are several options when it comes to determining what is the actual input and output of the
expert. E.g. one could choose the measurements of the currents and voltages as the inputs, i.e.
the three-phase components ic,abc instead of the components idq. Since this corresponds to a more
complex architecture this would be a bad choice. Instead, the four structures shown in Figure 3.5
were tested.

The first structure in Figure 3.5(a) fully replaces the decoupled PI controller, as it takes as input
all the necessary components for performing the decoupled PI control, and outputs the optimal
voltage vector in dq-frame. The second structure in (b) is almost identical to (a), except that the
angular speed ω is removed. The structure in (c) has the same inputs as (a), but outputs the
modulation indices mabc, therefore the output of this network is sent directly to the modulator.
The last structure in (d) takes the error signal εdq instead of the two current signals idq and i∗dq,
resulting in 5 inputs instead of 7. The output is the same as the previous structure, the modulation
signals.

All structures were tested with a single hidden layer consisting of 20 neurons and the network was
trained for a duration of 1000 epochs. The resulting network performance during training measured
by the MSE is given by Figure 3.6(a). It can be seen that the performance is significantly poorer
for structures 3 and 4, as the network does not manage to learn the correct input-output mappings,
corresponding to relatively high values for the MSE. In addition, not shown in the figure, due to
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(a) Structure 1 (b) Structure 2
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Figure 3.5: Overview of the different network input and outputs, resulting in four different network
structures.
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Figure 3.6: Network performance during training and tracking performance during simulation for
all network structures.

validation errors the training stopped at 400 epochs for structure 3, and at 90 epochs for structure
4. The resulting controller performances using each network structure is plotted in Figure 3.6(b)
and (c). Structures 3 and 4 both result in a controller which is unstable, and produces a converter
current which neither follows the amplitude of the reference nor the phase. The close-up in Figure
Figure 3.6(c) shows that although the MSE during training was significantly higher for structure
2 than structure 1, the controller performance when implemented is largely comparable.

The structures 1 and 2 were further analyzed for a longer simulation time and using different hidden
layer sizes. The resulting training and controller performance of structure 1 using the network
structures 7-7-2, 7-14-2 and 7-27-3 is plotted Figures 3.7(1a) and (1b), respectively. The different
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Figure 3.7: Impact of hidden layer sizes on network performance during training (a) and controller
performance during simulation (b). For structure 1 and structure 2.

network structures were trained using 100 epochs, because 1000 epochs resulted in overfitting,
which gave an even poorer controller performance than the presented results. In Figure 3.7(1a)
it is seen that the low MSE, values when using 7 and 14 hidden neurons, does not correspond
to a good controller performance. For these networks the measured d-axis converter current ic,d
drifts off even though the reference current i∗d remains at 20 A. Since the mathematical equations
that the network is trying to learn during training are simple linear relations, it is expected that
overfitting is an issue. The same number of hidden neurons were also tested for structure 2, but
the number of epochs was kept equal to 1000. The performance during training and simulation is
plotted in Figures 3.7(2a) and (2b), respectively. Here it is seen that the controller performance is
significantly improved as the measured current now remains at the reference value.

In Table 3.2 the total harmonic distortion of the filtered output current is given. Based on this
structure 2 with 27 hidden neurons is chosen.

Table 3.2: Comparative analysis in terms of current THD [%].

Hidden neurons Structure 2

7 4.07
14 4.05
27 3.85

3.3 Performance Evaluation

In this section, the performance of the PI-ANN controller is evaluated and compared to the conven-
tional decoupled PI controller. This analysis considers three different test cases; varying reference
current, short circuit fault at the distribution grid, and parameter uncertainty. Further details of
each scenario will be given in the following subsections. The implementation of the decoupled PI
controller is illustrated in Figure 3.2, and the implementation of the PI-ANN controller implement-
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ation is illustrated in Figure 3.3. The simulations are performed using the controller parameters
given in Table 3.3 and the system parameters given above in Table 3.1.

Table 3.3: PI and PI-ANN controller parameters.

Symbol Description Value

Kp Proportional gain 4.133
Ki Integral gain 25.833

Network structure 6-27-2
Epochmax Maximum number of epochs 1000
µ0 Initial blending factor 0.01
µmax Maximum blending factor 1010

µinc, µdec Increase/decrease of blending factor 10
∂C
∂x

min
Minimum gradient 10−7

Eval Maximum validation errors 6

3.3.1 Current Reference Tracking

A simulation is carried out for both the PI controller and the PI-ANN controller by varying the
d-axis reference current magnitude (i∗d) continuously and step-wise. The obtained results under
this test case are presented in Figure 3.8. Here, the successful implementation of both controllers
can be verified as the actual d-axis converter current (ic,d) is tracking the corresponding reference
component. However, deviations are seen, between the measured current and its reference, for
both controllers. The tracking performance appears identical for both controllers. The waveforms
of phase a of the filtered output current if,a and output voltage vf,a are also included in Figure 3.8.
For both controllers it is seen that the current waveform is affected by the reference current step
variations, where momentary distortions are observed when the changes occur. The distortions
decreases gradually, but neither controller manages to obtain a smooth current waveform before a
new reference step is introduced. The voltage waveform appear unaffected by the reference current
steps and remains acceptable smooth for the both controllers.
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Figure 3.8: Performance evaluation of the PI-ANN controller and the PI controller under reference
current variation.
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3. PI-Trained Artificial Neural Network Control

3.3.2 Analysis During Grid-Side Fault

The performance of both controllers is also tested under grid-side fault conditions by reducing the
grid voltage amplitude symmetrically to 20%, while keeping the reference current i∗d magnitude
constant at 18A. As presented in Figure 3.9, the fault is introduced at 0.2s and lasts for 3 cycles.
In this context, the inability of the PI-ANN controller to tackle the fault can be observed from the
converter current ic,d plot, which has large oscillations and obtains an unexpected high magnitude.
In contrast, the PI controller operates at the expected level and produces a converter current with
an expected magnitude and less oscillations. Similar observations are made for the current if,a
and voltage vf,a waveforms. For the PI-ANN the current has large oscillations at the introduction
and clearing of the fault, in between these time instants the current amplitude is raised to an
unexpectedly high value. The PI controller, on the other hand, produces a current with lower
oscillations and an amplitude which is closer to the expected value. The voltage waveform is more
similar for the two controllers, however the oscillations are larger for the PI-ANN controller at
the introduction of the short circuit fault. During the fault the controllers produce a voltage with
equal amplitude, but a small phase shift is observed between the two voltage waveforms.
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Figure 3.9: Simulation results of the PI-ANN controller and the PI controller under grid-side fault
conditions.

3.3.3 Parameter Uncertainty

The robustness of the current controllers is further verified under the parameter uncertainty test
case. This scenario considers the controller performance for modified grid and filter inductance.
The grid inductance Lg is both decreased and increased by 300%, while the filter inductance
Lf is increased and decreased by 20 %. Further, for easier evaluation of the controller tracking
performance, the reference current (i∗d) value is also changed to a different level at 0.2s.

In Figure 3.10 the ic,d and i∗d are presented. It can be seen that the performance of both the PI
controller and the PI-ANN controller is influenced by this change in parameters. This is observed
by the deviation between measured and reference converter current, which is altered depending
on the specific parameter change. For both controllers, the smallest deviation is observed for
the increased Lf -value and the largest deviation is seen when the Lf -value is low. However,
for the modification in grid inductance, the tracking performance appear the same. In all cases
the ic,d waveform oscillates around its reference component for both controllers. However, both
controllers manage to track the reference current for all parameter changes and the overall tracking
performance is comparable for the two controllers.

In Figure 3.11 phase-a of the filtered output current is presented. For both controllers a smooth
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Figure 3.10: D-axis converter current under parameter uncertainty condition. For the PI and the
PI-ANN controller
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Figure 3.11: Filtered output current under the parameter uncertainty condition.
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Figure 3.12: Filtered output voltage under the parameter uncertainty condition.

current waveform is observed. Further, there is no significant difference in the if,a waveform for
the different cases. However the current appears slightly more distorted for the low Lf -value,
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3. PI-Trained Artificial Neural Network Control

especially right before and right after the step change. Similar observations are made for the case
when the Lg-value is highest. Overall, for all parameter modifications, the performance of the PI
controller and the PI-ANN controller is largely comparable.

In Figure 3.12 phase-a of the filtered output voltage is presented. Again, the voltage waveforms
appear identical for the two controllers. Further, the voltage waveform appear unaffected by the
different modifications. However, looking closely right after the reference current step change at
0.2s, some slight distortions are seen for the decreased filter inductance, the same observation can
be made for the increased grid inductance.

3.4 Experimental Results

The performance of the controllers are further verified using the HIL simulation tool OPAL RT. The
HIL simulation results are presented for two test cases. The first case considers a reference current
step change and the second case considers a short circuit fault at grid-side. The HIL simulation
results will be compared to those obtained in the Matlab/Simulink simulation environment and
serves as a validation of the controller performance. The d-axis converter current ic,d, reference
current i∗d, phase a of filtered output current if,a and voltage vf,a are plotted for both controllers
and test cases. The set-up is given in Figure 3.13.

Figure 3.13: Image of the setup of the OPAL RT simulations.

In Figure 3.14 the performance of the PI controller and the PI-ANN controller is presented for the
case when the reference current i∗d is varied from 6A to 12A. In Figure 3.14(a) the PI controller
performance is plotted. Here the converter current ic,d is seen to track the step in the i∗d-value.
The filtered output current if,d and the filtered output voltage vf,d maintain smooth waveforms.
This performance corresponds to the observations for the same tracking test case described in
Subsection 3.3.1. In Figure 3.14(b) the performance of the PI-ANN controller is presented for the
same test case. Also for this controller, the converter current tracks the reference current step, and
the current if,a and the voltage vf,a maintain smooth waveforms. This performance correspond to
the observations for the same tracking test case in Subsection 3.3.1.

In Figure 3.15 the performance is presented for the test case when the grid voltage drops to 20%
while the reference i∗d is set to 20A. In Figure 3.15(a) the performance of the PI controller is plotted.
The converter current remains at the reference value. However, the filtered output current is seen
to drop. This was also the case for the simulation results obtained from Matlab/Simulink, however
the drop was not as significant. In both simulation environments the output current becomes
distorted when the grid voltage drops to 20% and rises back to nominal value. These distortions
appear lower and seem to clear faster for the HIL simulation. The filtered output voltage also
appear less distorted for the HIL simulation. Overall, a similar performance to that observed in
Subsection 3.3.2 is seen for the HIL simulation results. In Figure 3.15(b) the performance of the
PI-ANN controller is plotted for the same test case. As was described in Subsection 3.3.2 the
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current ic,d does not manage to track the reference when the short circuit is introduced, instead
it rises to a significantly higher value. The same behaviour is seen for the current if,a which has
an increased magnitude for the duration of the short circuit. Similar distortions, as observed from
the Matlab/Simulink simulations results, are also present at the introduction and clearing of the
short circuit. The voltage vf,a is also distorted at the start and end of the short circuit. Overall
the HIL-simulated performance corresponds to that observed in the Matlab/Simulink simulation
environment.

(b) PI-ANN controller(a) PI controller

Figure 3.14: OPAL RT simulation results for current reference step change.

(b) PI-ANN controller(a) PI controller

Figure 3.15: OPAL RT simulation results for grid-side short circuit fault.

3.5 Discussion

The simulation results from both the Matlab/Simulink environment and the OPAL RT environment
show that the PI controller and the PI-ANN controller have a comparable performance in most
scenarios. However, in the short circuit fault test case the network performed worse than its
expert. This might have been improved by increasing the data set such that the network has more
extensive training for similar situations, however, there will always be unobserved situations and
this is perhaps not an efficient remedy to the problem. Another remedy is to change the training
settings, there are numerous of parameters that must be determined such as hidden layer size,
number of epochs, size of validation and testing data sets, learning rate and much more. The goal
of the PI-ANN controller should be to exhibit a performance which is comparable to its expert, in
all test cases.
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4
MPC-Trained Artificial Neural Network
Control

In this chapter the MPC-trained artifical neural network (MPC-ANN) controller will be developed.
This chapter starts with introducing the MPC in Section 4.1, which includes a description of the
operating principle and of the various MPC types. Next, Section 4.2 describes the design of the
continuous control set MPC-type (CCS-MPC). In this thesis, the CCS-MPC represents the expert
which will later be used for training the network whose design is described in Section 4.3. Once
the network is fully trained it is implemented as a controller denoted MPC-ANN, replacing the
original CCS-MPC. The performance is evaluated in Section 4.4, where both the CCS-MPC and
the MPC-ANN are implemented and simulated for three different test cases. These simulation
results are verified in Section 4.5, by comparing them to OPAL RT simulations. In Section 4.6 all
simulation results will be discussed and remarks are made.

4.1 Model Predictive Control

In recent years MPC has been proposed as a promising control method due to advantages such as
improved dynamic performance, easier handling of MIMO cases and increased flexibility compared
to conventional methods [8, 9, 100]. Although being an advanced control method, it offers an
intuitive control design based on the predictive model and cost function. The MPC principle is to
predict the process output at future time instants and compute an optimal control signal which
minimizes a cost function while ensuring that system constraints are met, this is illustrated in
Figure 4.1.

system
control input measurement

objective

constraints

control
action

prediction

Model Predictive Controller

Figure 4.1: Operation principle of model predictive control.

The MPC was first developed in the 80s and started to appear in the industry about 15 years
later. However, its entrance into power electronic systems occurred much later, despite being
discovered as an advantageous controller already in 1983[101]. The reason was computational
speed limitations of the available microprocessors, which was not sufficient for the application of

36



4.1. Model Predictive Control

MPC. In terms of computational power, microprocessors have seen a dramatic improvement and
no longer impose limitations, enabling numerous applications of MPC in power electronics [102–
104]. Implementing the MPC to improve the operation of grid-connected VSCs is readily applied,
and today’s research is generally concerned with improving existing MPC methods, making them
more robust during grid disturbances and parameter mismatches, in addition to improving the
computational efficiency [105–108].

4.1.1 Principle of MPC

The MPC principle is essentially the explicit use of a model to predict the process output at future
time instants. The control signals are determined by minimizing an objective function, as given in
Equation 4.1, which computes the sum of an objective starting with the current state continuing
until the prediction horizon. The minimization of the objective function yields a sequence of
optimal control signals, as given by Equation 4.2, of which the first signal is sent to the process.
The objective is formulated based on the control objective, which in this case is to track a reference
trajectory x∗. Therefore we want to minimize the error between the predicted outputs x̂ and the
reference. The second term is usually added to limit the amount of control effort ∆u, where the λ
is a weight indicating the importance of this constraint.

min
u

J =

N−1∑

t=0

(x∗(k + 1)− x̂(k + 1))2 + λ(∆u(k))2 (4.1)

u =
[
u[k] u[k + 1] . . . u[k +N − 1]

]
(4.2)

The act of predicting several time steps ahead while implementing only the first control signal
is called receding horizon. This strategy was partly developed to address two major drawbacks
of the linear quadratic regulator (LQR), whose main difference to the MPC is the use of a fixed
horizon [109]. When using a fixed horizon the optimization problem is computed at time k=0
and used throughout the entire prediction horizon. If disturbances which were not predicted by
or included in the model occur in the process, the fixed control signals become obsolete. Another
drawback is that the control usually weakens when approaching the final time step k = i+N − 1.
This happens independently of the current state of the system, which may deviate significantly
from the previous state, because the impact on the cost function is minor with respect to the total
impact of all control signals during the prediction horizon. The receding strategy is illustrated in
Figure 4.2, at each time step k the MPC solves the optimization problem, obtains the sequence
of predicted control signals u[k] until u[k +N − 1] and applies only the first control signal to the
process. In contrast to LQR, the use of a receding horizon results in a control which offers both
open loop optimization and feedback control [110].

4.1.2 Types of MPC

The MPC strategies for power converters and drives can be broadly classified considering the
optimization technique which is either continuous or finite [8, 100, 111]. The resulting classes are
called CCS-MPC and FCS-MPC. However, extensive research in the field of MPC has resulted in
additional sub-categories. The classification of some of the most popular MPC strategies is given
in Figure 4.3.

There are advantages and disadvantages of all methods. There is still ongoing research seeking
to improve existing methods, and in the end the choice of the MPC approach will depend on the
specifics and objectives of the application [44, 53, 112–114]. In this thesis the CCS-MPC method
is implemented and will therefore be further explained in Section 4.2.

The CCS-MPC computes a continuous control signal, these are then sent to a modulator. The
modulator generates the switching signals which in turn provide the desired converter voltage. The
sub-categories explicit model predictive control (EMPC) and generalized predictive control (GPC)
are two of the most applied CCS-MPC methods. In GPC the solution to the minimization problem
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Figure 4.2: Model predictive control strategy, adapted from [110]
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Figure 4.3: Classification of the MPC methods.

is partly computed offline, and is therefore an effective method which limits the computational
burden. However the limitation of GPC is that it can only work with linear and unconstrained
problems. The EMPC, on the other hand, accepts nonlinear and constrained systems. In this
method the whole solution to the minimization problem is stored offline. As a result the online
optimization consists of searching through already-stored solutions.[8]

The FCS-MPC methods take advantage of the fact that a converter has a fixed set of switching
states. Therefore, at each sampling instant the FCS-MPC predicts the system response for each
switching state, evaluates the cost function for each response, and finally delivers the control
sequence which minimizes this cost. Since the optimal switching signals are computed in the
minimization process these are sent directly to the converter, without the use of an external
modulator. FCS-MPC can be further classified as either optimal switching vector (OSV) MPC
or optimal switching sequence (OSS) MPC. OSV-MPC uses the output voltage vectors of the
converter, previously defined by Equation 2.3, as the control set. This results in a control set
which consists of total 23 = 8 voltage vectors previously presented in Figure 2.6. The predictions
are calculated for only the voltage vectors in the control set, as a result the minimization problem
is reduced to a search algorithm, where the switching states that produces the voltage vector which
minimize the objective function are chosen. The main limitation of this strategy is that only one
voltage vector is applied during each switching period, and unless constraints are added one voltage
vector may be repeated in consecutive periods which generates a variable switching frequency. The
OSS-MPC method, on the other hand, considers a control set which consists of possible switching
sequences. Therefore in each switching period, several switching states, i.e. voltage vectors, are
applied.
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4.2 Continuous Control Set MPC

In this section the CCS-MPC method will be developed and described. The section goes step-wise
through all necessary mathematical equations and provides an in-depth description of the control
development. The following design approach is based on the articles [12] and [115].

4.2.1 Analytical Model

The CCS-MPC when implemented as the inner current controller for the grid-connected VSC is
illustrated in Figure 4.4. The optimal control signal v∗

c,αβ is calculated by minimizing an objective
function which is based on the system model and future predictions. Once the optimal control
sequence is determined only the first signal is sent to the pulse-width modulator which generates
the switching commands.
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Figure 4.4: Implementation of CCS-MPC as an inner current controller for the grid-connected
VSC.

