
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

co
no

m
ic

s
an

d
M

an
ag

em
en

t
D

ep
t.

of
 In

du
st

ria
l E

co
no

m
ic

s
an

d
Te

ch
no

lo
gy

 M
an

ag
em

en
t

Henrik Irgens Gravdal
Jørgen Weidemann

An Adaptive Genetic Algorithm for
the Hybrid Flexible Flowshop
Scheduling Problem With Sequence-
Dependent Set-up Times

Master’s thesis in Industrial Economics and Technology
Management
Supervisor: Henrik Andersson
Co-supervisor: Anders Gullhav and Maryna Waszak
June 2022

M
as

te
r’s

 th
es

is

Henrik Irgens Gravdal
Jørgen Weidemann

An Adaptive Genetic Algorithm for the
Hybrid Flexible Flowshop Scheduling
Problem With Sequence-Dependent
Set-up Times

Master’s thesis in Industrial Economics and Technology Management
Supervisor: Henrik Andersson
Co-supervisor: Anders Gullhav and Maryna Waszak
June 2022

Norwegian University of Science and Technology
Faculty of Economics and Management
Dept. of Industrial Economics and Technology Management

Preface

This master’s thesis is part of our Master of Science at the Norwegian University of Science and

Technology, Department of Industrial Economics and Technology Management. The thesis is

written as a part of the course TIØ4905 Managerial Economics and Operations Research and

builds on the work of our project’s thesis in Gravdal and Weidemann (2021).

We want to give our sincere thanks to our supervisor, Professor Henrik Andersson and co-

supervisor, Associate Professor Anders Gullhav, from The Department of Industrial Economics

and Technology Management. Also, a special thanks to our co-supervisor, Maryna Waszak from

The Department of Software and Service Innovation at SINTEF. We are grateful for the in-

sights and feedback you have provided us with while researching, coding, and writing this thesis.

Henrik Irgens Gravdal and Jørgen Weidemann

June 8, 2022

Abstract

Over the last decades, manufacturing businesses have seen mass outsourcing of production to

low-cost countries. Furthermore, larger manufacturers have enjoined reduced costs per produced

unit due to their streamlined factories and production volume. The small production facilities

in high-cost countries are losing the war on e�ciency and need to improve at a lower cost than

their larger competitors. One promising area of improvement is within production planning.

This area concerns the generation of e↵ective production schedules in a reasonable time on

a↵ordable hardware.

This thesis examines a variant of the flowshop scheduling problem (FSP), inspired by the produc-

tion environment of a small Norwegian manufacturer, Haugstad Furniture Factory (Haugstad).

The machines in the factory are grouped by function into stages, and all products, also called

jobs, follow the same flow through these stages. At least one stage contains more than one ma-

chine, making it a hybrid flowshop. The machines of a given stage are assumed to be identical.

Not all products need to be processed in every stage, which also makes it flexible. Moreover,

machines need to be prepared before processing each job, and the set-up time depends on the

machine’s previously processed product. This final extension is called sequence-dependent set-up

times. Set-up is also non-anticipatory, meaning that it cannot start before the product arrives

physically at the machine. This combination of flowshop extensions is called the hybrid flex-

ible flowshop scheduling problem with sequence-dependent set-up times (HFFSP SDST). The

objective is to find production schedules minimising the total time it takes to produce a known

quantity of products, also known as makespan.

Out of 172 research papers on the hybrid flowshop scheduling problem (HFSP) in the last decade,

only three papers use genetic algorithms (GA) to solve the HFFSP SDST with minimising

makespan as the objective. We propose a new GA that finds production schedules for problem

instances containing up to 120 jobs, eight stages, and four machines in each stage in less than

two minutes. The GA consists of several operators yet to be tested for the FSP. The Best Cost

Block Crossover (BCBX) is a crossover operator adapted from the vehicle routing problem. The

Greedy Construction Heuristic (GCH) is a new construction heuristic used to create the initial

population. Also, an adaptive choice of crossovers is introduced.

The GA performs better than all benchmark algorithms across all sizes of problem instances,

both in the average relative distance from the best solution found by any method and the

number of best solutions found. Furthermore, BCBX is the best crossover for smaller problem

instances, GCH is the dominant initialisation method, and the adaptive choice of crossover

operator shows superior to each operator’s single performance. In conclusion, the GA can

be said to provide high-quality production schedules for production environments of di↵erent

characteristics, including those of Haugstad.

Sammendrag

Over de siste ti̊arene har produksjonsbedrifter flyttet store deler av sin produksjon til lavkost-

nadsland. I tillegg har store produsenter benyttet seg av strømlinjeformede produksjonsinstal-

lasjoner og høye produksjonsvolum for å senke enhetskostnadene sine. Mindre produsenter i

høykostnadsland sliter med å f̊a ned sine enhetskostnader og må konkurrere med lavere budsjett

enn sine større konkurrenter. Et lovende omr̊ade for kostnadse↵ektivisering for slike bedrifter

er datadrevet produksjonsplanlegging. Dette innebærer metoder for å e↵ektivt lage gode pro-

duksjonsplaner ved hjelp av rimelige datamaskiner.

Dette studiet undersøker en variant av flowshop planleggingsproblemet, inspirert av produksjon-

smiljøet til en liten norsk produsent, Haugstad Møbel (Haugstad). Maskinene i fabrikken er

gruppert etter funksjonalitet i ulike trinn og alle produkter følger samme flyt gjennom trinnene.

Minst ett trinn har mer enn en maskin tilgjengelig, noe som gjør produksjonsmiljøet til en

hybrid flowshop. Videre antas det at alle maskinene er identiske. Ikke alle produkter behøver å

prosesseres i alle trinn. Dette gjør at produksjonsmiljøet betegnes som fleksibelt. Maskinene må

klargjøres før de kan prosessere et nytt produkt, og tiden det tar avhenger ogs̊a av hvilket pro-

dukt som sist ble prosessert. Dette kalles sekvensavhengig klargjøringstid. Klargjøringen er ikke

mulig å starte før produktet som skal prosesseres ankommer maskinen. Denne kombinasjonen av

utvidelser kalles et hybrid fleksibelt flowshop problem med sekvensavhengige klargjøringstider.

Målet er å finne produksjonsplaner som minimerer den totale tiden det tar å produsere en kjent

mengde produkter.

Av 172 vitenskapelige artikler publisert om det hybride flowshop planleggingsproblemet det

siste ti̊aret, er det bare tre som bruker genetiske algoritmer til å løse den ovennevnte varianten

og med minimering av total produksjonstid som mål. I denne oppgaven introduserer vi en

ny genetisk algoritme som p̊a under to minutter finner gode produksjonsplaner for opptil 120

produkter, åtte trinn, og fire maskiner i hvert trinn. Dette oppn̊as ved å benytte operatorer

som aldri har blitt brukt for å løse problemet før. Best Cost Block Crossover (BCBX) er

en krysningsoperator adaptert fra et ruteplanleggingsproblem. Greedy Construction Heuristic

(GCH) er en ny konstruksjonsheuristikk for å initialisere den første populasjonen. I tillegg

brukes et adaptivt valg av krysningsoperatorer.

Den genetiske algoritmen gjør det bedre enn tre implementerte referansealgoritmer for alle prob-

lemstørrelser, b̊ade i relativt avvik fra beste løsning og antall beste løsninger funnet. Videre

er BCBX den beste krysningsoperatoren for små probleminstanser, GCH er den dominerende

metoden for å initialisere populasjonen, og det adaptive valget av krysningsoperatorer gjør

det bedre enn noen enkelt operator for seg selv. Oppsummert er den nye genetiske algorit-

men e↵ektiv til å finne gode produksjonsplaner til fabrikker av ulike karakteristikker, inkludert

karakteristikker som kjennetegner Haugstad.

