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Abstract

Estimating the quantity of multiphase flow streaming through oil and gas wells is crucial
to inform operational activities during offshore oil and gas production, such as production
optimization. As a result, virtual flow meters (VFMs) have been developed because phys-
ically measuring the flow rates is often costly. However, while the underlying production
system modeled is highly dynamic, most VFMs are steady-state VFMs that consider the
instantaneous state of the system. Meanwhile, dynamic VFMs that account for past mea-
surements may better model the underlying system but with increased model complexity.

This thesis conducts an empirical study of dynamic VFMs using state-of-the-art sequence
model architectures and multi-task learning to examine the effects of considering past
measurements when estimating flow rates. We present a methodology at the cutting
edge of machine learning to leverage the information in the recent history of each well
while simultaneously learning across wells. This allows the proposed models to model the
temporal relationship between widely available sensor measurements and the resulting flow
rates. The models are compared to a state-of-the-art steady-state baseline to determine
their proficiency.

We test the presented methodology on field data from ten wells. The results indicate
that sequence models demonstrate a more robust and flexible predictive behavior than
their steady-state counterparts. However, compared with the state-of-the-art baseline
only slightly improved overall predictive performance is obtained. Meanwhile, the positive
model traits demonstrated by the sequence models are uncovered when examining the
models in greater detail.

While the results give reason to believe that sequence models may improve the current
state-of-the-art, they represent empirical indications based on a case study. Hence, we rec-
ommend that future research investigates different problems and model variations within
the paradigm to strengthen further or weaken indications of its promise.



Sammendrag

Å estimere mengden flerfasestrøm som strømmer gjennom olje- og gassbrønner er avgjørende
for å kunne ta informerte beslutninger ang̊aende operasjonelle aktiviteter relatert til off-
shore olje- og gassproduksjon, som for eksempel produksjonsoptimering. Som følge av
dette har Virtual Flow Meters (VFM) som estimerer flytraten blitt utviklet, da det er
kostbart å fysisk m̊ale flerfasestrømmen. Mens det underliggende produksjonssystemet
som modelleres er svært dynamisk, er de fleste VFM-er steady-state VFM-er som vur-
derer systemets øyeblikkelige tilstand. I mellomtiden kan dynamiske VFM-er som tar
hensyn til tidligere m̊alinger bedre modellere det underliggende systemet, men med økt
modellkompleksitet.

Denne oppgaven gjennomfører en empirisk studie av dynamiske VFM-er ved bruk av
toppmorderne sekvensmodellarkitekturer og multi-task learning for å undersøke effekten
av å vurdere tidligere målinger n̊ar man estimerer strømningsratene. Vi presenterer en
metodikk i forskningsfronten av maskinlæring for å utnytte informasjonen i historikken
til hver brønn samtidig som vi lærer p̊a tvers av brønner. Dette lar de foresl̊atte mod-
ellene modellere det tidsmessige forholdet mellom mer tilgjengelige sensorm̊alinger og de
resulterende strømningshastighetene. Modellene sammenlignes med en avansert steady-
state-modell for å vurdere ytelsen av de foresl̊atte modellene.

Vi tester den presenterte metodikken p̊a feltdata fra ti oljebrønner. Resultatene indikerer
at sekvensmodeller demonstrerer en mer robust og fleksibel prediktiv atferd enn deres
steady-state motstykker. Sammenlignet med den avanserte steady-state modellen oppn̊as
imidlertid bare en svakt forbedret overordnet prediktiv ytelse. I mellomtiden blir de
positive modelltrekkene demonstrert av sekvensmodellene tydeliggjort n̊ar man undersøker
modellene mer i detalj.

Mens resultatene gir grunn til å tro at sekvensmodeller kan forbedre de n̊aværende beste
modellene, er de empiriske indikasjoner basert p̊a en casestudie. Derfor anbefaler vi at
fremtidig forskning undersøker ulike problemer og modellvariasjoner innenfor paradigmet
for å ytterligere styrke eller svekke indikasjoner p̊a hvor lovende det er.
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Chapter 1

Introduction

The quantity of oil and gas produced by each well during production is vital information.
Such measurements are leveraged in critical operational activities and decisions, such as
production optimization (maximizing output), diagnosing, shutting down, and drilling new
wells, reservoir management, and forecasting oil field performance [Corneliussen et al.,
2005, Bikmukhametov and Jäschke, 2020]. However, obtaining information about the
outputs of wells is challenging.

The content extracted from a reservoir through a well is a flow of multiple phases: oil,
gas, and water. The flow produced from a single well is commonly measured periodically
using well tests or in close to real-time using multiphase flow meters (MPFM), both
requiring expensive physical installations. Consequently, obtaining multiphase flow rate
measurements is costly and time-consuming, resulting in a limited number of flow rate
observations over the production time span of most wells [Zangl et al., 2014].

Continuous depletion of reservoirs and increasingly economically marginal fields demand
more efficient allocation of resources and focus on rational operation [AL-Qutami et al.,
2018]. Thus, more cost-effective approaches to estimating flow rates are sought after.
Considerable research efforts have been made on this topic, resulting in the rise of virtual
flow meters (VFM). VFMs are mathematical models that can cost-effectively estimate
flow rates in real-time using different sensor measurements of well parameters, such as
temperatures and pressures [Bikmukhametov and Jäschke, 2020]. While several successful
applications exist, the need for improved performance in VFMs is still evident, motivating
the topic of this thesis.

The underlying production system must be modeled to estimate the output flow of oil
and gas from a well. Meanwhile, the production system is highly dynamic and complex,
and different approaches to model such systems have arisen. This has led to the divi-
sion between data-driven and physics-based VFMs and between dynamic and steady-state
VFMs. Works relating to the different types of VFMs are outlined in Bikmukhametov
and Jäschke [2020].

Physics-based VFMs mechanistically model the multiphase flow and the surrounding well
system to estimate the flow rates. Meanwhile, the recent developments within computer
science paradigms such as artificial intelligence (AI) and machine learning (ML) have given
rise to data-driven approaches that model relationships between observable quantities in
the well systems and the output flow rates. As the installation of sensors has become
commonplace in hydrocarbon production systems, vast amounts of data measuring the

1



Chapter 1: Introduction 2

operational state of oil wells (e.g. pressures, temperatures, valve openings) are available,
in contrast to the sparse flow rate measurements. Increased computational resources and
data access has enabled several successful VFMs using machine learning techniques.

Because modeling the dynamics of the production system over time is very complex, a
divide between dynamic and steady-state VFMs has arisen. These differ in whether the
model estimates flow rates based on the development of the system over time (dynamic)
or only the instantaneous state (steady-state). Due to the increased complexity implied
by a dynamic model, most applied VFMs are steady-state models. However, this comes
with a performance cost, as historical information about the well’s state is not considered
when estimating flow rates. One approach commonly used in data-driven dynamic VFMs is
sequential modeling. Sequence models are mathematical models that operate on sequences,
either by inputting or outputting sequences, or both. Within AI, sequential modeling
is widely studied with numerous impressive applications. This thesis explores dynamic
data-driven VFMs, applying sequential modeling in combination with state-of-the-art ML
methods to flow rate estimation.

This thesis is written in collaboration with Solution Seeker, a spin-off company from
Engineering Cybernetics at NTNU, which is a leading provider of managed AI services to
the petroleum industry. One of their key products is a steady-state VFM ML system that
estimates flow rates through well sensor data. Their state-of-the-art model is presented
in Sandnes et al. [2021], detailing a system capable of accurately predicting flow rates
in oil and gas wells. The model utilizes the ML paradigm multi-task learning (MTL)
to learn across data from multiple wells. This approach somewhat alleviates the issue
of infrequent measurements of multiphase flow rates. However, such measurements are
still scarce, while sensor measurements of e.g. temperature and pressure, are abundant.
Additionally, in Grimstad et al. [2021] Solution Seeker expresses a need for future research
to overcome the issues of low data volume in flow modeling. Thus, the question of whether
this data can be leveraged to improve the flow rate estimates arises.

One attempt at exploiting the vast sensor data was made in Løvland [2021], a master’s the-
sis written under the supervision of Solution Seeker. The thesis explores semi-supervised
learning (SSL) methods. SSL is another machine learning paradigm combining supervised
and unsupervised learning methods. These methods can exploit the widely available unla-
beled data to create a different representation of the well system, aiming to improve flow
rate estimates. However, the results of the thesis indicated negative effects of using SSL
to estimate flow rates for a single well. In our project report, we built upon these results
and Solution Seeker’s system [Heggland and Kjærran, 2021]. We investigated whether
state-of-the-art SSL methods can create better representations of the production system
for flow rate estimation when used in MTL-based VFM. The results showed that learn-
ing state representations on unlabeled data considerably improved MTL-based flow rate
estimates. Meanwhile, this thesis attempts to use additional sensor measurements in a
different approach: dynamic VFMs. By considering the past history of the wells when
estimating flow rates, a considerable amount of unlabeled data is leveraged. Thus, this
thesis expands on the project report by replacing the SSL approach to producing infor-
mative well state representations with sequential models. In addition, it expands from
considering instantaneous well states to sequences considering past states as well.

The overall objective of this thesis is to examine the promise of using sequence models in
MTL-based flow rate estimation. The results from the project report indicated a benefit
from using unlabeled data in a steady-state MTL model. This, together with the promise
of modeling the production system over time, motivates the purpose of this thesis: to
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investigate whether dynamic MTL-based VFMs may perform better than steady-state
variants. By using sequence models to estimate flow rates, more informative intermediate
representations may be learned as historical data is also incorporated. The intention is
to examine whether the produced representations may improve flow rate estimates when
used in MTL-based flow rate estimation models, such as Solution Seeker’s model. Hence,
the findings of the thesis may support Solution Seeker in their research aiming to improve
their flow rate estimation system.

The problem explored in this thesis is to use sequences of operational field data provided by
Solution Seeker in MTL-based sequence models. The sequences represent the operational
history leading up to the flow rate estimate, including unlabeled data. The sequential
models are trained to extract the most relevant information in the production history to
produce accurate rate estimates. These abstract representations of the well state are then
used to estimate flow rates. Then we investigate whether estimates improve compared
with steady-state models. This is summarized in the main research question explored in
this thesis: How does leveraging sequences of historical well state data affect the flow rate
estimates of data-driven MTL-based virtual flow meters? Thus, we emphasize that this
thesis does not seek to maximize production output across wells. Concerning the problem
of production optimization, the thesis aims to obtain more precise measurements of flow
rates which represent information used in the said optimization problem.

The thesis represents an extension of Heggland and Kjærran [2021] by expanding the
approach presented in the project report from steady-state to dynamic through sequential
modeling. Furthermore, it builds on the results of Sandnes et al. [2021] and Løvland
[2021] as it combines methods at the frontier of research within sequence models and
multi-task learning. Hence, the thesis represents the following contributions. First, the
thesis contributes to Solution Seeker’s research by exploring dynamic VFMs. Second, it
complements the existing VFM literature by simultaneously learning through unlabeled
data and across data from multiple wells and accounting for historical data when producing
estimates. Additionally, the thesis extends upon existing literature by examining the
performance of TCNs and GRUs, two promising sequence model architectures that are
not as well-studied as LSTMs. Finally, it also addresses the need for research attempting
to overcome the issue of limited availability of data as indicated in Grimstad et al. [2021].

The thesis is structured as follows: we start by describing relevant background information
and literature in Chapter 2, providing relevant context regarding the topic of the thesis.
Then Chapter 3 presents fundamental machine learning theory relevant to understanding
the approaches applied in exploring the presented research question. The problem at hand
is formally described in Chapter 4 before we detail our methodology used to answer the
research question in Chapter 5. Chapter 6 then describes the provided dataset on which
the methodology is applied. The results obtained through the method are presented in
Chapter 7 and discussed in Chapter 8. Finally, we provide concluding remarks and indicate
needs for further research in Chapter 9.
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Chapter 2

Background

This chapter provides relevant context regarding the problem of estimating flow rates in
offshore oil and gas production. This motivates the subsequent problem statement and
our approaches to solving it. We start by describing the components of the oil and gas
production system in Section 2.1 before discussing production optimization in Section 2.2.
Different ways of measuring the contents of the multiphase flow extracted from reservoirs
are then detailed in Section 2.3. Next, Section 2.4 discusses flow modeling, describing
different approaches towards estimating the flow rates. The partner company Solution
Seeker and their relation to this thesis are then presented in Section 2.5. Finally, Sec-
tion 2.6 highlights related literature to illustrate how the work of this thesis is positioned
in and complements the current state of the field. Note that this chapter is a revised
version of Chapter 2 of Heggland and Kjærran [2021], our project report.

Inlet
Separator
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Figure 2.1: Illustration of an offshore oil and gas production system. Contents of the reservoir
are extracted in the bottomhole of the two wells in the form of a multiphase flow. This flow can
be regulated by operating the choke valve in the wellhead. Then, the stream is routed to an inlet
separator that separates the contents into gas, oil, and water.
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2.1 The offshore oil and gas production system

Figure 2.1 illustrates the main components of an offshore oil and gas production sys-
tem. During production, hydrocarbons are extracted from reservoirs which are pockets
of natural gas and oil located beneath the ocean floor. This is accomplished through the
installment of oil wells which function as pressurized pipelines flowing the contents from
the reservoir through the production system. A reservoir is commonly connected to several
oil wells, which together may be referred to as an asset. The point of the well connecting
to the reservoir is called the bottomhole. Here, a multiphase flow including hydrocarbons
are extracted from the reservoir. This stream is a mixture of oil, gas, water, and gravel
and can be regulated by turning a choke valve located on the wellhead at the top of the
well. We denote the opening percentage of a choke valve u. Most wells have sensors
installed measuring pressure and temperature at different points along the well system.
The most common measurement locations are at the bottomhole and the wellhead, both
upstream and downstream the choke valve [Bikmukhametov and Jäschke, 2020]. We de-
note the pressure and temperature upstream the choke p1 and T1 respectively, and the
pressure and temperature downstream the choke p2 and T2 respectively. See Figure 2.2
for an illustration. Sensors measuring these quantities are typically sampled several times
per minute, with frequencies such as 0.5 Hz being commonplace, according to Solution
Seeker. From the wellhead, the flow is commonly merged with other well flows and routed
to an inlet separator in a processing facility, as illustrated in Figure 2.3. Development of
such production systems are standardized under ISO standard 13628-1, and a thorough
specification can thus be found in International Organization for Standardization [2005].

Figure 2.2: Illustration of a choke valve with relevant sensor measurements. p1 and T1 denote the
pressure and temperature measured upstream the choke valve while p2 and T2 are the corresponding
measurements downstream the choke valve. u is the choke valve opening, and Q is the multiphase
flow rate.

2.2 Production optimization

When operating an oil field, operators aim to maximize the extraction of hydrocarbons
throughout the field’s lifespan, taking technical, economic, and other strategic factors into
account. Planning of operations is commonly performed in different planning horizons to
achieve this. The horizons include long-term strategic planning over several years, shorter
horizons where operations are planned given the long-term strategic plans and goals, and
short-term horizons, planning day-to-day production. See Wang [2003] for a review of
different optimization problems and techniques applied in petroleum production.

In a short-term horizon, petroleum production engineers aim to maximize the total flow
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of oil and gas from the asset, given the known current state of the production system.
This must be done while respecting any constraints on the production, such as capacity
constraints and pipeline network constraints. During operation, the production engineers
must thus decide how to regulate the multiphase flow from each well to maximize pro-
duction output, given constraints and well flow rates. This short-term production opti-
mization problem is called Real Time Production Optimization (RTPO). The operation
of oil fields is subject to uncertainties causing unexpected changes in the system, requiring
optimization models to be solved quickly, hence the term Real Time. A review of essential
literature regarding the RTPO problem is given in Bieker et al. [2007]. One key issue in
variants of the RTPO problem is that a measure or estimate of the multiphase flow rates
from each well must be acquired to maximize production. See for instance Gunnerud
and Foss [2010], where flow rates of different phases from wells are estimated using a well
model and used in maximizing production. Acquiring precise estimates of the multiphase
flow rates is challenging (see below), and this issue is the main focus of this thesis.

2.3 Measuring multiphase flow rates

The previous section illustrated how knowledge of the amount of oil and gas flowing
through each well at any moment is vital to optimize production. However, physically
measuring these quantities is challenging and costly [Hansen et al., 2019]. The quantity of
oil flowing through a well at a given moment is commonly referred to as the oil flow rate
denoted qO, and likewise for the gas flow rate denoted qG and water flow rate denoted qW .
These are typically measured in volumetric flow per day or hour at standard conditions
[Society of Petroleum Engineers, 1994]. Together, these three measures define the total
flow rate Q where Q = qO + qG + qW . Solids like gravel are commonly neglected. Flow
rates are also often represented as fractions of total flow. E.g. the oil fraction ϕO is
defined as qO

Q . Likewise holds for the gas fraction ϕG and water fraction ϕW . In addition
to these rates, sometimes operators inject gas in the bottomhole to “reduce” the density
of the oil, allowing it to flow more easily. We denote the injected gas lift flow rate qGL.

Gas

Oil

Water

Figure 2.3: Illustration of a set of wells routed to the same inlet separator.

The traditional method for measuring a multiphase flow is by using separator tanks. From
the wellheads, the flows from different wells are merged and routed to an inlet separator at
a processing facility. A separator is a container that separates the multiphase content by
gravity. As flow components have different densities the gas rises to the top of the tank,
the oil separates in the middle, and the water sinks to the bottom over time. The output
components can then be measured as single-phase flows. Single phase flows are much
easier to measure and measurements reaching as low as 1% uncertainty can be obtained
[Corneliussen et al., 2005]. See Figure 2.3 for an illustration of the separation process.
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While this approach allows for multiphase flow measurement, it is impossible to measure
the flow rates for specific wells if the input flow consists of streams merged from multiple
wells. This issue can be handled in a few different ways: by use of deduction well testing,
by utilizing a test separator or by installing multiphase flow meters.

Deduction well testing is the practice of measuring the flow rates of a specific well by
first measuring the total flow rates as discussed above, then shutting in the given well
(close the choke valve), and measuring the total flow rates after the system has stabilized.
In this case, stability typically implies reaching downstream pressures in the other wells
similar to before the shut-in. The difference in flow rates before and after the shut-in
then approximates the output of the shut-in well. As this approach uses separators, it can
yield relatively good estimates reaching uncertainties of down to 1% [Idsø et al., 2014].
However, it implies shutting in a well for the duration of the deduction test. The test
can take up to several hours [Bikmukhametov and Jäschke, 2020], causing a reduction in
production output and consequently lost revenues.

The multiphase flow from a specific well can be routed to a dedicated test separator to
measure the flow rates. This method has the advantage of estimating flow rates with high
accuracy using single-phase flow meters. However, while this approach does not require
shutting in wells, it is still costly. For one, installing a test separator and the flowlines
required is capital-intensive [Corneliussen et al., 2005]. Additionally, as mentioned, the
separation process is time-consuming as it requires conditions to stabilize. Especially
installations with longer flowlines take several hours to reach stable conditions, which also
affects production output [Falcone et al., 2002]. Consequently, production engineers are
limited in how often they are to schedule well tests for each well.

Multiphase flow meters (MPFMs) are measuring instruments that can be installed along
the flowline of a well to measure multiphase flow rates. There exists a range of different
MPFMs using different technologies, such as electromagnetic measurement principles, ra-
dioactive densitometry or spectroscopy, and ultrasonic measurement technology, to name
a few. These instruments may yield measurements of relatively low uncertainty, however
usually not as low as in well tests [Corneliussen et al., 2005]. A key advantage of an MPFM
is the drastically increased availability of flow rate measurements, as measurements typi-
cally take minutes instead of hours. However, they require regular calibration to remain
precise and are very costly to install. As a consequence, such multiphase flow meters are
not installed on a large number of wells [Zangl et al., 2014]. A comprehensive overview of
MPFMs can be found in Corneliussen et al. [2005].

2.4 Flow modeling

As illustrated in the previous section, physically measuring the multiphase flow rates can
be costly and challenging. Consequently, considerable efforts have been made to model
oil wells to estimate the flow rates. Such models may serve as a more accessible and less
costly alternative to obtaining flow rate information with reasonable uncertainty. The
problem of flow rate modeling can be described as follows: Identify a model that produces
an estimate Q̂ of the measured flow rate Q at the given point in time for the given well,
given measurements relating to the operational state of an oil and gas production system.
Such models are commonly referred to as virtual flow meters and can be described as
mathematical models that estimate flow rates using different approaches and information.
Two distinct modeling paradigms have emerged within the field of flow modeling. The
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first is the paradigm of physics-based VFMs leveraging physical principles to model an
oil well system’s behavior. The second paradigm uses the amounts of available data in
data-driven approaches. See Figure 2.4 for an illustration. An extensive review of the
paradigms is given in Bikmukhametov and Jäschke [2020], where paradigms are referred
to as first principles VFMs and data-driven VFMs. A brief introduction is given below.

PBH

TBH

PWH

TWH

Q_Oil

Figure 2.4: Illustration of the difference between data-driven and physics-based VFMs. Left:
Data-driven VFMs are computer algorithms that learn relationships directly between the input
measurements and the output flow rates. Right: Physics-based VFMs attempt to mechanistically
model the production system with related physical parameters to estimate flow using physical
properties and relationships. Right source: Bikmukhametov and Jäschke [2020]

As most industries have been transformed by the introduction of information technology
and digitization, the oil and gas industry is no exception. Most wells are equipped with
instruments that continuously measure pressure and temperature, among other quantities.
Over time, the operations of oil and gas wells have generated large amounts of data from
all recorded measurements. In combination with increased access to computation power,
this has given rise to new digital, data-driven approaches for estimating flow rates. Data-
driven models estimate flow rates by learning patterns in the available operational data
instead of directly modeling wells [Bikmukhametov and Jäschke, 2020]. Such VFMs are
commonly based on machine learning methods which have proven to be highly proficient
at a wide range of different tasks. Fundamental machine learning theory is explained in
Chapter 3. The applied methods range from simple models such linear regression [Zangl
et al., 2014] to advanced models such as as feedforward neural networks [Al-Qutami et al.,
2017], recurrent neural networks [Andrianov, 2018] or a combination of different neural
networks [AL-Qutami et al., 2018]. A more detailed review of relevant literature within
this field is provided in Section 2.6.

Physics-based flow models model the oil well mathematically to estimate the flow rates.
This typically involves mechanistic modeling of the multiphase flow rate in the production
system through the use of physical parameters of the well in addition to sensor measure-
ments [Bikmukhametov and Jäschke, 2020]. The error between the modeled or predicted
and actual flow is minimized by using algorithms that tune the model parameters. These
VFMs commonly rely on physical relations within fluid dynamics, thermodynamics, and
mechanics in modeling the production system. Despite data-driven VFMs increasing in
popularity, physics-based VFMs remain the most prominent in the industry. Bikmukhame-
tov and Jäschke [2020] present a thorough review of such VFMs.

VFMs can be considered either dynamic or steady-state, based on whether they consider
the development of the system over time or only an instantaneous state when estimating
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Figure 2.5: Illustration of the difference between dynamic and steady-state VFMs. Given a
discretization of time into steps, steady-state VFMs use the system measurements for the current
time step to produce the flow rate estimate for the current time step (illustrated in red). Meanwhile,
dynamic VFMs also consider measurements from past time steps to estimate the current flow rate
(shown in green).

flow rates. See Figure 2.5 for an illustration. A dynamic formulation enables the model to
capture dependencies over time, yielding more informed flow rate estimates. However, due
to the increased complexity of dynamic models, most commercial VFMs use a steady-state
formulation.

Physics-based VFMs are often based on dynamic conservation relationships. However, the
optimizers solve the problem in a steady-state manner and use solutions from the previous
time steps as a starting point for estimates for the next time step [Bikmukhametov and
Jäschke, 2020]. Both Kalman filter approaches and dynamic optimization can be used to
make dynamic physics-based VFMs. However, computational complexity and expertise
requirements have hindered the prevalence of dynamic physics-based VFMs in commercial
applications [Bikmukhametov and Jäschke, 2020].

Dynamic data-driven VFMs are machine learning models that use measurements in the
past to estimate the flow rate in the current time step. This differs from steady-state
models, which only use measurements in the current time step to produce estimates for
the current time step. Such models are often sequential models, i.e., models that consider
the relationship between a sequence of observations over time and the quantity to be
estimated. An example of this is recurrent neural networks. Sequence models in machine
learning are discussed in Chapter 3. Dynamic data-driven VFMs are the primary focus of
this thesis. Consequently, related works are discussed in Section 2.6.

It is also possible to combine principles from both VFM paradigms by, for instance, inform-
ing the machine learning process using physical properties. This practice is called hybrid
modeling. An example can be found in Hotvedt et al. [2020] where a hybrid data-driven
mechanistic VFM is proposed. Here, the choke valve is mechanistically modeled using first-
principle equations where one of the parameters, the choke valve coefficient, is determined
by using a fully connected feedforward neural network (described in Chapter 3).

2.5 Solution Seeker

The Norwegian company Solution Seeker – a spin-off from Engineering Cybernetics at
NTNU – is a leading provider of managed AI services to the petroleum industry. Its
services are used by several international oil companies to monitor thousands of oil and gas
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wells and to give operational support to engineers. The underlying technology is a machine
learning system that extracts and presents valuable information about the performance
of the wells from sensor data. This may aid engineers in work-intensive tasks, such as
detecting anomalies in the behavior of the wells based on patterns in the data. Accuracy,
low maintenance requirements, and quick adaptation to changing process conditions are
key features of the system.

Recent research from Solution Seeker has demonstrated that neural network-based models
can accurately predict flow rates in oil and gas wells. Multi-task learning, a learning
paradigm that enables learning across data from multiple wells (described in Section 3.5.4),
has been instrumental in achieving the robustness and accuracy required of an industrial
application (see Section 2.6 for further details).

The company is also exploring other learning paradigms to battle the lacking availability
of supervised data, i.e., multiphase flow measurements. Solution Seeker vocalizes a need
for research on this topic in Grimstad et al. [2021]. Semi-supervised learning is a promising
paradigm the company is currently examining to address this issue. SSL combines unsu-
pervised and supervised learning techniques to solve a learning task (see Section 3.5.3).
The promise of semi-supervised learning is that unlabeled production data, which vastly
outnumbers labeled data on many tasks, may be utilized to improve models. While the
paradigm may not improve upon supervised learning on all tasks, it is especially interest-
ing to explore whether semi-supervised learning can improve performance on tasks with
few labeled data points and many unlabeled data points.