4.2.2 Discretization

The design of a single horizon non-constrained CCS-MPC is intuitive and serves as a basis for
extending the horizon. As for the PI controller, the control method is model-based and thus
depends on the system dynamics. The controller will be implemented in the stationary (αβ)
reference frame and the system, where the system dynamics are described by Equation 4.3.

vc,αβ = Rf ic,αβ + Lf
dic,αβ
dt

+ vf,αβ (4.3)

Rearranging in terms of the derivative of the current with respect to time, and using state-space
formulation results in Equation 4.4.

d

dt

[
ic,α
ic,β

]

︸ ︷︷ ︸
ic,α,β

=

[
−Rf

Lf
0

0 −Rf

Lf

]

︸ ︷︷ ︸
Ac

[
ic,α
ic,β

]
+

[
1
Lf

0

0 1
Lf

]

︸ ︷︷ ︸
Bc

[
vc,α − vf,α
vc,β − vf,β

]

︸ ︷︷ ︸
uα,β

(4.4)

This model is continuous, but as the implementation of the MPC is in a computer the model
must be in discrete form, therefore the continuous system must be discretized. There are several
discretization methods, here it is chosen to use the exact discretization method. This is based on
the exact solution of the LTI system which is given by Equation 4.5.

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Budτ (4.5)
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The exact solution is discretized using the substitutions x[k] = x(kT ) and x[k + 1] = x((k + 1)T )

and assuming that the control input u remains constant between samples,
∫ (k+1)T

kT
u(τ)dτ = u[k].

This results in Equations 4.6a, 4.6b and 4.6c. Where the substitution v(τ) = kT + T − τ and
dτ = −dv is used in Equation 4.6c .

x[k] = eAkTx(0) +

∫ kT

0

eA(kT−τ)Budτ (4.6a)

x[k + 1] = eA(k+1)Tx(0) +

∫ (k+1)T

0

eA((k+1)T−τ)Budτ

= eAT

(
eAkTx(0) +

∫ kT

0

eA(kT−τ)Budτ

)

︸ ︷︷ ︸
x[k]

+

∫ (k+1)T

kT

eA(kT+T−τ)Budτ
(4.6b)

x[k + 1] = eATx[k]−
(∫ v(k+1)T

v(kT )

eAvdv

)
Bu[k]

= eATx[k] +

(∫ T

0

eAvdv

)
Bu[k]

= eATx[k] +A−1(eAT − I)Bu[k]

(4.6c)

The discretized system is therefore given by Equation 4.7, where the discrete matrices A and B
now replace the continuous Ac and Bc.

ic,αβ [k + 1] = eAcT︸ ︷︷ ︸
A

ic,αβ [k] +A−1
c

(
eAcT − I

)
Bc︸ ︷︷ ︸

B

(vc,αβ − vf,αβ) (4.7)

4.2.3 Cost Function

The CCS-MPC is implemented as the inner current controller and should at all times track the
reference current. Therefore a suitable objective is to minimize the deviation between the measured
converter current and its reference, this gives the objective function in Equation 4.8. The minimiz-
ation yields an optimal converter voltage vc,αβ which is later transformed to abc-components and
sent to the modulator. The weight matrix Q is included to allow for scaling of the importance of
the α and β components.

min
vc,αβ

C = (i∗αβ − ic,αβ [k + 1])⊤Q(i∗αβ − ic,αβ [k + 1]) (4.8)

The current ic,αβ [k + 1] is a function of the voltage vc,αβ as given by Equation 4.7, therefore
minimizing C consists of determining the voltage vc,αβ at which the current deviation becomes
minimal. In other words, by solving ∂C

∂vc,αβ
= 0 and inserting the model (4.7) the optimal voltage

is is expressed by Equation 4.9.

v∗
c,αβ [k] =

(
BQB⊤)−1 (

B⊤Qi∗αβ −B⊤QAic,αβ [k + 1]−B⊤QBvf,αβ [k]
)

(4.9)

In Equation 4.10 the expression is further simplified, here the weight Q in Equation 4.11 is chosen,
and the simplification is based on the fact that all matrices are symmetric,i.e. M⊤ = M and that
B⊤B is invertible.

vc,αβ [k] = B−1i∗αβ −B−1Aiαβ [k + 1]− vαβ [k] (4.10)

Q =

[
1 0
0 1

]
(4.11)
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4.2.4 Extended Horizon

If a single horizon is used, then the optimal voltage in Equation 4.10 may be directly implemented
in the controller. For a prediction horizon of N steps the system must be augmented. This
augmentation results in new states and inputs which now consists of the previous states and
inputs predicted until time step N . This is given by Equations 4.12.

I =
[
ic,αβ [k + 1] ic,α,β [k + 2] . . . ic,αβ [k +N ]

]⊤

U = Vc − Vf =
[
uαβ [k] uαβ [k + 1] . . . uαβ [k +N − 1]

]⊤ (4.12)

The system matrices are correspondingly augmented by representing the state at every future time
step k + 1, k + 2, ...k +N as a function of the states of all previous time steps, starting with the
current sample k, this is easier understood by Equation 4.13.

ic,αβ [k + 1] = Aic,αβ [k] +Buαβ [k]

ic,αβ [k + 2] = Aic,αβ [k + 1] +Buαβ [k + 1]

= A (Aic,αβ [k] +Buαβ [k]) +Buαβ [k + 1]

= A2ic,αβ [k] +ABuαβ [k] +Buαβ [k + 1]

ic,αβ [k + 3] = Aic,αβ [k + 2] +Buαβ [k + 2]

= A
(
A2ic,αβ [k] +ABuαβ [k] +Buαβ [k + 1]

)
+Buαβ [k + 2]

= A3ic,αβ [k] +A2Buαβ [k] +ABuαβ [k + 1] +Buαβ [k + 2]

(4.13)

Using the augmented states, inputs and the augmentation technique in Equation 4.13, the system
matrices in Equation 4.14 are obtained.

Aaug =
[
A A2 . . . AN

]⊤

Baug =




B 0 0 0 . . . 0
AB B 0 0 . . . 0
A2B AB B 0 . . . 0
...

...
...

...
...

...
AN−1B AN−2B . . . AB B




(4.14)

The objective function previously given in Equation 4.1 remains the same and solving for the
optimal voltage now consists of solving for the augmented voltage vector

Vc =
[
vc,α,β [k] vc,α,β [k + 1] . . . vc,α,β [k +N − 1]

]
.

The corresponding expression is given by Equation 4.15

V ∗
c = (BaugQaugB

⊤
aug)

−1(B⊤
augQI∗ −B⊤

augQaugAaugI −B⊤
augQBaugVf ) (4.15)

4.2.5 Prediction Model

The final step is to define the predicted currents ic,αβ [k+t] and filtered output voltages vf,αβ [k+t−
1] needed for computing the optimal predicted voltage vector V ∗

c in Equation 4.15. The prediction
is identical for the voltage and current, and will thus only be shown for the voltage. Starting with
the definition of the derivative

d

dt
vf,αβ [k] =

vf,αβ [k + 1]− vf,αβ [k]

Ts

(4.16)

where the voltage in αβ-frame is defined by an amplitude Uf and a phase angle θ given by

vf,α[k] = Uf cos θ

vf,β [k] = Uf sin θ
(4.17)

41



4. MPC-Trained Artificial Neural Network Control

Deriving the voltages, and noting that dθ
dt = ωt, gives the following relations

d

dt
vf,α[k] = −ωUf sinωt = −ωUf sin θ = −ωvf,β [k]

d

dt
vf,β [k] = ωUf cosωt = ωUf cos θ = ωvf,α[k]

(4.18)

rearranging (4.16) and inserting (4.18) results in the following predicted behaviour

vf,α[k + 1] = vf,α[k]− ωTsvf,β [k]

vf,β [k + 1] = vf,β [k] + ωTsiα[k]
(4.19)

The CCS-MPC algorithm and the development of matrices for a single and an extended horizon
is given in Appendix E.

4.2.6 Determining the Prediction Horizon

The determination of the prediction horizon was done by comparing the controller performance
for different horizons. Increasing it to 4 time steps gave the best performance, while increasing
it further resulted in an equivalent performance. Therefore a prediction horizon of 4 time steps
was chosen. A comparison of the produced d-axis converter current ic,d during a reference step
from 5A to 20A is plotted for the CCS-MPC with a single horizon (Np = 1) and with a 4-step
prediction horizon (Np=4) in Figure 4.5. Although the performance of the two controllers is largely
comparable, it is seen that the deviation between ic,d and i∗d is reduced when the controller with
a 4-steps prediction horizon is employed.
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Figure 4.5: Comparison of controller tracking performance during a reference step change from 5A
to 20A, using a single step horizon and a 4-step prediction horizon.

4.3 Network Design

The MPC-ANN consists of a feedforward neural network (FFNN) which is trained using the CCS-
MPC as an expert. Similar to the PI-ANN this network will first be trained according to the
LM-algorithm described in Subsection 3.2.1, using the simulation data obtained from the CCS-
MPC, before replacing the original controller, this is illustrated in Figure 4.6.

The development of the network controller consists of choosing an appropriate network structure.
The number of inputs and outputs are in this case chosen equal to the inputs and outputs of the
MPC-block shown in Figure 4.4 and Figure 4.6 for the offline training, this results in 7 inputs
(iαβ , i

∗
αβ , vαβ and vdc) and 3 outputs (mabc). The hidden layer size is determined based on the
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Figure 4.6: MPC-ANN control design.

performance of the trained network once implemented. Since having only one layer gave satisfactory
results it was not considered to increase the number of hidden layers.

The network performance during training for three different hidden layer sizes is presented in
Figure 4.7(a). Here the hidden layers consist of 10, 20 and 30 neurons. For the network with 10
hidden neurons training was stopped at 366 epochs, due to validation errors. See Section 2.3.3 for
further information on the validation-procedure. The same situation is seen for the network with
30 hidden neurons at 925 epochs. The network with 10 hidden neurons finishes training and the
best performance is seen to be at the final epoch.

The tracking performance of the network when implemented as a controller during a step from
5A to 20A at 0.2s is presented in Figure 4.7(b) and (c) for the same three hidden layer sizes as
in Figure 4.7(a). When the reference step occurs, the network controller with 10 hidden neurons
produces an ic,d-value which deviates significantly from the reference i∗d for a time period of 10 ms.
The network controllers trained using 20 and 30 hidden neurons have a better performance. From
the close-up in Figure 4.7(c) the performance of the these two network controllers seems almost
identical. Since it is always recommended to keep the network structure as small as possible, the
structure 7-20-3 is chosen for the finalized MPC-ANN controller.

4.4 Performance Evaluation

Both the CCS-MPC and the MPC-trained ANN are implemented in the Matlab/Simulink envir-
onment, for a switching model of the VSC. The controller parameters are given in Table 4.1, and
the system parameters are the same as given in Table 3.1. The implementation of the CCS-MPC
is illustrated in Figure 4.4, and the implementation of the MPC-ANN controller is illustrated in
Figure 4.6. The performance of both controllers is evaluated for three different control scenarios
which will be described in the following subsections.
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Table 4.1: CCS-MPC and MPC-ANN controller parameters.

Symbol Description Value

Np Prediction horizon 4
Network structure 7-20-3

Epochmax Maximum number of epochs 1000
µ0 Blending factor 0.01
µmax Maximum blending factor 1010

µinc,µdec Increase/decrease of blending factor 10
∂C
∂x

min
Minimum gradient 10−7

Eval Maximum validation errors 6

4.4.1 Current Reference Tracking

In this test case a simulation is carried out for both the CCS-MPC and the MPC-ANN controllers
when varying the d-axis reference current magnitude (i∗d) continuously and step-wise. The ob-
tained results under this test case are presented in Figure 4.8. Here the successful implementation
of both controllers can be verified by observing the measured d-axis current (ic,d) which is accur-
ately tracking the corresponding reference current. There is no visible difference in the tracking
performance of the two controllers. Phase-a of the output current if,a and output voltage vf,a are
also included. It can be observed that both controllers maintain a stable and sinusoidal if,a with
small distortions. However, the current has a consistently lower magnitude and is slightly shifted
when the MPC-ANN is implemented compared to the MPC. The vf,a waveform is satisfactorily
maintained at the desired level by both controllers.
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Figure 4.8: Performance evaluation of the CCS-MPC and the MPC-ANN controllers for a varying
reference current.

4.4.2 Analysis During Grid-Side Fault

The performance of the CCS-MPC and the MPC-ANN is tested under grid-side fault conditions
by reducing the grid voltage amplitude |vg| symmetrically to 20% of its nominal value. The fault is
introduced at 0.2s and lasts for 3 cycles, while the reference current magnitude i∗d is kept constant
at 18A. The resulting d-axis converter current ic,d, phase-a of filtered output current if,a and
filtered output voltage vf,a are presented in Figure 4.9. It is seen that when the short circuit is
introduced there is a slight increase in deviation between ic,d and i∗d. This lasts until the short
circuit clears at 0.26s. At the moment of clearing both controllers produce a converter current
which has a significant drop at the moment of clearing. Where the ic,d-value drops from 18A to
∼6A and ∼1A, for the MPC and the MPC-ANN, respectively. Both controllers produce an output
current if,a with a smooth waveform. However, some distortion appears at the instants when the
short circuit is introduced and when it is cleared. The distortion seems somewhat greater for the
MPC. The waveform of the output voltage vf,a is smooth for both controllers.
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Figure 4.9: Performance evaluation of the CCS-MPC and the MPC-ANN controllers under grid-
fault.
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4.4.3 Parameter Uncertainty

The robustness of the CCS-MPC and the MPC-ANN is further verified under the parameter un-
certainty test case. Now the controller performance is evaluated for a 20% increased and decreased
filter inductance Lf and a 300% increased and decreased grid inductance Lg. In addition, the ref-
erence current i∗d is changed from 4A to 18A at 0.2s. In Figure 4.10, the converter current ic,d and
the reference current i∗d are presented for both controllers. It is seen that the performance of the
CCS-MPC and the MPC-ANN are largely comparable and appear unaffected by the modifications.
Except when the Lf -value is decreased, now both controllers produce a converter current which
deviates slightly more from the reference, than what is observed for the other parameter modifica-
tions. It was also observed a slightly faster response for the MPC-ANN for the low Lf -value, and a
slightly slower response for the high Lg-value. These observations are visible in the close-up in the
bottom right corner. However, note the short timescale of 0.2s-0.2005s and the very small response
speed difference. In Figure 4.11 phase a of the filtered output current is presented for the same test
case as above using both controllers. When the MPC-ANN controller is employed the if,a-value
settles at a lower value. Despite this, the performance of the controllers are very similar and both
produce a smooth output current which appears unaffected by the parameter modifications. In
Figure 4.12 phase a of the filtered output voltage is presented for the parameter uncertainty test
case. The voltage waveform is smooth for both controllers and appears unaffected for all parameter
modifications. There is no visible difference in the performance of the two controllers.
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4.5 Experimental Results

The performance of the CCS-MPC and the MPC-ANN controllers is verified using the HIL simu-
lation tool OPAL RT. The HIL simulation results are presented for two test cases: first, for a step
change in reference current. Secondly for a short circuit fault introduced at the distribution grid.
The following HIL simulation results will be compared to those obtained in the Matlab/Simulink
simulation environment and serves as a validation of the controller performance. The d-axis con-
verter current ic,d, reference current i∗d, phase-a of filtered output current if,a and voltage vf,a are
plotted for both controllers and test cases.

(b) MPC-ANN(a) MPC

Figure 4.13: OPAL RT simulation results for current reference step change.

(b) MPC-ANN(a) MPC

Figure 4.14: OPAL RT simulation results for grid-side short circuit fault.

In Figure 4.13 the performance of both controllers for a step change in the reference current i∗d
is presented. The i∗d-value is changed from 6A to 12A. In Figure 4.13(a) the performance of the
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CCS-MPC is presented. The converter current ic,d successfully manages to track the reference
change, and the waveform of both the current if,a and the voltage vf,a appear smooth and has
an expected amplitude value. In Figure 4.13(b) the performance of the MPC-ANN controller
is presented for the same test case. The same observations as for the CCS-MPC is made here,
the current ic,d manages to track the reference current i∗d, and the current if,a and voltage vf,a
has smooth waveforms with expected amplitude values. In conclusion, the OPAL RT simulated
performance of the CCS-MPC and MPC-ANN for a change in current reference appear similar to
the results obtained from the Matlab/Simulink simulations.

In Figure 4.14 the performance of both controllers is presented for the short circuit test case. The
short circuit is represented by a grid voltage drop to 20%. In Figure 4.14(a) the performance
of the CCS-MPC is plotted. Similar d-axis current as in Subsection 4.4.2 is observed, where no
impact is seen when the short circuit is introduced and a large drop occurs when the short circuit
is cleared. The current if,a is distorted at the introduction and clearing of the short circuit, but
has a smooth waveform otherwise. The voltage vf,a also has a smooth waveform, but appears more
distorted during the short circuit. In Figure 4.14(b) the performance of the MPC-ANN controller
is presented. Here similar observations are made. The ic,d-value has a significant drop at short
circuit clearing, but appears unaffected when the short circuit is introduced. The waveform of the
current if,a and the voltage vf,a are smooth but appear slightly distorted during the short circuit.
In conclusion, the overall performance of both controllers are comparable to the observations made
from the Matlab/Simulink simulation environment.

4.6 Discussion

The simulation results from both the Matlab/Simulink environment and the OPAL RT environment
show that the CCS-MPC controller and the MPC-ANN controller have a comparable performance
for all test case scenarios. Both exhibit accurate tracking, fast dynamic response and robustness
against parameter modifications. However, in terms of computational burden, the ANN-based
controller becomes the best choice [53]. This was also one of the stated advantages in [6], where
an FCS-MPC was used as the expert for training the neural network. The FCS-method has less
computational complexity than the CCS-MPC method, and therefore the benefit of the MPC-ANN
controller is most likely larger in this project.
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5
Recurrent Neural Network-Based Control

In this chapter an RNN-based controller will be developed, this control method is based on the work
described in articles [54, 116, 117]. Unlike the previous FFNN-controllers which were trained using
the original controller output as targets, this network will be trained using dynamic programming
(DP). The DP algorithm incorporates conventional control techniques such as PID and predictive
control, which gives advantages such as zero steady-state error, formulation of physical system
constraints, and adaptive control behavior, even though the RNN is trained entirely offline [54].

This chapter is structured as follows: First, in Section 5.1 the analytical control model is described.
Second, in Section 5.2 the mathematical model is given. In Section 5.3 the structure of the RNN
is described. Section 5.4 focus on the forward accumulation through time (FATT) algorithm and
yields the last design step.

