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Preface

This thesis is our masters project in the course TIØ4900 for our Master of Science degree in Industrial Economics and
Technology Management at the Norwegian University of Science and Technology (NTNU). The thesis was written during
the Spring semester of 2022. Our motivation for the thesis is to benchmark state-of-the-art models on the problem of
forecasting regional electricity prices in the Nordics hourly over a seven-day horizon. Our external supervisor Odd Erik
Gundersen from TrønderEnergi highlighted the lack of such a benchmark. We were further motivated by the current
public attention to energy prices, which have been abnormally high in recent times. With an increasing reliance on
renewable generation, more extreme weather, and high tensions with Russia, which might affect the availability of gas
imports, efficient forecasting models are crucial for reducing risk and volatility in the electricity market. Furthermore, we
wanted to test the hybrid ENTCN model developed in our project thesis (T. R. Wang et al. 2021) against state-of-the-art
electricity price forecasting models. As the thesis investigates the application of state-of-the-art models to the problem
of electricity price forecasting, the target audience of the thesis has a basic understanding of the electricity market and
forecasting models.

Furthermore, this master thesis is built upon work done by the same authors in the project thesis in the course TIØ4550
during the Autumn semester of 2021 (T. R. Wang et al. 2021). The project thesis investigated the applicability of
temporal convolutional networks (TCNs) in the accuracy of mid-term electricity price models. While the project thesis
only looked at a single point forecast of the daily NordPool system price 14 days forward in time, promising results
inspired us to further develop the model for the problem investigated in the current master thesis.

We want to thank our main supervisor, Professor at NTNU Stein-Erik Fleten, who has supported us throughout the pro-
ject and master thesis with his invaluable expertise within energy markets and electricity price forecasting. Furthermore,
we would like to thank Odd Erik Gundersen from TrønderEnergi, who has guided us with his expertise and practical
experience in applying machine learning models for electricity price forecasting.

Lastly, the authors declare no competing financial interests or personal relations that have affected the work or conclusions
presented in this thesis.
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Abstract

Although electricity price forecasting has seen a myriad of proposed models in the last decades, the field still has a
limited number of rigorous benchmarks. In this thesis, we perform a structured benchmark of a large number of state-of-
the-art statistical and deep learning electricity price forecasting models on forecasting the hourly NordPool bidding area
prices in the 12 Nordic regions over a seven-day horizon. The models implemented include; AR-type models, regression
models, feed-forward neural networks, recurrent neural networks, and a naive benchmark. Furthermore, a proprietary
hybrid model called ENTCN, which consists of an enhanced naive model and a temporal convolutional network, is
tested. Although there were significant regional differences in model performance, the statistical models consistently
outperformed the deep learning models, across most error metrics and bidding areas. Furthermore, while the ENTCN
model outperformed comparable deep learning models, it was consistently outperformed by simpler statistical models.
The ARIMA model performed best across all error metrics in Norway, while the SARIMA model was the highest
performing in Denmark. However, the linear regression model performed best in both Sweden and Finland. On average,
across the 12 NordPool bidding areas, the SARIMA performed best on the absolute error metrics while the ARIMA
did best on the relative error metrics. Lastly, to ensure meaningful results and reproducibility, the thesis utilizes open-
sourced models and well-known open-access datasets while also performing statistical tests (Diebold-Mariano) to assess
the significance of differences in performance.

Sammendrag

Selv om prognoser for strømpriser har sett et mylder av foresl̊atte modeller de siste ti̊arene, har feltet fortsatt et begrenset
antall systematiske benchmarkinger. I denne oppgaven utfører vi en strukturert benchmark av et stort antall ”state-of-
the-art” statistiske og dyplæringsmodeller for prognose for elektrisitetspriser p̊a de timebaserte NordPool prisomr̊adene
i de 12 nordiske regionene over en syv-dagers horisont. Modellene som er implementert inkluderer; AR-modeller, regres-
jonsmodeller, feed-forward nevrale nettverk, konvolusjonelle nevrale nettverk og en naiv benchmark. Videre testes en
proprietær hybridmodell kalt ENTCN, som best̊ar av en utviklet naiv modell og et temproalt konvolusjonelt nettverk.
Selv om det var betydelige regionale forskjeller i modellytelse, overgikk de statistiske modellene konsekvent dyplærings-
modellene, p̊a tvers av de fleste feilberegninger og budomr̊ader. Videre, mens ENTCN-modellen overgikk sammenlignbare
dyplæringsmodeller, ble den konsekvent sl̊att av enklere statistiske modeller. ARIMA-modellen presterte best p̊a tvers
av alle feilmålinger i Norge, mens SARIMA-modellen var best i Danmark. Den lineære regresjonsmodellen presterte
imidlertid best i b̊ade Sverige og Finland. I gjennomsnitt, p̊a tvers av de 12 NordPool-budomr̊adene, presterte SARIMA
best p̊a de absolutte feilberegningene, mens ARIMA gjorde det best p̊a de relative feilberegningene. Til slutt, for å sikre
meningsfulle resultater og reproduserbarhet, bruker oppgaven åpen kildekode-modeller og velkjente datasett med åpen
tilgang samtidig som det utføres statistiske tester (Diebold-Mariano) for å vurdere statistisk signifisikans av forskjeller i
ytelse.
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1 Introduction

In this thesis, state-of-the-art electricity price forecasting
methods are benchmarked on a mid-term horizon on the
Nordic power market. The models implemented are either
statistical or deep learning and include deep neural net-
works (DNNs), long short-term memory (LSTM), gated re-
current unit (GRU), SARIMA, and regression. In addition,
the thesis will investigate the performance of the hybrid
enhanced naive temporal convolutional network (ENTCN)
model developed by the authors, testing its applicability
in electricity price forecasting. The performance testing
is done on the 12 NordPool bidding regions in Norway,
Sweden, Denmark and Finland on an hourly basis over a
seven-day horizon.

The models benchmarked are either state-of-the-art stat-
istical or deep learning methods, except for the naive fore-
cast, which is only used as a benchmark. These are selected
based on the state-of-the-art methods presented in struc-
tured benchmarks or literature reviews (Lago, Ridder et al.
(2018), Weron (2014), Lago, Marcjasz et al. (2021)), with
the exception of the hybrid ENTCN model developed by
the authors. The statistical models implemented are AR-
IMA, SARIMA, linear regression and quadratic regression.
Despite a large number of more sophisticated alternatives,
statistical models such as linear regressions and SARIMA
are still some of the most widely used electricity price fore-
casting approaches (Weron 2014). Their strength is that
they efficiently model the seasonality prevailing in electri-
city markets but perform rather poorly in the presence of
spikes (Weron 2014). As for the deep learning methods;
deep neural networks, long short-term memory (LSTM),
gated recurrent unit (GRU), and Enhanced naive tem-
poral convolutional network (ENTCN) are implemented
and tested. Deep neural networks, which in this thesis
refers to a simple multi-layer perceptron (MLP), are often
used in electricity price forecasting but more commonly
as benchmarks for other more sophisticated deep learn-
ing architectures (Garćıa-Ascanio and Maté 2010). LSTM
and GRU are part of a field of deep learning called recur-
rent neural networks (Goodfellow et al. 2016). These have
traditionally been shown to be highly performing on time
series tasks, including electricity price forecasting (Weron
2014). A TCN, which is a form of convolutional neural
network (CNN) optimized for temporal data, was first pro-
posed by Lea et al. (2016) for video-based segmentation.
Two years later, Bai et al. (2018) conducted an empirical
study showing that a TCN architecture was able to outper-
form traditional recurrent neural networks such as LSTM
and GRU on several time-series forecasting tasks. Further-
more, a project thesis by the authors of this thesis (T. R.
Wang et al. 2021) on the application of TCNs on daily
mid-term electricity price forecasting showed that TCNs
exhibited promising results.

Market deregulation in the 80s and 90s helped transform
the traditionally monopolistic and state-controlled energy
sector into one of free markets with competing private com-
panies (Blazquez et al. 2018). Electricity price forecast-
ing then also became an important field, as it was funda-
mental in companies’ decision making in everything from
purchasing strategies, production planning and investment
decisions (Bunn 2004). As electricity is economically non-
storable and with time-lags in changes to both generation
or consumption, forecasting models are an essential market

adjustment mechanism, helping stabilise prices and redu-
cing the frequency of price spikes (Eichler et al. 2013). Sev-
eral large-scale power crises highlight the societal import-
ance of good forecasting models. The California energy
crisis of 2000-2001, caused by a shortage of generation,
caused large scale blackouts in the state. Electric utility
companies also suffered, as they generally cannot pass ex-
cessive costs to retail consumers (Joskow 2001), with one of
the state’s largest energy companies collapsing. The more
recent Texas energy crisis in February 2021, caused by in-
creased demand during periods of abnormally low temper-
atures, resulted in prices over 9,000 USD/ MWh at certain
hours (200x regular rates) (Pechman and Nethercutt 2021).
As many households were left without power, an estimated
210 people died, either directly or indirectly, as a result of
the crisis (Hauser and Sandoval 2021). In Norway, abnor-
mally high prices in the southern regions in late 2021 and
early 2022 have caused much public debate around elec-
tricity prices, as consumers have been especially hard hit.
The frequency and severeness of such crises’ might only
be further magnified in the future. An increased share of
variable renewable energy generation (e.g., wind, solar),
which have stochastic production patterns, can increase
volatility in energy markets (Brancucci Martinez-Anido et
al. 2016), as experienced in Germany (Rintamäki et al.
2017). Furthermore, geopolitical tensions between Russia
and the EU following the invasion of Ukraine in February
2022 might limit the supply of Russian oil and gas imports.
The impact on oil and gas imports might increase electri-
city prices (Infrastructure 2022), while also leading to more
volatile price movements as oil and gas represent an essen-
tial share of peaker capacity. Hence, there are clear motiv-
ations for researching electricity price forecasting models,
as it is both of economic and societal importance. Further-
more, we were motivated to analyze a seven-day horizon,
as this closely reflects the typical planning horizon for mid-
term hydropower production planning (Fleten and Krogh
2008). This is a crucial aspect of the Nordic power market
as 53% of the Nordic power mix is generated from hydro-
power (Forecasting 2019), with it representing over 90% of
electricity generation in Norway (Statista 2019).

The thesis contributes to the literature and the field of
electricity price forecasting in two main ways. Firstly, it
provides an up to date systematic benchmarking of mul-
tiple state-of-the-art methods across multiple NordPool
bidding areas in accordance with electricty price foreast-
ing best practices (Jedrzejewski et al. 2022). Although
there have been done similar studies previously, incl., Lago,
Ridder et al. (2018), Lago, Marcjasz et al. (2021), and
Engebretsen et al. (2021), none of these have investigated
forecasting on individual NordPool bidding areas. There
are also differences in the data used, forecasting horizon,
and models investigated. Secondly, the thesis provides de-
velopment and a state-of-the-art benchmark of a hybrid
ENTCN model, which was developed in a project thesis
by the authors of this thesis (T. R. Wang et al. 2021). The
current thesis has developed the ENTCN model to work on
hourly prices over a seven-day horizon on individual Nord-
Pool bidding areas. As there is limited research on the use
of TCNs in electricity price forecasting, the development
and benchmarking of such a model is instrumental in as-
sessing the applicability of TCNs in forecasting NordPool
bidding area prices.

In order to obtain generalizable and valid comparisons,
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the thesis address three issues with modern benchmarking
of electricity price forecasting models identified by Lago,
Marcjasz et al. (2021). First, many studies comparing ma-
chine learning or statistical models, often develop highly
complex models while using colloquial benchmarking mod-
els. Examples of this include, Marcjasz, Uniejewski et al.
(2019), Cruz et al. (2011), Ugurlu, Oksuz et al. (2018)
and W. Zhang et al. (2018), which all use simple statist-
ical or ML models as benchmarks for assessing the per-
formance of a developed model. This was also a weakness
with T. R. Wang et al. (2021), in which the authors of this
thesis had limited resources designated for developing high-
performing benchmarking models. Second, many studies
have very limited testing periods; examples such as Darudi
et al. (2015) and Ghayekhloo et al. (2019) only test their
models over one week. Weron (2014) argue that one should
at least have a 1-year testing period in order to produce
generalizable results, incorporating seasonal and holiday
effects. Thirdly, many studies lack the details needed to
ensure reproducibility, preventing others from being able
to validate. Problems include not specifying the in-sample
and out-of-sample periods (Talari et al. 2017), not spe-
cifying the inputs used in the models (Khan et al. (2017),
Afrasiabi et al. (2019)), or not specifying the dataset used
(Bento et al. 2018). Furthermore, we are in this thesis
basing our methodology on the best practices presented
in Lago, Marcjasz et al. (2021) and Croonenbroeck and
Stadtmann (2019). What separates this paper from the
state-of-the-art benchmark conducted by Lago, Marcjasz
et al. (2021) is that this thesis will investigate the bidding
regions in the NordPool market instead of system prices
across different power markets. Furthermore, it investig-
ates a mid-term horizon instead of a short-term horizon
while also implementing a broader number of statistical
and deep learning models.

Forecasting electricity prices using statistical and data-
driven deep learning models is notoriously challenging.
Firstly, due to the issue of non-storability and supply/ de-
mand elasticities, prices are highly volatile with numerous
price spikes (Zedda and Masala 2019). These seemingly
random spikes can be challenging to forecast without suit-
able data sources. Additionally, electricity prices have ex-
hibited many structural breaks across regions over the 21st
century, often coinciding with critical events (e.g., new ca-
pacities, policy changes, supply shocks, new power lines)
(C. Lee and J. Lee 2009). Therefore, models trained on
older data than what they are tested on might be less
efficient, as structural breaks might have caused changes
in the price dynamics. An example of this is the abnor-
mally high NordPool daily system prices last year. On 29
November 2021, the daily system price was 247 e/MWh,
three times the maximum experienced over the five-year
in-sample data from 2014 to 2019. One significant differ-
ence between the two periods is the operation of new 1,400
megawatts under-water cable between Norway and the UK,
which at max capacity can power 1.4 million homes accord-
ing to National Grid (Chen and Y.-y. Wang 2021). Hence,
training on the in-sample data might not be generalised
to good performance on the out-of-sample data. Further-
more, good performance on the out-of-sample data might
not be generalised to more recent periods. As deep learn-
ing models are dependent on large amounts of in-sample
data for training, a mid-term forecasting model is therefore
still required to use data from many years back in time, if
not to utilize training examples from other power markets.

This master thesis is structured as follows: Section 2, Back-
ground, provides relevant background on electricity price
forecasting, the implemented methods, and modern elec-
tricity markets. Section 3, Literature Review, contextual-
izes the work within relevant literature and highlights both
papers proposing state-of-the-art methods and structured
reviews of models. Section 4, Data, analyses the in-sample
data, looking at the regional electricity prices and the exo-
genous variables used. Section 5, Methods, explains the
implementation of the models while also explaining the er-
ror metrics, statistical tests, and experimental design used.
Section 6, Results, presents the performance of the imple-
mented models on the out-of-sample data, compares mod-
els using the Diebold-Mariano test, and analyses high per-
forming models on specific test example periods. Section
7, Discussion and Conclusion, discusses and draws a con-
clusion based on the results from section 6. Finally, section
8, Further Work, highlights potential further work within
state-of-the-art benchmarking of hourly prices across the
Nordic bidding areas.
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2 Background

The current section provides background on electricity
price forecasting and modern electricity markets. The
models implemented in the benchmark are explained and
contextualised within the electricity price forecasting field.
Furthermore, the section discusses modern electricity mar-
kets’ key characteristics and dynamics, focusing on the
NordPool market, which is essential to better analyse the
model results.

2.1 Electricity Price Forecasting

Following the liberalization of electricity markets in the
1980s and 90s (Blazquez et al. 2018) private companies
started being exposed to electricity risk. The risk could
include over or under contracting and then selling or buy-
ing electricity in real-time, which could potentially lead to
increased credit risk, or at worst, bankruptcy (Y. Zhang
et al. 2022). Hence, electricity price forecasting quickly
became a crucial input in electricity companies’ decision-
making process (Eydeland and Wolyniec n.d.). As a res-
ult, during the last two decades, there has been a steady
increase in the number of proposed electricity price models
(Weron 2014), emphasising their function in modern elec-
tricity markets. However, while there is currently a myriad
of proposed models, it is essential to note that there are
still significant differences across models, including factors
such as; modelling approach, time horizon, output type,
and target electricity market/ area.

A review of the state-of-the-art forecasting models con-
ducted by Weron (2014) identified five main modelling
approaches within electricity price forecasting; statistical,
computational intelligence, multi-agent, fundamental and
reduced form. In addition, there also exists a category of
hybrid models, which combine elements of different types
of models. A structured literature review conducted by En-
gebretsen et al. (2020) found that statistical and computa-
tional intelligence accounted for 80% of electricity forecast-
ing models, these are also the two types of models utilized.
90% of the models in discussed in Weron (2014) focus on
the day-ahead market. The taxonomy of electricity price
forecasting models developed by Weron (2014) can be seen
in Figure 1.

Statistical models forecast the current price as a combin-
ation of previous prices and exogenous factors (e.g., con-
sumption, production, weather variables). The two most
important models are additive (sum of factors) and multi-
plicative (product of factors). An appealing feature of stat-
istical models is that there is a physical interpretation of
the components, allowing for a more straightforward ana-
lysis of model behaviour (Weron 2014). Their main draw-
back is their limited ability to model the highly nonlinear
behaviour of electricity prices and related exogenous vari-
ables. Despite this drawback, their practical performance
is comparable to that of nonlinear models. Computational
intelligence has been notoriously hard to define, Ventosa et
al. (2007) describing it as ”a new buzzword that means dif-
ferent things to different humans”. Weron (2014) defines
computational intelligence as using elements of learning,
evolution and fuzziness to make forecasts, splitting the
field into four main types; feed-forward neural nets, fuzzy
neural nets, recurrent neural nets and support vector ma-

chines. Computational intelligence models can learn fea-
tures from data, mitigating the need for manual feature
engineering (Goodfellow et al. 2016). Another strength is
its ability to model nonlinear relationships (Weron 2014).
In recent years, computational intelligent models have es-
tablished their place in the field of electricity price fore-
casting, with 60% of proposed models using some form of
computational intelligence (Engebretsen et al. 2020), many
of which exhibiting excellent model performance (Weron
2014). Throughout this thesis, computational intelligence
models are interchangeably referred to as deep learning
models. In multi-agent methods, one is trying to simu-
late the operations of multiple heterogeneous agents inter-
acting in the market. The market price is calculated as
the intersection between supply and demand. Examples of
multi-agent models include; agent-based, Nash-Cournot,
and equilibrium functions. Fundamental models utilize
structural data (e.g., capacity changes, flow capacities, im-
port shocks) at market breaks to model the electricity price
over a longer horizon. Power companies often prefer fun-
damental models when making long-term decisions (e.g.,
capacity investments) as they infer a causal relationship
between independent and dependent variables (e.g., the
impact of a specific market shock), making them easier to
understand and validate. Reduced form models attempt
to characterise the statistical properties of electricity prices
and include markow switching and jump-diffusions. Lastly,
hybrid models combine elements of different models, which
might use results of one type of model as input to another,
or utilize specific models only in the preprocessing phase.
In recent years, hybrid models have become increasingly
commonplace due to their flexibility and ability to combine
the ”best of several worlds” (Engebretsen et al. 2020).

When talking about electricity price forecasting, it is the
convention to split between short-, medium-, and long-term
electricity price forecasting, without there being consensus
between what thresholds separate the three (Weron 2014).
The span in the horizon is expansive, with everything from
forecasts on a 5-minute basis (Yang and Schell 2020) to
fundamental forecasting models forecasting the price over
a three year period (Ziel and Steinert 2018). Weron (2014)
defined short term to be everything shorter than 14 days
and long-term as longer than three months, medium-term
being everything in-between. Although mid- and long-term
models have many unique use cases, such as in production
planning, investment decisions, and contract negotiations,
most of the proposed models in the literature are defined
as short-term (Weron 2014).

The following subsections cover background on the statist-
ical and computational intelligence (deep learning) meth-
ods implemented in this thesis. These include; naive fore-
cast, deep neural networks, the recurrent neural networks
LSTM and GRU, temporal convolutional networks, and
SARIMA.

2.1.1 Naive Forecasts

The naive forecasting method is a univariate method in
which one predicts the future to be the same as the present
or past. Although it is not a very sophisticated model, it is
commonly used as a benchmarking model to better assess
the performance of other models.

The naive forecasting model can be expressed as in Equa-
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Figure 1: Taxonomy of electricity price modeling approaches (Weron 2014)

tion 1, in which ŷi and y are the forecasted and actual
value at time i, with k being a time interval at which one
looks back.

ŷi = yi−k (1)

When developing the model, one needs to decide on what
time to base the forecast. For example, when forecasting
the hourly electricity price at a specific time, one has to
decide what to base it on (e.g., the previous hour, the same
hour the previous day, or the same hour and day the pre-
vious week). What is most rational is often a product of
the price dynamics (e.g., degree of time-of-day and week-
day seasonalities). Furthermore, a naive forecast is also
straightforward to adjust for calendar effects, such as hol-
iday, time of day, and weekday.

The model’s strength is that it is extremely simple while
providing a basic benchmark to assess model performance.
However, the naive forecast is most often not suited to
make accurate forecasts as it does not utilize any inform-
ation from exogenous variables. For example, electricity
price forecasting might be less well suited given the effect
of time-of-day, day-of-week, and holiday on prices. How-
ever, a benchmarking of electricity price forecasting models
on a 14-day period of NordPool system prices conducted
by Engebretsen et al. (2021) found that the naive model
was able to outperform most other models implemented.

2.1.2 Deep Neural Network (DNN)

Deep neural networks (DNNs), a form of machine learn-
ing, uses a network of nodes and mathematical operations

to make forecasts or classifications. McCulloch and Pitts
(1943) published the first systematic study on artificial
neural networks, with a computational model of the neural
activity of the human nervous system. A neural network is
built to simulate the activity of the human brain, with pat-
tern recognition as data is passed through multiple layers
of neural connections (Goodfellow et al. 2016). However,
their breakthrough came in the 1980s, when better tech-
niques and more processing power allowed for the devel-
opment of practical neural networks (Ismail 1989). Since
then, their popularity has boomed, with a wide array of use
cases, such as facial recognition, stock market forecasting,
translation and electricity price forecasting (Andina et al.
2007).

The most basic element of a neural network is a ”node”,
also interchangeably called a ”neuron”, as pictured schem-
atically in Figure 2.
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Figure 2: Schematic visualization of a neural net node
(”neuron”), consisting of an input and converted to a output
value through a activation function (MIT 2020a)

It is a non-linear function, transforming an input vector x ∈
Rm to a output value a ∈ R. The node also has a parameter
vector of weights (w1, ..., wm) ∈ Rm, in addition to an offset
value w0 ∈ R. An actication function f : R → R is used in
order for the node to be non-linear. The activation function
can be everything from the identity function (f(x) = x) to
ReLU (f(x) = max(0, x)), sigmoid (f(x) = 1

1+e−x ) or any
other. The function represented by the node is as written
in Equation 2.

a = f(z) = f((

m∑
j=1

xjwj) + w0) = f(wTx + w0) (2)

In general, the network takes an input x ∈ Rm and gener-
ates an output x ∈ Rn through connecting multiple such
nodes in an acyclical directed graph (MIT 2020a). The
input of one node is the output of a previous node. Such
a network is often referred to as a feed-forward network
(Goodfellow et al. 2016). In a feed-forward network, the
input of a node can never depend on the output of that
neuron, with data flowing in one direction and the func-
tion of the network being a composite of the functions of
the individual neurons (MIT 2020a). A simple example of
such a feed-forward network consisting of two hidden layers
with four nodes each can be seen in Figure 3.

Figure 3: Simple model of a feed-forward deep neural net, in
which the input is transformed through two hidden layers and
an output layer

When training such a network, a loss is computed based
on the generated values from the network yi and the actual

value xi, e.g., mean absolute error (
∑n

i=1 |yi−xi|
n

). Training
based on a set of known actual values is supervised machine
learning. The weights in the network are then tweaked to

reduce the network’s loss, which can be done using sev-
eral optimizers such as stochastic gradient descent (SGD),
adadelta, or adam. The idea is that the loss will gradually
converge towards a local minimum given enough training.

Deep neural networks have several strengths and weak-
nesses, which affect their suitability for electricity price
forecasting:

+ They have routinely shown their ability to outper-
form alternative models across various tasks and
have become a go-to method for many use cases,
including electricity price forecasting (Weron 2014)
(Lago, Marcjasz et al. 2021).

+ Neural networks do not need any feature engineer-
ing, as they can detect patterns and relationships in
the data, making them highly generalised (Goodfel-
low et al. 2016). This is highly relevant when doing
electricity price forecasting, where there are many
domain-specific variables and market dynamics.

+ Neural networks can model nonlinear relationships,
which is highly relevant as this is the case in elec-
tricity markets, where there exist many nonlinear
relationships between variables (Weron 2014)

- Neural networks often require a large amount of data
in order to train (Goodfellow et al. 2016). This can
often be a challenge in medium- and long-term elec-
tricity price forecasting. Gathering enough real-life
training examples might require one to look at dif-
ferent markets or look very far back in time, making
the data less relevant.

- Both training and testing neural networks is a highly
”black box” process, as there is it practically im-
possible to analyse or draw any practical relations
from the weights of the network (Goodfellow et al.
2016). This is a challenge in electricity price forecast-
ing, as many market participants often prefer models
that infer a causal relationship between dependent
and independent variables.

- As with other forms of supervised learning, there
is a high risk of overfitting, as the model trains to
best fit the training data. Furthermore, there is also
required that the future one is trying to forecast ex-
hibits the same patterns as the data on which the
model is trained. Finally, as with electricity mar-
kets, fundamental market shifts (e.g., Russian trade
embargo, green shift to more renewable, infrastruc-
ture changes) might make models trained on old data
less efficient.

- DNNs are a-theoretical as they use little theoretical
information about the relationships between vari-
ables to guide the specifications of the model (Brooks
2019). Hence they are less tailored to electricity price
forecasting, as they are not exploiting known theor-
etical relationships between variables. This weak-
ness holds for all deep-learning models implemented
in this thesis.
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2.1.3 Recurrent Neural Networks: Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU)

This section will describe two types of recurrent neural net-
works (RNN) known as long short-term memory (LSTM)
and gated recurrent unit (GRU). We will contextualize by
firstly describing a ”vanilla” RNN architecture before we
present the architectures of the LSTM and GRU and how
these two versions of RNN differ from the standard recur-
rent neural network design. Lastly, we will summarize and
present the strength and weaknesses of the long short-term
memory and gated recurrent unit.