By extending upon the the mentioned works relating to Solution Seeker, we may give fur-
ther insights into which direction Solution Seeker’s research on flow modeling should be
directed. The thesis extends upon the two mentioned research areas through the introduc-
tion of sequence models in place of semi-supervised learning. Hence, it also represents an
extension of our project report [Heggland and Kjærran, 2021]. We investigate the effects
of accounting for historical data in a dynamic MTL-based VFM in a purely supervised
context. Sequential models represent a different learning paradigm that addresses the
issue of low data volume in VFMs by incorporating historic unlabeled production data
in the predictions. The results may indicate whether such an approach can improve the
performance of the Solution Seeker’s current flow rate modeling system. In this manner,
the thesis contributes to the advancement of Solution Seeker’s machine learning system.

2.6 Related literature

This thesis examines the viability of estimating flow rates using sequences of operational
history through machine learning models that operate on sequences. The sequence models
learn representations of the operational state of oil wells based on the historical data points.
These representations are then used as inputs in MTL-based VFMs to examine whether
they improve flow rate estimates compared with steady-state VFMs. More specifically,
the sequence models applied in this thesis are three variations of recurrent neural networks
(RNN): a standard RNN, Long-short Term Memory (LSTM), and Gated Recurrent Unit
(GRU), in addition to Temporal Convolutional Networks (TCN) (see Section 3.6). To
illustrate how this thesis is positioned in the existing literature, we start by showcasing
related literature by Solution Seeker before showcasing other related works within the
problem domain of virtual flow metering. Finally, we highlight works relating to the
applied methods within the machine learning literature across other domains.
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Literature associated with Solution Seeker
A number of works associated with Solution Seeker are especially relevant for this thesis.
First, Sandnes et al. [2021] present the state-of-the-art flow modeling architecture used in
operations at Solution Seeker. To estimate oil and gas flow rates, Solution Seeker uses a ho-
mogeneous MTL approach (see Section 3.5.4). For a given time point, measurements from
a given well are input to the neural network architecture along with well-specific trainable
parameters. A flow rate estimate is produced and compared with the measured rate (from
a separator test or MPFM) to calculate the error. Hence, this is a steady-state model.
Second, Løvland [2021] explores the use of semi-supervised methods in flow modeling in
detail. The author examines pre-training a variational autoencoder on unlabeled data for
a single well (i.e., single-task, steady-state flow metering). Then, this autoencoder is used
to encode and represent the state of the well for a set of labeled data before predicting
flow rates for the same single well using a basic feedforward neural network. In applying
this method, Løvland did not find that the pre-training improved the estimates. Based on
this, Heggland and Kjærran [2021] examined combining the paradigms of SSL and MTL
by training autoencoders to learn well state representations through unlabeled data from
multiple wells and using this in combination with MTL-based steady-state flow models.
The results showed that learning representations through unlabeled data improved flow
rate estimates.

The need for further research towards remediating the issues of low data volume in VFMs
is highlighted by Solution Seeker in Grimstad et al. [2021]. Here, a data-driven VFM
using Bayesian neural networks is presented. The results show acceptable performance on
field data. However, the authors argue that further research is required to tackle the lack
of data concerning flow rate measurements. Their recommendations for future research
include, among others, ”data-driven architectures that enable learning from more data,
for instance, by sharing parameters between well models” and ”to focus on ways to over-
come the challenges related to small data”. This thesis addresses these recommendations
and examines cutting-edge machine learning models enabling learning both on a more
significant amount of data and across wells through parameter sharing.

Existing flow modeling literature
As indicated earlier, the literature includes numerous works applying machine learning
models to estimate flow rates. Some works are mentioned in Section 2.4, and Bikmukhame-
tov and Jäschke [2020] give a detailed overview. In describing the literature, we start by
providing a general overview of data-driven VFMs before discussing the most relevant
works.

Before the prevalence of machine learning, attempts were made to model flow rates using
linear regression. However, due to the highly complex and non-linear nature of the mul-
tiphase flow, such approaches were unable to obtain satisfactory performance [Mercante
and Netto, 2022]. Consequently, as computational resources and data became increas-
ingly available, research on data-driven VFMs focused more on approaches using artificial
intelligence. Generally, studies differ in whether the model is steady-state or dynamic,
which modeling approach is used, and what data the models are applied on. The data
used is typically simulated or synthetic, from laboratory experiments or field data from
producing wells. The literature includes several different machine learning methods such
as feedforward neural networks, recurrent neural networks, convolutional neural networks,
gradient boosting, support vector machines, and principal component analysis (PCA), to
name a few. Bikmukhametov and Jäschke [2020] and [Mercante and Netto, 2022] provide
overviews of works applying the different methods. Within steady-state VFMs, feed-
forward fully connected neural network architectures have been extensively applied in the
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literature, many of which are highlighted in the previously mentioned review papers. How-
ever, as this thesis investigates dynamic VFMs, we limit the following literature review
accordingly.

Works relevant to this thesis in the literature study similar machine learning model archi-
tectures or examine dynamic data-driven VFMs. A large part of the literature concerning
dynamic VFMs has explored the application of LSTM models to different production
situations. For instance, Andrianov [2018] models a dynamic VFM using an LSTM archi-
tecture to estimate current or predict future gas and oil rates in two simulated operation
scenarios that are dynamic and challenging to estimate. The authors show that an LSTM
can achieve competitive performance compared with feedforward neural networks and hy-
drodynamical models. Similarly, Shoeibi Omrani et al. [2018] compare an fully connected
neural network (FCN) with an LSTM network on field data exhibiting dynamic and tran-
sient operational behavior. They find that the LSTM is more capable of estimating rates
under dynamic conditions than an FCN. Sun et al. [2018] estimate future multiphase flow
rates using historical flow rates and wellhead pressure from shale wells. When trained
on the production history of a single well, the model is able to predict flow rates, and
when trained on several nearby wells, the models also show promising results when tested
on a new well. Loh et al. [2018] study the performance of a deep LSTM architecture
on a production dataset from mature wells with decreasing output. By combining this
with an ensemble Kalman Filter (EnKF) that updates the rate estimates based on new
observations, they are able to improve the model performance and create a more robust
VFM. Finally, Mercante and Netto [2022] compare the performance of FCNs, LSTMs,
and GRUs with VFMs that use a combination of either LSTM or GRU and an FCN.
These models are trained on wells from publicly available datasets and compared. The
GRU/FCN and LSTM/FCN combinations performed the best in five cases each of the ten
wells tested. While the mentioned works examine dynamic VFMs using LSTM models
and show promising performance results, However, they do not attempt to leverage multi-
task learning and depend on flow rate measurements in previous time steps to estimate
the next. Both of these points are addressed in this thesis as we study (among others)
an LSTM architecture that uses MTL and is able to include unlabeled data in the input
sequences. In this manner, our work extends upon and complements the existing literature
on LSTM VFMs.

The literature also includes several works examining the use of Convolutional Neural
Networks (CNN) and its temporal variant, Temporal Convolutional Networks. While not
directly used in this thesis, conventional CNNs have been applied in flow metering problems
and represent the main component of TCNs. Therefore, highlighting related works using
this model type and how they relate to our thesis may also be insightful. First, Xu et al.
[2020] uses a combination of CNNs and LSTM to estimate two-phase oil-gas flow rates in
a laboratory experiment. Here, electrical capacitance tomography (ECT) sensors are used
in combination with a venturi tube to describe the flow rate. Features relating to the flow
composition are extracted from the ECT scans through deep CNNs, before being composed
into sequences and used in an LSTM to create rate estimates. This model achieved the
lowest relative error out of the models tested. Meanwhile, Zhang et al. [2020] proposes a
dynamic VFM using conventional 1D CNNs in a laboratory experiment using a venturi
tube, with varying success. In a similar venturi tube laboratory experiment, Wang et al.
[2022] compares a CNN-LSTM architecture with a TCN. The TCN obtains considerably
higher performance on both liquid and gas rate predictions. Of particular relevance is
Gryzlov et al. [2021] who examine the performance of TCNs, LSTMs, and FCNs on two
different synthetic datasets, one simulating a simple production scenario and the other
describing noisy well test data, from Andrianov [2018]. The results show that the TCN
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outperforms LSTMs and that both models outperform FCN under dynamic conditions.
Interestingly, the results show that the dynamic models are less accurate during steady
phases. Additionally, the authors illustrate the considerable increase in computation time
when training LSTMs and TCNs compared with FCNs. Note that none of the works in this
chapter use field data or learn across wells. Additionally, only one work develops a model
that can estimate flow rates using unlabeled data points. Thus, this thesis complements
the literature on TCNs by examining the performance of TCNs on field data using MTL
and sequences with unlabeled measurements.

Table 2.1 summarizes the related literature discussed in the previous paragraphs. The
articles are classified in several ways in the different columns. First, the machine learning
model types examined are listed, then whether the main contribution regards steady-
state or dynamic VFMs. The next column indicates whether the model uses multi-task
learning to learn rate estimation across multiple wells. Then, what sort of data is used to
evaluate the models is shown, and finally, whether the model can produce using sequences
including elements where the flow rate label is unknown. This final column thus considers
the applicability of the proposed model in a situation where flow rate measurements are
not known in all preceding time steps. By comparing rows in the table, we may identify
contributions of the thesis to the VFM literature. In summary, this thesis represent the
following contributions:

1. The thesis contributes to Solution Seeker’s research by exploring dynamic VFMs

2. It complements the existing VFM literature by applying dynamic VFMs in an MTL
setting with field production data while allowing for the use of unlabeled data points

3. The thesis extends upon existing literature by examining the performance of TCNs
and GRUs, two promising sequence model architectures that are not as well-studied
as LSTMs

4. It addresses the need for research attempting to overcome the issue of limited avail-
ability of data as indicated in Grimstad et al. [2021]

Table 2.1: Overview of related literature with classifications of relevant properties.

Article Model type Steady-state or
dynamic

Multi-task
learning?

Data Unlabeled
data?

This thesis (RNN/LSTM/GRU/
TCN) + FCN

Dynamic Yes Field Yes

Sandnes et al. [2021] FCN Steady-state Yes Field No
Løvland [2021] VAE + FCN Steady-state No Field Yes
Heggland and Kjær-
ran [2021]

AE + FCN Steady-state Yes Field Yes

Andrianov [2018] LSTM/FCN Dynamic No Synthetic Yes
Loh et al. [2018] LSTM + EnKF Dynamic No Field No
Shoeibi Omrani et al.
[2018]

LSTM/FCN Dynamic No Field/
synthetic

No

Sun et al. [2018] LSTM Dynamic No Field No
Mercante and Netto
[2022]

(LSTM/GRU) +
FCN

Dynamic No Field No

Xu et al. [2020] CNN + LSTM Dynamic No Laboratory No
Zhang et al. [2020] CNN Dynamic No Laboratory No
Wang et al. [2022] CNN + LSTM/TCN Dynamic No Laboratory No
Gryzlov et al. [2021] TCN/LSTM/FCN Dynamic No Synthetic Yes
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Machine learning literature
The machine learning models discussed in this thesis have proven very effective in different
learning tasks within other domains. The recurrent architectures (RNN, LSTM, GRU)
have been applied to numerous classical sequential modeling tasks, such as time series
forecasting [Siami-Namini et al., 2018], language modeling [Sundermeyer et al., 2012],
speech recognition [Graves et al., 2013] and handwriting generation [Graves, 2013] to
name a few. Of particular relevance are works that apply sequence models to tasks of
similar nature to the flow rate estimation problem. Such tasks often produce one output
per sequence input, such as regression or classification. For instance, Li and Qian [2016]
applies LSTMs to the problem of sentiment analysis, where emotions of comments from
different websites are estimated. In this case, the input sequences come from sentences in
the comments, and the output estimates the sentiment of the comment (positive, negative,
neutral). Meanwhile, Li et al. [2020] estimate the health of lithium-ion batteries using
a modified variant of LSTMs. Here, historical measurements of temperature, current,
voltage, sampling time, and corresponding capacity are used to estimate the battery’s
state of health.

Temporal CNNs have also seen widespread adaptation in recent years. Applications in-
clude human action segmentation, detection and recognition [Lea et al., 2017, 2016, Sun
et al., 2015, Kim and Reiter, 2017], time series anomaly detection [He and Zhao, 2019],
different time series forecasting tasks such as traffic flow forecasting [Zhao et al., 2019],
energy demand forecasting [Lara-Beńıtez et al., 2020] and wind speed forecasting for wind
power production [Gan et al., 2021]. Another relevant work is Böck et al. [2019], who
apply TCNs to a multi-task learning setting where both the beat and tempo of songs
are learned together. In this context, the individual learning tasks greatly benefited from
the multi-task learning approach by both learning a common representation and through
learning from each other.

Perhaps the most well-known and ubiquitous work in the literature regarding TCNs is
DeepMind’s WaveNet [Oord et al., 2016], which illustrates the state-of-the-art nature of
TCNs. WaveNet is a temporal CNN architecture for raw audio generation. The model
may generate audio sampled thousands of times per second and reaches state-of-the-art
performance on the text-to-speech problem, and produces more natural-sounding speech
to human listeners than comparable models. Interestingly, the model fuels the speech
generation in Google Assistant, which is Google’s competitor to Apple’s famous Siri voice
assistant. Another important work relating to TCNs is Bai et al. [2018] which argues that a
simple TCN may perform just as well or even outperform conventional RNN architectures
on sequence modeling tasks. This is demonstrated by comparing how a simple TCN
architecture performs against a vanilla RNN, LSTM, and GRU on common sequence
modeling tasks. Here, TCN outperforms the other models in most of the tasks. These
works motivate the choice of comparing a TCN to the conventional sequence model for the
task of flow rate estimation and illustrate the cutting-edge nature of the methods applied
in this thesis.

14



Chapter 3

Theory

This chapter presents theoretical concepts relevant to the thesis. The methods applied in
exploring the research question in later chapters are based on these concepts. We start with
a brief introduction presenting the core principles of machine learning in Section 3.1 before
describing essential components more in-depth. First, Section 3.2 explains what neural
networks are and how they are composed, followed by Section 3.3 showcasing how such
networks learn and improve. Then, Section 3.4 discusses evaluation of machine learning
models. Next, relevant machine learning paradigms and corresponding example methods
are presented in Section 3.5. Finally, an overview of sequence modeling is provided in
Section 3.6. In presenting relevant theory, we limit the discussion to only giving brief
introductions emphasizing the relevant material for the thesis. Non-essential details are
omitted, and we rather refer the interested reader to relevant sources. Furthermore, a
substantial amount of the material below is inspired by two main sources: Goodfellow,
Bengio, and Courville’s book Deep Learning [Goodfellow et al., 2016] and the lecture
notes from Massachusetts Institute of Technology course 6.036 - Introduction to Machine
Learning [Kaelbling, 2019]. Additionally, as the relevant theory for this thesis considerably
overlaps that of our project report, Sections 3.1–5 are revised versions from the project
report [Heggland and Kjærran, 2021].

3.1 Introduction to machine learning

Machine learning is a subcategory of methods within Artificial Intelligence (AI). The core
idea of machine learning is to make computers learn how to solve given tasks, commonly
through experience. This notion is not new, and publications relating to the topic of
making machines learn date back to the late 1950s and early 60s [Samuel, 1959]. Early re-
search was inspired by the human brain and nervous system, where researchers attempted
to replicate the functions of human neurons [McCulloch and Pitts, 1943]. However, many
early attempts were constrained by very limited computing power. As computer technol-
ogy improved, AI and machine learning methods became increasingly proficient at solving
tasks. An early example is IBM’s Deep Blue system, which used AI techniques to learn
to play chess so proficiently that it beat the world champion, Gary Kasparov, in 1997
[Campbell et al., 2002]. Today, machine learning is a widely popular field with great re-
search activity and numerous successful applications. This recent trend is enabled by the
increased availability of data and computing power [Goodfellow et al., 2016].

On a very general level, machine learning can be described as follows. A model is designed
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with the intention of making it learn to perform some task. To induce learning, the
model is exposed to some kind of experience. Using this experience, the model produces
outputs. Some performance measure then evaluates the quality of the outputs. This
process is orchestrated through a learning algorithm [Goodfellow et al., 2016]. We say that
a computer program learns from experience with respect to some task and performance
measure if the performance on the given task as measured by the given performance
measure increases with the experience [Mitchell, 1997]. When the model performance is
evaluated against the performance measure, the learning algorithm somehow corrects or
alters the model’s behavior based on the performance.

To give a more concrete example, consider a model that should learn to classify input
images as pictures of either cats or dogs. The experience is, in this case, data in the form
of images. First, the model attempts to classify an image, and then the performance is
evaluated based on some performance measure related to whether it classified the image
correctly. If it is incorrect, a learning algorithm updates the model such that its behavior
is slightly altered in an intelligent manner, making it more likely to classify similar images
correctly next time. As this process is repeated over many training examples (images),
the model improves and learns to discern images of cats from images of dogs.

3.2 Neural networks

Neural networks are one of the most popular modeling architectures within machine learn-
ing and are especially relevant to this thesis. As the name suggests, neural networks are
inspired by the networks of neurons in humans, in addition to the human brain [McCul-
loch and Pitts, 1943, Rosenblatt, 1958]. The following introduction of neural networks is
based on Kaelbling [2019]. A neural network (in the machine learning sense) is composed
of neurons. A single neuron is a function mapping from some input x ∈ Rm to an out-
put a ∈ R. This function is calculated as follows: each element xj of the input vector
is multiplied by some weight wj and then summed together. In addition, a bias value
b ∈ R is added to the sum. This produces the pre-activation z, which is then inputted to
some activation function f to produce the output a. Let w ∈ Rm represent the weight
vector. See Figure 3.1 for an illustration of the computation. This computation can then
be written as follows:

a = f(z) = f(
m∑
j=1

wjxj + b) = f(wTx+ b)

x1

x2
...
xm

Σ f a

w1

w2

wm

b

z

Sum
Activation
function

Input Output

Figure 3.1: General composition of a single neuron in a neural network. Inputs x1 to xm are
multiplied by weights w1 to wm to produce pre-activation z, which is input in activation function
f to produce output a.
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Neurons in a neural network are commonly organized in layers connected through weights.
Here, any given neuron takes in the outputs from the previous layer multiplied by weight
values for each pair of neurons. If a given layer has an input column vector X ∈ Rm

and consists of n neurons or units, the layer produces an output column vector A ∈ Rn.
Each of the m input values is connected to each of the n output units through weights.
Every input value to the layer is multiplied by the corresponding weight connecting to a
given output unit to produce the pre-activation for that unit. Let Z ∈ Rn denote the n
pre-activations. Let W ∈ Rm×n denote the weight matrix representing n weight column
vectors wj ∈ Rm. Let B ∈ Rn denote the bias column vector containing the bias values bj
for the n units. The output of a given layer can then be computed as

A = f(Z) = f(W TX +B)

See Figure 3.2 for an illustration of the structure of a neuron layer in a neural network.

x1

x2
...
xm

Σ

Σ
...

Σ

f

f

...
f

a1

a2

...

an
W,B

Figure 3.2: Composition of a layer in a neural network. m input values x1, . . . , xm are mapped
to n output values a1, . . . , an by multiplying the input column vector by the m× n weight matrix
W and adding the n× 1 bias column vector B to the product to compute n pre-activations. The
final outputs are then computed by inputting the pre-activations into the activation function f .

Neural networks typically consist of several such layers, where the activation of one layer
becomes the input of the next layer. Typically, neurons in a given layer are connected to
neurons in the subsequent layer. This architecture is commonly referred to as a feedforward
neural network. Furthermore, in fully connected feedforward neural network (FCN), each
neuron in a given layer is connected to all neurons in the subsequent layers. This variant
is used in this thesis, and an example illustration is shown in Figure 3.3. Furthermore,
each neuron may use a different activation function. However, all neurons in a given layer
typically use the same activation function. We commonly refer to the first layer taking in
the original input as the input layer and the final layer producing the final output value(s)
as the output layer. All the layers between are referred to as the hidden layers. The
result of such a network is a computational structure able to approximate a broad range
of functions. The expressive capabilities depend on the structure, based on the number of
units, layers, and type of activation functions, among other factors. The models ability to
fit different functions is often referred to as its capacity [Goodfellow et al., 2016].

Several popular activation functions exist. Note that if a neural network uses the identity
function or other linear transformations as the activation function in all neurons, the entire
network can be reduced to a single linear mapping of the input, giving a linear function.
Therefore, non-linear activation functions must be included to approximate a wider range
of functions. One popular activation function is the rectified linear unit or ReLU function,
defined as

ReLU(x) =

{
x if x ≥ 0

0 otherwise
= max(0, x)
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x1Input 1

x2Input 2

x3Input 3
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a12
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a14

a21
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a23

a24

y1 Output 1

y2 Output 2

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
layer

Figure 3.3: Example of a fully connected feedforward neural network. Each circle represents a
neuron, and the arrows indicate connections between neurons through weights.

simply forcing negative inputs to zero. This activation function is very commonly used
in hidden units, as it allows for fast and trivial differentiation, among other advantages
[Goodfellow et al., 2016].

Another commonly used activation function is the sigmoid function, defined as

σ(x) =
1

1 + e−x

mapping inputs to the interval [0, 1]. This is an example of what is sometimes called a
squashing non-linearity as it maps the input to a finite interval. This activation function
is commonly used in situations where a weighting between zero and one is needed, as in
Long Short-Term Memory (LSTM) models (see Section 3.6), and when the output is to
be interpreted as a probability.

Finally, the tangent hyperbolic function (tanh) is a third non-linear function commonly
used as an activation function. Tanh is defined as

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
=

1− e−2x

1 + e−2x
.

Consequently, tanh maps inputs to the interval [−1, 1]. This is another key non-linearity in
recurrent neural network cell structures (see Section 3.6). The three mentioned activation
functions are visualized in Figure 3.4.

−3−2−1 1 2 3

−1

1

x

f(x)

(a) Rectified Linear Unit

−3−2−1 1 2 3

−1

1

x

f(x)

(b) Sigmoid

−3−2−1 1 2 3

−1

1

x

f(x)

(c) Tangent hyperbolic

Figure 3.4: Visualization of ReLU, sigmoid and tanh activation functions.
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3.3 Training process

As in the previous section, the following explanations are based on Kaelbling [2019]. To
induce learning in machine learning models, their performance is measured and used to
alter the models to perform better (with respect to the performance measure) in the
future. To measure the performance of models, we use a cost function or loss function
which compares the model’s output with the desired output. In the context of neural
networks, this may be denoted as follows. Let L be some loss function, x the input to the
neural network NN parameterized by weights W and biases B, and y the desired output.
The loss can then be calculated as

L(NN(x;W,B), y). (3.1)

For neural networks, we may then induce learning by altering the parameters of the net-
work based on the loss calculation. This is done using gradient descent. Gradient descent
is an optimization method that updates the network’s weights by computing the gradient
of the loss with respect to each weight. The gradients indicate which direction the weight
should be changed to increase loss. Thus, weights are updated in the negative direction
of the gradient, descending towards lower loss. Given a step size η, the weight update for
weight wj using gradient descent can be written as

wj = wj − η
∂loss

∂wj

where we take a step of length η in the direction of decreasing loss.

To update the weights, we need to calculate the gradient of the loss with respect to each
weight. As the loss is a function of the neural network’s output, and the neural network’s
output is a composition of functions, the chain rule can be used to identify the gradients.
First, the neural network produces the output by inputting x, calculating the output of the
first layer, passing this forward to the next layer and so on until a final output is produced.
This process is called a forward pass, represented byNN(x;W,B) in Equation (3.1). Then,
the loss is calculated to find the gradients. Let W l denote the weights in layer l, and let L
denote the final layer. Let Z l and Al denote the pre-activation and activation in layer l,
respectively. The computation of the gradients can then be written somewhat informally
as

∂loss

∂W l
= Al−1 · ∂A

l

∂Z l
·W l+1 · ∂A

l+1

∂Z l+1
· . . .WL−1 · ∂A

L−1

∂ZL−1
·WL · ∂A

L

∂ZL
· ∂loss
∂AL

(3.2)

where ∂loss
∂AL depends on the loss function. In short, this result comes from applying the

chain rule to compute ∂loss
∂W l and the fact that (informally)

∂Z l

∂W l
=

∂W lTAl−1

∂W l
= Al−1 and

∂Z l

∂Al−1
=

∂W lTAl−1

∂Al−1
= W l.

For a derivation and more detailed explanation of the above result, see Kaelbling [2019].
In this manner, after a forward pass, the gradients with respect to the weights of each layer
are given by starting in the final layer, computing the gradient, and propagating the loss
contribution backward. Hence, this method is commonly referred to as back-propagation.

When training a neural network, the following procedure is commonly conducted. First a
batch of training examples {x(i)}Ni=1 is obtained, with corresponding true outputs or labels
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{y(i)}Ni=1. Then, we iterate over this batch and input each example x(i) into the network
to produce outputs ŷ(i) (this is commonly done in vectorized form, so all outputs in the
batch are computed simultaneously). The loss is commonly calculated over the whole
batch, using a loss function aggregating over multiple examples. An example of such a
loss function is the Mean Squared Error (MSE) for regression problems where the network
should estimate real-valued numbers (as opposed to, for instance, classification problems).
The MSE loss over the batch can then be calculated as

L(ŷ, y) =
1

N

N∑
i=1

(ŷ(i) − y(i))2

or equivalently, as the mean of N individual squared error loss calculations.

When using batches, batch gradient descent is performed by summing the gradients of
the loss over the batch when updating the weights. If the batch contains more than one
example and fewer than all training examples, this process is commonly referred to as
minibatch gradient descent [Goodfellow et al., 2016]. Given a per-example loss function
L, the weight update is then specified as

W = W − η

N∑
i=1

∇WL(NN(x(i);W,B), y(i)). (3.3)

Alternatively, we can randomly select single examples, calculate the loss with respect to
the example and perform a weight update using this single example. This method is called
stochastic gradient descent (SGD).

A final, prevalent variant is minibatch stochastic gradient descent which selects N training
examples uniformly at random and performs the weight update based on these examples’
contribution to the gradient. This gives a weight update scheme that is equivalent to
Equation (3.3), with the only difference being that the training examples are randomly
selected.

The different approaches towards performing the weight update are commonly referred
to as optimizers as they attempt to optimize the neural network with respect to the loss
function. One popular optimizer of significant relevance to this thesis is Adam, which
combines the concept of minibatch stochastic gradient descent with the use of adaptive
step sizes during the weight update [Kingma and Ba, 2014]. The step sizes are adjusted
based on the topology of the space formed by the weight parameters and the loss function.
Step sizes are calculated by estimating the first and second moments of the gradients and
accounting for the magnitude of the gradient. The main idea is to avoid the weight updates
from moving back and forth in a given direction (hence the estimation of momentum) and
take larger steps when the space defined by the loss function is close to flat (as indicated
by the magnitude of the gradient). Likewise, shorter steps should be taken when the
topography is steep to avoid stepping over local minima. See Kingma and Ba [2014] for
further details on Adam.