Table of Contents

List of Tables

List of Figures

1 Introduction 1

2 Literature Review 4

2.1 Production Scheduling . 4

2.2 Literature Search Strategy . 5

2.3 The Flowshop Scheduling Problem . 6

2.4 Solution Methods . 8

2.5 Contribution . 11

3 Problem Description 13

4 Mathematical Model 15

4.1 Modelling Assumptions . 15

4.2 Mathematical Formulation . 15

5 Solution Methods 19

5.1 Solution Representation . 19

5.2 Makespan Calculation . 20

5.2.1 First-In, First-Out . 21

5.2.2 First-Completion . 22

5.3 Construction Heuristic . 22

5.3.1 NEH . 23

5.3.2 Modified Dynamic Dispatching Rule . 24

5.4 Improvement Heuristics . 24

5.4.1 Iterated Greedy . 24

5.4.2 Genetic Algorithm . 25

6 Genetic Algorithm 27

6.1 Objective . 27

6.2 Solution Representation . 28

6.3 Initialisation . 28

6.4 Selection . 28

6.5 Crossover . 29

6.5.1 Similar Job Order Crossover and Similar Block Order Crossover 30

6.5.2 Best Cost Block Crossover . 31

6.5.3 Partially Mapped Crossover . 32

6.5.4 Adaptive Choice of Crossover Operators 33

6.6 Mutation . 34

6.6.1 Shift . 34

6.6.2 Swap . 34

6.6.3 Reversal . 35

6.6.4 Greedy . 35

6.7 Local Search . 36

6.8 Generational Scheme . 36

6.8.1 Generational Genetic Algorithm . 36

6.8.2 Steady-State Genetic Algorithm . 36

6.9 Crowding . 37

6.9.1 Implicit Crowding . 38

6.9.2 Explicit Crowding . 39

6.9.3 Replacement Rules . 39

6.10 Replacement . 41

7 Computational Study 42

7.1 Problem Instances . 43

7.2 Tuning of Genetic Algorithm . 43

7.2.1 Methodology . 43

7.2.2 Tuning . 45

7.3 Tuning of Iterated Greedy . 55

7.4 Convergence Tests . 56

7.5 Performance Tests . 57

7.5.1 Comparison with Mathematical Model . 57

7.5.2 Comparing Solution Methods . 59

8 Concluding Remarks 62

9 Future Work 64

Bibliography 66

Appendix i

A Tuning of Genetic Algorithm . i

B Tuning of Iterated Greedy . xvii

List of Tables

2.1 Literature search keywords . 5

2.2 Literature classification . 12

7.1 Technical specifications for testing of non-exact methods 42

7.2 Preliminary parameter values . 44

7.3 Parameter selection based on tuning . 55

7.4 Technical specifications for running the mathematical model 58

7.5 Mathematical model and adaptive genetic algorithm comparison 58

7.6 Comparison of best solutions found . 60

List of Figures

5.1 Search space and solution space connection . 20

5.2 Example of the FIFO makespan calculation in the first stage 21

5.3 Example of the second phase of NEH . 23

5.4 Flowchart of the genetic algorithm . 26

6.1 Example of tournament selection . 29

6.2 Example of the SJOX crossover operator . 30

6.3 Example of the BCBX crossover operators . 31

6.4 Example of the PMX crossover operator . 32

6.5 Example of the shift mutation operator . 34

6.6 Example of the swap mutation operator . 35

6.7 Example of the reversal mutation operator . 35

6.8 Example of the greedy mutation operator . 35

6.9 Example of the exact match similarity metric . 37

6.10 Example of the deviation distances similarity metric 38

6.11 Example of explicit crowding . 39

7.1 Example of first-completion makespan calculation procedure assignment 45

7.2 Results from testing generational schemes . 46

7.3 Results from testing initialisations . 47

7.4 Results of testing convergence with random and GCH initialisations 48

7.5 Results of testing population sizes . 49

7.6 Results of testing crossover choices . 50

7.7 Results of testing mutation operator choices . 51

7.8 Results of including a local search in the genetic algorithm 52

7.9 Results of testing crowding . 53

7.10 Results of testing replacement schemes . 54

7.11 Results of tuning iterated greedy . 55

7.12 Results of convergence tests on the adaptive genetic algorithm and iterated greedy 56

7.13 Results of mathematical model converging . 59

7.14 Results of testing the adaptive genetic algorithm, iterated greedy, MDDR, and

NEH . 59

7.15 Results of testing the adaptive genetic algorithm, iterated greedy, MDDR, and

NEH for di↵erent sized problem instances . 61

1 Extended results of testing makespan calculation procedures ii

2 Extended results of testing generational schemes iii

3 Extended results of testing initialisations . iv

4 Extended results of testing population sizes . v

5 Extended results of testing tournament sizes . vi

6 Extended results of testing the choice of crossover operators vii

7 Extended results of testing Q-learning crossover parameters viii

8 Extended results of testing the choice of mutation operators ix

9 Extended results of testing mutation probabilities x

10 Extended results of including a local search in the adaptive genetic algorithm . . xi

11 Extended results of testing deviation distance crowding xii

12 Extended results of testing exact match crowding xiii

13 Extended results of testing crowding . xiv

14 Extended results of testing replacement schemes xv

15 Extended results of testing replacement rates . xvi

16 Extended results of tuning iterated greedy . xvii

Chapter 1
Introduction

Over the last decades, industrialised countries have moved an ever-increasing portion of their

production to previously non-industrialised countries. The wealth of the former is soaring to

new heights, and with it, the service sector is growing and putting pressure on wages. With the

cost of machines and other means of production decreasing and wages increasing, the di↵erence

between producing in high-cost contra low-cost countries keeps growing.

The large manufacturers are streamlining their production, using entire production facilities

to produce only a few products. Producing only a handful of products in a facility saves

time on logistics and set-up. This is possible because of their scale and the demand for their

products. Smaller manufacturers are losing out in this war on costs. They cannot reduce costs

by specialising entire facilities, as the demand for their products is insu�cient. They inherently

experience more downtime on machines due to the need for switching production more often and

special-purpose machines only used for a few products. To stay profitable, they need to charge

higher prices for their products. If this trend continues, they will eventually be uncompetitive,

as there is a limit to the consumer’s willingness to pay premium prices for similar products.

Norway is losing manufacturing jobs every year (SSB, 2020) and small local manufacturers are

looking for ways to reduce costs without having to reduce their di↵erentiation (Gravdal and

Weidemann, 2021). They usually di↵erentiate themselves by quality and location, providing

jobs where they operate. In parallel, the Norwegian Government is convinced that many of the

production facilities are about to move back from low-cost to high-cost countries (Ministry of

Trade Industry and Fisheries, 2017). The rationale is that superior technology will reduce the

need for manual labour and increase throughput. These new technologies include advances in

hardware, which allows for the adaption of automatised machinery with sensor-based decision

systems, and software for control and planning. In short, new machines can speed up production

and software can increase their utilisation.

1

Machines are necessary to manufacture products, and hence all manufacturers have them. Up-

grades in machinery provide a tangible impact that is often denoted by an exact increase in

throughput. However, increases in e�ciency through advanced planning software are less tangi-

ble, as its e↵ect is not constant nor well defined. Therefore, it is seldom given the same priority.

Production planning is, in fact, often still a human domain.

In the fall of 2021, we met with Haugstad Furniture Factory (Haugstad). Haugstad is a small and

local furniture factory in Norway currently investing heavily in machinery fitted with sensors to

keep track of production. The factory is looking into software for controlling and understanding

production but has not yet adapted software for production planning.

Advances in technology require substantial investments, and there are reasons to believe scale

will be a deciding factor for what the companies can a↵ord. Large manufacturing corporations

can utilise their scale to buy customised machines and develop software customised to their

needs. Furthermore, they can acquire state of the art hardware to run their powerful soft-

ware. Smaller businesses will struggle to finance the same investments. If they invest heavily

in machinery, there will be little left to invest in other technologies. They have to rely on stan-

dardised software and slower hardware, making them susceptible to falling even further behind.

This thesis aims to decrease the deficit small manufacturers struggle with within production

planning.

The term production planning refers to deciding which machine in a production line should

perform which task and at what time. Most often, this is done in relation to maximising the

throughput of the manufacturers in some form. Production planning is a complex and time-

consuming task. As it is still often handled manually, sub-optimal plans are made, and the

task requires specialised personnel. Research has shown substantial potential gains by adapting

more sophisticated and automated approaches (Ruiz and Maroto, 2006).

The desire to create e�cient production schedules has existed for a long time. It was introduced

along with the first factories in the late 1700s and renewed when electricity enabled the factories

to be even larger (Herrmann, 2006). One of the earliest attempts was made by Gantt (1903),

with the Gantt chart as a graphical tool to display and analyse production schedules. However,

he introduced no principles for creating nor improving the plans themselves. In 1919, Taylor

argued that the planning of production and execution should be separate matters and considered

the scheduling problems formally for the first time.

At the time of Taylor and Gantt’s publications, all production facilities were considered to

function like workshops, where each employee created a product from start to finish. It was not

until Johnson (1954) introduced the flowshop that factories with machines organised according

to function and a unidirectional product flow were considered with regards to formal planning

methods (Herrmann, 2006). There has been a tremendous amount of papers on the topic in the

decades since. To begin with, they primarily introduced assignment rules or principles to design

good schedules, and with the emergence of computer science, more sophisticated algorithms were

introduced.

2

Haugstad is the main inspiration for this thesis, and the problem is modelled according to their

production environment. We aim to introduce a solution method to a production scheduling

problem su�ciently similar to the one Haugstad faces every day. There are a few criteria to

consider for a scheduling procedure to be relevant to them. Although they manage to invest

substantial capital in new machinery, it is doubtful that they can invest the same amount in

pure production planning software and hardware. The methods for finding production schedules

need to run on a↵ordable hardware and produce schedules su�ciently fast. Finding the optimal

schedule is worthless if it takes days or even hours to find it.

In an e↵ort to increase the e↵ectiveness and quality of Haugstad’s production planning, we

examine the hybrid flexible flowshop scheduling problem with sequence-dependent set-up times

(HFFSP SDST). In this flowshop variant, the machines are grouped in stages according to

their function. All products follow the same unidirectional flow through the stages. Not all

products need to be acted upon by all functions, but since a single machine can process a range

of products, they must be calibrated before most jobs. In the case of Haugstad, 10 000 to 20 000

unique components are manufactured each week, making this a challenging problem to solve

manually.

We have previously tested exact methods, which are too slow, even on sophisticated hardware

(Gravdal and Weidemann, 2021). Researchers have implemented several non-exact methods

to solve this and similar problems. However, the publications on the HFFSP SDST are few.

Genetic algorithms (GAs) are the most common solution methods for similar extensions of the

flowshop scheduling problem (FSP) and have shown promising results. However, few studies

into the HFFSP SDST test GAs as a solution method.

This thesis is organised as follows: Chapter 2 introduces literature about the problem described

above and methods others have used to solve it. A formal description of the problem is given in

Chapter 3 and based on it, a mathematical model is formulated and introduced in Chapter 4.

In Chapter 5, all solution methods implemented and tested in this thesis are described, and the

description of our GA is extended in Chapter 6. All tests and results are described in Chapter 7.

Finally, Chapter 8 sums up the findings of this study, and Chapter 9 looks at a few areas that

could be interesting to examine further in the future.

3

Chapter 2
Literature Review

This chapter introduces relevant literature in the field of scheduling. Scheduling is defined as

”the allocation of one or more resources over time to perform a collection of tasks”, with a focus

on doing so e�ciently (Chen et al., 1998). The main concepts of the large field of scheduling

are introduced with a focus on planning in industry settings and production scheduling in

Section 2.1. Section 2.2 describes the overall search procedure and relevant search words.

Then, the focus is narrowed to the flowshop scheduling problem (FSP) in Section 2.3. Finally,

Section 2.4 review the solution methods used to solve complex versions of the FSP. Note that

Section 2.1 and the beginning of Section 2.3 are revised versions of the literature review of

Gravdal and Weidemann (2021).

2.1 Production Scheduling

Production scheduling concerns the planning of production items, sequencing, and time alloca-

tion of operations to complete the items in time (Stoop and Wiers, 1996). Thus, it can be said

to lie at the very heart of the performance of manufacturing organisations. In the last decades,

e�cient scheduling has become vital due to increased demands for quality, flexibility, and order

lead times. An example of such an emerging concept is mass customisation. It aims to provide

customised products or services through flexible processes in high volumes and at reasonably

low costs (Suzić et al., 2018). It makes for a very complex scheduling problem, but scheduling

is still typically a human domain. This motivates the development of models and algorithms

for tackling such complex scheduling problems.

In the field of production planning, there are two main types of production systems (Fan et al.,

2018): single-stage and multi-stage. A stage is a collection of related machines that can process

jobs. A job is any physical product produced during manufacturing. The single-stage system

is characterised by jobs that only need processing in one stage, and hence one machine. The

multi-stage production system consists of several stages, characterised by jobs needing to be

4

processed by many machines.

Within the multi-stage production system, there are three distinct production subsystems: open

shop scheduling, jobshop scheduling, and flowshop scheduling. In open shop scheduling, jobs have

to undergo a set of operations in di↵erent stages, but the order to carry them out is not prede-

termined (Hosseinabadi et al., 2019). The real-life equivalent could be a car repair shop where

there makes no di↵erence if the headlights are changed before the engine is examined. Jobshop

scheduling extends open shop scheduling by having a predetermined order that operations are

performed in (Fan et al., 2018). This resembles a high-end furniture workshop where some

furniture is sanded before it is coated, while others are coated before sanding, and the order

is crucial. In flowshop scheduling, the jobshop scheduling is extended by making the flow of

products unidirectional (Ruiz and Vázquez-Rodŕıguez, 2010). This is exemplified through a

traditional mass production facility where all products follow the same assembly line. This

thesis examines the flowshop scheduling problem (FSP) and ways to construct its production

schedule.