There was not enough time to implement the controller, therefore there will be no evaluation of the
controller performance. All scripts are given in the appendix D and includes extensive information
about each step. This way it should be possible to continue where this implementation is stopped.

5.1 Analytical Model

The analytical control model of the proposed controller is given by Figure 5.1. The RNN-based
controller is implemented in the synchronous reference frame, and replaces the PI controller once
training is finished. The network takes as input the error signals εdq = i∗dq−ic,dq and the integrated

errors sdq =
∫
εdqdt. The output of the RNN is equal to the outputs of the PI controller, namely

the voltage signals v∗c,dq. These control signals are transformed to abc-components by use of

inverse-Park transform, then they are normalized with a gain equal to 2
Vdc

before being sent to the
sinusoidal pulse-width modulator.

5.2 Dynamic Program Development

The RNN will be trained to approximate an optimal controller using discrete-time DP. The dis-
cretized mathematical model of the system will be incorporated into the program and used to
determine the optimal control signals. Therefore, the mathematical model is the starting point
for the control design. Since the controller is implemented in the synchronous rotating reference
frame, the system equations must be transformed to dq-components. This was previously done in
Section 3.1.1 and the resulting mathematical model in state-space form is given below by Equa-
tion 5.1, here the subscript c refers to a continuous model. The model is discretized using exact
discretization, as was described in Section 4.2.2, this results in the model defined by Equation 5.2.
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[
1− Ts
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]
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A
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B
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The idea behind employing DP for training the RNN is to approximate an optimal controller
according to the Bellman’s optimality principle (see Subsection 2.4.1). Using Bellman’s equation a
cost function C can be defined. For this controller the cost function at time step k is defined as the
sum of the squared errors in d and q-axis converter current, as given by Equation 5.3 for a discount
factor γ, which is a positive, nonzero value below 1, a utility function U and a nonzero positive
constant α. Here the objective is to choose a control signal udq(k) such that C is minimized.

min
udq(k)

C(idq(k)) =

∞∑

j=k

γj−kU(εdq(k))

=

∞∑

j=t

γj−t
(
εd(k)

2 + εq(k)
2
)α

=

∞∑

j=t

γj−t
(
(id(k)− i∗d(k))

2 + (iq(k)− i∗q(k))
2
)α

(5.3)

Since the system model is linear this minimization problem can be solved directly. The resulting
control signals udq and converter voltages vc,dq are defined by Equations 5.4 and 5.5, respectively.

udq(k) = B−1
(
i∗dq(k + 1)−Aidq(k)

)
(5.4)

vf,dq(k) = B−1
(
i∗dq(k + 1)−Aidq(k)

)
+ vf,dq (5.5)
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The matrix B−1(I −A) is called a stabilization matrix. This matrix is obtained from Equation
5.4 for the case when i∗dq(k + 1) equals idq(k) as shown by Equation 5.6. This matrix defines
the network output in terms of the network inputs and is considered as a recurrent connection,
since now the information is flowing cyclic through the network. The motivation of using this
stabilization matrix is to give the controller a default behaviour of holding the steady state and
simplifies the neural network training. [116]

udq(k) = B−1 (I−A) idq(k) (5.6)

5.3 Recurrent Neural Network Architecture

The network structure is chosen equal to that proposed in [54] and is depicted in Figure 5.2. The
network takes the two d- and q-axis error terms εdq defined by Equation 5.7, and the integral terms
sdq as inputs. The integral terms are evaluated using the trapezoid formula, for an initial error
ε⊤dq(0) =

[
0 0

]
, this is given by Equation 5.8. According to [54] this choice of inputs improves the

network structure compared to the use of the currents idq and i∗dq and their integrals as inputs.
This is because the number of inputs is now reduced which limits the number of network weights
and reduces the calculation effort during the online training.

εdq(k) = idq(k)− i∗dq(k) (5.7)

sdq(k) =

∫ kTs

0

ε(t)dt ≈ Ts

2

k∑

j=1

εdq(j − 1) + εdq(j) (5.8)

The network outputs the two control signals vc,dq and has two hidden layers where each consists
of 6 neurons. This gives the structure 4-6-6-2. The inputs are sent to the hyperbolic tangent
function such that the values are normalized into the range [−1, 1], this is to avoid network input
saturation. The hyperbolic tangent function is also used for all connections from the input to the
hidden layer, and from the hidden layer to the output. Using the neural network relations from
Section 2.3 the control signal udq can be defined according to Equation 5.9 for an input vector
p⊤(k) =

[
εd(k) εq(k) sd(k) sq(k)

]
. The network function R(εdq(k), sdq(k),w) is defined by

Equation 5.9 and represents the operations of all network layers.

udq(k) = vc,dq(k)− vf,dq(k)

= KPWMR(εdq(k), sdq(k),w)− vf,dq(k)
(5.9)

R(εdq(k), sdq(k),w) = tanh

(
W3 tanh

(
W2 tanh

(
W1p(k)

)))
(5.10)

5.4 Network Training

The RNN is trained to approximate an optimal controller. Therefore, unlike the two previous
FFNN-based controllers in Chapters 3 and 4, this network will not use the original controller’s
outputs as targets. For this network the targets are generated through a training algorithm which
is developed using principles from DP. This algorithm is known as LM plus FATT algorithm and
will be described in the following subsections.

5.4.1 Levenberg-Marquardt

The LM algorithm, due to its speed and convergence guarantee, is one of the most widely used
training algorithms for training FFNNs. The LM algorithm aims to minimize the cost defined by
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Equation 5.11. Where w is a vector containing the elements of all network weights, v is a vector
containing the errors of the network outputs for all samples N , since there are two outputs this
results in 2N errors in total.

C(w) =

2N∑

i=1

v2
i (5.11)

The weight update is defined by Equations 5.12 and 5.13 where the Jacobian matrix J is defined by
Equation 5.14 for a total of M weight elements and N time steps. The calculation of the Jacobian
elements, i.e.

∂vj

∂wi
will be described in the Section 5.4.2 being one of the core features of the FATT

algorithm.

wnew = wold +∆w (5.12)

∆w = −
(
J⊤J+ µI

)−1
J⊤v (5.13)

J =




∂v1

∂w1
. . . ∂v1

∂wM

...
. . .

...
∂vN

∂w1
. . . ∂vN

∂wM


 (5.14)

If the C(w) function is not a sum of squares the weight update in Equation 5.13 will not be
directly applicable. Instead the cost defined by Equation 5.3 is used with a fractional α-value, as
this improves the convergence during training according to [54]. This modification is illustrated
by Equation 5.15. The gradient ∂C

∂w then becomes as defined in Equation 5.16.

C(idq,w) =

N∑

j=1

U(edq(j))
.
=

N∑

j=1

v2
j (5.15)

∂C

∂w
=

∂

∂w

N∑

j=1

v2
j = 2

N∑

j=1

vj
∂vj

∂w
= 2J⊤v (5.16)

5.4.2 Forward Accumulation Through Time

From Equation 5.16 it is obvious that the Jacobian matrix J is an essential part of the RNN
training. According to FATT algorithm the kth row of J is derived in Equation 5.17.

∂vk

∂w
=

[
∂vk

∂εdq(k)

] [
∂εdq(k)

∂w

]
(5.17a)
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∂vk

∂εdq(k)
=

∂

∂εdq(k)

(
ε2d + ε2q

)α
2 = α(ε2d(k) + ε2q(k))

α
2 −1

[
εd(k) εq(k)

]
(5.17b)

∂εdq(k)

∂w
=

∂

∂w

(
idq(k)− i∗dq(k)

)
=

∂idq(k)

∂w
(5.17c)

The derivative
∂idq
∂w is computed using the discrete model defined in Equation 5.1, this results in

Equation 5.18, where the initial derivative
∂idq
∂w (0) is equal to zero.

∂idq(k + 1)

∂w
= A

∂idq(k)

∂w
+B

∂udq(k)

∂w
(5.18)

Next,
∂udq

∂w is computed using the network function R(k) = R(εdq(k), sdq(k),w) previously defined

in Equation 5.10 and the relation
∂εdq

∂w =
∂idq
∂w in Equation 5.17c. This results in Equation 5.19.

∂udq(k)

∂w
= KPWM

[
∂R(k)

∂εdq(k)

∂idq(k)

∂w
+

∂R(k)

∂sdq(k)

∂sdq(k)

∂w
+

∂R(k)

∂w

]
(5.19)

Finally, the derivative
∂sdq

∂w is computed using the definition of the integral in Equation 5.8, this
results in Equation 5.20.

∂sdq(k)

∂w
=

Ts

2

k∑

j=1

∂

∂w
(εdq(j − 1) + εdq(j))

= Ts






k∑

j=0

∂idq(j)

∂w


− 1

2

∂idq(k)

∂w




(5.20)

Exploding Gradients

The exploding gradients problem refers to the accumulation of large error gradients which in turn
makes the updates of the network weights become substantially large [118]. This problem can
be better understood by analyzing the control system and network training. First, each time an
element in the weight vector w is updated, the network actions chosen by R(k) change at every
time step. Each modified action ∆u(k) consequently changes the next state ∆x(k+1) the system
passes through. Further, each modified state ∆x(k+1) changes the next action chosen ∆u(k+1)
by Equation 5.10. This creates a cascade of changes which continues until training is finished.
Hence, one small modification of an element in w can pose significant impacts on the trajectory
developed by Equations 5.1 and 5.10. This is the major reason why training RNNs is hard. [116]

5.4.3 Forward Accumulation Through Time plus Levenberg-Marquardt

The complete FATT algorithm is given by Algorithm 1, here the process of calculating the Jacobian
matrix J and the cost function C is given. Here 0n×m defines a matrix of n rows and m columns,
with all elements equal to zero, εdq(1, k) equals εd(k) and εdq(2, k) equals εq(k). The algorithm
starts with initialization of the variables, next the network output is computed, after this in lines
4-6 the derivatives are computed according to Equations 5.20,5.20 and 5.18. The sum ∂ϕ

∂w in line
7 is necessary for computing the derivative of the integral term as given by Equation 5.20. In
lines 8-10 the system trajectory is unrolled. Based on the system trajectory the utility function U
and consequently the cost-to-go C are computed in lines 11-12. Next the derivatives necessary for
computing the error vector v are calculated in lines 13-15. Finally the kth row of the Jacobian J
is obtained. These steps continue until all samples N have been processed.
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Algorithm 1 Forward Accumulation Through Time algorithm

1: C ← 0, εdq(0)← 02×1, sdq(0)← 02×1,
∂idq
∂w ← 02×M ,

∂ϕdq

∂w ← 02×M ▷ Initialization
2: for k = 0 to N − 1 do ▷ Calculate Jacobian J
3: udq(k)← KPWMR(k)− vf,dq

4:
∂sdq(k)

∂w ← Ts

[
∂ϕ(k)
∂w − 1

2
∂idq(k)

∂w

]

5:
∂udq(k)

∂w ← Kpwm

[
∂R(k)
∂εdq(k)

∂idq(k)
∂w + ∂R(k)

∂sdq(k)
∂sdq(k)

∂w + ∂R(k)
∂w

]

6:
∂idq(k+1)

∂w ← A
∂idq(k)

∂w +B
∂udq(k)

∂w

7:
∂ϕ(k+1)

∂w ← ∂ϕ(k)
∂w +

∂idq(k+1)
∂w

8: idq(k + 1)← Aidq(k) +Budq(k)
9: εdq(k + 1)← idq(k + 1)− i∗dq(k + 1)

10: sdq(k + 1)← sdq(k) +
Ts

2 (εdq(k + 1) + εdq(k))
11: U(k + 1)← (εd(k + 1)2 + εq(k + 1)2)α

12: C ← C + U(k + 1)

13:
∂v(k+1)

∂εdq(k+1) ← α
[
ε2dq(1, k + 1) + ε2dq(2, k + 1)

]α
2 −1

[εdq(k + 1)]
⊤

14:
∂εdq(k+1)

∂w ← ∂idq(k+1)
∂w

15:
∂v(k+1)

∂w ←
[

∂v(k+1)
∂εdq(k+1)

] [
∂εdq(k+1)

∂w

]

16: J(k)← ∂v(k+1)
∂w

17: end for

The full FATT+LM algorithm is illustrated in Figure 5.3. Here Algorithm 1 is incorporated into
the fourth block named ’FATT’. The block denoted FATT (′) runs a modified version of Algorithm
1 which only computes the new cost C, based on the running of lines 3, 8, 9 and 12. The other
blocks constitute the LM-algorithm. As was previously seen in the original LM algorithm in Figure
3.4, also here three stopping criteria are defined; a maximum learning rate µmax, a minimum norm
of the gradient || ∂C∂w || and a maximum number of epochs Epochmax, this is illustrated by the three
yellow blocks which are all connected to the ’stop’-block, which will stop the network training.

In Appendix D the complete script for training the RNN is given, this includes preparing the inputs
εdq, sdq, computing all derivatives, and updating the weights. When running the script, the main
issue is related to exploding gradient, which is a common problem for RNN training. There are
several proposed strategies for fixing this issue given by [118–120], please refer to these for further
improvement.
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Initialize training:
Epoch � 1

Initialize parameters:
�, �max, �inc, �dec, Epochmax, ||dC/dw||min

Initialilize weights:

w � 0.2�rand()�0.1

FATT: Calculate C
Obtain J 

FATT('): Calculate C'
Using w'�w+�w 

||dC/dw|| > ||dC/dw||min

C' <C

dC/dw � 2 JTv

Compute:
�w � �(JT

J+�I)�1
J

Tv

Compute:

Update: w � w'
Decrease: � � �/�dec

Increase:
� � �����inc

� < �max

Epoch < Epochmax

STOP

Epoch � Epoch + 1
NO

NO

YES

YES

YES

YES

NO

NO

Figure 5.3: The full FATT+LM algorithm for training the recurrent neural network.
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6
Direct Heuristic Dynamic
Programming-Based Control

In this chapter an RL-based controller based on the direct heuristic dynamic programming al-
gorithm is designed and implemented. The chapter is structured as follows. First, in Section 6.1
the control design is described, this is based on the work in [15]. Secondly, in Section 6.2 the
control parameters are determined by analyzing the controller performance once the network is
implemented. Third, in Section 6.3 the performance of the dHDP controller is evaluated. Finally,
in Section 6.4 the simulation results are discussed and important remarks are made.

6.1 Control Design

The dHDP-method is an adaptive-critic design approach and is within reinforcement learning. The
implementation procedure is illustrated in Figure 6.1. This controller consists of two neural net-
works which are pre-trained offline, using simulation data from the system, before implementation.
During online operation the controller is implemented in parallel to the decoupled PI controllers
and the weight updates continue. The errors εdq = i∗dq − idq are inputs to both the dHDP and the
PI controllers. The output udq of the dHDP is added as a supplement to the output of the ori-
ginal PI controllers. The resulting control signals v∗c,dq are then transformed back into three phase
components using inverse Park’s transform, before being normalized, by multiplying with the gain
2

Vdc
. The modulation signals mabc are sent to the PWM. These last steps are identical to what was

described in Section 3.1.2 for the decoupled PI controller. The control block named Direct HDP
represents the training algorithm which updates the weights of the two networks, called critic and
actor, which together constitute the supplementary dHDP controller.

6.1.1 Direct HDP Principle

Direct HDP is a part of the family of adaptive DP methods, which all seek to find an approximately
optimal control policy for a stochastic process whose model depends on unknown parameters [121].
In dHDP the control signals are estimated directly, unlike indirect versions which estimate model
parameters before computing the control signals, and enables the use of a model-free controller
which is robust with respect to model uncertainties [89, 96]. This is illustrated in Figure 6.2
which illustrates the working of the dHDP method. Here the orange arrows (x(t)) shows that the
information from the process is directly used to find appropriate controller parameters.

In Figure 6.2 x(t) represents the inputs to the controller, which in this case consists of the two
error terms in dq-frame εdq and u(t) represent the control signals udq. The basic idea in an

56



6.1. Control Design
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Figure 6.1: The implementation of the dHDP controller.
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Figure 6.2: Principle of the direct heuristic dynamic programming control method.

adaptive-critic design is to adapt the weights of the critic network such that the approximate
optimal cost function, J(X(t)), satisfies the modified Bellman equation. This is indicated by the
red arrow, which illustrates that the critic aims to minimize the value γJ(t) + r(t)− J(t− 1), for
a reinforcement signal r(t) and a discount factor γ. The actor, also known as the action network,
outputs the control signal u(t) obtained by minimizing the value of J(t)−R∗(t).

6.1.2 Cost-To-Go Function

The control design starts with defining J∗ which describes the cost-to-go of inputs x(t). According
to Bellman this can be expressed by Equation 6.1, where γ (∈ 0, 1) is a discount rate and determines
the relative importance of the present reward compared to future rewards. The reinforcement signal
r(t) incorporates the control objective for a particular scenario in one or more measurable variables.

J∗(t) =
∞∑

i=0

γir(t+ i) (6.1)
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6. Direct Heuristic Dynamic Programming-Based Control

A direct solution to this optimization task proves to be computationally infeasible due to the curse
of dimensionality (Section 2.4.1), therefore a more tractable approximation method is developed
using Equation 6.2 [122]

J∗(t) = r(t) + γJ∗(t+ 1) (6.2)

In this method, which is based on the article in [15] the critic network is, however, used to ap-
proximate the future cost-to-go, that is J(t) = J∗(t + 1), which is expressed by Equation 6.3

J(t) = J(t− 1)− r(t) (6.3)

This leads to an optimal control signal as given in Equations 6.4 and 6.5. Here R∗ is the ultimate
desired objective that the cost function aims to achieve and is a binary value. These equations are
approximated in an iterative manner using two FFNNs, namely the actor and the critic. As their
names imply the actor approximates the actions u and the critic evaluates the actor’s performance
by approximating J .

J [x(t)] = min
u∗(t)
{J [x(t+ 1)] + r[x(t)]−R∗} (6.4)

u∗(x(t)) = arg min
u∗(t)

J [x(t)] (6.5)

�dq (t)

�dq (t-1)

�dq (t-2)

udq (t)

ud

uq

�dq (t)

�dq (t-1)

�dq (t-2)

J(t)

Critic network, 
NNc(x(t),udq(t))

Action network,
NNa(x(t))

x(t)

Figure 6.3: Network structure of critic and action networks.

6.1.3 Critic Network

As illustrated in Figure 6.2, the critic takes both the control signals u(t) generated by the actor and
the measured system states x(t) as inputs, which in total becomes 8 inputs (udq, εdq(t), εdq(t− 1),
εdq(t − 2)). As proposed in [15], one hidden layer with 12 neurons is chosen. The output of the
critic is the approximated cost-to-go function J , this is described by Equation 6.6, where NNc

represents the operations done by the feedforward network and wc is a vector containing all the
weights of the network . In Figure 6.3 the network structures of the critic and actor are illustrated,
where the critic takes the structure 8-12-1.