All the components required to understand the process of training a neural network have
been presented. We can summarize this process in an algorithm, see Algorithm 1. We
input a dataset DN containing N training examples, an integer L indicating the number of
network layers, an integer T specifying the number of weight updates to perform on each
weight, a set {m1, . . . ,mL} indicating the number of units in each layer, a set {f1, . . . , fL}
specifying the activation function in each layer and a loss function Loss. For each weight
update t, a step size η(t) is calculated. Also note that the gradient calculations in the

20



Chapter 3: Theory 21

algorithm can be related to the gradient calculation presented in Equation (3.2) by the

fact that ∂Zl

∂W l = Al−1 and ∂Zl

∂Al−1 = W l.

Algorithm 1 Process of training a neural network

Train-NN(DN , L, T, {m1, . . . ,mL}, {f1, . . . , fL}, Loss)
for l = 1 . . . L do ▷ Randomly initialize network parameters

W l ∼ N (0, 1
ml ) ▷ Normal distribution

Bl ∼ N (0, 1)

for t = 1 . . . T do
i = random sample from {1, . . . , N}
x(i) = corresponding random training example from DN

A0 = x(i)

for l = 1 . . . L do ▷ Forward pass to produce output of the network AL

Z l = W lTAl−1 +Bl

Al+1 = f l(Z l)

loss = Loss(AL, y(i))
for l = L, . . . , 1 do

∂loss
∂Al = ∂loss

∂Zl+1 · ∂Zl+1

∂Al if l < L else ∂loss
∂AL ▷ Error back-propagation

∂loss
∂Zl = ∂loss

∂Al · ∂Al

∂Zl

∂loss
∂W l = ∂loss

∂Zl · ∂Zl

∂W l ▷ Calculate gradients with respect to parameters
∂loss
∂Bl = ∂loss

∂Zl · ∂Zl

∂Bl

W l = W l − η(t)∂loss
∂W l ▷ Gradient descent weight updates

Bl = Bl − η(t)∂loss
∂Bl

Return {W l}Ll=1, {Bl}Ll=1 ▷ Output learned network parameters

3.4 Model evaluation

The process described in Section 3.3 allows us to make a neural network learn and improve
the model’s performance through experience (data). This training process yields a model
which performs well on the given learning task when inputting the data used to train the
model, given that the model capacity is large enough. To evaluate the model’s ability to
generalize to different inputs, we test the model on a holdout set or test set. This is a set of
input examples on which the model has not been trained. Ideally, these examples should
be drawn from the same underlying distribution as the training examples. The model’s
ability to perform well on these examples represents the model’s ability to generalize. In
machine learning, a model that yields a high training loss is said to underfit the training
data, while a model that yields a high gap between training loss and test loss is said to
overfit the training data [Goodfellow et al., 2016]. An underfit model thus estimates the
training examples poorly, typically resulting from insufficient representational capacity.
That is, the model is typically too simple, having too few parameters. Conversely, an
overfit model has been over-specialized to the training data to the extent that its ability
to generalize has suffered, as indicated by a higher test loss than training loss.

Several approaches exist to counteract underfitting and overfitting, commonly referred to
as regularization techniques. Here, we only mention techniques relevant to this thesis.
A comprehensive overview of other regularization methods can be found in, for instance,
Goodfellow et al. [2016]. One form of regularization is L2 regularization or weight de-

21



Chapter 3: Theory 22

cay. The technique limits the magnitude of the weights of a neural network by adding
minimization of the sum of the L2 norm of the weights in the loss function. Given an
L2 regularization factor λ, and a set of weights and biases W , a loss function with L2

regularization can be written as

Loss(NN(x;W ), y) + λ
∑
w∈W

∥w∥22.

The motivation behind L2 regularization is the assumption that weights with smaller
magnitudes lead to simpler models and that simpler models are less likely to over-specialize
and overfit [Goodfellow et al., 2016].

Dropout is a different widespread regularization technique. When using dropout, a set of
non-output units in the network are selected at random to be disabled in each training
iteration for each training example. That is, the output of these units is set to zero for that
iteration. This has the effect of preventing these units from contributing or participating
in producing the output. Consequently, the remaining units of the network must share
the responsibility of generating an ideal output. In this manner, the network becomes
more robust to perturbations, as it prevents a smaller subset of the network from being
responsible for most of the critical computation required to solve the learning task. Note
that when the output of a unit is set to zero, the weights of that unit will not be updated
in the backward pass as the contribution (gradient) will be zero. See Figure 3.5 for a
visualization of dropout. In practice, dropout is commonly implemented by multiplying
the activation of each unit during the forward pass with a randomly drawn binary indicator:

al = f(zl) · dl

where al is the activation of each unit in layer l, f(zl) denotes the pre-activation of each
unit in layer l being passed through an activation function f , and dl represents a randomly
drawn binary column vector which is element-wise multiplied with the activation. For each
element in dl corresponding to a unit in the layer, a value of zero is drawn with probability
p, otherwise, a value of one is selected. dl thus indicates whether each unit should be
deactivated. This vector is then drawn again for each consecutive training step. During
inference, instead of deactivating outputs, all weights are multiplied by p to achieve the
same averaging effect on activations.
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Figure 3.5: Example visualizations of dropout. The leftmost network is the original model with
no disabled units. The other networks show examples of random selections of units whose outputs
are set to zero during a training step, thus not contributing to the output or the gradient update.

Another regularization technique is early stopping. This method involves evaluating the
model on a validation set after training the model on a number of training examples.
Typically, the model is evaluated on the validation set after each run through the entire
training set (after each epoch). The validation loss is then recorded and monitored over
epochs. If the validation loss starts to increase systematically, the training procedure
is terminated, and the weights corresponding to the lowest validation loss are reported
[Goodfellow et al., 2016]. Note that the network does not train on the validation data
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directly, as we do not perform back-propagation using examples from this set. However,
as the training is monitored by evaluating the model on the validation data, we implicitly
use the dataset during training. Thus, the validation set should not be used to perform
the final evaluation of the model. Instead, a different test set that has not been used
during training should be used. This ensures an unbiased evaluation of the final model’s
ability to generalize.

A technique commonly used to identify high-performing neural networks is hyperparameter
tuning. This is a form of optimization where different network configurations are trained
and compared based on validation loss. Typically, a number of parameters such as the L2

regularization factor or the number of layers are considered adjustable. Hyperparameter
tuning is then performed as follows, using some optimization method. First, we decide
values for each adjustable parameter using a sampling strategy, train the network and
evaluate it on the validation data yielding a validation loss. The optimization method
suggests new, carefully selected hyperparameter values based on this loss. Then, the
training process is repeated using the new hyperparameters to produce a new validation
loss. This process is repeated a number of times, where the optimization method directs
the search towards lower validation loss by tuning the hyperparameters. In this way, we can
say that hyperparameter tuning tends to generate models that overfit the validation data.
Several methods exist for optimizing the loss functions. Perhaps the most simple approach
is to perform a grid search where the objective function is evaluated for each combination
of hyperparameter values in a grid of possible values. A more advanced optimization
algorithm used in this thesis is the multivariate Tree-Parsen Estimator (TPE) sampler
described in Falkner et al. [2018]. The sampler is used to guide the parameter search, which
jointly considers the performance of previously sampled values across hyperparameter
domains when suggesting new values.

3.5 Learning paradigms

The previous sections explained how we could train and evaluate a neural network. This
forms the foundation for numerous variations of machine learning methods. This sec-
tion presents different important learning paradigms discussed in the thesis. We start
by describing supervised learning in Section 3.5.1, followed by unsupervised learning in
Section 3.5.2, semi-supervised learning in Section 3.5.3 and finally multi-task learning
in Section 3.5.4. We emphasize that we provide only a very brief introduction to each
paradigm sufficient to comprehend discussions in the thesis. The following subsections are
based on Goodfellow et al. [2016].

3.5.1 Supervised learning

Supervised learning is a form of learning where the training process is supervised, typically
in the form of penalizing poor estimates as compared with some target or label measured by
a loss function. Commonly, the labels are annotated by humans. Consequently, supervised
learning datasets are, in many cases, time-consuming and costly to acquire. Classification
and regression problems are typical learning problems within supervised learning. Here,
training data includes some sort of labels, representing which class the input data corre-
sponds to in the classification case and real-valued numbers corresponding to the input
data in the case of regression. Such models are typically trained as described in the pre-
vious sections. Common methods used within this paradigm include different versions of
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neural networks, such as feedforward neural networks for regression tasks, convolutional
neural networks for image classification and object detection tasks, and recurrent neural
networks for natural language processing and other sequence-related tasks.

3.5.2 Unsupervised learning

In unsupervised learning, models learn to perform some learning task without supervision.
Thus, such models train on data without any corresponding label (i.e., unlabeled data).
Generally, methods where humans are not required to annotate target outputs are consid-
ered unsupervised. A typical example of an unsupervised learning problem is clustering.
This could be, for instance, a clustering problem where data points are to be grouped
such that the euclidean distance between points within the same cluster is minimized.
K-means clustering is one such method, where a set of data points is to be clustered into
k clusters. Another learning problem often considered an unsupervised learning problem
is feature extraction or representation learning, where the intention is to learn the “best”
representation of the data possible [Goodfellow et al., 2016]. Common methods used for
this are Principal Component Analysis and autoencoders. An autoencoder is a model
trained to reconstruct the input while being subjected to some form of restriction, making
a perfect reconstruction impossible. Consequently, the model is forced to learn to extract
informative features to reconstruct the input as correctly as possible. Thus, the encoder
part of the model effectively becomes a feature extractor. This approach played a core
role in our project thesis [Heggland and Kjærran, 2021]. See Figure 3.6 for an example of
a feedforward neural net autoencoder structure.

x1

x2

x3

z1

z2

x′1

x′2

x′3

Figure 3.6: An example illustration of a feedforward autoencoder. The first three layers represent
the encoding part of the autoencoder, whereas the last three layers represent the decoder. Note
that the middle layer, whose activation z represents the latent encoding of the input x, is both the
encoder module’s output and the decoder’s input. The decoder outputs a reconstruction x′.

3.5.3 Semi-supervised learning

Semi-supervised learning is a learning paradigm that combines the principles of supervised
and unsupervised learning [Chapelle et al., 2006]. Such learning methods are commonly
used when a combination of labeled and unlabeled data is used to perform a learning
task. For instance, pre-training a model using unlabeled data in unsupervised methods
before fine-tuning it to solve a supervised problem using labeled data is an example of
a semi-supervised learning method. An example of this is given in Section 2.6. Thus,
such methods can perform well in situations where large amounts of unlabeled data are
available and only smaller amounts of labeled data are available. This was the topic of our
project report, where we combined unsupervised autoencoders for feature extraction with
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supervised learning for flow rate regression using feedforward neural networks [Heggland
and Kjærran, 2021]. Conversely, this thesis explores an alternative approach to leveraging
the unlabeled data by use of sequence models (see Section 3.6). See Chapelle et al. [2006]
for a thorough introduction to semi-supervised learning and Van Engelen and Hoos [2020]
for a more recent extensive survey.

3.5.4 Multi-task learning

In multi-task learning, multiple learning tasks are performed with the same model. For
instance, a model that learns to both identify road lanes in images and classify objects in
the same image can be considered a multi-task learning model. The motivation behind
such models is that the underlying information used to solve each task may be similar
and that learning patterns and relationships within one task may be useful in the other
tasks as well [Caruana, 1997]. In this way, learning the tasks together could prove more
successful than producing two independent models. In addition, multi-task learning has
the advantage of parameter sharing, where the learning tasks share trainable parameters
when combined into one model. Thus less trainable parameters are required to solve the
learning tasks.

A wide range of architectural variations exists concerning how to combine the tasks and
how to condition on them. For instance, a neural network designed for Multi-task learning
(MTL) could share a common “backbone” of layers among all tasks (common layers)
before separating into different independent heads for each task (separate layers), see
Figure 3.7. Numerous far more advanced approaches to conditioning on the tasks exist.
See for instance Ruder [2017] for an overview. It is not immediately obvious how loss
functions should be designed and how to train such multi-task learning architectures.
Several approaches exist, and sensible approaches will vary based on the nature of the
learning tasks. Perhaps the simplest alternative is to minimize a weighted sum of the
cost functions of each task and train the network in a conventional fashion. See Stanford
University [2021] for an introduction to this topic.

Input

Output task A Output task B Output task C

Task-
specific
layers

Shared
layers

Figure 3.7: An example MTL architecture, where the first neural network layers are shared before
separating into task-specific layers. This architecture performs all tasks when given input.

The example architecture described above performs all specified tasks when given an
input. Another alternative is to use a neural network architecture that performs one of
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the tasks when given an input. In this case, the input to the network includes a task-
specific indicator specifying which task to perform. See Figure 3.8 for an illustration.
This architecture can be useful in situations where the tasks are somewhat homogeneous
or similar in nature, as it allows for a high degree of parameter sharing between tasks.
Consequently, this design is suitable for multiphase flow rate estimation, where each task
represents the estimation of flow rates of a given well. In this case, each learning task
is very similar, albeit not identical, as wells do not behave identically. Learning across
wells can then be achieved through parameter sharing. The part of the input identifying
which task to perform (which well to estimate flow rates for) is used by the network
to infer well-specific patterns. Meanwhile, the experience from one well can be used to
perform more informed inferences on other wells. Training such a model is rather simple,
as we can simply calculate the loss with respect to the given task and update the weights
accordingly, like in single-task learning described in earlier sections. This approach is
applied in Sandnes et al. [2021] and is also used in this thesis.

xInput

zi
Task-specific
indicator

Output for task i

Shared layers

Figure 3.8: An alternative MTL architecture, where all layers are shared between tasks, and the
task to perform is specified by a task-specific indicator zi in the input to the model.

3.6 Sequence modeling

So far, we have mainly considered feedforward networks with fully connected layers. How-
ever, several other types of networks exist. This section describes network variants that
are especially relevant for processing sequences. We start by giving an introduction to
the core concepts of sequence modeling in Section 3.6.1 before describing recurrent neural
networks in Section 3.6.2

3.6.1 Introduction to sequence models

In general, sequence models refer to models that operate on sequential data. A sequence
represents ordered information, such as data points ordered in time (time series) or a string
of words forming a sentence. Thus, sequence models are relevant in problems where such
information is present either as input, output, or both. A sequence model can therefore
be described as a function mapping from a fixed-size vector or a sequence of vectors to
either a fixed-size vector or a sequence of vectors [Goodfellow et al., 2016].

Formally, we may denote the input as a vector x or a sequence of vectors x1, x2, . . . , xn.
Likewise, we denote the output as a vector y or a sequence of vectors y1, y2, . . . , ym. The
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sequence model is denoted f . This gives a natural classification of sequence models:

One to many: f(x) = y1, y2, . . . , ym Mapping from vector to a sequence
Many to one: f(x1, x2, . . . , xn) = y Mapping from sequence to vector
Many to many: f(x1, x2, . . . , xn) = y1, y2, . . . , ym Mapping from sequence to sequence

In the many-to-many case, some models may allow n ̸= m while others may only support
n = m.

Crucially, any output associated with a given time step is computed using only inputs that
are already observed, i.e. inputs from the given time step and past steps. Hence, given an
input sequence x1, x2, . . . , xn, a sequence model may only use input elements x1, x2, . . . , xt
to compute the output yt at time t.

Furthermore, sequence models may compute the output in a single operation or in a se-
quential manner, where for each step, a new input is processed, a new output is generated,
or both. Such models are often stateful and update an internal state every processing step.
Recurrent neural network (RNN) models operate in this manner. In such models, one may
differ between many-to-many models that process a single element of the input sequence
before the first output is produced (second from right in Figure 3.9) and those that pro-
cess the entire input sequence first (rightmost variant in Figure 3.9). See Figure 3.9 for
an illustration of the different variants.

One to many Many to one Many to many Many to many

Figure 3.9: Visualization of different sequence model variants. The input is either a single vector
or a sequence of vectors which are then sequentially processed by the model to produce an output
vector or sequence of vectors. Figure inspired by Karpathy [2015].

The problem dictates the desired inputs and outputs. For instance, sentiment analysis and
time series classification are examples of problems where a many-to-one sequence model
would be appropriate. These are problems where an input sequence is to be mapped
to a vector of values (sentiment scores or classification probabilities). Meanwhile, image
captioning is an example of a problem where one-to-many sequence models are relevant.
Here, an input image represented as a fixed-size vector is to be mapped to a sequence of
words describing the image. Finally, many-to-many sequence models are often used in, for
instance, time series forecasting and language modeling, where an input sequence is used
to produce an output sequence.

There exist many different sequence models. Historically, time series analysis has been one
of the most prominent application areas, containing numerous sequence models operating
on time series. For instance, a wide array of statistical models have been implemented
within this field. Famous statistical models include Autoregressive Integrated Moving
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Average (ARIMA) and its numerous extensions, least squares regression models, and state
space models. See, for instance, Shumway et al. [2000] for an extensive introduction to
classical time series models.

The recent success of machine learning gave rise to several sequence model variants based
on machine learning architectures. One of the first widely adopted architectures was
recurrent neural networks (RNNs), a family of neural networks processing sequential
data. Recently, two different network architectures have become prominent: temporal
CNNs (TCNs) and attention-based models. The latter is similar to RNNs but differs in
how they model dependencies between information from different time steps in input se-
quences. Where RNNs sequentially update an internal state (see details in Section 3.6.2),
attention-based models simultaneously observe the entire input, allowing them to exploit
dependencies between elements in all time steps more effectively. Consequently, attention-
based models can be considerably more complex and require large amounts of computation
to perform well. Transformer models are examples of attention-based models and have
recently reached state-of-the-art performance within language modeling tasks. See for in-
stance OpenAI’s GPT-3 Brown et al. [2020]. While attention-based models have seen the
most widespread application within language modeling, temporal CNNs are a fairly re-
cent innovation that has also seen success within other sequence modeling tasks of a more
temporal nature. RNNs and TCNs are studied in this thesis and are therefore especially
relevant. The models are described in detail in the following subsections.

3.6.2 Recurrent neural networks

Recurrent neural networks (RNNs) are a family of neural networks that process sequential
data [Goodfellow et al., 2016]. This subsection covers relevant theory on RNNs, from the
basic concepts to the advanced architectures relevant to this thesis. The explanations are
inspired by Olah [2015].

The core idea behind RNNs differentiating them from traditional feedforward networks is
the principle of memory. Intuitively, for a model to capture dependencies in a sequence
over time, the model must somehow remember information that has been input in earlier
time steps (and from earlier sequences). Memory can be accomplished by storing a state
in the network. This state may then be updated every time step when a new element of
the sequence is passed through the network. Furthermore, the output generated in each
step depends on this state. In this manner, RNNs can be considered state machines. The
main goal of RNNs is to learn network parameters that allow the network to capture task-
critical information in the internal state, and that optimally transform the internal state
to the ideal output vectors. The internal state is often called the hidden state. In practice,
the persistence of information is accomplished through loops in the network structure.
The hidden state from a given time step is part of the input used to compute the hidden
state in the next time step, hence the name “recurrent” networks. An illustration of this
is provided in Figure 3.10.

To elucidate the core principles of RNNs, consider the example structure illustrated in
Figure 3.10, resembling an RNN in its simplest form. For a given time step t, a recurrent
network A considers the corresponding input vector xt from the input sequence. The
network computes a new hidden state ht using xt and the hidden state from the previous
time step ht−1. ht is then output from the network and looped back into A for the next
time step. ht is computed using a function f of the input xt, the previous hidden state
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A

xt

ht

Figure 3.10: A simple RNN structure. An input vector xt and the previous hidden state is
processed by the RNN A to compute the new hidden state ht, which is output and fed back for
the next input. Figure inspired by Olah [2015].

ht−1 and the network parameters W :

ht = f(xt, ht−1;W ).

In RNNs, the network typically includes trainable parameters associated with the input
Wx, the hidden state Wh and a bias b. Given an activation function f , the hidden state
is then computed as

ht = f(Wxxt +Whht−1 + b)

This architecture is often called a “vanilla” or “standard” RNN as it represents an RNN
in its simplest form, and the activation function f is then commonly chosen to be tanh(x).

The feedback loop in the RNN allows information to persist between time steps. Thus, for
each time step t, the network considers a new input xt, outputs a new hidden state ht, and
propagates the hidden state through the loop to the next time step. A more intuitive way
of visualizing this structure can be obtained by unfolding A in time, as seen in Figure 3.11.
When viewing the structure in this way, it is important to remember that A represents
the same network in all time steps, with the same parameters. Meanwhile, it allows us to
see how information is propagated across time, as the hidden state is fed back into A for
the next time step.

A

xt

ht

= A

x0

h0

A

x1

h1

A

x2

h2

A

x3

h3

. . . A

xt

ht

Figure 3.11: Unfolding an RNN across time. An input sequence x0, x1, . . . , xt is input in the
RNN A to produce an output sequence h0, h1, . . . , ht. Note that the same parameters defining A
is used to produce the output in every step. Figure inspired by Olah [2015].

Note that in the simple example discussed here, the hidden state is the output in each
iteration. In practice, another neural network layer may be used to learn a transformation
from the hidden state to the desired output. Additionally, as the RNN discussed here
produces an output for each time-step, it is considered a many-to-many sequence model.
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However, RNNs can be designed to fit any of the different sequence model variants de-
scribed in Section 3.6.1 by altering the design of inputs and outputs in the model. A
many-to-one RNN can be designed by only outputting a vector after the final element of
the input sequence is processed but still updating the hidden state when processing each
input element. Likewise, a one-to-many RNN can be designed by computing a hidden
state based on a single input vector. Then, for each output element, a hidden state is
computed based on the current hidden state and is output and fed back to produce the
subsequent output.

The view of the RNN network unfolded in time also makes it easier to conceptualize
how sucha network may be trained. The training process can be regarded in much the
same way as in feedforward networks. However, one essential difference is that the RNN
uses the same parameters to compute each output. In the following, we consider the
many to many RNN from Figure 3.10, but a similar procedure is followed for the other
RNN variants. Given a training example consisting of an input sequence x1, x2, . . . , xn, a
corresponding label sequence y1, y2, . . . , yn, and a per-element loss function L(ht, yt), we
can train the RNN as follows. First, the input sequence is forward passed through the RNN
to produce outputs h1, h2, . . . , hn. Based on this, we want to identify the contribution of
each parameter to the loss of the entire predicted sequence. That is, we want to identify
∂Lseq

∂Wx
,

∂Lseq

∂Wh
and

∂Lseq

∂b where Lseq =
∑n

t=1 L(ht, yt) denotes the total sequence loss. This
will then form the basis for the weight updates for the given training example. Now, as the
model uses the same parameters to compute every output, we can identify the gradients
by summing up the parameter contributions to the per-element losses:

∂Lseq

∂W
=

n∑
t=1

∂L(ht, yt)

∂W

where W is one of Wx, Wh or b. However, another important property of RNNs is that
any given element in the output is a function of the previous outputs. Thus, the output at
a given time step affects the output of all subsequent outputs. Consequently, to identify
the per-element losses, we must calculate them backward in time, going from the final step
to the first. In this manner, we can accumulate the loss with respect to each parameter
to identify the total gradients used in the weight update. This process is called back-
propagation through time. We omit the details of the actual gradient calculations for
brevity, but they depend on the concept of total derivative and the chain rule. For a
complete derivation, see for instance Williams and Zipser [1995] or Kaelbling [2019].

The process described above enables RNNs to process sequential data, extract informa-
tion and learn to use this information to solve the given learning task. In theory, this
structure allows the network to associate information from earlier time steps and earlier
input sequences with the current time step. This concept is compelling because the model
can theoretically learn temporal dependencies, something a conventional stateless neural
network cannot. However, in practice, a simple RNN, as described above, struggles to
connect information between earlier time steps and the current time step when the gap
grows [Olah, 2015]. That is, the model is unable to capture long-term dependencies. For
instance, consider a language modeling task where the RNN is trained to predict the next
word in a sentence. If the input sequence is “the fish is in the”, it is easy for a human to
figure out that the next word should be “sea” or similar nouns. Here, the gap between the
necessary information and the step where it should be recalled is small, and RNNs succeed
at learning the connection and solving the task. Meanwhile, consider a different example
where the task-critical information comes much earlier in the input sequence: “Yesterday
I went for a run, and ... you could say I really love” Here, it is clear that the next word
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should be a something the subject enjoys, but to determine that the answer is “running”,
we would need to remember back to the earlier content, which could be far in the past.
When this gap increases, the RNN becomes unable to learn the information dependency
and solve the task.

The problem with long-term dependencies for RNNs arises from the nature of back-
propagation through time. Recall that to compute the gradients with respect to the loss of
the outputs at early time steps in the RNN, we have to work our way back from the final
time step. Additionally, recall that the outputs at a given time step depend on the outputs
from earlier steps. Consequently, in order to compute the gradient at, for instance, step n,
we must multiply the per-element loss at step n with the derivatives of each hidden state
with respect to the previous hidden state ∂ht

∂ht−1
, for t from 2 to n [Kaelbling, 2019]. This

product will either explode or shrink as the length of the sequence increases. All weight
updates therefore either consistently increase or decrease the parameters such that their
values explode or vanish. Consequently, the model struggles to learn as the weights are
not appropriately updated. Thus, the RNN struggles to capture long-term dependencies
during training.

The issue outlined above is addressed by the concept of gate mechanisms. This thesis
studies two RNN architectures using gate mechanisms: The Long Short Term Memory
(LSTM) network and the Gated Recurrent Unit (GRU). When describing these architec-
tures, it is beneficial to think of the RNN structure as a chain of neural network layer
modules (as A is represented in Figure 3.11). In the standard RNN case, the module or
“cell” has a simple composition, such as a single tanh layer, as in the vanilla RNN studied
in this thesis. This structure is visualized in Figure 3.12a. We can conceptualize RNNs
as a chain of such cells, where the cell contains all neural network layers used to compute
the output and the next hidden state. The cell structures of LSTMs and GRUs are also
illustrated in Figure 3.12, and their components are described below.

ht−1 ht

ht

xt

tanh

(a) Standard RNN

ct−1 ct

ht−1 ht

ht

xt

σ σ tanh σ

×

×

+

×

tanh

ft c̃tit ot

ct−1

ht−1

ct

ht

ht

(b) LSTM

ht−1 ht

ht

xt

σ σ tanh

×
h̃t

+

−1
zt

×

×
rt

(c) GRU

Network
Layer

Pointwise
Operation

Vector
Transfer

Concatenate Copy

Figure 3.12: Visualization of standard RNN, LSTM and GRU cells. As described by the legend,
the yellow rectangles represent neural network layers, the pink circles are pointwise operations (e.g.
vector addition or multiplication), the lines indicate the transportation of vectors, and two lines
merging represents a vector concatenation while two lines splitting specify the given vector being
copied and transported in both directions. Figure inspired by Olah [2015].