2.2 Literature Search Strategy

A systematic literature search is carried out to find papers on the FSP and the relevant parts

of its extensions and solution methods. In this search, terminology established and structured

by Pinedo (2012) on scheduling is used to discover relevant literature. These categories’ terms

are combined to find publications capturing relevant aspects of the problem. All searches are

conducted on Google Scholar. Table 2.1 presents an overview of the terms used in combination to

find relevant literature. Note that not all publications agree on the names of certain extensions,

while the meaning and changes to the FSP are generally agreed upon. An example is the flexible

extension, also denoted as the stage skip extension. Although they have di↵erent names, both

extend the FSP by some jobs not needing processing in all stages. The search resulted in

numerous articles filtered again for relevance in titles and abstracts. The most relevant ones

are selected and included in the subsequent sections.

Table 2.1: Keywords used in the literature search.

General Problem extensions Solution method Objective

Flowshop Flexible Heuristic Makespan

Scheduling Hybrid Meta-heuristic Completion time

Planning Sequence dependent setup times Genetic algorithm

5

2.3 The Flowshop Scheduling Problem

The first paper on the FSP was published in 1954. In the following 50 years, more than 1200

papers were published on this topic (Gupta and Sta↵ord, 2006), and yet more since then. A

reason for its popularity may be that flowshops arise in most standardised manufacturing and

assembly facilities where a set of jobs has to undergo a series of operations (Pinedo, 2012). The

versatility and applicability of flowshops have been shown for a wide variety of areas such as

textile, electronics, automobile manufacturing, and chemical industries (González-Neira et al.,

2017). Numerous variants of the FSP have been formulated for such applications.

For a manufacturing facility to classify as a flowshop, all jobs must visit the stages in the same

order, and a job can never be processed more than once in any stage. In its simplest form,

the flowshop scheduling problem consists of determining the uninterrupted flow of jobs through

multiple machines in series (Gupta and Sta↵ord, 2006). More formally, the flowshop scheduling

problem is defined by Gupta and Sta↵ord (2006) as follows:

Given a set of jobs N = 1, . . . , n to be processed on a set of machines M = 1, . . . ,m

in the same technological order; the processing time of job i on machine j being

pij (i = 1, 2, . . . , n; j = 1, 2, . . . ,m); it is desired to find the schedule in which these

n jobs should be processed on each of the m machines to minimise a well defined

measure of production cost.

The flowshop scheduling problem was first introduced by Johnson (1954) in a two-machine

environment. He studied a simplification named the permutation flowshop scheduling problem

(PFSP), which assumes the equal ordering of jobs in every stage. In this paper, Johnson

proposes an algorithm for optimally scheduling jobs to minimise the total elapsed time for the

entire operation in O(n log n) time. He proves that the algorithm solves the PFSP to optimality

for two stages, with one machine in each. However, already for a flowshop with three or more

stages, the problem is NP-complete (Garey et al., 1976). It implies that no algorithm can solve

the problem to optimality in polynomial time in the number of jobs. Rossit et al. (2018) state

that the optimal objective value to a PFSP, as opposed to a comparable FSP, is anywhere

between 0.5% higher to 40% higher, depending on the size of the problem instance and the

objective function. So, the extra complexity of the FSP might be worthwhile. In fact, more

than 65% of the papers on non-PFSP have been published after 2006, showing a substantial

popularity increase lately (Rossit et al., 2018).

Although well-studied in literature, the classical flowshop formulation has limited application

in real production environments. In the last couple of decades, there has been a trend to more

realistic modelling (Wang, 2005) and a great many extensions have been introduced. Colak

and Keskin (2022) identifies 26 categories of extensions from 172 studies, excluding an ”other”

category of 38 papers with yet more extensions. The 38 uncategorised papers indicate a long

tail of extensions relevant to the industry yet to receive attention among researchers.

6

The hybrid extension might be the most important and common extension, with 172 articles

studying it between 2010-2020 (Colak and Keskin, 2022). In a hybrid flowshop, at least one

stage consists of parallel machines where each job visits exactly one machine. There are three

di↵erent configurations to parallel machines in a stage: (1) the machines are identical, (2) the

machines operate with di↵erent speeds, and (3) the machines are unrelated, meaning the speed

of each machine is dependent on the job (Pinedo, 2012). A prevalent way to increase throughput

in production environments is to install several similar machines, so one could argue that the

extension increases the realism of the problem. This increase in realism comes at the cost of

increased complexity. To be specific, even the case with two stages, one with a single machine

and one with two, is NP-hard, according to Fattahi et al. (2013). Note that some publications

denote the hybrid extension as flexible instead.

Another common extension is the sequence-dependent set-up times (SDST) extension. This

extension is combined with the hybrid extension in 51 of the 172 articles Colak and Keskin

(2022) review. SDST make the set-up time for each job dependent on the preceding job and

the stage in which it is to be processed. A well-known justification for this extension is made

by Ruiz and Maroto (2006) in relation to ceramic tile manufacturing. The set-up is highly

dependent on the final product visiting the machine because of di↵erent moulds, temperatures,

and glaze. A final variation for set-up, is the anticipatory distinction. It allows set-up to start

before jobs physically arrive at the machine (Colak and Keskin, 2022).

The three next most common extensions Colak and Keskin (2022) finds, are batch processing,

flexibility, and machine eligibility. Batch processing groups similar jobs to be acted on as a

collection. A batch can then be handled as a single job. Doing so can reduce the complexity of

the problem if the batches are fixed early in the search. Flexibility allows jobs to skip stages; for

example, not all tiles need all layers of glaze. Machine eligibility extends the hybrid extension,

prohibiting certain machines from processing certain jobs. Besides the one exception of batch

processing in heuristics, all these extensions increase the complexity of the problem.

The most common assumption in flowshop scheduling is that bu↵ers are unlimited. Colak

and Keskin (2022) find that only 5% of modern papers on hybrid flowshops leave out this

assumption. However, in the case of limited bu↵ers between successive machines, blocking may

occur (Pinedo, 2012). Blocking happens when a bu↵er is full such that the upstream machine

is prevented from releasing its current job. Although realistic, it is challenging to solve and is

strongly NP-hard (Papadimitriou and Kanellakis, 1980).

Although there are many objectives to solve all combinations of flowshops for, Rossit et al.

(2018) find that 73% of the papers they review on the non-PFSP use a form of completion

time objective. The reason can be that it is tightly coupled to the e�ciency of the production

schedule (Pinedo, 2012). Among them, minimisation of makespan, the total completion time

of all jobs, dominates as the objective of 53% the total papers, against 17% other completion

time objectives. For the rest of this literature study, it is assumed that makespan is used as

objective unless otherwise specified. Other objectives consider due-dates, finishing jobs in time,

and cost, often related to energy or raw materials. They represent 8% and 10% of the papers.

7

2.4 Solution Methods

This section covers the development of solution methods to solve variations of the FSP. Exact

methods are covered first, along with complexity. Then, problem-specific heuristics are reviewed.

GAs are the most used meta-heuristics for the FSP, so it is extensively covered before the focus

shifts to an iterated local search called Iterated Greedy.

Johnson (1954) introduces an algorithm for scheduling jobs to optimality in a two-machine en-

vironment in O(n log n) time. For a set of jobs N = 1, ..., n where the processing times are

known for each job on both machines, the rule works as follows: (1) Select the job which has

the shortest processing time in either of the machines. (2) If the shortest processing time is for

the first machine, place the job first in the order; otherwise, place it last. (3) Repeat for all

remaining jobs until all jobs are placed in order. This algorithm is referred to as Johnson’s rule.

Johnson also proves that the algorithm works for a particular case of three-machine environ-

ments. Still, as shown in Garey et al. (1976), the general case of any production environment

with three machines or more is NP-complete. There have been few successful enquiries into

exact algorithms after this.

Ignall and Schrage (1965) use branch and bound (B&B) to solve the PFSP and find optimal

solutions with ten jobs in a three machine environment with makespan as the objective. Along

with the development in B&B methods, there has been a revolution in computational power

(Moore, 1965) and today, B&B methods can solve problems of 500 jobs and 20 machines in 20

minutes for PFSPs (Gmys et al., 2020). Furthermore, while exact algorithms have received little

attention lately, mathematical models in the form of mixed integer programs (MIPs) are used

to solve smaller instances for a great variety of extensions and to benchmark approximation

methods (Colak and Keskin, 2022). Ruiz et al. (2008) were among the first to mathematically

model and implement a hybrid flexible flowshop in terms of a MIP to reduce the gap between

the flowshops in the literature and real production environments. Many have since followed.

The search for heuristics has often been focused on the PFSP because of its simplicity and

solutions having some merit for the FSP as well. Campbell et al. (1970) seek to expand the

use of Johnson’s rule to m-machine environments. They introduce the CDS heuristic, which

clusters the m original machines into two virtual machines and repeatedly uses Johnson’s rule to

produce m�1 schedules. The authors initially made CDS not require a computer to find a good

schedule, and since, better heuristics have been introduced. NEH, proposed by Nawaz et al.

(1983), is a two-phase heuristic sorting jobs according to processing times and then inserting

them greedily into the job permutation. Although many other problem-specific construction

and improvement heuristics have been proposed (Dannenbring, 1977; Ho and Chang, 1991;

Suliman, 2000), Ruiz and Maroto (2005) finds that NEH is by far the dominant one.

A genetic algorithm (GA) is a meta-heuristic which di↵ers from others by keeping several

solutions and combining them in a fashion inspired by evolution (Ruiz and Maroto, 2006). It is

commonly used to approximate the Pareto front as the solutions often are spread among several

local optima. Today, it is the most common meta-heuristic to use when solving the FSP. It is

8

used in 16% of the studies Rossit et al. (2018) reviews. This was not always the case. Before the

2000s, many believed GAs to be inferior to the likes of tabu search (TS) and simulated annealing

(SA) (Murata et al., 1996). GAs did, however, show promise when solving similar problems

to the FSP, like the travelling salesman problem (TSP), and when the available computational

power increased substantially. Here follows a study into the recent developments of GAs used

to solve a variety of FSPs. For a full description of the GA, see Section 5.4.2 and Chapter 6.

Murata et al. (1996) use a simple GA to solve the classic PFSP. So do Ruiz et al. (2006),

but with a significantly more complex algorithm. In parallel, Ruiz and Maroto (2006) explore

the e↵ectiveness of a GA on the hybrid, SDST, and machine eligibility extensions, while still

keeping the permutation simplification. Several researchers follow by applying GAs to complex

versions of the FSP: Gómez-Gasquet et al. (2012) use an agent-based genetic algorithm to solve

the FSP with both the hybrid, flexible, and SDST extensions without any simplifications like

permutation. Today this is the standard complexity of FSPs to solve with GAs (Sioud et al.,

2013, 2014; Farahmand-Mehr et al., 2014; Yu et al., 2018). Furthermore, eight out of the nine

most relevant articles for this thesis use makespan as the objective and also the fitness criteria

as evident by Table 2.2.

