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Abstract

First, this paper presents a total ordering of the theoretical lower bound loss of different forecasting
paradigms in the following descending order: Model selection, Model combination, Non-parametric uni-
variate models, and Non-parametric multivariate models.
Second, we create a generalized forecasting framework to test the above forecasting paradigms ex-ante.

We implement the framework by creating a novel datacube consisting of daily stock prices and 100,000
quarterly reports from about 1600 global companies and several daily macro time series, all from 2000 to
spring 2022. Lastly, we utilize the framework and show that modern multivariate time series approaches are
powerful but domain-dependent. We demonstrate the domain-dependent accuracy by showing convincing
results when predicting corporate bankruptcy risk, moderate results when predicting stock price volatility,
and lacking results when finally predicting company market capitalization.
Given the domain-dependent convincing results and mostly unrealized theoretical lower bound loss of

multivariate approaches, we hope to encourage further research on non-parametric, multi-signal approaches
that leverage a wider array of available information.

Keywords: forecasting, time series, machine learning



Sammendrag

Først presenterer vi en total ordning av den teoretiske nedre grense for prediksjonsfeil for forskjellige
prediksjonsparadigmer i følgende synkende rekkefølge: modellvalg, modellkombinasjon, ikke-parametriske
univariate modeller og ikke-parametriske multivariate modeller.
Deretter lager vi et generalisert prediksjonsrammeverk for å teste de ovennevnte prediksjonsparadigmer p̊a

forh̊and. Vi implementerer rammeverket ved å lage en original datakube best̊aende av daglige aksjekurser og
100 000 kvartalsrapporter fra omlag 1 600 globale selskaper og flere daglige makrotidsserier, fra 2000 til v̊aren
2022. Til slutt bruker vi rammeverket og viser at moderne multivariate tidsseriemodeller er kraftige, men
domeneavhengige. Vi demonstrerer den domeneavhengige nøyaktigheten gjennom overbevisende resultater
for anslag av bedriftskonkursrisiko, moderate resultater ved prediksjon av aksjekursvolatilitet og manglende
resultater n̊ar vi til slutt forutsier selskapets markedsverdi.
Gitt gode resultater i visse domener, samt fortsatt urealisert teoretisk høyeste nøyaktighet av multivari-

ate modeller, h̊aper vi å oppmuntre til videre forskning p̊a ikke-parametriske multisignaltilnærminger som
utnytter et bredere spekter av tilgjengelig informasjon.
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0. Introduction

Time series modeling has historically played a vi-
tal role in applications such as climate modeling,
biological sciences, medicine, supply chains, and fi-
nance (Lim and Zohren, 2021). As a result, re-
searchers have proposed a plethora of different ap-
proaches, of which most have focused on paramet-
ric models (e.g., auto-regressive methods, exponen-
tial smoothing, structural time series models) (Lim
and Zohren, 2021). Parametric models are models
where one defines the functional form and fits the
model by adjusting the function’s parameters.

Using Neural Networks (NN) for forecasting is
not new, and in fact dates at least back to 1964
(Zhang et al., 1998), where Hu (1964) uses an
adaptive linear network forecast weather. Any big
strides were not possible, however, until the back-
propagation algorithm for optimizing non-linear
NNs was introduced by Rumelhart et al. (1986) (see
subsubsection 2.2.2 for a brief primer on backprop-
agation and gradient descent). From this point,
and until today, there have been a plethora of in-
creasingly complex applications of different mod-
els to forecasting (Zhang et al., 1998; Jiang, 2021;
Gandhmal and Kumar, 2019).

As more data, computing power, and more com-
plex models have become available, the field of fore-
casting has seen significant improvements (Makri-
dakis et al., 2018a). Still, there is a high reliance on
the classic econometric methods of old in practice.

The introduction of Deep Learning (DL) has up-
ended a staggeringly wide array of fields, such as
image classification (Krizhevsky et al., 2012), natu-
ral language processing (Brown et al., 2020), chess
and go engines (Silver et al., 2018), protein fold-
ing (Senior et al., 2020), and nuclear fusion plasma
control (Degrave et al., 2022). Non-parametric DL
methods have bested the previous human heuristic
approaches in all these fields–and the trend is only
pointing in one direction.

Furthermore, also within the forecasting field, re-
cent work shows the superiority of DL approaches
that use models that rely less heavily on assump-
tions and allow for a more purely data-driven ap-
proach to solving the problems at hand (Ahmed
et al., 2010; Oreshkin et al., 2019). DL methods can
be interpreted as non-parametric in that their func-
tional form is not defined on an assumption of the
underlying problems data generating process. Fur-
thermore, (Lee et al., 2017) proves that in the limit

of infinite width, a deep neural network is a Gaus-
sian process (GP), an example of a non-parametric
model. Thus, we describe deep learning as non-
parametric in this paper.

Forecasting methods can be univariate or mul-
tivariate, and we find the former most widely dis-
cussed in practice. Moreover, the fact that the most
prominent forecasting competitions, M4 (Makri-
dakis et al., 2018a) and the ongoing M6 competition
(Makridakis, 2022), operate only on univariate time
series further corroborates this finding. Since uni-
variate methods are a subset of multivariate meth-
ods, this univariate paradigm likely restricts the up-
per limit forecasting accuracy.

However, there is some evidence showing para-
metric multivariate approaches struggle with out-
performing their univariate counterparts (Fortin
et al., 2022). On the other hand, recent research
finds that non-parametric multivariate approaches
can have superior performance to univariate ap-
proaches (Huang et al., 2021; Guiguet et al., 2018;
Chaudhuri and Ghosh, 2016).

In finance, Atsalakis and Valavanis (2009) and
Nti et al. (2020) find that technical analysis is the
most prominent forecasting type, which only uses
information held in lags of the dependent variable
itself. At the same time, we know investors leverage
several different sources of information, like finan-
cial statements and macro numbers, when invest-
ing, i.e., a multivariate approach. Moreover, the
data on the effectiveness of technical analysis is du-
bious at best Nti et al. (2020); Nazário et al. (2017).
As soon as transaction costs and spreads are in-
cluded in the calculation, any performance tends
to evaporate (Nazário et al., 2017). Furthermore,
Geva and Zahavi (2014) finds that combining sev-
eral data sources leads to superior predictive per-
formance, but only for sufficiently complex models,
i.e., Neural Networks.

As opposed to non-parametric DL methods,
parametric models hard-code human judgment and
domain knowledge assumptions into the model, po-
tentially harmful restrictions on the expressive abil-
ity of the model. This paper will try to motivate
the view that this is not the most effective way of
forecasting in the modern data-driven era. Intu-
itively, Data Generating Processes (DGPs) of the
natural world are often non-linear, and the goal of
forecasting is precisely to approximate DGPs.
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In Ankile and Krange (2022) we created the
world-class ensembling forecasting algorithm on the
M4 dataset (Makridakis et al., 2018a), and the
third-lowest loss on the test set known to the au-
thors. Still, we believe these results are limited by
the assumptions of the ensembling approach. In
this paper, our aim is to establish a theoretical lower
bound loss of different forecasting methods as well
and induce a shift towards multivariate forecasting
approaches in the forecasting field. Furthermore,
the aim of this work is to research the best-in-class
non-parametric multivariate forecasting in theory
and practice.
In particular, we will establish a total or-

der of modeling power between different model
paradigms. These include local and global mod-
els, parametric and non-parametric models, and
univariate and multivariate models. We will em-
pirically test this total order on a novel financial
dataset introduced in this paper, that we term a
datacube.
The rest of the paper is organized as follows.

In Part , section 1 presents theory on forecasting
paradigms and summarizes some relevant literature
in the fields of bankruptcy, volatility, and stock
price prediction, upon which we build our forecast-
ing framework. Furthermore, in section 2 we lay
out some technical foundation underlying the dif-
ferent techniques implemented. In part Part I, sec-
tion 4 we present a total order of theoretical lower
bound error for different model paradigms by pro-
viding best-case and average-case analysis. Next,
Part II, section 5.3.1 describes the dataset and pro-
cessing pipeline. Then, section 5.3.1 provides an
overview of the setup of the forecasting framework
and its constituent parts, evaluation, and analysis
methods. section 6.4.2 presents the results from
the three different experiments the framework is
applied to. Lastly, in Part II, section 7.3.2, we dis-
cuss some problems with the framework and possi-
ble further work. Lastly, we conclude the paper in
section 8.11.

2



Part

Context
1. Background

1.1. Background on Forecasting Paradigms

1.1.1. Parametric, Univariate Models

Traditional modeling procedures, introduced by
Box and Jenkins (Box, 1970) in the 1970s, combine
linear Auto-Regression (AR) and Moving Average
(MA), e.g., the popular ARIMA model (Box, 1994)
and the general Exponential Smoothing model
(Brown, 2004), where a forecast is equal to its fore-
cast predecessor and a scaled error based on the
predecessor forecast. Parametric models also model
variance, like the influential heteroscedastic models
of ARCH (Engle, 1982) and GARCH model (Engle,
2001).
These methods have been workhorses in the lit-

erature and have performed very well compared to
more complex methods for decades (Makridakis and
Hibon, 2000). However, in recent years, more com-
plex models have started to outperform the more
straightforward methods (Makridakis et al., 2018a;
Ahmed et al., 2010). The renowned M4 competition
(Makridakis et al., 2018a) showed that complex ap-
proaches using Deep Learning (DL) and gradient
descent have come to outperform the traditional
statistical models significantly. This result was an
important finding as all M competitions up to, and
including, M3 found the opposite, i.e., simple meth-
ods outperform complex ones (Makridakis and Hi-
bon, 2000).

1.1.2. Non-Parametric, Univariate Models

LeCun et al. (2015) point out that DL methods
have dramatically improved the state-of-the-art in
speech recognition, visual object recognition, object
detection, and a vast array of other domains. Us-
ing DL to forecast the financial markets is nothing
new. However, it is still not widely embraced in
the literature, especially among researchers in the
economic, financial, and econometric fields, as can
be seen by perusing the latest publications in the
relevant journals.
One of the first examples of using a DL sequence

model, the Long Short-Term Memory network
(LSTM), was made by Fischer and Krauss (2018).
They find that a relatively simple LSTM model

outperforms Feed-Forward Neural Nets (FNN) and
Random Forests (RF).

1.1.3. Parametric, Multivariate Models

Researchers have proposed Multivariate gen-
eralizations of the ubiquitous univariate, para-
metric models, like the Vector Auto-Regressive
model (Toda, 1991), the Multivariate Exponential
Smoothing (Enns et al., 1982), and the Seasonal
ARIMA with Exogenous variables (Vagropoulos
et al., 2016). Advanced models include state rep-
resentation, called state-space models, of which the
regime switch model as presented in (Brooks, 2019)
is an example. Furthermore, common trend mod-
eling, as introduced by Stock and Watson (1988),
tests for common cycles between time series, which
again can be used in forecasting. In different pa-
pers, parametric multivariate models show both su-
perior (Bagshaw, 1987) and inferior (Brandt and
Bessler, 1984) to parametric univariate ones. These
results are peculiar as most multivariate approaches
always could set coefficients for the other time series
lags to zero, thus being reduced to the correspond-
ing univariate model. The cause of this discrepancy
is likely a lack of modeling power in the parametric
approaches and a lack of practitioner sophistication
required in forecasting. Regardless, there is ample
room for improvement.

1.1.4. Non-Parametric Multivariate Forecasting

Already in 1992, researchers Chakraborty et al.
(1992) established the superiority of multivariate
methods, Neural Networks in particular, for such
forecasting. They find that their simple, feed-
forward neural network outperforms the multivari-
ate ARMA model by Tiao and Tsay (1989) an order
of magnitude.

Most statistical methods model only linear rela-
tionships, which are computationally inexpensive,
but often cannot accurately represent temporal
variations (Chakraborty et al., 1992). The ability
of non-parametric methods to non-linear model re-
lationships, like Deep Neural Nets (DNN), is likely
a driver of the superior performance of the DNN
approach as compared to statistical modeling. See

3



also Hornik et al. (1989) for a primer on DNNs’
ability to model arbitrarily complex functions.

The prominent classical univariate AR time se-
ries model, and its extensions ARMA, ARIMA, and
VAR, are highly utilized in practice. Still, they in-
evitably suffer from overfitting and high computa-
tional cost for high-dimensional inputs and series
with long-term dependencies (Wan et al., 2019).

Several examples of more advanced multivariate
models utilizing modern machine learning methods
have appeared in the literature. Wan et al. (2019)
used an NN architecture called a Multivariate Tem-
poral Convolutional Neural Net (M-TCN), to fore-
cast time series from the Beijing PM2.5 and ISO-
NE datasets (Wan et al., 2019). This architecture
is an augmented version of the Temporal Convo-
lutional Neural Net (TCN) proposed by Bai et al.
(2018), which has shown great promise on several
sequence modeling tasks.

Zhang et al. (2019) show that a Multi-task TCN
outperforms separate TCNs per series for a dataset
of different water quality measurements. Pantiskas
et al. (2020) propose an architecture based on TCN
and an Attention Mechanism (Vaswani et al., 2017),
called Temporal Attention Convolutional Neural
Net (TACN), to forecast an air quality dataset and
water quality. They use the same water quality
dataset as Zhang et al. (2019) and also use their
Multi-task TCN as the baseline model for both
datasets. The TACN model outperforms the base-
line.

1.1.5. Assumption of Linear Variable Relationships

In many forecasting techniques correlation is used
in the form of e.g. PCA (Stock and Watson, 2002),
and clustering (Pawlikowski and Chorowska, 2020).
We postulate that adhering to these forms of (of-
ten linear) relationships between variables is some-
thing that reduces the possibility of finding non-
linear correlation.

Creating a well-defined, dependent relationship
between two variables that still show no linear cor-
relation is trivial.

x ∼ (0, σ)

y(x) =

{
x ifx ≤ 0

−x ifx > 0

=⇒ E(COR(y, x)) = 0

1.1.6. Global and Local Models

The local method within forecasting assumes that
each time series of a set stems from a data gen-
erating process independent from other processes
(Montero-Manso and Hyndman, 2021). This as-
sumption implies that the best approach to fitting
models to a group of time series is fitting one inde-
pendent model to each series. The local approach to
modeling is to for each time series in a set of series
to fit a single model and makes a forecast, Montero-
Manso and Hyndman (2021). This method is prone
to overfitting and requires a significant emphasis on
manually expressing information of yt by adjusting
for seasonality, short- and long-term trends, and
explanatory variables in the case of the local mul-
tivariate model.

An alternative to the local approach is called the
global approach, as presented in Salinas et al. (2020)
(also termed cross-learning). Global models assume
that the underlying data generating processes for a
set of time series share properties and ‘behave’ sim-
ilarly. Thus by fitting a model on more than a sin-
gle time series at once, one can improve accuracy
by cross-learning global properties. For instance,
one can do this by fitting an ARIMA model across
an entire set of time series before forecasting, thus
reducing noise and learning global patterns in the
data. Montero-Manso and Hyndman (2021) find
that across some different example datasets like M3
monthly data (Makridakis and Hibon, 2000) a deep
neural net global model approaches the accuracy of
standard parametric methods such as theta, expo-
nential smoothing, and ARIMA. Parametric global
models perform significantly worse than their para-
metric local versions.

We believe this dichotomy and classification
of properties might be flawed and present our
thoughts on local and global methods in section 4.5.

1.1.7. Model Ensembling

Ensemble forecasting produces forecasts from a
set of forecasting algorithms fitted to a given prob-
lem. In the M4 competition both the 2. and 3.
places used a form of model ensembling (Makri-
dakis et al., 2018a). There are two main ways of
producing ensemble forecasts given a set of fore-
casting methods, F that all produce forecasts for
the same Time Series (TS). (1) Model selection in-
volves picking the most promising model f ∈ F ,
based on limited information, that will have the
highest accuracy. (2) Model combination, on the
other hand, involves estimating weights for each

4



forecast p̂F = {p̂f |
∑

F p̂f = 1 ∧ p̂f ≥ 0 ∀f ∈ F},
such that the accuracy of the weighted average is
as high as possible. Generally, an aim is that the
model combination outperforms the accuracy of the
individual forecasts combined (Petropoulos et al.,
2020).

Lemke and Gabrys (2010) found model combi-
nation improved the forecasting ability of the en-
semble to a level above the best performance of the
individual forecasting methods. As a result, the
paper shows that model combination is able to out-
perform selection even on a meta-level.

The ‘no-free-lunch’ theorem establishes that no
algorithm can outperform all other models or the
random forecast when testing on all possible data
(Wolpert, 1996). This theorem implies that with-
out knowing anything about a problem, one cannot
assume anything about the performance of an algo-
rithm (Lemke and Gabrys, 2010). Of course, there
will be specific problems for which one algorithm
performs better than another in practice. Thus,
Lemke and Gabrys (2010) shows that the above as-
sumption can be relaxed by automatically extract-
ing features from series that will function as a proxy
for domain knowledge. Furthermore, Goodfellow
et al. (2016) argues that the reason model combi-
nation works are that different models will not have
residuals with perfect correlation for the test set.
At the same time, model diversity alone must not
be the only aspect of an accurate combination of
methods—it is individual accuracy as well, accord-
ing to Lemke and Gabrys (2010).