Long Short Term Memory networks
The Long Short Term Memory (LSTM) network is an RNN based on gate mechanisms that
was designed to avoid the problem of long-term dependencies. Since their introduction by
Hochreiter and Schmidhuber [1997], they have seen considerable success and are capable of
learning long-term dependencies. The key to this success lies in the structure of the LSTM
cell, which is illustrated in Figure 3.12b. Note that numerous variations of the LSTM cell
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exist and that this explanation is based on the variant described in Olah [2015]. While cell
compositions differ, the core concepts remain the same. Compared with the standard RNN
cell with a single tanh layer, the LSTM cell contains four layers interacting in a specific
manner to administrate the flow of information in and out of the cell. When following the
explanation of the LSTM cell below, we recommend referring to Figure 3.12b for a visual
reference.

In the LSTM cell, information is stored in the cell state ct. The cell state is first passed
from the previous time step. Then, old information is removed from the cell state, and
new information is added before it is propagated to the next step. Additionally, it is used
to compute the output (hidden state) at step t, ht. Gate mechanisms are used to remove
and add information to the cell state. A gate consists of a sigmoid layer and a pointwise
multiplication. Recall from Section 3.2 that the sigmoid function maps the input to the
interval [0, 1]. Therefore, the sigmoid layer controls how much information should “pass
through” the gate. When the sigmoid output is pointwise multiplied with the associated
vector, low sigmoid values will let less information through and vice versa. In this manner,
the flow of information along the cell state may be controlled. The LSTM uses three such
gates: a forget gate, an input gate and an output gate.

The first gate the cell state passes is the forget gate. This gate considers the previous
output ht−1 and the current input xt to determine how much information in the previous
cell state ct−1 to forget. Based on this, an output vector ft is computed, containing values
between 0 and 1 for each component of the cell state. The forget values are computed as

ft = σ(Wf · [ht−1, xt] + bf )

where [·, ·] represents row-wise vector concatenation. When multiplied with ct−1, compo-
nents of ft close to 0 remove a majority of the information in the corresponding component
in the cell state, thus “forgetting” it. Conversely, values in ft close to 1 hardly affect the
cell state. Thus, if the previous hidden state and the current input make the LSTM de-
cide that some information is not relevant anymore and should be replaced, the forget
gate allows it to forget the currently stored information.

Next, new information is added to the cell state. Two neural network layers are used to
accomplish this. First, the input gate computes it, specifying to which extent components
of the cell state should be updated. Second, a tanh layer produces a vector of candidate
values c̃t that could be added to the current cell state. Recall from Section 3.2 that tanh
outputs values between −1 and 1. Then, the two vectors are multiplied, producing the
values that should be added to the cell state. Thus, which components to update and how
to update them is learned separately. The two vectors are computed as

it = σ(Wi · [ht−1, xt] + bi)

c̃t = tanh(Wc · [ht−1, xt] + bc).

Thus, in this step, the network looks at the current input and the previous hidden state
to decide whether to store new information. Consequently, if the network decides that
information should be replaced, this step can ensure that new information is added to the
cell state after the old is forgotten.

After the network has decided upon the information to forget and add, the actual cell
state update can be performed. Given the old cell state ct−1, the forget vector ft, the
input vector it and the candidate values c̃t, the new cell state ct is computed as

ct = ft ∗ ct−1 + it ∗ c̃t.
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Thus, by multiplying the old state by ft, the information to be removed is forgotten,
and by adding it ∗ c̃t, the new candidate values are added, scaled based on how much
each component of the cell state should be updated. Consequently, this step realizes the
replacement of old information with new information based on xt and ht−1.

Finally, the output for the current time step ht is decided based on the updated cell state
ct, the current input xt and the previous output ht−1 in two steps. First, the output
gate computes an output vector ot that controls the magnitude of the final output for
each component of the cell state. Second, the cell state is passed through a tanh function
to scale it between −1 and 1. ht is then produced by multiplying the two components
together:

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(ct).

Hence, the LSTM controls which components of the re-scaled cell state should be output
by multiplying by the output vector ot. The output gate can then learn relationships
between the previous output, the current input, and what values to output. This allows
the network to condition the output on the context of past inputs encoded in the cell state
and the most recent input.

By introducing the gate mechanism described above to control the information flow, LSTM
networks can successfully capture long-term dependencies. Consequently, they outperform
standard RNNs on most sequence modeling tasks, especially as the length between infor-
mation dependencies increases.

Gated Recurrent Units
A variation of the LSTM cell that has gained recognition is the Gated Recurrent Unit
(GRU), introduced in Cho et al. [2014]. The GRU cell can be considered a simplification
of the LSTM cell. First, the cell state and hidden state (output) are combined, denoted
ht. Second, the input and forget gates are merged into a single gate called the update
gate. Consequently, the GRU cell contains only three neural network layers and two gates.
The second gate is called the reset gate which impacts the generation of new hidden state
candidate values. Finally, the GRU cell contains no output gate. See Figure 3.12c for a
visualization of the cell.

Given an input xt and the previous state ht−1 the GRU cell computes a reset vector rt in
a similar manner to that of ft in LSTMs:

rt = σ(Wr · [ht−1, xt] + br)

The reset vector is then multiplied by ht−1 to determine to what extent each component
of the previous hidden state should contribute to the production of candidate values in
the new state. Alternatively, as Cho et al. [2014] describe it, how much “the previous
hidden state is ignored”. This product is then used to compute candidate values for the
new hidden state h̃t:

h̃t = tanh(W · [rt ∗ ht−1, xt] + bh)

Next, the update vector zt is computed in a similar fashion to it in LSTMs:

zt = σ(Wz · [ht−1, xt] + bz)

Finally, the hidden state update is computed using the update vector zt and the candidate
values h̃t:

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t
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The state update step illustrates how the input and forget gates are combined into the
update gate through zt. The components of the hidden state that the network decided to
assign high values in zt forget a considerable part of the previous hidden state and add
more information from the candidate values. Meanwhile, components with low values in
zt correspond to less information being replaced by new information.

3.6.3 Temporal convolutional networks

Temporal convolutional neural networks are another neural network variant with recent
success that processes sequential data. They are essentially a particular configuration of
convolutional neural networks (CNNs). Consequently, we start with a brief introduction
to CNNs. Note that this introduction is limited to the concepts regarding CNNs required
to provide sufficient theoretical background to understand temporal CNNs. Thus, we refer
the interested reader to, for instance, Goodfellow et al. [2016] for a more comprehensive
review of CNNs. Moreover, the following introduction is inspired by said source.

Convolutional neural networks
At its core, a CNN [LeCun et al., 1989] is a neural network that processes grid-like data
[Goodfellow et al., 2016]. Examples of grid-like data include temporal or spatial signals.
For example, time series are temporal signals that can be considered grid-like, where
values in the series correspond to elements in a one-dimensional array or grid. Images are
examples of a spatial signal, where each pixel value corresponds to an element in a two-
dimensional grid. By applying a convolution operator, CNNs can learn to identify patterns
and extract features from such data more efficiently compared with a feedforward network.
We begin by describing this operation before detailing the core advantages it implies for
learning tasks involving grid-like data.

For practical purposes, the application of the convolutions in CNNs can be described as
“sliding” a kernel or filter over the grid-like data to compute an output. The kernel is an
array, matrix, or tensor (multi-dimensional matrix) of parameter values depending on the
dimension of the data. It is applied to a given input element by aligning the center element
of the kernel over this input element and computing the dot-product or matrix-product
over the overlapping elements of the kernel and input data. The convolution operation
involves applying the kernel to a single input data element. Then, a convolutional layer
in a CNN performs this operation across the entire input data. The kernel is used to
identify patterns or extract features in the input data and can be of any size, typically
considerably smaller than the input. An illustration of the convolution operation is shown
in Figure 3.13.

Formally, the convolution operation is a linear mathematical operation on two real-valued
functions [Goodfellow et al., 2016]. The convolution is defined as

s(t) = (x ∗ w)(t) =
∫

x(a)w(t− a)da,

where s(t) is the resulting convolution output when applied at real value t, x is a real-
valued function mapping to input elements and w denotes the kernel. For discrete input
data, the discrete convolution is defined as

s(t) = (x ∗ w)(t) =
∞∑

a=−∞
x(a)w(t− a).

The discrete definition can be rewritten to illustrate its connections to the practical expla-
nation of convolutions above. Consider a multi-dimensional input, such as a 2-dimensional
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Figure 3.13: Illustration of the convolution operation. As the kernel slides over the data, the
product between overlapping elements in the kernel and data is computed. Figure from Goodfellow
et al. [2016].

image I and a 2-dimensional kernel K. If we assume that all input values to I and K that
do not map to pixel values or kernel parameters map to 0, we can rewrite the discrete
convolution to a finite sum over the two dimensions. Thus, the output of applying the
convolution operation to the element (i, j) of the image can be written as

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n)

Hence, the output is the product of overlapping values between the kernel and the image,
where the kernel is centered over the pixel in location (i, j).

Padding is commonly applied to the input data to enable convolutions on the edges of the
input. Padding simply refers to appending a sufficient number of elements to the edges
of the input such that it is possible to apply the filter on the original edges. The padded
values are commonly set to zero to not affect outputs, but other values are possible. Note
that padding allows the output of the convolution operation to be of the same shape as
the input.

Convolution layers can also be applied using stride. A convolution layer with stride simply
skips a specified number of input elements when applying the kernel to the next element.
Using stride effectively reduces the output size. Meanwhile, stride may have the effect of
unevenly distributing the contribution of each input element to the output of the layer.

The output of a convolution layer is commonly coupled with non-linear activation functions
to ensure the network can model non-linear relationships. Furthermore, other operations
such as pooling are commonly applied after convolution layers to manipulate the output.
Pooling layers typically serve to summarize the input to the pooling layer in some way.
The summary can for instance be aggregations such as max pooling or average pooling.
See Goodfellow et al. [2016] for more details.

The kernel parameter values dictate the outputs of a CNN. For instance, to solve an object
classification task, it would be preferable for a network to learn to detect patterns and
features relating to the different classes. By carefully selecting kernel parameter values,
the kernel can be designed to detect different features. See Figure 3.14 for an example.
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Figure 3.14: An illustration of applying a 1D convolution. Given a binary input sequence, by
carefully selecting the values of the kernel, it becomes a detector of a change from 0 to 1 (indicated
by 1 in the output), which could, for instance, have the interpretation of left edge detection. Figure
from Kaelbling [2019].

When applying several different kernels to the input with carefully selected parameter
values and stacking several such convolution layers, CNNs can become powerful feature
extractors. Naturally, hand-tuning each kernel weight quickly becomes infeasible with
increasing numbers of parameters. Instead, parameters are commonly tuned through
supervised learning using labeled data, a loss function, and gradient descent with back-
propagation as described in Section 3.3.

In particular, CNNs perform well on learning tasks involving grid-like data due to several
key advantages. First, if one were to process a 2D image in a fully connected network, one
would require weights associated with each pair of pixel values and units in the next layer.
With increasing input sizes, the number of weights required explodes. A CNN solves
this problem through parameter sharing, where the weights are reused. Thus, a CNN
requires considerably fewer weights than FCNs to perform equivalent operations. The
second advantage relates to the spatiality of information. A CNN can extract meaning
from spatial relations between input elements by design. For example, a CNN can quickly
learn to account for relations between pixels close to each other using kernels, something
an FCN would struggle to accomplish. The third advantage relates to the locality of
information in the input. A CNN can learn to detect patterns regardless of where they
appear in the topology of the input. For instance, a CNN can learn to identify a human
nose using filters, regardless of its location in an image. These key advantages motivate the
design of the CNN structure and explain its success in learning tasks related to grid-like
data.

Temporal CNNs
Temporal convolutional neural networks (TCNs) are a specific variant of CNNs designed to
process temporal data. The following explanation of TCNs is inspired by Bai et al. [2018]
and focuses on one-dimensional inputs, as this is the relevant use case for this thesis.

A TCN is a CNN that satisfies two fundamental properties: given an input sequence,
the TCN outputs a sequence of equal length, and when applying convolutions to a given
time point, no information from later time points is considered [Bai et al., 2018]. In
other words, no information from the future is allowed to ”leak” into the past. The
first property can be ensured using a fully-connected 1D CNN with zero-valued padding
of k − 1 elements in each layer, where k is the kernel width. The number of output
elements in each layer then remains constant. The second property is enabled by causal
convolutions. Causal convolutions ensure that convolutions applied on a given element in
a given layer only considers elements corresponding to past time points. In practice, this
can be accomplished by simply applying the k − 1 padding to the left side of each layer,
assuming the past direction is to the left. Thus, when applying the convolutional kernel
to any given element in the layer, the output value is associated with the time point of the
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rightmost element overlapping with the kernel. All elements included in the convolution
represent the past relative to this rightmost element. Thus, when sliding the kernel over
elements in the layer, the rightmost output element considers the k last elements of the
input. The bottom layer in Figure 3.15 illustrates this.

Figure 3.15: Illustration of a TCN with three layers of dilated causal convolutions. The convo-
lutions are causal as the output is computed without future time points. Furthermore, a dilation
scheme of d = O(2i) is used, where the dilation factor doubles for each layer, thus doubling the
size of gaps between elements involved in convolutions. Figure from Bai et al. [2018].

By stacking several causal convolution layers, the receptive field increases. The receptive
field is the effective length of input history considered in the network outputs. By inputting
a sequence to a causal convolution layer, then applying additional causal convolution
layers on top of the previous, the effective number of elements from the input sequence
considered by each output unit increases linearly with the number of layers [Bai et al.,
2018]. However, by applying dilated causal convolutions [Oord et al., 2016], the receptive
field can be increased exponentially with the number of layers. A dilated convolution
with dilation factor d applies the convolution filter over the input, but with each kernel
component spread out with ”gaps” of length d−1. In other words, instead of applying the
filter to k consecutive input elements, the filter is applied to k input elements where d− 1
consecutive elements are skipped for each element included in the calculation. Formally,
given a one-dimensional input sequence x ∈ Rn, a k-sized kernel f : {0, 1, . . . , k− 1} → R,
a dilated convolution F with dilation factor d on element s of the sequence is defined as

F (s) = (x ∗d f)(s) =
k−1∑
i=0

f(i)xs−d·i.

Here, s− d · i where i ranges from 0 to k− 1 correspond to the time steps of past elements
in the sequence involved in the dilated convolution. By combining dilated and causal
convolutions exponentially increasing receptive fields can be designed by increasing the
dilation factor with each concurrent layer. For example, setting d = O(2i) at layer i of
the network is a common dilation scheme. See Figure 3.15 for a visualization of dilated
convolutions.

The TCN architecture implies several benefits compared with RNNs regarding sequence
modeling. For one, while RNNs must wait for the previous time steps to be calculated
before the next, TCNs can compute outputs in parallel. This parallelism is enabled by
the computational structure of the TCN using kernels. Furthermore, said structure allows
gradients to be back-propagated through a considerably shorter path than in RNNs, as the
path is not in the time direction. This allows for more stable differentiation and ensures
TCN avoids the problem of vanishing or exploding gradients described in Section 3.6.2.
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Furthermore, another advantage of TCNs is that the receptive field is highly flexible and
can easily be adjusted by tuning the number of layers, kernel widths, and dilation rates
to adapt to the input in different ways.

This thesis studies a TCN architecture heavily inspired by the TCN model proposed in Bai
et al. [2018]. This model is constructed as explained above, with the additional introduc-
tion of residual connections. In essence, a residual connection allows neural network layers
to learn modifications of the identity function instead of learning complete transforma-
tions. In a residual block, the input x is branched out, and a series of transformations F
are performed before the output is calculated by adding the result of the transformations
back to x:

o = Activation(x+ F(x))

This approach has proven beneficial for deeper neural networks due to the simplification
of the transformations. Each layer in the proposed TCN is composed of a residual block
containing two dilated causal convolution layers, as illustrated in Figure 3.16. More details
can be found in [Bai et al., 2018].

Figure 3.16: Illustration of the residual block in the TCN proposed in Bai et al. [2018]. The
output from applying two dilated causal convolutions with the same kernel size k and dilation factor
d is added back to the input. If the input and output are of different depths, an optional 1x1 1D
convolution is applied before the addition to math dimensions. To avoid overfitting, dropout and
weight normalization are performed after each convolution. ReLu is used to ensure non-linearity.
Figure from Bai et al. [2018].
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Problem statement

Considerable time and effort were invested into defining the problem to explore in this
thesis. In deciding what to study, several factors deemed important were identified. First,
the thesis must contribute to Solution Seeker’s research on improving their machine learn-
ing system. Consequently, they provided an outline for the thesis, specifying the work
should extend upon our project report and their current research. Second, we wanted to
explore a problem where sufficient data was available to ensure that we could evaluate our
proposed approaches and make more time for other work besides collecting and process-
ing data. This ensures our time is most efficiently spent aiding Solution Seeker in their
research. Perhaps most importantly, we wanted to study a topic related to our research
interests. Consequently, we decided early on that our thesis should consider flow rate
estimation as it fits all the identified criteria. Furthermore, as flow rate estimation regards
a dynamic system with time dependencies, we were eager to explore models that consider
the time dimension of the problem. Moreover, we were inspired by the widespread success
of sequence models in other similar problems (see Section 2.6). Consequently, we wanted
to explore the application of such models in flow rate estimation. Thus, substantial effort
was invested into evaluating the technical viability of different sequence models and ap-
proaches. Eventually, this elaborate process resulted in the following problem statement
and corresponding research question that this thesis explores.

This chapter describes the problem studied in this thesis and the main research question
explored. First, Section 4.1 presents the primary research question before Section 4.2
outlines formal details regarding the problem studied in the thesis.

4.1 Research question

Solution Seeker’s current machine learning system relies on labeled data and only consid-
ers sensor measurements for the corresponding time period of the label (see Section 2.5).
Furthermore, we have seen in Section 2.3 that obtaining labels (flow rate measurements) is
costly. In contrast, the input sensor measurements are widely available (see Section 2.1).
Solution Seeker has expressed the need for research on ways to overcome the challenges
of limited data availability regarding flow rates, as described in Section 2.6. Furthermore,
as illustrated in Section 2.4, flow rate estimation is inherently a dynamic problem consid-
ering a complex, dynamic system. Additionally, related research both regarding flow rate
estimation and other machine learning literature has shown positive results when apply-
ing machine learning sequence models (see Section 2.6). Sequence models also enable the

39



Chapter 4: Problem statement 40

utilization of larger volumes of data as more (possibly unlabeled) information is included
when the input is a sequence of past well state history. This motivates the following
primary research question, which is the focus of this thesis:

Primary research question: How does leveraging sequences of historical well state
data affect the flow rate estimates of data-driven MTL-based virtual flow me-
ters?

The methods used to investigate the research question are presented in Chapter 5. Dif-
ferent sequential models (standard RNN, LSTM, GRU, and TCN) consider historical
sequences of well state data in an MTL architecture to estimate flow rates. Then, differ-
ent input sequence lengths and time horizons are compared to study how performance is
affected by temporal granularity and history range. This methodology is designed to test
our hypotheses relating to the research question. We hypothesize the following:

Hypotheses

1. Models trained on historical sequences of well state data will improve performance
in estimating flow rates compared with steady-state models

2. Including well history from transient periods leading up to stable periods will improve
performance on rate estimation in said stable periods

3. For a given input sequence length, models that consider shorter time horizons (higher
temporal granularity) will estimate well flow rates more accurately than models
considering longer horizons (lower granularity)

4. For a given input time horizon, models that consider a longer input sequence (higher
temporal granularity) will estimate flow rates more accurately than models consid-
ering a shorter input sequence (lower granularity)

The hypotheses’ primary motivation is that the underlying system dictating the flow rates
is dynamic, and considering its development over time should allow better modeling of
relationships between the system and output rates. Furthermore, the hypotheses stating
a higher temporal granularity in the input sequence will yield higher performance are mo-
tivated by the high-frequent changes observed in the sensor measurements (see Chapter 6).
We hypothesize that such high-frequent dynamics influence the output rates to a greater
extent than slower, more long-term changes in the system. Furthermore, by providing
models with sequences of higher granularity, they are given more information, which they
can then determine how to best leverage to solve the problem.

By testing the hypotheses, we gain insights into the primary research question. To test
the hypotheses, we formulate supplementary research questions. Based on these, we can
design a methodology that, when followed, allows us to answer the supplementary research
questions and thus test our hypotheses. The strengthening or weakening of the hypotheses
thus informs the primary research question. Consequently, the following supplementary
research questions are formulated:
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Research questions

1. How do models trained on historical sequences of well state data affect model per-
formance in estimating flow rates compared with steady-state models?

2. How does the inclusion of well history from transient periods affect performance on
flow estimation in stable periods?

3. How does the time horizon considered in input sequences of dynamic VFMs affect
well flow rate estimation performance?

4. How does the temporal granularity of the input sequences of dynamic VFMs affect
well flow rate estimation performance?

Hence, we emphasize that the primary purpose of the thesis is to investigate whether an
extended representation of the production system that considers past well state history can
be more informative than an instantaneous steady-state representation. The hypothesis is
that such an extended representation more accurately describes the state of the production
system and thus can be used to estimate the current flow rates more accurately. However,
while more accurate estimates may lead to more informed operational decision-making
and increased revenues, this is not necessarily the case and is not the focus of the thesis.
Hence, the focus is not to maximize production output or revenues but rather to improve
the quality and availability of the flow rate information that is used in such optimization
problems.

4.2 Formal problem details

The problem studied in this thesis is based on the flow modeling problem outlined in
Section 2.4. Formally, we may describe the problem as follows.
Given:

• xjt, the raw sensor measurements for well j at time t,

• SPij, the set of uniformly distributed time points of same frequency as xjt corre-
sponding to the stable period i for well j,

• Qjt, the measured total flow rate measured for well j at time t,

identify a model that uses measurements xjt to produce an estimate of flow rate measure-
ments Qjt during stable period i as defined by SPij, with minimal estimation error. By
comparing the performance of models considering different representations the measure-
ments xjt, we may then answer the primary research question.

The system of interest considered in this problem is the offshore oil and gas production
system described in Section 2.1. More specifically, the problem considers the choke valve
of the given well due to its relevance to the flow rates and the availability of related sensor
measurements. Moreover, relevant literature this thesis builds upon, such as Sandnes et al.
[2021], Løvland [2021] and Heggland and Kjærran [2021] follows the same approach. This
system, with related measurements involved in the problem, is specified in Figure 4.1.

Hence, we define the raw sensor measurements for well j at time t xjt as:

xjt = [pjt,1, Tjt,1, ujt, pjt,2, q
GL
jt , ϕjt,O, ϕjt,G]

T
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Figure 4.1: Illustration of the system of interest with relevant measurements. All indices represent
the measurement at a point in time t for well j. pjt,1 and Tjt,1 are the pressure and temperature
upstream the choke valve, respectively. Likewise, pjt,2 is the pressure downstream the choke valve.
ujt is the choke valve opening percentage. qGL

jt is the measured injected gas lift. Where available
from MPFMs or well tests, qjt,O, qjt,G and qjt,W represent the oil, gas, and water flow rates,
respectively. Likewise, ϕjt,O, ϕjt,W and ϕjt,G represent the phase fractions for the given point in
time and well. Finally, Qjt is the total multiphase flow rate at time point t in well j.

The inputs considered in the proposed models are created from measurements xjt and
represent either a vector of mean values of sensor measurements recorded during a given
stable period, a sequence of such vectors for subsequent stable periods leading up to
the stable period to estimate for, or a uniformly resampled sequence of higher resolution
aggregations of xjt leading up to and including the period. The alternatives are used in
different models to compare estimation performance when the operational history leading
up to the stable period is described in varied manners. The different representations are
described in detail in Section 5.1.

Stable periods are defined as time periods during production where all control variables
(gas lift and choke valve) remain constant and sufficient time has passed since the last
control variable changed. Furthermore, longer periods that satisfy these conditions are
divided into shorter stable periods to account for long-term changes in the system. Thus,
the well’s default state is to operate under stable conditions by this definition. When
control variables are changed, the system becomes transient and eventually stabilizes in a
new stable state.

Hence, the thesis focuses on estimating flow rates during stable periods. This allows us
to compare steady-state models to dynamic models directly. While the inputs vary, the
target output, and thus the loss function, is the same. Furthermore, as the system is
generally under stable conditions during operations (as defined above), flow rate estimates
during stable periods may inform operational decisions to a greater extent than estimates
during transient periods.

We could have modeled a more comprehensive part of the system. For instance, the model
could be extended to consider the production system from the reservoir up to and including
the choke valve. This can be accomplished by including bottomhole temperature and
pressure measurements. Such a model would give a more detailed overview of the current
state of the well as more information is included. However, according to Solution Seeker,
available sensor measurements at the bottomhole are commonly unavailable, limiting the
applicability of such an approach. Taking this into account and considering the arguments
in the previous paragraph, we limit the thesis to model the choke valve.
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Method

In this chapter, we detail the methods used to test the hypotheses and answer the research
question presented in Chapter 4. First, Section 5.1 gives a high-level overview of the
approaches used. Next, the state-of-the-art model architectures are described in detail
in Section 5.2. Finally, the process of training and identifying best-performing models
is explained in Section 5.3. Where the methodology sufficiently overlaps, explanations
include revised passages from our project report [Heggland and Kjærran, 2021].

5.1 Overall approach

Recall the outline of the relevant problem described in Section 4.2. The following approach
is followed to examine whether flow rate estimation performance improves by modeling the
relationship between well state history over time and flow rates. Three classes of models

are developed, classified by the nature of the input data x
(i)
j , where x

(i)
j is a representation

of the operational state of well j associated with the stable period i:

1. Steady-state baseline: x
(i)
j is a vector of means of the measured values during

steady-state period i for well j

2. Steady-state mean sequence models: x
(i)
j is a sequence of T steady-state mean

vectors, from consecutive periods up to and including period i for well j

3. Dynamic sequence models: x
(i)
j is a sequence of T vectors of consecutive uni-

formly re-sampled measurements such that the sequence history ranges D days. The
final entry corresponds to the final time point of stable period i for well j

Hence, each model category represents the well’s history to different extents and varying
forms. See Figure 5.1 for an illustration. All models are designed to model the relationship

between the given input representation and Q
(i)
j , the corresponding mean total flow rate

measured during the respective stable period for the given well. That is, given an input

representation x
(i)
j , the model should output an estimate Q̂

(i)
j . This approach allows us

to study how the different representations of the well’s state affect flow rate performance,
thus enlightening the research question.