As for all meta-heuristics, the encoding of solutions dictates the search space. Many di↵erent

encodings have been used for the FSP. There are some main categories, where the simplest one

is the permutation simplification as introduced in Section 2.3. For this representation, a solution

contains the production order of all jobs, and it is the same in every stage. This representation

was popular around the 2000s (Murata et al., 1996; Ruiz and Maroto, 2006; Ruiz et al., 2006).

Combined with the hybrid extension, Ruiz and Maroto (2006) use assignment rules to determine

the machine allocation in each stage. Gómez-Gasquet et al. (2012) and Sioud et al. (2013, 2014)

also use only one permutation of all jobs but apply assignment rules for the processing order

in all stages after the first stage and in all machines. Some researchers opt for encoding all job

orders in all stages and assigning every job to machines (Engin et al., 2011; Farahmand-Mehr

et al., 2014).

For initialisation of populations, the standard approach is to use entirely random job permuta-

tions, as seen in Murata et al. (1996), Engin et al. (2011), and Farahmand-Mehr et al. (2014).

Since this is likely to start the algorithm without any high-quality solutions, Ruiz and Maroto

(2006) modify the NEH heuristic also to solve extensions of FSP and use it to ensure initialis-

ing one good solution. Ruiz et al. (2006) and Gómez-Gasquet et al. (2012) use simple greedy

algorithms to create several better solutions, while Yu et al. (2018) use two sorting algorithms

to create two high-quality solutions, with the rest entirely random.

Crossovers have received immense attention, and the simple operators used 20 years ago are

now discarded for more complex alternatives. Murata et al. (1996) adopt operators that were

standard at the time. They are based on one- and two-point crossovers, keeping blocks from one

parent and the order of the rest of the jobs from the other. Ruiz and Maroto (2006) introduce

modified operators comparing the parents and keeping jobs that occur in the same position for

both parents, and using one- and two-point crossover afterwards. Engin et al. (2011) use similar

9

crossovers but also introduce operators to copy blocks from a parent and insert it in a di↵erent

position for a child. To keep as much of a parent as possible, Sioud et al. (2013) use operators

that copy whole blocks from a parent and use only the order for the remaining blocks from the

other. They also introduce an operator with a greedy choice, approximating the makespan of

several options and returning the best one. Finally, Gómez-Gasquet et al. (2012) use previously

introduced crossovers and an adaptive method to choose which to use in every instance. The

population consists of several agent solutions, an agent part and a solution part. The agent

contains logic to select a crossover operator and learn from the choice.

Most papers set a low probability of mutations and implement either a swap of two or three

jobs (Gómez-Gasquet et al., 2012; Sioud et al., 2013, 2014; Farahmand-Mehr et al., 2014), a

shift of jobs (Ruiz and Maroto, 2006), or both (Murata et al., 1996; Ruiz et al., 2006; Yu et al.,

2018). Most apply a mutation operator to a child that a crossover operator has just produced,

but Sioud et al. (2013, 2014) use only a crossover operator or mutation operator to create the

next generation.

A final thing that all GAs need to incorporate is a generational scheme, defining the transition

from one generation to the next. The classic approach is to create all-new individuals in every

generation (Murata et al., 1996; Engin et al., 2011; Sioud et al., 2013, 2014; Farahmand-Mehr

et al., 2014). Elitism is a possible addition, involving carrying a certain percentage of the best

solutions from the previous generation to the next, with Farahmand-Mehr et al. (2014) keeping

as much as 20% of the best solutions. Farahmand-Mehr et al. (2014) also use immigration,

adding randomly generated solutions to the population in every generation to induce diversity.

Another generational scheme is steady-state, generating a small number of children in every

generation and only adding them to the population if they are better than some parent. This

generational scheme is also used by several authors (Ruiz and Maroto, 2006; Ruiz et al., 2006;

Yu et al., 2018).

To enhance performance and avoid preemptive convergence in a local optimum, Ruiz and Maroto

(2006) introduce a replacement mechanism. Suppose the algorithm does not improve over some

generations. In that case, the 80% least fit individuals are replaced with a mix of mutations

of the best solutions and new randomly created solutions. Yu et al. (2018) use the same idea

but with an extra mutation operator changing more significant parts of the solution. Another

module to improve the GAs are local searches, making them memetic algorithms. Murata et al.

(1996) argue this is the only way to make GAs better than TS and SA. Ruiz and Maroto (2006);

Yu et al. (2018) also use local searches to improve the performance.

Ruiz and Stützle (2007) argue that many of the complicated methods of SA, TS, and GA have

yet to show better results than simple local search meta-heuristics. This is tested again in

Naderi et al. (2010) with the same result. More straightforward methods have fewer parameters

to tune, are quick to implement, and are transferable to other problems and hence extensions.

Iterated Greedy (IG) shows real promise in this area, and there are examples of it outperforming

more complex alternatives. It is extended by several researchers, for example, Ozsoydan and

Sağir (2021).

10

Several other meta-heuristics are also used to solve versions of the FSP. Rossit et al. (2018)

finds that after GA, TS is most applied, as it is the primary solution method in 12% of the

papers on hybrid flowshops. Then follow SA and ant colony optimisation, each the topic of 8%

of the papers. Other meta-heuristics account for only 6%.

2.5 Contribution

Of all the 172 articles on the HFSP between 2010 and 2020, only 20 include the hybrid, flexible,

and sequence-dependent set-up times extensions (Colak and Keskin, 2022). Of these, 13 use

makespan as their objective, and three use GA for their primary solution method. We have

yet to find any paper implementing crossovers and mutations using domain knowledge to the

extent this thesis does, nor implementations of crowding. Furthermore, we introduce a new

randomised NEH heuristic and adopt Q-learning to choose crossover adaptively. The complete

classifications of reviewed literature and overlap with this thesis are found in Table 2.2.

11

T
ab

le
2.
2:

C
la
ss
ifi
ca
ti
on

of
m
os
t
re
le
va
n
t
li
te
ra
tu
re

fo
r
ge
n
et
ic

al
go

ri
th
m
s
fo
r
th
e
H
F
F
S
P

S
D
S
T
.
A
ll
cl
as
si
fi
ca
ti
on

s
co
ve
re
d
b
y
th
is

th
es
is

is
co
lo
u
re
d
gr
ee
n
.

A
r
t
ic
le

P
r
o
b
le
m

O
b
j
e
c
t
iv
e

E
n
c
o
d
in
g

I
n
it
ia
t
io
n

S
e
le
c
t
io
n

C
r
o
s
s
o
v
e
r

M
u
t
a
t
io
n

C
r
o
w
d
in
g

R
e
p
la
c
e
m
e
n
t

G
e
n
e
r
a
t
io
n
a
l

S
c
h
e
m
e

O
t
h
e
r

M
u
ra
ta

et
al
.

(1
99

6)
P
F
S
P

M
ak

es
p
an

P
er
m
u
ta
ti
on

R
an

d
om

R
an

k
in
g

O
P
,
T
P
,
P
B
X

S
w
ap

an
d
sh
if
t

N
o

N
o

G
en

er
at
io
n
al

In
cl
u
d
e

lo
ca
l

se
ar
ch

R
u
iz

an
d

M
ar
ot
o
(2
00

6)

H
P
F
S
P

S
D
S
T

M
ac
h
in
e

el
ig
ib
il
it
y

M
ak

es
p
an

P
er
m
u
ta
ti
on

N
E
H

an
d

ra
n
-

d
om

R
an

k
in
g

an
d

to
u
rn
am

en
t

O
P
,
T
P
,
P
M
X
,
O
X
,

U
O
B
,
S
JO

X
,
S
B
O
X
,

S
J2

O
X
,
S
B
2O

X

S
h
if
t

N
o

R
an

d
om

an
d

m
u
ta
te

G
en

er
at
io
n
al

an
d

st
ea
d
y
-

st
at
e

In
cl
u
d
e

lo
ca
l

se
ar
ch

R
u
iz

et
al
.

(2
00

6)
P
F
S
P

M
ak

es
p
an

P
er
m
u
ta
ti
on

N
E
H
,

ra
n
d
om

,

an
d
ra
n
d
om

is
ed

N
E
H

R
an

k
in
g

an
d

to
u
rn
am

en
t

O
P
,
T
P
,
P
M
X
,
O
X
,

U
O
B
,
S
JO

X
,
S
B
O
X
,

S
J2

O
X
,
S
B
2O

X

S
w
ap

an
d
sh
if
t

N
o

R
an

d
om

,
m
u
-

ta
te
,
an

d
ra
n
-

d
om

is
ed

N
E
H

G
en

er
at
io
n
al

an
d

st
ea
d
y
-

st
at
e

In
cl
u
d
e

lo
ca
l

se
ar
ch

E
n
gi
n

et
al
.

(2
01

1)
H
F
S
M
T

M
ak

es
p
an

D
ir
ec
t

en
co
d
-

in
g

R
an

d
om

R
an

k
in
g

P
B
X
,

P
M
X
,

O
X
,

C
X
,
L
O
X
,
O
B
X

N
ei
gh

b
ou

rh
o
o
d

se
ar
ch

N
o

N
o

S
te
ad

y
-s
ta
te

G
óm

ez
-G

as
q
u
et

et
al
.
(2
01

2)

H
F
F
S
P

S
D
S
T

M
ak

es
p
an

Jo
b

or
d
er

in

fi
rs
t
st
ag

e

G
re
ed

y
al
go

-

ri
th
m

-
S
B
2O

X
,
N
C
O

S
w
ap

N
o

N
o

G
en

er
at
io
n
al

A
ge
n
t-
so
lu
ti
on

s

as
ch
ro
m
os
om

es

S
io
u
d

et
al
.

(2
01

3)

H
F
F
S
P

S
D
S
T

M
ak

es
p
an

Jo
b

or
d
er

in

fi
rs
t
st
ag

e

N
E
H

an
d

ra
n
-

d
om

T
ou

rn
am

en
t

R
M
P
X
,

A
R
M
P
X
,

L
JM

P
X
,

M
P
B
O
X
,

U
O
B
X

S
w
ap

N
o

N
o

G
en

er
at
io
n
al

w
it
h
el
it
is
m

E
it
h
er

cr
os
so
ve
r

or
m
u
ta
ti
on

S
io
u
d

et
al
.

(2
01

4)

H
F
F
S
P

S
D
S
T

M
ak

es
p
an

Jo
b

or
d
er

in

fi
rs
t
st
ag

e

N
E
H

an
d

ra
n
-

d
om

T
ou

rn
am

en
t

R
M
P
X
,

A
R
M
P
X
,

L
JM

P
X
,
M
P
B
O
X

S
w
ap

N
o

N
o

G
en

er
at
io
n
al

w
it
h
el
it
is
m

E
it
h
er

cr
os
so
ve
r

or
m
u
ta
ti
on

F
ar
ah

m
an

d
-

M
eh

r
et

al
.