Wolpert (1996)s no-free-lunch theorem makes it
evident that a single algorithm cannot perform bet-
ter than the random forecast or all other models
when the algorithm is tested on all possible data.
Lemke and Gabrys (2010) shows that the theo-
rem implies that without knowing anything about a
problem it is impossible to deduce anything about
the performance of an algorithm. In practice, it
is trivially true that problems have algorithms that
outperform other procedures. In this regard, Lemke
and Gabrys (2010) relaxes the above assumption by
extracting features from series to proxy as domain
knowledge. Moreover, Goodfellow et al. (2016) ar-
gues that model combination works because differ-
ent models have residuals that are not perfectly cor-
related on a test set. Model diversity alone cannot
be the single matter when designing combination
methods, individual accuracy matters as according
to Lemke and Gabrys (2010)

1.2. Background on Financial Forecasting

1.2.1. Bankruptcy prediction

Bankruptcy prediction as in being able to predict
defaults on loans before they happen in time can
intuitively be of great economic value to firms and
as a result society in general.

Following the Norwegian definition an entity is
bankrupt when it is: 1) Illiquid, meaning that its
liquid assets do not meet its short-term liabilities.
2) Insolvent that its total assets are less than its
total liabilities (Brækhus, 2017). Although this for-
mulation is based on Norwegian law and law prac-
tice, we believe reformulations of the above are
globally what is recognized as a bankruptcy.

Correct prediction of 1) and 2) above, is of great
interest to the economic sector, and especially for
banks. Stein (2005) shows that acting on more ac-
curate prediction models of defaults translates into
more profitable actions. Thus proving the economic
and social relevance of bankruptcy prediction.

Categorical bankruptcy prediction is by nature
dependent upon a distribution of skewed labels
which poses some challenges. Indeed for most stan-
dard real-world datasets of companies, there are
fewer defaults than non-defaults. Logically, if a
company’s median lifetime is strictly greater than
the frequency sample of the dataset, one would have
more samples of non-defaults than defaults. Empir-
ical proof of the above claim can for instance found
in Kainth and Wahlstrøm (2021)s extensive dataset
of Norwegian and Swedish privately held compa-
nies. 1.8% and 1.5% of their data are defined as
bankrupt according to NGAAP and IFRS respec-
tively. A recent example of a study of this problem
in general called the unbalanced data problem can
be found in (Krawczyk, 2016).

Lastly, there are intricacies in what time horizon
one should use when forecasting bankruptcy. By
increasing the forecasting window a company has a
strictly lower chance of not going bankrupt. The
Basel III regulatory framework defines that a one
year should be used (on Banking Supervision, 2017)
(thus is also what we opt for, see: subsection 6.2).

1.2.2. Volatility Prediction

There are several methods to say something
about the volatility in the future, e.g., forecast-
ing using models, calculating implied volatility from
options (Mayhew, 1995), tracking the Volatility In-
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dex (VIX)1, or analyzing the macro trends in the
wider market. The focus of the present work will
be on model-based forecasting.
In the financial markets, volatility is a significant

number as it is the input to considerations such
as risk management in investment, option pricing,
and regulation of financial markets. Several large
institutions trade options and swaps that depend
on volatility for speculation or hedging, and the
Basel Accord of 1996 introduced solidity require-
ments based on VaR, which in turn relies on volatil-
ity forecasting (Granger and Poon, 2001).
Furthermore, research interest saw an increase

after the quantitative work of Engle (1982) with
the Autoregressive and Conditional Heteroscedas-
tic (ARCH) model, later augmented to Generalized
ARCH (GARCH) by Bollerslev (1986). (We dis-
cuss GARCH in more detail in subsubsection 2.1.2).
Granger and Poon (2001) find that out of 78 papers
reviewed, 45 used some sort of variation of ARCH
(the other 33 used implied volatility). This finding
shows the popularity of ARCH models for volatility
modeling from 1982 until ca. 2000.
Before the introduction of the ARCH family of

models, simpler models pervaded, like the Random
Walk model, Historical Average, Simple Moving
Average, Exponential Smoothing, and Exponentially
Weighted Moving Average, as well as certain exten-
sions (like Taylor (2004)).
As Deep Learning has caught the attention of

researchers in all fields, so has the interest in ap-
plying it to volatility forecasting increased. For ex-
ample, Chen et al. (2017b) use Recurrent Neural
Nets (RNN) with Gated Recurrent Units (GRU) to
forecast volatility in the Chinese stock market. An-
other paper, Alenezy et al. (2021), uses a collection
of non-linear transforms in combination with an
adaptive network-based fuzzy inference system to
outperform an ARIMA model in predicting volatil-
ity in the Saudi stock market. Harrison and Moore
(2012) find, in a study comparing models of differ-
ing complexity in several European countries, that
more complex models that allow for asymmetric
volatility outperform the simpler ones with sym-
metry restrictions.
Despite the large strides forward within machine

learning and the increasing adoption of such al-
gorithms for, e.g., stock market forecasting, the
volatility literature still seems centered around the

1Traded on the Chicago Board Options Exchange (IN-
DEXCBOE: VIX)

AR-, ARCH-, and GARCH-families of models (Lim
and Sek, 2013; Nonejad, 2017; Lin, 2018).

1.2.3. Market Capitalization Prediction

The case of predicting stock prices is an interest-
ing one. On the one hand, it must be possible, given
the momentous success over many years of algorith-
mic trading houses like Renaissance Technologies,
Citadel Securities, D.E. Shaw, Jane Street, and
Two Sigma Securities. On the other hand, anyone
who has discovered a profitable strategy will not
be incentivized share the approach, as such strate-
gies are only viable when information asymmetries
exist. (If everyone trades the same strategy, the
strategy seizes to work as everything is priced in
when one has taken the position.) Thus, the aca-
demic literature on the topic will necessarily not
represent the true status of the field, and will most
likely be dominated by non-results.

There are many types of time series, where finan-
cial series (especially stock prices) are on the hard
side of the spectrum of how predictable they are,
especially for traditional statistical methods (Niaki
and Hoseinzade, 2013). Some important attributes
causing this is that they are:

- non-linear, i.e., there are often relationships
between inputs and outputs that are not lin-
ear, which can cause many classical methods
to break down (see subsubsection 1.1.5 for an
example),

- noisy, i.e., the price is only partly decided by
intrinsic value and underlying value drivers,
and in large part (especially short-term) be-
cause of randomness and chaos,

- and non-stationary, i.e., stock prices tend to
have non-constant mean and variance, but
rather the opposite, which poses problems for
methods that assume stationarity.

Less academically, and more intuitively: it is
hard to beat all other agents in a market, espe-
cially when intelligent dollars grow faster than their
counterpart. Keeping the above points in mind,
researchers have highlighted some aspects of NNs
that would motivate the use and continued explo-
ration of their limits in financial forecasting going
forward (Eakins and Stansell, 2003; Hornik et al.,
1989; Lam, 2004), for example, they are
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- non-presumptive in data, i.e., they do not as-
sume any particular distribution on the under-
lying data,

- non-presumptive in form, i.e., they do not as-
sume that the solution takes any particular
functional form and only rely only on the data
given during training,

- nonlinear, i.e., they can in theory model any
kind of relationship Rn → Rm (see subsubsec-
tion 2.2.1 for more on NNs as universal func-
tion approximators),

- and generalizing, i.e., they have proven time
and time again that they are able to extract
relationships from inputs and outputs in the
data it has seen before successfully applying
them to novel data.

Despite having many desirable characteristics,
they also have some important drawbacks (Hussain
et al., 2008), for example, they are

- sensitive to parameter choices, i.e., the number
of parameters that must be tuned just right
makes the space of possible models enormous,
and finding the right combination might be de-
manding,

- sensitive to inputs, i.e., they often require that
inputs be properly scaled, and it can be dif-
ficult to decide decisively what features to in-
clude in the model,

- and data hungry, i.e., they require an immense
amount of data to be able to generalize, which
is not always feasible to either collect or store.

Regarding these limitations, several strategies
have been devised to mitigate the effects of the
problems, which will be discussed further in sub-
subsection 2.2.1. Here we mention that NNs can be
suitable for both univariate and multivariate pre-
diction (Tay and Cao, 2001). One early application
of Neural Networks used in the financial markets
was by Werbos (1988), where they used an NN to
make time-series predictions in US gas markets, and
convincingly outperformed more traditional least-
squares methods (e.g., linear regression and Box-
Jenkins).
The most common approach to stock market pre-

diction is to use only raw prices and derivatives
thereof (Gandhmal and Kumar, 2019; Jiang, 2021).

For example, Jiang (2021) find in a systematic re-
view of the stock market prediction literature that
36% of surveyed papers used historical stock prices
only, while another 25% used stock prices and tech-
nical indicators (61% total). 6% of papers used
stock prices, indicators, and macro data, while 2%
included fundamental data at all. Since technical
indicators are solely a transformation of the raw
stock price, adding them to the dataset does not
introduce new data, it can only introduce the data
in a manner that might be easier for the model to
utilize.

One problem of many of the approaches in the lit-
erature is that they do not fully calculate the prof-
itability of the strategy, only metrics like accuracy,
AUC, MAPE, or similar, which only quantifies if
predictions are generally more or less accurate, but
not if they are useful in the context of their time
series.

2. Technical Theory

2.1. Baselines and Parametric Models

First and foremost, we use Näıve as a baseline
in all three forecasting problems. In all timeseries
forecasting beating Näıve is almost always an im-
portant benchmark. This paper, and most litera-
ture e.g. Brooks (2019); Makridakis et al. (2018a),
define Näıve as ŷt = yt−1.
When it is used in the context of bankruptcy

prediction, there are examples where the strategy
shows good results in terms of accuracy for instance
in Moen (2020).

In the case of volatility forecasting, we suspect
näıve is ought to do well, due to volatility clustering
(Mandelbrot, 1997).

If yt is market cap prediction, beating this bench-
mark (perhaps adjusted for risk-free return) is a
holy grail. If we actually were able to do this, it
is likely that this part of the paper would not have
been added, for obvious monetary reasons.

Näıve is the most important baseline. Although
its name is simple, in all three forecasting problems
we present, it encodes much important information.

2.1.1. ARIMA

The ARIMA model (AutoRegressive Integrated
Moving Average) model, is a monument in the time
series forecasting literature. Its impact on time se-
ries forecasting and famousness is the reason we
chose to add ARIMA models as a benchmark in
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this paper. This fact also makes our results more
comparable to others. ARIMA is, for instance, used
as a benchmark in Makridakis et al. (2018a).

An ARMA(n,m) process has the following form,
as presented in Brooks (2019):

yt = µ+ϕ1yt−1+...ϕnyt−n+θ1ut−1+...θmut−m+ut.
(1)

If we difference yt d times, and plug it into Equa-
tion 1 this would yield the ARIMA(n, d,m) pro-
cess. The model has a well-behaved mean depen-
dent upon ϕ, indeed it is easy to see that if ϕ > 1 the
model is growing out of control since shocks to the
system are infinitely propagated. An AR process’s
properties are independent of the time at which the
series is observed (stationary) if the following holds:

|zi| > 1∀i ∈ {0, ...m} ∧ 1− ϕ1z1 + ...ϕnzn = 0 (2)

MA processes with non-infinite lags are trivially
stationary.

If we restrict the max lag of n and m lags of AR
and MA processes, there are 2n+m possible lag con-
figurations. In practice, standard implementations
limit the search space to include all lags up to a
given max lag. i.e. you only have to search over
nm lags. One also needs some ex-ante metrics for
what is deemed a good model, since overfitting can
easily happen in such a large space of possible lags.
As a solution to this problem various forms of infor-
mation criteria can be selected, such as AIC, SBIC,
HQIC (Brooks, 2019), without writing down any of
these formulas here: in general information crite-
ria weights the fall in the residual sum of squares
against a penalty for adding more variables to an
equation.

The ARIMAX model (ARIMA eXogenous) adds
exogenous variables with one lag of each variable
to Equation 1. Literature has different conclu-
sions about its effectiveness (Peter and Silvia, 2012;
Kongcharoen and Kruangpradit, 2013), both find-
ing its forecasting accuracy lower and higher com-
pared to that of a standard ARIMA model. When
forecasting with exogenous variables one needs to
make assumptions about its future values, this fol-
lows logically from the fact one does not have values
for the exogenous values in the future. One can for
instance use the naive prediction for the exogenous
variables (feed information forward) or use some
other prediction tool.

2.1.2. GARCH

The GARCH (Generalized Autoregressive Con-
ditionally Heteroscedastic) model class, models
volatility as non-constant and conditional upon pre-
vious own lags and error terms. A generalized ex-
ample of the GARCH model presented by Brooks
(2019) is the following, where yt is modeled as an
AR(1):

yt = µ+ ut, ut ∼ N (0, σ2
t ), (3)

σ2
t = α0 +

q∑
i

αiut−i +

p∑
j

βjσ
2
t−j (4)

The idea of the GARCH model is that time se-
ries are often not homoscedastic in reality (Mandel-
brot, 1997). Thus using errors and volatility lags
can model the time-dependent variance of reality,
as signified by the t in σt of Equation 3.

2.1.3. Logistic Regression

The Logistic Regression method is used to clas-
sify a binary target variable. In the below p is the
target variable (probability that Y=1):

p =
ea+bX

1 + ea+bX
,

ln(
p

1− p
) = a+ bX

Where one fits the model in the second line of the
above equation, giving rise to the value of p, which
can be interpreted as a probability of a label. This
is given by X, thus the model returns a likelihood
of a label given a particular set of observations (X).

2.2. Non-Parametric Methods and Deep Learning

4 of the following subsections (subsubsec-
tion 2.2.1, subsubsection 2.2.2, subsubsection 2.2.4,
subsubsection 2.2.5) are adapted from Ankile and
Krange (2022).

2.2.1. Basics of Neural Networks

An Artificial Neural Network (ANN), or simply
Neural Network (NN), is a subset of machine learn-
ing methods that receive their name since they re-
semble brains in some ways. It is the notion of
neurons being connected in an intricate. In our
time series models, we mainly use a specific form
of an NN, called a Temporal Convolutional Neural
Network (TCN), which we discuss in more detail in
subsubsection 2.2.9).
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A NN performs non-linear transformations from
input to output and can, in theory, approxi-
mate any real-valued function from one finite-
dimensional space to another to any desired de-
gree of accuracy. Provided there is at least one
hidden layer, a non-linear squashing function is
present, and sufficiently many hidden units are
available (Hornik et al., 1989). A NN works by it-
eratively using matrix multiplication (linear trans-
formation), importantly followed by a non-linear
function (Goodfellow et al., 2016). See subsubsec-
tion 2.2.3 for more on activation functions.

Equation 5 shows a single non-linear transforma-
tion layer L, where g is a non-linear activation func-
tion, A is a linear transformation, and b is the bias.
There is a difference in the complexity of a linear,
and non-linear model can learn, for instance, the
XOR function, which is infeasible for a linear func-
tion but trivial for several non-linear models (Min-
sky and Papert, 2017).

L = g(ATx+ b) (5)

One can depict a NN as a graph, and, more for-
mally, it is the iterative application of the above
function for an arbitrary number of steps, with
an arbitrary number of parameters at each step
(this flexibility makes the model susceptible to be-
ing over-parameterized, which we briefly discuss in
subsubsection 2.2.5). For instance a neural net-
work with one hidden layer could be written as
ydep = Lout ◦Lh ◦Lin(xind). The first layer, the in-
put layer, is provided data, which is passed through
the network, layer by layer. At the last layer, Lout

creates the output with a fitting activation that is
application-specific ( e.g., classification or regres-
sion). The output then flows to a loss measure
(see subsection 6.2), which updates the parame-
ters in the network (often called weights), backward
through the layers in a process called backpropaga-
tion (Goodfellow et al., 2016). Note that if one
were to remove g from Equation 5, the complex-
ity increase from iteratively adding layers would be
removed as A1A2...Anx = Ax, results in a linear
transformation, where Ai are all linear transforma-
tions.

A Fully-Connected Neural Network, as our
weighting model is an example of, is an NN where
all layers are fully connected, i.e., there is an edge
between each node in one layer to all nodes in the
next (nm connections between a layer with n and
m nodes).

2.2.2. Gradient Descent

Gradient descent is a way of fitting NNs by re-
ducing the value of f(x) by moving a small negative
direction of the derivative. Equation 6 shows how
gradient descent is deduced as in Goodfellow et al.
(2016). Since the relationship

f(x+ ϵ) ≈ f(x) + ϵ
df

dx
, (6)

holds at sufficiently small ϵ, the derivative helps
minimize a loss function as it shows what direc-
tion would cause a decrease in the loss (i.e., an in-
crease in performance or accuracy). This observa-
tion leads to the relationship

→ f(x− ϵ · sign( df
dx

)) ≤ f(x), (7)

for ϵ small enough. Therefore, we can minimize
the loss by moving in small increments in the oppo-
site direction of the derivative. Cauchy et al. (1847)
originally termed this process gradient descent.

Gradient descent is the primary step of backprop-
agation, where each weight is updated recursively
backward through the model, layer by layer. Gradi-
ent descent can also be generalized for multi-input
cases, where the aim would be to move in the direc-
tion of the steepest descent in the multidimensional
space of the loss function. In the multi-variable
case, we would get

θ′ = θ − ϵ∇θL(θ), (8)

where ϵ is the learning rate and ∇θL(θ) is the
vector containing all partial derivatives of the loss
function L with respect to the model parameters θ
(Goodfellow et al., 2016).

2.2.3. Activation functions

For gradient descent to work, all activation func-
tions must be differentiable.