First, the steady-state baseline model serves as a benchmark. The performance of sequence
models can be compared with the baseline’s performance to determine their capabilities.
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Time

Stable periods
Steady-state baseline
Steady-state sequence
Dynamic sequence

Figure 5.1: Illustration of the different well history representations x
(i)
j and their relationship to

flow rates Q
(i)
j during corresponding stable periods.

Next, the steady-state mean sequence models represent a simple extension of the input
representation, where only data from stable periods are considered. Hence, the input
sequence is not uniformly distributed in time. These models serve to demonstrate whether
more complex sequence models are redundant. Different sequence lengths T are tested
to gain a broader understanding of their viability. Finally, the dynamic sequence models
examine the performance of state-of-the-art sequence models, using a uniformly resampled
input sequence of both transient and stable measurements to estimate the flow rate. We
study the performance of such models using different sequence lengths T and time horizons
D. The quality of the models’ output estimates allows us to investigate the effect of
leveraging the well history in different ways.

We now introduce notation used to formally describe the overall model architecture. Recall
the relevant system measurements presented in Section 4.2, and the raw sensor measure-
ments for well j at time t that we defined as

xjt = [pjt,1, Tjt,1, ujt, pjt,2, q
GL
jt , ϕjt,O, ϕjt,G]

T

xjt represents the measurements re-sampled uniformly at the frequency of the sensor
measuring most infrequently. Furthermore, let SPij be the set of uniformly distributed
time points of same frequency as xjt corresponding to the stable period i for well j. See

Section 4.1 for the used definition of stable periods. The steady-state mean vector x̄
(i)
j

used in the first two model classes is then the mean over measured data in SPij :

x̄
(i)
j =

1

|SPij |
∑

t∈SPij

xjt

Likewise, the labels Q
(i)
j are given by the equivalent calulation over the measured total

flow rates:

Q
(i)
j =

1

|SPij |
∑

t∈SPij

Qjt

Finally, the dynamic sequence model input sequences are re-sampled to given frequencies
such that T time points span D days of history. Thus, given values for T and D, the raw
measurements are aggregated such that there is one measurement every D·24·60

T seconds.
If Tt is the set of time points uniformly distributed at the same frequency as xjt spanning
one such interval ending at time t, the corresponding re-sampled measurement vector is
given by

xDT
jt =

1

|Tt|
∑
τ∈Tt

xjτ

This resampling gives a new data set for each choice of pairs of T and D. Furthermore,
the resampling is performed such that the final element of each sequence corresponds to
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the final time point of the corresponding stable period. This approach ensures that each
generated sequence overlaps with the stable period and avoids the generation of identical
input sequences for stable periods close in time.

Thus, the input representation is given by

x
(i)
j =


x̄
(i)
j Steady-state baseline

x̄
(i−T+1)
j , . . . , x̄

(i−1)
j , x̄

(i)
j Steady-state mean sequence models

xDT
j,(t−T+1), . . . , x

DT
j,(t−1), x

DT
jt Dynamic sequence models

This allows us to describe the overall model architecture: First, each model uses an em-
bedding layer to produce an encoding wj of the well number j for a given input representa-

tion x
(i)
j . Hence, wj is a vector of trainable parameters, and we choose a four-dimensional

embedding. Consequently, we may write wj = Embedding(j). Thus, given an input rep-

resentation x
(i)
j , a well embedding vector wj is generated, and the two components are

input to a model f . The model then produces a flow rate estimate Q̂
(i)
j based on the input

information. That is, f(x
(i)
j , j) = Q̂

(i)
j . wj serves to inform the model of which well the

input originates from, such that the model may learn to adapt to each well, and learn
across wells using MTL. This architecture is illustrated in Figure 5.2.

x
(i)
j

j wj

Q̂
(i)
j

Embedding

f(x
(i)
j , wj)

Figure 5.2: High-level illustration of the proposed model architecture. First, a well-specific

indicator wj is generated by an embedding layer. Then, a representation x
(i)
j of the well state

history and wj generates an estimate of the flow rate Q̂
(i)
j using the flow rate estimation model f .

The attentive reader may question the decision to include ϕjt,O and ϕjt,G in the state vector
xjt as these variables represent the percentage of the total flow consisting of oil and gas,
respectively. This information is naturally not present in unlabeled data. Furthermore,
in the labeled data, fractions can be derived from labels, leading to “leakage” if used in
inputs. However, the fractions are assumed to remain somewhat stable over time and
are determined by the measurements of the latest well test performed on the given well.
Furthermore, the water fraction ϕij,W is omitted as it is given by 1−ϕij,O−ϕij,G, leaving it
redundant. Additionally, it may not be immediately intuitive how estimating the total flow

Q
(i)
j also estimates the individual oil, gas, and water flow rates. This can be explained

using the same assumption: each phase flow rate can be calculated using the assumed

fraction. That is, for instance q
(i)
j,O = Q

(i)
j ϕ

(i)
j,O where all quantities represent corresponding

means over the stable period. Consequently, estimating the total flow rate instead of the
three individual rates enables us to simplify the complexity of the model.

The use of state-of-the-art sequence models in this approach is highly motivated by the
compelling benefits of modeling temporal dependencies in the well system. Furthermore,
the utilization of unlabeled data in the sequences is another compelling factor. As seen in
Section 2.6, such approaches have proven highly successful in related literature both within
flow modeling and other fields. Additionally, as discussed in Section 2.6, the approach is
motivated by the preceding works of Solution Seeker, highlighting the need for future
research within methods utilizing the available data to a greater extent.
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5.2 Model architectures

The following subsections provide a detailed description of the architectures of the three
model categories presented in Section 5.1.

5.2.1 Steady-state baseline

The steady-state baseline is inspired by Solution Seeker’s current machine learning system,
as described in Sandnes et al. [2021]. The model is composed of a feedforward fully
connected neural network (see Section 3.2). The network inputs the row-wise vector

concatenation of x̄
(i)
j and the well embedding wj and outputs Q̂

(i)
j . That is, given a

steady-state baseline model fB composed of a network NN defined by parameters W ,
flow rate estimates are computed as

Q̂
(i)
j = fB(x̄

(i)
j , wj) = NN([x̄

(i)
j , wj ];W ).

Recall from Section 5.1 that xjt ∈ R7 and thus x̄
(i)
j ∈ R7. Given a four-dimensional well

embedding such that wj ∈ R4, the input layer of the network lies in R11. Next, the
network contains a given number of hidden layers, each with the same number of hidden
units. Both of these parameters are subject to a hyperparameter search, as described in
Section 5.3. That is, we do not fixate the network structure but allow a hyperparameter
search to sample from specified domains to identify an ideal depth and width. Finally, the

last hidden layer maps to an output layer in R, representing Q̂
(i)
j . See Figure 5.3 for an

illustration of the architecture.
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Figure 5.3: Illustration of the steady-state baseline model architecture. The number of hidden
layers and units are adjustable, and two hidden layers with 12 units each are shown here for
visualization.

All hidden units in the network use ReLU activation functions. Meanwhile, the output
unit does not use an activation function. This is because the domain of activation functions
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in the output layer must coincide with possible values of the labels. We scale labels to
values near zero and want to avoid imposing restrictions on the possible output values of
the networks. Not using an activation function in the final layer accomplishes this.

The primary motivation behind the proposed model architecture is its simplicity and doc-
umented proficiency in flow rate estimation. In addition, it is a well-studied architecture
that represents a reasonable steady-state VFM alternative and is the design applied in
Solution Seeker’s machine learning system. Thus, it is well-suited as the baseline model
to compare dynamic VFMs with and examine the research question.

The decision to allow a hyperparameter search to determine the network structure is
motivated by the fact that we have no prior knowledge of what high-performing transfor-
mations of the input look like. Meanwhile, we want to ensure that the neural network’s
capacity does not become a constraining factor. Therefore, the hyperparameter domains
are designed to allow for as much flexibility in the networks as possible. By allowing the
hyperparameter search to adjust the regularization of the network, a wide range of models
with varying complexity can be identified and evaluated. For example, a deeper and wider
network gives a model with high capacity and can be regularized to adjust the model
complexity. Meanwhile, a more shallow and narrow model can obtain reasonable capacity
with limited regularization.

5.2.2 Steady-state mean sequence models

The steady-state mean sequence models represent a simplistic extension of the steady-
state baseline model to a sequential input. The architecture of these models differs from
the baseline only in the input. Whereas the baseline inputs the steady-state mean vector

corresponding to the stable period associated with the label x̄
(i)
j , these models input a

sequence of such vectors x̄
(i−T+1)
j , . . . , x̄

(i−1)
j , x̄

(i)
j . See Figure 5.4 for an illustration of the

architecture. We develop three such models, each with a different number of vectors in
the sequence (different sequence lengths T ). See Table 5.1.

The network inputs the row-wise vector concatenation of the T vectors in the sequence

and the well embedding wj and outputs Q̂
(i)
j . That is, given a steady-state mean sequence

model fSS composed of a network NN defined by parameters W , flow rate estimates are
computed as

Q̂
(i)
j = fSS({x̄(i−T+1)

j , . . . , x̄
(i−1)
j , x̄

(i)
j }, wj) = NN([x̄

(i−T+1)
j , . . . , x̄

(i−1)
j , x̄

(i)
j , wj ];W ).

Hence, given a well embedding wj ∈ R4 and a sequence length T , the input dimension
of the network lies in R7T+4. Otherwise, the network structure is designed identically to
that of the baseline model described in Section 5.2.1.

The motivation behind this model design is to investigate the performance of a somewhat
naive extension of the steady-state baseline model. The intention is that these models may
learn more complex relationships than a steady-state model by considering measurements
from consecutive steady-state periods. They thus serve as a bridge between the baseline
and dynamic sequence models in terms of complexity and information considered. This
allows us to examine whether the more complex sequence models are justified or if simpler
architectures may suffice.
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Figure 5.4: Illustration of the steady-state mean sequence model architecture. The number of
hidden layers and units are adjustable, and two hidden layers with 12 units each are shown here
for visualization.

5.2.3 Dynamic sequence models

The dynamic sequence models represent the most complex models studied, and the models
considering the most extensive well history. Their main component is one of the sequence
model architectures described in Section 3.6. That is, we test models using standard
RNNs, LSTMs, GRUs, and temporal CNNs. For each architecture, we test nine pairs of
time horizon D and sequence length T (see Table 5.1).

As described in Section 5.1, these models input a sequence of T measurements xDT
j,(t−T+1),

. . . , xDT
j,(t−1), x

DT
jt uniformly re-sampled such that each sequence spans D days. The se-

quences are processed by the sequence models together with wj , before the output is
passed through a fully connected layer to produce the final flow estimate. That is, given
a dynamic sequence model fSEQ composed of a network NN defined by parameters W ,
flow rate estimates are computed as

Q̂
(i)
j = fSEQ({xDT

j,(t−T+1), . . . , x
DT
j,(t−1), x

DT
jt }, wj)

= NN([xDT
j,(t−T+1), wj ], . . . , [x

DT
j,(t−1), wj ], [x

DT
jt , wj ];W )

Here, the well embedding is repeated and concatenated to each sequence element before
processing the sequence. See Figure 5.5a for an illustration of the architecture.

In the models using recurrent networks, the input elements are processed sequentially. The
new computed cell states are passed to the next step and the subsequent recurrent layers
for each step. Then, when the entire sequence is processed, the output of the final layer in
the final time step is extracted and passed through an FCN. The number of RNN layers
and dimensionality of the hidden state is subject to hyperparameter tuning. Likewise, the
structure of the subsequent FCN is also adjustable in a hyperparameter search.

The models using TCNs function in a similar manner. Dilated causal convolutions are
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(b) Temporal CNN architecture. Here, the TCN is visualized with a kernel width k of 3 and 3 dilated
causal convolution layers. The dilation scheme d = O(2i) is used. The gray elements are padded values,
and d(k − 1) elements are added to the left in each layer.

Figure 5.5: Illustration of the dynamic sequence model architectures. For illustration, the input
elements are time indexed based on their position in the sequence.

applied to the input sequence. A specified number of multiple filters are applied in each
layer, determining the depth of all subsequent next layers. The dilation scheme d = O(2i)
is used, as discussed in Section 3.6. The number of layers in the TCN is chosen such
that the rightmost element of the output sequence is generated based on the entire input
sequence. That is, we select the number of layers such that the receptive field is at least
as large as the input sequence length. The required number of layers n to achieve this
depends on the chosen kernel width k and sequence length T :

n =

⌈
log2

(
T − 1

2(k − 1)
+ 1

)⌉
See for instance Lässig [2020] for a derivation of this result.

Finally, the rightmost element of the final layer of the TCN is extracted and passed through
an FCN to generate the flow rate estimate, similar to the RNN architecture. The number
of filters to use in every layer and the kernel width and the structure of the subsequent
FCN are subject to hyperparameter tuning.
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The proposed TCN structure is motivated by the factors discussed in Section 3.6. It is
inspired by Bai et al. [2018] and only differs in the residual block. Due to experiencing
gradient instabilities during initial testing, we omit the weight normalization layer in the
residual blocks and regularize the network using weight decay and dropout.

5.3 Training process

The chosen model architectures allow for a range of different neural network configura-
tions. To answer the research question, we identify high-performing models by training,
evaluating, and comparing models with different network configurations. In doing so, we
apply the following methodology. First, for each of the presented model architectures,
we train networks using different values of the hyperparameters, constituting different
network configurations. Then, the trained networks’ performances are evaluated to in-
vestigate the proficiency of the given network structures. To find the best-performing
neural network configuration for a given architecture, we use automatic hyperparameter
tuning. Below, we describe the training process for a given network configuration before
explaining how hyperparameter searches are conducted to search for the best-performing
network configurations.

During the training of a given network configuration, training examples x
(i)
j from the

training set are input into the network. This produces a flow estimate Q̂
(i)
j . To induce

learning, the quality of the network’s flow rate estimates is evaluated using a loss function

L, comparing the rate estimate to the actual rate measurement Q
(i)
j . We use Mean Squared

Error (MSE) as our loss function. In addition, we use L2 regularization by penalizing large
weights in the network to avoid overfitting. Let W denote the weights of the network and
λ the L2 regularization factor. This gives the following loss calculation for a set of N
training examples with labels Q producing estimates Q̂:

L(Q, Q̂) =
1

N

∑
i,j

(Q
(i)
j − Q̂

(i)
j )2 + λ

∑
w∈W

∥w∥22

Upon calculating this loss, we update the weights of the network by calculating the gradient
of the loss with respect to the model weights using back-propagation and gradient descent
with the Adam optimizer as described in Section 3.3 and Section 3.6. Applying this
optimization process, we iterate over the training set in batches, gradually improving
the network weights with respect to the training loss. After iterating through the entire
training set, we evaluate the network by calculating the validation loss. One such run
through the training set and subsequent run through the validation set constitute one
epoch. We then repeat this process for a given number of epochs. The training and
validation loss is calculated and reported as the epochs progress. During this process, we
use early stopping and save the configurations yielding the lowest validation losses (see
Section 3.4).

The above explanation describes the process of training and evaluating a given neural
network. To find the highest performing neural network configuration within a given
model architecture, we perform a hyperparameter search. The search involves tuning the
model-specific hyperparameters described in Section 5.2. Additionally, the learning rate
of the Adam optimizer and the L2 regularization factor λ are tuned for all models. We use
the hyperparameter optimization framework presented in Akiba et al. [2019] to perform
this hyperparameter search.
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The hyperparameter search is performed as follows. The search consists of a specified
number of trials. Each trial represents a complete training process for a given network
configuration with continuous monitoring of the validation loss after each epoch. For each
trial, a value is sampled for each hyperparameter within specified domains using corre-
sponding sampling strategies. This gives a neural network configuration to be trained
over a specified number of epochs. Based on the validation losses obtained during the
training over the trials, the optimization algorithm directs the search towards hyperpa-
rameter values expected to improve the validation loss. Thus, as the trials progress, the
search trains different neural networks and gradually identifies configurations with lower
validation losses with no guarantee of optimality. In theory, the networks that obtain the
lowest validation losses should be the most proficient at estimating flow rates.

A multivariate Tree-Parsen Estimator (TPE) sampler is used to guide the parameter
search, which jointly considers the performance of previously sampled values across hy-
perparameter domains when suggesting new values. See Falkner et al. [2018] for details.

As described in Section 3.3, test sets are put aside for the duration of the training. To
measure a model’s ability to generalize, it is evaluated on the test sets once the model
parameters are finalized. That is, we calculate the test loss for the network configuration,
obtaining the lowest validation loss in a given search. The procedure followed to identify
the final flow rate estimation models is outlined in Algorithm 2. Furthermore, see Table 5.1
for an overview of all the models that hyperparameter searches is performed on in the
thesis.

Algorithm 2 Procedure followed to identify final flow rate estimation models

Identify-Models(D, n trials, n epochs)
for each model architecture m do

Process and split dataset D into {Dm
train,Dm

val,Dm
test} ▷ Model-specific datasets

Randomly initialize Θ∗
m ▷ Parameters of best model in search

L∗
m = ∞ ▷ Lowest validation loss obtained in search

for each trial t = 1, . . . , n trials do ▷ One search iteration
Sample values for hyperparameters using optimizer based
on performance of earlier trials
Randomly initialize parameters of network, Θmt0

L∗
mt = ∞ ▷ Lowest validation loss obtained in trial

Θ∗
mt = Θmt0 ▷ Parameters of best model in trial

for each training epoch i = 1, . . . , n epochs do
Train network on Dm

train using Adam, producing Θmti

Calculate validation loss Lmti using Dm
val and Θmti

if Lmti < L∗
mt then ▷ Record best model in trial

L∗
mt = Lmti

Θ∗
mt = Θmti

else if validation loss early stopping criteria met then
Break for-loop ▷ Start next trial

if L∗
mt < L∗

m then ▷ Record best model in search
L∗
m = L∗

mt

Θ∗
m = Θ∗

mt

Calculate test loss Ltest,m using Dm
test and final identified network Θ∗

m

Return {Θ∗
m, Ltest,m} ∀m
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Table 5.1: Overview of all models trained in the thesis.

Model category Architecture Time horizon Sequence length Hyperparameters

Steady-state base-
line model

FCN baseline - 1 FCN hidden layers & units, Adam
learning rate, weight decay

Steady-state mean
sequence models

FCN steady-
state sequence

- 3, 10, 30 FCN hidden layers & units, Adam
learning rate, weight decay

Dynamic sequence
models

RNN

1 day 32, 64, 128 FCN hidden layers & units,
hidden state size, recurrent layers,
Adam learning rate, weight decay

10 days 32, 64, 128

30 days 32, 64, 128

LSTM

1 day 32, 64, 128 FCN hidden layers & units,
hidden state size, recurrent layers,
Adam learning rate, weight decay

10 days 32, 64, 128

30 days 32, 64, 128

GRU

1 day 32, 64, 128 FCN hidden layers & units,
hidden state size, recurrent layers,
Adam learning rate, weight decay

10 days 32, 64, 128

30 days 32, 64, 128

TCN

1 day 32, 64, 128 FCN hidden layers & units,
number of filters, kernel width,
Adam learning rate, weight decay

10 days 32, 64, 128

30 days 32, 64, 128
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Dataset

To explore the research question, Solution Seeker has provided a dataset of the readily
available measurements presented in Chapter 4. This chapter describes the provided data
in Section 6.1. Then, Section 6.2 details the process of transforming the raw dataset to a
format applicable to the methodology presented in Chapter 5. Finally, Section 6.3 discusses
the properties of the processed dataset. The chapter contains some revised explanations
from our project report [Heggland and Kjærran, 2021] as the provided dataset and required
processing steps somewhat overlap.

In the figures and tables presented in this chapter and Chapter 7, abbreviations are used
to refer to specific measures or features relevant to the rate estimation problem. Table 6.1
shows an overview of the abbreviations used for each feature.

Table 6.1: Mapping from abbreviations used in figures to corresponding features in the state
representation. The last three features are inferred and are not present in the provided dataset.

Abbreviation Symbol Feature description

CHK ujt Choke valve opening percentage
PWH pjt,1 Pressure upstream the choke valve
PDC pjt,2 Pressure downstream the choke valve
TWH Tjt,1 Temperature upstream the choke valve
QOIL qjt,O Oil flow rate (MPFM)
QWAT qjt,W Water flow rate (MPFM)
QGAS qjt,G Gas flow rate (MPFM)
QGL qGL

jt Injected gas flow rate (gas lift)

FOIL ϕjt,O Oil fraction from reservoir (generated)
FGAS ϕjt,G Gas fraction from reservoir (generated)
QTOT Qjt Total multi-phase flow rate (generated)

6.1 Dataset overview

The provided dataset contains sensor measurements and control variable readings from ten
wells originating from a single field. The raw measurements span a three-year period from
01/01/2019 to 31/12/2021, with full data coverage for all wells. These measurements are
based on high-frequency sensor readings, which are interpolated using spline interpolation
and uniformly resampled to a 10-second frequency (0.1Hz). All flow rate measurements
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are measured by dedicated multiphase flow meters (MPFM) installed in each well. The
resampling gives a dataset of approx. 94.7 million records, of which≈ 9.47 million originate
from each of the ten wells. Each record consist of the first eight features listed in Table 6.1.
See Table 6.2 for a summary of the provided dataset. Furthermore, an illustration of
all sensor measurements for well 0 plotted over the available time frame can be seen in
Figure 6.1.

Table 6.2: Overview of measurements in the provided dataset.

Feature Description Unit Frequency Measurements/well Start date End date

CHK Choke opening %

0.1Hz 9 469 440 01/01/2019 31/12/2021

PWH Upstream pressure bar
PDC Downstream pressure bar
TWH Upstream temperature °C
QOIL Oil flow rate Sm3/h
QWAT Water flow rate Sm3/h
QGAS Gas flow rate Sm3/h
QGL Gas lift flow rate Sm3/h

Figure 6.1: Example sensor measurements from well 0 for each non-label feature in the dataset.
Note that the measured values are scaled to the interval [0, 1] for visualization.

As specified in Chapters 4 and 5, the steady-state model inputs and target flow rates
are mean compressions of the underlying time series over stable periods. Following the
definition of stable periods outlined in Section 4.2, an algorithm provided by Solution
Seeker identifies periods that are considered stable using the provided dataset. In short,
the algorithm identifies time windows where the well state is considered stable based on
the trend and variability of the control variables (choke valve and gas lift) and rule-based
criteria applied to sensor measurements. The periods are represented as non-overlapping
pairs of start and end timestamps for each well. The periods can then be used to generate
the steady-state compressions by calculating the mean over all sensor measurements and
control variables as specified in Section 5.1. The compression reduces the series of mea-
surements for each stable period to a single data point. In total, the algorithm identified
18 475 stable periods in the provided dataset. An overview of the volume and distribution
of the stable periods can be seen in Table 6.3 and Section 6.1.
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Table 6.3: Overview of identified stable periods per well over the three-year period in the provided
data set when using Solution Seeker’s algorithm.

Well Start date End date Span [days] Num. periods Sparsity [n/day]

Well0

01/01/2019 31/12/2021 1096

2026 1.849
Well1 1792 1.635
Well2 1876 1.712
Well3 1846 1.684
Well4 1868 1.704
Well5 1912 1.745
Well6 1629 1.486
Well7 2072 1.891
Well8 1758 1.604
Well9 1696 1.547

Figure 6.2: Overview of the distribution of identified stable periods over the three-year period
in the provided dataset when using Solution Seeker’s algorithm. Each vertical line represents the
span of a stable period for the given well.

6.2 Data processing

This section describes the processing steps performed to transform the provided data into
the datasets defined by the specifications outlined in Chapter 5. We begin by outlining
how the derived features in the problem are generated in Section 6.2.1, before detailing
the steps performed to filter the stable periods in Section 6.2.2. Then, the applied dataset
splitting strategy is described in Section 6.2.3. Section 6.2.4 explains further processing
steps performed after the dataset split. Finally, Section 6.2.5 illustrates the process of
generating the final datasets used in experiments.

6.2.1 Feature generation

As indicated in Table 6.1, FOIL, FGAS, and QTOT are calculated features. These quan-
tities are derived from the MPFM measurements in the provided data. To generate the
features, the following transformations are performed:

1. All flow rates (qjt,O, qjt,G, qjt,W and qGL
jt ) are converted from volumetric flow per time

(Sm3/h) to an estimated mass per time (kg/s) using approximate phase densities.
This makes the magnitudes of the measurements more comparable.

2. Using the flow rates converted to kg/s, the total multiphase flow is calculated as
Qjt = qjt,O+qjt,G+qjt,W , as described in Section 2.3. As qjt,G denotes the measured
gas flow rate at the wellhead, it also measures previously injected gas lift. Hence,
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Qjt is the total multiphase flow rate passing the choke valve, while Qjt − qGL
jt is an

estimate of the flow originating from the reservoir.

3. Given the comments in the previous point, reservoir rate fractions are computed as

ϕjt,O =
qjt,O

Qjt−qGL
jt

, ϕjt,G =
max{qjt,G−qGL

jt , 0}
Qjt−qGL

jt
, where the denominator is an estimate

of the total multiphase flow rate originating from the reservoir. A value of zero is
assigned in cases where the fraction is not well-defined (division by zero) or where
the denominator is negative. A negative denominator implies a greater amount of
injected gas lift than measured total multiphase flow (qGL

jt > Qjt), which is erroneous.

Likewise, qjt,G − qGL
jt < 0 implies a greater amount of injected gas lift than the

measured gas rate, which is also erroneous.

6.2.2 Filtering stable periods

As the stable periods define the labels, it is important to ensure the identified stable
periods that inaccurately reflect realistic steady-state scenarios. In theory, the flow rate
should remain relatively constant over a stable period. However, a preliminary analysis of
the provided data identified a number of issues to address to ensure the quality of the final
datasets. For example, some periods contained irregularly low mean total flow rates. In
other periods, the flow rate variability was considerably high. Additionally, some periods
contained choke valve changes during the period. To address these issues, the per-feature
standard deviation of the raw data over each stable period was calculated. Furthermore,
the fraction of non-positive values of total flow rate measurements throughout the period
was calculated. A stable period is then discarded if:

1. The period consists of more than 20% non-positive total flow rate measurements.
This corresponds to 119 periods, of which 88 periods do not contain a single positive
rate measurement. From inspecting the raw data, most of the cases can be explained
by flow-meter malfunction, well shut-ins, or a reported total flow rate (incl. gas lift)
exceeding the injected gas rate.