Recurrent neural networks are neural networks which are
designed to process sequential data (Goodfellow et al.
2016). The recurrent neural network differs from the deep
neural network, previously described, by having connec-
tions between the neurons in each layer. Furthermore, in
this section, a neuron in a recurrent neural network will be
described as a cell due to more complex operations on the
inputs in the neuron/cell for a recurrent neural network
than in a deep neural network. Each cell in a recurrent
neural network layer is associated with one step of the in-
put sequence. Consequently, the number of cells will be
equal to the length of the input in the sequential (and not
feature) dimension of the input. The standard recurrent
neural network cell receives two inputs and has one out-
put. Each cell process one step of the input variable (xt−k)
and the output from the past cell (ct−(k−1)). The standard
process of an RNN is to perform a function chosen by the
developer on the concatenation of the input (xt) and past
cell state (ct−k) to create the new cell state (ct−k). The
new cell state is passed to the next cell in the same layer.
Therefore, the cell state (ct−k) can be viewed as a state
vector which is updated by all the cells in the RNN-layer
before it is outputted by the cell processing the last input.
The cell processing the input on the most recent element
in the input (xt) will pass its output (ct) to a new model.

To further extend the idea of layers in recurrent neural
networks, there is an opportunity to stack numerous layers
of RNN-cells on top of each other for more complex data
processing. In a stacked layer, the computational processes
are the same. However, a stacked layer will process input
from all the cells in the layer below and not only the last
cell. Therefore, the number of cells will be the same across
different layers in a stacked recurrent neural network. In
addition to being able to be stacked, all recurrent neural
networks also share a feature known as parameter sharing
across a single layer of cells. This means that the para-
meters of the cells are identical across a layer of RNN-cells
processing an input (Goodfellow et al. 2016). By para-
meters, we mean the weights and biases used in each cell’s
transformation function. Parameter sharing enables the re-
current neural networks to process variable-length inputs
and have fewer parameters to update in training since it
only requires the unique set describing one cell. However, it
also requires more optimization when training and the net-
works cannot weigh individual sequence steps differently.
Another downside of ”vanilla” recurrent neural networks
is that the networks struggle with modelling long term de-
pendencies in the input. This is known as the vanishing
gradient problem (Goodfellow et al. 2016). As a solu-
tions to the vanishing gradient problem, Hochreiter and
Schmidhuber (1997) proposed the long short-term memory
cell architecture and Cho et al. (2014) proposed the gated

recurrent unit architecture.

Figure 4: The logic architecture of a long short-term memory
cell, which consists of three gates encapsulated by the dashed
boxes. The data forward pass is in the direction of the arrows
and a transformation or operation cannot be calculated before
all input is received.

The long short-term memory model is displayed in Fig-
ure 4, and was proposed by Hochreiter and Schmidhuber
(1997). The long short-term memory model differs from
the standard recurrent neural network in cell architecture.
Therefore, it will still have one cell per step in the in-
put segment and use parameter sharing across the cells
in a layer. The long short-term memory model in this
thesis uses the model architecture proposed by Hochreiter
and Schmidhuber (1997), which is a version of a recurrent
neural network. They highlighted the model’s advantages
for long term time dependencies compared to other recur-
rent networks for time series forecasting. The long short-
term memory cell contains three main gates, all marked
with a separate box in Figure 4. These are the forget
gate, the input gate, and the output gate. zt indicates
what is known as a hidden state, ct is the cell state, and
xt denotes the input. The orange operator boxes repres-
ent transformations. The σ is the sigmoid function on the
input, described in Equation 3. tanh is the hyperbolic
tangent functions, as described in Equation 4. W are the
weights, and b is the bias. x is simply the input to the
function. The orange operator circles represent element-
wise operations. The ⊙ represents the Hadamard product,
also known as pairwise multiplication, and the + represents
the addition of two inputs.

σ(x) =
1

1 + e−(Wx+b)
(3)

tanhx =
eWx+b − e−(Wx+b)

eWx+b + e−(Wx+b)
(4)

The long short-term memory cell logic can be divided into
three groups, as represented by the gates in Figure 4.
Firstly, the forget gate, sigmoid transforms Equation 3 the
input (xt) concatenated with the hidden state (zt) of the
previous cell. Then, the Hadamard product is computed
to identify which parts of the previous cell state to remem-
ber and which to forget. Secondly, there is is input gate,
which has the task to update the cell-state from ct−1 to
ct. The sigmoid transformation in the input layer will as-
sign a weight to the input in the range [0, 1]. Furthermore,
the tanh transformation will scale all input between [−1, 1].
By computing the Hadamard product of these two outputs,
we will have both a magnitude and direction for updating
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the cell state. Lastly, there is the output gate. The hid-
den state is updated in a manner comparable to that of the
cell state. The cell-state (ct) is scaled through a hyperbolic
tangent transformation Equation 4 and the importance of
each entry in the state vector is determined by the sigmoid
transformation of the concatenated vector of the input (xt)
and previous hidden state (zt−1) (Goodfellow et al. 2016).

The gated recurrent unit was proposed by Cho et al.
(2014) and is occasionally tested alongside a long short-
term memory architecture when assessing deep learning
models for time series forecasting, such as Lago, Ridder
et al. (2018). As with the long short-term memory cell, it
only differs from the standard recurrent neural network in
cell architecture. Therefore, it also has a separate cell for
each step in the input sequence and uses parameter shar-
ing. However, the data processing can still be viewed as a
cell-wise updating of a state vector throughout the layer.
The architecture of each cell is shown in Figure 5.

Figure 5: The logic architecture of a gated recurrent unit cell,
which consists of three gates encapsulated by the dashed boxes.
The data forward pass is in the direction of the arrows, and
a transformation or operation cannot be calculated before all
input is received.

The gated recurrent unit can be divided into three parts,
which are visible in Figure 5 as the different gates. The
data in the gated recurrent unit cell is processed in the
following manner: Firstly, the reset gate, secondly, the up-
date gate and, lastly, the candidate’s hidden state. The re-
set gate first concatenates the input from the hidden state
(zt−1) and the input vector (xt), before it is sigmoid trans-
formed Equation 3. This is element-wise multiplied with
the previously hidden state (zt−1). The sigmoid function
transforms the input into a value between 0 and 1. The
concatenated xt and zt−1 are in the update gate also trans-
formed through the sigmoid function. By subtracting this
output from 1, we find that what should not be updated
is still 1, and what should be updated will be closer to 0.
This will also be the result after the Hadamard product is
calculated at the end of the update gate. The last gate is
the gate for updating the candidate’s hidden state. Here,
a hyperbolic tangent transformation of zt−1 and xt is con-
ducted. By giving them values in the range [−1, 1], the
magnitude and direction of each variable is considered.
The subsequent Hadamard product is controlled if this is a
value that should be updated. Finally, the relevant changes
are made to the hidden state zt−1, transforming it to zt.

Compared to other neural networks, and more specifically
recurrent neural networks, there are both strengths and
weaknesses to the long short-term memory and gated re-
current unit architectures (Goodfellow et al. 2016).

+ Ability to capture long term dependencies. This is
beneficial when processing time series, which exhibit
properties of auto-correlation. This is a property
electricity prices are known to have.

+ Studies have shown that long short-term memory
models perform well on numerous tasks.

+ Parameter sharing lowers the amount of computa-
tion required for training. This enables us to train
more complex models for longer, enabling the models
to capture more relationships in the data.

- Parameter sharing requires more optimization,
which is computationally heavy. This demands more
resources from us.

- Equal weights across all input means that the model
cannot explicitly assume that some past observations
are more important than others. This is a limitation
because electricity prices often possess calendar ef-
fects.

- As with all deep learning algorithms, large amounts
of data and adequate hardware are required. We,
therefore, cannot blindly test models but must find
suitable starting parameters and conduct thorough
searches around these parameters.

- The result of a deep learning model depends heav-
ily on the initialization of weights. Therefore, the
models must be trained and tested extensively for
reliable results.

2.1.4 Temporal Convolutional Network (TCN)

A temporal convolutional network (TCN) is a convolutional
neural network (CNN) optimized for time-series data. The
method was first proposed by Lea et al. (2016) for video-
based segmentation. Furthermore, in 2018 an empirical
study conducted by Bai et al. (2018) showed that the
TCN architecture was able to outperform standard neural
network sequencing models (incl., LSTM) on time-series
forecasting tasks such as sequential MNIST1 and word-
level language modelling. Although still little used, there
are currently some proposed papers researching the use of
TCNs, such as work by Yan et al. (2020) which used TCN
for weather forecasting. In this thesis, the TCN architec-
ture is based proposed architecture by (Bai et al. 2018).

As it is a form of convolutional neural network, it is a
feed-forward neural net which uses convolutions in at least
one of its layers (Goodfellow et al. 2016), often combined
with other layers such as max pooling, flatten and fully
connected. A convolution is a form of linear mathematical
operation, written as seen in Equation 5.

s(t) = (x ∗ w)(t) (5)

Here x is the two-dimensional independent variable, w the
kernel, s the dependent variable, and t is time (Goodfellow
et al. 2016). An example of how a 2-dimensional convolu-
tion is applied on a 3x4 input matrix using a 2x2 kernel is
shown in Figure 6. Here, a kernel is slid across the input
matrix to produce the output matrix, in which each entry

1Large dataset of handwritten digits
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is a linear combination of the value in the input matrix de-
pendent on the kernel weights. The use of convolutions is
very commonplace within image classification (Bhandare
et al. 2016) and natural language processing (Tong et al.
2020). This is what is referred to as a convolutional neural
network. However, temporal convolutional networks are
defined by several additional features, making them better
suited for sequential data.

Figure 6: Visualization of a 2-dimensional convolution applied
on a 3x4 input matrix using a 2x2 kernel. A kernel is slid across
the input matrix to produce the output matrix, in which each
entry is a linear combination of the values in the input matrix
weighted based on the kernel weights (Goodfellow et al. 2016)

The TCN method described in this thesis is based on the
architecture proposed by Bai et al. (2018), which is based
upon two key principles:

1. The TCN produces an output of equal length as the
input. Equal length is ensured through the use of
zero-padding, which is adding 0-values at the end
of sequences such that each layer is of equal length
(Long et al. 2015).

2. There is a causal relationship between independent
and dependent variables, with no data leakage from
the future to the past, ensuring validity as a time-
series forecasting model. This is done through causal
convolutions in which the output at time t is only
convolved with values from time t or earlier.

Furthermore, the proposed architecture by Bai et al. (2018)
includes a number of integrated techniques from modern
CNN architectures, which solve the problem of allowing
for a long effective history (memory) and the use of many
layers. Two of these techniques are dilated convolutions
and residual blocks, which are visualized in Figure 7.

Dialated convolutions (as shown in Figure 7 (a)) is a form
of causal convolution using only values at certain intervals
of the input layer. For a 1-dimensional sequence x ∈ R and
a filter f : {0, 1, ..., k − 1} → R this can be formulated as
in Equation 6.

F (s) = (x ∗d f)(s) =

k−1∑
i=0

f(i) · xs−d·i (6)

In Equation 6 s is the index in the sequence, d is the dila-
tion factor, k is the filter size. Using dilated convolutions
allows for the use of exponentially larger receptive fields
(Oord et al. 2016), one can then easily increase the memory
of the network.

Residual blocks (as shown in Figure 7 (b,c)) consist of a
number of operations (e.g., causal convolution, dropout,
ReLU) (He et al. 2015). This allows for layers to be trained
to learn modifications to the identity mapping (Bai et al.
2018), which in many instances have shown to improve
the performance of complex neural networks. The residual
block also includes an optional convolutional layer which
can be used when the input and output are of different
dimensionality.

Compared to deep neural networks and traditional sequen-
cing models such as LSTM, TCNs have several strengths
making them interesting for electricity price forecasting.
Unfortunately, TCNs also possess some weaknesses.

+ Unlike recurrent neural networks such as LSTM,
TCNs use the same filter in each layer. There is,
therefore, no need for previous forecasts in each time
step, allowing for parallelism with in- and out-of-
sample sequences processes as a whole (vs sequen-
tially).

+ TCNs have different paths for backpropagation than
the temporal direction of the sequence. This differ-
ence in backpropagation paths ensures stable gradi-
ents, exploding/ vanishing gradients being a com-
mon pitfall for neural networks and recurrent neural
networks.

- There is a significant need for data storage when run-
ning the model out-of-sample as the network needs
to be fed with input sequences of equal length to that
of the history.

- The optimal dilatation and kernel size might need to
be adjusted when changing the domain or with chan-
ging dynamics between variables. Different regional
electricity price bidding areas might require manual
tweaking of parameters to ensure optimal perform-
ance.

2.1.5 Regression

Regression is a supervised learning machine learning
method that tries to fit a function based on a set of train-
ing examples. In addition to being used for making fore-
casts, it can also be used to calculate the causal relation-
ship between dependent and independent variables. It is a
relatively simple model with a wide range of practical use
cases today.

A regression model can be linear, as shown in Equation 7,
or of a higher degree, second degree shown in Equation 8.
Here a is the intercept, bi and ci the weights, and u
the residual. A set of training data is used when fitting
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Figure 7: Illustaration of techniques used in the TCN architecture. The left panel (a) shows a dilated convolution, with different
dilation factors (d = 4, 2, 1), which decides at what intervales values from the input layer are read. The middle panel (b) shows a
residual block, transforming an input through several operations. The right panel (c) shows the use of a residual block in a TCN
network. Figure from Bai et al. (2018)

the model, and the model’s weights are adjusted to min-
imize a set loss function. In the absence of additional
information about the problem, squared error (Loss =
(guess− actual)2) is typically used (MIT 2020b).

yx = a + b1x1 + b2x2 + ... + bkxk + u (7)

yx = a+b1x1+c1x
2
1+b2x2+c2x

2
2+...+bkxk+ckx

2
k+u (8)

The problem of finding a linear hypothesis that minim-
izes the mean squared error is referred to as the ordinary
least squares (OLS) problem. A closed-form method for
solving for ordinary least squares was first proposed by Le-
gendre (1805), in which one directly computes the weights
(θ), minimizing the objective function given in Equation 9.
A drawback of this is that finding the analytical solution
takes O(d3) time, in which d is the number of features.
Hence, when dealing with high-dimensional data, gradi-
ent descent is often used instead (MIT 2020b). Further-
more, since the objective function for ordinary least squares
is convex (meaning they only have one minimum), using
gradient descent with a small enough step size is guaran-
teed to find the global optimum.

J(θ) =
1

n

n∑
i=1

(θTx(i) − y(i))2 (9)

Regression models have a number of strengths and weak-
nesses in the context of electricity price forecasting com-
pared to alternative models.

+ Regression models do not need a large amount of
training data to fit a model, which is useful in mid-
and long-term electricity price forecasting where one
might have limited relevant training data.

+ Regression models are easy to implement and ana-
lyse. They also help provide causal relationships
between the variables. However, one must be aware
that correlation does not mean causation and that
any explainable variable should be included in the
model to draw inferences.

- As with all supervised learning, there is a risk of
overfitting, with the model being made to fit the
training data best. A response is to use a ridge or
lasso regression, which penalises high parameters, re-
ducing the risk of overfitting.

- Linear regression cannot model nonlinear relation-
ships, often present in electricity markets. How-
ever, one might also implement regression models of
higher orders (e.g., quadratic regression), which can
model some nonlinear relationships.

2.1.6 Seasonal, AR, MA and SARIMA Models

The SARIMA model is an a-theoretical statistical model
which uses past observations to forecast future values of a
sequence and will be described in this section. The SAR-
IMA model we have chosen is from Durbin (2012). The
model consists of an autoregressive component (AR), a
moving average component (AR), an integrated compon-
ent (I) and a seasonal component (S). The autoregressive
component (AR) of the SARIMA-model looks at lagged
values and the average in the model. It uses these for fore-
casting future values of the sequence and the average value
for the sequence, µ. tt−i represent the ith lagged value,
which is given a weight of ϕi. The model will have a total
of p lags, which are added to create the prediction ŷ. ζ
represents the error. This is showed in Equation 10.

yt = µ +

p∑
i=1

ϕiyt−i + ζt ζt ∼ N (0, σ2
ζ) (10)

Moving average aims to model the error deviations (ζ) from
the average (µ) to make a more accurate forecast for future
values. This process is described in Equation 11. For the
moving average process, the weights for the lagged errors
are denoted θt−j , with j being the jth lag, going up to a
total of q lags. The jth lagged errors themselves are ζt−j .

yt = µ +

q∑
j=1

θjζt−j + ζt ζt ∼ N (0, σ2
ζ) (11)

The integrated component in a SARIMA-model aims to
make a sequence with a trend stationary (Durbin 2012).
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This is done by looking at the difference between two ele-
ments in the sequence. The difference factor of a SAR-
IMA model is often denoted d. We have described first
difference, second and the dth difference, in equation Equa-
tion 12, Equation 13 and Equation 14, respectively. This is
done to give the reader an understanding of the recursive
working of the difference operator. Hence, by looking at
the dth difference in Equation 14, one will look at the dif-
ference for the (d−1)th difference for the values. However,
it is important to note that often only the first difference is
required, as there are only a few sequences where a higher
order is necessary (Brooks 2019). To synthesize, by util-
ising an integrated component different from 0, one will
not aim to model the actual values (yt) but rather the dif-
ferences from past values.

∆yt = yt − yt−1 (12)

∆2yt = ∆(∆yt) = ∆yt − ∆yt−1 (13)

∆dyt = ∆(∆d−1yt) (14)

The last component of the SARIMA model is the sea-
sonal component. This component consists of multiple
sub-components: A seasonal autoregressive component, a
seasonal moving average component, and a seasonal integ-
rated component. Additionally, it is defined by a cycle fre-
quency (m), which describes the number of sequence steps
in a single cycle. The seasonal autoregressive component
(P ) works similarly to the regular component with p lags.
However, where the regular autoregressive will have lagged
values between 1 and p, the seasonal component will have
lagged values at each cycle frequency. This is described by
Equation 15, which results in m, 2m, ..., Pm as lagged val-
ues. Similarly, we can describe the seasonal moving average
process (Q). This models a moving average process, but
only at each cycle frequency, m, 2m, ..., Qm. This property
is also described by Equation 16. The final seasonal com-
ponent is the integrated seasonal differences (D), which
models the difference similar to the non-seasonal differ-
ence operator. However, the seasonal difference will have
one cycle and not one lag between the two variables. The
equations for the integrated seasonal component is sum-
marized in Equation 17.

yt = µ +

P∑
k=1

Φkyt−mk + ζt ζt ∼ N (0, σ2
ζ) (15)

yt = µ +

Q∑
l=1

Θlζt−ml + ζt ζt ∼ N (0, σ2
ζ) (16)

∆D
myt = ∆m(∆D−1

m yt) (17)

Combining the autoregressive, moving average, integrated
and seasonal components described so far in this section
makes up the SARIMA model in Equation 18. A SARIMA
model is often described as SARIMA(p, d, q)(P,D,Q,m),
where the letters in the brackets describe the hyperpara-
meters. The meaning of each of the letters is described
above. Notably, Equation 18 describes a SARIMA(p, 0,
q)(P, 0, Q, m)-model. The value of the different lag coeffi-
cients, ϕt−i,Φt−mk, θt−j and Θt−lm are estimated through

a maximum likelihood process.

yt = µ +

p∑
i=1

ϕiyt−i +

q∑
j=1

θjζt−j +

P∑
k=1

Φkyt−mk+

Q∑
l=1

Θlζt−ml + ζt ζt ∼ N (0, σ2
ζ)

(18)

An information criteria is often used for evaluating the
hyperparameters when creating a SARIMA-model. Fur-
thermore, it is desirable with a model capable of model-
ling sufficiently complex relationships without overfitting
(Brooks 2019). Overfitting is undesirable since it leads to
more significant out-of-sample errors. Information criteria
are evaluation metrics for models which aim to address this
issue. The metrics reward high accuracy for the model but
penalize the increasing number of parameters. There exist
numerous different information criteria formulas, but one
of the most common in electricity price forecasting liter-
ature is Akaike’s information criteria (AIC) (Akaike 1974;
Croonenbroeck and Stadtmann 2019). The Akaike’s In-
formation Criteria is described in Equation 19. The ln(σ̂2)
is the natural logarithm of the standard error of the model,
k is the number of parameters, and T is the number of ob-
servations. Consequently, a more accurate model will re-
duce the standard error σ̂2 and, therefore, the AIC-score.
A more parameter rich model will increase k, which in-
creases the AIC. More observations will lower the AIC score
since it is inversely proportional to T . A model is therefore
likely to be preferable to another model by having a lower
information criteria score, and we seek to find the hyper-
parameters which minimize the AIC-score (Brooks 2019).

AIC = ln(σ̂2) +
2k

T
(19)

The SARIMA model has both strengths and weaknesses,
the most relevant ones listed below (Brooks 2019):

+ SARIMA models are simple to understand and ana-
lyse. The causal relationship between the depend-
ent and independent variables is easily observable.
Therefore, plots of electricity prices can infer approx-
imate starting values for hyperparameters prior to a
search around these values.

+ A few hyperparameters have to be chosen when cre-
ating a SARIMA model. As a result, there are few
dimensions to a grid search, making it less compu-
tationally expensive. A grid search is desirable since
it evaluates all proposed options (Goodfellow et al.
2016).

+ Often useful for forecasts out-of-sample (Brooks
2019).

- These models as a-theoretical. Meaning they do not
utilize any known relationships between the vari-
ables. This can result in spurious relationships if not
careful. Furthermore, one cannot implement domain
knowledge about the sequence’s relationship to other
variables. This is unfortunate as, for example, high
future wind production (from weather forecasts) will
lower the price, but it is a feature a SARIMA model
cannot implement.
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- It can be challenging to choose the optimal hyper-
parameters for the model while avoiding overfitting.
The use of information criteria is an option to reduce
the risk of overfitting.

- Many parameters to estimate through maximum
likelihood. Hence, demanding a lot of computational
resources, which otherwise could have been used for
other models. This results in less extensive bench-
marking of the models in the research.

2.2 NordPool and Modern Electricity Markets

Electricity markets constitute all markets where parti-
cipants trade electricity, both as a good or as financial
contracts for future trade. As with most other liberal mar-
kets, its genuine role is to match supply and demand to
determine a market-clearing price across its areas. How-
ever, as electricity is economically non-storable, demand
inelastic and production dependent on planning, electricity
prices are often highly volatile, seasonal and hard to predict
(Weron 2014). While there are variations in mechanisms
and price dynamics across different power markets, this
thesis focuses on the NordPool power market. NordPool,
operating in Northern Europe and covering 16 European
countries (most notably the Nordics, Germany, and the
UK), accommodate all common mechanisms of a liberal
wholesale electricity market, incl. trading, clearing and
settlement (NordPool 2021).

The liberal market situation in the Nordics, with private
market participants, is a result of a number of pro-market
reforms in the late 80s and early 90s (Blazquez et al. 2018).
Schweppe et al. (1988) presented the idea that free elec-
tricity markets might increase social welfare. Not soon
after, several political electricity free-market reforms were
enacted, with the Norwegians parliament’s decision to de-
regulate trading of electrical energy going into effect in
1991 (NordPool 2022). Then five years later, in 1996, Nord-
Pool was established as a joint Norwegian-Swedish power
exchange (NordPool 2022). Finland and Denmark joined
the exchange in 1998 and 2000, making the Nordic elec-
tricity market fully integrated. A market previously con-
trolled by vertically-integrated state monopolies had now
shifted over to a competitive market, with private players
all across the value chain. Figure 8 shows a simplified visu-
alization of the current free-market model, in which private
power producers (e.g., TrønderEnergi) sells their electricity
through a wholesale market (NordPool) either directly to
the consumer or through a retail market. In a market
such as NordPool, a marginalist pricing model is used, in
which the price for all buyers and sellers is set equal to
the price of the last sold unit, the market-clearing price, at
which supply equals demand (Blazquez et al. 2018). Bye
and Hope (2005) investigated the effect of deregulation in
Norway, concluding that it had resulted in lower electricity
prices, reduced price inequality across regions, and reduced
investment cost while also increasing return on investment
on new production capacity. In 2021 and 2022, there has
been much public debate around the subject of free elec-
tricity markets, as abnormally high electricity prices have
hurt consumers while many power companies have exper-
ienced record-high financial returns. Given the necessity
of electricity, many experts argue that there needs to be
stricter regulation to ensure that consumers are protected.

Compared to other commodities such as oil, an important
characteristic of electricity markets is that electricity is eco-
nomically non-storable. There is, therefore, a requirement
for a constant balance between consumption and genera-
tion, which need to be connected through the power grid
(Kaminski 2013). The need for constant balance is one of
the main reasons that there often are significant variations
in prices across different times of the day or that there
might be sudden spikes in prices. When talking about elec-
tricity generation, one often talks about the merit order,
which is a way of ranking different sources of generation ac-
cording to marginal cost (Roldan-Fernandez et al. 2016).
A typical merit order in electricity markets is shown in
Figure 9, in which variable renewable energies (VRE) such
as solar and wind have the lowest cost, followed by base-
load such as nuclear and hydro. In the end, there is peaker
generation (used at times of peak demand) such as oil &
gas. The logic is that the higher the price, the more ex-
pensive generation sources are utilised. At the end of the
spectrum, one can also talk about load shedding, which is
the practice of shutting down energy-intensive processes to
save electricity. Hence, there is a large gap in potential
generation prices, from variable renewable energy, which
can even be negative, to oil gas or load shedding, which
are costly sources of electricity. The constant balance can
be shown in Figure 10, in which there must be put as much
electricity grid as there is taken out.