The Rectified Linear Unit (ReLU) is the most
widely used non-linear activation function in mod-
ern deep learning (LeCun et al., 2015). It is simply
a half-wave rectifier, which means that the func-
tion propagates values 0 or greater unchanged, but
takes all negative inputs to 0. Se Equation 9 for
the mathematical definition and Figure 1 for a vi-
sual representation of the function.
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ReLU and Leaky ReLU activation functions

Figure 1: Visualization of the common activation func-
tions Rectified Linear Unit (ReLU) and its extension, Leaky
ReLU.

Previously, smoother activation functions, like
the hyperbolic tangent, tanhx, or sigmoid, 1

1+e−x ,
were in vogue (LeCun et al., 2015) (see Figure 2
for visualizations), but ReLU enables NNs to learn
much faster than the aforementioned functions, es-
pecially as the networks get deep, and has naturally
found wide adoption.

ReLU(x) =

{
x ifx ≥ 0

0 ifx < 0
(9)

Leaky ReLU(x) =

{
x ifx ≥ 0

−αx ifx < 0
(10)

Sigmoid(x) =
1

1 + e−x
(11)

2.2.4. Hyperparameter Tuning

Modern machine learning models have increased
exponentially in complexity over the last couple of
decades, and with it, an exponentially increasing
space of hyperparameters to search over Li et al.
(2017). Unfortunately, there are, in general, no
methods that guarantee optimal hyperparameters
except for a brute force search, for most hyperpa-
rameters Snoek et al. (2012). We present a dis-
cussion about how we can solve this vital issue in
subsubsection 6.3.5.

2.2.5. Early Stopping

Large models with a sufficiently large number
of parameters can suffer from overfitting, meaning

Sigmoid and Tanh activation functions

Figure 2: Visualization of the previously prevalent activation
functions Sigmoid (in blue) and Tanh (red), as well as a
variant of Sigmoid that is stretched to double height and
used in experiments in section 5.3.1.

that the model stops learning general relationships
between input and output and instead learns to fit
the noise of, or memorize, the training set. We can
observe this phenomenon by a deviation in training
and validation loss, exemplified in Figure 3. Good-
fellow et al. (2016) argue that the best regulariza-
tion technique for NNs is to stop the training at
the point where the validation loss is at its lowest,
known as early stopping. This regularization tech-
nique requires using some of the training data as
a validation set, reducing the size of the training
set. This limitation can be overcome by retraining
on the entire training set using the exact specifica-
tions as found previously with the optimal hyper-
parameters and stopping point (Goodfellow et al.,
2016).

2.2.6. Feed-Forward Neural Networks

Feed-Forward Neural Networks (FFNN), also
called Multi-Layer Perceptrons (MLP) are the fun-
damental building blocks in deep learning (Goodfel-
low et al., 2016). The model is composed of succes-
sive layers of neurons, or nodes, that are connected
to all neurons in the previous layer and all neu-
rons in the next layer. Figure 5 shows a conceptual
representation of a fully-connected network with 4
layers, where the leftmost layer serves as the input
layer and the rightmost serves as the output layer.
The 2 layers in the middle are known as hidden
layers (Goodfellow et al., 2016).

The connection between successive layers is im-
plemented as matrix multiplications, where an in-
put vector of length n is multiplied with a matrix
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Canonical overfitting example

Figure 3: Illustration of the tell-tale signs of a model that
has been overfitted. The defining factor is that the training
loss falls (blue line) while the validation loss (red line) starts
to increase. A common strategy is to save the weights at
the currently best validation loss and restore those weights
when training concludes (Goodfellow et al., 2016).

of size n×m, where m is the number of neurons in
the subsequent layer. A bias term is added to the
product before the result is passed to a non-linear
activation function. This is necessary to allow the
network to model non-linear functions, as discussed
in subsubsection 2.2.2.

2.2.7. Convolutional Neural Networks

Convolutional Neural Networks (CNN) dates
back to a paper by LeCun et al. (1989). This neu-
ral network architecture is specialized for data that
elicits grid-topology (i.e., points residing closely
to each other have higher importance than those
far away) (Goodfellow et al., 2016). Examples
are time-series data (1-dimensional), black and
white images (2-dimensional), color images (3-
dimensional, and video (4-dimensional).

For time-series data, successive data points are
obviously more related than data separated by a
year. Ditto for pixels in an image lying side-by-side
or on separate edges. To model this knowledge in
the neural network, one introduces a concept called
weight sharing (Goodfellow et al., 2016). Weight
sharing achieves two goals in the context of CNNs.
First, the model can learn general representations
of the data, without care for where spatially the
features are located, i.e., a cat in an image looks
similar if it is in the top right corner or the bot-
tom left corner. Second, weight sharing allows the
network to model more complex relationships while
using fewer parameters than fully-connected equiv-

Illustration of a Feed-Forward Neural Network

Figure 4: Schematic of a canonical Fully-connected, feed-
forward neural network. The input travels from left to right,
from the input layer, through two hidden layers, to three
output nodes in the last layer.

alents.
Weight sharing happens through kernels of

weights being convolved with the input in a sliding
manner (see Figure 5). This way, the weights in the
kernel are shared between all pixels in the input.
Further, the weights can be used to find features
in the inputs regardless of location, as wished. In
short, the fundamental equation underlying convo-
lutional neural networks is the discrete convolution
(here for 2 dimensions) (Goodfellow et al., 2016),

S(i, j) = (K ∗ I)(i, j)

=
∑
m

∑
n

I(i−m, j − n)K(m,n),

where I is the input image, K is the afore-
mentioned kernel, and S is the output activation.
This output activation is normally passed through
a max-pooling layer (not covered) and a non-linear
activation function, similarly to fully-connected
networks (typically ReLU or related functions).

Bai et al. (2018) presents a generalization of Con-
volutional Neural Nets specifically for time series
data modeling tasks.

2.2.8. Recurrent neural networks

Vanilla RNN
The fundamental idea of Recurrent Neural Net-

works (RNN) is similar to that of CNNs, except
that instead of sharing parameters in space dimen-
sions, it shares them in the time dimension. As
such, RNNs are designed to be especially suited for
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Illustration of the 2-dimensional convolution

Figure 5: A schematic representation of how the convolu-
tional layer works in convolutional neural networks. The
leftmost matrix is the input (e.g., image) and the 3-by-3
matrix is the kernel or filter. The operation involves sliding
the kernel across the input image, element-wise multiplica-
tion of the two matrices, and storing the result in the output
matrix to the right. One usually has several kernels for each
layer and several layers for each model.

time series modeling tasks (Goodfellow et al., 2016).
The canonical equations governing RNNs are as fol-
lows (Goodfellow et al., 2016).

a(t) = b+Wh(h−t) + Ux(t),

h(t) = tanh(a(t)),

o(t) = c+ V h(t),

ŷ(t) = softmax(o(t))

All the above variables are vectors and matri-
ces (when superscript I omitted it implies time step
(t)), where x is the input, a is the activation pro-
duced by multiplying the input with its weight ma-
trix U and adding it to the previous time step’s hid-
den state h(t−1) multiplied with its weight matrix
W . b and c are bias terms, and o is the raw output,
often transformed somehow before emitted as, e.g.,
with softmax for classification with multiple classes
(e.g., word modeling).

Optimizing recurrent networks is not directly
straightforward, and instead relies on a trick called
unfolding (Goodfellow et al., 2016). Figure 6 shows
a simple recurrent model and its unfolded parallel.
When unfolding, one creates a version of the model
that has a node for each time step one has given to
the recurrent nodes, which are laterally connected
instead of recurrently (see Figure 6). This results in
an equivalent architecture to that of a feed-forward
network, allowing one to apply standard backprop-
agation. This procedure is known as Backpropa-

Unfolding of Recurrent Networks

Figure 6: A very simplified model of a model with a recur-
rent connection to the left. This model combines each new
observation received at x with the calculated activation from
the previous time step, and can as such model temporal re-
lationships. To the right, the figure shows how the model
must be unfolded when one is performing optimization with
backpropagation. In short, this means that one creates a
copy of the model for each observation it received, and in-
stead of it having a self-loop, it is connected to successive
copies of itself. This constellation is equivalent to regular
feed-forward neural networks and can be optimized as such.
(Source: Goodfellow et al. (2016)).

gation Through Time (BPTT) (Goodfellow et al.,
2016).

One problem arises though when performing
BPTT for long sequences. When optimizing, one
calculates the gradients of the loss w.r.t. the model
weights, which leverages the product rule of differ-
entiation. For long sequences, the unrolling pro-
cedure creates very long chains of successive prod-
ucts, meaning that numbers that are either below
or above 1, will either go exponentially to 0 or in-
finity, respectively. This is known as the problem of
vanishing or exploding gradients (Goodfellow et al.,
2016), and is addressed by LSTMs below.

LSTM
A Long Short-Term Memory network (LSTM)

(Hochreiter and Schmidhuber, 1997) addresses the
problem of vanishing or exploding gradients intro-
duced when modeling long sequences with recurrent
networks (Goodfellow et al., 2016). The gradients
are kept more stable with the addition of a set of
complex gates that allows the network to dynami-
cally remember or forget information based on the
current state of the network (Gers et al., 2000),
which Figure 7 illustrates. LSTMs have proven
very adept at modeling several different time series
problems, e.g., speech recognition, machine trans-
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LSTM cell

Figure 7: Block diagram of an LSTM cell showing the intri-
cate network of gates, cells, self loops, and how they cooper-
ate to enable networks composed of these cells to selectively
store or remove information in the state. (Source: Goodfel-
low et al. (2016)).

lation, handwriting generation, and image caption-
ing (Goodfellow et al., 2016). Other, simpler ver-
sions of LSTMs are also devised, but they have not
received equally widespread adoption (Goodfellow
et al., 2016).

2.2.9. Temporal Convolutional Neural Nets

Another, more recent solution to the problems of
vanishing gradients in modeling of long time-series
dependencies, is the Temporal Convolutional Neu-
ral Network (TCN), by Bai et al. (2018). This archi-
tecture combines ideas from both CNNs and RNNs,
resulting in architecture with several desirable at-
tributes. Similar to LSTMs, TCNs can model ar-
bitrarily long dependencies in the input sequences.
TCNs achieve this not through recurrent connec-
tions, but rather through a clever application of
successive convolutional layers. Figure 8 shows an
illustration of how the model works.
In short, TCNs combine layers of convolutions

with increasing dilation in the kernels. Dilation is
how much space there is between the weights in the
kernel, i.e., with dilation 2, the weights in the ker-
nel are multiplied by every other input data point.
In the case of TCNs, dilation is leveraged in such

a way that one doubles the dilation for each suc-
cessive step, which enables the network to be con-
nected to inputs arbitrarily far into the past while
still covering all intermediate time steps. Again, see
Figure 8 for a visual representation of this idea.

Bai et al. (2018) show empirically the effective-
ness of TCNs over LSTMs on several time-series
modeling tasks that LSTMs have traditionally been
the best at. The authors also emphasize the abil-
ity to parallelize the training of TCNs to a higher
degree than LSTMs because TCNs are not truly se-
quential like LSTMs. This ability allows for faster
training with similar amounts of parameters.

2.2.10. Dead neuron problem

An insidious problem in machine learning is the
problem of dead neurons, which the authors of this
paper also encountered. In short, the use of the
ReLU activation introduces a problem. In Equa-
tion 12, one can see the derivative of ReLU. This
takes the value zero when given negative input,
which, in turn, when multiplied with the chain of
derivatives during gradient descent, turns the whole
chains to zero. When the derivatives are zero, one
can no longer update the weights of the network,
and the neurons that become zero are stuck at zero.
One common solution is to use the related Leaky
ReLU activation, which substitutes the 0 deriva-
tives with a slightly negative one, which allows for
weight updates, as shown in Equation 13.

d

dx
ReLU(x) =

{
1 ifx ≥ 0

0 ifx < 0
(12)

d

dx
Leaky ReLU(x) =

{
1 ifx ≥ 0

−α ifx < 0
(13)

13



The architecture of the Temporal Convolutional Neural Network

Figure 8: Schematic representation of the Temporal Convolutional Neural Networks as presented by Bai et al. (2018). (a) The
leftmost figure shows how the receptive field can be regulated through layers of successive doubling of the stride in each 1D
convolutional layer. Furthermore, the data is padded in such a way that the output at any given step is a combination of only
past observations, so-called causal convolutions. (b) The middle figure shows how two and two stacks of convolution, ReLU,
and dropout are grouped into what is called a residual block. The name stems from the residual connection that skips the
convolutions to the right in the figure. (c) The rightmost figure shows that the convolutional layers within a residual block are
of the same specification, i.e., have the same kernel size and stride.
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3. Contributions

The contributions of this paper are twofold.

1. We present a total order of theoretical error bounds for forecasting paradigms and give an ex-ante
and ex-post view of the methods’ expressive abilities. We motivate that multivariate, non-parametric
methods have the theoretical lowest bound loss of the models considered which provides room for
performance gains in practice.

2. We provide a general forecasting framework, which can be readily adapted to solve different financial
forecasting tasks. The approach is general in that it uses data cubes with dimensions of entities (com-
panies), features, and time, which encapsulates most financial forecasting problems, and applies loss
functions at the correct part of the model pipeline to greatly increase the flexibility of the range of
financial modeling tasks it is able to solve.

Contribution 1. takes place in Part I. The theoretical lower bounds and expressive abilities of the models
serve as the motivation to undertake the experimentation with the different forecasting paradigms in the
general forecasting framework in Part II, fulfilling contribution 2.
To facilitate apt experimentation, we create a novel dataset of 104k quarterly fundamental reports, as

well as daily stock data for 1846 companies, and several daily macro time series, all for the time period
2000-2022.
We use modern machine learning methods and compare them with statistical and näıve benchmarks to

analyze the framework. We use this framework to attempt three distinct tasks:

1. We show better profitability than the benchmark for bankruptcy risk forecasting in terms of AUC and
on-par results with another paper on the bankruptcy classification task. Using a profitability measure,
exogenous models are found to be more profitable taking the asymmetric payoffs of loans into account.

2. Forecasting stock price volatility shows moderate results. Our models outperform the GARCH baseline
and show some promising signs of learning market-wide variance dynamics but slightly underperform
compared to the näıve baseline.

3. Forecasting market capitalization was, as expected, the least convincing of the results. This indicates
that even using all quarterly reports of every listed company in the global oil and banking sector over
22 years, if pattern recognition is possible, it requires more resources than is available to us. Though
no model outperformed the näıve benchmark, the multivariate, non-parametric models outperformed
both the parametric models and the univariate, non-parametric model.
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Part I

Theory on Forecasting Paradigms

Parametric Non-Parametric

Univariate f(yt; cf ) f(yt; θ)
Multivariate f(yt, Xt; cf ) f(yt, Xt; θ)

Table 1: Overview of the fourfold model classes. Somewhat
abusing notation, the given f for each c in the Parametric
column represents the assumption of the underlying DGPs
functional form.

4. Forecasting Paradigm Total Ordering

This section constructs theoretical proofs of a to-
tal order of model selection, model combination,
non-parametric univariate methods, and multivari-
ate complex methods ex-post facto.
We begin by presenting formal definitions of the

above. After that, we quantify the validity of the
Hoeffding Inequality on a sizeable real-world time
series dataset, i.e., the 48k monthly time series from
the M4 Competition, displaying how the assump-
tion of functional form can be erroneous.
We then construct a chain of total order ex-post-

facto lower bound model losses. Simultaneously, we
present empirical calculations indicating the valid-
ity of the corresponding ex-ante proposition.

4.1. Initial notation and definitions

With functional form we mean a combination of
operators, parameters, and symbolic variables.
Let f be a function, cf be parameters inferring

a DGP, and θ be parameters relating to the learn-
ing algorithm and not a DGP itself. Let yt be the
dependent time series and Xt be m exogenous vari-
ables organized into a matrix of size t ×m. Then
Table 1 shows the function in the tetrachotomy
(Univariate,Multivariate)× (Parametric,Non−
Parametric).
Table 1 shows the trivial difference of univariate

and multivariate functions. Noted that we refer to
arity and not output size in this definition of uni-
and multivariate functions.
Furthermore, note that parametric univariate

models make assumptions of the functional form
through cf , while the θ parameters do not make
assumptions of f , including the data distribution.

This minor distinction is very important. We are
reducing the forecasting space immensely by using
parametric models, and imply that the functional
form somehow imitates the underlying DGP of yt.

In subsection 4.2, we will quantify how erroneous
a simple assumption of the distribution of a set of
yt can be.

4.2. Quantifying the validity of the Hoeffding In-
equality

For a particular time t and problem, an entity
has an ex-post-facto view of previous times and an
ex-ante view of the future. One can rewrite the
famous Hoeffding (Hoeffding, 1963) Inequality in
the following manner, where E is an error, H is
the hypothesis class, and N is the size of an i.i.d
dataset:

Et
ante < Et

post +

√√√√ log |H|+ log(
2

δ
)

2N

With probability of at least 1− δ

(14)

Equation 14 assumes that the underlying distri-
bution is Sub-Gaussian. In Salinas et al. (2020)
Et

ante = Eout and Et
post = Ein both are ∈ [0, 1].

How ever, this leaves the usability of the above for-
mula rather slim: Indeed, in plenty real life situ-
ations assuming a Sub-Gaussian distribution is er-
roneous. Below we quantify how much reality de-
viates from this Sub-Gaussian assumption by ap-
plying Equation 14 to the M4 dataset (Makridakis
et al., 2018a) consisting of 100,000 time series (TS).