2. The standard deviation of the reported flow rate over the stable period exceeds 1.
This applies to 127 periods, which violates the assumption that the flow rate should
be constant over the stable period.

3. The choke valve opening changes throughout the stable period. This filter applies to
24 periods and violates the assumption that control variables should be unchanged
during and preceding a stable period.

Applying the above filters discarded 246 stable periods (some periods satisfy multiple
conditions), leaving 18 229 remaining periods before dataset splitting.

6.2.3 Dataset splitting

Following the practices described in Section 3.4, the dataset is split into a training, a
validation, and a test set. Note that as the labels are associated with stable periods, dataset
splitting corresponds to partitioning the stable periods into three sets. Worth noting when
defining a split strategy is the fact that measurements from different wells are correlated
as they are connected to the same reservoir. For instance, the reservoir pressure decreases

56



Chapter 6: Dataset 57

over time. Other effects are that FOIL and FGAS typically decrease over time for the
entire reservoir. In addition, all wells are connected to the same production separator and
are thus affected by the pressure in the separator. However, in contrast to the reservoir
pressure, PDC is an input to the model and would therefore not cause information leakage
of significance. For these reasons, it is important to prevent the time span of the test
set from overlapping in time with the training data for correlated wells, introducing data
leakage into the training step.

Furthermore, if extracting a randomly selected fraction from all data points as testing data,
the models may learn to interpolate the training data rather than generalize, yielding
poor predictions on future, unseen data. This would also apply to the validation set,
as randomly sampled validation data would potentially guide the hyperparameter search
towards model configurations able to interpolate the training data, rather than learning a
general representation of the system capable of extrapolating into the future.

To simulate how the models would be trained and used in practice (evaluated on the
most recent available data), we select the two last months (61 days) of available data as
test data and the two months prior to that as validation data (61 days). This splitting
strategy is sometimes referred to as a fixed partitioning split or combined in the form of
a forward chaining split. An overview of the resulting split decomposed per well can be
seen in Table 6.4, and a visualization of the partitioning of the stable periods are shown
in Figure 6.3

Table 6.4: Overview of dataset splits, indicated by the number of stable periods per split for a
given well. Note that an additional 95 periods are discarded from the training set in a filtering
step described in Section 6.2.4.

Well Training Validation Test Total

Well0 1752 97 148 1997
Well1 1619 51 41 1711
Well2 1584 128 159 1871
Well3 1547 127 148 1822
Well4 1583 125 136 1844
Well5 1614 129 158 1901
Well6 1361 101 154 1616
Well7 1763 128 159 2050
Well8 1593 99 45 1737
Well9 1439 132 109 1680

Total 15855 1117 1257 18229

Figure 6.3: Illustration of the splitting of the dataset into training, validation, and test sets.
Each vertical line represents the span of a stable period for the given well, with colors indicating
which of the three sets the stable periods are included in.
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6.2.4 Filtering and transformations after splitting

After the splitting, three different processing steps are performed on the data to produce
the final datasets for model training. The data is transformed by a normalization step,
filtered to eliminate extreme values, and categorical variables are transformed to a numeric
representation, interpretable by the neural network architectures.

Per-well normalization
Input features and flow rate measurements are normalized, centering the data around zero
on a per-well basis. The per-feature mean for a given well is calculated using all raw
measurements in the time span of the training data. Given a feature zjt and the set T of
all uniformly sampled time points in the raw dataset spanning the duration of the training
set, the normalized feature ẑjt is calculated as

ẑjt = zjt −
1

|T |
∑
τ∈T

zjτ = zjt − z̄j

This transformation is then applied to the validation and test data during evaluation.
It should also be applied to future records during inference before being input into the
trained models.

As it is desirable to keep information about differences in variance across wells, no per-well
standardization is performed. Dataset features and the label are on a reasonable scale,
such that no rescaling is necessary to ensure numerical stability during training.

Filtering of extreme measurements
From an initial exploratory data analysis of the dataset, it became evident that a minuscule
number of feature values in the provided data take on extreme values. For example, some
readings deviate by more than 30 standard deviations. Such extreme values are often a
result of sensor faulty and not representative measurements. Therefore, such records were
filtered by discarding all stable periods containing pressure or temperature readings that
deviate from the per-well mean by more than five standard deviations. The filter discarded
95 stable periods, corresponding to 0.60% of the training dataset. This filtering is applied
to the training data only to avoid altering the validation and test data distributions. The
primary motivation behind filtering these values is to increase stability during training -
extreme values may result in very high squared error losses during early training iterations,
causing large weight fluctuations.

Ordinal encoding of well identifiers
To indicate which well a given input state representation originates from, we want to
include a representation of each well in the input data to the neural networks. An ordinal
encoding is used to convert the well identifiers to integers. The encoding scheme is very
simple. A new integer is assigned for each unique well in the dataset, starting at zero
(Well0 → 0, Well1 → 1, . . . ). This encoding scheme is selected as it is a suitable input
format for an embedding layer, which all the proposed models use. The encoded value
can be interpreted as an index used for lookup in the embedding matrix, reducing the
embedding operation from a matrix to a vector product.

6.2.5 Dataset generation

Using the raw dataset along with the processed stable periods, we can build final datasets
compatible with the input specifications of the different model architectures outlined in
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Chapter 5. Recall from Chapter 5 that the steady-state baseline model inputs the mean
of each input feature over a stable period. Furthermore, the steady-state mean sequence
models input a sequence of such vectors, where lengths of three, ten, and 30 are tested.
Finally, the dynamic sequence models input sequences of resampled measurements. Here,
both the time horizon covered by the sequence and the number of elements used in the
sequence varies. Nine pairs of (time horizon, sequence length) are tested, using horizons
of one, ten, and 30 days, and sequence lengths of 32, 64, and 128. In total, this gives
1 + 3 + 9 = 13 datasets. An overview of all the datasets can be seen in Table 6.5.

All the sequential datasets are produced by generating sequences associated with each
label. Section 5.1 formally describes the methodology followed to generate the sequences.
In short, we start by calculating steady-state mean vectors for each stable period. This
serves as the input in training examples for the baseline model, where the label is the
mean total flow rate for the corresponding stable period.

The datasets for the steady-state mean sequence models are produced by generating se-
quences of consecutive steady-state mean vectors of the specified length. Each training
example thus consists of such a sequence as input. The label of the training example is the
mean total flow rate for the stable period corresponding to the final vector of the sequence.

The input sequences for the dynamic sequence models are organized similarly, but the
sequence elements differ considerably. Sequences are generated as follows. First, the raw
uniformly sampled data is resampled to a resolution such that the given sequence length
for the dataset spans the given time horizon. The sequence is then generated by the
consecutive, uniformly resampled data points leading up to and during the given stable
period. The ending time point of the corresponding stable period is used as the starting
point for the resampling of the given sequence. Hence, each sequence uses a different
starting point for the resampling. Furthermore, the resampled data points of different
sequences are computed based on different parts of the original data. This approach
ensures that two stable periods close in time do not generate identical input sequences,
even if the resampling frequency is low.

Table 6.5: Overview of generated datasets for each model category.

Model category Time horizon [days] Sequence length [n] Resampling interval [s]

Steady-state baseline model - 1 -

Steady-state mean sequence models -
3

-10
30

Dynamic sequence models

1
32 2700
64 1350
128 675

10
32 27 000
64 13 500
128 6750

30
32 81 000
64 40 500
128 20 250
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6.3 Properties of the dataset

Per-well variability
Figure 6.4 shows the standard deviation σfj , for feature f on well j calculated on the entire
dataset. This decomposition shows that the variance for a given signal varies greatly across
wells. For instance, σCHK,4 is over three times as large as σCHK,3, indicating that the choke
control variable is more frequently adjusted for well 4. Similar patterns can be observed
for the other features. Hence, the operating conditions vary for the different wells. This
may imply that some flow rates can be more easily modeled for some wells than others.

Figure 6.4: Standard deviations per feature-well pair, calculated on the entire dataset.

Correlations and physical properties
When studying the pairwise correlations between input features, as shown in Figure 6.5, we
can observe some physical properties of the production system as captured by the sensor
measurements. For one, we observe that the choke valve opening percentage and total flow
rates are highly positively correlated (ρCHK,QTOT = 0.86) as is to be expected. A greater
opening of the choke valve allows a greater volume of multiphase flow to stream past the
MPFM sensor, thus increasing the total measured flow rate. Considering this correlation
in combination with the standard deviations per feature-well pair in Figure 6.4, we can
gain some insights into the behavior of flow rates in the data. Given the high standard
deviation for CHK on different wells in the data, we expect QTOT to demonstrate high
variability for the same wells. Considering the physical implications of varying the choke
valve opening, this implication would be reasonable. Furthermore, this may imply that
wells that have high standard deviations for CHK and QTOT represent more challenging
wells to model flow rates for.

Furthermore, the heat map displays other correlations which are to be expected, such
as the negative correlation between choke opening and upstream pressure (ρPWH,CHK =
−0.3). If the choke valve opening increases, a higher volume of multiphase flow is let
through the choke valve, and the upstream pressure decreases. Equivalently, we observe a
slightly positive correlation between the downstream pressure and the choke valve opening
(ρPDC,CHK = 0.19), which is also reasonable as when the choke increases, the pressure
builds up downstream the choke valve as a greater volume flows. However, this pressure
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is systematically controlled by operators to maintain a constant level, as indicated in
Figure 6.4 by the consistent standard deviations of a lower scale than the upstream pressure
across wells. This may, in part, explain the somewhat lower correlation coefficient. These
physical properties can be later used to evaluate whether the model’s response to changes
in input signals is in line with the expected response dictated by the physical relationships.

Figure 6.5: Visualization of the Pearson Correlation Coefficient (PCC) between all pairs of
features in the dataset.

Autocorrelation
To better understand the dependencies in the data over time, lagged autocorrelation is
analyzed per feature per well. For a sequence of a given length, lagged autocorrelation
describes the correlation between the final element in the sequence and a given element
from earlier time steps. By calculating this autocorrelation between the final and each of
the elements of the sequence, we obtain an understanding of how current measurements
for each feature depend on past measurements. See Figure 6.6 for a visualization of the
mean per-feature lagged autocorrelation across all wells when using a sequence length of
64 elements spanning one, ten, and 30 days back in time.

From studying the lagged autocorrelations in Figure 6.6, it is evident that there is a rela-
tionship between a feature’s current and recent values. This indicates, as expected, that
there are temporal dependencies in the production data well beyond the maximal dura-
tion of stable periods. Hence, this observation motivates the proposed dynamic sequence
models.

In addition, as showcased by Figure 1 in Appendix A, the per-feature autocorrelation varies
considerably across wells. This suggests that the behavior of measurements preceding
stable periods are vastly different across wells. Hence, knowing which well a given record
originates from may be relevant for models to learn such dynamics. By informing the
model of which well a sequence originates from, it may learn to adapt to the distinctive
behaviors of each well accordingly.
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(a) Lagged autocorrelation for sequences with a time horizon of 1 day.

(b) Lagged autocorrelation for sequences with a time horizon of 10 days.

(c) Lagged autocorrelation for sequences with a time horizon of 30 days.

Figure 6.6: Mean per-feature autocorrelation across all wells using a sequence length of 64 time
steps for three different time horizons spanning a varying number of days back in time.
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Results

Using the processed versions of the provided dataset outlined in Chapter 6 we train models
following the methodology described in Chapter 5. In total, we train 40 model variants
subject for comparison. This forms the basis for the discussion of the research questions
of the thesis. In this chapter, we present the results from training the different models.
First, Section 7.1 describes the setup used to run the experiments to obtain the results.
Then, the overall predictive performance of the models is showcased in Section 7.2. The re-
maining sections study selected high-performing models in greater detail. First, the model
performance decomposed per well is shown in Section 7.3. Next, Section 7.4 illustrates the
effect of perturbing the information in the earliest sequence elements, before Section 7.5
demonstrates the effects of decreasing the temporal granularity of input sequences. The
trained models’ ability to estimate more dynamic flow rates is evaluated in Section 7.6.
Then, loss gradients with respect to the input data for different models are presented in
Section 7.7. Finally, the results of re-training high-performing models on a lower data
volume are shown in Section 7.8. The results are discussed in Chapter 8.

7.1 Experiment setup

Before presenting the results, we give a detailed overview of the experiments. First,
Section 7.1.1 describes relevant details regarding the implementation of the experiments.
Then, Section 7.1.2 presents specific details about the experiments run to produce the
results.

7.1.1 Implementation details

The presented methodology is implemented in Python. The models and training logic
are implemented using the machine learning library PyTorch version 1.11. This allows us
sufficient freedom to tailor the involved components to our specifications while gaining the
advantages of optimized data structures and abstracted logic. The hyperparameter tuning
is performed using Optuna version 2.10, a hyperparameter optimization framework [Akiba
et al., 2019]. We chose this library primarily due to its ease of integration with PyTorch
training loops and because it implements state-of-the-art hyperparameter optimization
algorithms. The hyperparameter tuning experiments were tracked using Neptune.ai, an
experiment tracking framework that enables easy logging, storing, organization, introspec-
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tion, and comparison of model metadata across runs.

Experiments were performed using four identical virtual machine instances running on
Google Cloud Compute Engine. Each machine is equipped with an NVIDIA Tesla T4
GPU. This allows us to leverage GPU hardware acceleration using the CUDA framework
(version 11.3) with PyTorch. By containerizing our code using Docker, this cloud comput-
ing setup allows us to easily scale the computation resources as required. Furthermore,
the GPU acceleration considerably speeds up training as GPUs allow for substantial paral-
lelization of vectorized operations. Considering the scale of the experiments, this speed-up
considerably shortened the required running time to perform all experiments, despite re-
quiring a longer implementation time. One experiment of 40 hyperparameter searches
took approximately 80 GPU hours to run. Thus, it could be completed in 20 hours using
four GPU accelerated machines.

7.1.2 Experiments

By applying the methodology described in Chapter 5, the 40 models outlined in Table 7.1
have been studied. Note that the models correspond to those presented in Table 5.1, but
are here shown with the associated model names used in figures and tables in the following
sections.

Table 7.1: Overview of model architectures tested in the thesis. Each model is identified by an
alias, indicating the architecture, associated time horizon and sequence length, where applicable.

Architecture Time horizon Sequence length Alias

FCN baseline - 1 MTL-ONLY

FCN steady-state sequence - 3, 10, 30 FCN-SEQ-[sequence length]

RNN
1 day 32, 64, 128 RNN-1D-[sequence length]

10 days 32, 64, 128 RNN-10D-[sequence length]

30 days 32, 64, 128 RNN-30D-[sequence length]

LSTM
1 day 32, 64, 128 LSTM-1D-[sequence length]

10 days 32, 64, 128 LSTM-10D-[sequence length]

30 days 32, 64, 128 LSTM-30D-[sequence length]

GRU
1 day 32, 64, 128 GRU-1D-[sequence length]

10 days 32, 64, 128 GRU-10D-[sequence length]

30 days 32, 64, 128 GRU-30D-[sequence length]

TCN
1 day 32, 64, 128 TCN-1D-[sequence length]

10 days 32, 64, 128 TCN-10D-[sequence length]

30 days 32, 64, 128 TCN-30D-[sequence length]

First, an initial run of all experiments considering the 40 models presented above was
conducted. When analyzing the results from the experiments it was evident that the
GRU models performed very similarly to the LSTM models. The average validation
and test MSE for each model architecture in this run can be seen in Appendix B. The
mean validation and test MSE for the GRU model was 2.6% and 9.5% lower than for
LSTMs, respectively. However, the best-performing LSTM model obtained a test MSE
that was 24.1% lower than the best-performing GRU model (see Appendix C). Thus, the
GRU models with different input sequences performed similarly to LSTMs on average,
but the best-performing LSTM performed marginally better than its GRU counterpart.
In addition, the GRU models took approximately equal time to train compared with
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LSTMs (see Appendix B). As explained in Section 3.6, GRUs and LSTMs are very similar.
Furthermore, the literature contains extensive arguments stating that LSTM variants (such
as the GRU) generally do not perform significantly better than the standard LSTM which
is used in this thesis [Bai et al., 2018]. Hence, we decided to disregard GRU models
in further experiments, as they provided limited additional insights beyond the other
recurrent models. Furthermore, this decision considerably reduced the number of GPU
hours required to run all experiments. Thus, the total number of models tested was
reduced to 31.

For each of the resulting 31 model architectures presented above, a hyperparameter search
over 300 trials was conducted where each model is trained for 100 epochs, following the
procedure outlined in Algorithm 2. Each trial samples a value for each of the hyperpa-
rameters of the given model, using a given sampling strategy within a specified domain.
An overview of the hyperparameters for the different model experiments is presented in
Table 7.2. Early stopping with checkpoints was implemented to stop model training if the
validation loss has not improved over the preceding 30 epochs. Checkpointing enables us to
restore the model state at the point where validation loss was at its lowest. Furthermore,
a median pruner was applied to avoid spending computational resources on unpromising
trials. Trials are interrupted if the best intermediate result in the trial is worse than the
median of intermediate results of previous trials at the same epoch, measured by valida-
tion loss. A warm-up period of 20 epochs was used, meaning that no pruning is allowed
to occur for the first 20 epochs. In addition, pruning is disabled for the first ten trials
to obtain a sufficient number of candidate optimization histories to compare with when
pruning.

Table 7.2: Overview of hyperparameters used to identify models in the different categories.

(a) Overview of hyperparameters used to identify the steady-state baseline model and the steady-state
sequence models.

Hyperparameter Min Max Sampling strategy Applies to Description

learning rate 1E-3 1E-2 log-uniform All Optimizer weight update step size
l2 reg 1E-4 1 log-uniform All L2 regularization factor
fcn hidden layers 1 3 linear (step=1) All Number of hidden layers
fcn hidden units 32 128 linear (step=16) All Number of hidden units in each layer

(b) Overview of hyperparameters used to identify dynamic sequence models.

Hyperparameter Min Max Sampling strategy Applies to Description

learning rate 1E-3 1E-2 log-uniform All Optimizer weight update step size
l2 reg 1E-4 1 log-uniform All L2 regularization factor
fcn hidden layers 1 2 linear (step=1) All Hidden layers in the FCN
fcn hidden units 32 64 linear (step=16) All Hidden units in each layer in FCN
recurrent layers 1 3 linear (step=1) RNN, LSTM, GRU Number of recurrent layers
hidden size 32 64 linear (step=16) RNN, LSTM, GRU Hidden state dimension
kernel size 3 7 linear (step=1) TCN Width of each kernel
num channels 16 32 linear (step=16) TCN Kernels applied in each layer

The hyperparameter search process described above is repeated five times for each of the
31 models. Counting the nine disregarded GRU searches from the first of the five runs,
this gives a total of 164 experiment searches (5 · 31 + 9). The process consumed a total of
328.5 GPU hours, corresponding to 13 GPU days and 16.5 GPU hours. By running four
machines in parallel, the required hours are reduced by a factor of four, thus taking 82
hours, or 3 days and 10 hours to complete. The hyperparameters of all the final models
and corresponding monitoring time can be found in Appendix C.
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7.2 Overall predictive performance

The predictive performance of the trained flow rate estimation models is summarized in
Table 7.3 and visualized in Figure 7.1. The error is calculated by comparing the predic-
tions produced by the different models with the ground truth (label) and computing the
squared error. By doing so for each training example, a vector of squared errors is ob-
tained. The mean value of this error vector is reported as the MSE loss metric for a single
experiment. Note that the error reported here corresponds to the predictive performance
of the best model from all 300 trials for each experiment, averaged over the five identical
experiments for each model configuration. Losses for individual experiments can be found
in Appendix C.

Table 7.3: Average loss with standard deviations over 5 identical hyperparameter searches for
each model.

Model Val MSE Test MSE Test MSE (rel. to baseline) [%]

MTL-ONLY 0.92 ± 0.04 3.0 ± 0.55 0.0

FCN-SEQ-3 1.1 ± 0.07 2.74 ± 0.53 -8.49
FCN-SEQ-10 1.59 ± 0.05 4.08 ± 0.64 36.19
FCN-SEQ-30 1.5 ± 0.07 4.41 ± 0.59 47.17

RNN-1D-32 1.01 ± 0.08 6.06 ± 1.73 101.92
RNN-1D-64 0.96 ± 0.13 5.34 ± 1.93 77.94
RNN-1D-128 0.93 ± 0.09 4.22 ± 1.26 40.81
LSTM-1D-32 1.03 ± 0.04 6.93 ± 3.21 130.91
LSTM-1D-64 0.95 ± 0.05 5.09 ± 2.23 69.69
LSTM-1D-128 0.97 ± 0.06 8.61 ± 3.28 187.16
TCN-1D-32 1.01 ± 0.03 2.79 ± 0.75 -7.11
TCN-1D-64 0.91 ± 0.08 2.98 ± 0.55 -0.61
TCN-1D-128 0.97 ± 0.05 3.1 ± 0.62 3.35

RNN-10D-32 4.99 ± 0.13 12.47 ± 2.14 315.92
RNN-10D-64 2.27 ± 0.15 7.37 ± 0.52 145.7
RNN-10D-128 1.12 ± 0.11 4.82 ± 2.63 60.55
LSTM-10D-32 5.12 ± 0.22 14.97 ± 4.03 399.2
LSTM-10D-64 2.45 ± 0.18 10.79 ± 2.26 259.77
LSTM-10D-128 1.24 ± 0.06 7.85 ± 2.73 161.67
TCN-10D-32 5.08 ± 0.18 8.54 ± 0.22 184.89
TCN-10D-64 2.54 ± 0.06 5.95 ± 1.09 98.25
TCN-10D-128 1.19 ± 0.08 3.18 ± 0.98 5.88

RNN-30D-32 11.97 ± 0.28 17.44 ± 2.31 481.6
RNN-30D-64 7.18 ± 0.15 13.93 ± 1.93 364.46
RNN-30D-128 3.27 ± 0.24 10.62 ± 0.91 254.24
LSTM-30D-32 11.46 ± 0.22 21.42 ± 3.99 614.11
LSTM-30D-64 7.17 ± 0.11 14.96 ± 2.8 398.92
LSTM-30D-128 3.71 ± 0.03 13.95 ± 2.61 365.18
TCN-30D-32 11.54 ± 0.43 14.97 ± 1.91 399.24
TCN-30D-64 7.19 ± 0.22 11.45 ± 1.21 281.94
TCN-30D-128 3.25 ± 0.17 7.21 ± 1.25 140.38
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Figure 7.1: Box plots of MSE for all rate estimation models tested. Each box plot shows the
validation or test MSE obtained for the given model configuration in 5 identical experiments. The
box extends from the first quartile (25%) to the third quartile (75%) with a vertical line representing
the median. The whiskers (horizontal lines) extend from the box by 1.5x the inter-quartile range
(IQR). Any values outside of the IQR are shown as individual markers.

Based on the obtained average test losses, we select a group of best-performing models to
use in subsequent analyses. For each of the studied architectures (MTL-ONLY, FCN-SEQ,
RNN, LSTM, TCN) we identify the model obtaining the lowest average test MSE. Hence,
the models used for further analyses (referred to as the best-performing models) are MTL-
ONLY, FCN-SEQ-3, RNN-1D-128, LSTM-1D-64, and TCN-1D-32. For all mean test MSE
analyses, averages over the five experiments of the model are used. For visualizations of
predictions, we select the model with the lowest test MSE across the five experiments.
Figure 3 illustrates flow rate estimates and errors on wells 0 and 4 for these models
across each dataset split. The wells are selected based on the per-well loss obtained,
where the models achieve relatively low loss on well 0 and high on well 4 (see Section 7.3).
Corresponding visualizations on the test data for all ten wells can be found in Appendix D.
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(a) Flow rate estimates on well 0 and 4 across dataset splits.

(b) Flow rate deviations from ground truth on well 0 and 4 across dataset splits.

Figure 7.2: Flow rate estimates and error on two months of the training (blue background),
validation (red background) and test set (green background) for the best-performing models.
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7.3 Per-well predictive performance

A decomposition of average test loss per well can be seen in Figure 7.3a for each of the
selected best-performing models. Figure 7.3b shows the relative change in test MSE loss
per well as a multiplicative factor relative to the baseline model. The factor is given by
ϵ̄m−ϵ̄B

ϵ̄B
where ϵ̄m and ϵ̄B denotes the averaged per-well test loss over all experiments for

model m and the baseline model, respectively.

(a) Rate estimation test MSE loss per well for the best-performing models.

(b) Relative change in rate estimation test MSE per well as a multiplicative factor
relative to baseline loss.

Figure 7.3: Average flow rate estimation test loss decomposed per well for the best-performing
models. The loss is averaged over the five experiments per model.
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7.4 Perturbing information in earliest sequence elements

To investigate how the identified models exploit the information in the different elements
of the input sequence, we test how estimation performance degrades when replacing the k
earliest timesteps of the sequence with different masks. This experiment is conducted for
each of the best-performing dynamic sequence models.

The experiment is conducted as follows. We want to investigate to what extent the k
earliest timesteps of the sequence contribute to the output estimate. By “removing” the
information in the k last sequence elements and studying how the rate estimates change, we
may better understand how the model depends on the given elements. Hence, we replace
the values in the elements using different masks. Three masking schemes are tested:
replacing all k elements with zero-valued entries, replacing them with the mean for the
corresponding feature on the given well across the entire dataset, and by simply slicing the
sequence, removing the k first elements from the sequence. The dynamic sequence models
are designed to support input sequences of arbitrary length, allowing the last scheme.

For each value of k up to the sequence length of the model, the above process is conducted.
Hence, we mask all the k earliest elements of the sequence and calculate the test MSE.
This is then done for each of the five identified models for each architecture, and an average
is computed for each k. The resulting average test losses are visualized in Figure 7.4 for
each of the mentioned models and schemes. See Table 8 in Appendix E for a breakdown
of all losses.

The motivation behind the three schemes is to replace the information from further in the
past in different ways. As we cannot fully know how the models exploit the information
in the input sequence, we test multiple approaches. For instance, replacing elements with
zeros may produce an unintentionally high loss, as the features are normalized, and thus a
value of zero is meaningful. Additionally, the models may have learned patterns between
elements over time. By perturbing the input in this way, we may unintentionally cause the
model to identify learned patterns due to the masked values. Hence, to somewhat coun-
teract these potential limitations of the experiment, we average over all the five identified
models for each architecture. Additionally, by comparing three different schemes, we may
better understand whether the highlighted issues occur.