(2
01

4)

H
F
S
P

S
D
S
T

M
ak

es
p
an

D
ir
ec
t

en
co
d
-

in
g

R
an

d
om

R
an

d
om

O
X

S
w
ap

N
o

N
o

G
en

er
at
io
n
al

w
it
h
el
it
is
m

U
se

im
m
ig
ra
ti
on

Y
u
et

al
.
(2
01

8)
H
F
S
P

S
D
S
T

T
ar
d
in
es
s

P
ri
or
it
y
q
u
eu

e
S
or
ti
n
g

h
eu

ri
s-

ti
cs

an
d
ra
n
d
om

R
ou

le
tt
e

w
h
ee
l

an
d
to
u
rn
am

en
t

O
P
,

T
P
,

P
M
X
,

S
B
2O

X
,
O
B
X

S
w
ap

an
d
sh
if
t

N
o

R
an

d
om

,

m
u
ta
te
,

an
d

la
rg
e

m
u
ta
ti
on

S
te
ad

y
-s
ta
te

In
cl
u
d
e

lo
ca
l

se
ar
ch

T
h
is

th
es
is

H
F
F
S
P

S
D
S
T

M
ak

es
p
an

Jo
b

or
d
er

in

fi
rs
t
st
ag

e

N
E
H
,

ra
n
d
om

,

an
d
ra
n
d
om

is
ed

N
E
H

T
ou

rn
am

en
t

P
M
X
,
S
JO

X
,
S
B
O
X
,

B
C
B
X

S
w
ap

,
sh
if
t,

re
ve
rs
al

an
d

gr
ee
d
y

Y
es

R
an

d
om

,
m
u
-

ta
te

b
es
t

so
-

lu
ti
on

s,
ra
n
-

d
om

is
ed

N
E
H

G
en

er
at
io
n
al

an
d

st
ea
d
y
-

st
at
e

A
d
ap

ti
ve

cr
os
so
ve
r

ch
oi
ce
,

in
cl
u
d
e

lo
ca
l

se
ar
ch

12

Chapter 3
Problem Description

This chapter describes the hybrid flexible flowshop scheduling problem with sequence-dependent

set-up times (HFFSP SDST) in detail. The problem is mainly associated with factories having

a streamlined production environment and usually concerns production over a limited time

horizon. More specifically, operational planning on a daily to weekly basis. It is a deterministic

problem where the objective is to minimise the total production time, the completion of the

last product, and indirectly maximise the factory’s output.

The production environment of a factory consists of stages. In every stage, there is a known

number of machines. Due to the hybrid extension, at least one of the stages consists of more

than one machine. The machines in each stage are identical. The stages are ordered according

to the flow of the production line, and jobs visit the stages in the given order. Jobs are physical

products produced by the factory. Although all jobs go through the stages in the same predefined

order, each job does not necessarily have to be processed in every stage, as the flexible extension

dictates. That is, a job may skip one or more stages. A job visits each stage at most once, and

only one machine can process the job in each stage. Accordingly, every job has a predefined

path through the stages where the stages may di↵er, but the order is the same.

Machines process jobs, and each machine can only process one job at a time. Before processing,

the machines need to be set up for that particular job. The set-up time depends on the current

job and the previously processed job and is the same for all machines in the same stage, meaning

they have sequence-dependent set-up times with identical machines. In addition, set-up is non-

anticipatory, meaning it cannot start before the job which is to be processed arrives at the

machine. During set-up, the machine cannot process any job. The machines are identical, so

processing times are equal in all machines in the same stage for a given job. Moreover, once a

machine starts processing a job, it cannot be interrupted.

Even though the jobs are physical objects and the factory is of finite size, the bu↵ers between

stages are assumed to be non-restrictive. This entails there is no limit on the number of jobs

that can wait between two adjacent stages.

13

A solution to the problem determines what machines are to process which jobs and the internal

job order in every machine. For the solution to be feasible, every job must be processed in every

stage required. The objective is to minimise makespan; the total time it takes to process all

jobs. This is equivalent to minimising the completion time of the job with the latest completion

time.

14

Chapter 4
Mathematical Model

In this chapter, we present a mathematical model for the hybrid flexible flowshop scheduling

problem with sequence-dependent set-up times (HFFSP SDST) as defined in Chapter 3. In

Section 4.1, all modelling assumptions are stated and Section 4.2 introduces the mathematical

model with its sets, parameters, and constraints.

4.1 Modelling Assumptions

The mathematical model assumes production can be left at any time and resumed. This assump-

tion implies that no notions of days or weeks are defined, and thus no bookkeeping constraints

are needed to connect those. Accordingly, the mathematical model schedules the entire pro-

duction period without breaks. In addition, we introduce the term machine run to denote the

position a job has in the queue of a machine. If a job is assigned to machine run 4 of machine

2 in stage 3, the job is to be the fourth job to visit machine 2 in stage 3.

4.2 Mathematical Formulation

The following mathematical model is inspired by the model introduced in Defersha and Chen

(2012). The model is originally developed for the HFFSP SDST with batch processing, antici-

patory set-up times and machine eligibility extensions. The notion of batches and machine eligi-

bility constraints are removed to make the model fit the HFFSP SDST described in Chapter 3.

In addition, all set-up times are made non-anticipatory. Finally, a procedure for calculating

values of M in the Big M -constraints is proposed.

15

Indices

i, l stages

m, k machines

n, p jobs

r, u machine runs

Sets

I set of stages

Mi set of machines at stage i

N set of jobs

En set of pairs of stages (l, i), where stage l precedes stage i, for job n

Rim set of machine runs for machine m at stage i

Parameters

Tin processing time of job n at stage i

TS
ipn set-up time in stage i for job n succeeding job p

Pin 1 if product type n needs processing on stage i, 0 otherwise

M upper bound on total production time

Decision Variables

tNin completion time of job n in stage i

tMimr completion time of machine run r on machine m in stage i

cmax makespan, completion time of the last operation

ximrn =

8
<

:
1 if machine run r on machine m in stage i processes job n,

0 otherwise.

zimr =

8
<

:
1 if machine run r on machine m at stage i has been assigned to a job,

0 otherwise.

16

Objective Function and Constraints

min z = cmax (4.1)

s.t.

tMimr � tNin +M(ximrn � 1) (4.2)

i 2 I,m 2Mi, r 2 Rim, n 2 N

tMimr tNin +M(1� ximrn) (4.3)

i 2 I,m 2Mi, r 2 Rim, n 2 N

tMim1 � Tin + TS
i0n +M(xim1n � 1) (4.4)

i 2 I,m 2Mi, n 2 N

tMimr � tMim(r�1) � Tin + TS
ipn +M(xim(r�1)p + ximrn � 2) (4.5)

i 2 I,m 2Mi, r 2 Rim, n, p 2 N|r > 1

tMim1 � tMlku � Tin + TS
i0n +M(xlkun + xim1n � 2) (4.6)

i, l 2 I, k 2Ml,m 2Mi, u 2 Rlk, n 2 N|(l, i) 2 En

tMimr � tMlku � Tin + TS
ipn +M(xlkun + xim(r�1)p + ximrn � 3) (4.7)

i, l 2 I,m 2Mi, k 2Ml, r 2 Rim, u 2 Rlk,

n, p 2 N|(l, i) 2 En, r > 1

X

n2N
ximrn = zimr i 2 I,m 2Mi, r 2 Rim (4.8)

zimr zim(r�1) i 2 I,m 2Mi, r 2 Rim|r > 1 (4.9)
X

m2Mi

X

r2Rim

ximrn = Pin i 2 I, n 2 N (4.10)

cmax � tNin i 2 I, n 2 N (4.11)

ximrn 2 {0, 1} i 2 I,m 2Mi, r 2 Rim, n 2 N (4.12)

zimr 2 {0, 1} i 2 I,m 2Mi, r 2 Rim, (4.13)

tNinj � 0 i 2 I, n 2 N , j 2 Jn (4.14)

tMimr � 0 i 2 I,m 2Mi, r 2 Rim (4.15)

17

The objective function (4.1) specifies the minimisation of makespan. Constraints (4.2) and

(4.3) define the relationships between the tNin, t
M
imr, and ximrn variables. That is, when a job is

scheduled for a run in a machine in a given stage (ximrn), the time for the completion of the

job (tNin) and the time the machine is free again (tMimr) have to equal. Constraints (4.4) make

sure the first job processed in every machine does not start before the set-up is completed and

constraints (4.5) ensure that the succeeding jobs aren’t processed before set-up, nor that the

machines process more than one job at a time.

Constraints (4.6) disallow the first job to arrive at any machine to start setting up before it

finishes in the previous stage or processing before the set-up is complete. Constraints (4.7) have

the same e↵ect on all succeeding jobs and ensure sequence-dependent set-up times are complied

with.

The ximrn and zimr variables are connected by constraints (4.8) such that every machine can

at most process one job at a time. Constraints (4.9) squeeze machine runs, so machine run r

is only used if machine run r � 1 is used. Constraints (4.10) ensure that every job that needs

processing in a given stage is processed. Constraints (4.11) make the variable for total makespan

equal to the finishing time of the last job. Finally, constraints (4.12) and (4.13) state the binary

variables, whereas (4.14) and (4.15) are non-negativity constraints.

Big M -constraints are applied in constraints (4.2) through (4.7). The value of M is related to

the time variables tNin and tMimr. A conservative value for M can be calculated when all jobs go

through only one machine in each stage, and the worst case sequence-dependent set-up times are

realised. Equation (4.16) gives the worst set-up time for every job in every stage, and equation

(4.17) finds the value for M as the sum of processing time and set-up time for all jobs in all

stages.

T
S
in = max

p2N

n
TS
ipn

o
i 2 I, n 2 N (4.16)

M =
X

i2I

X

n2N
(Tin + T

S
in) (4.17)

The set of machine runs, Rim, is a set with a size that is di�cult to define optimally. It dictates

how many jobs a machine can process. The larger the set, the more decision variables, tMimr,

ximrn, and zimr, are created. The smaller the set Rim is, the fewer constraints and variables

are defined, and the faster the search for the optimal solution. However, it is important not to

make the optimal solution infeasible by restricting Rim too much. The theoretical maximum of

machine runs on any single machine is the total number of jobs. However, as not all jobs visit

every stage, the number may be reduced to the number of jobs that has to visit a particular

stage. Also, with more than one machine in a stage, this theoretical maximum is likely an

overestimation. Without any way of telling for certain the optimal number of machine runs for

a machine, the theoretical maximum is used.

18

Chapter 5
Solution Methods

This thesis aims to solve the hybrid flexible flowshop scheduling problem with sequence-dependent

set-up times (HFFSP SDST) and introduces a new genetic algorithm (GA) to accomplish it.

In addition, some already known algorithms are implemented as benchmarks. However, before

introducing the di↵erent solution methods, Section 5.1 looks at what constitutes a solution and

how it a↵ects the search and solution spaces. Section 5.2 continues by bridging the gap between

encoded solutions and their real-life interpretations. Then, Section 5.3 explains how reason-

ably good feasible solutions can be constructed, while Section 5.4 introduces two methods for

improvement of feasible solutions.