By fitting an AR(1) model with a single coef-
ficient, stored as a floating-point number of dou-
ble precision (i.e., 64 bits), we imply |H| = 264.
For the entire set of time series, it is also straight-
forward to calculate Et

ante and Et
post by predicting

the loss for the test set and the in-sample, respec-
tively, as provided by Montero-Manso et al. (2020).
In figure Figure 9 we divide the dataset into sam-
ples of size N with δ = 0.05. As N increases, the
Hoeffding equation fails to bound the error more
frequently. As the rightmost addend decreases and
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Hoeffding inequality violations to number of series

Figure 9: With δ = 0.05, one expects the Hoeffding inequal-
ity (Equation 14) to hold in 95% of cases. However, for M4
monthly data, we observe that the inequality breaks down
completely and is violated in 100% of cases, given N number
of series large enough (>∼ 4500).

Equation 14 theoretically becomes more strict, re-
ality in the form of Et

ante does not comply with the
bounds deduced from Et

post and parameters.
Apart from the algebraic workings of Equa-

tion 14, why is the inequality so often broken in
the practical example of the M4 monthly data?
Trusting Hoeffding’s mathematical ability, the er-
ror must stem from the assumptions of the equa-
tion. Precisely, the M4 monthly information is not
Sub-Gaussian. In Figure 4.2, the kurtosis of the
M4 series is around 967 times larger than a nor-
mal distribution with the same mean and standard
deviation.
As seen in Figure 4.2, the tails of the real-world

distribution are simply not represented well by the
normal assumption. The number of Hoeffding vio-
lations is a direct consequence of the Sub-Gaussian
assumption, the error seen in Figure 9 is thus a
representation of how wrong normality assumptions
can be in actuality. It is worth noting that the clas-
sic OLS model and its derivatives rely on such as-
sumptions (often in residuals) for them to be BLUE
(Best, Linear, Unbiased, Estimator). The BLUE
property and its assumptions are established in the
literature and a good discussion can for instance be
found in Greene (2018).

4.3. The ex-post lower bound loss of model combi-
nation is less than or equal to model selection

Let L denote a loss function, i.e., a function that
evaluates the performance of a function approxi-
mator. A relatively lower loss implies a relatively

superior performance. LL with the superscript L
is the lower bound on the losses a class of function
approximators can produce.

Ex-post
In mathematical notation the statement is:

min
f∈F

(L(yt+h, f(yt)) ≥ (15)

min
p

(L(yt+h,
∑
f∈F

pf · f(yt)) (16)

given (
∑
f∈F

pf = 1) ∧ (pf ≥ 0 ∀f ∈ F) (17)

Equation 15 shows our definition of model selec-
tion. Equation 16 shows our definition of model
combination. It is also necessary to assume that
neither approach has a rich deep neural network as
part of its ensemble.

This is a trivial proof ex-post since for any f set-
ting right hand side pf = 1 =⇒ f ∈ F on the
right hand side. In other words: model selection is
a subset of model combination.

In Ankile and Krange (2022) we prove that ex-
post model combination, as opposed to model selec-
tion, leads to a 10.4% reduction in optimal forecast
MASE and a 5.5% reduction in optimal solution
variance. This result is for the 100k univariate time
series from the M4 Competition (Makridakis et al.,
2018b).

This observed effect comes to fruition because
ensemble combinations can reduce the bias intro-
duced by one individual model by counteracting
it with another model’s bias in the opposite direc-
tion. Montero-Manso and Hyndman (2021) states
that “The more accurate the individual models that
enter the ensemble, the more accurate the results
of the ensemble, so the target accuracy is that of
the individual methods.” This statement is correct
for model selection but not for model combination,
where adding a strictly worse single model might in-
crease accuracy than a strictly better single model.
This effect is exemplified in Figure 11.

Ex-ante
Although model selection has a higher loss than

model combination ex-post, there is evidence that
the same holds ex-ante.

Our DONUT combination model only predicts a
model selection equivalent weight in < 1% of all
its M4 forecasts (Ankile and Krange, 2022). Fur-
thermore, DONUT outperforms FFORMA, the sec-
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Histogram of M4 M-o-M change and corresponding normal distribution

Figure 10: Histogram of M4 M-o-M and the normal distribution of the data mean and std. The kurtosis of the actual M-o-M
change is 4798 >> 3 of the normal distribution.

Three forecasts and target

Figure 11: In this constructed example we have a target in
dash-dotted black and an ensemble of 2 forecasts in solid
red and blue. If we add the dashed blue line forecast to the
ensemble the model selection approach lower bound loss de-
creased, how ever in both cases a model combination method
has 0 lower bound loss

ond placing M4 competitor (Montero-Manso et al.,
2020), with a significant margin, further indicat-
ing model combination superiority over model se-
lection.

4.4. The ex-post lower bound loss of non-
parametric univariate methods is less than or
equal to model combination

Ex-post
In mathematical notation the statement is:

LL(yt+h, f(yt; θ)) ≤

LL(yt+h,
∑
f∈F

pf (entity(yt)) · f(yt)) given (4)

(18)
Montero-Manso and Hyndman (2021) argue that

“the property of the consistency of an estimator (or
‘universal approximator’ of neural networks) can-
not be invoked as a rationale for the use of global
models in the traditional setting (no single function
exists which can approximate a set of time series
in general).” This is seemingly based on the no-
tion of the universal function approximator from
Hornik et al. (1989), as well as the no free lunch-
theorems (NFL) of Wolpert and Macready (1997).
This statement seems to disregard the caveat that
the NFL theorem applies to the set of all possible
optimization problems. At the same time, time-
series forecasting probably could be regarded as one
class of problems and hence can be solved by a sin-
gle algorithm.

An existence proof of the above is the work done
by Oreshkin et al. (2020). Here, the authors train
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their N-BEATS model (Oreshkin et al., 2019) on
the FRED dataset, which contains 290 thousand US
and international economic time series published by
the Federal Reserve Bank of St. Louis. This model
is then used to forecast the 100k time-series in the
M4 Competition data set and achieve a similar re-
sult to Montero-Manso et al. (2020), the second-
place winner of the competition. This result illus-
trates that transfer learning could leverage general
patterns in time series and have the regularizing
power (anti-overfitting).
Furthermore, we argue that choosing an en-

semble approach is equivalent to making assump-
tions about the underlying Data Generation Pro-
cess (DGP). In the latter case, the choice of F in a
model ensemble will result in a lower bound loss as
a function of the models it consists of and the time
series at hand. However, a non-parametric model
of sufficient size does not imply such a constraint.
Ex-ante
N-Beats, a model which only consists of NNs, can

train on one set of time series (the source set) and
then transfer this learning to other groups of se-
ries (the target set), out-competing state-of-the-art
models on the target set (Oreshkin et al., 2020).
For example, when N-beats used M4 as a source set,
the algorithm beat the winner of the M3 target set
(5.7% sMAPE improvement). This improvement
suggests that even though no single function can
approximate a set of time series in general, non-
parametric univariate methods out-compete some
of the best parametric models on a single series.
We also infer that several different time series elicit
the same types of behaviors, which is an argument
for cross-learning.

4.5. The ex-post lower bound loss of non-
parametric multivariate methods is less than
or equal to Non-parametric univariate meth-
ods

Ex-post
In mathematical notation the statement is:

LL(yt+h, f(yt, Xt; θ)) ≤ LL(yt+h, f(yt; θ)) (19)

We believe an NN needs the correct information
to approximate and distinguish between underly-
ing DGPs. Our main postulation also witnessed in
the excellent performance of recent multivariate ap-
proaches (see: subsubsection 1.1.4) is that adding
more variables as input to a forecasting algorithm
will increase the accuracy of predictions.

There is no guarantee that the values of a time
series contain the most crucial information for bias
reduction in a forecast. For instance, any equity in-
vestor will look at many variables before investing,
e.g., market growth, revenue growth, costs, and in-
terest rates, when the dependent variable is market
capitalization.

Ex-ante Different variables can hold the infor-
mation necessary to deduce a pattern (non-linear
correlation) in a data set.

For a univariate approach, as our training dataset
approaches infinity, the formula which solves for
the NN’s optimal forecast is given below, in Equa-
tion 20.

lim
N→∞

Dtr
N =⇒ NN(yt) :

min
NN(yt)

∑
i∈Dtr

N

L(yi,t+h, NN(yt))
(20)

Empirically it is easy to prove cases where
multivariate methods outperform univariate meth-
ods. We create a fake dataset where the sig-
nal is identical for all series and while ex-post
continuation is one of three time series. More
formally, we made Dtr

N and Dval
N ∈ DN =

{y1,t, y2,t...yN,t, y1,t+h, y2,t+h...yN,t+h} where yi,t −
ϵi = yj,t − ϵj |ϵi, ϵj ∼ (0, 0.1)∀yi ̸= yj ∈ DN . Thus,
a neural network training on the signal will con-
verge towards Equation 20. With three possible
values F = {f1, f2, f3} yt+h can take in this setup:

P[yi,t+h = fj |yi,t] =
1

3
∀i ∈ N ∧ ∀j ∈ |F |.

We then add a variable x as part of the input
to a neural net where P[yi,t+h = fj |xi] = 1,∀i ∈
N∃j ∈ |F |. Figure 12 shows the result of this train-
ing on the validation set. Thus, the net receives all
information needed to predict the future perfectly
through the newly introduced variables. We plot
the loss curves for the two implementations of a
model (with and without the exogenous variable x)
in Figure 12. This experiment further reinforces the
claims above regarding the lack of expressive ability
in univariate models.

This constructed proof (Supported by compu-
tation) shows that there are multivariate meth-
ods that outperform univariate methods. However,
does the opposite claim hold: Can univariate meth-
ods outperform multivariate ones? While this can
hold in practice, we note that a multivariate model
has the option to set all but one variable influence
to zero producing a univariate model (In the in-
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Error floor for univariate and multivariate model

Figure 12: It is evident that the multivariate model quickly
learns to use the highly relevant information in x, rapidly
outperforming the univariate model. The univariate model
converges to the black line which is the solution of Equa-
tion 20 where L(·) = MAE(·).

stance of an NN, set all input weights not related
to one variable to zero). Thus the lower bound loss
of a multivariate model cannot be higher than its
univariate counterpart.
There is, however, a pitfall in the above line of ar-

gument. One needs to make sure that the informa-
tion added to the model is appropriately weighted
compared to the existing information. I.e., if one
constructs a univariate, autoregressive model, and
one were to add the set of exogenous variables E
to the set of autoregressions A, if |A| >> |E|, one
runs the risk of the model disregarding the new,
important information. Figure 13 exemplifies this
problem. The figure shows how the model strug-
gles increasingly to utilize the useful information as
the ratio between the number of exogenous vari-
ables and lags decreases. Therefore, we argue that
one must take care when constructing multivariate
models to make sure the model of choice is enabled
to learn the important relationships in the data.

Z. False Local-Global Dichotomy

(Montero-Manso and Hyndman, 2021) discuss
the dichotomy between local and global models and
analyze some properties of the approaches. How-
ever, we would argue that this dichotomy might
be fundamentally meaningless and might rather de-
pend on if globality stems from cross-learning done
explicitly by machines or implicitly by humans.
Furthermore, the literature seems to confuse lo-

cal models with global models. In most ‘local’ ap-

Convergence rates for varying SNR

Figure 13: The leftmost column shows that when the number
of lags used, |A|, equals the number of exogenous variables,
|E|, the model finds a better solution than the optimal, uni-
variate solution 100% of the time. However, as the number
of lags increases, and the signal-to-noise ratio (SNR) with
it, the time needed for the model to converge past the lo-
cal minimum increases. The whiskers also indicate that the
variance in convergence time increases with SNR

proaches, the meta-learner (i.e., the process defin-
ing, e.g., the functional form of a model) is a human
being. This fact is in opposition to the arguments
by Montero-Manso and Hyndman (2021), i.e., that
local models are fitted only to the forecasting prob-
lem at hand, treated as a ‘[...] separate regression
problem of finding a function to predict future val-
ues from the observed part of the series’. An exam-
ple of this is the ARIMA class of models.

To elaborate on the above point, we think there
is a flaw in the notion of a ‘local’ model. One
such erroneous conclusion is classifying an ARIMA
model fitted to a single series as a local model. An
ARIMA model incorporates many assumptions and
ideas that humans have arrived at through years of
research. When fitting the model on a single yt,
the resulting model is a product of a human meta-
learning system and fine-tuned on the time series
at hand.

It is unlikely that any truly tabula rasa model
would decide to fit an ARIMA model to time se-
ries. However, human researchers and the humans
implementing the model have observed many time
series, leading them to develop the idea of autore-
gression, integration, and moving averages. People
then embed these ideas into the models. Further-
more, they use cross-learning concepts, such as sea-
sonality and trend, to discern whether ARIMA is
an appropriate model for the task at hand.

A local model can only be genuinely local (fitted
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only to the task at hand) iff we feed a tabula rasa
model only a single time series used for predicting
future values of the same series. The time series
would have to be very long for this to make sense.
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Part II

General Financial Forecasting Framework

Figure 14: The overview of our general forecasting framework. The large datacube is sliced into input and targets of different
combinations, which are then passed to neatly defined loss functions to quickly model many different forecasting scenarios. One
can select from a plethora of models and data to explore many different problems fast in any combination of features, time,
and companies. As an example, we select balance sheet data across all times for the target, and whatever inputs we want e.g.
fundamentals, stock prices, and worldwide risk-free rates to model the bankruptcy classification task.
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5. Dataset

5.1. Data overview

Our dataset is novel, compiled by the authors,
consisting of a large quantity of fundamental and
stock data and, to a lesser extent, macro time se-
ries and company metadata. The main series to
predict is the stock prices (or market cap) of 1846
global oil and banking service companies, with data
from January 2000 until April 2022. In addition, we
have collected primary fundamental data from 104k
quarterly reports over the 22 years. Finally, we have
included several related macro financial and com-
modity price time series, e.g., interest rates and oil
prices, used in the multivariate models. In total,
there are 8.7M data points in the dataset.
We want to measure our forecasting problem’s

accuracy for forecasts around a month into the fu-
ture. Therefore, with around four weeks per month
and five trading days per week, we use a horizon of
20 periods, i.e., days in this case.
The last 20 data points for each time series will

be put away for testing and comparing the differ-
ent approaches. Here, we ensure that a specific
point in time restricts where the training data stops
and where the testing data starts. This restriction
makes sure we under no circumstance have any data
leakage, i.e., data from the future implicitly being
available in the past.
We will also split the training set into training

and validation sets used for tuning training param-
eters for the non-parametric models.
Using fundamental accounting data on a quar-

terly basis is not something that is frequent in fi-
nancial studies using deep learning applications due
to its low-frequency Jiang (2021). We tackle this
by using a large amount of data with the Refinitiv
Eikon database, and by structuring the data into a
cube as seen inFigure 15. This way, a model many
financial updates for a one-time era.

5.2. Missing data

An obstacle in this work is the number of missing
values and nonsensical entries in the datasets we
combine. Therefore, collecting and cleaning data
in the best possible manner, given the state of the
data, has constituted a considerable portion of the
efforts required to produce this thesis.
Jiang (2021) argues that missing data in financial

applications is not as severe as in other domains

since it is often collected by trustworthy sources and
that logging accurately is something that is part of
the nature of market data. Still, he recommends
using forward filling to match different frequencies
of data, when this leads to missing gaps in the time
dimension. Thus, we use forward filling actively in
our data pipeline, representing ‘the latest available
information.

In the following, we present our data cleaning
step by step and show how much the data cleaning
process reduces DT = {∀data points ̸= NA}, or the
amount of data from its original size.

To summarize, we remove companies that meet
certain thresholds of NA data points, with an em-
phasis on removing data when in doubt to make
sure we are left with a trustworthy and sensible
dataset afterward. Figure 16 shows our data pro-
cessing pipeline. The Sankey diagram is a visual-
ization of the data cleaning process in detail below.

1. Cleaning stock data
Our ‘stock’ data set contains all data relating
to the market capitalization of firms.
We apply two filters in the cleaning of stock
data. We begin by removing missing values re-
sulting from collecting dates pre-listing or post-
delisting of a given ticker, i.e., we trim NA val-
ues at both ends of a time series. Secondly,
we remove all tickers with chains of NA values
that are longer than five days, as seen in Fig-
ure 18. We lose about 6% of companies and
data points in the process.

2. Cleaning fundamental data
Our ‘fundamental’ data set contains 12
columns comprising fields in all three finan-
cial statements (profit and loss, balance, cash
flows) every quarter.
We delete all companies in the fundamen-
tal dataset without a single entry in the ‘an-
nouncement date’ column. We do this because
we can not use information if we do not know
when it entered the market (to safeguard us
from ‘leaking’ information from the future into
the past). We also remove odd quarterly num-
bers where revenue is negative, or EBITDA ex-
ceeds revenue in a quarter. Finally, we can all
financials where EBITDA/Revenue exceeds -
500%. Figure 16 shows all of the mentioned
cleaning processes from the loss from Eikon
fundamentals.
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Conceptual representation of the datacube

Figure 15: Overview of the data as it is used in a practice. The two colors represent two different problems, where the input
shape is fitted to the data one wants to find trends for. In the case above, the grey problem has fewer time entries and
companies, but more features compared to the blue case. These cubes are restructurings of a given ET−k,T , displayed on the
previous page. Note that this implies that when we are later working with means and medians across distributions, we have to
define what dimensions they are across. In our program, they are implemented as PyTorch tensors.
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Sankey diagram showing data processing

Figure 16: Sankey diagram showing our data pipeline from
the collection from Refinitiv Eikon database to our inner
joined dataset across fundamental and stock data. The blue
color is raw data as collected from Eikon. The red color is
the data we lose due to our filtering process which seems
noisy.