Figure 9: Electricity merit order, ranking sources of electricity
generation from VRE to baseload and peaker capacities. Also
added simplified explanation of load shedding in the merit order
graph, although it technically not being a source of electricity

Figure 10: The balance equation of the electricity grid, which
must be satisfied at all times. The input, consisting of VRE,
baseload generation, peaker generation, load shedding and po-
tential stored energy used, must equal the output, consisting of
the demand and energy stored

Most of the NordPool trading is done through day-ahead
auctions, as system operators require advance notice to de-
liver electricity to ensure a constant balance between gen-
eration and consumption (Weron 2014). In the day-ahead
market, actors bid on electricity with delivery in specific
hour on the next day, as shown in Figure 11. In addi-
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Figure 8: Visualization of the Nordic electricity market model, in which private power producers sells their electricity through a
wholesale market (NordPool) either directly to consumer or through a retail market

tion, the system operator operates the real-time or intra-
day market at very short horizons before delivery. This
auxiliary market is used to price minor deviations in the
day-ahead market to ensure a perfect balance in the elec-
tricity grid (Weron 2014). As most of the trade is made
through the day-ahead market, it is in Europe convention
to refer to the day-ahead price as the spot-price (Weron
2014). Like other power markets, NordPool hosts several
pool-type auctions. The NordPool auctions are two-sided
auctions in which a uniform market clearing price is set at
the interception between the supply and demand curve, as
seen in Figure 12. It is worth noting that NordPool serves
several bidding areas (as seen in Figure 13), which might
have differences in price due to capacity bottlenecks. How-
ever, when ignoring this and looking at aggregated supply
and demand curves across the whole market, the market-
clearing price is referred to as the system price.

Figure 11: The bidding structure in a day-ahead market, in
which bids for day d must be submitted before a certain closing
time at day d − 1. This as system operators require advance
notice to deliver electricity to ensure a constant balance between
generation and consumption

Figure 12: Types of auctions on power exchanges. Left panel
represents a two-sided auction, as used on NordPool, in which
the market clearing price is the intercept between aggregate sup-
ply and demand curves. Right panel represents a hypothetical
one sided auction in which there is a set demand. Figure from
(Weron 2014)

The NordPool power market is separated into over 20 bid-
ding areas, as seen in Figure 13. However, this thesis only
focuses on the 12 bidding areas across the Nordic region
(Norway, Sweden, Denmark and Finland). Each region
has an individual electricity price at each time interval.
As seen in Figure 14, regional price differences occur when
there are bottlenecks in the flow capacity between differ-
ent regions. Given available capacity, transfer of electricity
between regions through the NordPool market would en-
sure price convergence (Weron 2014). This is why neigh-
bouring regions with a lot of grid capacity often exhibit
near-identical prices, such as SE2 and SE3. However, in
late 2021, bottlenecks created huge regional price differ-
ences across the Norwegian bidding regions. At its most
extreme, on 16 October 2021, the daily price of electricity
in Oslo was 13x that in Trondheim (98.8 e/MWh vs 7.6
e/MWh), a relief to the Trondheim based authors of this
thesis.

Figure 13: Visualization of the 21 NordPool bidding regions,
with daily prices (EUR/ MWh) on the 4 May 2022. Only the 12
bidding regions in Norway (NO1-5), Sweden (SE1-4), Denmark
(DK1-2), and Finland (FI) are included in this thesis

Given the state of the electricity market, with a continu-
ous need for market-clearing, there are large variations
in price, including a large number of price spikes. Fur-
thermore, this effect has been further strengthened by the
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Figure 14: Prices (EUR/ MWh) and cross regional flow in se-
lected Nordic regions 14.00-15.00 on 24 March 2022. Regions
with capacity bottlenecks experience exhibit significant price
differences (e.g., NO3 and NO1), while regions with available
capacity exhibit near identical prices (e.g, NO1, NO2 and NO5)

increased share of variable renewable energy generation,
which according to Khare et al. (2016) has contributed to
more volatile prices due to its stochastic production pat-
terns. Additionally, highly inelastic demand in the short
term, few even conscious of the electricity, makes the prices
even more volatile (Burke and Abayasekara 2017). Look-
ing at Figure 15, showing the hourly NordPool over an ar-
bitrary three day period (19.06.2017 - 25.06.2017), shows
that there are also large variations in price during the day.
The long-term demand is somewhat more elastic due to
changing demand from the energy-intensive industry. Ac-
cording to Härdle and Trueck (2010) demand is also the
main explanatory factor for seasonal variations. Ensuring
stable electricity prices is an important challenge within
the energy sector. In February 2021, Texas experienced a
major power crisis due to freezing temperatures and bad
weather. At its most extreme the electricity price reached
as high as 9,000 $/MWh (200x regular rates) (Pechman
and Nethercutt 2021). Over 200 people died as a result
of the crisis (Hauser and Sandoval 2021), highlighting the
societal importance of ensuring steady and reliable prices
and access to energy during extreme spikes.

Figure 15: Hourly and daily system price (e/MWh) in period
00:00 19.06.2017 - 23:00 25.06.2017, showing significant vari-
ations in price compared to other more easily storable commod-
ities such as oil

In Norway, over 90% of electricity generation comes from
hydropower (Statista 2019), which requires a high degree
of production planning to optimise cost-efficiency. The
Norwegian hydropower system gathers precipitation from
a cascade of rivers through a number of reservoirs. There-
fore, operators require efficient forecasting models to op-
timise their available water resources. Production plan-
ning often works with requirements such as settling time,
rise time, bandwidth and disturbance rejection (Kragelund
et al. 2010). In addition to being an essential part of
the energy supply, hydropower is also seen as an import-
ant part of the intra-day balancing market. 14 days is
a typical planning horizon for short-term production plan-
ning (Fleten and Krogh 2008), emphasising the importance
of mid-term forecasting models in the NordPool regions,
which are heavily reliant on hydropower.
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3 Literature Review and Contributions

This literature will present relevant research in the realm of
computationally intelligent methods (Section 2) for electri-
city price forecasting, in addition to literature assessing the
performance of temporal convolutional neural networks.
The practical uses of accurate electricity price forecasts are
substantial since an accurate forecast will enable electricity
producers to assess the value of production capacity and
plan for future production in an economically sustainable
manner. This section consists of two main parts. First, we
describe research where computationally intelligent meth-
ods have been used for electricity price forecasting. Second,
we present literature for sequence analysis by temporal con-
volutional neural networks. The papers presented in this
section are summaries in Table 1.

The use of computationally intelligent methods for elec-
tricity price forecasting has become increasingly frequent,
which is highlighted by both Lago, Marcjasz et al. (2021)
and Engebretsen et al. (2020). The methods available for
this type of forecasting are numerous, such as long short-
term memory, deep neural networks and support vector
regression models. The growth in the research field and
diversity among forecasting models makes it an interest-
ing field to study. Our method of study has been based
on the literature review conducted by Lago, Marcjasz et
al. (2021). They used a Scopus web crawler2. We have
conducted the same search query as Lago, Marcjasz et al.
(2021) and read the approximately 105 papers which have
appeared after the time of writing Lago, Marcjasz et al.
(2021), which also highlights the growth in this research
area. Naturally, we have also read the papers referenced
by Lago, Ridder et al. (2018). Additionally, a Scopus query
was conducted to find papers in which the forecasting ho-
rizon was longer than the day-ahead market while also us-
ing computationally intelligent methods. A common fea-
ture, which has also been highlighted by other papers, in-
cluding Lago, Marcjasz et al. (2021), is that there are of-
ten capable models which are being proposed. However,
these models often struggle with two limitations. Firstly,
the models often suffer from limited testing. This can be
either a limited testing horizon, one of only a few markets,
or both. Secondly, the models are not necessarily bench-
marked against what is known as state-of-the-art models,
but only simpler models, with which a lot less work is done.
Naturally, this demonstrates some of the forecasting cap-
abilities of the model. However, it is challenging to un-
derstand if the model is at the same level as what is re-
garded as state-of-the-art forecasting models. A reason for
little benchmarking against other state-of-the-art models
might be the unavailability of the code or hyperparamet-
ers used for model creation. Thus, making state-of-the-art
benchmarking challenging. The reason for the unavailabil-
ity of code is unknown, but Croonenbroeck and Stadtmann
(2019) describe how some papers are tied by non-disclosure
agreements. A contrast to this problem is the epftoolbox

2With the search query: TITLE-ABS-KEY((((“forecasting
electric- ity”) OR (“predicting electricity”)) AND ((“electric- ity
spot”) OR (“electricity day-ahead”) OR (“electric- ity price”)))
OR (((“price forecasting”) OR (“price prediction”) OR (“fore-
casting price”) OR (“predict- ing price”) OR (“forecasting
spikes”) OR (“forecast- ing VAR”)) AND ((“electricity spot
price”) OR (“elec- tricity price”) OR (“electricity market”) OR
(“day- ahead market”) OR (“power market”))) AND (“deep”)
AND (“learning”))

created by Lago, Marcjasz et al. (2021), who also high-
lighted this issue. The epftoolbox contains two CI models;
A deep neural network and a lasso estimated autoregress-
ive model. These models are beneficial for assessing the
performance of our proposed model.

Using computationally intelligent models for electricity
price forecasting often involves deep learning models,
and more specifically, deep neural networks and recur-
rent neural networks are deployed. The long short-term
memory and gated recurrent architectures are the most
frequent of the latter category. These architectures are de-
scribed in Section 2.The first of the two architectures is
the more frequent architecture of the two. Likely due to
the long short-term memory architecture being older than
the gated recurrent unit, although papers such as Yang
and Schell (2022) highlight that gated recurrent units are
more computationally efficient. One of the most compre-
hensive benchmarks of both gated recurrent units and long
short-memory models was conducted by Lago, Ridder et al.
(2018). They compared 27 models in the Belgian electri-
city market. The long short-term memory and the gated
recurrent unit performed almost identically and were only
beaten by the deep neural network. These results were
likely due to the deep neural network having fewer as-
sumptions about the input data (Lago, Ridder et al. 2018).
These results are engaging since the Belgian market is geo-
graphically close to the NordPool regions. These findings
are somewhat dissimilar to the findings of Meier et al.
(2019). They found that the deep neural networks and
long short-term memory performed similarly, likely since
they both had lagged variables as input. However, the two
studies are not entirely comparable since the first study was
conducted in Belgium and the second in Germany. A long
short-term memory model was also proposed by Zihan et
al. (2019). Additionally, this model had advanced prepro-
cessing techniques, such as wavelet decomposition of the
electricity price. This modified long short-term memory
model outperformed all benchmarks, of which a regular
long short-term memory model was one, on all weekdays
for the french market. The test period for the models was
approximately 40 days. Therefore, one should further test
the proposed model to obtain more reliable results (Croon-
enbroeck and Stadtmann 2019). These test improvements
include both other regions and longer periods, making it
simpler to compare it to models such as that proposed by
Meier et al. (2019). The forecasting powers of the long
short-term memory were also displayed by Aineto et al.
(2019). Furthermore, the researchers also displayed how in-
crementally adding additional relevant exogenous variables
for electricity price forecasting reduces the mean average
percentage error. Although the researchers did not bench-
mark their models against other deep learning models or
statistical models, their findings are interesting and point
towards additional explanatory value when including exo-
genous variables. Looking at markets in NordPool, Atef
and Eltawil (2019) compared a long short-term memory
model to a support vector regression model. The pro-
posed deep learning model was notably better at forecast-
ing. However, more conclusions could have been made from
this study with a broader range of benchmarking models,
which would have made it more comparable to the study
by Lago, Ridder et al. (2018).

Long short-term memory models have also been used with
other deep learning techniques. An example of such is
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Rantonen and Korpihalkola (2020). They used a combin-
ation of a convolutional neural network and a long short-
term memory for electricity price forecasting in the Finnish
NordPool market. However, the encoding of the convo-
lutional neural network, which was inputted in the long
short-term memory, could not improve the forecast. On the
contrary, a regular long short-term memory model proved
better. Comparing this finding to that of Zihan et al.
(2019), who found the wavelet transform to be helpful,
it is notable that adding processing or encoding features
to a long short-term memory model will not necessarily
improve the model. Therefore, hyperparameters and pro-
cesses must be tuned deliberately. A more successful ad-
aptation to a long short-term model was made by F. Zhang
et al. (2022), who added bidirectionality to a long short-
term model. The model was benchmarked against a reg-
ular gated recurrent unit and a long short-term memory.
The bidirectional long short-term memory model proved
superior in the Swedish regions 1-3. However, both the
regular long short-term memory model and the gated re-
current unit performed well. A benchmarking of differ-
ent complex long short-term memory architectures in the
NordPool area was conducted by Li and Becker (2021).
Although their findings are interesting, they are hard to
contextualize since there are no statistical methods or sim-
ilar used as benchmarks.

Apart from recurrent neural networks, the deep learn-
ing forecasting models preferred are deep neural networks
(Lago, Ridder et al. 2018), described in Section 2. More
specifically, Lago, Ridder et al. (2018) found the deep
neural network to significantly outperform all other deep
learning models when researching the Belgian market, in-
cluding architectures based on recurrent neural networks.
To build upon these findings, Lago, Marcjasz et al. (2021)
found the Deep Neural Network to outperform the lasso
estimated autoregressive model, which they also believed
to be state-of-the-art. This finding was done in the Nord-
Pool area and is highly relevant to our research. How-
ever, the out-of-sample period was from the end of 2016 to
2018. This period deviates from our out-of-sample period,
which is the year 2020. Furthermore, their forecasts were
made on the system price and not the individual bidding
areas. Therefore, we might obtain different results, but us-
ing a deep neural network for electricity price forecasting
in the NordPool area will be important for the validation
of our study. A reason for the excellent performance of
the deep neural network is highlighted by Lago, Ridder
et al. (2018). The models do not assume anything about
the input and can model the non-linear relationships when
forecasting electricity prices. The results found by Ugurlu,
Tas et al. (2018) found that the neural network had the
lowest mean absolute error compared to other benchmarks
such as gated recurrent unit and long short-term memory.
However, there was no significant improvement in the arti-
ficial neural network compared to the gated recurrent unit
and the long short-term memory to conclude that it is a
superior forecasting model. These findings are also in line
with the findings of Meier et al. (2019), as described previ-
ously. Neural networks were also benchmarked in the Ger-
man and Austrian EEX-markets by Schnürch and Wagner
(2020) against a random forest model. Although the neural
networks proposed were performing superior to the random
forest, the differences in error were insufficient to indicate
significantly better forecasting properties than the simpler
proposed methods. Post-processing is an available tool for

enhancing model performance. For example, Kontogiannis
et al. (2022) used post-processing to enhance the perform-
ance of the deep neural network created by Lago, Marcjasz
et al. (2021). Their post-processing was an autoregressive
model with exogenous variables. This was able to halve
the mean absolute error of the neural network. So far,
we have presented papers with a short forecasting horizon.
The reason for this is that most research is within this
horizon. Nevertheless, Windler et al. (2019) proposed a
deep neural network for forecasting the next 29 days. They
conducted more than 1350 out-of-sample evaluations and
found that the deep neural network was notably forecast-
ing better than the benchmarks. However, the benchmarks
consisted of rarely used models in the literature, and it is
unknown how generalizable these results are.

Temporal convolutional neural networks (TCN) were first
benchmarked by (Bai et al. 2018), who achieved strong
results in time series forecasting when comparing the cap-
abilities of a TCN to machine learning models specialized
for time series forecasting such as long short-term memory
(LSTM) and gated recurrent unit (GRU). However, des-
pite the novelty of the temporal convolutional neural net-
work, some research has investigated its capabilities for
different time series forecasting problems. Most adjacent
to the work in this thesis is the work of (Wan et al.
2019), who benchmarked the performance of two different
TCN-networks in the ISO-NE region. Their standard tem-
poral convolutional neural network was on par with lead-
ing machine learning architectures for time series forecast-
ing, such as the long short-term memory. However, Wan
et al. (2019) also found that by implementing a feature
called attention, the performance of the temporal convo-
lutional neural network further increased. Implementing
attention in a neural network enables the deep learning
model to distinctly weigh different input steps of the mod-
els. Hence, being able to extract more information from the
input data. Previous to Wan et al. (2019), Kuo and Huang
(2018) implemented a hybrid model, consisting of both long
short-term memory architecture and convolutional neural
network-architecture, named EPNet. EPNet forecasted
the electricity price in the PJM Regularization zone, out-
performing statistical and deep learning architecture-based
benchmarks. In addition, the study also compared a convo-
lutional neural network with both long short-term memory,
multi-layer perceptron, random forest, and a support vec-
tor machine. Of these forecasting models, the multi-layer
perceptron, long short-term memory, and EPNet were cap-
able of marginally obtaining a lower root mean squared er-
ror. These findings are a contrast to the findings of both
Wan et al. (2019) and Bai et al. (2018), who found the tem-
poral convolutional neural network to be superior for time
series forecasting. There can be several reasons for these
differences. One such reason is implementation differences
between the different research teams. Furthermore, power
markets differ in energy production mixes and consump-
tion, resulting in some models being more capable in spe-
cific electricity regions than others.

As previously mentioned, Lago, Ridder et al. (2018) con-
duct an extensive benchmarking of both statistically and
deep learning-based forecasting models. They find that the
convolutional neural network is as accurate as the gated re-
current unit, long short-term memory, or the deep neural
network for electricity price forecasting. Although the con-
volutional neural network was capable of outperforming
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the majority of statistical models, the study by Lago, Rid-
der et al. (2018) points toward the fact that there are deep
learning architectures that are more capable of electricity
price forecasting. However, the research was solely con-
ducted in the Belgian market, and convolutional neural
networks might perform better in the Nordic regions.

From the literature we have read and presented here, we
seek to fill the following gaps in the research literature.

1. We will use computationally intelligent models to
forecast the hourly prices for all the NordPool re-
gions for the next seven days. Computationally in-
telligent models have been tested in the NordPool
area. However, not with a seven-day forecasting ho-
rizon on individual regions.

2. Implementation and benchmarking of a hybrid
model for the forecasting task described above. Our
proposed model (ENTCN) consists of both a stat-
istical (Enhanced Naive) and computationally intel-
ligent (TCN) component. As we have highlighted in
this section, the temporal convolutional neural net-
work has not been tested extensively for electricity
price forecasting.
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4 Data

In this section, the data used in this thesis is presen-
ted. The data can be divided into two main groups -
area electricity prices and exogenous variables. Firstly, we
will present the area electricity prices, the dependent vari-
ables. Secondly, we will analyze the exogenous variables
and their relation to the electricity price. The sampling fre-
quency and source of the variables are displayed in Table 7.
The variables which have a lower sampling frequency than
hourly are filled forward. Examples are oil and gas prices.

4.1 Area Prices

This section analyses the NordPool area prices, the inde-
pendent variables in this thesis. More specifically these
are the regions NO1, NO2, NO3, NO4, NO5, SE1, SE2,
SE3, SE4, DK1, DK2 and FI. The regions will be analysed
individually and with respect to calendar effects. The geo-
graphical span of each region can be viewed in Figure 13.
Prices in the different areas range from -60.26 e/MWh to
255.02 e/MWh, as seen in Table 2. Although the price
regions are adjacent, both the average price and the price
risk differ across all regions, with the latter observable as
the difference in standard deviation. The least expensive
price zone is NO5, with an average price of 27.53 e/MWh
FI has the highest average price with 35.73 e/MWh. The
price risk is lowest in the NO4 with a standard deviation of
12.88, and the highest price risk is in FI, with a standard
deviation of 16.12. Furthermore, all area prices exhibit sta-
tionarity through an augmented Dickey-Fuller test, with a
high degree of significance. This finding means a constant
mean and variance in the data. Data with stationary prop-
erties will enable us to utilize models such as ARMA and
regression for price forecasting (Brooks 2019).

Table 2, Table 3 and Figure 17 can be used to describe the
distribution of the electricity price in the NO-areas. Look-
ing at the skew, which is positive for all price areas, it is
evident that the prices are shifted to the left. The skew
is also visible from Figure 17 with a mean higher than the
median and a longer tail on the right-hand side. Note that
not the entire price range is included, as prices reached as
high as 255 e/MWh in the in-sample data, and minimally
additional insight was obtained by including these in the
histograms. This is also evident by comparing the value of
the 99th percentile in Table 3 with the maximum value in
Table 2. At most 1% of the prices in all NO-regions are
above 60 e/MWh. The kurtosis of the data is described by
the Fischer kurtosis (Brooks 2019). The Fischer kurtosis
describes the fatness of the tails and should not be used for
describing the peakedness of the data, as stated by Westfall
(2014). All the areas have positive Fisher kurtosis levels,
indicating leptokurtic distributions. This means that the
tails are fatter than a regular, symmetric, Gaussian dis-
tribution. Consequently, the variation in our dataset is
greater than a dataset with a regular Gaussian distribu-
tion. It might be tempting to conclude that this also im-
plies that the forecasting problem becomes more challen-
ging, but that also assumes less correlation between the
forecasted values and the input variables. Therefore, the
kurtosis solely states how the dependent variables vary in
the training data. Comparing the different kurtosis values
of the different areas in Table 2, it is noticeable that they

significantly differ in magnitude. An example is compar-
ing NO1 with NO2, which have 13.55 and 1.26 in kurtosis,
respectively. There can be numerous reasons for these dif-
ferences, such as energy mixtures, weather variations, and
market coupling.

rk =

∑n
t=k+1(yt − ȳ)(yt−k − y)∑n

t=1(yt − ȳ)2
(20)

Electricity prices are known to exhibit auto-correlation
properties. This is why statistical methods such as auto
regression can be used to obtain fairly decent accuracy
for electricity price forecasting (Lago, Ridder et al. 2018).
The auto-correlation plot (ACF-plot) and partial auto-
correlation plot (PACF-plot) are in Figure 18 and Fig-
ure 19, respectively. Additionally, the formula for auto-
correlation is represented in Equation 20. From looking at
the graphs, some inferences can be made. For example,
a reasonable prediction for the next hour is the last hour.
This strengthens the reasons for using simple, naive ap-
proaches for electricity price forecasting. This is evident
as both the substantial spike at lag 1 in the Figure 19
and the high value at lag 1 in the Figure 18. The PACF-
plot has some lagged values different from 0, up to lag
16. Therefore, the range of lagged input values can be
reasonably long. Looking at the different types of SAR-
IMA models described in Section 2.1.6, one can argue that
AR-type models of order 16 can be relevant. This range
must naturally be viewed in the context of our available
computational power. Furthermore, the ACF plot forms
a downwards pointing arc over 24 hours. This arc, natur-
ally, represents the electricity price the previous day at the
same hour and is information that can be valuable when
implementing SARIMA models. The frequency cycle is
likely 24 time steps. This peak in the ACF plot differs
slightly from the peak observed at lag 20 (20 hrs. pre-
viously) in the PACF-plot, which has values of 0 at lag
24 for the NO-regions. Hence, from these plots, we can
conclude that lagged variables are an exceedingly strong
candidate for input variables to all the models, since the
electricity price exhibits both auto-correlation and partial
auto-correlation-properties. The specific values of lagged
variables and seasonal components for models will be tested
later in this thesis.

In Section 2 we described how electricity prices exhibit
calendar effects. Therefore, we will describe how the elec-
tricity price fluctuates with respect to different groups of
calendar variables. This can be insightful since the calen-
dar variables for the future a known prior to the forecast
and can improve the forecasting accuracy.

From Figure 16, one can observe that the electricity price
varies throughout the year, with higher prices during the
winter and lower prices in the summer months and holi-
days. For example, in NO3, June and July are the least ex-
pensive months, whereas November and January/February
exhibit higher price levels than the rest of the year. More
specifically, these observations can be quantified by look-
ing at how much the average price of a month will differ
from the average price of a year. The area price devi-
ations for NO1, NO2, NO3, NO4, and NO5 are shown in
Table 4. From these tables, it is evident that November is
the month with higher prices, whereas June has the low-
est prices. Demand for heating is the main driver for high
prices during winter in the Nordic region, as there is min-
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Figure 16: Hourly prices (e/MWh) in NO3 for the in-sample data (1 Jan 2014 - 31 Dec 2019)

Table 2: Descriptive statistics of hourly area prices from the NordPool area (e/MWh), (1 Jan 2014 - 31 Dec 2019).

Metric NO1 NO2 NO3 NO4 NO5 SE1 SE2 SE3 SE4 DK1 DK2 FI
Average 27.79 27.54 29.00 27.64 27.53 29.84 29.84 31.16 32.64 31.11 33.21 35.73
Median 27.70 27.58 29.40 27.10 27.58 29.79 29.79 30.38 31.09 30.31 31.53 33.95

Standard deviation 13.46 12.92 13.17 12.88 12.90 13.37 13.37 14.14 14.79 14.58 15.46 16.12
Mean average deviation 10.03 9.81 9.88 9.71 9.86 9.90 9.90 10.18 10.73 10.79 10.17 11.68

Min -1.73 -1.73 0.00 0.00 -0.09 -1.73 -1.73 -1.73 -1.94 -60.24 -60.26 -1.73
Max 255.00 114.70 255.02 255.02 114.70 255.02 255.02 255.02 255.02 200.04 255.02 255.02
Skew 1.47 0.60 1.35 0.47 0.54 1.41 1.41 1.52 1.51 0.39 1.22 1.98

Fisher kurtosis 13.55 1.26 15.42 16.12 1.00 13.72 13.72 13.10 10.40 2.28 9.26 15.07
Stationary (ADF) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table 3: Price quantiles over the in-sample data period (1 Jan
2014 - 31 Dec 2019) for all NO-regions.

Quantile NO1 NO2 NO3 NO4 NO5
0.01 7.23 7.62 7.64 7.71 6.77
0.05 13.58 13.51 15.91 15.4 13.48
0.1 18.08 18.03 20.57 19.7 17.94
0.15 21.15 21.11 22.83 21.37 20.77
0.5 29.45 29.37 30.96 28.99 29.36
0.85 42.41 41.99 43.16 42.33 42.00
0.9 46.25 45.78 46.88 46.15 45.7
0.95 51.12 50.77 51.52 50.41 50.66
0.99 59.95 57.75 58.74 55.79 57.31

imal demand for cooling in warm periods Hellström et al.
(2012). However, Table 4 also shows that the monthly
variations are not identical across the regions. These dif-
ferences come from differences in supply and demand across
the regions and limited flow capacities between the areas.
In Section B, similar tables for the remaining NordPool
regions are presented. Looking at all the tables for the
monthly coefficients, we can infer that November has the
highest prices, whereas the month with the lowest prices
varies across regions. An example is DK1, where March
has the lowest average prices for the in-sample data. The

Figure 17: Price histogram over the in-sample data period (1
Jan 2014 - 31 Dec 2019) for all NO-regions. The histograms are
cut off at e/MWh 60, and cover 99% of the distribution.

reason for the deviation of DK1 is likely due to the energy
generation mix in Denmark. It has a higher share of elec-
tricity production from wind generation than, e.g., hydro
generation dominated Norway, which results in different
monthly fluctuations.