J(t) = NNc(x(t), u(t),wc) (6.6)

The aim of the critic is to approximate the value function, here referred to as the cost-to-go function
J . This is done by minimizing the objective function Ec defined by Equation 6.7. The prediction
error ec reflects the difference in the current and previous cost-to-go functions J(t) and J(t − 1),
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6.1. Control Design

in addition to the amount of reinforcement that is currently implemented r(t), this is described
by Equation 6.8. The goal is that J converges towards the optimal cost-to-go J∗ while keeping
the reinforcement signal at a minimum, only then an appropriate value function is obtained. As
given by Equation 6.9 the reinforcement signal is determined by the amount of deviation between
reference and measured currents, εdq, for the current and previous time steps. The deviation at
previous time steps, εdq(t − 1) and εdq(t − 2), is included to limit the strength of the control
signals during steady state, while allowing stronger control signals during transient conditions.
The coefficients a1, a2 and a3 are kept constant and are chosen equal to those proposed in [15].

Ec(t) =
1

2
ec(t)

2 (6.7)

ec(t) = γJ(t)− J(t− 1) + r(t) (6.8)

r(t) = −(a1ε2dq(t) + a2ε
2
dq(t− 1) + a3ε

2
dq(t− 2)) (6.9)

The weights wc are updated according to gradient descent rule as given by Equation 6.10. Here the
learning rate lrc is a small and positive number, and unlike the learning rate in the LM algorithm
it remains constant throughout the training period. The gradient ∂Ec

∂wc
represents the change in

the objective function based on the change in the weights and is computed using Equation 6.11

wc,new = wc,old +∆wc = wc,old − lrc
∂Ec

∂wc
(6.10)

∂Ec

∂wc
=

[
∂Ec

∂ec

] [
∂ec
∂J

] [
∂J

∂wc

]
= ecγ

∂J

∂wc
(6.11)

6.1.4 Action Network

The network structure of the actor is also depicted in Figure 6.3. Similar to the critic network, the
actor is also designed as an FFNN with 12 neurons in the hidden layer. The action network takes
the measured states of the system, that is

x(t) =




εdq(t)
εdq(t− 1)
εdq(t− 2)




as inputs, which results in 6 inputs. The network outputs the two control signals udq(t) as expressed
by Equation 6.12, where NNa represents all the network operations, and wa is the weight vector
of the action network.

udq = NNa(x(t),wa) (6.12)

The actor approximates the policy (Subsection 2.4.1) by selecting appropriate actions based on
the cost-to-go J , this is given by Equation 6.13. Considering Equation 6.9 the ultimate objective
is a reinforcement signal equal to zero, this leads to an ultimate objective R∗(t) = 0. Thus, in this
design the action network prediction error is set equal to the value of the approximated cost-to-go
function, ea(t) = J(t).

Ea(t) =
1

2
e2a(t) =

1

2
(J(t)−R∗(t))2 (6.13)

Similar to the critic network, the weights of the actorwa are updated according to gradient descent,
this is given by Equation 6.14, and the gradient ∂Ea

∂wa
is defined by Equation 6.15.

wa,new = wa,old +∆wa = wa,old − lra
∂Ea

∂wa
(6.14)

∂Ea

∂wa
=

∂Ea

∂J

∂J

∂udq

∂udq

∂wa
(6.15)
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6.1.5 Direct HDP Training Algorithm

Unlike the two previous FFNN-based control methods which employ techniques within SL, the
dHDP controller use an RL-based training method. More specifically, the training of the critic
and action networks are done in two stages, first offline and second online. For both stages the
network weights are updated based on gradient descent, given by Equations 6.10 and 6.11 for the
critic and 6.14 and 6.15 for the actor. For the offline training the weights are initialized randomly
for both the critic and actor. For the online training, the weights obtained after the offline training
are used as initial weights. Despite this, the training algorithm remains the same.

The first step of the algorithm is to initialize the weights for the critic wc and actor wa, the control
signal udq and the cost-to-go J as is shown in line 1 of Algorithm 2. The second step is to calculate
the control signal udq using the action network and the cost-to-go using the critic network. Note
that a gain G is included for the control action, this was proposed in [15] and is further discussed
in Section 6.2. After implementing the control signals, the input at the next time step x(t+1) and
the reinforcement signal r(t) is obtained, as is seen in lines 3-5. Based on this data, in lines 6-11,
the algorithm goes through an update loop for the critic and continues until a maximum number
of iterations kmax

c is reached or until the objective function value falls below a minimum value
Emin

c . Next, a similar update loop, in lines 13-19, is performed for the actor, this is stopped for
similar criteria, a maximum number of iterations kmax

a and a minimum objective function value
Emin

a . These two loops lead to updated weights for the critic and actor. In lines 20-21 the input
vector is updated and the cost-to-go value is stored. The developed scripts for offline and online
training based on the dHDP-algorithm is given in Appendix F.

Algorithm 2 Direct HDP training algorithm

1: initialize Wc, Wa, udq ←
[
0 0

]⊤
, J ← 0, ka ← 1, kc ← 1

2: repeat
3: udq(t)← G×NNa(x(t),wa)
4: J(t)← NNc(x(t),udq(t),wc)
5: insert udq, get x(t+ 1), compute r(t)
6: while Ec ≥ Emin

c and kc ≤ kmax
c do

7: ec(t)← γJ(t)− J(t− 1) + r(t)
8: Ec(t)← 1

2e
2
c(t)

9: ∆Wc ← −l ∂Ec

∂Wc

10: Wc ←Wc +∆Wc

11: kc ← kc + 1
12: end while
13: while Ea ≥ Emin

a and ka ≤ kmax
a do

14: ea(t)← J(t)
15: Ea(t)← 1

2e
2
a(t)

16: ∆Wa ← −l ∂Ea

∂Wa

17: Wa ←Wa +∆Wa

18: ka ← ka + 1
19: end while
20: x(t)← x(t+ 1)
21: J(t− 1)← J(t)
22: until simulation is finished

6.2 Determining Control Parameters

In the dHDP-based control design there are several parameters which must be determined. All
control parameters were initially chosen equal to those the authors in [15] propose, however some
changes were found necessary and the finalized control parameter values are listed in Table 6.1.
More specifically, the proposed values for the discount factor γ and the controller gain G did not
give a satisfactory controller performance and had to be modified. To choose appropriate values
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6.2. Determining Control Parameters

the critic and actor are fully trained both offline and online for different γ- and G-values. Then
the controller performance is observed for a step from 5A to 20A at 0.1s in current reference for
all values. The results are discussed in the following subsections.

Table 6.1: Direct HDP controller parameters

Symbol Description Value

Critic network structure 8-12-1
Action network structure 6-12-2

lr Learning rate (offline, online) 0.01, 0.001
kmax
c Iterations, critic (offline, online) 20, 50

kmax
a Iterations, actor (offline, online) 10, 40

Emin
c Minimum error for critic 10−6

Emin
a Minimum error for actor 10−7

a1, a2, a3 Reinforcement coefficients 0.4, 0.2, 0.04
γ Discount factor 0.1
G Controller gain 1

6.2.1 Discount Factor

The discount factor γ in Equation 6.8 was in [15] set equal to 0.95, however a too high γ resulted
in oscillatory behaviour. The controller performance for three different γ values is presented in
Figure 6.4. Here it is seen that the performance when using γ=0.7 is acceptable until approximately
0.17s, where large deviations are seen to occur. Further reducing γ to 0.5 resulted in a significant
performance improvement, however some large deviations are still observed at approximately 0.12s
and 0.25s. Using γ=0.1 removed all the large and abrupt deviations. In the bottom right corner a
close-up of the step at 0.1s is plotted. Here it is seen that smaller γ results in an increased response
speed. Thus, γ=0.1 resulted in the overall best performance and was therefore chosen.

6.2.2 Controller Gain

In [15] the authors propose to insert a gain G equal to 100 to the output of the dHDP controller.
A number of different gains was tested and the best performance was obtained for G = 1. The
tracking performance of the controller using this gain is presented in Figure 6.5. For this system
an increased gain resulted in increased deviation, and slower dynamic response. The unity gain
was therefore chosen.
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Figure 6.4: Impact of discount factor γ on the dHDP control performance.
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Figure 6.5: Impact of controller gain G on the dHDP control performance.

6.3 Performance Evaluation

In this section, the performance of the dHDP controller is evaluated. The controller is implemented
in the Matlab/Simulink environment for a switching model of the VSC, using the system parameters
previously given in Table 3.1 and the control parameters in Table 6.1. The evaluation is based on
three different scenarios which will be described in each following subsection.

6.3.1 Current Reference Tracking

The tracking ability of the dHDP controller is evaluated by varying the d-axis reference current
magnitude (i∗d) continuously and step-wise. The obtained results are presented in Figure 6.6 and
include plots of the d-axis converter current ic,d, phase a of the filtered output current if,a and
phase a of the filtered output voltage vf,a. It can be verified that the dHDP controller is successfully
implemented, as the actual converter current (ic,d) accurately tracks the corresponding reference
component (i∗d). The deviation between the actual current and the reference is reduced when the
dHDP controller is implemented, compared to the original PI controller. In the close-up of the step
at 0.12s in the top plot, the improved performance is further verified, as the response speed for
the dHDP controller is significantly faster than the PI controller. The current if,a has a smooth
waveform for both controllers, however, slightly larger distortions are observed for the PI controller
right after the reference current step is introduced. The voltage vf,a has a smooth waveform for
both controllers.
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Figure 6.6: Direct HDP tracking performance for a step-varying reference current.
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6.3.2 Analysis During Grid-Side Fault

In Figure 6.7 the performance of the dHDP-based controller and the PI controller is tested under
grid-side fault conditions by reducing the grid voltage amplitude |vg| symmetrically to 20%. The
short circuit fault is introduced at 0.2s and lasts for 3 cycles, while the reference current magnitude
is kept constant at 18A. In Figure 6.7 the d-axis converter current ic,d, phase-a of the filtered
output current if,a and filtered output voltage vf,a are presented. When the short circuit occurs
the deviation between actual d-axis current and its corresponding reference decreases for both
controllers, this lasts until the fault is cleared at 0.26s. At the moment of short circuit clearing the
ic,d-value has a large drop for both controllers, however the drop is larger when only the PI control
is used. The voltage and current waveforms, vf,a and if,a, become momentarily distorted when
the grid voltage drops, and rises. The level of distortions appear identical for the two controllers.
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Figure 6.7: Direct HDP controller performance when a short circuit fault is introduced at the
grid-side.

6.3.3 Parameter Uncertainty

In this test case the robustness of both controllers is verified for modified grid and filter inductance.
The filter inductance Lf is increased and decreased by 20% and the grid inductance Lg is increased
and decreased by 300%. The i∗d-value is also changed from 5A to 20A at 0.2s.

In Figure 6.8 the ic,d and i∗d are presented for both controllers. Here it is seen that both controllers
successfully track the reference current. The oscillations in ic,d is lower for the dHDP for all
parameter modifications. While the PI controller has an approximately constant level of ic,d
oscillations, the oscillations vary with time for the dHDP controller. The dHDP controller also has
a faster response for all cases, which is seen in the close-up in the bottom right corner.

The filtered output current if,abc is presented in Figure 6.9 for the dHDP controller. Here it is seen
that some distortions are present when the reference current steps up to 18A at 0.2s. When the
grid inductance is increased it can be seen that it takes slightly more time before the distortions
are cleared out. The distortions are greatest for phase a of the current as this is first affected by
the step change in current reference. Despite this, the current waveform is smooth before and after
the reference current step for all cases of parameter modifications.
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In Figure 6.10 the filtered output voltage vf,abc, when the dHDP controller is implemented, is
presented for the same parameter modifications as above. The waveform is seen to be smooth for
all cases, but has some distortions when the reference current steps up to 18A at 0.2s, this visibly
affects phase a of the voltage and has some smaller impacts on phase b and c. These distortions
are highest for the case when the grid inductance is increased. However for all cases the distortions
are quickly cleared out.
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Figure 6.8: D-axis converter current for the parameter uncertainty test case.
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6.4 Discussion

For all test cases, the dHDP shows an improved performance compared to the conventional PI
controller. In this thesis, results have only been obtained using the Matlab/Simulink environment,
and a validation through HIL simulations is recommended. The dHDP controller consists of heavy
computations, mainly due to the inclusion of two while-loops which must be executed in each
time step. As a result, simulating this controller as currently designed, takes significant amount
of time. Thus, changes to the design could improve the simulator performance. It is also worth
mentioning that the simulation results were altered by the processing capacity of the computer
on which the simulations were performed. This required restarting the computer occasionally and
minimizing the number of active programs. Improvements in the simulation speed can be achieved
by replacing the ’Matlab Function’ block with the ’built-in Function’ block, removing excess data
logging and subsystems. For more information on improving the simulation speed please refer to
[123]. It is also worth mentioning that there are numerous user defined parameters, and as was
experienced during the network design phase, changing these could lead to an improved controller
performance.
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7
Comparison of Controller Performance

In this chapter a comparison of the performances of all the proposed control methods is presented.
The same test cases as in the previous performance evaluations will be employed. This chapter is
organized as follows. First, in Section 7.1 the implementation of all controllers is briefly described,
including an analytical model of the system and controllers. Next, in Section 7.2 the performance
of the controllers for the varying reference current test case is compared. In Section 7.3 the
performance of the controllers is compared for the case when a short circuit fault is introduced at
the grid-side. In Section 7.4 the performance is compared for the parameter uncertainty test case.
Finally, in Section 7.5 all simulation results are discussed and concluding remarks are given.

This chapter is a continuation of the article ’Performance Evaluation of ANN-Based Control of
a Grid-Connected Converter with Different Training Datasets’. The article was submitted for
publication and is given in Appendix A.

7.1 Implementation

In Figure 7.1 an analytical model of the system and the proposed control methods is illustrated.
The system consists of the grid-connected VSC, an LC filter and the distribution grid. In addi-
tion, the modulation technique, which consists of pulse-width modulation (PWM) and the grid
synchronization technique, the phase-locked loop (PLL), are illustrated.

The decoupled PI controller is included in the following analysis. This control method represents
the conventional control method and is included for comparison reasons. The ANN-based control-
lers consists of the two SL-based controllers, the PI-ANN and the MPC-ANN controllers, and the
RL-based controller, the dHDP controller. The following analysis will compare the ANN-based
controllers’ performances to each other and to the conventional control method. An analytical
model of the implementation of all controllers is presented by Figure 7.1. The figure shows the
inputs and outputs to each ANN and the necessary component transformations. The outputs of
all control methods are the modulation signals mabc. The modulation signals are sent to the PWM
which generates the appropriate switching signals S1, S2,. . ., S6.

The system is implemented in the Matlab/Simulink simulation environment and all control methods
are implemented for a switching model of the VSC considering the system parameters given by
Table 3.1. The control parameters are the same as in previous chapters and are given by Table 3.3
for the PI and PI-ANN controllers, the parameters for the MPC-ANN controller is given by Table
4.1 and the dHDP control parameters are given by Table 6.1.
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Figure 7.1: Implementation of proposed controllers.

7.2 Current Reference Tracking

A simulation is carried out for all the controllers by varying the d-axis reference current magnitude
(i∗d) continuously and step-wise. The resulting d-axis converter current ic,d, phase-a of filtered
output current if,a and phase-a of filtered output voltage vf,a under this test case are presented
in Figure 7.2.
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Figure 7.2: Performance evaluation of all controllers under reference current variation.

The successful implementation of all the controllers can be verified from Figure 7.2, as the measured
d-axis converter current is accurately tracking the corresponding reference component. However
the deviation between the measured current and its reference is seen to be larger for the PI and
PI-ANN controllers. The dHDP controller has more accurate tracking. Further, from the close-up
it is seen that the dHDP controller also exhibits a faster response speed. The MPC-ANN controller
shows the best tracking performance, where the deviation is almost not visible in the chosen scaling.
The response speed, however, appears identical to that of the dHDP-controller.
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7. Comparison of Controller Performance

Further, the filtered output current if,a appears identical for all controllers, except for the MPC-
ANN controller. For this controller the if,a-magnitude sets at a different value. In addition, the
waveform exhibits less distortion, than what is seen for the other controllers. However, looking
closely, the dHDP-controller also appears less distorted than the PI and PI-ANN controllers. For
all controllers it seen an increase in the if,a-distortions for the large reference current steps at 0.18s
and 0.24s. The vf,a waveform appears identically smooth for all controllers, and is satisfactorily
maintained at the desired level.

7.3 Analysis During Grid-Side Fault

The performance of all the controllers is also tested under grid-side fault conditions by reducing
the grid voltage amplitude symmetrically to 20%. the fault is introduced at 0.2 s and lasts for 3
cycles, while the reference current is kept constant at 18A. The d-axis converter current, phase-a
of the filtered output current and phase-a of the filtered output voltage is presented in Figure 7.3.
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Figure 7.3: Simulation results of all controllers under grid-fault.

In Figure 7.3 it is seen that the PI-ANN controller is unable to tackle the fault, as the magnitude
of ic,d is raised to a higher value and has large oscillations, even though the i∗d magnitude is kept
constant during the entire test case. Contrarily, the PI controller, the expert, operates at the
expected level, where the deviation is seen to decrease after the fault is introduced. The same is
observed for the dHDP and the MPC-ANN control schemes, which exhibit an even more accurate
tracking. At the instant of short circuit clearing the ic,d magnitude has a momentarily dip when
employing the PI, MPC-ANN and dHDP controllers. The MPC-ANN controller is fastest to
restore the desired magnitude and the PI-controller is slowest. For the PI-ANN controller the ic,d
magnitude starts to decrease after the fault is cleared. This decrease continues until the actual
current magnitude restores the reference value. The current if,a is also presented in Figure 7.3.
The current waveform has a similar form for all controllers, however the waveform amplitude is
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slightly lower for the MPC-ANN controller. During the short circuit fault the waveform amplitude
is significantly increased for the PI-ANN controller. The voltage vf,a waveform is smooth during
the short circuit, and appears identical for all controllers, except the PI-ANN controller which has
momentarily large distortions at the introduction of the short circuit fault.

7.4 Parameter Uncertainty

The robustness of all the current-controllers is further verified under the parameter uncertainty
test case. This test case considers a 20% increase and decrease of the filter inductance Lf and a
300% increase and decrease of the grid inductance. The i∗d value is also changed to a different level
at 0.2 s. The simulation results for the d-axis converter current is presented in Figure 7.4, phase-a
of the filtered output current is presented in Figure 7.5 and phase-a of the filtered output voltage
is presented in Figure 7.6.
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Figure 7.4: D-axis converter current under parameter uncertainty condition.