5.1 Solution Representation

This section explores two ways of representing a solution to the HFFSP SDST and motivates

which is more advantageous for this study. There are two common approaches: (1) A solution

can be a complete representation of the production schedule. That is, the solution contains the

allocation of jobs to machines in every stage and the internal orderings of jobs in machines. (2)

A solution can be a partial representation of a production schedule. In this case, assignment

rules are needed to transform the partial schedule into a complete one. One example of a partial

schedule is the order of jobs in the first stage. This representation is the most common partial

representation in flowshop scheduling and is the one considered here.

The solution representation defines how the solution and search spaces are tied together. The

solution space contains all possible complete production schedules and is defined by the problem

instance alone. The search space consists of all possible production schedules an algorithm can

create. It is defined by the problem instance and the solution representation. All candidates in

the search space map to exactly one solution in the solution space, as illustrated in Figure 5.1.

This mapping may be one-to-one, implicating that there is a unique solution in the solution

space for each candidate in the search space. Alternatively, it may be many-to-one, implicating

19

that several candidates in the search space map to the same solution in the solution space.

Figure 5.1: The connection between search space and solution space.

With a complete solution representation, there is a one-to-one mapping where every solution

in the solution space is mapped to by a candidate from the search space. It makes the spaces

the same size, and often it induces a vast search space. There are as many solutions for each

stage as there are permutations of jobs. This amounts to (|N |!)|I| possible solutions, where N

is the set of jobs and I the set of stages. Note that this underestimates the search space as the

assignment of jobs to machines is not considered. For a problem instance with 120 jobs and

eight stages, there are at least 4.0 ⇤ 101590 solutions.

For the partial solution representation, the search space is significantly reduced and smaller

than the solution space. The mapping might be one-to-one or many-to-one, and there will be

solutions in the solution space that cannot be found through the mapping from the search space.

With only a permutation of the jobs in the first stage, there are |N |! di↵erent representations

in the search space. For the same problem instance as above, this amounts to 6.7 ⇤ 10198

representations to search. This significant decrease contributes to a faster search. However, this

also likely removes several high-quality solutions. Nonetheless, previous research has shown that

the removal of high-quality solutions is by far outweighed by the search space being easier to

navigate (Naderi et al., 2010). Therefore, this study uses partial representations of production

schedules and assignment rules to create the complete schedules. The assignment rules are

described in the following section.

5.2 Makespan Calculation

Two di↵erent procedures using assignment rules to define the mapping between the search

space of partial solution representations and the solution space are presented. They are used

to determine the order of jobs in subsequent stages and assign them to machines. This section

explains how this is done, thus providing the schedule’s makespan. The first procedure is a

first-in, first-out (FIFO) based approach. It schedules jobs into stages according to the order

they finished in the previous stage. The second method we refer to as first-completion. This

method uses the order of the jobs in the given permutation in the first stage, but in later stages

prioritises scheduling jobs according to which may be completed first.

20

5.2.1 First-In, First-Out

The partial solution representation provides the order for the jobs to be processed in the first

stage. The remaining decisions are to allocate each job to a machine in every stage. The

allocation of jobs to machines is equal in the first stage for both makespan calculation methods.

This is done by scheduling each job, in order, to the machine that can finish it with the lowest

completion time. The completion time is calculated as in Equation 5.1. To get the completion

time, the time the machine becomes available after processing the previous job is added with

the sequence-dependent set-up time for the job. Finally, the processing time of the job is added.

The completion time of each job is recorded in the production schedule and used for scheduling

jobs in the succeeding stages.

Completion time = Machine available time+ Setup time+ Processing time (5.1)

An example with seven jobs and two machines is illustrated in Figure 5.2 to clarify how the

FIFO scheduling process works in the first stage. Machine 1 is scheduled to process job 2 before

job 4, while Machine 2 is scheduled to process job 5 before job 6. The next job to be assigned

to a machine from the ordered list that the solution provides is job 3. Currently, Machine 1 is

done processing its last job before Machine 2 is. However, the sequence-dependent set-up time

for job 3 following job 4 is higher than for job 3 following job 6. This results in Machine 2 being

able to finish processing job 3 first out of the two machines. Therefore, job 3 is assigned to

Machine 2. Then, the new available time for Machine 2 becomes equal to that of the completion

time for job 3 in this machine, whereas it remains unchanged for Machine 1. Then, the process

is repeated with the next job from the ordered list of remaining jobs, namely job 1.

Figure 5.2: An example situation that could arise in the first stage while using FIFO.

For FIFO, the order of jobs in succeeding stages is given by the order completed in the previous

stage. Ties in completion times are given to the job that first started processed in the previous

stage. For stages after the first one, Equation 5.1 is altered to ensure no job starts before it

finishes in the previous stage, nor before the machine is ready. This is reflected in the first term

of Equation 5.2. The remaining terms are equal to those of Equation 5.1. When all jobs are

21

assigned to machines in all stages required, makespan is calculated as the maximum completion

time of any job.

Completion time =

max(Machine available time,Completion time from previous stage)

+ Setup time+ Processing time (5.2)

5.2.2 First-Completion

FIFO is still used for scheduling jobs in the first stage. However, in the succeeding stages, the

strategy is rather di↵erent. Instead of following the order of jobs finishing in the previous stage,

all jobs are considered at once. The job that can be completed first by any of the machines in

the current stage calculated by Equation 5.2 is assigned to the corresponding machine. This

process continues until all jobs are assigned to machines in every stage. To clarify, we again

look at the example in Figure 5.2. Instead of considering only job 3, jobs 1 and 7 are also

considered for both machines. The job-machine combination that has the lowest completion

time is selected. Ties in completion time are given to the job completed earliest in the previous

stage.

Both makespan calculation procedures have their advantages and drawbacks. The FIFO proce-

dure is faster as only one job is considered at a time. Moreover, in the FIFO procedure, fewer

changes are made to the order of jobs since the order of completion from the previous stage is

used. Thus, the initial order from the search algorithm has a greater chance of manifesting itself

through the stages. More significant changes are likely made to the order of jobs in each stage

for the first-completion procedure. This procedure finds quite di↵erent solutions than the FIFO

procedure. For SDST problems, in particular, this may be beneficial as it allows for choosing

job sequences with low set-up times. However, the changes in one stage may not be the best in

the longer term, as this procedure does not consider what happens in future stages. In order to

find out which procedure performs the best, both are tested in Chapter 7.

5.3 Construction Heuristic

This section introduces two construction heuristics for two reasons. First, they are straightfor-

ward to implement and serve as benchmarks for the more complicated methods. If the more

complicated methods cannot produce better solutions, there is no reason to complicate matters.

Second, one of them provides an excellent starting point for the search by the improvement

heuristics covered in Section 5.4.

22

5.3.1 NEH

As mentioned in Chapter 2, NEH is considered state of the art among construction heuristics

for the permutation flowshop scheduling problem (Ruiz and Maroto, 2006). It has been used

extensively and later expanded for various extensions of the flowshop scheduling problem (FSP),

including the HFFSP SDST.

The expanded NEH algorithm consists of two main phases (Ruiz and Maroto, 2006): (1) For

every job, the sum of processing times for the job in all stages is found, and the list of jobs is

ordered in descending order of total processing times. (2) The jobs are inserted into a new list

in the order found in the previous stage. To decide a job’s placement in the new list, makespan

is calculated for every possible position for the job. The one yielding the lowest makespan is

chosen. This entails that the first job has only one possible position to be put in, the second

has two, and so on. The runtime complexity of NEH is O(|N |
3P|I|

i=1mi), where N is the set

of jobs and mi the number of machines in stage i 2 I (Fernandez-Viagas and Framinan, 2015).

Note that NEH operates with an encoded solution representation of only the jobs’ order in the

first stage. Ties go to the lowest index position. An example is provided in Figure 5.3 to clarify

how the second phase of the algorithm works.

Figure 5.3: Visualisation of NEHs second phase in an environment with four jobs. The next job to be placed in

the output list is highlighted (bold) in the input permutation. The arrows in each row indicate the best found

position for the current job.

Figure 5.3 illustrates the second phase of NEH. Assume four jobs are ordered by descending

total processing time in the first phase: [4,2,3,1]. Job 4 can only be placed in the one position

available in the new list. After calculating the makespan of [2,4] and [4,2], the latter is found

to have the lowest, placing job 2 after job 4. While inserting job 3, [4,3,2] is found to have

a smaller makespan than [3,4,2] and [4,2,3]. Finally, job 1 is placed in the first position by

the same arguments. This simple procedure has several times shown to produce high-quality

23

schedules for di↵erent FSPs.

5.3.2 Modified Dynamic Dispatching Rule

The modified dynamic dispatching rule (MDDR) heuristic, introduced by Naderi et al. (2010),

can be described by using the logic from the makespan calculation procedure first-completion,

introduced in Section 5.2.2, in every stage. The first stage uses Equation 5.1 for all combinations

of jobs and machines and schedules the sequence of jobs with the lower completion time. Ties

are decided in favour of the lower job number. All succeeding stages use Equation 5.2 in the

same manner as in the first stage.

With a runtime complexity of O(|N |
2P|I|

i=1mi), MDDR is faster than NEH as the number of

jobs increase (Naderi et al., 2010). Here, N refers to the set of jobs and mi the number of

machines in stage i 2 I. Moreover, while NEH has shown to provide good solutions for smaller

instances of the HFFSP SDST, MDDR performs better as the instances grow in size, especially

for large SDST problems. Since it is a bit di↵erent, fast, and has shown to provide good solutions

in the literature, it is considered a good benchmark for more complicated methods on the larger

problem instances.

5.4 Improvement Heuristics

Having introduced two methods to create initial solutions, we now introduce two iteration-

based meta-heuristics for improving existing solutions. Iterated Greedy is a well known, highly

randomised local search. GAs, on the other hand, are complex methods made to search more

expansive areas of the solution space. They are also based on randomisation but are less likely

to be stuck in a single local optimum. These meta-heuristics are chosen along the construction

heuristics to test diametrically di↵erent approaches.

5.4.1 Iterated Greedy

Iterated Greedy (IG) is a simple and e↵ective algorithm introduced by Ruiz and Stützle (2007).

The algorithm iterates an encoded solution representation of an ordered list of jobs going into

the first stage. This means that it needs a feasible initial solution. NEH is used to provide this.

Each iteration of IG starts by destroying the current solution by removing d jobs at random.

Then, in the order they were removed, jobs are inserted back into the destroyed solution by

the same method NEH uses to construct the schedules. Makespan is calculated for all possible

positions to place the job in, and the position yielding the lowest makespan is used. The lowest

index decides position in case of ties.