The electricity price varies over a week, with weekdays be-
ing more expensive than weekends and holidays. These
differences are due to the varying demand from differences
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Figure 18: ACF-plot over the in-sample data period (1 Jan 2014 - 31 Dec 2019) for all NO-regions.

Figure 19: PACF-plot over the in-sample data period (1 Jan 2014 - 31 Dec 2019) for all NO-regions. The value at lag 1 is at
approximately 0.99.

Table 4: Monthly coefficients over the in-sample data period
(1 Jan 2014 - 31 Dec 2019) for all NO-regions. Bold coefficients
are yearly maximums or minimums

Month NO1 NO2 NO3 NO4 NO5
January 1.143 1.120 1.066 1.080 1.115
February 1.046 1.053 1.007 1.016 1.056

March 1.025 1.021 0.988 0.995 1.026
April 0.973 0.975 0.960 0.968 0.984
May 0.884 0.893 0.949 0.971 0.895
June 0.835 0.844 0.889 0.880 0.844
July 0.932 0.936 0.929 0.913 0.932

August 0.946 0.953 0.993 0.963 0.947
September 0.951 0.958 1.034 1.030 0.948
October 1.014 1.010 1.029 1.027 1.006

November 1.156 1.148 1.127 1.115 1.154
December 1.095 1.091 1.030 1.043 1.096

in human activity on different weekdays and holidays, as
described in Section 2 and by Hellström et al. (2012).
Table 5 displays the weekday and holidays coefficients for
all NO-regions, while the same coefficients for the remain-
ing NordPool areas can be found in the appendix. The
price is highest above the average price on Mondays, Tues-
days, Wednesdays, and Thursdays in the Norwegian bid-
ding areas. The prices are between 2% and 7% above the
weekly average for these days. Fridays are days with lower
activity, and the price falls somewhat but is still above the
weekly average. However, during weekends and, especially
holidays, the electricity price falls below the average. Hol-
idays have the lowest average price compared to the two
weekend days, with prices around 10% below average for
the holidays. Additionally, Sundays have lower prices than
Saturdays. On Sundays, the prices in the NO-regions are
about 5− 7% below average, whereas Saturdays are about
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4 − 6% below weekly averages.

Table 5: Weekday and holiday coefficients over the in-sample
data period (1 Jan 2014 - 31 Dec 2019) for all NO-regions. Bold
weekdays are either weekly maximums or minimums.

Day NO1 NO2 NO3 NO4 NO5
Monday 1.019 1.019 1.021 1.071 1.016
Tuesday 1.026 1.026 1.037 1.025 1.022

Wednesday 1.021 1.022 1.035 1.028 1.025
Thursday 1.031 1.016 1.033 1.031 1.018

Friday 1.011 1.010 1.011 1.011 1.011
Saturday 0.956 0.964 0.942 0.953 0.965
Sunday 0.935 0.943 0.922 0.939 0.944
Holiday 0.908 0.916 0.889 0.930 0.920

Similar patterns to those observed concerning months and
weekdays can be observed within the hourly time granu-
larity. These electricity demand rise as human activity in-
creases and, therefore, the electricity price. These hourly
coefficients for the NO-regions are displayed in Table 6.
For the remaining NordPool regions, the hourly coefficients
can be found in the appendix. The NO-area has the low-
est prices at 03.00 at night and the highest at 08.00 in
the morning. This is understandable since demand is low
during the night hours but high as the activity sharply in-
creases in the morning. The prices fall throughout the day,
except for a small increase around 17:00 and 18:00. There
is a steady decline to the night prices from this local price
peak.

Table 6: Hourly coefficients over the in-sample data period (1
Jan 2014 - 31 Dec 2019) for all NO-regions. Bold hours are
either daily maximums or minimums.

Hour NO1 NO2 NO3 NO4 NO5
0 0.941 0.950 0.916 0.939 0.951
1 0.915 0.924 0.889 0.915 0.925
2 0.899 0.907 0.872 0.900 0.909
3 0.892 0.900 0.865 0.893 0.902
4 0.898 0.905 0.874 0.899 0.908
5 0.931 0.938 0.913 0.933 0.941
6 0.976 0.981 0.976 0.984 0.983
7 1.047 1.036 1.052 1.038 1.035
8 1.088 1.071 1.102 1.073 1.067
9 1.077 1.065 1.095 1.069 1.063
10 1.060 1.053 1.083 1.060 1.052
11 1.044 1.041 1.066 1.048 1.041
12 1.029 1.028 1.048 1.034 1.028
13 1.018 1.018 1.034 1.026 1.019
14 1.011 1.012 1.025 1.020 1.013
15 1.014 1.012 1.026 1.021 1.013
16 1.037 1.028 1.037 1.032 1.026
17 1.066 1.053 1.064 1.051 1.049
18 1.062 1.055 1.067 1.054 1.053
19 1.039 1.040 1.051 1.041 1.039
20 1.018 1.022 1.025 1.023 1.022
21 1.004 1.009 1.006 1.009 1.009
22 0.984 0.992 0.979 0.986 0.992
23 0.951 0.960 0.934 0.953 0.960

The calendar effects analyzed in this section have provided
insight into the movement of the electricity price with re-
spect to different time frequencies. However, the month
effects are distinct from the other two categories when
assessing the magnitude of price increases. For example,
weekday effects do not move the price more than 4 − 10%

and hours no more than 10%. On the other hand, months
have calendar-effect-coefficients as high as 16% in some
price areas. Consequently, it might be more relevant to in-
clude months rather than weekdays as input variables if one
chooses between the calendar-effect variables. However, as
stated previously, all calendar effects have a high level of
significance and are available to the group. Therefore, all
groups should be tested as input. Furthermore, this thesis
investigates forecasts for the next seven days, with lagged
values as an input variable, which means that the forecast
is often done within the same month. Therefore, including
month coefficients might not yield an information gain as
significant as weekdays or hours. This theory has to be
validated prior to model testing.

4.2 Exogenous Variables

The second group of variables included in this dataset is the
exogenous variables - which are variables we believe have
the potential to be a valuable input to our models without
the data generating process of these variables being an elec-
tricity price zone. These variables are all listed in Table 7,
except for the system price and bidding area prices. A no-
ticeable feature of the exogenous time series is the sampling
frequency, which is lower than the system price and area
prices. Nevertheless, we believe these variables might hold
explanatory value, so they are included in the data set.
This belief is due to the exogenous variables’ level and not
necessarily fluctuations that can provide insight into the
input factors and demand drivers for electricity prices.

Further, the exogenous variables can be divided into pro-
duction, market, commodities, and weather. Production
variables are the variables that either describe production,
such as wind production, or the potential for production,
such as hydro reservoir. Weather variables are all vari-
ables that are directly linked to weather, such as snow
mass NO. The commodities variables are variables that
represent market prices for commodities that can work as
input factors for electricity generation, such as coal. Lastly,
the market variables are used for describing the market, of
which consumption is one. It is worth noting that we also
included calendar-effect variables in our data set. These
are categorical variables where there is no numeric rela-
tionship between the variables (Goodfellow et al. 2016).
Consequently, they are described in Section 5.

Correlation has the potential to be a powerful indicator
for how much the area prices will fluctuate with respect to
other variables. Therefore, we have chose to use the Pear-
son correlation coefficient ρxy, described by Equation 21.
|ρxy| ≤ 1.0. Dancey and Reidy (2011) describes the fol-
lowing hierarchy of correlation coefficients: |ρxy| ≥ 0.6 is
considered strong, 0.3 ≥ |ρxy| ≤ 0.6 is considered moderate
and |ρxy| ≤ 0.3 is considered weak. Although correlation
can be a useful measure of the strength of co-movement
between two variables, it should not be mistaken for caus-
ation. An example is the third variable problem, where an
unknown third variable causes movements in two variables.
The two variables will have a strong correlation, but no in-
ferences can be made of causation. Furthermore, spurious
correlations can also be present in data. A spurious cor-
relation is when two unrelated variables exhibit a strong
correlation due to nothing but randomness. We encourage
the interested reader to visit Vigen (2021) for exemplifica-
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Figure 20: Correlation matrix over the in-sample data period (1 Jan 2014 - 31 Dec 2019) for all variables except categorical
variables.

Table 7: Summary of time series used. All variables that are not observed on an hourly time frequency are made into hourly
samples by filling forward the values.

Data Week Day Hour From To Source Description

NordPool prices - - - - -
System price x 01.01.2014 31.12.2020 NordPool NordPool day-ahead system price
Bidding prices (NO, SE, DK, FI) x 01.01.2014 31.12.2020 NordPool NordPool day-ahead area price

Market data - - - - -
Volume x 01.01.2014 31.12.2020 NordPool System market clearing quantity
Production x 01.01.2014 31.12.2020 NordPool Production
Consumption x 01.01.2014 31.12.2020 NordPool Consumption
EEX system price x 01.01.2014 31.05.2020 Datastream EEX - Hourly spot hour
APX system price x 01.01.2014 31.05.2020 Datastream APX Power UKE lec.rpd
OMEL system price x 01.01.2014 31.05.2020 Datastream OMEL-Elec. Spain

Production data - - - - -
Hydro reservoir x 01.01.2014 31.12.2020 NordPool Aggr. NO-SE level (MWh)
Hydro res. deviation x 01.01.2014 31.12.2020 NordPool MWh dev. from normal
Wind production x 01.01.2014 31.12.2020 NordPool DK, FI and Baltic
Wind prod. SE x 01.01.2014 31.12.2020 NordPool ENTSOSE - SE power statistics

Weather data - - - - -
Temperature Norway x 01.01.2014 31.12.2020 MET(Fros) Mean of most populated areas
Precipitation NO x 01.01.2014 31.12.2020 MET(Fros) Sum of most reservoir dense areas
Prec. NO 7 days x 01.01.2014 31.12.2020 MET(Fros) Sum of the last 7 days
Snow mass NO x 01.01.2014 31.12.2020 Renewables.ninja Snow mass in NO

Commodity prices - - - - -
Oil price x 01.01.2014 31.12.2020 Datastream ICE-BRENT CRUDE OIL TR1c
Gas Price x 01.01.2014 31.12.2020 Datastream EEX EGIX NCG Index
Coal Price x 01.01.2014 31.12.2020 Datastream Coal ICE API2 CIF ARA
Low carbon certificates x 01.01.2014 31.12.2020 Datastream Low Carbon 100 Europe Index

tions of such events. As a result, the correlation among the
dependent and independent variables indicates which vari-
ables have the potential to be included as input variables
in our models.

ρxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(21)

Looking at Figure 20, it is evident that among the com-
modities, the coal price has the strongest correlation with
the electricity prices in the Nordic region. However, none
of the commodity correlation coefficients concerning area
prices is considered strongly correlated, only moderately
or weakly correlated. Coals correlation with the regional

prices is partly due to the coal price functioning as a
price setter on the continent, to which much of the Nordic
price zones are connected. This market integration is de-
scribed in Section 2. Hence, increasing coal prices might
increase electricity prices on the continent, leading con-
tinental Europe to purchase more electricity overseas. In
contrast to coal, carbon certificates seem to be linearly un-
correlated with electricity prices. An explanation can be
because they constitute a neglectable cost of electricity pro-
duction and are likely to be less relevant. The other power
market variables included in the dataset show a moder-
ate to weak correlation to the NordPool prices. The only
exception being the EEX and DK1, likely due to their geo-
graphical proximity. Nevertheless, the added explanatory
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value of other electricity market prices is unknown, and
must be validated. Apart from some of the other electricity
markets and the total volume, the market data are weakly
or almost uncorrelated with the electricity area prices, with
the total volume barely being moderately correlated with
the area prices. The absence of correlation with the market
group of variables can result from the hydropower genera-
tion capabilities of the Nordic regions. Hydropower install-
ations have similar functionalities as batteries and can pro-
duce electricity when the prices are the most attractive, of
which variable renewable energy sources (e.g., wind, solar)
are incapable. All weather-related variables have weak cor-
relation coefficients with the electricity prices. As a result,
we will not spend more time discussing this matter Mainly,
the production variables are weakly/uncorrelated with the
area electricity prices, except for the hydro deviation vari-
able. Hydro reservoir deviation is moderately correlated
with all price areas, except for FI. Understandably, the hy-
dropower generators are likely to demand higher prices for
electricity production when the water levels are lower than
usual. To synthesize, none of the independent exogenous
variables strongly correlate with the electricity price. How-
ever, a handful of variables are moderately correlated with
the electricity price. Most noticeable are the coal price and
hydro level deviations. As a result, these variables should
be most strongly considered as additional input variables
in our models.
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5 Method

In this section, the implementation of each model is docu-
mented and explained. In addition, the error metrics, stat-
istical tests, and experimental design used are described.
The current section assumes the reader has an understand-
ing of the model concepts and terminology explained in
Section 2.1. To ensure reproducibility and meaningful res-
ults, the thesis follows a list of eight electricity price fore-
casting best practices listed in Jedrzejewski et al. (2022).

5.1 Model Implementation

The models implemented and the used hyperparameters
for all the implemented models are listed in the follow-
ing subsection. All the models have been fitted or trained
separately for each bidding region. However, the hyper-
parameters used by a specific model are identical for all
bidding regions. All implementations in this project are
done in the Python programming language.

The hyperparameters used were set to look at the valida-
tion loss when training, specifically at the NO1 (Oslo) and
NO3 (Trondheim) regions. Many hyperparameters were
also set using best practices from the field of electricity
price forecasting and state-of-the-art model implementa-
tions. A common issue in the electricity price forecasting
literature highlighted by Lago, Marcjasz et al. (2021) is the
use of ex-post hyperparameter optimization. Examples of
this include Yadav et al. (2017) and Peter and Raglend
(2017), in which hyperparameters were set based on the
out-of-sample performance, which gives the models an un-
fair and non-existent advantage. Keeping this in mind, in
this study, when tuning the hyperparameters, only valida-
tion loss was used to indicate performance, to not fit the
models to the out-of-sample data.

Table 8: Hyperparamters and settings used across all imple-
mented deep learning models (DNN, ENTCN, LSTM, GRU)

Hyperparameter Value
Optimizer SGD

Loss function Mean absolute error
Learning rate 0.002

Batch size 128
Epochs 30

Validation split 0.05

Although most models have differing hyperparameters,
the implemented deep learning models (DNN, ENTCN,
LSTM, GRU) have some shared parameters based on deep
learning best practices (Goodfellow et al. 2016). These
are listed in Table 8. Additionally, all these deep learning
models use basic components from the Tensorflow Keras
architecture(Fu and Aldrich 2018), which is optimised for
machine learning tasks in Python.

5.1.1 Naive Forecasts

The naive forecasting model implemented is mainly used as
a simple benchmark for other models. It is straightforward
and forecasts the price at a certain time to be the same as
for the same hour and day the previous week, hence 168
hours before, as seen in Equation 22. This implementation

is refreed to as the seven-day (7d) naive, or simply the
naive benchmark.

ŷt = yt−168 (22)

The reason for doing this is to account for both the week-
day and hourly effects of the electricity price. Using the
electricity price 168 time steps previously works since the
forecasting horizon is one week. Another alternative naive
forecasting model, still persevering the hour effect, would
be to forecast the price to be that on the same hour of the
last day of the input period. However, this model would
not incorporate the day of the week effect.

5.1.2 Deep Neural Network (DNN)

The deep neural network (DNN) model implemented is
a simple feed-forward multi-layer perceptron (MLP) with
four hidden layers, all being fully connected. The DNN
model implemented is inspired by the proposed model by
Lago, Marcjasz et al. (2021), which implemented a feed-
forward neural network with two hidden layers. As with
the implementation in Lago, Marcjasz et al. (2021), we also
developed the DNN using the Keras framework in Tensor-
flow (Keras 2015). As the network took in panel data,
the first transformation done is flatten, to ensure one di-
mensional input into the first hidden layer. Relevant back-
ground on the functionality of a deep neural network is
provided in Section 2.1.2.

The hyperparameters are set by testing numerous config-
urations, using the validation loss on the Tr.heim and Oslo
regions as the main indicators of model performance. The
same set of hyperparameters was used for every bidding
region in the thesis. Further work, with more resources,
could dedicate time to investigating the use of region-
specific hyperparameters to optimise model performance
further. Using the ReLU activation function was based
on the state-of-the-art model implementation from Lago,
Ridder et al. (2018), which also inspired the use of a large
number of nodes (100+) in each hidden layer. A sum-
mary of the hyperparameters used in the DNN model is
presented in Table 8 and Table 9. The model is optimised
using stochastic gradient descent (SGD), explained in Sec-
tion 2.1.2, using mean absolute error as the loss function.

Table 9: Hyperparamters used for the DNN model. Optimizer,
loss function, learing rate, batch size, epochs, and validation
split are listed in Table 8

Hyperparameter Value
Input length 3 weeks (504 hours)

# nodes, hidden layer 1 128
# nodes, hidden layer 2 128
# nodes, hidden layer 3 128
# nodes, hidden layer 4 128
hidden layer activation ReLU

last layer activation Sigmoid

5.1.3 Long Short-Term Memory (LSTM)

The long short-term memory models implemented in this
thesis are two types, a single-layer long short-term memory
model and a stacked log short-term memory model. Both
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are described in Section 2.1.3. Both models consist of
one or more layers with LSTM-cells, which pass their out-
put to a fully connected network. The implementation of
the models was done in Python, where we used the Keras
framework in TensorFlow (Keras 2015). In order to find
the optimal hyperparameters for the different models, a
sensitivity search around a starting point was conducted.
Then, we calculated the validation loss in NO3 for the pro-
posed hyperparameters, and used the parameters with the
lowest validation loss in the NO3 NordPool region. The hy-
perparameter starting point for the single-layer long short-
term memory model was the hyperparameters reported by
Lago, Ridder et al. (2018). The best hyperparameters are
reported in Table 10. The model was optimized with the
stochastic gradient descent algorithm and had a learning
rate of 0.002. In addition to a regular LSTM-model, the
group also implemented a stacked LSTM model (referred
to as S-LSTM). The starting point was the LSTM-model
proposed by Lago, Ridder et al. (2018), but with an ad-
ditional layer of long short-term memory cells. This in-
cluded adding additional LSTM-layers and hidden neuron
layers. Table 11 shows our chosen values for hyperpara-
meters. Optimizer, loss function, learning-rate, batch size,
epochs, and validation split are listed in Table 8

Table 10: Hyperparamters used for the LSTM model. Optim-
izer, loss function, learning-rate, batch size, epochs, and valida-
tion split are listed in Table 8

Hyperparameter Value
Input length 3 weeks (504 hours)

Output units in LSTM-layer 64
LSTM recurrent activation func. tanh

LSTM activation func. Sigmoid
# nodes, hidden layer 1 256

Hidden layer actiavtion func. ReLu
last layer activation func. ReLu

Dropout no

Table 11: Hyperparamters used for the S-LSTM model. Op-
timizer, loss function, learning-rate, batch size, epochs, and val-
idation split are listed in Table 8

Hyperparameter Value
Input length 3 weeks (504 hours)

Output units S-LSTM-layer 1 128
Output units S-LSTM-layer 2 32

S-LSTM recurrent activation func. tanh
S-LSTM activation func. Sigmoid
# nodes, hidden layer 1 128
# nodes, hidden layer 2 64
# nodes, hidden layer 3 64

Hidden layer actiavtion func. ReLu
last layer activation func. ReLu

Dropout 0.4

5.1.4 Gated Recurrent Unit (GRU)

This thesis has implemented two types of gated recurrent
units, having either a single layer or being stacked (re-
ferred to as S-GRU). These model architectures are de-
scribed in Section 2.1.3. In order to implement the models,
we used the Keras framework in TensorFlow (Keras 2015).
As with the LSTM-models, a sensitivity search was con-
ducted around initial starting values for hyperparameter

tuning. In addition, the validation loss in the NO3-region
was used to assess performance. In order to find the start-
ing values for the sensitivity search for hyperparameters,
we used the same methodology as with the LSTM and
S-LSTM models. However, we did not use the LSTM-
parameters of Lago, Ridder et al. (2018), but rather the
GRU-parameters. These were also reported by the pa-
per. A summary of the hyperparameters used in the GRU
models is presented in Table 12. Optimizer, loss function,
learning-rate, batch size, epochs, and validation split are
listed in Table 8.

Table 12: Hyperparamters used for the GRU model. Optim-
izer, loss function, learing rate, batch size, epochs, and valida-
tion split are listed in Table 8

Hyperparameter Value
Input length 3 weeks (504 hours)

Output units in GRU-layer 256
GRU recurrent activation func. tanh

GRU activation func. Sigmoid
# nodes, hidden layer 1 256

Hidden layer actiavtion func. ReLu
last layer activation func. ReLu

Dropout no

Table 13: Hyperparamters used for the S-GRU model. Op-
timizer, loss function, learing rate, batch size, epochs, and val-
idation split are listed in Table 8

Hyperparameter Value
Input length 3 weeks (504 hours)

Output units S-GRU-layer #1 128
Output units S-GRU-layer #2 128

S-GRU recurrent activation func. tanh
S-GRU activation func. Sigmoid
# nodes, hidden layer 1 256

Hidden layer actiavtion func. ReLu
last layer activation func. ReLu

Dropout no

5.1.5 Enhanced Naive Temporal Convolutional Network
(ENTCN)

The Enhanced naive temporal convolutional network
(ENTCN) model was developed by the authors of this
study in the project thesis T. R. Wang et al. (2021). The
model is a hybrid model combining, enhanced naive, a
form of naive model adjusting for several known effects,
with TCN, a temporal convolutional network, which is dis-
cussed in Section 2.1.4. In T. R. Wang et al. (2021), the
hybrid model was developed to forecast a single-point fore-
cast 14-days ahead in time on the daily NordPool system
price, displaying promising results compared to implemen-
ted benchmarks. When implementing the model in the cur-
rent thesis, the model had to be further developed to make
hourly forecasts over a seven-day horizon for each Nord-
Pool bidding region. A summary of the ENTCN model is
shown in Figure 21, in which the DNN block containing
the TCN layer (referred to as the TCN model) is trained
on forecasting the error of the enhanced naive model.

The enhanced naive is a type of naive forecast, but is adjus-
ted for monthly, weekday, hour and holiday effects. The
forecasted value (ŷ) at time t (t) can be expressed with
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Figure 21: Summary of the ENTCN model. The DNN block
(referred to as the TCN model) and the Enhanced naive model
are used to make a point forecast of the system price 14 days
forward in time. The TCN is optimised to forecast the error of
the Enhanced naive, to improve the forecasts.

Equation 23.

ŷt,r =
1

24

(
k∑

i=k−24

yi

)
∗M t−k

t,r ∗ Wt,r

Wk,r
∗Ht,r ∗

Hot,r
Hok,r

(23)

Here, k is the last hour of the input sequence, Mh,r, Wh,r,
Hh,r, and Hoh,r are the monthly, weekday, hourly, and
holiday effects at hour h in region r. The coefficients used
for each region’s effects were calculated using the relative
averages in the in-sample dataset (from 2014 to 2019). The
reason for dividing by the weekday and holiday effect of
the last hour of the input sequence is that the average
price of this day is used as the baseline for the forecast.
Hence one needs to account for the price effects of this day.
However, this is not necessary when looking at the hourly
coefficients as there are no hourly effects when looking at
a daily average. Furthermore, the monthly coefficient is
calculated as the average daily price movement in a given
month, looking at the relative change expected in a month
(e.g., falling prices during the spring or rising prices during
the autumn). The monthly coefficient Mm,r for month m
in region r is given by Equation 24.

Mm,r =

(
Mm+1,r

Mm−1,r

) 1
24∗60

(24)

The forecasted price of the Enhanced naive is used as a
baseline for the TCN model. When training the TCN, the
y values are the actual price minus the forecast of the en-
hanced naive, such that the TCN is trained on forecasting
the error of the Enhanced naive. Consequently, when mak-
ing forecasts out-of-sample, the forecasted value is the sum
of the TCN and the Enhanced naive forecasts. The mo-
tivation for accounting for these effects was the significant
impact they had on bidding area prices in the in-sample
dataset, as discussed in Section 4.2.

The TCN model, which consists of a feed-forward deep
neural network with a TCN layer followed by two hidden
layers, was implemented using the widely used Tensorflow
Keras architecture (Fu and Aldrich 2018). A summary of
the TCN component can be seen in Figure 22 . When
developing the TCN layer, code from T. R. Wang et al.
(2021) and the open code TCN layer developed by Remy
(2020) are used as a basis. These implementations were
based on the TCN concepts presented in Bai et al. (2018),
which were discussed and explained in Section 2.1.4. Not-
ably, the padding used is causal, as to prevent any passing
of data from future to past or present, which is required
when doing time series forecasts. The hyperparameters
used were also inspired by the ranges recommended by

Figure 22: Illustration of the TCN model with, which consists
of a TCN layer with 32 filters and three fully connected hidden
layers with 128 nodes each.

Remy (2020). Furthermore, the hyperparameters were sub-
sequently tweaked through testing several standard config-
urations for each parameter, using the validation loss in
the NO1 and NO3 regions as a goodness of fit metric. A
summary of the hyperparameters used in the TCN model
is presented in Table 8 and Table 14.