In Figure 7.4, the ic,d and i∗d are presented for all the controllers for high and low Lf -values and
Lg-values. The PI and PI-ANN controllers are most influenced by these parameter modifications,
where the current ic,d is seen to have significantly larger oscillations around its reference component.
The dHDP scheme comparatively performs better for all scenarios, however the tracking is seen
to be affected by the parameter modifications. The performance of the MPC-ANN, on the other
hand, appears unaffected by all parameter changes and clearly has the best performance.

In Figure 7.5 the current if,a is presented for all controllers. Here, the dHDP and the MPC-ANN
controllers exhibit the best performance. This is observed by the smooth current waveform, which
appears unaffected by the different parameter modifications. The PI and PI-ANN controllers, on
the other hand, produces a if,a waveform which is distorted both before and after the reference
current step change. The performance of the PI-ANN is largely comparable to the PI-controller,
however for the high Lg-value the PI-ANN current waveform appear slightly more distorted.

In Figure 7.6 the voltage vf,a is presented for all controllers. Here, only the waveform of the MPC-
ANN is visible as this was plotted last. It is worth mentioning that before presenting this result
it was tested to change the line-style of the plotted voltage waveforms when using the different
controllers. However, the voltage is so similar that its result became more confusing.
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Figure 7.5: Phase a of filtered output current under parameter uncertainty condition.
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Figure 7.6: Phase a of filtered output voltage under parameter uncertainty condition.

7.5 Discussion

The simulation results showed that the PI-ANN controller shows no improvement compared to the
conventional PI controller. For large disturbances, such as the grid fault, the PI-ANN even had a
worse performance. The dHDP significantly improves the system performance compared to both
the PI and PI-ANN controllers. The response speed is in all cases faster and the tracking is more
accurate. However, the MPC-ANN remains the superior controller for all the scenarios.

Apart from this, there are two important remarks that must be highlighted here. Firstly, for all
control methods, there are numerous user-defined parameters. This corresponds to error-prone
control methods, which will, in almost any case, have the potential for improvement in terms of
the hidden layer size, learning rates, reinforcement signal coefficients, etc. Secondly, the dHDP con-
troller consists of heavy computations, mainly due to the inclusion of two while-loops, which must
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be executed in each time step. The simulations took significantly more time than the other control
methods when the dHDP scheme was executed in the Matlab/Simulink simulation environment.
Unless the code is improved, this might pose an issue for the real-time hardware implementation.
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8
Conclusion and Further Work

8.1 Conclusion

The connection of electronic power converters to the power grid is rapidly increasing due to a
massive integration of renewable energy sources. As a result, the control methods for such grid-
connected converters must ensure robustness, reliability, and fast dynamics. Conventional control
methods, which depend on assumptions such as linearity and time invariance, are now being
replaced by intelligent control methods. A literature review shows that among all AI technologies,
the use of ANNs is a popular and powerful control approach.

This thesis starts with an investigation of AI technologies relevant for the grid-connected VSC,
with the aim to improve the inner-loop current control. The investigation includes an overview
and description of the AI technologies; fuzzy logic, supervised learning and reinforcement learning.
Further, four ANN-based control methods are proposed and thoroughly described.

The first control method, the PI-ANN controller, consists of an FFNN which uses the conventional
decoupled PI controller as an expert. That is, the inputs and outputs of the PI controller are stored
during simulations and are fed to the network during the offline training phase. The network is
fully trained offline using the LM algorithm. Both the PI controller and the PI-ANN controller are
simulated using Matlab/Simulink. The performance analysis consider three different test cases;
step-variation in reference current, short circuit at the distribution grid and parameter uncertainty
by modifications in filter and grid inductance. The PI controller and the PI-ANN controller have
comparable performances for the varying reference current and the parameter uncertainty test
cases. For the short circuit test case the PI-ANN performs worse than the PI controller, and does
not manage to track the reference current during the short circuit fault. The performance was
validated through a comparison to the OPAL RT HIL simulation results.

The second control method studied is the MPC-ANN controller. Similar to the previous method,
the controller consists of an FFNN which is trained using the LM algorithm, but now the inputs
and outputs are stored using the simulated performance of the CCS-MPC as the expert. The
performance of the MPC-ANN and the CCS-MPC controllers is evaluated using simulation results
from the Matlab/Simulink environment. The results show that the MPC-ANN controller accurately
tracks the reference current, and produces a filtered output current and a filtered output voltage
with smooth waveforms and low distortions, for all aforementioned test cases. However, although
being smooth, the filtered output current amplitude settles at a slightly lower magnitude for the
MPC-ANN controller than what is seen for the CCS-MPC. The performance of both controllers is
validated by comparison with OPAL RT simulation results.

The third controller is the DP-trained RNN-based controller. The DP algorithm consists of a com-
bination of the LM algorithm and the FATT algorithm and is executed offline, before implementing
the RNN as a controller. Because of the problem commonly known as exploding gradients, offline
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training could not be completed and the proposed control method remains to be investigated.

The fourth and final controller is the dHDP-based controller. This consists of two FFNNs, which are
pre-trained offline, and they continue learning after implementation. The controller is implemented
in parallel to the decoupled PI controller. Simulation results obtained from Matlab/Simulink envir-
onment were used to evaluate the performance of the dHDP controller. The observed performance
of the proposed controller is significantly improved compared to the conventional PI controller.
The tracking is more accurate, the response speed is faster and the filtered output current and
voltage have smoother waveforms.

A comparison of the performances of the conventional controller, the decoupled PI controller, and
the ANN-based controllers, the PI-ANN, MPC-ANN and dHDP controllers, is also made based on
the Matlab/Simulink simulation results. As for the above evaluations, this comparative analysis
considers the same three test cases. Whilst the PI-ANN controller shows no improvement and has
in some cases a slightly worse performance than the conventional PI controller, the dHDP controller
has a significantly improved performance: the response is faster and the tracking is enhanced. The
dHDP performance is also improved concerning changes in grid and filter inductance where the
deviation between actual and reference converter current is reduced. However, some stability issues
are observed due to the computational complexity this control method required. The MPC-ANN,
on the other hand, exhibits a significantly improved performance in all cases and overall superior
control.

8.2 Further Work

Considerable effort has been made to present the control methods and results in a comprehensible
manner for students within the Department of Electric Power Engineering. The aim is to support
as much as possible a continuation of this thesis’ work and further activities could include the
following topics:

1. Direct HDP Control

The performance of the dHDP controller should be verified using HIL simulations. It is likely
that the controller design must be further improved.

2. DP-trained RNN Control

The RNN-based controller remains untested, and it would be interesting to compare its
performance with the FFNN-based controllers. However, some modifications are necessary
as the training is currently limited by the exploding gradients problem.

3. Other Intelligent Control methods

Other control methods such as Q-learning remain relatively unexplored in converter control
applications, and will therefore be interesting to investigate. Besides this, there also exist
many suggestions for intelligent control methods which can provide the basis for developing
new knowledge and perhaps achieving better performance than those studied in this thesis.
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Appendix A
Performance Evaluation of ANN-Based
Control for Grid-Connected Converter

In conjunction with this thesis a scientific paper was submitted for publication in the journal IEEE
Access. The full paper is given in the proceeding pages.
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ABSTRACT The conventional decoupled proportional-integral (PI) control of the voltage source converter
(VSC) imposes several limitations on the controller performance due to assumptions such as linearity
and time invariance. Among numerous control approaches, the use of an artificial neural network (ANN)
draws attention in the research of artificial intelligence (AI) based converter control. In this paper, three
different ANN-based control methods are considered for the inner current control of the VSC. The first
controller is trained based on the simulation data from the conventional PI controller. The second controller
is trained using the data from a model predictive control (MPC). The last controller consists of two
networks, where both are trained using the direct heuristic dynamic programming (dHDP) algorithm. All
controllers are implemented in Matlab/Simulink environment and are compared under different dynamic
test cases. The ANN controller trained with MPC data (MPC-ANN) and the dHDP scheme enhance the
system performance in terms of less oscillations, improved reference signal tracking, and robustness against
parameter changes.

INDEX TERMS artificial neural network, model predictive controller, oscillations, supervisory learning,
voltage source converter

I. INTRODUCTION

THE voltage source converter (VSC) is highly efficient,
reliable, with a low-cost and high power density, and

is becoming an integral part of the power grid. For this
reason, the control of the VSC must ensure robustness, re-
liability, and fast dynamics. The use of proportional-integral
(PI) control with pulse-width modulation (PWM) or space
vector modulation (SVM) remains a popular control method
due to its simplicity, strong adaptability, and reliability [1],
[2]. This control method is designed in the synchronously
rotating (dq) reference frame, where one PI controller is
independently applied to the d− and q-axis currents by use
of appropriate decoupling terms [1], [3]. This coordinate
transformation enables the successful application of linear
PI controllers to dc components and results in a linear-time-
invariant (LTI) system. Although this highly simplifies the
control techniques, assumptions such as linearity and time-
invariance limit the overall system performance. In response,

a considerable effort has been made in recent years by the
scientific and industrial communities to address the research
challenge of improving VSC control [4].

The control methods can broadly be characterized as linear
and non-linear. The non-linear methods exploit the fact that
the averaged VSC model is non-linear by directly com-
pensating for the non-linear dynamics. Non-linear control
methods were first proposed in [5], and have been further
developed in [6] and [7]. More robust non-linear control
has been achieved using sliding-mode control (SMC) [2],
[8]. Although such non-linear control strategies have been
proven to improve the dynamic performance, unless advance-
ments are implemented, they have the major disadvantage
of producing a variable switching frequency, which creates
resonance problems and reduces the overall efficiency [4],
[9].

In the recent past, model predictive control (MPC) has
evolved as a promising control method due to advantages
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such as improved dynamic performance, easier handling of
multiple-input, multiple-output (MIMO) cases, and increased
flexibility compared to conventional methods [10], [11]. The
MPC principle predicts the process output at future time
instants and computes an optimal control signal that mini-
mizes a cost function while ensuring that system constraints
are met. The MPC strategies can be classified as continuous
control set MPC (CCS-MPC) and finite control set MPC
(FCS-MPC). The operating principles of these two types
are principally similar but differ in the design of the cost
function and the optimization stages [12]. In FCS-MPC, the
discrete nature of the converter is exploited, and the control
signals are switching signals which are directly applied to
the converter without the use of an external modulator. On
the other hand, the cost function and the control signals are
continuous in the CCS-MPC scheme. The control signals are
the modulation signals which are again processed through a
PWM-modulator to generate the final switching pulses. Both
methods have advantages and limitations, and the choice of
method mainly depends on the application objectives [12]–
[14].

Since the 1990s, artificial intelligence (AI) based control
methods have gained substantial attention, and the number
of applications is continuously increasing and improving
[15]. Recently, numerous AI-based VSC control techniques
have been proposed, which provide promising solutions to
different objectives. Accounting to the learning approach,
the AI concept can be classified as supervised learning (SL),
unsupervised learning (UL) or reinforcement learning (RL).
In SL, the goal is to learn the correct input-output mapping
based on labeled data, and this learning method is mainly
used for function fitting problems. UL aims to discover a
pattern in unlabeled data sets, which is primarily used for
data clustering. RL, from a control aspect, is broadly related
to SL, except that it is not fed labeled data; instead, it learns
by a reinforcement signal that either rewards or penalizes
the actions taken when interacting with the environment.
The controller will eventually learn the correct input-output
mappings, aiming to maximize the rewards.

Moreover, the SL and RL approach is particularly inter-
esting for developing control methods. For both learning
approaches, the use of an artificial neural network (ANN) for
control related problems is increasingly drawing attention.
In SL, the ANN-based control methods mainly consist of
training the network to approximate either an existing con-
troller or an optimal one. In [4], [16] and [14] the former
strategy has been done using the MPC as an expert. In [17]
the latter method is done by use of a modified version of
the Levenberg-Marquardt method. HDP methods commonly
use a modified Bellman equation to train a network to map
inputs to actions. Recently, the direct HDP (dHDP) method
has shown promising control action and has been applied to a
large power system stability control problem in [18] and for
nonlinear tracking in [19], [20].

Furthermore, the ANN-based VSC control methods can be
broadly classified into three categories [21]. Firstly, the ANN

can be utilized to optimize the PWM stage. Secondly, the
ANN be used as a replacement for the original PI controller.
Additionally, the ANN can be employed as a supplementary
part of the PI controller to achieve further improvement. It
is worth highlighting that the last two categories are tested
using both SL and RL in this work. The first controller
replaces the conventional PI controller with an ANN, which
is trained using the outputs of the original PI controller as
targets. The next controller is based on a similar approach,
but the MPC scheme is used as an expert instead of the PI
controller. This control method is based on [16]. The last
control method is based on the work done in [22] and consists
of two networks, an actor and a critic, trained using the dHDP
algorithm. The networks are implemented in parallel to the
decoupled PI controllers.

Specifically, the control methods implemented are con-
cerned with inner-loop current control of the VSC. Their
performance is compared under different dynamic test sce-
narios. The inner current controller should track the reference
current obtained from an outer control loop irrespective of
the magnitude of disturbances. In this context, the tracking
performance is observed in three different scenarios. First,
without disturbances, only with a varying reference current.
The second scenario considers the controller performance
during and after a fault at the distribution grid. The third
scenario is parameter uncertainty to test the robustness of the
controller.

In line with the above discussion, the paper is organized
as follows. First, Section II introduces the system model,
including a schematic of the system and mathematical equa-
tion. Section III presents the control methods and gives the
necessary details for implementation. Section IV presents
the simulation results obtained from Matlab/Simulink and
compares the performance of the three controllers along with
the conventional PI controller. In Section V, the obtained
results are summarised and the observed control performance
is discussed. Finally, concluding remarks are provided in
Section VI.

II. SYSTEM MODEL
The system to be controlled is a grid-connected three-phase
two-level VSC. As illustrated in the top part of Fig.1, the
system has three main components. The VSC, consisting of
three phase legs each containing two switches. Secondly, The
filter with inductance Lf , resistance Rf and capacitance Cf .
Third, the distribution grid represented by inductance Lg ,
resistance Rg , and a voltage source vg . Also shown in the
figure are the converter output voltages vc and current ic,
the filtered voltages vf , and the DC-side capacitor CDC and
voltage VDC . By using KVL on this system the model in (1)
is obtained.

vc,abc = Rf iabc + Lf
diabc
dt

+ vf,abc, (1)

The different control methods are implemented in different
reference frames, as shown in Fig.1. The MPC is imple-
mented in the stationary (αβ) reference frame, while the PI
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FIGURE 1. Implementation of the three control methods.

controller and the dHDP controller are implemented in the
synchronous (dq) reference frame. The transformation from
the three-phase components xabc into the two components
xαβ is done using the amplitude invariant Clarke transforma-
tion. The transformation from xabc into xdq is done using
the Park transformation. The resulting system dynamics are
given by (2) and (3) for the stationary and synchronous
frame, respectively. Here ω is the angular frequency, which
is obtained from the phase-locked loop (PLL).

vc,αβ = Rf iαβ + Lf
diαβ
dt

+ vf,αβ , (2)

vc,d = Rf id − ωLf iq + Lf
did
dt

+ vf,d

vc,q = Rf iq + ωLf id + Lf
diq
dt

+ vf,q

(3)

The state space formulation is given by (4), where the states
x, control inputs u and matrices A and B are given by (5)
and (6) for αβ-reference frame and the dq-reference frame,
respectively.

ẋ = Ax+B (vc − vf ) = Ax+Bu (4)

Aαβ =

[
−Rf

Lf
0

0 −Rf

Lf

]
,Bαβ =

[
1
Lf

0

0 1
Lf

]
(5a)

xαβ =

[
iα
iβ

]
,uαβ =

[
vc,α − vf,α
vc,β − vf,β

]
(5b)

Adq =

[
−Rf

Lf
ω

−ω −Rf

Lf

]
,Bdq =

[
1
Lf

0

0 1
Lf

]
(6a)

xdq =

[
id
iq

]
, udq =

[
vc,d − vf,d
vc,q − vf,q

]
(6b)

III. CONTROL DESIGN
In this section, the three control methods, PI-ANN, MPC-
ANN, and dHDP, will be presented and described, including
schematics illustrating the working principle of the con-
troller, mathematical equations, and the neural network train-
ing methods.

Common for all controllers is that they all consist of an
ANN, the purpose of which is to approximate either an
optimal controller (dHDP) or an existing controller (PI-ANN
and MPC-ANN). The ANNs are described considering the
number of inputs, outputs, hidden layers, and the connection
between them. In general, the ANNs can be separated into
two categories, feedforward neural networks (FFNNs) and
recurrent neural networks (RNNs). FFNNs only have con-
nections forward to the next layer, resulting in a forward flow
of information from input to output. In recurrent networks,
there are also connections backwards, which form a cyclic
flow of information. In this paper, only FFNNs are considered
and will therefore be given more attention in the following
sections.

p1

w
1
1,
1

wm-1Sm,Sm-1

wm-11,1

pR

y1

yQ

w 1

S,R

Hidden layersInput layer Output layer

FIGURE 2. Fully-connected multi-layer feedforward neural network.

In Fig.2 a fully-connected multi-layer FFNN is depicted.
It consists of R inputs, m hidden layers, where the first
hidden layer contains S1 neurons and the last hidden layer
consists of Sm neurons, the total number of outputs is Q. If
this network had 2 hidden layers, each containing 6 neurons,
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we say the network structure is p-6-6-Q. In each layer the
output is determined by the weight w, a bias b, and an
activation function f , this is shown for the first neuron n1

1 in
(7). The connection from one layer to another is defined by
an activation function. There are several different activation
functions. In this work, the hyperbolic tangent function in
(8) is chosen for the hidden layers, while a linear function is
chosen for the output layer.

a11 = f(w1
1,1p1 + b1) = f(n1

1) (7)

f(n) =
en − e−n

en + e−n
(8)

A. PI-ANN CONTROL MODEL
The structure of the PI-ANN control method is given in Fig.
3. First, the PI controller is used as an expert for generating
the data needed for the training phase of the FFNN. The
inputs and outputs of the PI controller are stored during
simulations. Next, the network is trained using supervised
learning, where the control inputs are used as network inputs,
and the controller outputs are used as targets. After com-
pleting this offline-training, the network is implemented as
a controller, replacing the original PI controller.

The rest of this section gives a brief description of the
PI controller before describing the network structure and
training algorithm.