Once the solution is fully reconstructed, its makespan is compared to the current solution. If

it is better, the current and best solutions are updated. If it is not, the best solution stays

24

unchanged, and the current solution is updated with a probability given by Equation 5.3, where

Cmax(⇡00) is the makespan of the new solution, and Cmax(⇡) is the makespan of the current

solution. Note that the temperature in this equation is constant never to restrict the search too

much. This works well when the solution space has many local optima, and finding a solution

close to one of those is more important than finding the local optimum. Notice also that IG

has only two parameters, d and T , that need tuning.

prob = e�
Cmax(⇡00)�Cmax(⇡)

Temperature (5.3)

Temperature = T ⇤

Pm
i=1

Pn
j=1 pij

n ⇤m ⇤ 10
(5.4)

5.4.2 Genetic Algorithm

Another popular improvement heuristic in the field of flowshop scheduling, and the main focus

of this thesis, is the genetic algorithm (GA). It is a population-based algorithm working on a

pool of individuals, where each individual is a solution in itself. The di↵erence between a GA

and other searches done in parallel is that the GA combines the di↵erent solutions throughout

the search. GAs aim to make incremental changes to the individuals over generations, guided

by the objective function. Figure 5.4 shows a flow chart of the main components of a GA.

First, an initial population of a given population size is created. Then, each individual in

the population undergoes a fitness evaluation, evaluating its quality. Based on the resulting

fitness values, individuals are chosen for reproduction through a parent selection mechanism

with a bias toward choosing individuals with better fitness values. The selected individuals,

namely the parents, are combined two and two in crossover operators to generate o↵spring.

The crossover operators merge information from two parents into one or two o↵spring with a

degree of stochasticity (Eiben and Smith, 2015). The idea behind these operators is to combine

individuals with di↵erent but desired features to produce o↵spring who inhibit traits from both

parents.

Following crossover, the newly created o↵spring might undergomutation. Mutations are stochas-

tic operators that, with a small probability, modify the o↵spring to preserve and introduce

diversity.

The o↵spring, or children, can be further improved with a local search. This is a common way

to exploit problem-specific knowledge. Finally, the new population, or generation, needs to

be compiled with children, parents, or a combination of the two. This selection mechanism is

what is called a generational scheme. The generational scheme determines how many children

to create and how they are selected at the cost of their parents or discarded. The schemes

commonly use fitness to rank the candidates. They can, however, be extended further by a

technique called crowding to ensure the selection also considers diversity.

25

Figure 5.4: Overview of components of a genetic algorithm and the flow between them.

The GA either proceeds with a new generation or stops based on some termination criteria. It is

common to stop the genetic algorithm after a fixed number of generations, fitness calculations,

after a given time, or when one of the individuals is considered su�ciently good. Further details

on GAs and the GA implemented in this thesis are given in Chapter 6.

26

Chapter 6
Genetic Algorithm

This chapter describes the genetic algorithm (GA) introduced in this thesis in terms of the

steps and terminology introduced in Section 5.4.2. First, Section 6.1 defines the objective of

the GA. Then, Section 6.2 describes the representation of the individuals and how these map

to real-world solutions. Then follows the selection procedure in Section 6.4. Section 6.5 and

Section 6.6 describe crossover and mutation operators, respectively, while Section 6.7 explains

the local search. Finally, Section 6.8 considers generational schemes, whereas Section 6.9 and

Section 6.10 introduce crowding and replacement.

6.1 Objective

The objective of a GA is a function used to evaluate the individuals in the population. It is often

referred to as the fitness function since it takes an individual as input and yields a fitness value;

a measure of the quality of the solution. The fitness value is used as the basis of the search

procedure, as it is paramount when choosing parents for the next generations and o↵spring to

keep. In other words, the better the fitness value, the more likely the traits of an individual

are to be included in later generations. So, the objective must inhibit the requirements the

population should adapt to meet (Eiben and Smith, 2015).

The objective of the HFFSP SDST is an integer corresponding to the makespan of the indi-

vidual’s schedule. The calculation of makespan is performed as described in Section 5.2 and is

subject to minimisation.

27

6.2 Solution Representation

Each individual in the population is made up of a set of properties that defines its chromosome.

However, the chromosome is a genotype, an encoded version of the real-life interpretation, the

phenotype. The choice of encoding to use for the chromosome lays the foundation for the search

space of the genetic algorithm and its variation operators. This relation may be represented

through the invertible mapping f : G 7! P , where G is the genotype, and P is the phenotype.

This was covered in depth in Section 5.1, so with that reference: An ordered list of jobs to be

processed in stage 1 is chosen as the genotype, and the phenotype is found by the makespan

calculations introduced in Section 5.2.

6.3 Initialisation

The initialisation is kept simple in most GAs; the first population often contains only randomly

generated individuals (Eiben and Smith, 2015). Alternatively, problem-specific construction

heuristics can be used to provide better initial individuals. This, however, may come at the

cost of the population’s diversity, which could, in turn, reduce the breadth of the search. It is

common to use a mix of random and heuristic solutions in the first generation to resolve this

problem. The hope is thus to have the beneficial traits of high-quality solutions disseminated

to later generations without them dominating the whole search. Since this choice is highly

problem-specific, the initialisation is tested both as a mix and fully random.

The random initialisation is simple and consists of randomly ordering a list containing all the

di↵erent jobs. As for high-quality starting individuals, the NEH heuristic is used as a basis.

The NEH algorithm is described in Section 5.3.1 and constructs a high-quality individual.

However, as NEH provides only one unique solution, we changed the NEH procedure to include

randomisation and produce several high-quality individuals. Instead of using the sorted list of

jobs according to total production time as input in the second stage of the algorithm, a random

permutation of the jobs is used as input. Then, the algorithm proceeds to iteratively insert the

jobs in the best possible location in the output permutation. This allows for several high-quality

individuals to be created. We categorise the altered NEH algorithm as Greedy Construction

Heuristic (GCH).

6.4 Selection

There exist several selection mechanisms for selecting the parents in GAs, and tournament

selection is used in this thesis due to its simplicity and performance (Ruiz and Maroto, 2006).

Tournament selection is a selection mechanism in which a local tournament is set up between a

given number of individuals selected randomly from the population. The number of individuals

in each tournament, k, is referred to as the tournament size. Then the fittest of them is chosen.

The procedure selects one parent and is repeated to select as many parents as is required. An

28

example of tournament selection with a population size of six is shown in Figure 6.1. Here,

individuals are represented as circles, with their fitness values denoted. Individuals with fitness

values 8, 2 and 5 are selected randomly to participate in the tournament. Then, the individual

with a fitness value of 8 is selected as the winner, as it has the highest fitness value.

Figure 6.1: An example of tournament selection for a population with six individuals, and tournament size k = 3.

Maximisation of fitness is assumed.

Tournament selection emphasises the fitter individuals. However, varying the tournament size,

k, impacts the selection pressure in the population. When k is set high, a fit individual likely

dominates the population. Lower values of k mean higher chances for less fit individuals to re-

produce, thus maintaining diversity and increasing chances of escaping local optima. Therefore,

as with most other parameters, choosing a k is a trade-o↵.

6.5 Crossover

Crossover operators are stochastic operators merging information from two parents’ genotypes

into either one or two o↵spring genotypes. The choice of which parts of each parent are combined

and how this is done is subject to randomisation. Crossover operators aim to combine the

beneficial traits of two fit but di↵erent parents to create new, fit individuals. Permutation

representations, as found in this implementation, require special crossover operators to sustain

feasibility. In this thesis, four di↵erent crossover operators are implemented and tested. The

first two crossover operators are adapted from Ruiz and Maroto (2006), whereas the third is a

crossover operator originally developed for a vehicle-routing problem by Ombuki-Berman and

Hanshar (2009) but modified in this implementation to fit the HFFSP SDST. The final crossover

was first presented in Goldberg et al. (1985) and is a popular operator for many permutation

problems. Finally, we also examine options for alternating crossovers.

29

6.5.1 Similar Job Order Crossover and Similar Block Order Crossover

The first implemented crossover operator is the Similar Job Order Crossover (SJOX). SJOX

examines two parents’ genotypes, Parent 1 and Parent 2, on a position-by-position basis. Wher-

ever the two parents have the same job in the same position, the job is directly copied into two

new o↵spring, O↵spring 1 and O↵spring 2. Then, a random cut point is chosen between two

indices. Each job in front of the cut point of Parent 1 is copied directly over to O↵spring 1 and

similarly for Parent 2 and O↵spring 2. Finally, the remaining jobs which are not yet scheduled

in O↵spring 1 are inserted into the open positions in the order they appear in Parent 2, and

similarly for O↵spring 2 and Parent 1. An example of this crossover for a problem instance of

10 jobs is shown in Figure 6.2.

Figure 6.2: The dynamics of SJOX for a problem with 10 jobs.

The second crossover operator is the Similar Block Order Crossover (SBOX). This operator is

similar to SJOX, as it operates on a positional basis. However, SBOX copies blocks of two or

more similar jobs in the same positions succeeding each other, rather than single jobs. This is

based on the assumption that it is the sequence of jobs, rather than their absolute position, that

impacts the makespan the most. The rest of the procedure is the same for SJOX and SBOX.

30

6.5.2 Best Cost Block Crossover

The third crossover operator is adapted from a GA solving the vehicle routing problem. This

is a more problem-specific crossover which uses domain knowledge to generate good o↵spring.

The Best Cost Block Crossover (BCBX) takes two parents, Parent 1 and Parent 2, and creates

two o↵spring, O↵spring 1 and O↵spring 2. The o↵spring are initially created as direct copies of

the parents. Then, a sequence, or block, of jobs of a parameterised length is randomly selected

in each of the parents. Following this, all jobs which are present in the block from Parent 1

are removed from O↵spring 2, and similarly for Parent 2 and O↵spring 1. Finally, the block

from Parent 1 is inserted into the position in O↵spring 2 yielding the lowest makespan value,

whereas the same is done for Parent 2 and O↵spring 1. This operator enables potentially

beneficial sequences of jobs to be carried on through generations and inserts them into the

best possible locations. In turn, this may lead to higher quality solutions than solely random

operators do. However, the operator is more computationally heavy than the others, as more

makespan calculations are needed. An example of this operator applied to a problem instance

of ten jobs is illustrated in Figure 6.3.

Figure 6.3: The dynamics of BCBX for a problem with 10 jobs.

31

6.5.3 Partially Mapped Crossover

The last implemented crossover operator is the Partially Mapped Crossover (PMX). In PMX,

two positions are selected at random. Then, the sequence of jobs between these positions is

swapped between the parents to create O↵spring 1 and O↵spring 2. However, this operation

alone may break the permutation as a job may appear more than once, whereas others are

entirely removed.

Therefore, a partial map is identified between the blocks of jobs that are swapped. This map

consists of mappings between the pairs of jobs that occupy the same position in the two parents.