Figure 7.4: Mean MSE over five experiments for each of the best-performing models when
masking the earliest parts of the input sequence in three different ways. Starting from the oldest
history, each one-unit step along the horizontal axis represents extending the mask to the next
1
32 elements of the input sequence. Thus, a value of zero indicates no masking, and a value of 31
indicates that only the most recent 1

32 elements of every input sequence are left unmasked.
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7.5 Decreasing temporal granularity in sequences

To study how the models leverage the temporal granularity in the input sequence, we
evaluate their performance when given the same input sequences from the test data, but
with lower temporal granularity. The temporal granularity is reduced by smoothing the
input sequence using a Hann filter. The smoothed input sequences are then used to
generate estimates, and the resulting test MSE is reported.

Due to the nature of the inputs for the steady-state mean sequence models, adjusting
their temporal granularity is not a well-defined exercise. The sequence elements are not
uniformly sampled and represent mean aggregations over different durations. Hence, they
are not considered in this analysis. Conversely, the experiment is conducted on each of
the dynamic sequence model architectures (RNN, LSTM, TCN). To ensure the results of
each experiment are comparable, we choose three high-performing models trained on the
same original temporal granularity. Hence, we perform the experiment on RNN-1D-64,
LSTM-1D-64, and TCN-1D-64.

We test smoothing the input sequences to a varying extent by applying a Hann filter of
different widths on each 64-length sequence. See Figure 7.5 for a visualization of how the
smoothing affects a sequence from the test data, originally sampled such that 64 time
points span one day. The change in test MSE for the selected models when smoothing the
sequences using filter widths from 5 to 25 is shown in Table 7.4.

Table 7.4: MSE test loss for sequence models when a Hann filter of various lengths is applied to
the input sequences.

window RNN-1D-64 LSTM-1D-64 TCN-1D-64

No filter 5.336620 5.089275 2.980744
5 5.332416 5.080083 2.979081
7 5.328476 5.087332 2.976986
9 5.324852 5.100270 2.976939

11 5.329359 5.122141 2.978219
13 5.345006 5.150407 2.986311
15 5.369946 5.178543 3.003470
17 5.400840 5.217480 3.030521
19 5.436245 5.267374 3.065996
21 5.475800 5.324997 3.107052
23 5.519654 5.385316 3.153348
25 5.567754 5.444012 3.204417

Figure 7.5: Example input sequence with varying degrees of smoothing. The dashed lines repre-
sent different features where a smoothing window of sizes 5, 9, 13, 17, 21, and 25 is applied. Thicker
lines indicate a higher degree of smoothing. The solid line represents the unaltered feature.
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7.6 Estimating dynamic flow rates

To test the identified models’ ability to generalize, we evaluate the best-performing models
on uniformly resampled test data, including both transient and stable measurements.
That is, instead of estimating the mean flow rate over stable periods in the test period,
we resample the raw total flow rates from MPFMs during the test period on a four-hour
interval. Then, input sequences are generated in the same manner as before, using the
ending time point of each four-hour period as the basis for resampling. The sequences
are passed to the models, and the estimates are evaluated against the resampled flow
rates using mean squared error. As the test period is 61 days, this gives 24

4 · 61 = 366 test
examples per well. The per-well MSE obtained for each model is outlined in Table 7.5. The
per-well loss relative to the baseline is illustrated in Figure 7.6. Furthermore, the produced
rate estimates and corresponding estimation errors for wells 0 and 4 are visualized in
Figure 7.7. The same visualizations are shown for all wells in Appendix F.

Table 7.5: Per-well test MSE for best-performing models when evaluated on a uniformly re-
sampled test dataset with a four-hour resampling frequency. The loss is averaged over the five
experiments per model.

Well MTL-ONLY RNN-1D-128 LSTM-1D-64 TCN-1D-32

0 19.420511 7.575155 11.609964 11.527099
1 29.600805 8.067227 4.900905 24.057627
2 5.432682 2.784511 2.188552 3.623336
3 28.818920 8.338348 14.519588 14.267346
4 46.515068 30.621052 49.258179 23.757130
5 11.715349 7.942098 8.527229 8.838765
6 12.440696 2.558757 5.216428 7.699508
7 4.536375 1.561710 1.150869 2.875715
8 37.378502 17.472137 39.503654 28.717710
9 18.544081 4.824028 4.305014 22.690495

Mean 21.440298 9.174502 14.118039 14.805473

Figure 7.6: Relative change in rate estimation test loss per well as a multiplicative factor relative
to baseline loss. The loss is averaged over the five experiments per model.
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(a) Flow rate estimates on well 0 and 4.

(b) Flow rate deviations from ground truth on well 0 and 4.

Figure 7.7: Flow rate estimates and error on resampled test dataset for the best-performing
models.
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7.7 Calculating loss gradients with respect to input data

To better understand how information propagates from different parts of the input se-
quences to the corresponding model output, gradients of the loss with respect to each
element in the input sequences are calculated.

This calculation is performed by leveraging the automatic differentiation features of Py-
Torch, capable of calculating the gradients with respect to any tensor in the computation
graph. As the output is a result of a chain of tensor operations applied to the input,
we can precisely calculate the gradient with respect to individual elements in the input
tensors. By performing inference on the entire test dataset while recording gradients with
respect to the input tensors, the mean gradient with respect to the loss can be calculated.

Figure 7.8 shows the mean over all logarithmically scaled absolute gradients for each
(timestep, feature) pair. The gradients are visualized on a log scale to emphasize the
underlying patterns.

Figure 7.8: Visualization of mean, log-scaled, absolute gradients with respect to input calculated
across each timestep/feature combination in the test dataset, reported for the best-performing
sequence models.
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7.8 Re-training best models on less data

To examine the viability of the proposed models under conditions where fewer labels are
available, the best-performing models were re-trained on 50% of the available training
data. To simulate lower data availability, the new dataset is generated by sampling 50%
of the existing training examples uniformly at random. Hence, the examples span the
same time period as before but with higher sparsity. Taking the best-performing model
architectures, five new hyperparameter searches were performed for each model to identify
optimal models with the new data availability. The average losses obtained are shown in
Table 7.6.

Table 7.6: Change in average validation and test MSE loss when re-training best-performing
models on 50% of training examples. All MSE losses are averages over five hyperparameter searches.
Here “Before” refers to the MSE achieved before removing training examples.

Validation Test

Model Before After Before After Difference [%]

MTL-ONLY 0.924043 1.294520 2.999078 4.300697 43.40
FCN-SEQ-3 1.101926 1.863691 2.744508 5.348800 94.89
RNN-1D-128 0.929019 1.092267 4.222928 5.347290 26.63
LSTM-1D-64 0.952395 1.232829 5.089275 7.949846 56.21
TCN-1D-32 1.006969 1.340258 2.785874 2.921457 4.87
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Chapter 8

Discussion

In this chapter, we discuss the results presented in Chapter 7, how they correspond to our
hypotheses and what they might imply for the research questions presented in Chapter 4.
We start by discussing what the results indicate with regards to the overall effects of
estimating flow rates using sequences in Section 8.1, examining how the steady-state model
compares with the sequence models. Then, Section 8.2 explores how the inclusion of
transient history in the input sequence affects estimation performance. Finally, Section 8.3
investigates the implications of estimating flow rates based on sequences spanning different
time horizons and temporal granularities. We emphasize that the implications of the
results discussed in this chapter should primarily be considered within the context of the
case study and do not necessarily hold in general. Furthermore, the results are empirical
evidence and therefore should not be considered as proof but rather as indications of
truths. Meanwhile, such indications represent valuable and insightful contributions to the
literature.

8.1 Overall effects of sequence modeling

By studying the average test MSE obtained for the different models as outlined in Sec-
tion 7.2, we may gain an initial understanding of the model performances. We see that
most sequence models obtain a higher test MSE than the steady-state baseline model
(MTL-ONLY), indicating a limited positive effect of leveraging sequences. However, the
TCN and FCN-SEQ architectures stand out. Two one-day TCN models and FCN-SEQ-3
beat the baseline. Additionally, of the seven lowest obtained test MSEs, two are from
FCN-SEQ models and four are from TCN models. All but one of these are within a 5%
deviation from the baseline model’s average test loss. Furthermore, we see that most
LSTM and RNN models obtain comparable validation losses to TCN and FCN-SEQ, but
considerably higher test losses. This may indicate that they do not generalize as well as the
other models. Furthermore, standard deviations for RNN and LSTM test losses are con-
siderably higher than the comparable TCN model, suggesting they are more inconsistent
in what they learn. The results indicate that it is possible to outperform the state-of-
the-art steady-state VFM using a dynamic VFM, in line with our hypotheses. However,
studying the test MSE gives only limited indications of this. Furthermore, the average
test loss does not consider a range of factors that may affect the results. By examining
high-performing models in greater detail, we may paint a broader picture.

The per-well test loss for the best-performing models within each architecture shown in
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Figure 7.3 illustrates a few differences. A desirable property of flow rate models is that
their predictive ability is fairly similar across wells. However, we observe that the models
demonstrate somewhat inconsistent performance for different wells. For instance, for wells
4, 5, and 8, at least four of the five models obtain test losses above 4.7. Meanwhile, all
models obtain a test MSE below 2 for wells 0, 2, 3, 7, and 9. Thus, the models seem
to learn to model flow rates for some wells more easily than others, regardless of model
structure. Hence, we speculate that this inconsistency can be largely explained by the data
rather than the models. By investigating the visualizations of the estimates for these wells
in Appendix D, we see no striking patterns. Wells 4, 5, and 8 seem to contain periods
of higher variability, however so does, for instance, well 2. Additionally, the standard
deviations of the flow rates per well across the entire dataset in Section 6.3, show no
decisive patterns. One explanation could be differences in operational conditions between
the training and test sets, or that the MPFM sensor is misconfigured or has drifted.

Meanwhile, some differences between the steady-state baseline and the sequence models
can be observed in the per-well loss analysis. The baseline model obtains the lowest test
loss only for well 3. At the same time, on all wells where the baseline yields a test MSE
below 2, the sequence models mostly perform comparably, as indicated above. However,
on wells 4, 5, and 8, where the baseline performs poorer, it is beaten by the TCN model
and FCN-SEQ-3, in two of three wells each. This may give slight indications that the
baseline model somewhat overfits to the “easier” wells, whereas the sequence models can
estimate flow rates slightly more accurately on more diverse wells. Hence, this observation
may indicate that the sequence models are capable of generalizing better to different wells.
This indication is strengthened by the larger gap between the average validation and test
loss for MTL-ONLY (2.08) compared with FCN-SEQ-3 (1.64) and TCN-1D-32 (1.78).

In evaluating the trained models’ performance when estimating dynamic flow rates as
shown in Section 7.6, different nuances between the models appear. By considering the per-
well losses in Table 7.5 and Figure 7.6, we see that the baseline is outperformed by RNN on
all wells, by the LSTM on all but wells 4 and 8, while TCN performs better on all but well 9.
Additionally, all three dynamic sequence models outperformMTL-ONLY when considering
the average test MSE across all wells. Furthermore, by examining the estimates visualized
for wells 0 and 4 in Figure 7.7 and for all wells in Appendix F, we see that the baseline
tends to overshoot and undershoot to more extreme degrees, especially when compared to
the LSTM and RNN. These observations suggest that the dynamic sequence models have
learned more general relationships from the input data to flow estimates than the baseline
model. As the dynamic sequence models perform better in estimating the uniformly
sampled flow rates, they seem to generalize somewhat better to more dynamic operational
conditions. These observations may be explained by the fact that the dynamic models
consider more transient data from before stable periods. As temporal considerations are
the fundamental differences between the baseline and the sequence models, this result may
indicate that the sequence models model temporal dependencies present in the production
system. This result demonstrates one of the key benefits of leveraging sequences when
estimating flow rates.

An important factor when considering the viability of a data-driven VFM is its dependency
on data availability. As mentioned, limited flow rate measurements are available in most
wells. Furthermore, the study performed in this thesis uses a somewhat exceptionally
extensive dataset. Hence, we evaluate the viability of the models when re-trained on a
more sparse training set in Section 7.8. The results show considerable differences, where
the TCN model is hardly affected by cutting the training volume in half. Meanwhile,
FCN-SEQ-3 yields almost twice as high a loss as before. This may be explained by
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the fact that the vectors in the input sequences are further spread out in time after
removing half the stable periods and that this considerably complicates the problem. The
test MSE loss of the RNN and TCN deteriorates less than that of the baseline, both in
relative and absolute terms. Meanwhile, the TCN is the only model that outperforms
the baseline in absolute terms both before and after re-training on less data. One factor
influencing these results is that the dynamic sequence models leverage unlabeled data in
the sequences and therefore are less vulnerable to a more sparse set of labels. Furthermore,
the TCN’s superior performance may be explained in part by its architecture. The training
benefits highlighted in Section 3.6.3 such as the shorter gradient path may allow TCNs
to leverage fewer sequences to obtain comparable results than recurrent models do. This
result demonstrates that especially the TCN architecture may be a viable sequence model
alternative when limited data is available.

While the results indicate varying effects of leveraging sequences in flow modeling, we
emphasize that the steady-state baseline model resembles the state-of-the-art commercial
model used by Solution Seeker. It is a complex model which performs exceptionally
well in estimating flow rates in steady-state periods. By studying visualizations of the
model estimates in Figure 7.2 and Appendix D, we see that outperforming the baseline
model requires a highly accurate rate estimation model. Furthermore, as the studied
problem regards estimating flow rates during stable periods of varying lengths, the dynamic
sequence models are faced with a more challenging task than the steady-state model. The
dynamic sequence models must learn to infer which part of the input sequence to estimate
a mean flow rate over, whereas the baseline is implicitly informed of this through the input.
Hence, the strengths and benefits of leveraging sequences indicated by the results should
be considered in light of this. That is, it should be taken into account that the sequence
models are faced with a more difficult task and are compared against an advanced baseline
model when evaluating the implications of positive results.

8.2 Including transient history

Considering average test MSE in Section 7.2, using a sequence of three steady-state mean
vectors appears to outperform models considering sequences of data from both stable and
non-stable periods. FCN-SEQ-3 obtains the lowest average test loss of all the models
tested, beating the best TCN by 0.03 test MSE on average and with a slightly lower
standard deviation. Due to this insignificant difference in average test MSE, understanding
which approach is the most viable cannot be done based on this metric alone. However,
we see that for longer sequences of steady-state mean vectors, the performance is slightly
worse, as they are outperformed by TCN-models and the baseline. This increase in average
test MSE may be the same effect seen in Table 7.6 where FCN-SEQ-3 was re-trained
on less training data. As the steady-state mean sequence length increases, the effective
time horizon spanned by the sequence grows considerably. If the information in these
elements has little influence over the target flow rate, they may only serve to increase
model complexity with limited apparent benefit. Meanwhile, when studying average test
loss, we see that using dynamic sequences yields highly varying performance.

As highlighted by the average test losses per well in Figure 7.3, FCN-SEQ-3 yields a
lower mean loss than all the dynamic sequence models on four of the wells and beats
the LSTM on all but well 0. Considering consistent behavior across wells, FCN-SEQ-
3 obtains losses comparable to the other models on the low-loss wells. Furthermore, it
considerably outperforms the other wells on well 8, where the next best model obtains
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a 23.7% higher loss. By examining the visualizations of the estimates on this well in
Appendix D we can see that all models undershoot the flow rate, while FCN-SEQ-3 does
so to a lesser extent. Hence, its per-well predictive behavior may be considered somewhat
consistent, in line with the behavior of, for instance, the TCN. Comparing the behaviors
on other wells, we see that the models learn approximately the same behaviors on most
wells. However, as we have seen, the performance of the steady-state mean sequence model
degrades considerably with lower availability of labels, rendering it less consistent than its
dynamic sequence model counterparts in that regard.

By examining how the dynamic sequence models are affected by replacing information
in the earlier timesteps of the input sequences, as shown in Section 7.4, we see that the
best-performing one-day models are not considerably affected by perturbations. As the
earliest timesteps of these sequences correspond to close to 24 hours before the target
time period, the information removed is often outside the stable periods. However, as the
models still perform comparably when these timesteps are masked, it may seem they are
still able to model flow rates proficiently when considering measurements primarily from
stable periods. From analyzing the lagged autocorrelations in Section 6.3 we saw that
temporal dependencies exist beyond the duration of stable periods. Hence, this result
indicates that such information is not relevant, or at least not leveraged, when estimating
flow rates, at least for the one-day models. This analysis is further discussed in the context
of temporal granularity and time horizons in Section 8.3.

8.3 Time horizons and temporal granularity

Of the time horizons tested, Section 7.2 demonstrates that shorter time horizons yield the
highest performance. The models using one or three recent stable periods and the models
considering the last day of data achieve considerably lower average test MSE compared
with 10 and 30-day horizons. However, the 10-day TCN and RNN models using the
highest temporal granularity are notable high-performers relative to other 10-day models.
Furthermore, no models with a 30-day time horizon perform comparably to the best-
performing models. Within both 10 and 30-day models, we observe a tendency toward
higher performance with higher temporal granularity as hypothesized. This may indicate
that the lower granularity sequences are of an insufficient resolution for the models to
exploit the long history in meaningful ways relating to flow estimation. Hence, it may
seem the models are better able to exploit measurements over the time horizon when it is
sufficiently frequently resampled. Nonetheless, of the three granularities tested, it seems
that the last 30 days yield an ill-suited summary for estimating the current flow rate.

For the one-day models, the temporal granularity does not seem to correlate as strongly
with average test MSE. The one-day RNNs and LSTMs demonstrate a slight tendency
towards higher average test loss with higher granularity. For the TCNs, similar perfor-
mance is obtained for all three granularities. Hence, the TCNs seem capable of exploiting
the information in the input sequence to produce sound flow rate estimates even when
the granularity is lowered. This result may suggest that the past day contains sufficient
relevant information for generating accurate estimates and that the dynamics can be rep-
resented in a relatively low resolution (a sampling interval of 45 minutes suffices for TCN).
This observation is also supported by examining the effect of reducing the temporal gran-
ularity of one-day sequence models with a sequence length of 64 as done in Section 7.5.
The MSE loss is only slightly increased when smoothing out the input data. Even with the
most extreme smoothing that considerably flattens out the measurements, the test MSE

79



Chapter 8: Discussion 80

only increases by 7.5% for TCN, 6.4% for LSTM, and 4.2% for RNN on average. Hence, it
seems that signals of considerably high frequencies are not required to accurately estimate
flow rates.

Meanwhile, the test losses of one-day RNNs and LSTMs have considerably higher standard
deviations. Considering the already discussed high gaps between test and validation losses
compared with TCNs, this may indicate that the recurrent models are less robust. That is,
the learned relationships seem to be less consistently able to yield high performance com-
pared with TCNs. This could perhaps be explained by the vastly different way in which
the recurrent models learn compared with TCNs. As the recurrent models must propagate
loss gradients through each time step, the stability of the gradients is fragile compared
with TCNs, where gradients propagate through the network layers instead, which is a
considerably shorter path. This substantial difference is illustrated in Section 7.7, where
the loss gradients with respect to input sequences are presented. Here, we see system-
atically sustained higher activations across the input sequence for the TCN. Meanwhile,
the RNN demonstrates gradually lower loss gradients for elements further back in time
in the sequence across all features. Unsurprisingly, the gradients for the LSTM do not
vanish as dramatically as for the RNN. The LSTM is designed to accomplish precisely this
behavior (see Section 3.6.2). These observations indicate that the loss of TCNs is affected
to a greater extent by earlier elements in the sequence. Hence, it may indicate that this
architecture is more capable of exploiting information across the entire sequence than the
recurrent architectures are.

The perturbations of the earliest elements of the input sequences demonstrated in Sec-
tion 7.4 further illustrate the different degrees to which the dynamic sequence models
exploit information across the sequence. We see that the RNN remains practically un-
changed for all perturbations, indicating that it does not rely on information from the
past day to any notable extent. This result is in line with the previous discussion re-
garding how and what the RNN learns. Meanwhile, the LSTM seems to perform slightly
better when the earliest parts of the one-day period sequence are masked before the Mean
MSE gradually increases as the degree of masking increases. When the masking covers
a majority of the one-day period, the mean MSE explodes. The upwards trend as the
masking increases may indicate that the LSTM depends on the more recent information
in the sequence when producing estimates. A similar pattern occurs for the TCN model,
which is surprisingly unaffected by a considerable degree of masking before the mean MSE
drastically increases when the majority of the one-day period is masked.

We suspect that the initial improvements observed for LSTMs when using mean and zero
masking may be explained by the initialization of the hidden state in the LSTM cells.
Most recurrent layer implementations have the ability to let the final hidden state of
previous batches serve as the initial hidden state in subsequent batches during training
and may benefit from “warming up” the hidden state before doing inferences by passing
earlier timesteps close in time through the recurrent layers of the network. We suspect
that we see similar behavior here, where the masking of early sequence elements alters
the initialization of the hidden state for subsequent timesteps within the same sequence.
In this scenario, the early sequence elements may serve as a bootstrapping mechanic
for subsequent recurrences within the same sequence. However, no deeper examinations
have been performed in an attempt to better understand this behavior. Furthermore, it
may emphasize the risks of blindly accepting the results of this experiment at face value.
As highlighted in Section 7.4, we have limited knowledge of how the models respond to
such perturbations. While the underlying aim of the masking is to ‘forget” or ‘not see”
information, this may not be the realized effects.
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Concluding remarks and future
research

This thesis has explored the problem of virtual flow metering, searching for models produc-
ing improved multiphase flow rate estimates. The promise of considering the past and thus
exploiting widely available unlabeled data while learning across wells were studied through
proposed state-of-the-art multi-task learning sequence models. Different representations
of the well state history were produced and used in MTL sequence models to yield multi-
phase flow rate estimates. An empirical study was conducted using field data to examine
the performance of the proposed sequence models when compared with a state-of-the-art
MTL steady-state baseline model. The results indicate that using sequence models can
improve flow rate estimation performance to a certain extent when combined with MTL
models. Especially, high-performing sequence models demonstrate several behaviors ideal
for VFMs where the baseline is lacking. The main contribution of this report is thus a
new proposed methodology alleviating the issue of limited data volume available in well
flow modeling by modeling well state history while learning across wells.

The results obtained in this report are only preliminary indications and come with some
caveats. Future research is required to evaluate the promise of the methodology more
precisely. However, the results still enable us to answer the research questions to a certain
extent. The four supporting research questions presented in Chapter 4 were

1. How do models trained on historical sequences of well state data affect model per-
formance in estimating flow rates compared with steady-state models?

2. How does the inclusion of well history from transient periods affect performance on
flow estimation in stable periods?

3. How does the time horizon considered in input sequences of dynamic VFMs affect
well flow rate estimation performance?

4. How does the temporal granularity of the input sequences of dynamic VFMs affect
well flow rate estimation performance?

To which we hypothesized that

1. Models trained on historical sequences of well state data will improve performance
in estimating flow rates compared with steady-state models
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2. Including well history from transient periods leading up to stable periods will improve
performance on rate estimation in said stable periods

3. For a given input sequence length, models that consider shorter time horizons (higher
temporal granularity) will estimate well flow rates more accurately than models
considering longer horizons (lower granularity)

4. For a given input time horizon, models that consider a longer input sequence (higher
temporal granularity) will estimate flow rates more accurately than models consid-
ering a shorter input sequence (lower granularity)

The results discussed in the previous chapter strengthen the first hypothesis, giving indi-
cations of somewhat limited positive effects of using sequences over a steady-state model.
However, the results should be considered in light of the state-of-the-art baseline and the
more complex modeling problem faced by the sequence models. Second, the hypothesis re-
garding transient well history is somewhat strengthened by the results. While FCN-SEQ-3
obtained the lowest mean test loss, it is considerably dependent on data availability and
demonstrates inferior estimation behavior in some cases. Third, as hypothesized, models
considering a shorter time horizon seem to perform better than those considering longer
horizons. Finally, there are clear tendencies towards better performance for models re-
garding longer sequences for a given time horizon. However, this is not the case for the
one-day horizon, where a lower temporal granularity is sufficient.

Consequently, these answers shed light on the primary research question, which was for-
mulated as follows:

How does leveraging sequences of historical well state data affect the flow rate
estimates of data-driven MTL-based virtual flow meters?

The results certainly give reason to believe that sequence modeling may improve flow
rate estimates of MTL-based VFMs. If not in terms of a lower mean test loss, they
certainly may improve VFMs through their several superior model traits. Thus, this report
has fulfilled its objective of examining the viability of sequence models. Furthermore,
the results may aid Solution Seeker in their research on virtual flow metering, providing
valuable insights into where further research efforts should be directed.

The thesis has conducted a somewhat broad preliminary exploration of sequence modeling
for virtual flow metering. Furthermore, in obtaining the results in the thesis, several
assumptions, limitations, and simplifications were made. All of these measures may affect
the obtained results, and there is a need for further research to determine the proficiency of
sequence models more accurately. Therefore, we now discuss recommendations for future
research.

As mentioned, the thesis imposes an added complexity to the sequence models by limiting
the problem to estimating flow rates in stable periods. Further research should investigate
the promise of sequence models when removing this limitation. This could for instance
be accomplished by performing a similar study where uniformly sampled flow rates are
estimated, given a resampling frequency. In this way, one could avoid tasking the models
with learning over what period to estimate flow rates (as it would be constant), while
simultaneously producing a model potentially capable of estimating flow rates under more
dynamic conditions. In such a study, it could be relevant to examine how different in-
put representations influence the performance in terms of temporal granularity and time
horizon. It may be the case that in this more dynamic problem setup, the models depend
more on data from further back in the past than observed in this thesis.
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As discussed, using sequences is one way of leveraging unlabeled data in virtual flow me-
tering. Meanwhile, the semi-supervised learning approach studied in our project report
represents another successful method of improving flow rate estimates through unlabeled
data. We recommend that future research study the effects of combining sequence mod-
eling and semi-supervised learning in a multi-task setting. This could for instance be
done by studying a sequential autoencoder that uses sequences of well state history to
learn more informative state representations in an unsupervised manner. Sequence au-
toencoders using recurrent network architectures are well-studied in the literature and
have been applied in other domains for similar purposes [Dai and Le, 2015], and exam-
ples of TCN encoder-decoder for inspiration are also present in the literature [Lea et al.,
2017]. The learned representations are thus informed by the well state history and can be
trained using widely available unlabeled data. These representations may then be used as
the input state representation to estimate flow rates. The promise of this approach is the
combined exploitation of both temporal information and a considerably larger volume of
the available data, which could result in high-performing models.