Share of entries per day from the year 2000

Figure 17: Red color indicates the time series we have re-
moved due to too little signal before the year 2010. Blue
indicates the macro series we keep. We drop all LNG series
and the US intra-bank lending rates because of their high
percentage of missing values. Our limit was at least 20%
signal in 2010.

After the above cleaning process, we still have
sporadic missing values. We forward fill all of
these (i.e., replace a missing value with the en-
try before it), so a model always uses the latest
available data.

3. Keeping the intersection of the datasets
We only have stock prices for some companies,
and we only have a few fundamentals for oth-
ers. Combining the dataset through an inner
join is necessary to ensure the resulting dataset
is complete. This inner join leads to a loss of
around 2 million data points, as seen in Fig-
ure 16.

4. Cleaning macro data
A problem with the macro data time series is
that the frequency of entries increases sharply
with time. We reason that a signal cannot
enter the dataset too late since a neural net-
work is likely to build a forecasting algorithm
independent of a signal that later enters the
training loop. Thus we limit the signal-to-
noise ratio to having reached 20% from 2000
to 2010. The y-axis gives the signal-to-noise
ratio in the data from the beginning until the
point on the x-axis. So for a given point on
the x-axis, we can read off how much data is
available to the model. As shown in red in
Figure 17 all LNG series and the US intra-
bank lending rates are dropped because of their
low signal-to-noise ratio. The same reasoning
holds for the Intercontinental Exchange Index
German NCG Natural Gas Electronic Futures
(NGMMcx=NGMM x month forward).
As a side note, we find this positive correlation
between year and amount of data a problem
that is little discussed in the literature but is
essential to address appropriately.

The collected metadata has few missing values
and is trivially added to the inner company-specific
data, increasing the total number of data points by
around 1000 rows · 9 columns = 9000 data points.
Our final combined dataset has a size of 8.790M

data points, 1846 companies, and 104,178 annual
rapports, with an average of 8.8 entries per report
(11.6 counting forward filled entries and added en-
tries of posts as a percentage of revenue).

5.3. Training data

We have two objectives for our training data set:
1) We need the data to maximize knowable signal,
i.e., where maximize signal means that we want to
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Share of stock data included to missing data tolerance

Figure 18: We allow 5 consecutive Na values as marked by
the dash-dotted vertical line. Note that imposing 100 NA
values would only lead to a 2 percentage point increase in
companies and data points.

Fundamental entries of banking service companies

Figure 19: We select the 923 companies from the banking
sector with the most entries of fundamental data since 2000.
Red indicate the ∼700 companies which we drop due to this
restriction.

extract as close to all signal that exists as possi-
ble and knowable means that no knowledge from
the future leaks into the past. 2) It needs to be
normalized for proper training.

Simultaneously satisfying these two objectives
leads to some difficulties that are non-trivial to
solve, which we discuss below.

We want our training environment to handle a
T =‘current time’. At time T ≤ T = last time of
train/test set, 2019/2022, respectively. We make
available the k last macro and market capitaliza-
tions and the last p announced quarterly reports
up to and including time T . We define the data
we allow our models to use as ET (k, p). Figure 22
shows an overview of the three final data frames
we construct, which handle the two above objec-
tives and are thus = ET (k, p). We choose the E
notation to allude to subsubsection 6.3.3 ‘Era’ con-
cept. this data segmentation’s ‘time window’ ap-
proach. Note that the ‘macro’ data is implicitly
defined as it is not dependent on k, p or T , which
is also why the metadata frame is not part of the
stock&fundamental data frame, as this approach
would result in storing redundant information.

In our training, we divide history into rolling
windows of k = 240 trading days (i.e., roughly
a year back in time). Partitioning leaves
us with a table of 240 stock prices. In
STOCK&FUNDAMENTAL we include the last
p = 4 quarterly reports of fundamental data (m
post including posts from the balance, p&l, and
cash flow statement) =⇒ ET (240, 4). We have
c = 19 macro time series in MACRO, also with
240 lags from T . We have metadata in META of
all companies containing 4 company location met-
rics, gradually increasing in specificity, the found-
ing year, and 5 sector codes also progressively more
exact.

We normalize all fundamentals in the p&l and
cash flow statements by dividing them by quarterly
revenue. Next, we add columns dividing the ab-
solute value numbers from the two above financial
statements by the firm’s market cap at T . Finally,
we normalize all balance sheet numbers by total
assets. These three data sets represent the funda-
mental data in ET (240, 4).
We add a column to our data frame of the last

market capitalizations min-max normalized across
all companies for a given ET−k,T . This normaliza-
tion gives the neural network information on a given
company’s market cap relative to its peers within a
training window.
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Next, we add a column with the last market cap
divided by the market cap of Apple Inc. as of
05.05.2022 (BIG NUM in Figure 22). This nor-
malization procedure allows the model to have in-
formation about firms’ size in absolute terms over
time. Furthermore, with this column, the compa-
nies’ total size is deducible for the learning entity
since we divide the columns of fundamental data by
the firm’s market cap at T ).
Note that we do not divide by the max market

cap of all our stocks, as this could lead to (possi-
bly non-negligible) data leakage and could corrupt
our results. We have found minimal discussion re-
garding correct normalization in multivariate time
series forecasting literature. Nevertheless, normal-
izing according to principles 1) and 2) is something
we believe is fundamental to proper multivariate
forecasting and needs establishing best practices.
Then, we normalize each macro series in

MACRO by its maximal value across T , rounded
up to the nearest 100. This could have resulted
in data leakage; however, we believe the upwards
rounding to the nearest 100 restricts the informa-
tion about the future we give the model, as there is
a many-to-one mapping between actual future max
value and normalization.
The next issue is for the METADATA frame,

which contains constant information about the
companies to be categorized. Furthermore, we need
to represent somehow the tree-like category struc-
ture of both the location and business sector values.
Although one could encode the information of the
categories as a binary string, this is not advisable as
the model would have to learn to decode this repre-
sentation before it can use the information within.
Thus we opt for categorizing the using PyTorch em-
beddings.
In the normalization procedures, one must ac-

count for missing values (NAs). For example, if
a single total assets value is missing for a single
quarter, this would lead to missing balance sheet
information for this quarter. E.g., if ‘total assets’ is
missing, ‘total liabilities’ divided by ‘total assets’ is
also undefined. This project’s share of missing data
makes it unreasonable to remove all NA values. We
think missing data is a part of nature and models
need to adapt. For instance, one could forward fill
missing data, but there would still be problems with
NA values if, e.g., the ‘total liabilities’ first appear
year T + n. The above is possibly just one out of
many ways NA values eternally permeate real-world
data despite one’s best effort to rid the world of it.

Furthermore, since a single NA value is enough to
abend the training procedure, we need a robust way
to handle them. Therefore, we chose to set missing
values to 0. Then, we rely on the model learning
that a 0 in the input is equivalent to missing data.
We think this makes sense as it resembles the reg-
ularizing approach in NNs, known as dropout. This
procedure randomly zeroes out inputs to help the
model be more robust against noise and prevent
overfitting.

In practice, our data is shaped in a cube format
with dimensions (company, feature, time) as seen
in Figure 15. Our neural networks are fed one com-
pany’s data at a time and are given one entire table
of features over time. This is a great structure for
particular TCNs, however, it is also a generalization
of the input structure and works for many other
models as the cube can be sliced into the particu-
lar data one wants to work with. Slicing at feature
and company could for instance be a peer valuation
metric, or slicing at two features and a time could
be a test for co-integration.

5.3.1. Bankruptcy data

The bankruptcy data is perhaps the data slicing
that needs the most care to make right. Firstly in
Figure 20, we can see that the number of quar-
terly rapports that by our definitions are classi-
fied as bankrupt is increasing. This is perhaps
fine as all recordings seem to be correlating posi-
tively with time. However, it seems quite volatile.
Thus, we in Figure 21 see the same number in
terms of % bankruptcies per year. This number
is much smaller than the 10% of the fundamentals-
only view. This leads us to suspect that ”bankrupt”
companies report many times after we would have
classified them as bankrupt. We handle this when
predicting and fitting the models.
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Bankruptcies per month

Figure 20: Display of the percentage of bankrupt fundamen-
tals over time. It is increasing and quite volatile. Although
there are some double counting as companies have multiple
year internal statements which return bankrupt according to
our definitions.

Bankruptcies per year

Figure 21: Display of the number and percentage of
bankrupt companies per year. The last dip is likely explained
by the fact that April 2022 is the end of our data.
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6. Empirical Methods

6.1. Models

This section provides information about our cho-
sen models for each model paradigm we investigate.
We have three forecasting problems we attempt to
solve in this paper, and below we list the models
we use for these categories. As a general baseline
model to compare all models, we utilize the Näıve
model (see section 2).

6.1.1. Parametric, Univariate Models

In the fundamental forecasting approach, we
use Logistic Regression as a benchmark. The
bankruptcy prediction problem is that of a classifi-
cation problem, and Logistic regression is one of the
most influential and standard models in this setting.
We use scikit-learns implementation of the model,
with the parameter ‘class weights’ set to ‘balanced’.
The last parameter is to weigh the Bankruptcy
weight as much as the non-bankruptcy prediction
even though the latter is much more frequent in
the dataset as discussed in subsubsection 1.2.1
For the variance prediction problem, we fit

(68,092) simple GARCH(1,0,1) models, with an in-
put window of 1 business year, predicting 1 month
ahead of volatility measured in terms of standard
deviation, in a rolling window fashion. We chose
this partly because Brooks (2019) states that ‘a
GARCH (1,1) model will be sufficient to capture
the volatility clustering in the data...’. Further-
more, there is no online Python implementation of
Auto-GARCH we have found. Thus, we fit many
models, one for each era in the test set over time.
For the market capitalization prediction, We use

the ARIMA model to represent the parametric,
univariate class. This model is widely used in
the literature and has shown itself as a reliable
model in many domains, including financial fore-
casting. In addition, these models also have direct
analogs in the multivariate paradigm, to which we
can compare performance. The specific implemen-
tation of ARIMA we have used is the AutoARIMA
class from the open-source package for Python, pm-
darima (Smith et al., 2017–). Notably, this is dif-
ferent from the rolling window methodology for the
GARCH models. Where we refit the model for each
training window, then use the estimated parameters
to forecast the test set. This is a qualitative weight-
ing of AutoARIMA’s superiority to hard coding the
GARCH lags.

6.1.2. Parametric, Multivariate Models

To facilitate apt comparisons between the uni-
variate and multivariate approaches for the para-
metric paradigm, we implement an ARIMA model
with exogenous variables (ARIMAX). The princi-
ple is the same as for ARIMA above, and we use
the software implementation mentioned above, i.e.,
Smith et al. (2017–).

The vital difference is that, in addition to hav-
ing coefficients for autoregressions and moving aver-
ages, it also has coefficients for the exogenous vari-
ables, one for each. These coefficients allow the
model to adapt to changes in the environment in
which the time series resides. For a drosophilic2

example of this, see Figure 23.
See subsubsection 2.1.1 for a more in-depth ex-

planation of the ARIMA models.

6.1.3. Non-Parametric, Univariate Models

We use LSTM and TCN models as described in
section 2. They are fit to the same input as the
target.

6.1.4. Non-Parametric, Multivariate Models

We use LSTM-X and TCN-X models as described
in section 2 as our non-parametric multivariate
models. These models do not have a restriction on
the input space as a function of the output space.

6.2. Accuracy Measures

6.2.1. Time series regression measures

For our primary accuracy measure, we have opted
to use the Mean Absolute Percentage Error, or
MAPE for short. Armstrong and Collopy (1992)
defines MAPE (essentially) as in Equation 21.

MAPE =
1

T

T∑
t=1

|yt − ŷt|
|yt|

· 100 (21)

MAPE is suitable for several reasons in the con-
text of stock price and volatility prediction. First,
because the number it produces is interpretable
as the percentage one misses, it is easy to rea-
son about. E.g., if a model has a MAPE loss of

2Meaning the smallest or simplest possible example that
illustrates the effect.
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Regime switching in multivariate ARIMA

Figure 23: Illustration of how an ARIMA model with exogenous variables can adapt to changes in the environment when the
same purely univariate ARIMA model breaks down. Panel (a) shows how a sine signal jumps at x = 5 and continues parallelly
shifted. The best the ARIMA manages to do is degenerate into a näıve prediction. Panels (b) and (c), on the other hand,
show how, when we include a single state-indicating variable, the model can adapt to the changing environment perfectly ((b)
being low state and (c) high state).

0.05, it means that, on average, it misses the tar-
get value by 5%. Second, since errors are relative,
one can straightforwardly compare loss values for
different time series, despite market capitalization
having vastly different magnitudes from company
to company. Lastly, MAPE is widely used in the
financial forecasting literature (Gandhmal and Ku-
mar, 2019), facilitating cross-study comparisons.

We also utilize the related symmetric Mean Ab-
solute Percentage Error (sMAPE), which is defined
in Equation 22. This measure has many of the same
attributes as MAPE, with the exception of it being
more stable when the true future value is close to
zero (since one also divides by the predicted value
as well). On the other hand, it is somewhat bi-
ased in that it penalizes over-prediction and under-
prediction differently (Chen et al., 2017a).

sMAPE =
1

T

T∑
t=1

|yt − ŷt|
|yt|+ |ŷt|

· 200 (22)

Chen et al. (2017a) also presents more complex
measures, like UMBRAE, which elicit several desir-
able attributes. We have still opted to use MAPE
to allow for more straightforward and meaningful
interpretation and comparison.

6.2.2. Bankruptcy accuracy measures

To predict bankruptcy we use the formal Norwe-
gian definition of bankruptcy discussed in subsub-
section 1.2.1. In short, we use Binary Cross Entropy
implementation where the task is to for across the
training time window, return true or false whether
or not the target can be classified as defaulted, seen
below:

Insolvency(yt) = 1[yt,liab > yt,assets]

∃t ∈ Eval=1year

Illiqudity(yt) = 1[yt,currentliab > yt,currentassets]

∃t ∈ Eval=1year

bankruptcy(yt) = Insolvency(yt) ∧ Illiqudity(yt)

y1 = bankruptcy(yt) = 1, y0 = bankruptcy(yt) = 0

L(ŷi, yi) = −wi[yilog(ŷi) + (1− yi)log(1− ŷi)]

i ∈ {0, 1}

The wi is the weights we to make the much less
frequent bankruptcies contribute as much as the
non-default labeling tasks, of which the algebra we
do not provide here but is of course found in our
Our GitHub repository.

The loss function is an approximation and does
not truly measure actual filed bankruptcies for all
companies through time. Firstly, we do not have
this data as part of our dataset. And secondly, one
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main aim of this paper is to show that our methods
are truly general and that easily can be adapted to
new problems.
We use four different accuracy measures for mea-

suring accuracy in the categorization task of default
non-default for comparability with another paper
on the topic (Moen, 2020). We do not go into great
detail but provide their definitions and a short de-
scription of how to interpret the measures. The four
accuracy measures are the following:
Accuracy :
Accuracy is the % of correctly predicted labels for

a whole set of predictions and target labels. Higher
accuracy is generally better.

Accuracy =
TP + TN

TP + TN + FP + FN
(23)

The F-1 score: The F-1 score is the harmonic
mean of Precision and Recall. By combining both
these statistical measures the F-1 score can be de-
scribed as offering a more nuanced metric compared
to that of accuracy. A higher F-1 score is generally
better. To define F-1 score we first define precision
and recall:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1− score =
2 ∗ Precision ∗Recall

Precision+Recall

The Brier Score: The Brier score is a measure of
how far from the ground truth a set of probabilities
for mutually exclusive events is. A lower Brier Score
is better.

BrierScore =
1

N

N∑
i=1

(probf (outcomei)− outcomei)
2

AUC (Area Under the ROC Curve):
The AUC is best described by a picture, it is

the area under the ROC (Receiver Operating Char-
acteristic) curve. It tracks the movement of the
true positive rate, and false-positive rate for a set
of predictions when increasing the limit for what
is deemed a True prediction. An AUC score of 1 is
perfect and 0.5 is what a set of 50% predictions will
give in the limit. A higher AUC score is generally
better.

The AUC

Figure 24: The AUC shows the true positive rate, and false
positive rate for a set of predictions when increasing the limit
for what is deemed a True prediction

Lastly, we create our own profitability measure as
a function of a given ROC. Each step in the ROC
corresponds to a confusion matrix. We again ar-
gue that each confusion matrix can be transformed
into profits given a bank’s corporate loan objectives
of lending out money to non-defaulting companies.
Each confusion matrix is transformed in the follow-
ing way, where T is a threshold function given a
probability and τ for returning true, and where we
somewhat arbitrarily set the payback time to 10
years:

profit(r, τ,model) =

Comp∑
i

(
T (pi(model), τ)BiF ((1 + r)10 − 1)

− T (pi(model), τ)BT 0.8,

)
BiT +BiF = 1∀i
BiT , BiF ∈ {0, 1}

This is a simplification of the real world in many
ways, however, the transformation into profit space
is important to do for real-world applicability and
analysis that matters.