Table 14: Hyperparamters used for the TCN model. Optim-
izer, loss function, learing rate, batch size, epochs, and valida-
tion split are listed in Table 8

Hyperparameter Value
Input length 2 weeks (336 hours)
TCN filters 32

TCN activation ReLU
TCN kernel size 32
TCN dialations (1,2,4,8,16,32)

Dropout No
# nodes, hidden layer 1 128
# nodes, hidden layer 2 128
# nodes, hidden layer 3 128
hidden layer activation ReLU

last layer activation Sigmoid

As seen in Table 14, the TCN layer consisted of 32 separate
filters with kernel size equal to 32. Hence every TCN layer
could perform pattern recognition over a 32-hour horizon.
The dilutions used were 1, 2, 4, 8, 16, and 32, all factors of
two, as recommended by Bai et al. (2018). Furthermore, no
dropout was used. Although it often being recommended
in order to avoid overfitting (Goodfellow et al. 2016), the
use of dropout had little to no impact on validation loss.
Finally, ReLU (f(x) = max(0, x)) was used as activation
function in the TCN layer. However, the TCN layer only
constitutes one layer in the DNN model, which took an in-
put of 2 weeks (336) of temporal data. The final activation
function used was sigmoid, widely used in DL forecasting
(Goodfellow et al. 2016). As with the other deep learn-
ing models implemented, the neural network was optim-
ised using stochastic gradient descent (SGD), explained in
Section 2.1.2, using mean absolute error as the loss func-
tion. With implemented layers in the TCN model, there
were a total of 475,752 trainable parameters, as seen in
Table 15. Over 85% of the trainable parameters were in
the TCN layer, which explains why the ENTCN model
was considerably more computationally expensive than the
vanilla DNN model implemented.
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Table 15: Layers in TCN model, including the TCN layer,
three hidden layers, and the output layer. There are a total of
475,752 trainable parameters

Layer (type) Output shape # param
tcn (TCN) (None, 32) 416,832

dense (Dense) (None, 128) 4,224
dense1 (Dense) (None, 128) 16,512
dense2 (Dense) (None, 128) 16,512
dense3 (Dense) (None, 168) 21,672

5.1.6 Regression

Two regression models were implemented, linear regression
(Lin reg) and quadratic regression (Quad reg), using the
sklearn Python framework. Both models were fitted using
ordinary least squares (OLS), which is explained in Sec-
tion 2.1.5. For both linear and quadratic regression, seven
different regression models were developed, one for fore-
casting the hourly price at the same hour of the day 1, 2,
3, 4, 5, 6, and 7 days ahead. Hence, the models used the
last day of the input sequence as the basis for the price,
then forecasted the price at a specific hour using the price
at the same hour of the last day of the input sequence
and the suitable regression model (based on the number
of days ahead). Furthermore, each region had its own set
of regression models. The equation for the forecast (ŷt,r)
of the regression models at time t in region r is given in
Equation 25.

ŷt,r = Ri,r(xk) (25)

Here, Ri,r is the regression model i days ahead in time in
region r, while xk is the independent variables at the same
hour as t on the day before the forecasting period. As
discussed in Section 2.1.5, the regression model Ri,r can
be expressed using Equation 26.

Ri,r = ar + b1,rx1 + b2,rx2 + ... + bk,rxk (26)

Here, ar is the intercept in region r, while bi,r is the coef-
ficient for independent variable i in region r. This formula
holds for both the linear and quadratic regressions. How-
ever, the x values of the quadratic regression also include all
independent variables multiplied with each other (xj ∗ xi),
as well as the quadratic value of each independent variable
((xi)

2). Hence, when using quadratic regression, the num-
ber of independent variables is equal to |x2| + |x|, which
is the reason why a lower number of independent variables
are included in the quadratic regression, as to avoid over-
fitting (Goodfellow et al. 2016).

5.1.7 The ARIMA and SARIMA Models

As a part of our statistical models, both SARIMA
and ARIMA models were implemented. These models
are described in Section 2.1.6. The programming lan-
guage used was Python, with the statsmodels library
(Seabold and Perktold 2010). This SARIMA- and ARMA-
implementation is build upon the description in Durbin
(2012).

Table 16: Hyperparamters used for the ARIMA and SARIMA
models. ∗ 0 by definition for the ARIMA model

Hyperparameter Value
Estimator AIC

Trend autoregression order (p) 2
Trend difference order (d) 1

Trend moving average order (q) 3
Seasonal autoregressive order (P )∗ 1

Seasonal difference order (D)∗ 0
Seasonal moving average order (Q)∗ 1

Steps (hours) per period (m)∗ 24

In order to find the optimal orders for the models, we con-
ducted a grid search. A grid search means testing all com-
binations of variables in a given range. The information
criteria chosen to evaluate the models was AIC, which is
described in Section 2.1.6. The time complexity of the
SARIMA models is O(m3 ∗ Ntr ∗ Nte/R), where m is the
order of the model, Ntr is the number of training examples,
Nte it the number of test examples and R is the recalibra-
tion rate (Lin et al. 2014). Consequently, it took on average
6270s to run a single model. The run time was something
that we found to be exceedingly resource-consuming dur-
ing the grid search. We had to be exceedingly deliberate
when choosing ranges for the different variables in the grid
search. A too wide search range would have resulted in a
grid search that was overly resource-consuming, whereas a
narrow grid search would not necessarily enable us to find
the optimal hyperparameters. As a reference for ranges
for the different variables with which to conduct the grid
search, Engebretsen et al. (2021) was used as a basis. Addi-
tionally, we used the knowledge we obtained from our data
analysis in Section 4.1. The grid search was conducted in
NO3. However, the SARIMA and ARIMA models were
fitted to each NordPool region individually and refitted
between every forecast. A summary of the hyperparamet-
ers used in the ARIMA and SARIMA models is presented
in Table 16.

5.2 Data Preprocessing and Selection

This subsection describes the data preprocessing and selec-
tion methods used in our experiments. Prior to being used
as input, the data was preprocessed. The preprocessing
that we have conducted can be divided into two stages.
Firstly, we generated categorical variables, and secondly,
the data was standardized.

The first step of the preprocessing phase was to create
dummy variables from the categorical variables. Categor-
ical variables are variables where there is no numerical re-
lationship between the variables and can be helpful when
transformed to dummy variables (Goodfellow et al. 2016).
The calendar effect variables were categorical, and the
hours, weeks, weekdays, holidays, months, and seasons
were transformed into dummy variables. For a given set
of n different categories for a variable, there is a need for
n−1 new dummy variables (Brooks 2019; Goodfellow et al.
2016). A 1 represents an element belonging to a specific
category, whereas a 0 implies the absence from a category.
For granular categories, such as weeks, the result is a sub-
stantial amount of new variables for the data, 51 to be
specific. As a result, we found it more beneficial to use less
granular groups of dummy variables for calendar effects,
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which can be observed in Table 17.

The second step of the preprocessing phase was standardiz-
ation. The input data, except for the calendar-effect vari-
ables, were standardized. Goodfellow et al. (2016) high-
light that adequate numerical transformations are import-
ant to enable the neural networks to learn better. There
are numerous manners in which preprocessing can be con-
ducted. We have chosen standardization, which is de-
scribed in Equation 27. xi is the data point at time t,
µ is the mean, and σ is the standard deviation. Con-
sequently, xstandardize ∼ N (0, 1). Min-max normalization,
principal component analysis, unit vector transformation,
and asinh-transformation were also considered and imple-
mented in code. Nevertheless, we used the standardization
as preprocessing technique rather than the other mentioned
techniques as it resulted in lower validation loss.

xstandardized =
xi − µ

σ
(27)

The independent variables used by each model are sum-
marised in Table 17. The process for finding the variables
for the different models was conducted in the following
manner. Firstly, a linear regression model was used to find
the variables that showed statistical significance regarding
forecasting. The variables that showed significance regard-
ing forecasting gave us a subset of variables. Each model
was validated with this variable set, and validation loss
for NO1 and NO3 was calculated. Here, we removed vari-
ables individually to see which variables could be removed
without creating noticeable jumps in the validation loss.
This was done to prevent overfitting and spurious rela-
tionships between the input and output variables. Con-
sequently, we believe that each model has an adequate set
of input variables for forecasting the electricity price for
the next seven days (168 hrs.). Naturally, the lagged val-
ues for the areas the model is forecasting are included in
all models. The inclusion of this variable as input is also
highly in line with the auto-correlation-plots analysed in
Section 4.1. Furthermore, we also found great explanatory
value for the deep learning models by including calendar
effect variables, although this variable group was not as
important for the linear or quadratic regression. It is no-
ticeable that the weather and production variables proved
to be of explanatory value for all model groups, except
the univariate, which does not have them as input, and
the quadratic regression model. The RNNs and linear re-
gression found the market data valuable, but none of the
other models used market data to this extent. The last
group is the commodity variables. These were used by the
RNNs, ENTCN, and linear regression models. A potential
reason for their explanatory value is that the commodiy
prices function as price setters for the electricity price on
continental Europe, as described in Section 4.2.

5.3 Error Metrics

The performance metrics in this thesis are; mean abso-
lute error (MAE), root-mean-square error (RMSE), mean
average percentage error (MAPE), and symmetric mean
average percentage error (SMAPE). The metrics are sum-
marised in Table 18. These are all standard error met-
rics referenced in other prominent papers within electricity
price forecasting, such as Lago, Marcjasz et al. (2021) and

Weron (2014).

The error metrics most widely used in electricity price
forecasting are mean absolute error (MAE), root-mean-
square error (RMSE), and mean absolute percentage error
(MAPE) (Lago, Marcjasz et al. 2021). MAE provides abso-
lute errors, with symmetrical punishments of too high and
too low forecasts. This can be relevant for an actor experi-
encing a linear loss/ gain of differences in electricity prices.
However, some actors experience significant errors dispro-
portionally more painful than small ones. In these cases,
RMSE is a more relevant error metric since it increases
the magnitude of the error quadratically dependent on the
actual size of the error. RMSE, as with MAE, symmetric-
ally punishes forecasting errors. A weakness with absolute
errors is that they are not comparable across periods or
datasets of different scales (Lago, Marcjasz et al. 2021), a
solution being using relative errors.

Relative error metrics include mean average percentage er-
ror (MAPE) and symmetric mean average percentage er-
ror (SMAPE), which were both used by Engebretsen et
al. (2021). Proportional error measurement can be ap-
plied for the prediction of volatile series, of which elec-
tricity prices are one (Goto and Karolyi 2004). However,
as regional electricity prices can be close to zero or even
negative, these metrics are unsuited as one could get er-
rors approaching infinity. Forecasting errors approaching
infinity for some forecasts will strongly disrupt the meas-
urement and provide little additional value. To account
for this, instances in which the actual price is < 1 e/MWh
(representing only 0.2% of cases across regions) are ignored.

It is insightful to provide several metrics to provide a more
holistic picture of model performance. Furthermore, every
metric tells a different story and might be more or less
relevant for different actors. Hence, including all is relevant
when doing a systematic benchmarking.

5.4 Statistical Testing

To assess if differences in performance across models are
statistically significant, two primary forms of statistical
tests exist; the Diebold-Mariano (DM) and Giacomini-
White (GW) tests. Although the importance of such tests
has been downplayed in electricity price forecasting liter-
ature, most papers only presenting error metrics (Weron
2014), Lago, Marcjasz et al. (2021) highlight the import-
ance in order to ensure statistical rigorous model compar-
isons.

The Diebold-Mariano (DM) test is one of the most used
statistical tests within electricity price forecasting, which
compares forecasts of models (Lago, Marcjasz et al. 2021).
It is an asymptotic z-test, in which the hypothesis is that
the mean of the loss differential series given in Equation 28
is equal to 0 (Diebold and Mariano 1995).

∆A,B
t = L(εAt ) − L(εBt ) (28)

εAt = pt − p̂t (29)

L(εAt ) = |εAt |p p = 1 or 2 (30)

Here, L is the loss function (often absolute or squared loss),
while εAd,h is the prediction error for model A at time t. In
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Table 17: Summary of the models implemented and the time series data types used by each. ∗ Includes ARIMA, SARIMA, and
Naive. ∗∗ Includes LSTM, Stacked LSTM, GRU, and Stacked GRU. ∗∗∗ Dummy variables

Data Univariate∗ DNN RNN∗∗ ENTCN Lin reg Quad reg
NordPool prices x x x x x x

Current bidding area price x x x x x x
Other bidding area prices x x x x x
System Price x x x

Time variables x x x x x
Hour∗∗∗ x x x
Weekday∗∗∗ x x x x x
Month∗∗∗ x
Holiday x x x x x

Commodities x x x
Oil x x x
Gas x x x
Coal x x x

Market data x x x x
Total NordPool Vol x x x x
APX price x x
OMEL price x x
EEX price x x

Production data x x x x
Hydro production x x x x
Wind production x x x x

Weather data x x x x
Temp Norway x x x x
Prec Norway 7 days x x x x

Table 18: Summary of the error metrics, Ft and At are the
forecasted and actual values at time t, n being the number of
predictions. ∗ ignores instances in which the actual price is <
1 e/MWh (0.2% of cases), as these can lead to extremely high
errors, or inf if the price approaches zero or negative values

Error metric Formula
MAE 1

n

∑n
n=0 |Ft −At|

RMSE
√

1
n

∑n
n=0 |At − Ft|2

MAPE∗ 100%
n

∑n
n=0

∣∣∣At−Ft
At

∣∣∣
SMAPE∗ 100%

n

∑n
n=0

|Ft−At|
(|At|−|Ft|)/2

this thesis, p = 1 is used, making the loss function equal to
the mean average error. We can then calculate the Diebold-
Mariano (DM) test statistic, given in equation Equation 31.

DM =
√
N

µ̂

σ̂
(31)

µ̂ and σ̂ are the sample mean and standard deviation of
∆A,B

t , while N is the number of samples. These can easily
be calculated if assuming covariance stationarity of ∆A,B

t

(Diebold and Mariano 1995). It can then be compared to
the Z test statistic, following the standard normal distri-
bution N(0,1). One can then calculate the p-value of the
one-sided with the null hypothesis H0 : E(∆A,B

t ) ≤ 0 (or
a two-sided test in which E(∆A,B

t ) ̸= 0). Here one is try-
ing to prove the alternative hypothesis that model A has
a higher loss than model B (or they have a different loss).
The lower the p-value, the more inconsistent the null hy-
pothesis is with the observed data, one typically rejecting
it at a value lower than 5% (Diebold and Mariano 1995).

An alternative to the DM test is the Giacomini-White
(GW) test (Giacomini and White 2006). The GW test has
replaced the DM test in some recent electricity price fore-

casting papers, such as in Marcjasz, Lago et al. (2020). It
can be regarded as a generalization for unconditional pre-
dictive ability, with only the GW test accounting for para-
meter estimation uncertainty through conditioning (Lago,
Marcjasz et al. 2021). Given the scope of this thesis, only
the Diebold-Mariano test is implemented. However, fur-
ther work might include the implementation of the altern-
ative Giacomini-White test.

5.5 Experimental Design

Before training or fitting the implemented models, the data
set was separated into two non-overlapping data sets, in-
sample and out-of-sample, to ensure that the models were
trained or fitted solely on the out-of-sample data. The in-
sample data set consists of data from 1 January 2014 to 31
December 2019, while the out-of-sample data set is from 1
January 2020 to 31 December 2020. The reason for not us-
ing data from 2021 is the abnormally high prices exhibited
in the NordPool market, which is not remotely reflected
in the in-sample data, which might give a less meaningful
indication of model performances. Furthermore, a testing
environment where each model is required to make a seven-
day hourly (168 points) forecast for the 12 NordPool bid-
ding regions in Norway, Sweden, Denmark, and Finland is
created. Hence, the models are trained on 2184 seven-day
training cases while being tested on 339 separate seven-
day test cases. As some models use up to 21 days of data
as input, the first forecasted period is 00:00 22.01.2020 -
24:00 28.01.2020, with the last being 00:00 25.12.2020 -
24:00 31.12.2020. With 339 separate seven-day test cases,
56,952 distinct hourly prices are forecasted for each test
run on a specific bidding area. Hence, with such a large
number of forecasted data points for all 12 bidding regions,
there is enough data to get statistically significant model
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performance results. However, as every training and test
example starts at 00:00 for a specific day, there are over-
laps between different periods. For example, for two test
periods with 1-day in between, there is a six-day overlap.
Overlaps in test periods are not a problem but something
to be conscious of as model errors for similar periods might
correlate. Finally, the models are assessed across the four
error metrics discussed in Section 5.3 and compared using
the Diebold-Mariano test discussed in Section 5.4. In ad-
dition, the computation times of the implemented models
are also compared.
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6 Results

This section presents the error metrics and statistical tests
(DM) of the models on the 12 NordPool bidding areas.
Furthermore, the average model performances in different
countries and the NordPool area is presented. Lastly, a
deep dive on several high-performing models with example
forecasts from the NO3 (Trondheim) region is provided.

6.1 Bidding Areas

A summary of the error metrics of the implemented models
across all 12 NordPool bidding areas on the out-of-sample
data is presented in Table 20. Furthermore, the highest
performing model across the four error metrics in each bid-
ding area is presented in Table 19. Looking at the results,
several observations can be made:

Table 19: Best performing model across bidding regions and
error metric. ARIMA is the best performing across all Norwe-
gian regions accross all four metrics. In Sweden and Finland
linear regression is the best performing, while SARIMA is the
highest performing model in the Danish regions.

Area MAE SMAPE RMSE MAPE

NO1 ARIMA ARIMA ARIMA ARIMA

NO2 ARIMA ARIMA ARIMA ARIMA

NO3 ARIMA ARIMA ARIMA ARIMA

NO4 ARIMA ARIMA ARIMA ARIMA

NO5 ARIMA ARIMA ARIMA ARIMA

SE1 ARIMA ARIMA ARIMA SARIMA

SE2 ARIMA ARIMA ARIMA SARIMA

SE3 Lin reg Lin reg Lin reg Lin reg

SE4 Lin reg Lin reg Lin reg Lin reg

DK1 SARIMA SARIMA SARIMA Lin reg

DK2 SARIMA SARIMA SARIMA Lin reg

FI Lin reg Lin reg Lin reg Naive 7d

• Across all the Norwegian bidding areas (NO1-NO5),
ARIMA is the highest performing model across all
error metrics. At the same time, the SARIMA and
ENTCN models exhibit good performances across all
error metrics.

• In SE1 and SE2, which have almost identical prices,
the ARIMA and SARIMA models are the highest
performing. However, in SE3 and SE4, linear re-
gression is the highest performing across all error
metrics, followed by the seven-day naive forecast.

• In the Danish regions (DK1 and DK2), the SARIMA
is the highest performing model across all error met-
rics except MAPE (in which linear regression is the
highest performing).

• In the Finish bidding area (FI), the seven-day na-
ive forecast and the linear regression models are the
highest performing.

• Across all 12 bidding regions, the deep learning3

models implemented (DNN, LSTM, S-LSTM, GRU
and S-GRU) perform poorly across all four error
metrics. The LSTM model consistently performed
slightly worse across most bidding areas.

• In most cases, the highest performing model across
the absolute errors (MAE and RMSE) in a specific
bidding region, is in almost all cases4 also the highest
performing model across the relative errors (SMAPE
and MAPE)

• Although there are some regional differences, a num-
ber of models performed well across most bidding
areas across most metrics; these incl. ARIMA, SAR-
IMA, ENTCN, linear regression and the seven-day
naive benchmark.

6.1.1 The Diebold-Mariano Test Across Bidding Areas

In order to compare the performance of the different mod-
els, the Diebold-Mariano (DM) test (as explained in Sec-
tion 5.4) is used. The significance levels of the two-sided
DM test for each bidding area are presented in Figure 23.
In the figure, the blue values represent statistically signi-
ficant better performance of the model on the x-axis vs the
model on the y-axis 5%. Additionally, the models are sor-
ted based on MAE in the specific region in the figure. As
can be seen, almost all differences in performance between
models are statistically significant. Some notable excep-
tions include S-GRU, S-LSTM and DNN in NO1 and AR-
IMA, SARIMA and Quad reg in DK2. The high level of
statistical significance might be due to the very high num-
ber of test examples. Furthermore, there are also model
errors which might also correlate due to overlapping test
periods, somewhat invalidating the DM test assumptions
that the errors follow a normal distribution (Diebold and
Mariano 1995). However, the DM test still gives us a good
indication of differences in model performance.

6.1.2 Computation Time

The time usage of the implemented models is summar-
ised in Table 21. The most time-consuming model was the
SARIMA, in part as this needed to be refitted for each
forecast. The deep learning models were somewhat time
consuming as the Tensorflow architecture needed to be ini-
tialised. Furthermore, the naive forecast and the regres-
sion models required little computation time, as limited
computation was necessary. So although the SARIMA ex-
hibited good predictive performance, it was approximately
ten times slower than the second slowest model.

6.2 Countries and NordPool

To further assess the model performances, this subsection
investigates the average bidding area performance across
the different countries and the NordPool region. A sum-
mary of the avg. model error metrics is presented in
Table 23. Furthermore, the highest performing model by

3Not including the ENTCN model as it is also a hybrid model
4Except for MAPE in DK1, DK2, and FI
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Table 20: Summary of the model error metrics across NordPool bidding regions, (bold = lowest).

Naive 7d ARIMA SARIMA DNN ENTCN LSTM S-LSTM GRU S-GRU Lin reg Quad reg

NO1 MAE 3,11 2,21 2,30 7,32 2,42 7,92 7,23 6,96 7,07 4,14 6,96

SMAPE 38,55 27,44 34,45 144,57 31,47 186,10 128,32 125,98 106,80 57,74 71,76

RMSE 3,97 2,90 2,97 7,72 3,07 8,26 8,04 7,40 8,54 4,93 12,30

MAPE 48,60 33,16 36,26 79,49 40,54 97,20 104,26 74,89 163,63 128,57 205,67

NO2 MAE 3,12 2,22 2,28 7,32 2,41 7,92 7,22 6,95 7,06 3,87 4,88

SMAPE 38,52 27,34 33,82 145,04 31,17 186,26 129,26 126,19 106,38 56,14 68,11

RMSE 3,97 2,90 2,94 7,72 3,07 8,26 7,99 7,39 8,52 4,61 7,42

MAPE 48,48 33,13 35,66 79,79 40,37 97,24 100,61 74,88 161,09 119,65 139,28

NO3 MAE 3,20 2,46 3,03 7,63 2,60 8,23 7,26 7,18 6,75 5,97 7,77

SMAPE 40,79 31,67 39,34 155,09 32,73 189,57 128,93 134,86 99,57 62,15 61,29

RMSE 3,83 3,00 3,53 8,00 3,09 8,55 8,00 7,60 8,14 6,83 13,44

MAPE 50,44 39,22 58,61 85,22 43,43 98,01 88,04 77,74 117,75 136,23 168,70

NO4 MAE 2,64 2,03 2,18 7,02 2,18 7,63 6,66 6,56 6,33 4,04 6,95

SMAPE 37,99 28,98 34,96 153,92 30,41 189,28 127,25 131,93 97,53 47,74 64,65

RMSE 3,20 2,48 2,62 7,33 2,59 7,89 7,36 6,91 7,71 4,82 12,42

MAPE 48,80 35,84 37,25 84,82 40,87 97,95 87,76 76,64 120,03 89,84 149,02

NO5 MAE 2,96 2,06 2,10 7,19 2,23 7,79 7,12 6,83 7,02 3,65 4,55

SMAPE 38,15 26,8 33,49 144,09 30,63 185,95 129,28 125,45 107,45 55,27 65,30

RMSE 3,55 2,56 2,61 7,50 2,72 8,04 7,79 7,17 8,40 4,25 6,95

MAPE 48,03 32,37 34,61 79,27 39,66 97,17 101,82 74,67 167,30 116,48 133,51

SE1 MAE 6,50 5,55 5,65 12,96 5,94 13,57 12,55 12,51 10,62 6,69 9,93

SMAPE 48,43 40,98 45,91 168,29 42,36 192,96 147,48 152,69 105,57 49,52 58,65

RMSE 9,05 7,44 7,46 14,47 7,69 15,01 14,29 14,05 12,94 8,60 16,47

MAPE 66,17 60,09 59,94 90,15 63,42 98,69 88,53 84,92 91,00 89,96 130,48

SE2 MAE 6,50 5,55 5,65 12,96 5,95 13,57 12,55 12,51 10,62 6,69 9,93

SMAPE 48,43 40,98 45,91 168,29 42,33 192,96 147,48 152,69 105,57 49,54 58,48

RMSE 9,05 7,44 7,46 14,47 7,69 15,01 14,29 14,05 12,94 8,61 16,48

MAPE 66,17 60,09 59,93 90,15 63,58 98,69 88,53 84,92 91,00 90,05 130,58

SE3 MAE 12,44 13,07 13,38 20,25 13,03 20,86 19,83 19,79 17,41 10,48 14,66

SMAPE 59,67 61,91 69,05 173,41 61,69 194,19 155,87 161,18 116,71 53,46 67,08

RMSE 17,55 16,99 17,07 25,01 16,69 25,48 24,73 24,59 22,56 14,21 22,67

MAPE 103,63 116,06 120,53 91,73 116,32 98,93 90,76 87,81 91,69 81,36 109,63

SE4 MAE 13,33 14,70 14,36 24,96 14,50 25,57 24,52 24,50 21,69 12,76 17,50

SMAPE 58,47 62,51 67,00 177,80 61,82 195,18 162,78 167,68 124,87 57,25 71,41

RMSE 18,10 18,46 17,87 29,77 18,13 30,26 29,43 29,34 26,87 16,3 25,29

MAPE 109,66 135,35 130,44 93,11 130,86 99,12 92,64 90,03 91,31 81,24 103,18

DK1 MAE 13,24 12,97 11,73 24,54 14,04 25,10 24,21 24,18 21,50 12,48 14,87

SMAPE 62,50 61,03 50,08 180,52 60,48 195,80 168,27 172,20 130,31 57,05 64,65

RMSE 16,81 16,38 14,4 28,37 17,11 28,87 28,06 28,01 25,54 15,08 19,36

MAPE 130,95 101,96 117,49 94,01 119,91 99,22 93,98 91,69 89,59 82,11 97,87

DK2 MAE 13,41 14,22 11,91 27,76 14,75 28,34 27,54 27,35 23,96 13,15 17,15

SMAPE 54,11 58,96 45,62 183,16 56,26 196,39 173,93 175,14 129,53 53,69 60,53

RMSE 18,00 18,42 15,39 32,06 18,31 32,57 31,87 31,66 28,75 16,60 24,52

MAPE 103,28 90,92 102,09 94,96 112,28 99,35 94,92 92,65 87,01 69,67 88,14

FI MAE 12,85 16,80 12,78 27,76 15,64 28,00 26,67 26,92 23,77 12,09 16,04

SMAPE 52,87 65,82 50,90 183,16 61,10 195,81 160,54 171,11 127,25 49,29 52,59

RMSE 17,92 21,23 16,69 32,06 19,65 33,49 32,48 32,55 29,86 15,79 23,59

MAPE 82,38 129,86 102,06 94,96 120,96 99,25 92,12 91,26 87,81 89,05 111,15
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Figure 23: Significance level (p) of the two-sided DM test for each bidding area, with blue values showing a statistically significant
better performance of the model on x-axis vs. the model on y-axis. The models sorted based on MAE model performance.
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Table 21: The computation time (running on the Apple M1-
processor) of fitting/ training and running the implemented
models over the whole out-of-sample dataset on a single bid-
ding area.