We recommend further research evaluate the applicability of the proposed models for in-
dustrial applications. As the purpose of this thesis was to study the plausibility of the
suggested models in a broader scope, we did not prioritize such analyses. For exam-
ple, we recommend conducting sensitivity analyses of models identified by the proposed
methodology to ensure they adhere to physical relationships in the production system,
as expected from a commercial VFM. One such relationship is the positive correlation
between the pressure upstream of the choke valve and the output flow rates. A viable
VFM will successfully estimate higher flow rates if the upstream pressure changes, all else
equal. Similarly, we expect the opposite for an isolated upstream pressure decrease. Fur-
thermore, the proposed models’ applicability may be affected by the way in which they
are trained in the thesis. Here, we use the final two months of the available data for test-
ing, the two previous months before for validation, and the remainder of the three-year
period for training. In production, the model should be retrained frequently as new sensor
measurements arrive so that it is trained on the most up-to-date data. As the operating
conditions of wells change over time, one would expect a model to perform worse on new
data as time passes without such a training scheme. Hence, the models should be exam-
ined when trained using such a scheme to evaluate their applicability under representative
production conditions.

Finally, we would like to conclude the thesis by highlighting that we have proposed models
that outperform a state-of-the-art commercial virtual flow metering model that has been
developed through the investment of an immense number of hours. Hence, the promise of
sequence models has been demonstrated. In turn, the results contribute to the virtual flow
metering literature and may aid Solution Seeker’s research. Consequently, the purpose of
the thesis is fulfilled.
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Appendix

A Lagged autocorrelations per feature

Figure 1: Lagged autocorrelations per feature. The mean across all wells is outlined as a thick
center line, with thin lines represent the per-feature lagged autocorrelation for a single well. The
colored area denote the respective standard deviations, centered around the per-feature mean.
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B First run mean performance of architectures

Table 1: Mean validation and test MSE and runtime for each model architecture in the first run
of experiments.

Architecture Mean val MSE Mean test MSE Mean runtime

MTL-ONLY 0.848140 2.474796 0h 19m 54s
FCN-SEQ 1.363309 3.595114 0h 40m 7s
RNN 3.656395 9.281253 1h 35m 13s
LSTM 3.824773 12.462351 2h 13m 58s
GRU 3.723847 11.276725 2h 3m 0s
TCN 3.753602 6.643850 2h 45m 10s
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C Overview of all trained models

Table 2: Overview of all MTL-ONLY model runs.

arch id group learning rate l2 reg fcn hidden dims monitoring time val loss test loss

MTL-ONLY V1 0.00743 0.00010 [128] * 2 1194 0.84814 2.47480
MTL-ONLY V2 0.00680 0.00017 [80] * 3 2221 0.95057 3.12063
MTL-ONLY V3 0.00262 0.00015 [48] * 3 2223 0.94426 2.81401
MTL-ONLY V4 0.00970 0.00029 [96] * 2 2478 0.95717 2.70075
MTL-ONLY V5 0.00304 0.00019 [128] * 3 2302 0.92008 3.88521

Table 3: Overview of all FCN-SEQ model runs.

arch id group learning rate l2 reg fcn hidden dims monitoring time val loss test loss

FCN-SEQ-3 V1 0.00586 0.00017 [96] * 2 2439 1.08612 2.91600
FCN-SEQ-3 V2 0.00673 0.00011 [80] * 2 2608 0.99629 2.22589
FCN-SEQ-3 V3 0.00856 0.00027 [128] * 2 2717 1.16710 2.50964
FCN-SEQ-3 V4 0.00540 0.00015 [48] * 2 2270 1.15891 3.58678
FCN-SEQ-3 V5 0.00961 0.00013 [128] * 2 2633 1.10120 2.48423

FCN-SEQ-10 V1 0.00955 0.00066 [48] * 1 2139 1.53850 3.19229
FCN-SEQ-10 V2 0.00713 0.00010 [96] * 1 2268 1.54256 4.81772
FCN-SEQ-10 V3 0.00752 0.00012 [64] * 1 2465 1.62785 4.58762
FCN-SEQ-10 V4 0.00990 0.00070 [128] * 1 2467 1.59877 3.93214
FCN-SEQ-10 V5 0.00622 0.00012 [48] * 1 2460 1.65726 3.89256

FCN-SEQ-30 V1 0.00930 0.00011 [80] * 1 2644 1.46530 4.67705
FCN-SEQ-30 V2 0.00928 0.00018 [96] * 1 2659 1.47817 4.18882
FCN-SEQ-30 V3 0.00935 0.00027 [48] * 1 2736 1.43727 4.48242
FCN-SEQ-30 V4 0.00926 0.00013 [96] * 1 2743 1.50346 3.57156
FCN-SEQ-30 V5 0.00984 0.00013 [80] * 1 2894 1.60722 5.14821
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Table 4: Overview of all RNN model runs.
ar
ch

id

gr
ou
p

le
ar
ni
ng

ra
te

l2
re
g

fc
n
hi
dd
en

di
m
s

re
cu
rr
en
t
la
ye
rs

hi
dd
en

si
ze

m
on
it
or
in
g
ti
m
e

va
l
lo
ss

te
st

lo
ss

RNN-1D-32 V1 0.00114 0.00168 [64] * 2 1 64 3526 0.99822 7.14770
RNN-1D-32 V2 0.00144 0.00010 [48] * 2 1 64 4169 1.01144 7.62580
RNN-1D-32 V3 0.00249 0.00012 [64] * 1 1 64 3691 0.91460 6.90777
RNN-1D-32 V4 0.00222 0.00012 [64] * 2 1 32 4541 0.99556 3.46571
RNN-1D-32 V5 0.00236 0.00016 [48] * 2 1 64 4594 1.12967 5.13221

RNN-1D-64 V1 0.00235 0.00016 [64] * 2 1 48 5382 0.73879 3.01908
RNN-1D-64 V2 0.00218 0.00013 [48] * 2 1 64 5418 0.99854 7.17545
RNN-1D-64 V3 0.00604 0.00017 [32] * 1 1 64 5415 1.04634 6.93510
RNN-1D-64 V4 0.00137 0.00123 [64] * 2 1 64 5579 1.01149 6.00007
RNN-1D-64 V5 0.00108 0.00219 [64] * 2 1 64 5144 1.01501 3.55340

RNN-1D-128 V1 0.00182 0.00024 [64] * 2 1 64 7693 0.94354 3.07283
RNN-1D-128 V2 0.00109 0.00234 [64] * 2 1 64 6884 0.93644 5.35535
RNN-1D-128 V3 0.00183 0.00021 [48] * 2 1 32 7504 1.00357 5.57804
RNN-1D-128 V4 0.00181 0.00019 [64] * 2 1 64 6963 0.77218 4.27909
RNN-1D-128 V5 0.00154 0.00179 [64] * 2 1 64 8343 0.98936 2.82934

RNN-10D-32 V1 0.00249 0.00012 [64] * 2 1 64 4399 4.90305 12.14026
RNN-10D-32 V2 0.00286 0.00011 [64] * 2 1 48 3746 4.87576 14.45871
RNN-10D-32 V3 0.00884 0.00018 [32] * 1 1 32 4472 5.16788 11.48673
RNN-10D-32 V4 0.00510 0.00407 [48] * 1 1 48 4637 5.10060 14.70314
RNN-10D-32 V5 0.00110 0.00011 [48] * 2 1 32 4688 4.92357 9.58034

RNN-10D-64 V1 0.00312 0.00012 [48] * 2 1 32 5673 2.42332 7.07640
RNN-10D-64 V2 0.00383 0.00011 [48] * 2 1 32 5626 2.23635 8.27060
RNN-10D-64 V3 0.00131 0.00022 [64] * 1 1 32 4920 2.02400 6.97323
RNN-10D-64 V4 0.00121 0.00032 [64] * 2 1 32 5575 2.35786 7.19928
RNN-10D-64 V5 0.00125 0.00011 [32] * 2 1 64 5843 2.32396 7.32456

RNN-10D-128 V1 0.00149 0.00015 [48] * 1 1 64 7837 1.18044 9.20789
RNN-10D-128 V2 0.00186 0.00057 [32] * 2 1 32 7314 0.95278 2.67073
RNN-10D-128 V3 0.00145 0.00012 [64] * 1 1 64 7799 1.08059 3.62224
RNN-10D-128 V4 0.00306 0.00010 [64] * 2 1 64 6930 1.13226 3.35524
RNN-10D-128 V5 0.00324 0.00093 [64] * 1 1 64 7418 1.23399 5.21947

RNN-30D-32 V1 0.00885 0.00072 [48] * 2 1 32 3899 11.48474 15.66988
RNN-30D-32 V2 0.00867 0.00012 [32] * 1 1 48 3629 11.97072 16.72535
RNN-30D-32 V3 0.00657 0.00012 [48] * 2 1 64 3980 12.17525 18.32551
RNN-30D-32 V4 0.00806 0.00528 [64] * 1 1 48 4190 12.17135 21.03477
RNN-30D-32 V5 0.00815 0.00137 [48] * 2 1 32 3898 12.02496 15.45741

RNN-30D-64 V1 0.00319 0.00066 [48] * 2 1 32 5140 7.25180 15.58243
RNN-30D-64 V2 0.00645 0.00036 [64] * 1 1 48 5086 7.38295 16.07423
RNN-30D-64 V3 0.00624 0.00062 [48] * 1 1 64 5157 7.12717 12.41104
RNN-30D-64 V4 0.00291 0.00113 [64] * 2 1 64 4966 7.12972 11.65067
RNN-30D-64 V5 0.00110 0.00098 [64] * 1 1 48 5067 6.99315 13.92848

RNN-30D-128 V1 0.00368 0.00014 [32] * 2 1 48 7874 2.98365 10.61480
RNN-30D-128 V2 0.00246 0.00035 [48] * 1 1 48 7555 3.44000 12.14915
RNN-30D-128 V3 0.00218 0.00014 [64] * 2 1 48 7817 3.07770 10.49113
RNN-30D-128 V4 0.00492 0.00085 [64] * 2 1 48 7631 3.31185 9.83414
RNN-30D-128 V5 0.00214 0.00038 [64] * 2 1 48 7160 3.54586 10.03065
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Table 5: Overview of all LSTM model runs.
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LSTM-1D-32 V1 0.00140 0.00012 [64] * 2 3 32 5715 1.05156 3.03612
LSTM-1D-32 V2 0.00219 0.00082 [64] * 2 3 64 6460 0.99299 11.76018
LSTM-1D-32 V3 0.00188 0.00014 [64] * 1 3 64 7706 0.97756 5.63495
LSTM-1D-32 V4 0.00155 0.00021 [64] * 1 2 48 6334 1.04544 6.35382
LSTM-1D-32 V5 0.00125 0.00017 [32] * 2 3 64 6420 1.05900 7.84008

LSTM-1D-64 V1 0.00220 0.00011 [48] * 2 3 32 9103 0.92354 3.80559
LSTM-1D-64 V2 0.00208 0.00018 [48] * 2 3 48 11227 0.91111 5.52252
LSTM-1D-64 V3 0.00211 0.00035 [64] * 2 2 64 10534 0.99337 3.93275
LSTM-1D-64 V4 0.00376 0.00011 [64] * 1 2 32 7905 0.91326 3.38636
LSTM-1D-64 V5 0.00423 0.00015 [48] * 1 1 64 7929 1.02069 8.79916

LSTM-1D-128 V1 0.00302 0.00045 [64] * 1 2 32 10744 0.99222 11.37327
LSTM-1D-128 V2 0.00180 0.00014 [32] * 2 3 64 16961 1.05121 4.32897
LSTM-1D-128 V3 0.00371 0.00012 [64] * 2 2 64 17448 0.99510 11.85775
LSTM-1D-128 V4 0.00213 0.00016 [64] * 2 1 64 11255 0.92657 6.15605
LSTM-1D-128 V5 0.00199 0.00110 [64] * 2 3 48 14139 0.89549 9.34414

LSTM-10D-32 V1 0.00582 0.00188 [64] * 1 1 48 3810 5.23352 21.53568
LSTM-10D-32 V2 0.00380 0.00193 [48] * 2 1 48 4764 5.44962 15.57235
LSTM-10D-32 V3 0.00941 0.00097 [32] * 2 1 32 4509 4.93445 12.23008
LSTM-10D-32 V4 0.00773 0.00061 [64] * 2 1 64 4799 5.07765 14.20209
LSTM-10D-32 V5 0.00680 0.00224 [48] * 2 1 32 4252 4.92926 11.31617

LSTM-10D-64 V1 0.00293 0.00022 [64] * 2 1 48 5738 2.74896 13.76241
LSTM-10D-64 V2 0.00851 0.00043 [64] * 1 1 32 6565 2.47306 10.10830
LSTM-10D-64 V3 0.00774 0.00119 [32] * 1 1 64 6584 2.30388 7.73100
LSTM-10D-64 V4 0.00610 0.00113 [32] * 2 1 32 5620 2.37235 10.33449
LSTM-10D-64 V5 0.00737 0.00013 [32] * 2 1 64 6778 2.35939 12.01302

LSTM-10D-128 V1 0.00830 0.00013 [64] * 1 1 64 11569 1.27024 5.18880
LSTM-10D-128 V2 0.00369 0.00016 [48] * 2 3 48 10460 1.24240 5.51504
LSTM-10D-128 V3 0.00230 0.00023 [64] * 1 2 48 15152 1.14721 11.93194
LSTM-10D-128 V4 0.00281 0.00155 [64] * 2 1 48 8264 1.28853 7.92240
LSTM-10D-128 V5 0.00463 0.00130 [48] * 2 1 48 9851 1.26025 8.67977

LSTM-30D-32 V1 0.00364 0.00042 [48] * 1 2 48 5053 11.32110 18.68483
LSTM-30D-32 V2 0.00393 0.00698 [64] * 2 2 32 4917 11.23395 24.87073
LSTM-30D-32 V3 0.00643 0.00291 [32] * 2 2 48 5840 11.55937 23.37901
LSTM-30D-32 V4 0.00254 0.00108 [48] * 2 1 32 4757 11.40361 15.78658
LSTM-30D-32 V5 0.00530 0.00092 [32] * 1 2 48 5807 11.78141 24.36311

LSTM-30D-64 V1 0.00145 0.00192 [48] * 2 3 32 8839 7.19580 17.67182
LSTM-30D-64 V2 0.00744 0.00306 [32] * 2 1 64 5887 7.10082 14.75125
LSTM-30D-64 V3 0.00166 0.00119 [64] * 2 3 48 7697 7.34726 12.75101
LSTM-30D-64 V4 0.00383 0.00587 [48] * 2 3 32 7436 7.15225 11.73970
LSTM-30D-64 V5 0.00543 0.00400 [32] * 2 1 32 5521 7.05736 17.90078

LSTM-30D-128 V1 0.00703 0.00644 [32] * 2 1 32 11779 3.68602 17.10265
LSTM-30D-128 V2 0.00644 0.00018 [48] * 1 1 32 10537 3.72086 12.82514
LSTM-30D-128 V3 0.00555 0.00067 [48] * 1 1 64 9913 3.75429 16.35171
LSTM-30D-128 V4 0.00689 0.00020 [32] * 2 2 32 11707 3.67226 11.23481
LSTM-30D-128 V5 0.00820 0.00016 [32] * 1 1 48 9687 3.69600 12.24094
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Table 6: Overview of all GRU model runs.
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GRU-1D-32 V1 0.00152 0.00012 [48] * 2 1 32 4685 1.03657 4.00056
GRU-1D-64 V1 0.00235 0.00011 [48] * 2 2 64 6971 0.95851 7.82788
GRU-1D-128 V1 0.00335 0.00045 [48] * 2 2 48 11699 0.98059 5.17498
GRU-10D-32 V1 0.00457 0.00070 [64] * 1 1 32 3841 4.68497 14.72296
GRU-10D-64 V1 0.00257 0.00018 [48] * 1 1 48 5975 2.54789 7.96057
GRU-10D-128 V1 0.00512 0.00125 [48] * 1 2 64 10931 1.11505 12.11090
GRU-30D-32 V1 0.00177 0.00076 [64] * 1 1 32 3478 11.45615 19.79835
GRU-30D-64 V1 0.00177 0.00019 [64] * 1 1 32 5253 7.01634 13.53220
GRU-30D-128 V1 0.00498 0.00418 [32] * 2 2 48 13591 3.71855 16.36212
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Table 7: Overview of all TCN model runs.
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TCN-1D-32 V1 0.00664 0.00021 [48] * 1 [32] * 3 4 7480 0.95517 1.99000
TCN-1D-32 V2 0.00424 0.00016 [48] * 2 [16] * 2 7 6748 1.03001 2.72778
TCN-1D-32 V3 0.00340 0.00020 [48] * 2 [24] * 3 6 7589 1.01230 2.11908
TCN-1D-32 V4 0.00493 0.00016 [64] * 1 [32] * 3 6 7543 1.00593 3.60888
TCN-1D-32 V5 0.00438 0.00079 [64] * 2 [24] * 3 4 7674 1.03144 3.48363

TCN-1D-64 V1 0.00588 0.00011 [48] * 1 [24] * 3 7 7717 0.93594 2.38162
TCN-1D-64 V2 0.00266 0.00010 [64] * 2 [32] * 3 7 9131 0.92778 2.72765
TCN-1D-64 V3 0.00320 0.00014 [64] * 2 [24] * 3 7 8943 0.82222 3.73130
TCN-1D-64 V4 0.00724 0.00019 [32] * 1 [16] * 3 6 8300 1.02177 2.71433
TCN-1D-64 V5 0.00375 0.00045 [48] * 2 [32] * 5 3 9522 0.84035 3.34883

TCN-1D-128 V1 0.00677 0.00019 [48] * 2 [24] * 6 3 12723 1.00872 2.21166
TCN-1D-128 V2 0.00222 0.00042 [32] * 2 [32] * 6 3 9583 1.02633 2.88867
TCN-1D-128 V3 0.00388 0.00023 [64] * 2 [32] * 5 5 10091 0.90446 3.04900
TCN-1D-128 V4 0.00765 0.00011 [32] * 1 [32] * 5 4 13611 0.95551 3.82381
TCN-1D-128 V5 0.00968 0.00011 [64] * 2 [32] * 6 3 12602 0.95071 3.52397

TCN-10D-32 V1 0.00989 0.00013 [48] * 2 [16] * 3 4 7371 4.88199 8.37322
TCN-10D-32 V2 0.00992 0.00074 [64] * 1 [16] * 3 4 8736 5.13424 8.30860
TCN-10D-32 V3 0.00969 0.00027 [64] * 2 [8] * 4 3 7986 5.28428 8.75988
TCN-10D-32 V4 0.00834 0.00033 [32] * 2 [8] * 3 5 7304 4.91676 8.49383
TCN-10D-32 V5 0.00675 0.00070 [32] * 2 [8] * 3 4 7753 5.20103 8.78510

TCN-10D-64 V1 0.00272 0.00017 [48] * 2 [24] * 5 3 9714 2.53919 6.01715
TCN-10D-64 V2 0.00986 0.00011 [32] * 1 [24] * 5 3 9215 2.50196 5.05386
TCN-10D-64 V3 0.00420 0.00043 [64] * 2 [8] * 4 4 8877 2.47386 5.96419
TCN-10D-64 V4 0.00542 0.00013 [64] * 2 [16] * 4 5 9855 2.61531 7.68779
TCN-10D-64 V5 0.00612 0.00022 [48] * 2 [8] * 5 3 9887 2.58263 5.00588

TCN-10D-128 V1 0.00966 0.00029 [48] * 1 [32] * 5 5 11818 1.28239 4.67901
TCN-10D-128 V2 0.00970 0.00013 [48] * 2 [8] * 5 4 11451 1.09792 2.26833
TCN-10D-128 V3 0.00716 0.00010 [48] * 2 [24] * 4 6 13342 1.24608 3.57816
TCN-10D-128 V4 0.00603 0.00012 [64] * 2 [16] * 4 7 10718 1.20410 2.50251
TCN-10D-128 V5 0.00897 0.00012 [64] * 2 [24] * 4 7 13448 1.11054 2.84967

TCN-30D-32 V1 0.00589 0.00039 [64] * 2 [24] * 4 3 7754 11.77172 12.28644
TCN-30D-32 V2 0.00526 0.00318 [48] * 1 [24] * 3 5 7108 12.06616 15.68633
TCN-30D-32 V3 0.00684 0.00010 [48] * 2 [32] * 4 3 7799 11.49699 15.39291
TCN-30D-32 V4 0.00879 0.00190 [32] * 1 [24] * 4 3 8162 10.91885 14.09386
TCN-30D-32 V5 0.00834 0.00014 [64] * 1 [24] * 3 5 8239 11.42908 17.40408

TCN-30D-64 V1 0.00736 0.00014 [48] * 1 [16] * 5 3 10173 6.92589 12.72922
TCN-30D-64 V2 0.00624 0.00107 [64] * 1 [32] * 3 6 8453 7.43847 12.38099
TCN-30D-64 V3 0.00849 0.00012 [64] * 2 [32] * 4 4 9604 7.26051 11.73312
TCN-30D-64 V4 0.00971 0.00155 [48] * 1 [24] * 4 4 8900 6.98573 9.87738
TCN-30D-64 V5 0.00350 0.00229 [48] * 2 [16] * 5 3 9712 7.32371 10.55341

TCN-30D-128 V1 0.00765 0.00015 [32] * 1 [32] * 5 4 12822 3.48141 9.12632
TCN-30D-128 V2 0.00911 0.00041 [48] * 1 [32] * 6 3 13602 3.28898 7.32451
TCN-30D-128 V3 0.00538 0.00010 [64] * 2 [32] * 5 5 13970 3.27755 6.72480
TCN-30D-128 V4 0.00982 0.00049 [64] * 1 [24] * 5 4 13659 3.00928 7.19003
TCN-30D-128 V5 0.00915 0.00011 [32] * 2 [32] * 6 3 12462 3.19917 5.68047
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D Best model predictions on all wells

Figure 2: Illustration of flow rate estimates on test data for the models with lowest test MSE.
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Figure 3: Illustration of errors in flow rate estimates on test data for the models with lowest test
MSE.

97



Appendix E 98

E Losses when perturbing information in earliest sequence
elements

Table 8: Average MSE test loss over five experiments for each of the best-performing sequence
models when a fraction of the input sequence elements corresponding to the earliest timesteps are
masked using different schemes. Starting from the oldest history, each degree of masking represents
extending the mask to the next 1

32 elements of the input sequence. Thus, a value of zero indicates
no masking and a value of 31 indicate that only the most recent 1

32 elements of every input sequence
is left unmasked.

Degree of masking RNN-1D-128 LSTM-1D-64 TCN-1D-32

[n/32] mean slice zero mean slice zero mean slice zero

0 4.2229 4.2229 4.2229 5.0893 5.0893 5.0893 2.7859 2.7859 2.7859
1 4.2229 4.2229 4.2229 4.7322 5.0882 4.7809 2.7861 2.7901 2.7887
2 4.2229 4.2229 4.2229 4.6685 5.0820 4.6690 2.7851 2.7927 2.7904
3 4.2229 4.2229 4.2229 4.5585 5.0782 4.5772 2.7880 2.7994 2.7954
4 4.2229 4.2229 4.2229 4.4398 5.0800 4.5314 2.7677 2.9237 2.8128
5 4.2229 4.2229 4.2229 4.3718 5.0858 4.5104 2.7776 2.9298 2.8301
6 4.2229 4.2229 4.2229 4.3210 5.0938 4.4952 2.7843 2.9245 2.8436
7 4.2229 4.2229 4.2229 4.2544 5.1031 4.4869 2.7914 2.9315 2.8551
8 4.2229 4.2229 4.2229 4.1983 5.1139 4.4872 2.7606 2.9695 2.8256
9 4.2229 4.2229 4.2229 4.1609 5.1292 4.4982 2.7754 2.9715 2.8353
10 4.2229 4.2229 4.2229 4.1404 5.1544 4.5215 2.7568 2.9050 2.8156
11 4.2229 4.2229 4.2229 4.1335 5.1870 4.5578 2.7665 2.8996 2.8284
12 4.2229 4.2229 4.2229 4.1378 5.2221 4.5999 2.6749 2.9489 2.7653
13 4.2229 4.2229 4.2229 4.1441 5.2599 4.6448 2.6957 2.9470 2.7826
14 4.2229 4.2229 4.2229 4.1575 5.2876 4.6838 2.6845 2.9041 2.7886
15 4.2229 4.2229 4.2229 4.1796 5.3173 4.7313 2.7024 2.8919 2.8014
16 4.2229 4.2229 4.2229 4.2059 5.3547 4.7831 2.7126 2.9231 2.8142
17 4.2229 4.2229 4.2229 4.2348 5.3954 4.8282 2.7249 2.9223 2.8206
18 4.2229 4.2229 4.2230 4.2669 5.4403 4.8658 2.7165 3.3479 3.0271
19 4.2229 4.2229 4.2229 4.3112 5.4846 4.9157 2.7231 3.3495 3.0490
20 4.2229 4.2229 4.2229 4.3723 5.5288 4.9748 2.7712 3.6527 3.2868
21 4.2229 4.2229 4.2229 4.4469 5.5845 5.0522 2.7715 3.6555 3.2617
22 4.2229 4.2229 4.2230 4.5012 5.6394 5.1516 2.6745 3.2056 3.0373
23 4.2229 4.2229 4.2230 4.5950 5.7013 5.2626 2.6859 3.3690 3.0741
24 4.2230 4.2229 4.2232 4.7127 5.7948 5.3656 2.5706 3.3681 2.9601
25 4.2230 4.2228 4.2234 4.8492 5.9027 5.4942 2.6600 3.8346 3.1365
26 4.2229 4.2227 4.2234 5.0264 6.0143 5.6590 2.6756 4.5710 3.7171
27 4.2228 4.2223 4.2229 5.2736 6.1511 5.8740 2.8541 5.8256 5.1010
28 4.2246 4.2228 4.2249 5.7179 6.4217 6.2307 2.8763 7.6002 6.7356
29 4.2287 4.2268 4.2336 6.6828 7.1416 7.0539 3.0809 7.6482 6.9343
30 4.2323 4.2345 4.2454 9.3719 9.6159 10.6925 3.3408 8.1033 7.4320
31 4.5079 4.6419 4.7215 19.6239 21.3306 37.2753 4.2545 7.9559 7.9780
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F Best model predictions on resampled test data for all
wells

Figure 4: Illustration of flow rate estimates on the unfiltered test dataset uniformly resampled to
four-hour periods for the models with lowest test MSE.
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Figure 5: Illustration of errors in flow rate estimates on the unfiltered test dataset uniformly
resampled to four-hour periods for the models with lowest test MSE.
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