6.3. Training Procedure

Our test set starts on January 1st, 2019. From
there, the test set contains all months up to and
including March 2022. Consequently, only data
before January 1st, 2019 is allowed to be used in
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Finding the optimal training window size for ARIMA

Figure 25: To empirically find the optimal window of previ-
ous data points to train for, we ran several tests on a val-
idation set. We chose a random subset of 200 tickers. We
evaluated the resulting performance of the fitted ARIMA
models for those companies on the validation set for many
training window sizes between 1 month and 2 years. 1 year,
i.e., or 240 data points backward in time, came out as the
strongest candidate.

training the models. To make the comparison fair,
we freeze all model parameters after training com-
pletes, i.e., the models cannot fit more when pre-
dicting later months in the test set; they only get
access to the latest values in the series on which to
base their predictions.

6.3.1. Parametric, Univariate Models

For the ARIMAmodel, we started by using a sub-
set of the data to investigate the effects of the Train-
ing Window (TW) on the performance of ARIMA.
In particular, we explore how the accuracy of fore-
casts varies when the amount of data any single
ARIMA model can fit on varies. For example, Fig-
ure 25 shows how MAPE changes with TW. We
find that the optimal TW is 240 data points, i.e.,
12 months, which seems reasonable given that the
task is to forecast one month into the future.
To train the models, we pulled the market cap

data for all companies and split it at 2019-01-01,
our hard limit for what constitutes training data
and what constitutes test data. Since we use 60
data points for training and 20 for evaluating, we
included only the companies that could satisfy this
data requirement. This filtering includes most com-
panies.
Then, we fitted separate ARIMA models for each

time series. In particular, we fitted AutoARIMA
models from the pmdarima-package Smith et al.
(2017–). This model automatically finds the best
order fitting the ARIMA model according to Akaike

ARIMA model orders

Figure 26: Overview over all ARIMA models and their orders
for autoregressive, p, and moving average q lag terms, and
number of times it differences, d.

Information Criterion (Akaike, 1973). We used all
standard settings except disabling the seasonality
orders and allowing AR and MA lag terms to take
any values up to 10 (instead of 5). We believe in-
cluding seasonality complicates our analyses unnec-
essarily and is unlikely to have any expressive power
given the short forecast horizon. We refer to Smith
et al. (2017–) for further details on implementation.

In Figure 26, we plot a histogram of the model
orders of all 1 666 ARIMA(p,d, q) models fitted (on
a log scale). We can observe that the vast majority
of models select parameters to be either 0, 1, or 2.
This is likely due to the use of information criteria
in model selection, which penalizes larger models
if the model fit is not more than proportionately
improved. A very small subset of models have 5,
6, or 7 autoregressive lagged terms or moving av-
erage terms. From this, we are led to believe that
the ARIMA models are having a hard time coming
up with better models than some relatively näıve
models.

All the 69k GARCH models were fitted in a
rolling window fashion, month for month on the
test set.

Lastly, we used the resulting models to produce
forecasts for all the time series, which we subse-
quently compared to the actual values for January
2019 up to and including March 2022.

Although each ARIMA and GARCHmodel is rel-
atively simple and fast to fit, since one has to fit sep-
arate models for each company, the total running
time can be large. When using an Intel Core i7-
10700 CPU @ 2.90GHz CPU, training took about
0.5 hours, and prediction for the full test set took

33



about 1.5 hours for the ARIMA model. 6.1 hours
was the total running time for the fitting and pre-
diction of the GARCH on the same setup.
The fitting and prediction of the logistic regres-

sion models were more or less instant, running on
the same CPU, and is not discussed further here.

6.3.2. Parametric, Multivariate Models

The procedure we utilized to generate results for
our parametric multivariate models is very simi-
lar to the univariate case. The critical difference
is the added complication of handling exogenous
variables.
Initially, we include the exogenous variables by

joining the ‘market’ cap data for each stock with the
‘fundamental’ data for that stock and the ‘macro’
data (which is the same for all companies). Since
the periods differ between the sets (e.g., the ‘market
cap’ data is daily and ‘fundamentals’ are quarterly),
the ‘market cap’ dates serve as the base, and we in-
sert the other sets into that base. This procedure
creates gaps, especially for the quarterly ‘funda-
mental’ data. We fill these gaps forward, and only
forward, such that we are utterly confident that no
information leaks from the future into the past.
We restrict the models to train on 60 data points

here (as in the univariate case), mainly to facilitate
comparisons between univariate and multivariate
ARIMA models. Furthermore, some experimenta-
tion bolsters that this restriction is best for the mul-
tivariate ARIMA.
We then pass this data to the same AutoARIMA

model as above, as this model straightforwardly ex-
tends to the case with exogenous variables. How-
ever, there is a caveat because of the internal ma-
trix algebra, which forces us to drop columns of
data that are constant through time before we pass
it to the procedure (invertible matrices must have
linearly independent columns, and a constant term
is indistinguishable from a constant variable). Con-
stant columns occur most commonly in the ‘funda-
mental’ data set, as companies sometimes have de-
lays in their reporting of quarterly reports or report
several at a time when first listed. Therefore, not
all ARIMAX models will train on the same subset
of columns.
When predicting, there are also necessary con-

siderations regarding the exogenous variables. The
ARIMAX model requires values for the exogenous
variables for all future time steps it is predicting to
make predictions. Since these values are strictly un-
knowable at prediction time, the best we can do is

take the latest observed value for all and propagate
them forward (copy) for the coming month. These
variables will then function to establish the over-
all level for the ARIMA model to predict within,
similar to the simple example shown in Figure 23.

Lastly, we again compare the resulting forecasts
with the ground truth and produce a Mean Ab-
solute Percentage Error (MAPE) loss for the fore-
casts.

For ARIMAX models training took about 15
minutes, and prediction for the full test set took
about 4.5 hours, on the same setup as in the last
section.

6.3.3. The Era-Epoch Training Algorithm

This section introduces our Novel Era-Epoch
Training Algorithm, which we use to fit our models.

The key idea is that we divide data into a set
of eras of fixed length, which contain non-fixed
epochs. For a time t0 to T the algorithm divides
all data into eras, E, which is the set of all data y
and X, the dependent and independent variables in
this time frame. A model is then fit on this era’s
dataset, of which one entire run trough is called
an epoch. The epochs are run until a stop-criteria
based on the validation loss lossV a is reached, in-
ducing an onwards movement to the next era since
there is no more to gain from training on this Eras
dataset. Importantly, by this procedure, the model
learns what it can from each era but never predicts
things backward in time, which we believe is un-
helpful since it is already known. See Algorithm 1
for the pseudo-code describing this procedure in de-
tail.

This procedure contrasts with the parametric
model since we train models for windows bordering
the test set. Therefore, these cannot incorporate
knowledge about patterns from the past or other
companies in the same segment.

The algorithm begins with generating all eras be-
tween the start and end dates defined (one era for
each month) on Line 1 and initializing the model
parameters to a vector of normally distributed ran-
dom variables in Line 2.

In Line 10, we update the parameters of the
model in the simplest way possible. We utilize more
complex methods for parameter updates, most no-
tably the Adam optimizer (Kingma and Ba, 2014).
An in-depth discussion of the workings of these dif-
ferent optimizers is not appropriate here, and we
would instead direct the reader to the code in the
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Algorithm 1 Era-Epoch Training

1 E← generate eras(t0, T )
2 θ ← random vector ∼ N (0, 1)

3 for t = t0 to T by h do
4 yt+h, yt, Xt ← get data(E, t)
5 yt+2h, yt+h, Xt+h ← get data(E, t+ h)
6 for epoch = 1 to max epoch do
7 ŷt+h ← f(yt, Xt;θ)
8 lossTr ← L(yt+h, ŷt+h)
9 ∇θ ← ∂

∂θ (loss
Tr)

10 θ ← θ − α · ∇θ

11 lossV a ← L(yt+2h, f(yt+h, Xt+h;θ))

12 if stop criteria(lossV a) then
13 End era by breaking inner for-loop
14 end if
15 end for
16 end for

GitHub repository and the respective papers de-
scribing the methods and the definitive textbook
on deep learning, Goodfellow et al. (2016).
In this master thesis particular implementation

of the Era-Epoch Training Algorithm, t0 = Decem-
ber 31st, 2000. We take the first 12 months of in-
put data to predict the next month of data, with
the month after that serving as the validation data.
This collection of months of training data is the
first era, and it will contain several Epochs limited
by the stopping criteria as a function of the vali-
dation loss. We let the era advance a month at a
time thus having h = 20 (since there are about 20
trading days for each month). The raw data that
our non-parametric models train on is the same as
the parametric counterparts and is described metic-
ulously in section 4.5.

6.3.4. Traditional training loop

We also use a traditional training loop for our
models, where we sample random eras from the past
and validate on future eras. Figure 27 shows that
where one chooses to start to train a model can
heavily influence what market conditions it learns
from. This led us to also opt for this traditional ap-
proach, making the gradient decent of neural net-
works less dependent on starting conditions.

6.3.5. Hyperparameter search

One significant drawback of most machine learn-
ing methods is that they have several parameters

governing their fitting algorithm, known as hyperpa-
rameters, and they are often relatively sensitive to
small changes in the hyperparameters. Therefore,
to find the optimal combination of parameters, we
conduct a large-scale hyperparameter search. The
hyper-parameters are a result of a thorough over the
hyperparameter space, based on Bayesian search
and Hyperband-pruning of runs, as described in Li
et al. (2017). The online service wandb.ai provided
the logic for orchestrating the search. The actual
search parameters can be found as logs in of train-
ing in our Github repository.

In short, Bayesian search means that the al-
gorithm starts out picking a combination of hy-
perparameters completely at random. Over time,
the algorithm will update its prior probabilities of
what hyperparameters are the best in this situa-
tion. Thus, it will over time hone in on the areas of
the search space that are the most promising. This
improves upon grid- and random search, because it
is often not feasible to test out all combinations of
parameters, and the algorithm, can quickly discard
obviously bad neighborhoods of combinations.

Hyperbands are a strategy for deciding which ex-
periments (a full training cycle for a given set of
hyperparameters) to let run until completion and
which to kill early in the interest of directing the
resources towards the most effective causes. For
the details on this algorithm, we direct the reader
to the work by Li et al. (2017).

For both the Bayesian search and the Hyperband
algorithms to work, it requires a metric with which
to compare training runs. Usually, one would use a
validation set that is a random sample of the data
available for training. The nature of the time se-
ries complicates this situation. That which is rep-
resentative behavior for a time series is expected to
morph with time, as the market conditions change
(economic booms and busts, interest rates, infla-
tion, commodity prices, and a plethora of other ob-
servable and non-observable reasons). Therefore,
the metric we use to compare candidate models
must accurately represent different market condi-
tions. We settled on a setup that mixes the losses
for the next 12 months with the loss for the last 12
months of all the available training data. We nor-
malize all losses by the naive loss to make each loss
value more comparable across eras.
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Starting point of fitting procedure can determine model behaviour

Figure 27: Where one chooses to fit a model determines the market and trends it is subject to. For instance, our net is training
in a market with a positive average return before the last eras of the training loop, where the average return is bearish.

6.4. Feature importance

6.4.1. Permutation importance

We used input data permutation as a way of
discovering feature importance. For panel data,
there are standardized libraries for this, but we
constructed our own cube feature importance for
this project. In our data cube, we select a subset
of features and times and scramble these for each
company. One then sees how a prediction devi-
ates from the baseline prediction when the input
data is scrambled. One repeats the scramble mul-
tiple times to get a distribution of loss differences
of which we can investigate the mean and standard
deviation to make inferences about what input vari-
ables a model is using. If a selection of features
and times scrambled leads to a large loss over many
scrambles one can deduce that the model uses this
information to create accurate predictions.

6.4.2. Gaussian importance

For the macroeconomic variables we are not able
to permute them like in subsubsection 6.4.1, this is
due to the fact that they are independent of compa-
nies and thus, are, dependent on model implemen-
tation fed into the model as features of the com-
panies. Thus we create a gaussian importance test
where we add gaussian noise to all examples of a
macroeconomic series to determine their impact on
model output, as a deviation from baseline in the
same way as is done for the traditional permutation
approach.

Data cube permutations as a Rubik’s Cube

Figure 28: The permutations of our input data can some-
what analogously be viewed as a Rubik’s Cube rotation. The
rotation moves one feature time tuple to another company’s
input and logs how this impacts the loss.
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7. Results

This section presents the results from applying our general forecasting approach to 3 different but related
problems:
1. Bankruptcy risk forecasting

2. Volatility forecasting

3. Market capitalization forecasting

First, we present our results on bankruptcy prediction and analyses in subsection 6.4.2. Second, we forecast
stock price volatility in subsection 6.4.2. Lastly, we apply the framework to market capitalization (stock
price) forecasting in subsection 7.2.2. We compare the results in each part to relevant benchmarks. The
framework shows good performance on the bankruptcy forecasting task, adequate results when forecasting
variance, and does not beat the market, in the market capitalization forecasting task.
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7.1. Company Fundamentals Prediction

Table 2 shows the results from our experiments
with predicting bankruptcy risk for all companies in
our dataset. We also include results from a related
work by Moen (2020) on a dataset of Norwegian
companies for reference.
The table shows that the univariate TCN model

out-competes all other models in terms of the four
accuracy measures we use for bankruptcy predic-
tion (accuracy, Brier, F1, and AUC, see subsubsec-
tion 6.2.2 for definitions). We also show that our ex-
ogenous models have a higher Area under the ROC
Curve (AUC). Furthermore, we find that when put
in the context of a bank considering loan applica-
tions, the AUC metric transforms into a more prof-
itable prediction strategy.
We believe the test results for the fundamental

category are the most convincing out of the 3 tested
in this work. We test the fundamental prediction
capabilities of the general forecasting framework in
terms of a classification problem for bankruptcy.
We show that our model performs similarly to sta-
tistical models on established accuracy measures.
We also compare the results to those of Moen
(2020). Please note that Moens results are on a dif-
ferent dataset, and thus the comparisons must be
taken with a grain of salt. Nevertheless, we believe
they are relevant, and our respective benchmarks
show similar results.
We use the standard classification threshold of

τ > 0.5 to predict whether a company or its finan-
cial statements are predicted to go bankrupt within
the following year. The predictions are scored ac-
cording to the measures in subsubsection 6.2.2. We
emphasize that this is just one fundamental predic-
tion we chose to do, and augmenting the system to
predict revenue growth, EBIT margin, refinancing,
etc., are all achievable through picking appropri-
ate output from the datacube and designing a loss
function measuring the desired outcome.
In Figure 29 we show the confusion matrix for

the category-specific accuracy for our TCN-X and
LSTM-X models, the univariate TCN, and a Logis-
tic Regression model (denoted LR). Fitted on the
train set, it is evident that the neural networks have
learned to generalize. Even though there is a great
unbalance in the dataset, all three non-parametric
models predict bankruptcies with a 70-77% internal
accuracy. Most importantly the LR model dom-
inates all other models’ confusion matrices. We
note, however, that this domination does not im-

ply a higher AUC and accuracy. In fact, we find
the opposite to be true, as discussed below.

Comparing TCN to TCN-X and LSTM-X, it
seems more inclined to predict ´Not bankrupt’,
which results in more true negatives (negative being
´Not bankrupt’, but also the most false negatives,
which in the context of the labeling task is the most
costly error (since a defaulted loan can incur bigger
losses than a fully paid loan incur gains).

In Figure 30 we show the absolute number of pre-
dictions of the model and how they categorize in
terms of actual and predicted. This is simply an-
other view of the same information presented above.
Still, it is evident that all models learn to predict
‘not bankrupt’ quite a lot, which is sensible, and
is what a Näıve baseline would also do since the
class of companies that are not going bankrupt in
any given year is much larger than those that do.
However, the fact that all models but TCN have
a true-positive rate that is 3 times greater than
their false-negative rate is a clear indication that
the models have learned.

In Figure 31 we present our results (blue bars)
compared to Moen (2020). We find that more
advanced models can outperform simpler ones.
Firstly, across accuracy, Brier score, F1-score, and
AUC, our models are on par with Moen (2020). The
4 models we include from Moen (2020) (red bars)
are the RNN (Recurrent Neural Network), LSTM,
CB (CatBoost, gradient boosting method)3, and
Logistic Regression. The correlation between the
scores across metrics from the two papers validates
the overall validity of our approach. Most notably,
our F1 score is quite a lot better at ∼0.40 for both
our models, and AUC scores by Moen (2020) are
higher than all of ours. Our best model in terms
of all but AUC is the TCN. In fact, our TCN out-
competes all models except for CB and our LSTM-
X in terms of AUC. Nevertheless, the differences
could be caused by some intricacies in our respec-
tive bankruptcy definitions.

In Figure 32 we provide prediction frequency his-
tograms for all our models. The leftmost bar shows
the rate at which the model predicts that a com-
pany will almost certainly not go bankrupt within
the next year for all companies in the test set. It is
evident that the non-parametric models have a clear

3For info on CatBoost, see catboost.ai
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Category specific accuracy confusion matrix

Figure 29: The confusion matrix for the % correct labeling within each category. The LR model is strictly dominating all other
models in this confusion matrix. Note that all other models have a 70-77% correct prediction for the Bankrupt - Predicted
Bankrupt category.