Model Computation time

Naive 7d ≤ 1 sec
ARIMA 2-3 min
SARIMA 50-70 min
DNN 50-80 sec
ENTCN 3-5 min
LSTM 3-4 min
S-LSTM 5-7 min
GRU 2-3 min
S-GRU 3-4 min
Lin reg 3-5 sec
Quad reg 6-8 sec

country for each error metric is presented in Table 22.
Looking at the results, a number of observations can be
made:

Table 22: Best performing model over countries and NordPool
(avg. of bidding regions) across the four error metrics. SARIMA
and ARIMA are the best performing models on avg. across all
NordPool bidding areas, with linear regression performing well
in both Sweden and Finland.

Region MAE SMAPE RMSE MAPE

NordPool SARIMA ARIMA SARIMA ARIMA

Norway ARIMA ARIMA ARIMA ARIMA

Sweden Lin reg ARIMA Lin reg Lin reg

Denmark SARIMA SARIMA SARIMA Lin reg

Finland Lin reg Lin reg Lin reg Naive 7d

• On average, across all NordPool bidding regions,
SARIMA is the highest performing across the ab-
solute errors (MAE and RMSE). At the same time,
ARIMA is the highest performing across relative er-
rors (MAPE and SMAPE).

• There are big differences in model performances
between countries. ARIMA is the highest perform-
ing in Norway, while SARIMA is the highest per-
forming in Denmark. However, linear regression is
generally the highest performing model in Sweden
and Finland.

• As seen with the bidding areas, almost all mod-
els perform significantly better in Norway than in
Sweden, Denmark and Finland across all four error
metrics. This is partly due to lower prices and less
electricity price volatility in the Norwegian region,
partly due to a more readily available hydropower
generation.

6.2.1 The Diebold-Mariano Test Across Countries

As with the individual bidding areas, the performance of
the different models across the countries is compared us-

ing the Diebold-Mariano (DM) test (as explained in Sec-
tion 5.4). The significance levels of the two-sided DM test
for each bidding area are presented in Figure 24. The blue
values represent statistically significant better performance
of the model on the x-axis vs the model on the y-axis
5%. As can be seen, almost all differences in perform-
ance between models across all countries are statistically
significant. Notable exceptions include the SARIMA and
the ENTCN in Norway, ARIMA and seven-day naive in
NordPool, and ENTCN and Lin reg in NordPool.

6.3 Comparison of High Performing Models

As discussed in Section 6.1, and shown in Table 20, a num-
ber of models performed consistently well across all bidding
areas and error metrics. These models are further ana-
lysed in this subsection and include; ARIMA, SARIMA,
ENTCN, linear regression and the seven-day naive bench-
mark.

Looking at the descriptive summary of MAE (incl. mean,
median, std, min, and max) provided in Table 24, one can
make several further inferences about model performance:

• Across most bidding areas, the ENTCN model ex-
hibits the highest maximum MAE and standard de-
viation, partly due to making forecasts more deviat-
ing from the current price. This is due to the TCN
component trying to model complex relationships in
the data, while the simple multivariate models to a
higher degree bases their forecast on the most recent
price points.

• Across all models and bidding areas, the median
MAE is consistently lower than the mean. This is
a symptom of a small number of large absolute er-
rors driving up the average value.

• For all models, the standard deviation is the highest
in the SE3 region, with the mean MAE also being
relatively high. This stands in contrast to the Nor-
wegian bidding areas in which the models exhibit low
standard deviations, also having low mean MAE

• The linear regression model is consistently outper-
formed by the other high performing models in the
Norwegian bidding areas but still has low maximum
MAEs. However, the model also exhibits high min-
imum MAEs.

• In Southern Norway, NO1(Oslo), NO2 (Kr.sand) and
NO5 (Bergen), the ARIMA and SARIMA models ex-
hibit extremely low minimum MAEs (≤ 0.44). This
is due to extremely low and consistent price levels
in the Southern region over a one week period. On
the flip side, the minimum MAE values in Finland
are never below 4.5 for any of the models, indicating
that neither of them does a good job of forecasting
the price dynamics in the country. This can be a
symptom of the models being fitted/ trained using
the validation error in the NO1 and NO3 regions as a
goodness of fit indicator. While these regions might
have similar dynamics as other NO regions and even
SE and DK regions, they are far apart from the FI re-
gion. These large regional price differences between
regions can be seen in Figure 35.
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Table 23: Summary of the avg. bidding area model error metrics by country and across NordPool, (bold = lowest).

Naive 7d ARIMA SARIMA DNN ENTCN LSTM S-LSTM GRU S-GRU Lin reg Quad reg

NordPool MAE 7,77 7,82 7,28 15,64 7,97 16,21 15,28 15,19 13,65 8,00 10,93

SMAPE 48,21 44,53 45,88 164,78 45,20 191,70 146,62 149,76 113,13 54,07 63,71

RMSE 10,42 10,02 9,25 17,87 9,99 18,47 17,86 17,56 16,73 10,05 16,74

MAPE 75,55 72,34 74,57 88,14 77,68 98,40 93,67 83,51 113,27 97,85 130,60

Norway MAE 3,00 2,19 2,38 7,29 2,37 7,90 7,10 6,90 6,85 4,33 6,22

SMAPE 38,80 28,45 35,21 148,54 31,28 187,43 128,61 128,88 103,55 55,81 66,22

RMSE 3,70 2,77 2,93 7,65 2,91 8,20 7,84 7,29 8,26 5,09 10,51

MAPE 48,87 34,74 40,48 81,72 40,97 97,51 96,50 75,76 145,96 118,15 159,24

Sweden MAE 9,69 9,72 9,76 17,78 9,86 18,39 17,36 17,33 15,08 9,16 13,01

SMAPE 53,75 51,6 56,97 171,94 52,05 193,82 153,40 158,56 113,18 52,44 63,90

RMSE 13,44 12,58 12,46 20,93 12,55 21,44 20,68 20,51 18,83 11,93 20,23

MAPE 86,40 92,90 92,71 91,28 93,54 98,86 90,12 86,92 91,25 85,66 118,47

Denmark MAE 13,32 13,60 11,82 26,15 14,39 26,72 25,88 25,76 22,73 12,81 16,01

SMAPE 58,30 59,99 47,85 181,84 58,37 196,10 171,10 173,67 129,92 55,37 62,59

RMSE 17,41 17,40 14,9 30,21 17,71 30,72 29,97 29,84 27,15 15,84 21,94

MAPE 117,11 96,44 109,79 94,48 116,09 99,29 94,45 92,17 88,30 75,89 93,00

Finland MAE 12,85 16,80 12,78 27,76 15,64 28,00 26,67 26,92 23,77 12,09 16,04

SMAPE 52,87 65,82 50,90 183,16 61,10 195,81 160,54 171,11 127,25 49,29 52,59

RMSE 17,92 21,23 16,69 32,06 19,65 33,49 32,48 32,55 29,86 15,79 23,59

MAPE 82,38 129,86 102,06 94,96 120,96 99,25 92,12 91,26 87,81 89,05 111,15

Figure 24: Significance level (p) of the two-sided DM test for each country and NordPool, with blue values showing a statistically
significant better performance of model on x-axis vs. model on y-axis. Sorted based on MAE model performance.
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Table 24: Descriptive summary of the MAE of high performing models across bidding areas

Area Model Mean Median Std Min Max

NO1 SARIMA 2.304 1.356 2.415 0.043 17.599
ARIMA 2.213 1.441 2.217 0.022 11.576
ENTCN 2.419 1.539 2.334 0.414 19.721
Lin reg 4.139 3.959 1.698 0.794 11.844

NO2 SARIMA 2.28 1.323 2.396 0.044 17.636
ARIMA 2.216 1.418 2.212 0.022 11.615
ENTCN 2.411 1.502 2.321 0.413 19.096
Lin reg 3.865 3.71 1.579 0.849 10.702

NO3 SARIMA 3.03 2.515 2.1 0.313 9.786
ARIMA 2.459 1.945 1.997 0.259 19.021
ENTCN 2.603 1.912 2.019 0.49 16.885
Lin reg 5.973 5.584 2.689 1.075 16.057

NO4 SARIMA 2.18 1.63 1.793 0.238 9.671
ARIMA 2.028 1.561 1.735 0.25 18.671
ENTCN 2.179 1.657 1.771 0.456 17.446
Lin reg 4.041 3.377 2.346 1.071 14.283

NO5 SARIMA 2.1 1.313 2.126 0.044 14.502
ARIMA 2.056 1.438 2.015 0.022 9.455
ENTCN 2.227 1.447 1.957 0.404 10.027
Lin reg 3.653 3.586 1.469 0.853 8.49

SE1 SARIMA 5.649 4.425 4.415 0.438 32.388
ARIMA 5.552 4.405 4.469 0.397 25.144
ENTCN 5.944 4.598 5.521 0.671 42.451
Lin reg 6.688 6.319 3.148 1.47 17.989

SE2 SARIMA 5.649 4.423 4.414 0.437 32.407
ARIMA 5.552 4.405 4.468 0.397 25.117
ENTCN 5.948 4.616 5.521 0.667 42.452
Lin reg 6.691 6.324 3.149 1.472 17.986

SE3 SARIMA 13.375 10.558 9.451 2.045 55.93
ARIMA 13.07 11.082 9.315 1.206 60.356
ENTCN 13.03 10.984 9.282 1.564 60.836
Lin reg 10.482 8.484 6.465 1.511 42.025

SE4 SARIMA 14.357 12.333 7.823 4.296 51.876
ARIMA 14.704 13.316 6.902 3.392 39.527
ENTCN 14.501 13.1 7.744 2.565 55.351
Lin reg 12.763 11.127 6.332 3.267 41.593

DK1 SARIMA 11.727 10.122 4.922 3.472 37.747
ARIMA 12.971 10.95 6.597 3.049 42.44
ENTCN 14.035 12.151 7.17 3.343 39.833
Lin reg 12.484 11.493 4.895 3.865 34.895

DK2 SARIMA 11.906 10.776 4.858 5.229 31.97
ARIMA 14.219 12.344 7.16 3.547 46.369
ENTCN 14.749 13.039 7.424 3.348 47.127
Lin reg 13.145 11.566 5.635 3.761 39.584

FI SARIMA 12.775 11.417 5.37 5.754 36.529
ARIMA 16.795 15.099 7.581 5.49 68.725
ENTCN 15.641 13.686 8.009 4.536 75.934
Lin reg 12.085 10.864 4.756 5.463 33.429

6.3.1 NordPool

One can draw some interesting inferences by making a deep
dive into the high performing models’ average performance
across the NordPool bidding regions. Looking at Figure 25,
showing the avg. MAE by the hour of the day, one can
see significant variations across the day. While forecasting
errors are relatively low during the night for all models,
they reach almost 2x as high values during the morning
while also spiking during the evening hours. This also cor-
responds to the movement of the electricity price during
the day. Looking at Figure 26, showing the avg. MAE
as a function of the hour into the forecasting horizon, one
can see that these daily fluctuations are highly apparent,
regardless of model. Furthermore, one can see that the
MAE increases further into the forecasting horizon for all
models except the naive benchmark.

In Table 25 one can see the average forecasted price across
all NordPool bidding areas and the share of forecasts over
the actual. One can see that the naive benchmark, the
ARIMA, and the SARIMA models forecast too high and
too low approximately at the same rate. In contrast, the
ENTCN and linear regression models forecast too high val-
ues 59% and 67% of hours, respectively. Interestingly, their
average forecasts are still very similar to the actual, with
the linear regression even forecasting too low price on av-
erage. One reason for this might be the price differences
between regions, resulting in the model making substantial
underestimates in specific regions while consistently over
forecasting by a small amount in others. From Table 25, it
is interesting to note that, on average, the forecast of the
SARIMA model is the closest to that of the actual price.
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Figure 25: Average MAE across all NordPool bidding re-
gions as a function of hour of the day. One can observe that
the highest errors occur during the morning and afternoon

Figure 26: Average MAE across all NordPool bidding re-
gions as a function of hour into the forecasting horizon. One
can observe that the error increases further into the forecast-
ing horizon for all models except the naive benchmark, while
also exhibiting daily fluctuations

Table 25: Average price and share of forecasts above actual value for high performing model on NordPool bidding areas

Naive 7d ARIMA SARIMA ENTCN Lin reg Actual
Avg. (€/MWh) 16.359 15.317 16.190 16.887 15.868 16.260
Share, above actual 53.6% 50.9% 49.1% 58.6% 66.5% -

6.3.2 Deep Dive on the NO3 (Trondheim) Bidding Area

To better understand model performance, it is interest-
ing to take a deep dive into their performance in the NO3
(Trondheim) bidding area, the home of the authors of this
thesis. Looking at Figure 27, showing the avg. MAE by
the hour of the day, one can see significant variations across
the day. Most notably is the performance of the linear re-
gression model, which is much worse than that of the other
models. Looking at Figure 28, showing the avg. MAE as a
function of the hour into the forecasting horizon, one can
see that these daily fluctuations are highly apparent, re-
gardless of model. Furthermore, one can see that the MAE
increases further into the forecasting horizon for all models
except the naive benchmark. The ARIMA, SARIMA and
ENTCN models start the forecasting horizon with almost
no error, followed by a gradual increase throughout the
forecasting horizon.

In Table 26 one can see the average forecasted price in the
NO3 (Trondheim) bidding area and the share of forecasts
over the actual. One can see that the naive benchmark
and the ARIMA models forecast too high and too low ap-
proximately at the same rate. In contrast, the SARIMA
and ENTCN models forecast too high values 55% and 59%
of hours, respectively. However, one can also observe that
the linear regression model forecasts too high values in over
92% of cases, which explains the poor performance of this
model on the NO3 region. In contrast to the other models,
linear regression is an additive model, meaning the effect
of the independent variables is not dependent on the price
levels. Hence, as NO3 exhibited low prices in the out-of-
sample data, the linear model has consistently forecasted
too high prices.

Interestingly, when zooming in on one region, one can ana-
lyse the individual forecasts made by the models. For the

Figure 27: Average MAE in NO3 (Trondheim) as a function of
hour of the day. One can observe that the highest errors occur
during the morning and afternoon

NO3 region, four forecasts in which the ENTCN have per-
formed particularly well (Figure 29 and Figure 30) or par-
ticularly poor (Figure 31 and Figure 32) have been high-
lighted. While it is easy to understand the dynamics of
the Enhanced naive component, the TCN component is a
relatively black box, making it hard to draw causal rela-
tionships between independent and dependent variables.

In the NO3 forecasting period from 00:00 15.08.2020 to
23:00 21.08.2020, seen in Figure 29, the ENTCN models
perform well as the actual price holds a stable price level
while following expected daily fluctuations. The ARIMA
and SARIMA models, which often forecast similarly to the
ENTCN, also exhibit good performances during the period.
On the other hand, the naive benchmark consistently fore-
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Table 26: Average price and share of forecasts above actual value for high performing model on NO3 (Trondheim)

Naive 7d ARIMA SARIMA ENTCN Lin reg Actual
Avg. (€/MWh) 8.500 8.353 8.553 8.889 14.082 8.330
Share, above actual 51.8% 49.2% 55.3% 59.1% 93.2% -

Figure 28: Average MAE in NO3 (Trondheim) as a function
of hour into the forecasting horizon. One can observe that the
error increases further into the forecasting horizon for all models
except the naive benchmark, while also exhibiting daily fluctu-
ations

Figure 29: Forecast of high performing models of the NO3
bidding price in the period from 00:00 15.08.2020 to 23:00
21.08.2020, in which the ENTCN model performed well.

casts too low values due to values the previous week, while
the additive linear regression model expects rising NO3
prices. Additionally one can analyse the NO3 forecasting
period from 00:00 25.01.2020 to 23:00 31.01.2020, seen in
Figure 29. Here the ENTCN, naive benchmark and the
ARIMA perform well, as the price follows a similar pat-
tern as the week before. However, both the SARIMA and
linear regression models perform poorly, as they underes-
timate and overestimate the price movement throughout
the week.

In the NO3 forecasting period from 00:00 20.05.2020 to
23:00 26.05.2020, seen in Figure 31, all the models perform
very poorly. The reason is the extreme spike in price at the
beginning of the forecasting horizon, which neither of the
models can forecast. Furthermore, the price falls very low

Figure 30: Forecast of high performing models of the NO3
bidding price in the period from 00:00 25.01.2020 to 23:00
31.01.2020, in which the ENTCN model performed well.

Figure 31: Forecast of high performing models of the NO3
bidding price in the period from 00:00 20.05.2020 to 23:00
26.05.2020, in which the ENTCN model performed poorly.

throughout the forecasting horizon. The only model able to
somewhat forecast these movements is the seven-day naive
benchmark, which mimics the similar price movements ex-
hibited the week before. Similarly, in the period from 00:00
08.10.2020 to 23:00 14.10.2020, seen in Figure 32, all the
models except the linear regression model perform poorly,
as the price increases gradually throughout the week. A
problem here for the ENTCN, ARIMA and SARIMA mod-
els is the low NO3 prices in the input data, making relat-
ively small absolute changes significant in relative terms
and subsequently hard to forecast. This is, however, not
necessarily a problem when using linear regression as this
is an additive model, which forecasts changes in prices in
absolute terms.
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Figure 32: Forecast of high performing models of the NO3
bidding price in the period from 00:00 08.10.2020 to 23:00
14.10.2020, in which the ENTCN model performed poorly.
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7 Discussion and Conclusion

In this section, we aim to discuss mainly two topics, our
results and benchmark process. We believe that this will
enable the reader and us better understand our benchmark
results.

7.1 Performance of Statistical Models

The statistical models were the most accurate forecasting
models in this benchmark. This subsection aims to under-
stand why the statistical models had the lowest forecasting
error. Our experiment’s most accurate forecasting models
were the SARIMA, ARIMA, linear regression, and seven-
day naive. Apart from the linear regression model, all of
the mentioned statistical models are univariate. Further-
more, the linear regression also has a linear and highly
explainable relationship between the exogenous input vari-
ables and the output variable. Consequently, all the best-
performing models use simple relationships between the
input and output variables. These simple linear relation-
ships contrast with the non-linear transformations the deep
learning models perform when processing the input data to
output. We have identified reasons for the simple statist-
ical models to perform superior to more complex models
such as deep learning. The first feature of the electricity
price beneficial to the simpler statistical models is auto-
correlation and partial autocorrelation properties. From
Section 4.1, the autocorrelation and partial autocorrela-
tion effects are clear. Consequently, one of the most valu-
able input variables a model can have is the lagged value
of the electricity prices. In addition to autocorrelation,
the electricity prices in the NordPool area are stable due
to the high degree of hydropower-based electricity genera-
tion (Statista 2019). Since the electricity production from
a hydro reservoir is more flexible than variable renewable
energy sources, such as a solar power farm, it will lead to
more stable prices. This is due to the fact that a hydro
reservoir functions as a massive battery. This property of
hydro reservoirs enables the producers to increase supply
when demand is higher and lower supply when demand is
lower, resulting in more stable prices. Consequently, there
is less need to model complex price relationships. The more
stable prices are beneficial to the simpler statistical mod-
els, as these models do not estimate substantial changes
in the electricity price from past values. The third fea-
ture making the simple models perform well is the absence
of exogenous variables in the input. From looking at the
correlation analysis in Section 4.2, it is likely not much ex-
planatory power that can be added by including numerous
exogenous variables. Therefore, models such as SARIMA
and ARIMA make conservative estimates with input vari-
ables that do not cause them to forecast deviations in either
direction by omitting exogenous variables. The fourth fea-
ture that makes the statistical models accurate is taking
calendar effects into their forecast. In Section 4 we also
highlighted the calendar effects that electricity prices of-
ten exhibit. The calendar effects have been implemented
in statistical models in manners that do not overly complic-
ate the model. The simplest form is the naive seven days,
which uses the price one week prior (168 hours) to the fore-
cast time. The SARIMA and ARIMA models have some-
what more complicated methods for weighting lagged val-
ues. Nevertheless, the parameter estimation ensures that

the models extract the autocorrelation features in the most
suitable manners (Brooks 2019; Durbin 2012).

We believe some properties of the electricity price have en-
abled the statistical models to perform superior in our ex-
periment. First, the electricity price exhibits strong auto-
correlation properties. Hence, using lagged values as input
makes a good base for forecasting. Second, the NordPool
markets have relatively stable prices due to the high hydro-
power electricity generation share. Stable prices are bene-
ficial for statistical models that do conservative forecasts.
Thirdly, there is not necessarily substantial additional ex-
planatory value in exogenous variables, which makes the
models avoid wrongful relationships between the input and
output by omitting the exogenous variables from the input.
Lastly, the statistical models adjust for the calendar effects
the electricity price exhibits; the simple statistical models
performed the best in our benchmark.

7.2 Performance of Deep Learning Models

Although deep learning models have been found to per-
form strongly for electricity price forecasting tasks (Kuo
and Huang 2018; Lago, Ridder et al. 2018; Wan et al.
2019), we found the opposite to be the case. This observa-
tion is interesting since the deep learning models should be
capable of modeling highly complex relationships between
the input and output variables. This observation is also
highly exemplified in Figure 33 and Figure 34. These fig-
ures show the average error across every 24 hours of the
day and a week, respectively. The deep learning models
have substantially higher forecasting errors in all hours of
both the day and week compared to the statistical models
and ENTCN.

From Figure 33, it seems that the forecasting error of the
deep learning models is higher as the electricity price in-
creases. This can be observed as the lower error at night
and higher error in the morning (relative to other hours of
the day). The same observation can be made when looking
at the average forecasting error across a week. Although
the error is expected to increase as the forecasting hori-
zon increases, the deep learning models still seem to have
a forecasting error pattern that resembles the electricity
price.

Overfitting is a potential hazard when looking at the com-
plexity of the models and the errors. However, in Table 8,
it is described that the deep learning models are trained
for a total of 30 epochs. After 30 epochs, we experienced
small reductions in error after a previously steep decline.
Consequently, overfitting is likely not the explanation for
the inaccuracy of the deep learning models compared to
the simpler statistical models (Goodfellow et al. 2016).

A possible reason for the poorer performance of the deep
learning models is that the models are stuck in a local
minimum, where there is too much explanatory power in
exogenous variables. This theory is interesting and can
hold some explanatory power. However, the group has
taken two measures to avoid a situation where the models
are in a local minimum with excessive explanatory power
given to exogenous variables. First, a wrapper method,
described in Section 5, was implemented and used for fea-
ture selection. The wrapper should ensure that the models
omit variables that have little explanatory power. How-
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Figure 33: Average MAE in NO3 (Trondheim) as a function of
hour of the day for selected models. One can see the deep learn-
ing (DNN, LSTM, and GRU) models have significantly higher
errors than the SARIMA and ENTCN for all hours of the day

Figure 34: Average MAE in NO3 (Trondheim) as a function of
hour into the forecasting horizon for selected models. One can
see the deep learning (DNN, LSTM, and GRU) models have sig-
nificantly high errors throughout the whole forecasting horizon,
while the SARIMA and ENTCN have gradually increasing error
throughout the forecasting horizon

ever, from Table 17, it is evident that the deep learning
models have many features as input variables, which in-
creases the risk of giving explanatory power to insufficiently
relevant variables. This issue can be handled by increasing
the level of significance required for exogenous variables to
be tested in the model. The second means used to avoid
a local minimum was the learning rate. A higher learning
rate might have yielded a model with different and more
desirable parameters. Nevertheless, we tested for multiple
values for the learning rate and found the learning rate re-
ported in Table 8 to be the best in the validation data. As
a result of our two means taken to avoid such a situation,
it is not very likely that this is the case for the models.

To find starting points for our hyperparameters, we used
the literature described in Section 5. As stated by Jedrze-
jewski et al. (2022), 90% of the literature written about
electricity price forecasting is about the day-ahead market.
As a result, the initial values around which we conducted
the sensitivity search for hyperparameters were reported
when forecasting the day-ahead price. Consequently, the
hyperparameter values can be vastly different from val-
ues that would have given us a superior forecast, assuming
they exist. In order to combat such an event, where the
initial values for the model hyperparameters are vastly dif-
ferent from what is required, we had broad searches for
different values. However, a multi-dimensional grid search
was not conducted since it would be exceedingly resource-
consuming and not common to do (Goodfellow et al. 2016).
As a result, we cannot rule out that a linear combination
of hyperparameter values found to be suboptimal will not
create models that forecast better.

An explanation for the larger errors for the deep learning
models is that they are not provided with the correct data
to model the future electricity price appropriately. In Sec-
tion 3 and Table 1 it is evident that numerous models use
features such as load forecast as input. Including forecasts
of other relevant exogenous variables can increase the fore-
casting accuracy of the deep learning models.

An alternative to including more data sources is to include

data from further in the past. This will give us more train-
ing data and enable the model to train on a broader range
of data. We did not have a vast amount of training sample
available, only around 2000. Goodfellow et al. (2016) high-
light that substantial amounts of data is required for mak-
ing strong deep learning models. Consequently, adding
older data to our data set can improve the training of the
models. However, there are also downsides to adding data
from further back. Since the electricity markets are con-
tinuously evolving, new grid interconnections, fuel sources,
and other external factors result in structural breaks in
the electricity prices. Consequently, including older data
samples might mean the inclusion of irrelevant data, which
means that the market has evolved to such an extent that
the oldest training samples no longer represent the different
variable relationships present in the market. Naturally, a
solution to this problem is to update the data set with the
most recent data. In order to be in line with the best prac-
tices of electricity price forecasting, the test period must
be shifted if the most recent data is added.

The deep neural network displays a lower forecasting er-
ror than the LSTM and GRU. The difference in error is
observable in Figure 33 and Figure 34 and verified by the
Diebold-Mariano test. A possible explanation for this res-
ult is that the deep neural network has the flexibility to
weight input steps differently. The RNNs are not capable
of this weighting due to parameter sharing, explained in
Section 2.1.3. The ability to weigh inputs differently has
proven to improve the forecasts of other electricity price
forecasting models. Examples are Wan et al. (2019) and
Lago, Ridder et al. (2018). As a result, the flexibility of the
deep neural network is a possible reason for the observation
that the DNN model performs superior to the RNNs.