1) Proportional Integral Control
The PI controller is implemented in the synchronous refer-
ence frame. The development of the control starts with a
Laplace transformation of (3), as given in (9). In order to
compensate for undesirable cross-coupling effects, the induc-
tance terms ωLf idq and voltage terms vdq are fed forwards,
resulting in the mathematical controller description in (10).

id =
1

sLf +Rf
(vc,d − vd + ωLf iq)

iq =
1

sLf +Rf
(vc,q − vq − ωLf id)

(9)

v∗c,d =

(
Kp +

Ki

s

)
(i∗d − id) + vf,d − ωLf iq

v∗c,q =

(
Kp +

Ki

s

)(
i∗q − iq

)
+ vf,q + ωLf id

(10)

The controller outputs v∗c,dq are then transformed back to
three phase components v∗c,abc using an inverse Park trans-
form. The resulting modulation indexes mabc are obtained
after normalizing v∗c,abc into the range [−1, 1] as illustrated
in Fig.3. The proportional and integral gains Kp and Ki

are determined using modulus optimum, a technique based
on cancelling the dominant time constant, while keeping the
closed loop gain larger than unity for as high frequencies as
possible. Modulus optimum is a popular tuning method for
the inner current loop as it achieves fast response, for more
information on this tuning procedure please refer to [23].

m
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i
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d

i
*
q
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Ki
1

s

uq Vdc/2

�

FIGURE 3. Decoupled PI control.

2) FFNN Structure

The number of inputs and outputs of the FFNN is the same
as the number of inputs and outputs of the expert. Therefore,
as is shown in Fig.3, the FFNN takes 6 inputs, idq , i∗dq and
vdq and outputs the two control signals udq . Different sizes of
hidden layers are tested considering the tracking performance
of the implemented network controller during simulations. A
range of hidden layer sizes starting from 6 to 30 neurons were
tested, the best performance was obtained with the structure
6-10-2.

3) Training Algorithm

The weights and biases in an ANN are determined during
training. The data obtained during simulations using the
original PI controller is stored in a look-up table, where the
sampled control inputs are used as inputs to the network and
the outputs are used as targets for the network outputs, as is
illustrated in Fig.4. The goal of the training is thus to update
the network weights such that the outputs of the network are
as close as possible to the targets. In this paper, both the PI-
FFNN and the MPC-FFNN are trained using the Levenberg
Marquandt (LM) algorithm.

The LM algorithm was developed to solve nonlinear least
square problems and is based on a combination of the steep-
est descent (SD) method and the Gauss-Newton method.
The LM algorithm switches between the aforementioned
algorithms depending on whether the model is linear in its
parameters or not. This way when the parameters are distant
from the optimal values, the problem becomes nonlinear and
the steepest descent method is employed. Conversely, when
the parameters become close to their optimal values, the
problem is close to quadratic, and the Gauss-Newton method
is employed [24].

The LM algorithm measures the network performance
during training as the sum of squared errors (SSE) between
the network outputs y and targets tn at sample n, as given
in the cost function (11) for a total of N samples, R inputs,
M layers and Si neurons in each layer i. The last summation
is the sum over all elements in the error vector vi, which is
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FIGURE 4. Offline and online phase of PI-ANN controller.

defined in (12).

C =

N∑

n=1

(y − tn)
⊤(y − tn)

=

N∑

n=1

e⊤n en =

N×SM∑

i=1

v2
i

(11)

v⊤ =
[
v1 v2 . . . vN vN+1 . . . vN×SM

]

=
[
e1,1 e2,1 . . . eSM ,1 e1,2 . . . eSM ,N

] (12)

The update of weight and biases is thus based on minimizing
(11). This is described in (13) and (14), where the new weight
Wnew is the sum of the current weight Wold and the change in
weight δW for which the Jacobian J decreases. The Jacobian
is defined in (15) as the derivative of the cost function with
respect to the network parameters. The parameter vector x
given by (16) contains all the weights and biases in the net-
work. The switching between the SD method and the Gauss-
Newton method is determined by the inverse of the learning
rate mu. If µ >> J⊤J, then (13) approximates to − 1

µJ
⊤v

which is the steepest descent update. If µ, on the other hand,
is small we get approximately −(J⊤J)−1J⊤v, a Gauss-
Newton update. In LM the cost function C is evaluated after
each iteration, if it is not decreased, then µ is increased
corresponding to a lower learning rate and a smaller step. If
the performance has improved µ is decreased, and a larger
step is taken. In this paper µ is initially set to 0.001 and
decreased and increased by 10. (16).

Wnew = Wold +∆W (13)

∆W = −(J⊤J+ µI)−1J⊤v (14)

J =




∂v1(x)
∂x1

∂v1(x)
∂x2

. . . ∂v1(x)
∂xn

∂v2(x)
∂x1

∂v2(x)
∂x2

. . . ∂v2(x)
∂xn

...
...

...
∂vN (x)
∂x1

∂vN (x)
∂x2

. . . ∂vN (x)
∂xn




(15)

x⊤ =
[
x1 x2 . . . xn

]

=
[
w1

1,1 . . . b1S1
w2

1,1 . . . bMSM

] (16)

The training continues until one of three stopping criteria are
met,

1) The maximum number of epochs is reached.
2) The maximum value of µ is reached.
3) The gradient of the cost function ∂C

∂x reaches a mini-
mum value.

B. MPC-ANN CONTROL MODEL
The methodology of the MPC-ANN controller is identical
to the PI-ANN controller shown in Fig.4, except now the
FFNN will be trained using the MPC as an expert. As
illustrated in Fig.1 and previously mentioned in Section III,
the MPC is implemented in the αβ-frame. The LM algorithm
described in Section III-A3 is used for training the network.
The FFNN will have the same number of inputs and outputs
as the expert, which in this case correspond to 7 inputs
(iαβ ,i∗αβ ,vαβ , vdc) and 3 outputs (mabc). The same hidden
layer sizes as stated above were tested for the MPC-ANN
and the best performance was obtained with the structure 7-
20-3. The training of the network was done using the LM
algorithm.

In this paper, the CCS approach is employed. Here the
optimal control signal is calculated based on a system model.
The cost function is defined as a single-variable function
based on the controller-goal. The optimal control signal is
defined by minimizing this cost function while including the
model predictions. Once this control signal is determined,
it is sent to the modulator, which generates the switching
commands. Since the MPC replaces the PI controller, the
cost function is defined as the error between measured and
reference current, as given by (17). Here Q is the weight
matrix, choosing equal importance for both iα and iβ cor-
responds to the weight in (18). Minimizing C consists of
finding the control signal for which ∂J/∂vc,αβ = 0. By
replacing iαβ [k+1] with the model defined in (5), the optimal
control for which C is minimized is defined by (19).

min
vc,αβ

C = (i∗αβ − iαβ [k + 1])Q(i∗αβ − iαβ [k + 1]) (17)

Q =

[
1 0
0 1

]
(18)
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vc,αβ [k] =
(
BB⊤)−1

(B⊤i∗αβ −B⊤Aiαβ [k + 1]

−B⊤Bvf,αβ [k])
(19)

The CCS-MPC can have an extended horizon of several time
steps, in this article a prediction horizon of 4 time steps gave
the best results and is therefore chosen. For an extended
horizon the model must be augmented as given by (20).

xaug =
[
x[k + 1] x[k + 2] . . . x[k +N ]

]⊤
, (20a)

uaug =
[
u[k] u[k + 1] . . . u[k +N − 1]

]⊤
(20b)

Aaug =
[
A A2 . . . AN

]⊤
(20c)

Baug =




B 0 . . . 0
AB B 0 . . . 0
A2B AB B 0 . . . 0

...
. . .

...
AN−1B AN−2B . . . AB B




(20d)

C. DIRECT HDP CONTROL MODEL
Heuristic dynamic programming (HDP) is one of the most
basic and widely used structures within the field of adaptive
dynamic programming (ADP) [25], where ADP is the family
of methods that seek to find an (approximately) optimal con-
trol policy for a stochastic process whose model depends on
unknown parameters [26]. The dHDP estimates the controller
parameters directly, unlike indirect versions which estimate
model parameters before computing the control signals [27],
[28]. The direct version avoids estimating the process, and
enables the use of a model-free controller which is robust
with respect to model uncertainties. This is illustrated in
Fig.5 which illustrates the working of the dHDP method.
As illustrated by the orange arrows (x(t)), the information
from the process is directly used to find appropriate controller
parameters.

Actor
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r(t)

J(t-1)

J(t)

J(t)

u(t)

u(t)

x(t)
�

R*

-
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FIGURE 5. The direct HDP structure.

The dHDP controller is implemented in parallel to the
decoupled PI control, as illustrated in Fig.6. The errors
εdq = i∗dq − idq are inputs to both the dHDP and the PI
controllers. The output of the dHDP is added as a supplement
to the output of the original PI controllers. The resulting
control signals u∗

dq are then normalized (divided by Vdc

2 ) and
transformed back to three-phase components, as was shown
for the decoupled PI control in Fig.3.
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FIGURE 6. The implementation of the dHDP controller.

1) Cost-to-Go Function
The control design starts with defining J which describes
the cost-to-go of inputs x(t) for a utility function Uc which
measures the one-step cost or reward of control, using a
discount rate γ ∈ 0, 1. The objective of any DP-based
control is to select a control signal u(t) which minimizes
this cost according Bellman’s optimality principle. This leads
to an optimal control signal as given in (22) to (23). These
equations are approximated in an iterative manner using two
FFNNs, namely the actor and the critic. As their names imply
the actor approximates the actions u and the critic evaluates
the actor’s performance by approximating J .

J [x(t), t] =

∞∑

k=t

γk−tU [x(t),u(t), t] (21)

J∗[x(t)] = min
u(t)
{J∗[x(t+ 1)] + r[x(t)]− Uc} (22)

u∗(x(t)) = argmin
u(t)

J∗[x(t)] (23)

2) Structure of Critic and Actor
As illustrated in Fig.5, the critic takes both the control signals
generated by the actor and the error signals obtained from
the system as inputs, which in total becomes 8 inputs (udq ,
εdq(t), εdq(t− 1), εdq(t− 2)). The input to the actor consists
of only the error signals from the system and thus has 6
inputs. As proposed in [22], one hidden layer with 12 neurons
is chosen for both networks. The output of the critic is the
approximated cost-to-go function J , while the actor outputs
the optimal control signals u∗

d and u∗
q , as described by (24)

and (25). In summary, the structures of the critic and actor
are 8-12-1 and 6-12-2, respectively.

J(t) = NNc(x(t), u(t)) (24)

udq = NNa(x(t)) (25)

The aim of the critic is to approximate the value func-
tion, also known as the cost-to-go function. This is done
by minimizing the objective function Ec defined by (26).
The prediction error ec reflects the difference in the current
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and previous cost-to-go functions J(t) and J(t − 1), in
addition to the amount of reinforcement that was currently
implemented r(t), as described in (27). The goal is that J
converges towards the optimal cost-to-go J∗ and keeping the
reinforcement signal at a minimum, only then an appropriate
value function is obtained. As given in (28) the reinforcement
signal is determined by the amount of deviation between
reference and measured currents, εdq , for the current and
previous time steps. The deviation at previous time steps,
εdq(t − 1) and εdq(t − 2), is included to limit the strength
of the control signals during steady state, while allowing
stronger control signals during transient conditions. The co-
efficients a1, a2 and a3 are kept constant and are chosen equal
to those proposed in [22].

Ec(t) =
1

2
ec(t)

2 (26)

ec(t) = αJ(t)− J(t− 1) + r(t) (27)

r(t) = −(a1ε2dq(t) + a2ε
2
dq(t− 1) + a3ε

2
dq(t− 2)) (28)

The actor approximates the policy by selecting appropriate
actions based on the cost-to-go J , this is given by (29) and
(30).

Ea(t) =
1

2
e2a(t) (29)

ea(t) = J(t) (30)

3) Direct HDP Training Algorithm
Unlike the two previous control methods which employ tech-
niques within supervised learning, the dHDP controller falls
within reinforcement learning (RL), as its network learns
by interacting with its environment. More specifically the
training of the networks are done in two stages, first offline
and second online. For both stages the weights are updated
based on gradient descent, given by (31) and (32). The
partial derivative ∂E

∂w represents the change in the objective
function based on the change in the weights and is computed
using (33) and (34) for the critic and actor, respectively. The
learning rate l is a positive and small number, unlike the
learning rate µ used in the LM algorithm, it remains constant
during the whole training period.

wnew = wold +∆w (31)

∆w = −l ∂E
∂w

(32)

∂Ec

∂wc
=

∂Ec

∂J

∂J

∂wc
(33)

∂Ea

∂wa
=

∂Ea

∂J

∂J

∂udq

∂udq

∂wa
(34)

In offline training, the weights are initialized randomly for
both the critic and actor. For the online training, the weights
obtained offline are used as initial weights. Despite this, the
training algorithm remains the same.

The first step of the algorithm is to initialize the weights
for the critic Wc and actor Wa, the control signal udq and the

cost-to-go J as is shown in line 1 of Algorithm 1. The second
step is to calculate the control signal udq using the action
network and the cost-to-go using the critic network. After
implementing the control signals, the input at the next time
step x(t + 1) and the reinforcement signal r(t) is obtained,
as is seen in lines 3-5. Based on this data the training of
the network is started and consists of going through (26)
until (34). The training continues until a maximum number
of iterations kmax is reached, or if the prediction error falls
below a satisfactory limit Emin.

Algorithm 1 Direct HDP training algorithm

1: initialize Wc, Wa, udq ←
[
0 0

]⊤
, J ← 0, ka ← 1,

kc ← 1
2: repeat
3: udq(t)← NNa(x(t))
4: J(t)← NNc(x(t))
5: insert udq , get x(t+ 1), compute r(t)
6: while Ec ≥ Emin

c and kc ≤ kmax
c do

7: ec(t)← αJ(t)− J(t− 1) + r(t)
8: Ec(t)← 1

2e
2
c(t)

9: ∆Wc ← −l ∂Ec

∂Wc

10: Wc ←Wc +∆Wc

11: kc ← kc + 1
12: end while
13: while Ea ≥ Emin

a and ka ≤ kmax
a do

14: ea(t)← J(t)
15: Ea(t)← 1

2e
2
a(t)

16: ∆Wa ← −l ∂Ea

∂Wa

17: Wa ←Wa +∆Wa

18: ka ← ka + 1
19: end while
20: x(t)← x(t+ 1)
21: J(t− 1)← J(t)
22: until simulation is finished

IV. PERFORMANCE EVALUATION
The grid-connected VSC system, as shown in Fig. 1 is
implemented in the Matlab/Simulink environment. All the
controllers, as mentioned earlier, are implemented for a
switching model of VSC considering the system and control
parameters given in Table 1 and 2, respectively.

A. CURRENT REFERENCE TRACKING
A simulation is carried out for all the controllers by varying
the d-axis reference current magnitude (i∗d) continuously
and step-wise. The obtained results under this test case are
presented in Fig. 7. The successful implementation of all the
controllers can be verified from Fig. 7(a), as the actual d-
axis current (ic,d) is accurately tracking the corresponding
reference component. This is better illustrated in the zoomed
version of this figure, as shown in Fig. 7(b). Further, phase-a
of the output current if,a and output voltage vf,a for all the
controllers are also included in Fig. 7(a). It can be observed
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TABLE 1. Parameters for the grid-connected VSC system

Symbol Description Value
Vg Grid voltage 280 V
Vdc DC-link voltage 500 V
P Rated power 10 kW
fsw Switching frequency 8000 Hz
Lf Filter inductance 1.55 mH
Rf Filter resistance 10 mΩ
Cf Filter capacitance 75µF
Lg Grid inductance 0.266 mH
Rg Grid resistance 11.9 mΩ
Cdc DC-link capacitance 3 mF
Ts Sampling time 10 µs

that the MPC-ANN and dHDP schemes are comparatively
performing superior to the PI and PI-ANN controllers in
maintaining a stable and sinusoidal if,a. Moreover, the if,a
obtained with PI-ANN is momentarily distorted when it
faces a larger deviation in (i∗d) magnitude. Besides, the vf,a
waveform is satisfactorily maintained at the desired level by
all the controllers.

B. ANALYSIS DURING GRID-SIDE FAULT
The performance of all the controllers is also tested under
grid-side fault conditions by reducing the grid voltage am-
plitude symmetrically to 20%. As presented in Fig. 8, the
fault is introduced at 0.2 s and lasts up to 3 cycles. In this
context, the inability of the PI-ANN controller to tackle the
fault can be seen from Fig. 8(a), as the magnitude of ic,d is
raised to a higher value even though i∗d magnitude is kept
constant at 18A during the entire test case. Contrarily, the PI
and dHDP control scheme operate at the expected level with
lesser distortions, which can also be verified from the zoomed
view of Fig. 8(a) presented in Fig. 8(b-c). Nonetheless, the
ANN-MPC scheme performs superior to the other controllers
for this case study.

TABLE 2. Controller parameters

Symbol Description Value
PI

Kp Proportional Gain 4.13
Ki Integral Gain 25.83

PI-ANN and MPC-ANN
Epochmax Maximum number of epochs 1000
α = 1

µ
Learning rate 0.01

αmin Minimum learning rate 10−10

αinc Increase of learning rate 10
αdec Decrease of learning rate 0.1

Direct HDP (online,offline)
l Learning Rate (online, offline) 0.001, 0.01
ka Iteration, actor (online, offline) 40, 10
kc Iteration, critic (online, offline) 50, 20
Emin

a Minimum error, actor (online, offline) 10−6

Emin
c Minimum error, critic (online, offline) 10−7

a1, a2, a3 Reinforcement coefficients 0.4, 0.2, 0.04
α Discount factor 0.1

C. PARAMETER UNCERTAINTY

The robustness of all the current-controllers is further verified
under the parameter uncertainty test case. In Fig.9, the ic,d
and i∗d are presented for all the controllers for an increased
and decreased filter inductance Lf and grid inductance Lg .
The i∗d value is also changed to a different level at 0.2 s.
It can be visualised that the performance of the PI and PI-
ANN controller is largely influenced with this abnormality,
ic,d waveform oscillates around its reference component. The
dHDP scheme comparatively performs better for most of
the scenarios, except when the Lf is increased. Note that
the most oscillatory response is plotted first, which is the
dHDP in this case. The performance of the MPC-ANN, on
the other hand, appears unaffected by all parameter changes
and clearly has the best performance.