39



Bankruptcy prediction results

Model Exogenous Parametricity Locality Accuracy Brier F1-Score AUC

TCN-X Yes Non-parametric Global 0.8759 0.1241 0.4118 0.8224
LSTM-X Yes Non-parametric Global 0.8705 0.1295 0.3965 0.8479
TCN Yes Non-parametric Global 0.9323 0.0677 0.5546 0.8471
LR Yes Parametric Global 0.9157 0.0843 0.5471 0.7262

RNN† Yes Non-parametric Global 0.8238 0.1261 0.1023 0.8795
LSTM† Yes Non-parametric Global 0.8230 0.1295 0.1008 0.8836
CB† Yes Non-parametric Global 0.8144 0.1258 0.1019 0.8895
LR† Yes Parametric Global 0.8146 0.1332 0.0961 0.8609

Table 2: Result summary from our models from the bankruptcy risk prediction task, as well as the models from Moen (2020),
which are marked with †.

Absolute number confusion matrix

Figure 30: The confusion matrix for the absolute number of prediction in each category for four models. LR is strictly
dominating all other models. The Bankrupt - Predicted Bankrupt is still ∼3 times larger than the Not Bankrupt - Bankrupt
category for both non-parametric multivariate methods.
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Accuracy measures for models compared with other paper

Figure 31: The bankruptcy version of our models seems on par with the models of Moen (2020) when the numbers are taken
as is. Note that the dataset and notion of bankrupt is different in both papers.

tendency to predict ∼0% chance of bankruptcy
with high conviction. This is interesting, as humans
are familiar with a notion of confidence in predic-
tion, and would indeed weigh this as very impor-
tant when e.g. processing loan applications. In this
light, the prediction weights of the LR model, are
much more spread out and the model prediction is
thus heavily dependent upon the threshold one sets.
Although they are small the areas of each bar along
the x-axis of the non-parametric models (confidence
of bankruptcy) are clearly non-negligible, and the
highest for our two TCN models. Thinking about
an actual probability distribution we believe these
plots are rational. In subsubsection 5.3.1 we show
that around 2.5% of the fundamentals in the test
window are categorized as bankrupt, this implies
that a good model should have most of its area be-
low the 50% mark on the x-axis.

Another way to see the confidence in the neu-
ral networks is by displaying AUC scores as seen
in Figure 33. The following is what we deem one
of the most compelling findings of all our analysis,
and thus we want to emphasize it: Both exogenous
models are highly confident in most scenarios, this
is not the case for any other model we tested. The
significant spike seen for both the blue and red col-
ors shows that the exogenous models have a large

set of predictions seemingly infinitesimally close to
0. Stated simply, it means that given more infor-
mation about the market condition and more of a
company’s fundamental data, the neural network
implementations get extremely confident in predict-
ing non-defaults. This strong conviction is not the
case for the TCN. Given only the previous assets,
current assets, liabilities, and current liabilities (in
this case, the combination of them is the univari-
ate case), the TCN has a more even distribution
of convictions, which means that the model hesi-
tates more in predicting 0% chance of default. We
believe Figure 33 and the above reflections are the
most apparent ex-ante result for multivariate supe-
riority presented in this paper.

The above conviction transforms the exogenous
models to the most profitable when we pass the
AUC through the profit function described in sub-
subsection 6.2.2. Intuitively, a firm conviction in fi-
nancial markets can be transformed into more prof-
its. Figure 34 displays the AUC passed through our
profit function. The absolute maximum is at the ca.
58% threshold for the LR model. Interestingly, as
we suspected from the leftmost part of the AUC
curve, the exogenous conviction is rightfully trans-
formed into more profits, measured in terms of the
average value of a 10-year loan with no defaults. A
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Overview of model outputs

Figure 32: Both exogenous models has a clear tendency to predict 0.0 chance of bankruptcy. Since only ∼50 of the more than
1600 companies of the test set are classified as bankrupt this is to be expected by a good model.

AUC of our four models

Figure 33: The AUC curve for the four models we have im-
plemented. Our LSTM-X has the highest AUC. Note the big
difference in high conviction for the X models given a true
limit. The exogenous models are essentially 100% certain of
non-bankruptcy for a great deal of companies.

Bank profits / max possible profit, given cutoff

Figure 34: Show the profit transformation of the models
AUC. When looking for strong conviction in default predic-
tions LSTM-X is the most profitable. The max profit of all
models is found at around 58% certainty for the LR model.

more typical investment metric is the ROIC which
can be seen in Figure 36. Fittingly all models are
equal when doing the Näıve forecast at 100% con-
viction of handing out a loan.
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Bank profits/ max possible profits, with increasing

interest rate

Figure 35: Setting τ = 0.05, demanding high conviction for
the bank to grant a loan the LSTM-X model is the most
profitable for all values of loan interest rate. In reality a 5%
chance of bankruptcy would demand a high rate of return
(of which LSTM-X) is still the most profitable.

ROIC for banks given model and threshold

Figure 36: Given a 1% inflation adjusted interest margin
a year, ROIC of the exogenous multivariate models is the
highest in the strongest Non-bankrupt conviction cases. The
absolute maximum ROIC is 9.9% at approximately 98% con-
viction of non-default for TCN-X.
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7.2. Stock Price Volatility Prediction

This section presents results on the test set from
January 2019 to April 2022 for parametric and
non-parametric models trained on the training dat-
acube (January 2000 to December 2018). We fit
univariate TCNs, multivariate TCN-Xs, and mul-
tivariate LSTM-Xs on different variables, and 69k
GARCH(1,0,1) models and the näıve strategy serve
as the baseline.

The results of the experiments are in Table 3.
Our TCN-X is the best non-näıve model, although
näıve strictly dominates every other model we test.

7.2.1. Analysis of parametric models

We fit (68,092) simple GARCH(1,0,1) models,
with an input window of 1 business year, predicting
1 month ahead of volatility measured with standard
deviation. Notably, this is opposed to our method-
ology of the ARIMA fitting, where we fit data in
a training window, then use the estimated parame-
ters to forecast the test set. In addition, we refit the
GARCH model because there is no online Python
implementation of Auto-GARCH or a GARCH that
allows for weight updates, which we have found.
Thus, we fit many models for each era in the test
set over time.

Starting with one forecast, Figure 37 shows the
GARCH40 model prediction. The name refers to
the 40 refitted GARCH(1,0,1) models used to pro-
duce forecasts for the entire test set (which con-
sists of 40 months). The GARCH40 model’s pre-
diction’s shape is similar to the actual AKER BP
monthly volatility but is a lagged. The predictions
lagging the observations is a natural consequence of
how GARCHmodels work (reacting to past changes
and assuming volatility clustering). Although we
fit the model on a full year and the predictions
are seemingly accurate, the loss seen in Table 3 in-
creases since the model only captured the spike in
March 2020 later when its effect is counterproduc-
tive (a sizeable positive deviation between actual
and GARCH40 in the later month).

When looking at many predictions in Figure 38,
it is evident that the GARCH40 models have some
considerable spikes in predicted volatility. These
spikes could be detrimental to the models’ overall
loss. For example, since the GARCH models seem
to resemble the naive approach, if the standard de-
viation rapidly diminishes from one extreme month
(which indeed seems to be the case in spring 2020),
overall, it will lead to a higher loss as the extreme

Standard deviation forecast Aker BP

Figure 37: GARCH40: The GARCH(1,0,1) model rolling
window fitted on Aker BP. The GARCH model is in similar
shape to the actual standard deviation although is lagged.

200 GARCH standard deviation forecasts

Figure 38: GARCH: The plot shows 1 month ahead day-
meaned forecast of 200 randomly chosen time series. Each
line is the prediction of 39 months in the test set, indepen-
dently trained on 1 year of prior data. Some of the GARCH
models are highly spiky and the time independent median
volatility prediction is around σ = 2.5%

event makes the model over-predict the standard
deviation of the following month. Such a finding
could be interesting to keep in mind when looking
at the non-parametric models’ results in the follow-
ing section.

7.2.2. Analysis of non-parametric models

We create a TCN model termed ‘TCN-MV’ as
we fit it only on the company’s M arket cap and the
market V IX. The NN learns to use both features
as seen in Figure 39. The market cap seems to be
the feature of the two that is most important, as
we very consistently get a 0.9 higher loss than the
baseline (standard prediction without noise) when
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Model TW h Exogenous Parametricity Locality Input scale Target scale Era mode MAE Gap to best % from best Best 99%

Näıve 20 20 No Parametric Local None Return N/A 1.44% 1.34%
GARCH 240 20 No Parametric Local None Return N/A 1.59% 0.15% 0.52% 1.46%
TCN 240 20 No Non-parametric Global Min-max Return Random 1.53% 0.09% 0.30% 1.42%
TCN-MV (X) 240 20 Yes Non-parametric Global Min-max Return Random 1.49% 0.05% 0.17% 1.38%
LSTM-MV (X) 240 20 Yes Non-parametric Global Min-max Return Random 1.54% 0.10% 0.33% 1.43%

Table 3: Table overview of standard deviation prediction. Näıve is better than all other models. h is the forecasting horizon,
and TW is the training window, i.e., the number of time steps into the past the model can see each time it forecasts h time
steps into the future.

Feature importance for TCN-MV

Figure 39: TCN-MV: The results from performing Gaussian
importance with 100 iterations with the model and our data
cube. The noise the Gaussian importance procedure uses is
normalized with the median of each respective feature.

applying Gaussian importance calculation as de-
scribed in subsubsection 6.4.2.

Continuing in understanding this TCN-X model,
we show one prediction in Figure 40 on Aker BP,
1 month ahead forecasts on our test set. The pre-
diction is relatively constant over time, with some
spikiness around March 2020. In Figure 41, the
spike is a prediction that affects all forecasts, which
complies with preconceived notions as the market’s
overall volatility spiked at that time. It seems like
the network has a pretty homoscedastic view of the
variance, as we can see that the prediction is more
or less constant with time.

This homoscedasticity can probably be explained
through the NN being a global model, training and
averaging its observations across all companies and
time. This way of training stands in stark con-
trast to the local models (GARCH). The significant
spike in the March 2020 prediction contradicts the
homoscedasticity, which shows that the model has
some notion of a macro event where it increases
all its predictions, despite having never seen March
2020 data before.

The GARCH40 models looks better than the
TCN-MV model but it is a fact that it has a higher

One volatility prediction for TCNs

Figure 40: TCN: 1 month ahead prediction for AKER BP
volatility over the test set. Note that the TCN predicts a
variance level that is quite constant, although there are some
spikes.

Volatility predictions for TCN-MV

Figure 41: VIX&MCAP: 1 month ahead prediction for 200
random tickers. Note that the spike from Figure 40 is present
for all tickers, though with different magnitudes.
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Distribution of mean loss for TCN-MV and GARCH40

Figure 42: Removing the ∼200th worst companies from
TCN-MV and GARCH40, makes GARCH superior in this
specific case. In other words, the mean and median loss
of TCN-MV is lower and higher respectively than that of
GARCH40.

mean loss on the test set. This is because we are
comparing mean, in fact, the GARCH40 model has
a higher median score. In Figure 42, we show the
losses of GARCH40 and TCN-MV if we were to
remove the i-th worst company measured in MAE
loss. We would need to remove 200 companies for
GARCH40 to outperform TCN-MV. If one were
to remove a company randomly from our distri-
bution, with replacement, TCN-MV would outper-
form GARCH40 given enough removals – this is the
mean. As presented in section 5.3.1, we train the
NN to minimize mean loss. We postulate that we
would have seen a higher variance and dependence
on market capitalization (as seen in Figure 39) if we
were to change the batch normalization procedure
to that of a median instead of a mean over tickers.
In Figure 43 we show the mean across compa-

nies of the standard deviation in each forecast. I.e.,
how much the forecasts vary from a straight line
or, to some extent, the homoscedastic assumption.
As Figure 37 indicated, when taking the mean over
companies, the inclusion of the VIX has made the
TCN predictions vary more, as seen from the higher
bar of the TCN-MV compared to TCN.

Standard deviation of volatility forecasts

Figure 43: GARCH40 has a higher variance within each time
series when averaged over companies. TCN-MV has a higher
standard deviation in its forecast compared to TCN. Inter-
estingly, the actual time series has the largest volatility of
the selection, meaning all models underestimate volatility.
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7.3. Market capitalization prediction

Table 4 presents the accuracy of the different
models as measured by MAPE on our dataset with
daily observations from 01.01.2019 to 20.04.2022.
Strikingly, according to the MAPE measurement,
Näıve outperformed ARIMA by a 1%-point mar-
gin or 14%. Using the martingale and efficient hy-
pothesis of markets, Näıve is the holy grail to beat
in any market. It keeps much more information
about the current state of the economy than what
the models of this setup have as inputs. Note that
of the non-näıve models, the TCN-X model is the
best performing model with a MAPE of 7.12%. No-
tably, ARIMA with exogenous variables has a colos-
sal loss, far worse than any other model.

7.3.1. Analysis of parametric models

The standard ARIMA model performs only .57
percentage points worse than the best-performing
TCN-X. Furthermore, it makes sense that such a
simple model would not beat the average dollar on
the market, i.e., Näıve. The selected models are
highly parsimonious (having relatively few param-
eters), as displayed in Figure 26.

The large loss seen in Table 4 seems to be a con-
sequence of overfitting training data. As seen in
Figure 45, the EBIT number is likely to work great
in-sample. When the model starts predicting far
into the future, the relationship it found in-sample

no longer holds. Then, small
∂ebit

∂t
will have large

effects on the prediction since the ARIMAX is a
function that, to a large extent, is determined by
this single variable. More specifically the ARIMAX

model has
∂farimax

∂ebit
<< −2 · 106.

This tendency by ARIMAX does not seem to
make much sense. Given a new company, one would
expect the EBIT to correlate with the market cap.
However, in the in-sample minimization context of
the ARIMAX, it is perfect logic. The MSE mini-
mization happens to fit in-sample with no regard to
context. Thus, for the particular fitting having too
large market cap weights and reducing them with
negative EBIT weights is one way to minimize the
ex-post loss. However, as is clear from Table 4, the
same does not hold ex-ante on the test data, nor
is it something a person with any sense of finance
would think.

One interesting aspect of ARIMAX is the ability
to look at the coefficients it fitted for the exogenous
variables. Large coefficients (properly scaled to ac-

ARIMAX BRT spot coefficients

Figure 44: The normalized distribution of the coefficient for
the Brent spot price for all ARIMAX models. The coeffi-
cients clusters around zero with both mean and median pos-
itive, but with a positive skew. We expect a positive bias,
as the oil price is one of the most important factors for an
oil company’s profitability.

count for different magnitudes in different features)
can indicate where it finds the most useful informa-
tion. The results from the ARIMAX models seem
dubious. Figure 44 and Figure 45 show some anal-
ysis of the ARIMAX models’ internals. In short,
the analysis consists of inspecting the coefficients
the ARIMAX procedure has settled on as the best
for the exogenous variables.

In Figure 45 we have plotted the mean coeffi-
cients across all companies, adjusted for company
size and relative exogenous variable size. The mean
of the absolute value of the coefficients seems to
make sense until one adds the error bars. With the
error bars, the mean values are no longer visible,
as the variance in some cases is such that ±σ com-
prises a large area on both sides of 0.

In Figure 44 we look at the impact of the spot
price of Brent oil on the companies. This figure
paints a similar picture as Figure 45, with mean
and median positive. However, here too, we see a
significant variance around 0. This variance, again,
makes it hard to argue that these results show a
convincing relationship between company value and
oil price, as any investor would believe, a priori.

One can observe in Table 4 that the loss achieved
with ARIMAX is 8 orders of magnitude larger than
all the other results. This colossal loss is because
some time series elicits erratic behavior, which
causes ARIMAX to break down for some time se-
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Model TW h Exogenous Parametricity Locality Input scale Target scale Era mode MAPE Gap to best % from best Best 99%

Näıve 1 20 No Parametric Local None None N/A 6.95% 6.80%
AutoARIMA 240 20 No Parametric Local None None N/A 7.93% 0.99% 14.21% 7.44%
ARIMAX 240 20 Yes Parametric Local None None N/A 4.59×108% 4.59×108% 6.61×109% 11.17%
TCN 240 20 No Non-parametric Global Min-max Market cap Random 7.71% 0.76% 10.98% 7.58%
TCN-X 240 20 Yes Non-parametric Global Min-max Market cap Random 7.12% 0.17% 2.45% 6.97%
LSTM-X 240 20 Yes Non-parametric Global Min-max Market cap Random 7.15% 0.20% 2.88% 7.00%

Table 4: Market cap problem: This table presents the best results achieved per model in terms of Mean Absolute Percentage
Error (MAPE) and the models’ distinguishing attributes. h is the forecasting horizon, and TW is the training window, i.e.,
the number of time steps into the past the model can see each time it forecasts h time steps into the future.

ARIMAX coefficient size overview

Figure 45: On the left, in panel (a), one can see the mean coefficient of each exogenous variable across all the companies.
These values are adjusted for company size and relative coefficient size to make them comparable across companies and
between variables. We see here that, on average, an increase in ‘ebit’ implies an increase in market value, and an increase in
‘net income’ is the opposite. This finding seems to make no sense in isolation. Now consider panel (b) to the right, where we
have added error bars of ±1σ. The size of the standard deviation completely dwarfs the absolute size of the bars, implying
that the variance is enormous and the mean values meaningless.
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Loss distribution for removals of worst companies

Figure 46: The company mean over time meaned forecasts
loss. When we remove the predictions which contribute the
most to loss it is evident that TCN-X outperforms ARIMA
until the removal of the 500 worst company forecast.