7.3 Discussing the ENTCN

As a part of our contribution to the literature, we bench-
marked the ENTCN-model against numerous other electri-
city price forecasting models, some of which were described
as state-of-the-art by other authors. We will, in this sub-
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Figure 35: Violin plots showing the hourly electricity price (e/ MWh) distribution for each bidding area in the out-of-sample
dataset. There are clear differences in mean, standard deviation, and skew between the different regions.

section, discuss the results of the ENTCN-model. Our pro-
posed model turned out to be fairly accurate. The model
consists of two parts, described in Figure 21. Since the
ENTCN had a feature selection and a hyperparameter tun-
ing process similar to the other deep learning models previ-
ously described, it might suffer from some of the potential
pitfalls of the deep learning models. These shortcomings
are described in Section 7.2. The temporal convolutional
neural network did not add an exceedingly more accur-
ate forecast. The changes the convolutional layers made
to the enhanced naive forecasts were small. Consequently,
the TCN-layers did not extract increased explanatory in-
formation from the input data. As a result, it is hard to
conclude that the ENTCN-model we have proposed is very
successful for electricity price forecasting.

7.4 Generalizability

For research to be valid, the results should be generalizable.
A piece of research is generalizable, meaning that it can be
used in other similar problems.

Looking at the generalizability first, the proposed model
and all other models made in this thesis were tested in
twelve different regions. Testing in different regions is good
for generalizable results. Furthermore, Figure 35 show-
ing the actual price distribution in the out-of-sample data
for each region, shows that there are also large differences
across regions, further emphasising the generalizability of
the benchmark. However, we have solely used the Nord-
Pool area, where there is a similarity between the markets.
The similarity comes from the grid interconnectivity de-
scribed in Section 2. For example, forecasting the price
in NO1 compared to NO2 is not that different. Further-
more, the two regions have a linear correlation coefficient
of 0.96, which is observable in Figure 20. A feature of
our study which makes it more generalizable is the length
of the test data. As highlighted in Section 3 and by the
papers Croonenbroeck and Stadtmann (2019) and Jedrze-
jewski et al. (2022), a test period for a year is required for

generalizable results. Our test period was the entire year
of 2020, which is on par with the best practices. Naturally,
2020 proved to be a year different from many of the pre-
ceding years, which can have affected the electricity price
in this period. Nevertheless, it was the most recent year in
our data set, so we used it as the test period. Even though
the models have been tested across twelve different bid-
ding regions and had a test period across a year, we can
conclude that more work can be done to investigate our
models’ generalizability. These improvements are further
discussed in Section 8.

7.5 Forecasting Spikes in the Electricity Price

Electricity price forecasting models that are capable of fore-
casting price spikes are powerful. Hellström et al. (2012)
highlight that price spikes are often caused by exogenous
factors that strongly shift demand or supply in either direc-
tion. An example can be windy weather conditions which
causes substantial amounts of wind energy to be produced.
Consequently, creating a negative price spike. This price
spike is predictable if weather forecasts are included as an
input variable. Furthermore, Jedrzejewski et al. (2022)
highlight that the electricity price and grid load exhibit
a non-linear relationship. From the two observations by
Hellström et al. (2012) and Jedrzejewski et al. (2022), a
deep learning model with reliable forecasts and abilities to
model non-linear relationships will therefore be capable of
predicting price spikes, naturally assuming proper training
and architecture. However, the deep learning models in
this experiment did not have forecasts as input variables.
Consequently, we were not capable of capture the non-
linear forecasting capabilities of the deep learning models.
This can also explain why the deep learning models did not
perform as well as the statistical models.
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7.6 Electricity Price Forecasting Best Practices

To ensure reproducibility and meaningful results, the thesis
follows a list of eight electricity price forecasting best prac-
tices listed in Jedrzejewski et al. (2022) and (Lago, Mar-
cjasz et al. 2021), as discussed in Section 5:

1. The out-of-sample data is selected as the last section
of the data, with 2014-2019 used for training while
2020 is used for testing. Furthermore, the hyper-
parameters are set using a validation dataset from
the in-sample data, consisting of 5% of the training
data.

2. All new models are tested against well-known state-
of-the-art models, with open-source libraries such as
Tensorflow/ Keras, statsmodels, and sklearn. Fur-
thermore, all the data is sourced from open-access
datasets such as NordPool and the Norwegian Met-
eorological Institute.

3. Several error metrics, both absolute and relative, are
used to evaluate the models, including MAE, MAPE,
SMAPE, and RMSE.

4. The statistical test Diebold-Mariano is used to assess
the statistical significance of differences in predictive
performance between the models.

5. The split and dates of the dataset are explicitly
stated, as discussed Section 5.5.

6. All the inputs of the models are explicitly stated in
Table 17.

7. The computational costs of the methods are evalu-
ated and compared with the running time reported.
Here one could also compare the big O time com-
plexities of the models.

8. A number of forecasting models are recalibrated
daily, incl., SARIMA and ARIMA. Given better pro-
cessing power or more time available, one could also
use to recalibrate the deep learning models more of-
ten, as these are only calibrated at the beginning of
the test period.

7.7 Conclusion

To conclude the thesis, the benchmark showed that the
statistical models performed comparably better than the
deep learning ones across all bidding areas and error met-
rics. In addition, the hybrid ENTCN model performed
significantly better than the deep learning models but was
often outperformed by simpler statistical models. Further-
more, there was a little statistically significant improve-
ment in adding the TCN component to the enhanced naive,
somewhat invalidating the attractiveness of the ENTCN
model. The enhanced naive model even performed better
than the proposed ENTCN model in some bidding regions.
There were differences in which models performed best
across different bidding areas and countries. The ARIMA
model performed best across all error metrics in Norway,
while the SARIMA model was the highest performing in
Denmark. However, the linear regression model performed
best in both Sweden and Finland. On average, across the
12 NordPool bidding areas, the SARIMA performed best

on the absolute error metrics while the ARIMA did best on
the relative error metrics. These results were obtained us-
ing data from 2014-2019 for training and data from 2020 for
testing. However, these results might differ if the models
were tested or trained on other time periods and might not
even be generalizable to more volatile and higher NordPool
prices, as seen in 2021 and 2022. Furthermore, these results
can not be used to make any inferences on performance in
other electricity markets. However, the benchmark indic-
ates their performance on the respective NordPool bidding
areas in the Nordics, providing a new perspective to the
field of electricity price forecasting. In summary thesis con-
tributes to the literature and the field of electricity price
forecasting in two main ways. Firstly, it provides an up
to date systematic benchmarking of multiple state-of-the-
art methods across multiple NordPool bidding areas in ac-
cordance with electricity price forecasting best practices
(Jedrzejewski et al. 2022). Secondly, the thesis provides
development and a state-of-the-art benchmark of a hybrid
ENTCN model, which was developed in a project thesis by
the authors of this thesis (T. R. Wang et al. 2021).

43



8 Further Work

In this section, we have identified several areas of potential
further work on the benchmark in this thesis. The po-
tential areas of further work include developing ensemble
models, tuning hyperparameters, testing on other power
markets, and using new independent variables.

8.0.1 The Development of Ensemble Models

Many other benchmarks have shown ensemble models,
which are models combining two or more models, to ex-
hibit improved predictive accuracy. Ensembling of models
is a common way in which to improve performance (Good-
fellow et al. 2016), an example including Lago, Marcjasz et
al. (2021) which showed that ensemble DNN models gener-
ally outperformed single models. Hence, it would be excit-
ing to benchmark different ensemble permutations of the
models implemented in this thesis. However, one concern
regarding the use of ensemble models is the high correla-
tion in forecasting between the high-performing models in
the current thesis (as can be seen Figure 31), as most work
somewhat similarly. Therefore, there is no guarantee that
the ensemble models would see the same improvement as
reported in other cases.

8.0.2 Tuning of Hyperparameters and Feature Selection

Although much time was used on the tuning of hyper-
parameters and selecting input variables in this thesis (as
described in Section 5.2 and Section 5.1), this is still an
area of further work. Investigating other ways of tuning
hyperparameters and inputs could shed further light on
the potential model performances. A potential technique
would be to implement a tree-structured Parzen estimator
(Bergstra et al. 2011), a Bayesian optimization algorithm
based on sequential model-based optimization, implemen-
ted in both (Lago, Marcjasz et al. 2021) and (Lago, Rid-
der et al. 2018). Here, the optimal combination of hy-
perparameters and features is optimized, with the features
being represented as binary hyperparameters. The chal-
lenge with doing this, and the main reason for not doing
it in this thesis, is the computational requirements of do-
ing it for a large number of models across a large num-
ber of bidding areas. However, if implementing a specific
model for a certain bidding region, using more time optim-
izing could potentially improve performance. This thesis
used the same hyperparameters and features for each bid-
ding area. Further work should also include tuning these
for each region as significant differences in price movement
dynamics across regions.

8.0.3 Testing of Other Power Markets

As discussed in Jedrzejewski et al. (2022), generalizable
electricity price forecasting benchmarks should aim to
model several markets. Although the current thesis has
benchmarked the model on 12 NordPool bidding regions,
it would be highly relevant to test the models on other
power markets, which might be less correlated. Examples
of this could be PJM, EPEX-BE, EPEX-FR, EPEX-DE,
or OMEL which all exhibit different price dynamics, vs.

NordPool, with different energy generation mixes and
transmission capacities. However, there is a particular fo-
cus on how the model would perform in the Nordic region
in this paper. Furthermore, one could also try to bench-
mark the models on newer testing periods. However, the
main challenge with testing different time periods is that
the out-of-sample data always has to be at the end of the
dataset (Jedrzejewski et al. 2022) to not test the models
on data prior to the training examples.

8.0.4 Gathering of Relevant Data

When developing multivariate time series forecasting mod-
els, the features used are essential for model performance
(Goodfellow et al. 2016). A challenge in the current thesis,
and an area of future work, is the gathering and utilizing
more (and better) data. Although there was a lot of avail-
able weather data for Norway, having the same type of data
for the other Nordic countries could be highly beneficial
when forecasting the SE, DK, and FI regions. Further-
more, what is lacking is historic weather forecasts, such
as temperature, precipitation, sun, or sunlight, relevant
for future production of variable renewable energy sources
such as wind and solar. Other interesting datasources in-
clude, load forecasts, wind foreacasts, forward prices, or
grid capacities between regions (which is available from
NordPool for the most recent years). The difficulty here
is that these might be hard to find. Interestingly, if grid
capacities between regions were to be included it might
counter the effects of structural breaks due to new capacit-
ies, as these changes then would be incorporated into the
models. The utilization of such data could enhance the
performance of the implemented multivariate model.
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Appendix

A Abbrevations

The used abbreviations and terminology is listed below:

• ACF: Complete auto-correlation function

• ADF: Augmented Dickey-Fuller test

• AI: Artificial intelligence

• AIC: Akaike information criterion

• APX: Energy market operating in the Netherlands, the United Kingdom, and Belgium

• AR: Autoregressive

• ARIMA: Autoregressive integrated moving average

• ARMA: Autoregressive (AR) with moving average (MA)

• CNN: Convolutional neural network

• CI: Computational intelligence

• DL: Deep-learning

• DM: Diebold-Mariano (also referees to the Diebold-Mariano test statistic)

• DNN: Deep neural network

• EEX: European Energy Exchange

• EN: Enhanced naive

• ENTCN: Enhance naive temporal convolutional network, the hybrid model combining the developed Enhanced
naive model and the TCN model

• EPF: Electricity price forecasting

• GRU: Gated recurrent unit

• GW: Giacomini-White

• LSTM: Long-short term memory

• MA: Moving average

• MAE: Mean average error

• MAPE: Mean average percentage error

• ML: Machine learning

• MET: Norwegian Meteorological Institute

• MLP: Multi-layer perceptron

• MWh: Megawatt hour

• NordPool: Pan-European power exchange, with main operations in the Nordics. In this thesis it often refers to
the NordPool operations in Norway, Sweden, Denmark and Finland

• OLS: Ordinary least squares

• OMEL/ OMIE: Energy market operating in Spain/ Portugal

• PACF: Partial auto-correlation function

• PJM (Pennsylvania Jersey Maryland): Regional transmission organization in the US

• ReLU: Rectified Linear Unit (f(x) = max(0, x))

• RMSE: Root-mean-square deviation

• RNN: Recurrent neural network
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• SMAPE: Symmetric mean average percentage error

• SGD: Stochastic gradient descent

• S-GRU: Stacked gated recurrent unit

• S-LSTM: Stacked long-short term memory

• TCN: Temporal convolutional network, a form of CNN used on time series data

• VRE: Variable renewable energy (e.g., wind and solar)

B Further Data Analysis

This section presents the values for calendar effects, auto-correlation plots, and partial autocorrelation plots for the
remaining price areas in the NordPool area.

B.1 Calendar effect variables

Table 27: Hourly coefficients over the in-sample data period (1 Jan 2014 - 31 Dec 2019) for all non-NO-regions.

Hour SE1 SE2 SE3 SE4 DK1 DK2 FI
0 0.886 0.886 0.875 0.851 0.828 0.817 0.782
1 0.852 0.852 0.841 0.818 0.791 0.772 0.749
2 0.831 0.831 0.820 0.797 0.768 0.746 0.730
3 0.823 0.823 0.813 0.790 0.758 0.737 0.724
4 0.838 0.837 0.827 0.804 0.770 0.753 0.743
5 0.891 0.891 0.880 0.856 0.822 0.814 0.850
6 0.972 0.972 0.961 0.950 0.966 0.946 1.010
7 1.073 1.073 1.082 1.101 1.123 1.124 1.164
8 1.129 1.129 1.155 1.180 1.191 1.205 1.241
9 1.121 1.121 1.139 1.159 1.164 1.181 1.220
10 1.106 1.106 1.119 1.131 1.127 1.147 1.184
11 1.088 1.088 1.096 1.106 1.096 1.115 1.160
12 1.063 1.063 1.065 1.066 1.046 1.068 1.134
13 1.045 1.045 1.044 1.044 1.017 1.041 1.101
14 1.031 1.031 1.029 1.025 0.997 1.020 1.069
15 1.031 1.031 1.031 1.026 1.002 1.023 1.074
16 1.044 1.044 1.051 1.054 1.034 1.058 1.101
17 1.084 1.084 1.103 1.126 1.137 1.154 1.136
18 1.091 1.091 1.106 1.139 1.177 1.185 1.159
19 1.072 1.072 1.073 1.110 1.165 1.159 1.079
20 1.035 1.035 1.027 1.046 1.106 1.087 0.959
21 1.011 1.010 0.999 0.995 1.042 1.020 0.935
22 0.974 0.974 0.962 0.946 0.988 0.961 0.885
23 0.912 0.912 0.901 0.880 0.885 0.867 0.811

Table 28: Weekday and holiday coefficients over the in-sample data period (1 Jan 2014 - 31 Dec 2019) for all non-NO-regions.

Type of day SE1 SE2 SE3 SE4 DK1 DK2 FI
Monday 1.030 1.030 1.036 1.041 1.034 1.035 1.074
Tuesday 1.047 1.047 1.052 1.062 1.070 1.072 1.069

Wednesday 1.044 1.044 1.046 1.058 1.075 1.069 1.068
Thursday 1.042 1.042 1.049 1.053 1.060 1.062 1.066

Friday 1.012 1.011 1.013 1.019 1.044 1.036 1.049
Saturday 0.927 0.927 0.916 0.898 0.894 0.887 0.859
Sunday 0.899 0.899 0.889 0.868 0.823 0.838 0.815
Holiday 0.824 0.823 0.813 0.798 0.726 0.721 0.796

B.2 ACF- and PACF-PLOTS
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Table 29: Monthly coefficients over the in-sample data period (1 Jan 2014 - 31 Dec 2019) for all non-NO-regions.

Month SE1 SE2 SE3 SE4 DK1 DK2 FI
January 1.071 1.071 1.083 1.068 1.002 1.019 1.071
Februar 1.001 1.001 1.001 1.001 0.967 0.963 0.982
March 0.966 0.966 0.958 0.943 0.903 0.905 0.918
April 0.935 0.935 0.925 0.904 0.923 0.893 0.909
May 0.916 0.916 0.906 0.906 0.935 0.926 0.899
June 0.903 0.903 0.899 0.931 0.961 0.977 0.904
July 0.955 0.955 0.945 0.935 1.006 0.971 1.033

August 1.045 1.045 1.050 1.037 1.077 1.076 1.087
September 1.052 1.053 1.053 1.046 1.066 1.087 1.079
October 1.024 1.024 1.033 1.077 1.052 1.078 1.053

November 1.111 1.111 1.122 1.129 1.150 1.136 1.070
December 1.020 1.020 1.027 1.023 0.958 0.969 0.992

Table 30: Monthly average prices over the in-sample data period (1 Jan 2014 - 31 Dec 2019) for all non-NO-regions.

Month SE1 SE2 SE3 SE4 DK1 DK2 FI
January 34.738 34.738 35.542 36.091 32.194 34.637 39.668
February 32.463 32.463 32.865 33.801 31.079 32.751 36.374

March 31.312 31.312 31.436 31.870 29.040 30.760 33.992
April 30.319 30.319 30.368 30.538 29.664 30.383 33.654
May 29.700 29.700 29.736 30.604 30.064 31.488 33.283
June 29.290 29.290 29.501 31.435 30.902 33.227 33.478
July 30.954 30.954 31.014 31.583 32.323 33.033 38.241

August 33.894 33.894 34.484 35.035 34.612 36.590 40.237
September 34.117 34.141 34.570 35.350 34.272 36.951 39.936
October 33.191 33.191 33.907 36.371 33.818 36.645 38.993

November 36.037 36.037 36.835 38.142 36.959 38.632 39.603
December 33.065 33.065 33.713 34.548 30.795 32.963 36.723

Figure 36: ACF-plot over the in-sample data period (1 Jan 2014 - 31 Dec 2019) for all non-NO-regions.
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Figure 37: PACF-plot over the in-sample data period (1 Jan 2014 - 31 Dec 2019) for all non-NO-regions. The value at lag 1 is at
approximately 0.99.

Figure 38: Price histogram over the in-sample data period (1 Jan 2014 - 31 Dec 2019) for all non-NO-regions. The histograms
are cut off at e/MWh 60, and cover 99% of the distribution.
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C Detailed Model Performances

This section provides the mean, median, standard deviation, min and max for all error metrics across all bidding regions
for each implemented model. The results for the different models can be found in the following tables:

• Naive 7-day: Table 31

• ARIMA: Table 32

• SARIMA: Table 33

• DNN: Table 34

• ENTCN: Table 35

• LSTM: Table 36

• Stacked LSTM: Table 37

• GRU: Table 38

• Stacked GRU: Table 39

• Linear regression: Table 40

• Quadratic regression: Table 41
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Table 31: Summary of Naive 7d model performance across all bidding areas and error metrics

Area Metric Mean Median Std Min Max

NO1 MAE 3.114 2.19 2.906 0.039 12.135
SMAPE 38.553 27.697 31.529 2.602 147.676
RMSE 3.967 2.539 4.048 0.054 18.104
MAPE 48.597 28.095 60.29 2.675 353.977

NO2 MAE 3.118 2.203 2.899 0.039 12.135
SMAPE 38.518 27.526 31.487 2.602 147.676
RMSE 3.97 2.54 4.044 0.054 18.104
MAPE 48.475 28.402 59.743 2.675 346.318

NO3 MAE 3.195 2.862 2.166 0.622 10.406
SMAPE 40.789 34.604 21.574 8.384 104.891
RMSE 3.832 3.373 2.594 0.712 12.033
MAPE 50.437 36.457 44.412 8.588 247.859

NO4 MAE 2.642 2.182 1.698 0.484 8.605
SMAPE 37.991 31.984 22.468 8.384 124.927
RMSE 3.203 2.524 2.142 0.574 11.569
MAPE 48.801 32.17 54.2 8.588 387.875

NO5 MAE 2.955 2.189 2.737 0.039 11.864
SMAPE 38.153 26.157 31.646 2.602 147.676
RMSE 3.547 2.539 3.238 0.054 13.335
MAPE 48.032 26.182 60.275 2.675 353.977

SE1 MAE 6.503 5.576 4.233 0.75 19.404
SMAPE 48.432 44.862 22.178 8.384 115.631
RMSE 9.045 7.496 6.817 1.099 31.174
MAPE 66.165 47.467 54.179 8.588 284.248

SE2 MAE 6.503 5.576 4.233 0.75 19.404
SMAPE 48.432 44.888 22.178 8.384 115.631
RMSE 9.045 7.496 6.817 1.099 31.174
MAPE 66.165 47.467 54.179 8.588 284.248

SE3 MAE 12.439 10.245 8.429 1.981 44.716
SMAPE 59.665 53.93 28.433 9.312 145.938
RMSE 17.55 14.411 11.563 2.538 57.333
MAPE 103.628 64.841 133.915 9.486 925.69

SE4 MAE 13.329 11.552 6.835 4.644 38.217
SMAPE 58.472 56.049 23.109 16.745 131.327
RMSE 18.103 15.603 9.003 6.88 46.143
MAPE 109.658 68.783 123.306 16.72 764.836

DK1 MAE 13.236 11.741 6.597 3.626 44.358
SMAPE 62.503 59.494 29.204 9.662 161.197
RMSE 16.807 15.305 7.531 5.271 48.37
MAPE 130.95 74.191 227.862 9.034 1921.01

DK2 MAE 13.406 11.559 6.67 4.888 38.357
SMAPE 54.105 51.598 22.019 18.019 133.233
RMSE 18.004 15.854 8.837 7.676 46.219
MAPE 103.277 60.178 125.914 15.682 743.989

FI MAE 12.845 10.463 7.049 4.152 37.972
SMAPE 52.869 50.374 23.882 13.97 129.503
RMSE 17.919 14.449 9.646 5.676 47.278
MAPE 82.381 63.065 82.648 14.451 536.253
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Table 32: Summary of ARIMA model performance across all bidding areas and error metrics

Area Metric Mean Median Std Min Max

NO1 MAE 2.213 1.441 2.217 0.022 11.576
SMAPE 27.438 18.557 23.412 1.403 124.511
RMSE 2.9 1.791 3.208 0.028 17.876
MAPE 33.161 19.616 41.89 1.406 271.697

NO2 MAE 2.216 1.418 2.212 0.022 11.615
SMAPE 27.335 18.807 23.151 1.385 124.389
RMSE 2.899 1.76 3.205 0.028 17.87
MAPE 33.134 20.801 41.756 1.389 271.187

NO3 MAE 2.459 1.945 1.997 0.259 19.021
SMAPE 31.672 27.328 19.833 5.115 120.896
RMSE 3.0 2.451 2.324 0.332 19.49
MAPE 39.223 27.386 42.075 5.341 437.315

NO4 MAE 2.028 1.561 1.735 0.25 18.671
SMAPE 28.977 23.96 20.552 4.3 116.295
RMSE 2.482 1.828 2.044 0.293 19.096
MAPE 35.838 24.84 41.849 4.228 372.067

NO5 MAE 2.056 1.438 2.015 0.022 9.455
SMAPE 26.804 17.891 23.351 1.4 125.601
RMSE 2.563 1.758 2.538 0.028 11.787
MAPE 32.366 19.051 41.378 1.403 271.485

SE1 MAE 5.552 4.405 4.469 0.397 25.144
SMAPE 40.983 35.687 24.192 5.048 149.107
RMSE 7.437 5.592 6.469 0.499 29.718
MAPE 60.089 37.229 60.51 5.188 373.792

SE2 MAE 5.552 4.405 4.468 0.397 25.117
SMAPE 40.982 35.69 24.192 5.048 149.11
RMSE 7.437 5.592 6.468 0.499 29.718
MAPE 60.086 37.229 60.507 5.188 373.779

SE3 MAE 13.07 11.082 9.315 1.206 60.356
SMAPE 61.913 57.251 29.696 5.626 200.0
RMSE 16.994 13.649 11.488 1.953 62.317
MAPE 116.064 72.479 151.682 5.43 1277.305

SE4 MAE 14.704 13.316 6.902 3.392 39.527
SMAPE 62.508 58.135 25.337 17.427 168.495
RMSE 18.462 16.069 8.807 4.987 47.127
MAPE 135.347 80.449 144.574 15.854 741.256

DK1 MAE 12.971 10.95 6.597 3.049 42.44
SMAPE 61.034 50.395 36.508 12.089 200.0
RMSE 16.383 14.511 7.657 4.522 46.95
MAPE 101.956 67.239 133.146 11.229 1340.57

DK2 MAE 14.219 12.344 7.16 3.547 46.369
SMAPE 58.955 49.856 33.031 13.929 200.0
RMSE 18.417 15.495 9.12 5.319 56.692
MAPE 90.919 56.227 104.37 14.455 800.679

FI MAE 16.795 15.099 7.581 5.49 68.725
SMAPE 65.818 60.619 27.611 19.949 199.327
RMSE 21.227 18.292 9.47 7.136 72.618
MAPE 129.86 81.693 139.2 17.164 918.253
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Table 33: Summary of SARIMA model performance across all bidding areas and error metrics

Area Metric Mean Median Std Min Max

NO1 MAE 2.304 1.356 2.415 0.043 17.599
SMAPE 34.454 22.584 32.187 2.879 149.212
RMSE 2.971 1.606 3.297 0.056 17.888
MAPE 36.262 23.0 41.875 2.927 295.817

NO2 MAE 2.28 1.323 2.396 0.044 17.636
SMAPE 33.82 22.512 31.898 2.71 148.657
RMSE 2.937 1.575 3.272 0.057 17.926
MAPE 35.655 22.613 41.549 2.718 295.496

NO3 MAE 3.03 2.515 2.1 0.313 9.786
SMAPE 39.342 30.517 25.884 6.206 134.357
RMSE 3.528 3.074 2.369 0.467 10.747
MAPE 58.608 30.755 59.904 5.921 286.005

NO4 MAE 2.18 1.63 1.793 0.238 9.671
SMAPE 34.961 25.075 31.034 3.254 163.597
RMSE 2.622 2.044 2.104 0.293 10.134
MAPE 37.251 24.729 38.719 3.29 332.585

NO5 MAE 2.1 1.313 2.126 0.044 14.502
SMAPE 33.491 20.612 33.22 2.707 168.209
RMSE 2.614 1.569 2.602 0.057 15.092
MAPE 34.612 20.999 41.492 2.717 295.628

SE1 MAE 5.649 4.425 4.415 0.438 32.388
SMAPE 45.912 34.861 33.546 6.164 185.478
RMSE 7.463 5.672 6.216 0.521 33.295
MAPE 59.936 40.771 58.843 6.079 336.477

SE2 MAE 5.649 4.423 4.414 0.437 32.407
SMAPE 45.908 34.862 33.539 6.166 185.548
RMSE 7.462 5.667 6.216 0.52 33.315
MAPE 59.925 40.72 58.838 6.082 336.468