8 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

t [s] t [s]

(c) Voltage step.up

v
f,

a 
[V

]
i f

,a
 [

A
]

i c
,d

 [
A

]

i c
,d

 [
A

]

t [s]

(a) Short circuit at 0.2s (b) Voltage step-down

0

50

-200

0

200

-50

0

50

-50

0

50

-50

0

50

18

15

20

-200

0

200

-40

-20

0

20

40

0.26 0.27 0.28 0.29 0.3
0

2018

0.2 0.21 0.22 0.23 0.240.15 0.2 0.25 0.3 0.35 0.4

18

v
f,

a 
[V

]

v
f,

a 
[V

]

i f
,a

 [
A

]

i f
,a

 [
A

]
i c

,d
 [

A
]

FIGURE 8. Simulation results of the controllers under grid-fault: (b) and (c) are corresponding zoomed view.
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FIGURE 9. Current tracking performance of all the controllers under parameter uncertainty condition with corresponding zoomed view

V. DISCUSSION
The above simulation study is summarized in Table 3, which
includes the total harmonic distortion (THD) of the output
current waveform for each controller under every considered
scenario after steady-state is established. The dHDP signif-
icantly improves the system performance compared to the
PI and PI-ANN controller. However, the MPC-ANN remains
the superior controller for all the scenarios. Apart from this,
there are two important remarks that must be highlighted
here. Firstly, for all control methods, there are numerous user-
defined parameters. This corresponds to error-prone control

methods, which will, in almost any case, have the potential
for improvement in terms of the hidden layer size, learning
rates, reinforcement signal coefficients, etc. This remark is
specifically important for the dHDP, which shows an im-
proved performance by changing the discount factor value
based on the trial and error method. Secondly, the dHDP
controller consists of heavy computations, mainly due to
the inclusion of two while-loops, which must be executed
in each time step. The simulations took significantly more
time than the other control methods when dHDP scheme was
executed in the Simulation environment. Unless the code is
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TABLE 3. Comparative analysis in terms of current THD [%]

Scenario PI PI-ANN MPC-ANN dHDP
Varying reference current 4.16 3.98 0.4 1.19
Short circuit 2.83 3.56 0.17 1.16
Increased grid inductance 4.52 32.77 0.17 2.15
Decreased grid inductance 2.90 2.91 0.18 1.31
Increased filter inductance 3.39 4.95 0.15 1.00
Decreased filter inductance 3.93 4.69 0.25 2.28

improved, this might pose an issue for the real-time hardware
implementation.

VI. CONCLUSION
In this paper, three different ANN-based controllers are de-
signed as a current controller for the grid-connected VSC
systems. Two of the control methods use an expert,i.e.,
the PI controller and the MPC, to train the networks. The
other controller is based on dHDP and consists of two net-
works which are first trained offline but continue learning
after being implemented. The controllers are implemented
in Simulink and the performance is extensively compared.
The comparative analysis consists of three different scenar-
ios; step-variation in reference current, fault at distribution
grid and change in filter and grid inductance. The dHDP
has improved performance compared to the PI and PI-ANN
controller in terms of faster response and improved tracking.
Its performance is also significantly improved for parameter
uncertainty conditions, considering the fact that the discount
factor is manually tuned. However, the DHDP scheme is
computationally heavy and generates even higher oscillations
than the PI and PI-ANN controller for some specific test
scenarios. The MPC-ANN, on the other hand, significantly
improves the system performance in every aspect.
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and A. A. Z. Diab, “A neural-network-based model
predictive control of three-phase inverter with an out-
put LC filter,” IEEE Access, vol. 7, pp. 124 737–
124 749, 2019.

[5] P. Rioual, H. Pouliquen, and J. Louis, “Non linear
control of pwm rectifier by state feedback lineariza-
tion and exact pwm control,” in Proceedings of 1994
Power Electronics Specialist Conference-PESC’94,
IEEE, vol. 2, 1994, pp. 1095–1102.

[6] E. Song, A. F. Lynch, and V. Dinavahi, “Experimental
validation of nonlinear control for a voltage source
converter,” IEEE Transactions on Control Systems
Technology, vol. 17, no. 5, pp. 1135–1144, 2009.

[7] R. M. Milasi, “Adaptive and nonlinear control of a
voltage source converter,” Ph.D. dissertation, Univer-
sity of Alberta, 2012.

[8] K. D. Young, V. I. Utkin, and U. Ozguner, “A control
engineer’s guide to sliding mode control,” IEEE trans-
actions on control systems technology, vol. 7, no. 3,
pp. 328–342, 1999.

[9] L. Wu, J. Liu, S. Vazquez, and S. K. Mazumder,
“Sliding mode control in power converters and drives:
A review,” IEEE/CAA Journal of Automatica Sinica,
2021.

[10] S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo,
and M. Norambuena, “Model predictive control for
power converters and drives: Advances and trends,”
IEEE Transactions on Industrial Electronics, vol. 64,
no. 2, pp. 935–947, 2016.

[11] V. K. Singh, R. N. Tripathi, and T. Hanamoto, “Hil co-
simulation of finite set-model predictive control using
fpga for a three-phase vsi system,” Energies, vol. 11,
no. 4, p. 909, 2018.

[12] E. Garayalde, I. Aizpuru, U. Iraola, I. Sanz, C. Bernal,
and E. Oyarbide, “Finite control set mpc vs continu-
ous control set mpc performance comparison for syn-
chronous buck converter control in energy storage ap-
plication,” in 2019 International Conference on Clean
Electrical Power (ICCEP), IEEE, 2019, pp. 490–495.

[13] S. K. Gannamraju, D. Valluri, and R. Bhimasingu,
“Comparison of fixed switching frequency based op-
timal switching vector mpc algorithms applied to volt-
age source inverter for stand-alone applications,” in
2019 National Power Electronics Conference (NPEC),
IEEE, 2019, pp. 1–6.

[14] D. Wang, Z. J. Shen, X. Yin, et al., “Model predictive
control using artificial neural network for power con-
verters,” IEEE Transactions on Industrial Electronics,
vol. 69, no. 4, pp. 3689–3699, 2021.

[15] S. Zhao, F. Blaabjerg, and H. Wang, “An overview of
artificial intelligence applications for power electron-
ics,” IEEE Transactions on Power Electronics, vol. 36,
no. 4, pp. 4633–4658, 2020.

[16] P. R. Bana, S. Vanti, and M. Amin, “Single-stage grid-
connected pv system with artificial neural network
controller,” in 2021 IEEE 22nd Workshop on Con-
trol and Modelling of Power Electronics (COMPEL),
IEEE, 2021, pp. 1–7.

[17] X. Fu, S. Li, M. Fairbank, D. C. Wunsch, and E.
Alonso, “Training recurrent neural networks with the

10 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

levenberg–marquardt algorithm for optimal control
of a grid-connected converter,” IEEE transactions on
neural networks and learning systems, vol. 26, no. 9,
pp. 1900–1912, 2014.

[18] M. Yu, C. Lu, and Y. Liu, “Direct heuristic dynamic
programming method for power system stability en-
hancement,” in 2014 American Control Conference,
IEEE, 2014, pp. 747–752.

[19] L. Yang, J. Si, K. S. Tsakalis, and A. A. Rodriguez,
“Direct heuristic dynamic programming for nonlinear
tracking control with filtered tracking error,” IEEE
Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), vol. 39, no. 6, pp. 1617–1622, 2009.
DOI: 10.1109/TSMCB.2009.2021950.

[20] X. Luo and J. Si, “Stability of direct heuristic dynamic
programming for nonlinear tracking control using pid
neural network,” in The 2013 International Joint Con-
ference on Neural Networks (IJCNN), 2013, pp. 1–7.
DOI: 10.1109/IJCNN.2013.6707054.

[21] J. Xu, Z. Wu, X. Yang, J. Ye, and A. Shen, “Ann-
based control method implemented in a voltage source
converter for industrial micro-grid,” in 2011 Sixth
International Conference on Bio-Inspired Computing:
Theories and Applications, IEEE, 2011, pp. 140–145.

[22] N. Malla, U. Tamrakar, D. Shrestha, Z. Ni, and R.
Tonkoski, “Online learning control for harmonics re-
duction based on current controlled voltage source
power inverters,” IEEE/CAA Journal of Automatica
Sinica, vol. 4, no. 3, pp. 447–457, 2017.

[23] C. Bajracharya, M. Molinas, J. A. Suul, T. M. Unde-
land, et al., “Understanding of tuning techniques of
converter controllers for vsc-hvdc,” in Nordic Work-
shop on Power and Industrial Electronics (NOR-
PIE/2008), June 9-11, 2008, Espoo, Finland, Helsinki
University of Technology, 2008.

[24] M. T. Hagan, H. B. Demuth, and M. Beale, Neural
network design. PWS Publishing Co., 1997.

[25] F.-Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic
programming: An introduction,” IEEE computational
intelligence magazine, vol. 4, no. 2, pp. 39–47, 2009.

[26] G. Hübner, “Adaptive dynamic programming,” OPTI-
MIZATION AND OPERATIONS RESEARCH–Volume
IV, p. 119, 2009.

[27] F. L. Lewis and D. Vrabie, “Reinforcement learn-
ing and adaptive dynamic programming for feedback
control,” IEEE circuits and systems magazine, vol. 9,
no. 3, pp. 32–50, 2009.

[28] C. Lu, J. Si, and X. Xie, “Direct heuristic dynamic pro-
gramming for damping oscillations in a large power
system,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 38, no. 4,
pp. 1008–1013, 2008.

VOLUME 4, 2016 11



Appendix B
Standard Backpropagation Algorithm

%% Training of FFNN using standard backpropagation

% Load datasamples

% Normalize into [-1 and 1]

p = 2*(X-min(X))./(max(X)-min(X))-1;

t = 2*(T-min(T))./(max(T)-min(T))-1;

% Number of data samples

[~, samples] = size(p);

% Create a random order of data samples

random_order = randperm(samples);

% Training, validation and testing are assigned a random set of the

% samples

p = p(:,random_order);

t = t(:,random_order);

%% Parametres

% Number of epochs

epochs = 1000;

% Assign a part of the dataset for training, validation and testing

train_ratio = 70/100; Ntrain = floor(train_ratio*samples);

val_ratio = 15/100; Nval = floor(val_ratio*samples);

test_ratio = 15/100; Ntest = floor(val_ratio*samples);

% Learning rate

lr = 0.1;

% Validation mean square error

% Chosen high, such that the very first error-increase is sensed

MSE_val_prev = 100;

%% Initialize weights and bias

% Here: Architecture 7-3-3

W1 = 1*rand(3,7)- 0.5;
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b1 = 1*rand(3,1)- 0.5;

W2 = 1*rand(3,3)- 0.5;

b2 = 1*rand(3,1)- 0.5;

W1_prev = zeros(3,7);

b1_prev = zeros(3,1);

W2_prev = zeros(3,3);

b2_prev = zeros(3,1);

%% Iterate through epochs

k = 0;

for epoch = 1:epochs

%% Training

sse_train = 0; %Sum Squared Error - SSE

for i = 1: Ntrain

% Input Layer

p_train = p(:,i);

t_train = t(:,i);

% Hidden layer

n1_train = W1 * p_train + b1;

a1_train = tansig_func(n1_train);

% Output Layer

n2_train = W2 * a1_train + b2;

a2_train = purelin(n2_train);

% Error

e_train = t_train - a2_train;

% Squared error

ee_train = e_train'*e_train;

% Sum of squared errors

sse_train = sse_train + ee_train;

% Back propagation: Steepest descent

% w_new = w_old - alpha*df/dw

% b_new = b_old - alpha*df/db

% Derivative

dfdn1 = tansig_der(n1_train);

dfdn2 = 1;

% Sensitivity

s2 = -2*dfdn2*e_train;

s1 = dfdn1*W2'*s2;

% Updating

W2 = W2 - lr*s2* a1_train';

W1 = W1 - lr*s1* p_train';

b2 = b2 - lr*s2;

b1 = b1 - lr*s1;

end

% Mean Squared Error

MSE_train = sse_train/Ntrain;

MSE_plot_train(epoch) = MSE_train;

%% Validation

87



Appendix B. Standard Backpropagation Algorithm

sse_val = 0;

for i = 1:Nval

p_val = p(:,i + Ntrain);

t_val = t(:,i + Ntrain);

n1_val = W1 * p_val + b1;

a1_val = tansig_func(n1_val);

n2_val = W2 * a1_val + b2;

a2_val = purelin(n2_val);

e_val = t_val - a2_val;

ee_val = e_val'*e_val;

sse_val = sse_val + ee_val;

end %for validation

MSE_val = sse_val/Nval;

MSE_plot_val(epoch) = MSE_val;

% If error is increasing

if MSE_val > MSE_val_prev

k = k+1;

if k == 1

W1_val = W1_prev;

W2_val = W2_prev;

b1_val = b1_prev;

b2_val = b2_prev;

epoch_val = epoch-1;

end %if k==1

% Max consequtive validation errors

if k == 15

save('network_val', 'W1_val', 'W2_val','b1_val',

'b2_val','epoch_val')↪→

disp('15 validation fails, the best network is saved.');

%break

end % if k==15

else

k = 0;

end %Validation

MSE_val_prev = MSE_val;

W1_prev = W1;

W2_prev = W2;

b1_prev = b1;

b2_prev = b2;

%% Testing

sse_test = 0;

for i = 1: Ntest

p_test = p(:, Ntrain + Nval + i);

t_test = t(:, Ntrain + Nval + i);

n1_test = W1 * p_test + b1;

a1_test = tansig_func(n1_test);

n2_test = W2 * a1_test + b2;

a2_test = purelin(n2_test);
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e_test = t_test - a2_test;

ee_test = e_test' * e_test;

sse_test = sse_test + ee_test;

end %for test

% Mean squared error

MSE_test = sse_test/Ntest;

MSE_plot_test(epoch) = MSE_test;

end %for epoch

%% Plot

figure(1)

plot(MSE_plot_train); hold on;

plot(MSE_plot_val); hold on;

plot(MSE_plot_test);

ylabel('MSE');

xlabel('Epoch');

grid on;

legend('Training','Validation','Testing');

% Save results

save('Network','W1','W2','b1','b2','epoch');

%% Functions

function g = logsig_func(z)

% Compute log-sigmoid function

g = 1 ./ (1 + exp(-z));

i = find(~isfinite(g));

g(i) = sign(z(i));

end

function g = logsig_der(z)

% Compute derivative of log-sigmoid function

d = zeros(size(z));

for i = length(z)

d(i)=(1-logsig_func(z(i)))*logsig_func(z(i));

end

g = diag(d);

end

function a = tansig_func(z)

% Compute tan-sigmoid function

a = 2./(1+exp(-2*z))-1;

end

function dt = tansig_der(z)

% Compute tan-sigmoid derivative

d = zeros(size(z));

for i = length(z)

d(i) = 1-(tansig(z(i)))^2;

end

dt = diag(d);

end
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Appendix C
Levenberg-Marquardt Algorithm

%% Training ANN

% using embedded functions

% Load data

x = X;

t = T;

% Training algorithm

trainFcn = 'trainlm';

% traingd - gradient descent

% net.trainParam.lr = 0.05;

% Architecture

hidden_neurons = 3; %for more layers: [x y]

net = feedforwardnet(hidden_neurons, trainFcn);

% Transfer function

net.layers{1}.transferFcn = 'tansig';

net.layers{2}.transferFcn = 'purelin';

% Separate data between Training, Validation, Testing

net.divideParam.trainRatio = 70/100;

net.divideParam.valRatio = 15/100;

net.divideParam.testRatio = 15/100;

% Number of epochs

net.trainParam.epochs = 1000;

% Train the Network

[net,tr] = train(net,x,t);

% Test the Network

y = net(x);

e = gsubtract(t,y);

performance = perform(net,t,y);

tind = vec2ind(t);

yind = vec2ind(y);

percentErrors = sum(tind ~= yind)/numel(tind);
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% View Network

view(net)

% Generate Simulink block

gensim(net)

% Plot Performance

figure(2)

plot(tr.perf); hold on;

plot(tr.vperf); hold on;

plot(tr.tperf); hold on;

ylabel('MSE');

xlabel('Epoch');

legend('training','validation','testing');

xlim([1,net.trainParam.epochs]);
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Appendix D
Forward Accumulation Through Time

D.1 Prepare data

%% Prepare data for RNN-training

% Store data using 'to-file' block in Simulink

% Store data as timeseries, using sampling time T=1e-4s

% Input X consists of 4 variables: ed,eq,sd,sq

clear;

X = load('input.mat'); X = (X.ans.Data)';

i_ref = load('target.mat'); i_ref = (i_ref.ans.Data)';

D.2 Training Algorithm

%% FATT + LM Algorithm

% 1. Retrieve data

% 2. Define system and controller parameters

% 3. Initialize

% 4. Train network according to LM+FATT

%% 1. Retrieve Data

x = X;

iref = i_ref;

[~,samples] = size(X);

%% 2. Parameters

% System parameters

Ts = 1e-4; % Sampling time

Lf = 1.55e-3; % Filter inductance

Rf = 0.01; % Filter resistance

fn = 50; % Nominal grid frequency

wn = 2*pi*fn; % Nominal angular speed

Kpwm = 500/2; % PWM-gain

vg =[280;0]; % Grid voltage

% Discrete model

A = [1-Rf*Ts/Lf Ts*wn; -Ts*wn 1-Rf*Ts/Lf];
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D.2. Training Algorithm

B = Ts/Lf;

% Control parameters

epochs = 100;

mu = 0.001;

mu_inc = 10;

mu_dec = 0.1;

dCdw_min = 1e-10;

alpha = 0.2;

%% 3. Initialize

% LM+FATT variables

C_epoch = zeros(epochs,1);

C = 0; % Cost-to-go

J = zeros(samples,72);

U = zeros(1,samples);

V = zeros(samples,1);

% Random weight elements in the range [-0.1, 0.1]

W1 = 0.2.*rand(6,4)-0.1; % 4 inputs: e_dq, s_dq

W2 = 0.2.*rand(6,6)-0.1; % 2 hidden layers: 6 neurons

W3 = 0.2-*rand(2,6)-0.1;% 2 outputs: v_cdq*

% Convert from matrix to vector

w1_vec = reshape(W1',[1,6*4]); % (1x24)

w2_vec = reshape(W2',[1,6*6]); % (1x36)

w3_vec = reshape(W3',[1,2*6]); % (1x12)

w_vec =[w1_vec, w2_vec, w3_vec];% (1x72)

% Variables

i = zeros(2,samples);

u = zeros(2,samples);

e = zeros(2,samples);

s = zeros(2,samples);

% Derivatives

dsdw = cell([1,samples]);

didw = cell([1,samples]);

dudw = cell([1,samples]);

dphidw = cell([1,samples]);

dVde = zeros(samples,2);

dVdw = cell([1,samples]);

for sample =1:samples

dsdw{sample} = zeros(2,72);

didw{sample} = zeros(2,72);

dudw{sample} = zeros(2,72);

dphidw {sample} = zeros(2,72);

dVdw{sample} = zeros(1,72);

end

%% 4. Training

for epoch = 1:epochs

for k=1:samples-1

% Retrieve data, pass through network

p = x(:,k); % get inputs

[a3,n3,a2,n2,a1,n1,a] = RNN(p,W1,W2,W3); % get outputs

u(:,k) = Kpwm*a3 - vg; % control signal
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Appendix D. Forward Accumulation Through Time

% Derivatives

[dadn3,dadn2,dadn1,dadn] = dadn_func(a3,n3,a2,n2,a1,n1,a,p);

[dAde, dAds] = dAdp_func(W3,W2,W1,dadn3,dadn2,dadn1,dadn);

[dndw3, dndw2, dndw1] = dndw_func(a2,a1,a);

[dAdw] = dAdw_func(dadn3,dndw3,W3,dadn2,dndw2,W2,dadn1,dndw1);

dsdw{k} = Ts * (dphidw{k} - (1/2)*didw{k});

dudw{k} = Kpwm * (dAde*didw{k} + dAds*dsdw{k} + dAdw);

didw{k+1} = A * didw{k} + B * dudw{k};

i(:,k+1) = A*i(:,k) + B*u(:,k);

e(:,k+1) = i(:,k+1) - iref(:,k+1);

s(:,k+1) = s(:,k) + (Ts/2)*(e(:,k+1) - e(:,k));

V(k) = (e(1,k+1)^2 + e(2,k+1)^2)^(alpha/2);

C = C + V(k)^2; %DP cost

dVde(k+1,:) = alpha*(e(1,k+1)^2 ...