Figure 47: As with many things, the distribution of losses
follows a power law curve (Clauset et al., 2009), as the loss
produced for the worst-performing ticker is around 1000x
worse than the next worse. As such, by removing the 1% of
tickers that the model performs the worst for, the model’s
loss decreases to 1

4×107
the original value. The other models

also elicit similar characteristics, albeit not nearly as extreme
as ARIMAX.

ries completely. We find that this is an example of
where a more ’stable´ method like ARIMAX poten-
tially causes much more harm than more complex
non-parametric methods in the worst case.

To compare the methods better, we investigated
the nature of the breakdowns despite this total fail-
ure. As is often the case, we found that a minimal
amount of time series contributes the vast majority
of the error, see Figure 47. The rightmost column
in Table 4 shows the MAPE loss for all methods
when we removed the companies with the 1% worst
mean test loss. A couple of interesting observations
emerge. First, the worst-performing models have
the most to gain from removing their worst time
series. Second, AutoARIMA and TCN have their
orders reversed compared to the loss for all series.

7.3.2. Analysis of non-parametric models

Figure 50 shows the feature importance of
the inputs to the neural models, or perhaps,
the lack thereof. The figure shows bars of
permutation(set(features), i)loss − baselinelossi ∈
{1, ...50}. When the bar is positive, it means that
when we permute the inputs, it leads to a worse pre-
diction. It is evident that shuffling the market cap
and three financial statements has such a low influ-
ence on the model prediction that we can deduce
that the function the neural net is approximating
is independent of these inputs. Surely, if a small
oil company suddenly reported profits of the size
of Saudi Aramco, investors would run to invest in
them. This TCN-X model, on the other hand, does
not mind and believes the market cap of Small Oil
Corp to follow as before.

The reason is that the model has learned to act
similar to the näıve forecast. Due to our normal-
ization, the neural network learns to predict a vec-
tor that is close to all ones. This prediction is
equivalent to näıve (predict mcapt−1 and divide by
mcapt−1). This result suggests that the prediction
by this model is not a function of the inputs. We
share some thoughts on why this might be the case
in section 7.3.2 and more investigation is needed
and encouraged by the wider forecasting commu-
nity.

Importantly we believe the näıve forecast to be
a local minimum with a relatively safe, low loss.
Moreover, it is easy to approximate by NNs (set all
weights to 0 and keep set last layer bias to 1d ten-
sor of 1’s). For our dataset, then, this suggests that
if there is information in the ET , the NNs are not
able to find them. This inability could, for instance,
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Standard deviation within forecasts

Figure 48: TCN-X has a notably lower standard devia-
tion across time, then taking the mean over all companies.
ARIMA has a standard deviation that is higher than that of
actuals, which suggest it has overfitted to noise in the train-
ing data.

Aker BP market cap prediction

Figure 49: An example prediction by the TCN-X model for
January 2020 for Aker BP. Note that this prediction is down-
wards trending, and independent of all inputs.

be explained by a requirement for even more data
manifest in a lower loss, or the neural network rep-
resentations are not big enough. There could also
be signals the model could not find because of too
much noise. Our experiments in Figure 13 show
that NNs given too much noise in the input of a
neural network will have increased time to conver-
gence.
Figure 49 shows the forecasts of TCN-X on

AKER BPs market capitalization. It’s interesting
to note that it is downwards trending. Given that
markets tend to rise, it would seem more plausible
that this is what the neural network would have
learned.

Permutation feature importance

Figure 50: The results from 100 permutations of the market
cap, income & cash flow statement and balance. Note that
since the neural networks predictions shows close to no loss
when input is permuted it implies that the function it is
approximating is independent of the all inputs.
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8. Problems and further works

8.1. Data quality

We used Refinitiv Eikon as our data source. De-
spite giving us access to large amounts of data, the
data was generally of poor quality. The low qual-
ity lead to the authors spending obscene amounts
of time pouring over the data, making sense of it,
and cleaning what they could. This resulted in sev-
eral companies being dropped from the dataset in
the process. This poses two problems. First, This
could introduce some bias in the data, as presum-
ably, data quality is lower for some types of compa-
nies (e.g., small companies or companies in less de-
veloped economies). Second, the cleaning resulted
in fewer data points, which can adversely impact
machine learning methods that require enormous
amounts of data to effectively generalize. Both of
these issues could definitely be mitigated by more
work in collecting and cleaning data.
Furthermore, there is a definite chance of there

still being erroneous data in the data set. Most
likely, it is not too prevalent, but some deep learn-
ing models can be very sensitive to extreme values
and might be adversely affected.

8.2. Noise in data

Stock prices are naturally highly erratic and do
not necessarily represent the intrinsic value of an
enterprise. Employing techniques to de-noise the
data could be beneficial in this case. Several meth-
ods have been proposed, recently, e.g., researchers
have applied wavelet transforms (Bao et al., 2017;
Liang et al., 2019) and kNN classifiers (Sun et al.,
2017) to make the data more well-behaved.

8.3. Data normalization

We have taken care to prepare the data in a man-
ner that both minimizes noise and maximizes sig-
nal. Especially in the context of neural networks,
this is especially important, as they often expect
values centered around 0 with unit variance. We
think there are performance gains to be had in nor-
malizing in different ways and augmenting the data
through different transformations. There are also
some pitfalls here. For instance, we normalized fu-
ture values by the last period’s newest registered
market cap but this actually makes the näıve fore-
cast completely independent of inputs. Most neu-
ral networks quickly became independent of inputs

in this case. This is because the näıve prediction is
market cap and thus a normalization by market cap
returns a vector of ones. A rather non-trivial effect
of a normalization that seemed like it made sense
both in an economic and machine learning context.

8.4. Feature selection

We used a total of 37 features for our datacube.
This is a relatively large number but in no way
exhaustive in terms of what is available in data
sources like Eikon or Bloomberg. Furthermore, it
is likely that some of our features are pure noise in
the context of the chosen forecasting problems and
would be better left out. Therefore, further work
could investigate the space of available inputs and
the relevance in terms of signal to noise for different
forecasting tasks.

8.5. Fundamental non-predictability

We are of the belief that different time series are
of very different characters, where some are much
more predictable than others. Areas where many
actors are present and all actors both have a vested
interest in the outcome and can affect the outcome
will naturally be harder to forecast. This is because
more eyes mean more information is already priced
in. This represents our third experiment, predict-
ing stock market movements, which also showed
the most lacking results. On the other end of the
spectrum, one finds things such as weather, traf-
fic, and product demand, which can be forecasted
with a much larger degree of confidence. These are
fundamentally different time series, and forecasting
them might also be strictly more useful for society.
Therefore, we think that directing the forecasting
efforts towards soluble problems with useful solu-
tions is the most productive.

8.6. Model selection

We have sought to use some of the methods that
have proven themselves to be reliably strong in the
literature. Still, we humbly admit that there def-
initely are many approaches that would perform
better that we did not try. This concerns the para-
metric as well as the non-parametric models. We
encourage researchers to test the framework and
datacube for different models and tasks to see if
the theoretical optimum is within reach.
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8.7. GARCH fitting

There are some subtleties with regards to the fre-
quency of return inputs and output standard devi-
ation measure. We found one paper on this Chen
et al. (2015), where the return frequency can be
different from that of the forecast horizon. Un-
fortunately, neither was any online package read-
ily available to us nor did we have the resources to
implement it ourselves. Thus we mean over each
GARCH prediction 20 days ahead standard devia-
tion forecast and let that mean equal a month ahead
volatility prediction. Arguably, this averaging de-
feats the exact heteroscedastic modeling purpose of
GARCH models.

8.8. ARIMAX’s lacking interpretability

There are several reasons why the ARIMA model
with exogenous variables (ARIMAX) we used to
generate the results in section 6.4.2 had coefficients
that seemingly did not bear any usable information,
and that none of the parametric models could out-
perform the Näıve model. One important factor is
that ARIMAX cannot model relationships that are
not strictly linear in each separate variable. And,
since it is highly likely that there are much more
complex relationships than that, it is not surprising
that the ARIMAX models break down. As an ex-
ample, a highly indebted company will likely react
much more negatively to a drop in the oil price than
a company without leverage. One possible solution
to this could be to test several transformations of
the exogenous variables and apply lasso methods
for variable selection.

8.9. Time handling

In our datacube, all data, except the metadata,
is treated as having a daily frequency. This in-
cludes data from quarterly reports. This implies
some level of data duplication along the time axis.
In the age of big data, this is not a considerable
hurdle. However, there could be constellations of
the data of different frequencies that would be more
amenable for learning for the models, and we would
like to explore this further.

8.10. Loss measures

We have utilized tried and true loss functions in
this work. However, there is a vast literature on
different loss functions and accuracy measures that
we could have explored further. Especially with
optimizing the models, they can be sensitive to the

particular loss function used to calculate the gra-
dients. There could be gains to be had by a more
intelligent choice of loss functions for optimization.

8.11. Computing power

We have based our training rig around the GPUs
offered by Google Colab4. These are more power-
ful than what can be done on a laptop, but when
running large sweeps of hyperparameter search for
large models, one would benefit greatly from hav-
ing access to much larger amounts of computing
power.

4colab.research.google.com
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9. Conclusion

First, we presented a total ordering of the theoretical lower bound loss of different forecasting paradigms in
the following descending order: Model selection, Model combination, Non-parametric univariate models, and
Non-parametric multivariate. This shows ex-ante and ex-post that non-parametric and multivariate methods
are more expressive and thus have a decreased lower-bound loss compared to other models considered
Second, we create a generalized forecasting framework to test the above forecasting paradigms ex-ante. We

implement the framework by creating a novel datacube consisting of daily stock prices and 100k quarterly
reports from about 1600 global companies and several daily macro time series, all from 2000 to spring 2022.
Lastly, we utilize the framework and show that modern multivariate time series approaches are powerful but
domain-dependent. We demonstrate the domain-dependent accuracy by showing convincing results when
predicting corporate bankruptcy risk, moderate results when predicting stock price volatility, and lacking
results when finally predicting company market capitalization.
Given the domain-dependent convincing results and mostly unrealized theoretical lower bound loss of

multivariate approaches, we hope to encourage further research on non-parametric, multi-signal approaches
that leverage a wider array of available information.
Lastly, there are several areas where our approach could improve. For example, better data cleaning and

augmentation could induce stronger learning. More data on companies from more industries could be added.
It could also be highly relevant to apply more computing power and test out a wider array of models and
parameters. We also think there might be many related problems to which our framework can be applied
with exciting results.
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Index Name Type Frequency Description

0 market cap Stock Daily Stock price
1 global relative Fundamental Quarterly Market cap normalized to all companies
2 peers relative Fundamental Quarterly Market cap normalized to all comapnies in current timeframe
3 revenue Fundamental Quarterly Reported revenue
4 gross profit Fundamental Quarterly Reported gross profit
5 ebitda Fundamental Quarterly EBITDA
6 ebit Fundamental Quarterly EBIT
7 net income Fundamental Quarterly Net income
8 fcf Fundamental Quarterly Free cashflow
9 total current assets Fundamental Quarterly Total current assets
10 total liabilities Fundamental Quarterly Total liabilities
11 total current liabilities Fundamental Quarterly Total current liabilities
12 long term debt p assets Fundamental Quarterly Long term debt share of revenue
13 short term debt p assets Fundamental Quarterly Short term debt share of revenue
14 gross profit p revenue Fundamental Quarterly Gross profit debt share of revenue
15 ebitda p revenue Fundamental Quarterly EBITDAshare of revenue
16 ebit p revenue Fundamental Quarterly EBITshare of revenue
17 net income p revenue Fundamental Quarterly Net income share of revenue
18 fcf p revenue Fundamental Quarterly Free cashflow share of revenue
19 brt Macro Daily Brent oil spot price
20 clc 1 Macro Daily Gas future 1 month
21 clc 12 Macro Daily Gas future 12 months
22 clc 60 Macro Daily Gas future 5 years
23 wtc 1 Macro Daily Light oil futures 1 month
24 wtc 12 Macro Daily Light oil futures 12 months
25 wtc 60 Macro Daily Light oil futures 5 years
26 wti ref Macro Daily West Texas oil reference index
27 dub ref Macro Daily Dublin oil reference index
28 cn 10y Macro Daily Chinese 10 year interest rate
29 us 10y Macro Daily US 10 year interest rate
30 de 10y Macro Daily German 10 year interest rate
31 gb 10y Macro Daily British 10 year interest rate
32 high yield bond Macro Daily US treasury bond
33 vix Macro Daily Volatility index
34 eur fx Macro Daily EUR to USD
35 gbp fx Macro Daily GBP to USD
36 cny fx Macro Daily CNY to USD

Table A.5: A summary of all features included in the datacube.

Appendix A. List of variables

Appendix B. Data feature visualization
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Figure B.51: Overview of the different features part 1.
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Figure B.52: Overview of the different features part 1.
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Figure B.53: Overview of the different features part 1.
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Appendix C. Selected Relevant Python Implementations

Appendix C.1. Mean absolute percentage error

def mape loss ( t a r g e t : torch . Tensor , y pred : torch . Tensor ) −> torch . Tensor :
mask = (˜ ta r g e t . i snan ( ) ) & ta rg e t . i s f i n i t e ( )
denom = mask .sum(dim=1)
ta r g e t [ t a r g e t != ta r g e t ] = 0
l = ( (

( ( y pred − t a r g e t ) . abs ( ) / ( t a r g e t . abs ( ) + 1e−6) ∗ mask)
) .sum(dim=1) / denom ) . mean ( )
return l . clamp (min=0, max=10 000 )

Appendix C.2. Standard deviation mean squared error

def s t d l o s s d i f f m s e ( t a r g e t : torch . Tensor , y pred : torch . Tensor ) −> torch . Tensor :
# y t /y k−y { t−1}/y k => ( y t−y { t −1})/ y k ∗ y k / y { t−1} = ( y t−y { t −1})/ y { t−1}
t a r g e t = ta rg e t . d i f f ( ) ∗ ( t a r g e t [ : , :−1] ∗∗ (−1))

mask = (˜ t a r g e t . i snan ( ) ) & ( t a r g e t . abs ( ) <= 10)
mask2 = mask .sum(dim=1, keepdim=True ) >= 2

t a r g e t [ ˜mask ] = 0

denom = mask .sum(dim=1, keepdim=True )
denom2 = mask2 .sum(dim=0). item ( )

l = ( ( torch . nan to num (
( torch .sum( ( ( t a r g e t − torch .sum( t a rg e t , dim=1, keepdim=True ) / denom)
∗ mask) ∗∗ 2 , dim=1, keepdim=True ) / denom) ∗∗ (1 / 2) − y pred )
∗ mask2

)∗∗ 2
) .sum( ) / denom2

return l

Appendix C.3. Binary cross entropy with missing data

def th r e e ba l ance to bankrupt ( t h r e e t a r g e t s ) :
# fea t u r e order : t o t a l c u r r e n t a s s e t s / t o t a l a s s e t s
# t o t a l l i a b i l i t e s / t o t a l a s s e t s
# t o t a l c u r r e n t l i a b i l i t i e s / t o t a l a s s e t s
a s s e t s t o l i a b = 1 / t h r e e t a r g e t s [ : , 1 , : ]
a s s e t p rob = a s s e t s t o l i a b < 1

c u r r a s s e t s t o l i a b = th r e e t a r g e t s [ : , 0 , : ] / t h r e e t a r g e t s [ : , 2 , : ]
c u r r a s s e t p r ob = c u r r a s s e t s t o l i a b < 1

both problems = cu r r a s s e t p r ob ∗ a s s e t p rob

ta r g e t = torch .sum( both problems , dim=1, keepdim=True ) > 1
return t a r g e t
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def c ros s ent ropy bankruptcy (
t h r e e t a r g e t s : torch . Tensor , y pred : torch . Tensor

) −> torch . Tensor :
t a r g e t = three ba l ance to bankrupt ( t h r e e t a r g e t s )

weights = 1 / (
t a r g e t .sum ( ) . d iv ( len ( t a r g e t ) ) ∗ t a r g e t
+ (˜ ta r g e t ) .sum ( ) . d iv ( len ( t a r g e t ) ) ∗ (˜ t a r g e t )

) # sheeeeeshhhh

weights /= weights .sum( )

return nn . f un c t i o n a l . b i na ry c r o s s en t r opy (
torch . s igmoid ( y pred ) , t a r g e t . to ( torch . f l o a t 3 2 ) , weight=weights

)
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Model TW h Exogenous Parametricity Locality Input scale Target scale Era mode MAPE Gap to best % from best Best 99%

Näıve 1 240 No Parametric Local None None N/A 28.97% 26.78%
AutoARIMA 240 240 No Parametric Local None None N/A 49.90% 20.93% 72.26% 37.99%
ARIMAX 240 240 Yes Parametric Local None None N/A 2.39×109% 2.39×109% 8.24×109% 75.15%
TCN-X 240 240 Yes Non-parametric Global Min-max Market cap Random 36.92% 7.95% 27.45% 33.98%

Table D.6:

Figure E.54: Visualization of some of the hyperparameter combinations tried for market cap prediction and associated metric
loss.

Appendix D. Results for longer time horizon (h = 204)

Appendix E. Hyperparameter search
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Figure E.55: Visualization of some of the hyperparameter combinations tried for market cap prediction and associated metric
loss.

Figure E.56: Overview of a sweep for volatility prediction. The era validation is steadily decreasing but seems to plateau rather
quickly.
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