SE3 MAE 13.375 10.558 9.451 2.045 55.93
SMAPE 69.051 57.712 35.893 10.504 178.069
RMSE 17.065 13.216 11.306 2.919 61.815
MAPE 120.536 74.531 158.376 9.659 1241.857

SE4 MAE 14.357 12.333 7.823 4.296 51.876
SMAPE 67.004 58.816 35.241 16.62 179.332
RMSE 17.867 15.127 9.238 5.891 55.289
MAPE 130.442 75.102 141.962 16.636 850.137

DK1 MAE 11.727 10.122 4.922 3.472 37.747
SMAPE 50.083 46.949 22.761 14.265 141.48
RMSE 14.401 12.777 5.78 4.469 41.617
MAPE 117.489 63.549 178.555 14.524 1384.826

DK2 MAE 11.906 10.776 4.858 5.229 31.97
SMAPE 45.623 43.075 17.091 17.041 110.292
RMSE 15.393 13.399 6.729 6.28 41.858
MAPE 102.092 54.875 129.853 18.641 839.895

FI MAE 12.775 11.417 5.37 5.754 36.529
SMAPE 50.897 46.743 19.921 17.311 119.164
RMSE 16.689 14.465 7.583 7.353 44.256
MAPE 102.055 68.13 96.754 17.953 545.008
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Table 34: Summary of DNN model performance across all bidding areas and error metrics

Area Metric Mean Median Std Min Max

NO1 MAE 7.315 5.43 6.301 0.478 25.589
SMAPE 144.571 157.084 38.212 69.033 188.451
RMSE 7.722 5.734 6.668 0.655 29.937
MAPE 79.494 87.127 17.704 40.03 96.984

NO2 MAE 7.317 5.408 6.281 0.478 25.589
SMAPE 145.037 157.084 37.728 69.033 188.451
RMSE 7.72 5.734 6.654 0.655 29.937
MAPE 79.785 87.113 17.421 40.03 96.984

NO3 MAE 7.625 6.061 5.124 1.131 20.005
SMAPE 155.093 161.115 25.198 96.647 186.86
RMSE 7.997 6.221 5.2 1.285 20.062
MAPE 85.221 88.623 10.158 58.8 96.554

NO4 MAE 7.024 5.791 4.569 1.077 20.005
SMAPE 153.917 160.77 25.094 94.465 186.86
RMSE 7.334 6.058 4.621 1.285 20.062
MAPE 84.815 88.474 10.263 57.34 96.554

NO5 MAE 7.188 5.338 6.134 0.478 23.348
SMAPE 144.092 157.084 38.51 69.033 188.156
RMSE 7.495 5.714 6.268 0.655 25.267
MAPE 79.269 87.113 17.853 40.03 96.907

SE1 MAE 12.963 11.055 8.421 2.104 35.106
SMAPE 168.285 172.862 17.538 119.89 191.982
RMSE 14.473 11.847 9.618 2.429 39.579
MAPE 90.149 92.051 6.447 70.323 97.934

SE2 MAE 12.963 11.055 8.421 2.104 35.106
SMAPE 168.285 172.862 17.538 119.89 191.982
RMSE 14.474 11.847 9.618 2.429 39.579
MAPE 90.149 92.051 6.447 70.323 97.934

SE3 MAE 20.251 16.642 11.414 3.172 54.008
SMAPE 173.41 176.491 14.939 125.757 192.596
RMSE 25.006 20.67 13.546 3.967 66.395
MAPE 91.727 93.184 5.575 72.597 98.095

SE4 MAE 24.962 22.405 11.762 5.811 61.236
SMAPE 177.798 179.664 12.171 141.412 193.66
RMSE 29.772 26.825 12.946 8.088 70.166
MAPE 93.108 94.228 4.576 77.933 98.328

DK1 MAE 24.541 23.018 9.635 6.512 52.535
SMAPE 180.52 182.371 12.024 108.651 193.16
RMSE 28.365 26.846 9.724 13.097 56.643
MAPE 94.007 94.961 4.923 61.017 98.244

DK2 MAE 27.76 25.23 10.769 11.571 61.483
SMAPE 183.158 184.716 8.456 153.881 193.744
RMSE 32.055 28.544 11.989 16.111 70.334
MAPE 94.959 95.75 3.246 81.584 98.351

FI MAE 27.317 24.167 10.249 8.157 61.483
SMAPE 179.495 181.026 10.419 143.865 193.442
RMSE 32.856 29.942 11.557 12.536 71.877
MAPE 93.788 94.687 3.898 80.621 98.311
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Table 35: Summary of ENTCN model performance across all bidding areas and error metrics

Area Metric Mean Median Std Min Max

NO1 MAE 2.419 1.539 2.334 0.414 19.721
SMAPE 31.466 26.524 20.805 4.398 115.462
RMSE 3.071 1.835 3.167 0.503 19.829
MAPE 40.539 31.945 43.748 4.444 290.535

NO2 MAE 2.411 1.502 2.321 0.413 19.096
SMAPE 31.17 26.32 20.65 3.941 115.271
RMSE 3.071 1.799 3.168 0.504 19.177
MAPE 40.369 31.32 43.798 4.003 290.233

NO3 MAE 2.603 1.912 2.019 0.49 16.885
SMAPE 32.73 27.856 19.193 5.451 113.545
RMSE 3.091 2.418 2.289 0.559 17.445
MAPE 43.43 30.318 44.636 5.653 388.231

NO4 MAE 2.179 1.657 1.771 0.456 17.446
SMAPE 30.406 25.098 20.204 4.367 122.213
RMSE 2.593 1.926 2.021 0.503 17.855
MAPE 40.87 26.575 47.121 4.236 366.573

NO5 MAE 2.227 1.447 1.957 0.404 10.027
SMAPE 30.633 25.608 20.721 3.989 115.57
RMSE 2.724 1.76 2.413 0.495 11.199
MAPE 39.664 31.109 43.361 4.047 292.169

SE1 MAE 5.944 4.598 5.521 0.671 42.451
SMAPE 42.364 35.814 24.984 6.88 143.379
RMSE 7.688 5.869 6.995 0.833 43.574
MAPE 63.418 38.647 67.593 6.676 449.436

SE2 MAE 5.948 4.616 5.521 0.667 42.452
SMAPE 42.329 35.659 24.916 6.849 142.043
RMSE 7.692 5.894 6.993 0.844 43.581
MAPE 63.58 38.508 67.761 6.648 448.904

SE3 MAE 13.03 10.984 9.282 1.564 60.836
SMAPE 61.691 57.269 28.935 7.707 143.754
RMSE 16.687 13.565 11.24 1.953 63.269
MAPE 116.319 72.736 145.781 7.537 1039.517

SE4 MAE 14.501 13.1 7.744 2.565 55.351
SMAPE 61.822 58.638 28.008 11.636 156.009
RMSE 18.134 15.577 9.171 3.664 57.501
MAPE 130.856 73.613 147.684 11.026 869.975

DK1 MAE 14.035 12.151 7.17 3.343 39.833
SMAPE 60.479 52.403 34.185 11.269 200.0
RMSE 17.109 15.38 7.994 4.492 45.114
MAPE 119.908 70.586 173.023 11.591 1477.436

DK2 MAE 14.749 13.039 7.424 3.348 47.127
SMAPE 56.256 50.997 28.375 14.161 200.0
RMSE 18.312 16.172 8.645 4.774 51.655
MAPE 112.276 62.436 132.475 14.126 858.815

FI MAE 15.641 13.686 8.009 4.536 75.934
SMAPE 61.102 55.999 25.41 15.98 143.538
RMSE 19.649 16.887 9.5 5.962 77.299
MAPE 120.962 73.901 129.246 17.412 817.257
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Table 36: Summary of LSTM model performance across all bidding areas and error metrics

Area Metric Mean Median Std Min Max

NO1 MAE 7.916 6.001 6.31 1.02 26.2
SMAPE 186.101 190.527 11.21 161.439 197.68
RMSE 8.262 6.276 6.7 1.068 30.465
MAPE 97.204 98.284 2.451 91.107 99.593

NO2 MAE 7.919 6.001 6.29 1.02 26.2
SMAPE 186.261 190.527 11.055 162.056 197.68
RMSE 8.262 6.275 6.684 1.068 30.465
MAPE 97.243 98.282 2.412 91.163 99.593

NO3 MAE 8.233 6.673 5.127 1.743 20.617
SMAPE 189.569 191.601 6.691 173.129 197.363
RMSE 8.555 6.819 5.223 1.798 20.664
MAPE 98.011 98.485 1.367 94.521 99.535

NO4 MAE 7.633 6.402 4.572 1.689 20.617
SMAPE 189.282 191.442 6.725 172.338 197.363
RMSE 7.893 6.643 4.644 1.765 20.664
MAPE 97.953 98.421 1.382 94.288 99.535

NO5 MAE 7.79 5.948 6.143 1.02 23.96
SMAPE 185.947 190.527 11.311 161.439 197.635
RMSE 8.039 6.276 6.306 1.068 25.825
MAPE 97.168 98.265 2.475 91.107 99.586

SE1 MAE 13.567 11.666 8.426 2.654 35.718
SMAPE 192.96 194.265 4.337 180.18 198.4
RMSE 15.013 12.446 9.613 2.932 40.104
MAPE 98.691 98.989 0.868 95.941 99.724

SE2 MAE 13.568 11.666 8.426 2.654 35.718
SMAPE 192.96 194.265 4.337 180.18 198.4
RMSE 15.013 12.446 9.613 2.932 40.104
MAPE 98.691 98.989 0.868 95.941 99.724

SE3 MAE 20.855 17.232 11.42 3.781 54.62
SMAPE 194.187 195.116 3.663 182.084 198.572
RMSE 25.482 21.182 13.551 4.466 66.891
MAPE 98.931 99.128 0.737 96.266 99.754

SE4 MAE 25.566 23.016 11.765 6.422 61.847
SMAPE 195.178 195.776 2.968 185.61 198.731
RMSE 30.26 27.308 12.964 8.463 70.694
MAPE 99.118 99.258 0.6 96.925 99.83

DK1 MAE 25.105 23.574 9.669 7.016 53.154
SMAPE 195.799 196.418 3.293 172.534 198.733
RMSE 28.873 27.356 9.751 13.549 57.19
MAPE 99.222 99.376 0.726 93.099 99.922

DK2 MAE 28.343 25.837 10.786 12.108 62.089
SMAPE 196.394 196.852 2.065 187.822 198.78
RMSE 32.566 29.096 11.996 16.594 70.847
MAPE 99.346 99.453 0.429 97.142 99.942

FI MAE 28.005 24.642 10.356 8.718 62.136
SMAPE 195.81 196.311 2.398 188.031 198.767
RMSE 33.492 30.523 11.656 13.076 72.414
MAPE 99.252 99.368 0.476 97.454 99.795
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Table 37: Summary of Stacked LSTM model performance across all bidding areas and error metrics

Area Metric Mean Median Std Min Max

NO1 MAE 7.232 4.786 5.575 2.273 24.679
SMAPE 128.32 119.78 19.626 103.894 168.927
RMSE 8.04 5.611 5.923 2.826 29.453
MAPE 104.258 88.733 33.801 73.071 203.846

NO2 MAE 7.222 4.786 5.653 2.131 24.789
SMAPE 129.261 121.203 20.822 103.545 170.733
RMSE 7.989 5.602 5.999 2.631 29.516
MAPE 100.606 88.708 28.376 73.041 181.87

NO3 MAE 7.255 5.405 4.714 2.152 19.205
SMAPE 128.932 124.335 20.995 101.048 167.619
RMSE 8.0 6.104 4.731 2.671 19.442
MAPE 88.039 87.241 10.718 73.129 126.967

NO4 MAE 6.665 5.198 4.146 2.146 19.204
SMAPE 127.253 123.531 19.673 100.98 167.619
RMSE 7.361 6.013 4.152 2.671 19.441
MAPE 87.755 86.184 11.446 73.121 131.496

NO5 MAE 7.119 4.776 5.473 2.128 22.548
SMAPE 129.281 120.511 20.743 102.003 170.196
RMSE 7.786 5.582 5.564 2.622 24.698
MAPE 101.825 89.367 29.241 73.042 189.325

SE1 MAE 12.554 10.537 8.304 2.403 34.553
SMAPE 147.478 150.41 20.806 107.237 181.995
RMSE 14.29 11.613 9.453 2.978 39.246
MAPE 88.534 89.597 5.934 74.597 106.805

SE2 MAE 12.554 10.537 8.305 2.403 34.553
SMAPE 147.478 150.41 20.806 107.237 181.995
RMSE 14.291 11.613 9.454 2.978 39.246
MAPE 88.534 89.597 5.934 74.597 106.805

SE3 MAE 19.826 16.441 11.329 3.233 53.455
SMAPE 155.868 157.536 17.358 112.433 183.887
RMSE 24.725 20.629 13.491 4.225 66.029
MAPE 90.762 91.281 4.891 76.315 106.848

SE4 MAE 24.521 22.082 11.71 5.407 60.682
SMAPE 162.781 163.011 14.748 120.254 186.25
RMSE 29.432 26.484 12.909 7.898 69.7
MAPE 92.64 93.266 4.699 76.368 111.59

DK1 MAE 24.211 22.747 9.545 7.264 52.078
SMAPE 168.266 169.351 12.141 125.125 186.245
RMSE 28.06 26.531 9.687 13.001 56.224
MAPE 93.98 94.517 4.498 82.113 123.484

DK2 MAE 27.542 25.063 10.743 11.548 61.211
SMAPE 173.932 174.379 9.314 144.919 189.027
RMSE 31.871 28.297 11.986 16.027 70.067
MAPE 94.924 95.273 2.409 88.305 105.436

FI MAE 26.667 23.377 10.257 8.311 60.643
SMAPE 160.543 159.462 12.183 125.406 183.51
RMSE 32.478 29.636 11.609 12.291 71.339
MAPE 92.122 92.203 4.289 79.976 115.036
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Table 38: Summary of GRU model performance across all bidding areas and error metrics

Area Metric Mean Median Std Min Max

NO1 MAE 6.957 4.966 6.16 0.688 25.088
SMAPE 125.979 134.301 40.964 60.998 180.861
RMSE 7.397 5.308 6.529 0.869 29.466
MAPE 74.89 78.326 15.925 47.623 94.949

NO2 MAE 6.953 4.966 6.146 0.688 25.088
SMAPE 126.188 134.301 40.699 60.998 180.861
RMSE 7.391 5.308 6.518 0.87 29.466
MAPE 74.884 78.326 15.931 47.623 94.949

NO3 MAE 7.184 5.58 5.082 0.935 19.524
SMAPE 134.864 140.727 31.854 71.7 178.397
RMSE 7.603 5.793 5.14 1.139 19.587
MAPE 77.74 81.31 13.393 49.166 94.263

NO4 MAE 6.556 5.331 4.52 0.896 19.491
SMAPE 131.927 137.788 31.619 70.099 177.884
RMSE 6.915 5.653 4.556 1.09 19.555
MAPE 76.64 80.28 13.431 48.202 94.102

NO5 MAE 6.834 4.853 5.988 0.688 22.848
SMAPE 125.448 134.301 41.234 60.998 180.44
RMSE 7.174 5.282 6.117 0.868 24.742
MAPE 74.675 78.326 16.056 47.623 94.837

SE1 MAE 12.506 10.576 8.403 1.796 34.627
SMAPE 152.689 158.14 23.895 93.406 186.706
RMSE 14.053 11.422 9.598 2.151 39.182
MAPE 84.925 87.579 9.132 59.931 96.592

SE2 MAE 12.506 10.576 8.404 1.796 34.627
SMAPE 152.689 158.14 23.896 93.406 186.706
RMSE 14.053 11.422 9.598 2.151 39.182
MAPE 84.925 87.579 9.132 59.931 96.592

SE3 MAE 19.793 16.163 11.399 2.837 53.529
SMAPE 161.176 165.067 19.647 105.108 188.143
RMSE 24.586 20.405 13.533 3.647 65.936
MAPE 87.807 89.439 7.326 64.601 96.964

SE4 MAE 24.504 21.93 11.753 5.334 60.756
SMAPE 167.679 168.92 15.911 126.08 190.046
RMSE 29.34 26.374 12.925 7.612 69.689
MAPE 90.027 90.969 5.79 73.29 97.444

DK1 MAE 24.179 22.711 9.6 6.485 52.121
SMAPE 172.198 174.534 14.565 96.95 189.834
RMSE 28.005 26.396 9.696 12.873 56.165
MAPE 91.689 92.768 5.184 64.411 97.397

DK2 MAE 27.348 24.801 10.753 11.176 61.045
SMAPE 175.138 176.457 10.798 139.587 190.534
RMSE 31.66 28.135 11.97 15.785 69.889
MAPE 92.651 93.383 3.878 79.349 97.554

FI MAE 26.919 23.534 10.34 7.814 61.028
SMAPE 171.114 172.184 12.821 128.517 190.287
RMSE 32.548 29.644 11.639 12.132 71.431
MAPE 91.26 92.11 4.707 75.036 97.527
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Table 39: Summary of Stacked GRU model performance across all bidding areas and error metrics

Area Metric Mean Median Std Min Max

NO1 MAE 7.073 5.544 3.445 4.509 20.863
SMAPE 106.796 101.869 17.649 83.207 139.699
RMSE 8.54 6.916 3.983 5.564 26.779
MAPE 163.634 87.073 132.119 59.388 479.089

NO2 MAE 7.058 5.517 3.451 4.513 20.86
SMAPE 106.381 101.123 17.444 83.229 139.421
RMSE 8.524 6.897 3.989 5.568 26.776
MAPE 161.088 87.154 129.831 58.967 465.626

NO3 MAE 6.745 5.454 2.434 4.63 15.041
SMAPE 99.572 98.512 10.979 82.299 125.772
RMSE 8.143 6.813 2.623 5.723 16.115
MAPE 117.752 79.09 70.627 59.101 324.485

NO4 MAE 6.329 5.513 1.951 4.722 14.95
SMAPE 97.533 94.901 10.97 82.396 123.959
RMSE 7.714 6.891 2.128 5.829 16.061
MAPE 120.035 80.765 74.568 58.619 330.43

NO5 MAE 7.021 5.618 3.173 4.562 18.569
SMAPE 107.445 102.078 18.082 83.352 141.448
RMSE 8.397 7.016 3.367 5.641 21.693
MAPE 167.303 89.902 135.463 59.682 486.835

SE1 MAE 10.62 7.857 6.775 4.469 30.399
SMAPE 105.567 101.291 15.484 83.415 146.495
RMSE 12.937 9.569 8.164 5.539 35.948
MAPE 90.998 77.358 32.929 60.806 207.493

SE2 MAE 10.621 7.857 6.776 4.469 30.399
SMAPE 105.568 101.291 15.486 83.415 146.495
RMSE 12.938 9.569 8.164 5.539 35.948
MAPE 90.998 77.358 32.929 60.806 207.493

SE3 MAE 17.409 14.347 10.26 4.882 49.551
SMAPE 116.708 116.213 16.565 90.304 151.782
RMSE 22.561 18.445 12.797 6.158 62.702
MAPE 91.687 81.703 28.408 62.728 205.171

SE4 MAE 21.69 18.76 10.879 5.965 56.647
SMAPE 124.872 124.369 17.251 93.131 161.766
RMSE 26.865 23.836 12.361 8.036 66.163
MAPE 91.312 83.718 24.896 64.454 208.534

DK1 MAE 21.504 20.137 8.788 9.018 48.282
SMAPE 130.308 131.287 14.689 100.341 159.775
RMSE 25.543 24.226 9.217 12.262 52.713
MAPE 89.586 83.835 27.237 66.137 288.888

DK2 MAE 23.961 21.211 10.186 9.957 56.757
SMAPE 129.53 129.557 14.69 98.419 161.367
RMSE 28.755 24.889 11.615 13.848 66.211
MAPE 87.009 81.567 19.927 67.753 197.99

FI MAE 23.77 20.574 9.693 8.53 56.779
SMAPE 127.248 125.35 13.887 100.064 159.115
RMSE 29.862 27.239 11.32 10.949 68.214
MAPE 87.812 82.661 18.555 66.831 166.979
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Table 40: Summary of Linear regression model performance across all bidding areas and error metrics

Area Metric Mean Median Std Min Max

NO1 MAE 4.139 3.959 1.698 0.794 11.844
SMAPE 57.737 47.451 38.453 4.919 147.719
RMSE 4.934 4.496 2.511 1.015 23.324
MAPE 128.571 69.145 132.698 5.044 617.129

NO2 MAE 3.865 3.71 1.579 0.849 10.702
SMAPE 56.143 44.436 38.351 5.258 145.421
RMSE 4.607 4.165 2.503 1.057 22.958
MAPE 119.646 62.936 124.297 5.209 592.803

NO3 MAE 5.973 5.584 2.689 1.075 16.057
SMAPE 62.147 57.683 34.457 7.106 138.161
RMSE 6.827 6.258 3.166 1.467 22.096
MAPE 136.233 94.72 124.004 6.765 737.252

NO4 MAE 4.041 3.377 2.346 1.071 14.283
SMAPE 47.738 40.718 28.274 5.981 124.792
RMSE 4.819 3.989 2.909 1.231 18.844
MAPE 89.838 56.947 89.112 6.201 581.89

NO5 MAE 3.653 3.586 1.469 0.853 8.49
SMAPE 55.265 43.166 37.728 5.657 141.521
RMSE 4.247 4.009 1.933 1.004 19.463
MAPE 116.481 60.208 120.058 5.517 555.119

SE1 MAE 6.688 6.319 3.148 1.47 17.989
SMAPE 49.524 44.21 24.531 7.936 128.397
RMSE 8.602 7.459 5.113 1.966 27.917
MAPE 89.964 63.602 78.778 8.192 495.27

SE2 MAE 6.691 6.324 3.149 1.472 17.986
SMAPE 49.537 44.248 24.554 7.941 128.475
RMSE 8.606 7.459 5.113 1.967 27.911
MAPE 90.052 63.627 78.897 8.197 496.112

SE3 MAE 10.482 8.484 6.465 1.511 42.025
SMAPE 53.457 50.34 22.071 8.815 109.267
RMSE 14.207 10.851 9.64 2.09 55.637
MAPE 81.361 56.379 64.842 9.094 359.483

SE4 MAE 12.763 11.127 6.332 3.267 41.593
SMAPE 57.248 53.737 20.57 15.118 109.204
RMSE 16.296 13.877 8.615 4.273 51.24
MAPE 81.243 57.203 62.497 15.958 344.282

DK1 MAE 12.484 11.493 4.895 3.865 34.895
SMAPE 57.054 52.09 21.274 14.183 134.063
RMSE 15.084 13.796 5.816 5.347 38.388
MAPE 82.113 54.445 94.995 14.704 764.671

DK2 MAE 13.145 11.566 5.635 3.761 39.584
SMAPE 53.691 50.695 18.377 15.533 107.778
RMSE 16.595 13.897 7.718 5.026 49.21
MAPE 69.67 47.837 58.152 16.264 327.819

FI MAE 12.085 10.864 4.756 5.463 33.429
SMAPE 49.294 46.407 18.57 18.159 115.258
RMSE 15.789 13.47 7.375 6.884 46.456
MAPE 89.048 60.167 78.247 17.325 440.213
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Table 41: Summary of Quadratic regression model performance across all bidding areas and error metrics

Area Metric Mean Median Std Min Max

NO1 MAE 6.959 3.565 18.694 0.8 259.126
SMAPE 71.76 52.957 53.451 4.929 196.295
RMSE 12.295 4.474 43.213 1.029 515.2
MAPE 205.67 57.508 612.187 4.958 6050.477

NO2 MAE 4.883 3.278 6.501 0.594 74.977
SMAPE 68.114 48.06 52.811 4.932 200.0
RMSE 7.42 4.067 14.261 0.71 158.401
MAPE 139.283 51.32 283.971 4.939 3392.794

NO3 MAE 7.771 4.182 19.007 0.726 256.118
SMAPE 61.289 52.83 38.788 5.331 182.861
RMSE 13.437 5.192 45.054 0.912 532.948
MAPE 168.701 65.396 527.232 5.435 6766.744

NO4 MAE 6.946 3.397 19.151 0.85 260.805
SMAPE 64.652 47.991 46.556 5.592 193.655
RMSE 12.423 4.399 45.689 1.057 541.913
MAPE 149.024 56.102 481.121 5.49 5903.999

NO5 MAE 4.551 2.97 6.27 0.585 70.068
SMAPE 65.304 45.988 51.029 4.911 200.0
RMSE 6.951 3.638 14.172 0.706 156.149
MAPE 133.509 50.414 288.33 4.893 3516.649

SE1 MAE 9.931 6.187 18.965 1.191 256.401
SMAPE 58.647 52.784 32.084 5.824 168.496
RMSE 16.465 7.903 44.66 1.451 530.899
MAPE 130.484 61.342 465.353 5.911 6862.598

SE2 MAE 9.932 6.206 18.968 1.19 256.39
SMAPE 58.48 52.798 31.891 5.822 168.451
RMSE 16.478 7.9 44.667 1.45 530.926
MAPE 130.581 61.326 465.395 5.908 6862.228

SE3 MAE 14.657 9.457 20.357 1.416 266.673
SMAPE 67.08 60.95 32.235 6.777 165.409
RMSE 22.672 12.199 44.768 2.023 532.086
MAPE 109.629 66.175 319.459 6.923 4554.73

SE4 MAE 17.504 12.342 20.069 2.372 263.782
SMAPE 71.405 66.434 31.537 10.085 157.01
RMSE 25.286 16.453 43.885 3.756 526.593
MAPE 103.176 68.976 261.65 10.022 3458.0

DK1 MAE 14.865 12.936 8.436 2.651 72.881
SMAPE 64.649 60.399 26.75 10.997 147.932
RMSE 19.361 16.062 15.954 4.653 170.689
MAPE 97.869 64.42 127.761 10.092 1171.522

DK2 MAE 17.149 12.599 19.487 3.075 263.166
SMAPE 60.532 55.704 24.717 12.724 147.014
RMSE 24.519 16.11 42.796 4.811 513.676
MAPE 88.137 56.547 121.062 12.759 1591.188

FI MAE 16.037 11.294 24.65 4.641 344.638
SMAPE 52.593 50.446 21.885 16.393 161.1
RMSE 23.587 14.749 47.847 6.259 576.733
MAPE 111.149 70.825 145.201 16.464 1666.854
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