+ e(2,k+1)^2)^((alpha/2)-1 ) * [e(1,k+1), e(2,k+1)];

dphidw{k+1} = dphidw{k} + didw{k+1};

dVdw{k+1} = dVde(k+1,:)*(didw{k+1});

J(k+1,:) = dVdw{k+1}; %Jacobian

end

dCdw = 2*J'*V; %Gradient

if norm(dCdw) >= dCdw_min

dw = -((J'*J) + mu*eye(size(J'*J)))\(J'*V);

w_vec_new = w_vec + dw;

W1_new = (reshape(w_vec_new(1:24),[4,6]))';

W2_new = (reshape(w_vec_new(24+1:24+36),[6,6]))';

W3_new = (reshape(w_vec_new(24+36+1:24+36+12),[6,2]))';

for k = 1:samples-1

p = x(:,k);

[a3,n3,a2,n2,a1,n1,a] = RNN(p,W1_new,W2_new,W3_new);

u(:,k) = Kpwm*a3 - vg;

i(:,k+1) = A*i(:,k) + B*u(:,k);

e(:,k+1) = i(:,k+1) - iref(:,k+1);

s(:,k+1) = s(:,k) + (Ts/2)*(e(:,k+1) - e(:,k));

V(k) = (e(1,k+1)^2 + e(2,k+1)^2)^(alpha/2);

C_new = C + V(k)^2;

end

if C_new < C % If cost is decreased

C = C_new;

W1 = W1_new;

W2 = W2_new;

W3 = W3_new;

w_vec = w_vec_new;

mu = mu*mu_dec; %Decrease mu

else % If cost has increased

mu = mu*mu_inc; %Increase mu

dw = (J'*J + mu*eye(size(J'*J)))\(J'*V);

w_vec_new = w_vec + dw;

W1_new = (reshape(w_vec_new(1:24),[4,6]))';

W2_new = (reshape(w_vec_new(24+1:24+36),[6,6]))';

W3_new = (reshape(w_vec_new(24+36+1:24+36+12),[6,2]))';
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for k = 1:samples-1

p = x(:,k);

[a3,n3,a2,n2,a1,n1,a] = RNN(p,W1_new,W2_new,W3_new);

u(:,k) = Kpwm*a3 - vg;

i(:,k+1) = A*i(:,k) + B*u(:,k);

e(:,k+1) = i(:,k+1) - iref(:,k+1);

s(:,k+1) = s(:,k) + (Ts/2)*(e(:,k+1) - e(:,k));

V(k) = (e(1,k+1)^2 + e(2,k+1)^2)^(alpha/2) ;

C_new = C + V(k)^2;

end %for

end %if C

else

fprintf('Stop training\n');

fprintf('epoch = %d\n',epoch);

break;

end %if dC/dw

C_epoch(epoch) = C;

end

%% Functions for calculating

% Network output: RNN()

% Network derivatives: dadn_func(), dAdp_func(),dndw_func(),dAdw_func()

function [a3,n3,a2,n2,a1,n1,a] = RNN(p,W1, W2,W3)

a = tansig(p);

n1 = W1*a;

a1 = tansig(n1);

n2 = W2*a1;

a2 = tansig(n2);

n3 = W3*a2;

a3 = tansig(n3);

end

function [dadn_3,dadn_2,dadn_1,dadn] = dadn_func(a3,n3,a2,n2,a1,n1,a,p)

dadn_3 = diag(dtansig(n3,a3));

dadn_2 = diag(dtansig(n2,a2));

dadn_1 = diag(dtansig(n1,a1));

dadn = diag(dtansig(p,a));

end

function [dAde, dAds] = dAdp_func(W3,W2,W1,dadn3,dadn2,dadn1,dadn)

dAde = dadn3*W3 * dadn2*W2 * dadn1*W1(:,1:2) * dadn(1:2,1:2); % (2x2)

dAds = dadn3*W3 * dadn2*W2 * dadn1*W1(:,3:4) * dadn(3:4,3:4); % (2x2)

end

function [dndw_3, dndw_2, dndw_1] = dndw_func(a2,a1,a)

% W3 = 2x6, W3_vec=1x12 = w_61 ... w72

% n3 = 2x1

% a2 = 6x1

% _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

% n3 = |w_61*a_1 + w_62*a_2 + ... +w_66*a_6|

% |w_67*a_1 + w_68*a_2 + ... +w_72*a_6|

% - - - - - - - - - - - - - - - - - -

% _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

% dndw_3 = |dn_1/dw_61 dn_1/dw_62 ... dn_1/dw_72|

% |dn_2/dw_61 dn_2/dw_62 ... dn_2/dw_72|

% - - - - - - - - - - - - - - - - - - -

% _ _ _ _ _ _ _ _ _ _ _ _

% dndw_3 = |a_1 ... a_6 0 ... 0|
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% | 0 ... 0 a_1 ... a_6|

% - - - - - - - - - - - -

dndw_3 = [a2' zeros(1,6); zeros(1,6) a2'];

dndw_2 = zeros(6,36);

dndw_1 = zeros(6,24);

i2=1; i3=1;

for i=1:length(a1)

dndw_2(i,i2:i2+5) = a1';

dndw_1(i,i3:i3+3) = a';

i2=i*6+1;

i3=i*4+1;

end

end

function [dAdw] = dAdw_func(dadn3,dndw3,W3,dadn2,dndw2,W2,dadn1,dndw1)

dAdw3 = dadn3 * dndw3;

dAdw2 = dadn3 * W3 * dadn2 * dndw2;

dAdw1 = dadn3*W3 * dadn2 * W2*dadn1 * dndw1;

dAdw = [dAdw1 dAdw2 dAdw3];

end
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Appendix E
Continuous Control Set Model Predictive
Control

E.1 System Matrices

% Parameters

Cf = 75e-6; Lf = 1.55e-3; Rf = 0.01;

Ts = 1e-6; N = 4;

% Continuous: dxdt= A x(t) + B v_conv(t) Bd v_grid(t)

Ac = [-Rf/Lf 0; 0 -Rf/Lf];

Bc = [1/Lf 0; 0 1/Lf];

Bcd = -Bc;

nx = size(Ac,2);

% Discrete: x[k+1] = Ad x[k] + Bd v_conv[k] + Bdd v_grid[k]

Ad = expm(Ac*Ts);

Bd = (Ad - eye(length(Ad)))*Ac^(-1)*Bc;

Bdd = (Ad - eye(length(Ad)))*Ac^(-1)*Bcd;

% Single Horizon:

% Phi=Ad;

% Gamma = Bd;

% Gammad = Bdd;

% Extend Horizon

A1=Ad; A2=Ad^2 ;

A3=Ad^3; A4=Ad^4 ;

Phi = [Ad ; Ad^2 ; Ad^3 ; Ad^4];

Gamma = [Bd zeros(2,6);

Ad*Bd Bd zeros(2,4);

Ad^2*Bd Ad*Bd Bd zeros(2,2);

Ad^3*Bd Ad^2*Bd Ad*Bd Bd];

Gammad = [Bdd zeros(2,6);

Ad*Bdd Bdd zeros(2,4);

Ad^2*Bdd Ad*Bdd Bdd zeros(2,2);

Ad^3*Bdd Ad^2*Bdd Ad*Bdd Bdd];

97



Appendix E. Continuous Control Set Model Predictive Control

W=diag(ones(N,1));

E.2 CCS-MPC Algorithm

function Vabc_conv = pred_ctrl(Iab_ref, Vab_grid, Iab_conv, Vdc_ref, Phi, Gamma,

Gammad, Ts)↪→

persistent w0 T_clarke W N A

if isempty(T_clarke)

N = 4;

w0=2*pi*50;

T_clarke = 2/3*[1 -1/2 -1/2;0 sqrt(3)/2 -sqrt(3)/2];

W = diag(ones(2*N,1));

A = inv(Gamma'*W*Gamma);

end

Vgrid_k = zeros(2*N,1);

Vgrid_k(1) = Vab_grid(1);

Vgrid_k(2) = Vab_grid(2);

Iref_k = zeros(2*N,1);

Iref_k(1) = Iab_ref(1);

Iref_k(2) = Iab_ref(2);

% Predict

Vgrid_k1 = Vgrid_k;

Iref_k1 = Iref_k;

for i=1:N-1

index=i*2+1;

indexp=(i-1)*2+1;

% Predict Grid Voltage

Vgrid_k1((index):(index+1),1)=...

[Vgrid_k1((indexp),1)-Vgrid_k1((indexp+1),1)*w0*Ts;

Vgrid_k1(indexp+1,1)+Vgrid_k1(indexp,1)*w0*Ts];

% Predict Reference Current

Iref_k1((index):(index+1),1)=...

[Iref_k1((indexp),1)-Iref_k1(indexp+1,1)*w0*Ts;

Iref_k1(indexp+1,1)+Iref_k1(indexp,1)*w0*Ts];

end

% Optimal converter voltage

B = Gamma'*W* Iref_k1 - Gamma'*W*Gammad* Vgrid_k1 - Gamma'*W*Phi* Iab_conv;

Vab_conv = A*B;

Vabc_conv = T_clarke'*Vab_conv(1:2,1)/(Vdc_ref/2);
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Appendix F
Direct Heuristic Dynamic Programming
Algorithm

F.1 Offline Training

% Initialize Weights

W1_a = (0.1--0.1)*rand(12,6)+(-0.1); % 6 inputs, 12 hidden

W2_a = 0.2*rand(2,12)- 0.1; % 12 hidden, 2 outputs

W1_c = 0.2*rand(12,8)-0.1; % 8 inputs, 12 hidden

W2_c = 0.2*rand(1,12)-0.1; % 12 hidden, 1 output

W1_a_init = W1_a;

W2_a_init = W2_a;

W1_c_init = W1_c;

W2_c_init = W2_c;

% Initialize training Parameters

lr = 0.01;

alpha = 0.1;

Nc = 50; Tc = 1e-7;

Na = 40; Ta = 1e-6;

c1 = 0.4; c2 = 0.2; c3 =0.04;

Nhidden = 12;

% Get samples

[~, Nsamples] = size(X);

T = Nsamples;

X_norm = (2*(X-min(X))./(max(X)-min(X)))-1; %normalize X [-1,+1]

% Initialize variables

u = zeros(2,T);

J = zeros(1,T); r = zeros(1,T);

ea = zeros(1,T); ec = zeros(1,T);

Ea = ones(1,T); Ec = ones(1,T);

Ea_k = zeros(1,Nc); Ec_k = zeros(1,Na);

temp_d = 0; temp_q = 0;

dEdW1_c = zeros(8,12); dEdW1_a = zeros(6,12);

dEdW2_c = zeros(12,1); dEdW2_a = zeros(12,2);
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%% Training

for t=1:1:T % Repeat (for each step t of trial):

kc=0; ka =0;

x = X_norm(:,t);

[u(:,t), a1_a] = nn_a(W1_a, W2_a, x);

xu = [x ;u(:,t)];

[J(t), a1_c] = nn_c(W1_c, W2_c, xu);

r(t) = (c1*x(1) + c2*x(2) + c3*x(3) + c1*x(4) + c2*x(5) + c3*x(6));

if t>=2

% Critic update

while (kc <= Nc) && (Ec(t) >= Tc)

[J(t), a1_c] = nn_c(W1_c, W2_c, xu);

kc = kc + 1;

ec(t) = alpha*J(t) - J(t-1) + r(t);

Ec(t) = 0.5 *ec(t)^2;

Ec_k(kc) = Ec(t);

% Derivative dEdW_c

for k = 1:Nhidden

dEdW2_c(k) = ec(t) * alpha * a1_c(k);

for i = 1:length(xu)

dEdW1_c(i,k) = ec(t) * alpha * W2_c(k)*(1-a1_c(k)^2)*xu(i);

end

end

W1_c = W1_c + lr * (dEdW1_c');

W2_c = W2_c + lr * (dEdW2_c');

end

% Action update

while (ka <= Na) && (Ea(t) >= Ta)

ka = ka + 1;

[u(:,t), a1_a] = nn_a(W1_a, W2_a, x);

xu = [x; u(:,t)];

[J(t), a1_c] = nn_c(W1_c, W2_c, xu);

ea(t) = J(t) ;

Ea(t) = 0.5 *ea(t)^2;

Ea_k(ka) = Ea(t);

% Derivative dEdW_a

for j = 1:Nhidden

for i =1: length(x)

for k = 1:Nhidden

temp_d = temp_d + ea(t)*( W2_c(k) * (1-a1_c(k)^2) *

W1_c(k,7) );↪→

temp_q = temp_d + ea(t)*( W2_c(k) * (1-a1_c(k)^2) *

W1_c(k,8) );↪→

end

dEdW1_a(i,j) = (temp_d+temp_q)*(1-(a1_a(j))^2)*x(i);

end % for i = x

temp_d = temp_d*a1_a(j);

temp_q = temp_q*a1_a(j);

dEdW2_a(j,:) = [temp_d temp_q];

end % for j = hidden

W1_a = W1_a + lr *(dEdW1_a');

W2_a = W2_a + lr *(dEdW2_a');

end % while

end % if t>=2

end %for t
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F.2. Online Operation

function [u,a1_a] = nn_a(W1_a, W2_a, x)

n1_a = (W1_a * x);

a1_a = tansig(n1_a);

u = W2_a * a1_a;

u = 1*u(:);

end

function [J,a1_c] = nn_c(W1_c,W2_c, xu)

n1_c = W1_c * xu;

a1_c = tansig(n1_c);

J = W2_c * a1_c;

end

F.2 Online Operation

function [ud,uq] = ADP(W1a,W2a,W1c,W2c,ed_t, ed_t1, ed_t2, eq_t, eq_t1, eq_t2)

% tansig faster than hyperbolic tangent (but mathematically equivalent)

coder.extrinsic('tansig');

% Training parameters

persistent T_duration T_step T Nhidden lr alpha Nc Na Tc Ta c1 c2 c3

if isempty(T_duration)

T_duration = 0.5; % Simulation time

T_step = 1e-6; % Sampling time

T = floor(T_duration/T_step)+1;

Nhidden = 12;

lr = 0.001;

alpha = 0.1;

Nc = 20; Tc = 1e-7;

Na = 10; Ta = 1e-6;

c1 = 0.4; c2 = 0.2; c3 =0.04;

end

% Outputs/Inputs: Allocate

persistent t u r J J_old

if isempty(t)

t = 1;

J = 0;

J_old = 0;

end

%% Errors and derivatives: Allocate

persistent dEdW1_a dEdW2_a dEdW1_c dEdW2_c ec ea Ea Ec temp_d temp_q

if isempty(dEdW1_a)

dEdW1_a = zeros(6,12); dEdW1_c = zeros(8,12);

dEdW2_a = zeros(12,2); dEdW2_c = zeros(12,1);

end

%% Weights obtained from offline training

persistent W1_a W2_a W1_c W2_c a1_a a1_c n1_a n1_c

if isempty(W1_a)

W1_a = W1a;

W2_a = W2a;
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W1_c = W1c;

W2_c = W2c';

a1_a = zeros(12,1);

a1_c = zeros(12,1);

end

%% Repeat (for each trial):

% Initialize: X(t) = inputs

x = [ed_t; ed_t1; ed_t2; eq_t; eq_t1; eq_t2];

x = 2*(x-min(x))./(max(x)-min(x))-1; %[-1,+1]

Ec = 1; Ea = 1;

temp_d = 0; temp_q=0;

% Actor, action : u(t) = nn_a(X(t))

n1_a = W1_a * x(:);

a1_a = tansig(n1_a);

u = W2_a * a1_a;

% Critic, cost-to-go: J(t) = nn_c(X(t),u(t))

xu = [x; u];

n1_c = W1_c *xu;

a1_c = tansig(n1_c);

J = W2_c *a1_c;

% Take action u(t), observe r(t), X(t+1)

ud = u(1);

uq = u(2);

r = c1*x(1) + c2*x(2) + c3*x(3) + c1*x(4) + c2*x(5) + c3*x(6);

kc = 0; ka = 0;

if t>=2

while (kc <= Nc) && (Ec >= Tc)

n1_c = W1_c *xu;

a1_c = tansig(n1_c);

J_old =J;

J = W2_c *a1_c;

ec = alpha*J - (J_old-r);

Ec = 0.5 *ec^2;

% Derivative dEdw_c

for i = 1:Nhidden

dEdW2_c(i) = ec * alpha * a1_c(i);

for j = 1:8

dEdW1_c(j,i) = ec* alpha * W2_c(i)*(1-a1_c(i)^2)*xu(j);

end

end

W1_c = W1_c + lr * (dEdW1_c');

W2_c = W2_c + lr * (dEdW2_c');

kc = kc + 1;

end % Critic-loop

while (ka <= Na) && (Ea >= Ta)

n1_a = W1_a * x;

a1_a = tansig(n1_a);

u = W2_a * a1_a;

xu = [x; u];

n1_c = W1_c *xu;

a1_c = tansig(n1_c);

J = W2_c *a1_c;
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ea = J;

Ea = 0.5*ea^2;

% Derivative dEdW_a

for j =1:Nhidden

for i = 1:length(x)

for k = 1:Nhidden

temp_d = temp_d + ea*( W2_c(k) * (1-a1_c(k)^2) * W1_c(k,7)

);↪→

temp_q = temp_d + ea*( W2_c(k) * (1-a1_c(k)^2) * W1_c(k,8)

);↪→

end

dEdW1_a(i,j) = (temp_d+temp_q)*(1-(a1_a(j))^2)*x(i);

end

temp_d = temp_d*a1_a(j);

temp_q = temp_q*a1_a(j);

dEdW2_a(j,:) = [temp_d temp_q];

end

W1_a = W1_a + lr *(dEdW1_a');

W2_a = W2_a + lr *(dEdW2_a');

ka = ka + 1;

end

end

t = t+1;
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