That is, if the first job in the block of swapped jobs is job 6 in Parent 1 and job 3 in Parent

2, 6 $ 3 appears as a mapping in the partial maps. These mappings are then used to fix the

broken permutations by updating the conflicting jobs in each o↵spring outside the swapped

blocks. If a job outside the swapped blocks exists in the partial map, it is changed to the job it

maps to. This mapping restores the permutations.

Figure 6.4: The dynamics of PMX for a problem with 9 jobs.

Figure 6.4 illustrates PMX for a problem instance with ten jobs. The sequences of jobs from

location 3 to location 6 are selected and swapped between the two parents to generate O↵spring

1 and O↵spring 2. Note that this operation breaks the permutation. For example, job 1 appears

twice in O↵spring 1, and never in O↵spring 2. Therefore, the pairs of jobs that are swapped

are recorded as mappings in the partial map (blue). Since, for instance, job 6 and job 3 are in

the same location in the selected sequence, they appear in the mapping. Because job 6 appears

in the selected sequence in both parents, this job maps to job 1 as well, as shown in the figure.

32

Finally, the jobs outside the selected sequence are mapped to their respective values for the two

o↵spring, and feasible permutations are restored.

6.5.4 Adaptive Choice of Crossover Operators

The most intuitive way of choosing a crossover operator in any GA is to use the same every

time. However, the di↵erent operators have unique traits, making it likely they perform well in

di↵erent search stages and for problem instances of particular characteristics. A low-e↵ort way

of testing if a combination of crossover operators provides a better search than a single one is

to choose the operator randomly. In addition, it serves as a good benchmark for any adaptive

method of choosing. A random crossover operator choice mechanism is implemented with all

aforementioned crossovers, and they are all given an equal chance of being picked every time

the crossover procedure is called.

Q-learning is a machine learning and, more specifically, a reinforcement learning technique that

keeps track of and updates the chances of choosing an action based on previous success (Watkins

and Dayan, 1992). Q-learning is based on an agent-environment interaction where the agent

can choose among available actions in any state of the environment it finds itself in. An agent

is defined as an entity sensing its environment, making autonomous decisions of its actions, in

this case, which crossover operator to use, and a manipulator of its surroundings. In this case,

the environment is known and deterministic, meaning that the agent can perceive the state of

the environment correctly and knows exactly how its actions will alter it.

At the heart of Q-learning is the Q-table of state-action pairs and Q-values. A state-action pair

is a combination of a state and an action, and a Q-value is a measure of success the agent has

had executing this action given the state. The agent chooses to execute the action with the

highest Q-value for a given state. However, for Q-learning to work in this context, the state

cannot be a representation of the population, as this is very unlikely to repeat, rendering the

system of learning ine↵ective. The Q-table is reduced to actions with a Q-value, making it a

total of four choices in every iteration.

The Q-values are all initiated to zero. Whenever an operator is used, the performance is

evaluated and given a reward, a measure of the operator’s success. The reward is set to the

improvement the best child has over the best parent. Crossovers are highly random, and the

parents are expected to be relatively fit. The goal of crossovers is not to produce improvements

every time but to induce diversity and find local optima. In addition, when using elitism

or steady-state, there is no di↵erence in a crossover producing a horrible or slightly inferior

o↵spring. O↵spring being better than the parents is the only thing that matters. For these

reasons, when failing to produce better o↵spring, crossovers are not punished proportionally to

the di↵erence in makespan between o↵spring and parent, but with a zero reward.

Once the reward is determined, the Q-value is updated with Equation 6.1. Qn(a) is the Q-value

of action a after the nth iteration, Rn(a) is the reward of action a in the nth iteration and ↵ is

the learning rate.

33

Qn(a) = (1� ↵)Qn�1(a) + ↵Rn(a) (6.1)

There is a constant dilemma of exploring if there exist any more suitable crossovers than the one

with the current highest Q-value and exploiting that the agent possibly knows what the current

best choice is. This is called the explore/exploit dilemma and is solved by an epsilon-value

denoting the chance of making a random choice among the available actions. Epsilon needs to

be tuned along with the learning rate.

6.6 Mutation

Mutations are variation operators usually working on only one individual at a time, making

slight modifications to chromosomes called mutants (Eiben and Smith, 2015). Mutation takes

place after parents are selected and crossover is performed. It is relatively rare in biology,

and the same is seen in most GAs, with a mutation probability around 2% (Simon, 2013).

Nevertheless, mutation is important, allowing the evolutionary process to explore new areas of

the search space and increasing diversity. For this thesis, four di↵erent mutation operators are

implemented and tested.

6.6.1 Shift

The first mutation operator is the Shift mutation. The Shift mutation selects a job at a random

position in the permutation and inserts it into another randomly selected position. The jobs

between these two positions are shifted one position forwards or backwards, without changing

their internal order, to accommodate the move. For example, if the job at location 3 is moved

to location 7, the jobs that occupied positions 4 to 7 are moved to occupy positions 3 to 6. This

is illustrated in Figure 6.5.

Figure 6.5: The dynamics of the Shift mutation.

6.6.2 Swap

The second mutation operator is the Swap mutation. Similarly to the Shift mutation, two

positions are selected at random. However, instead of moving only one job and shifting the

rest, the two jobs that occupy the two random locations swap places. This is illustrated in

Figure 6.6, where job 5 and job 9 are selected to swap positions.

34

Figure 6.6: The dynamics of the Swap mutation.

6.6.3 Reversal

In the third mutation operator, the Reversal mutation, one position is selected at random.

Then, the sequence of jobs within a fixed range behind this position, including the position,

is reversed. For example, if the selected position is 2, and the range we want to reverse is of

length 4, then position 2 is swapped for position 5 and position 3 is swapped with position 4,

as visualised in Figure 6.7.

Figure 6.7: The dynamics of the Reversal mutation.

6.6.4 Greedy

The final implemented mutation operator, Greedy, is problem-specific and uses domain knowl-

edge to create higher-quality o↵spring. This operator selects a job at random and removes it

from the sequence of jobs. Then it checks all possible positions in the sequence for the position

yielding the lowest makespan. If there are several positions with equal lowest makespan, one of

them is picked at random. Figure 6.8 displays an example of the Greedy mutation operator for

a problem instance with 10 jobs. Job 2 is selected for re-positioning. All possible positions are

evaluated, and there are two positions with equally low makespan (arrows). The arrow marked

with an asterisk (*) is randomly picked between these two superior positions.

Figure 6.8: The dynamics of the Greedy mutation.

35

6.7 Local Search

After new individuals have been created and potentially mutated, they could be further im-

proved by a local search. Though this is not something every GA uses, IG is implemented as

described in Section 5.4.1. Each iteration of IG is very time-consuming compared to crossover

and mutation operators. Therefore, to make sure the local search does not occupy the larger

part of the run-time of the GA, the number of iterations is limited by a parameter.

A GA enhanced with a local search is in the literature typically referred to as a memetic

algorithm. However, as the local search is an extension that will be tested and not an integral

part of the GA itself, we will continue using the term GA for our implementation.

6.8 Generational Scheme

The generational scheme in a GA dictates the change in population from generation to genera-

tion. Two typical generational schemes are generational GAs and steady-state GAs. Both are

implemented and described in this section. Their performances are highly problem dependent

and have to be tested.

6.8.1 Generational Genetic Algorithm

A generational GA generates as many o↵spring in each generation as there are parents in the

population. In each generation, all parents in the current population are discarded to make

space for the newly created individuals, which then constitute the new population. This is done

by filling up a mating pool with the selection procedure, tournament selection, as described

in Section 6.4. Since fitter individuals are more likely to be selected, they often appear more

than once. When the mating pool is filled up, two and two parents, starting with the first

and second parent, are paired together to create o↵spring through crossover and mutation.

This generational scheme changes the whole population every generation and thus makes large

changes every iteration. Generational GAs often implement elitism. Elitism involves keeping a

small number of the best-known parents instead of replacing all of them each generation.

6.8.2 Steady-State Genetic Algorithm

With a steady-state generational scheme, only one or two new o↵spring are created in each

generation. For each generation, two parents are selected. Crossover is used to generate new

o↵spring, and these are potentially mutated. Their fitness is compared to the current least fit

individuals in the population. If the o↵spring is fitter, they replace the least fit individuals; else,

they are discarded. As opposed to a generational GA, the steady-state GA only makes small

changes to the population in every generation.

36

6.9 Crowding

Niching algorithms are used to maintain diversity and are an important research area in genetic

and evolutionary computing (Mengshoel and Goldberg, 2008). The two main objectives of

niching algorithms are to (1) converge the population to multiple, highly fit, and significantly

di↵erent solutions and (2) slow down convergence in applications where only one solution is

needed. Crowding is, together with other methods such as fitness sharing and clustering, a

common niching approach. It is important to note that these methods change the generational

schemes rather significantly by altering the methods of selecting the new generation.

It is paramount to define what similarity between individuals means when considering diversity.

For permutations, like job sequences, several distance metrics exist for defining similarity, and

a comprehensive list is provided by Cicirello (2019). We focus on algorithmic and run-time

simplicity, and the two chosen metrics are introduced below.

Exact Match

The exact match metric counts the positions where two permutations di↵er. This is done by

looping through the two job permutations parallelly and increasing a counter for every position

with di↵erent jobs. For this implementation, the metric runs in O(n) time, where n is the

number of jobs. Figure 6.9 shows an example of a problem with ten jobs. The jobs in six

positions di↵er, and thus, the exact match distance is six.

Figure 6.9: An example of the exact match distance metric. The distance in this example is six.

Deviation Distance

The deviation distance metric is the sum of all index deviations between the same jobs in two

job permutations. This metric is implemented by running through the permutations, p1 and p2,

and storing the elements’ positional indexes in separate arrays, i1 and i2. Then the di↵erence

in each job’s indices is calculated and summed. This gives a run-time complexity of O(n), n

being the number of jobs. This is exemplified in Figure 6.10 with a problem instance of ten

jobs. Since job 1 is found in the 5th position in p1, the 1st entry of i1 is 5, and so on. In d12,

the absolute values of the di↵erences between the entries in i1 and i2 are recorded. The final

metric is the sum of these values, and the distance is found to be 18.

With well-defined similarity measures and diversity in mind, the initial single focus on fitness in

the generational schemes is changed. Instead of always considering the entire population while

evaluating children, crowding uses smaller tournaments among similar individuals. This is to

avoid replacing a solution in a very di↵erent part of the search space because it has a lower fitness

value. Here, we propose the famous allegory of comparing apples to oranges. Two solutions

can have very di↵erent contributions to the process and should not be put up against each

37

Figure 6.10: An example of the deviation distance metric. The distance in this example is 18.

other. Note that generational GAs and steady-state GAs are di↵erent and have di↵erent ways

of determining what individuals are to compete in a tournament. However, the replacement

rules for deciding which individual to keep once the tournament is set are the same. The two

crowding algorithms are explained in Section 6.9.1 and Section 6.9.2, while the replacement

rules are introduced in Section 6.9.3.

6.9.1 Implicit Crowding

Implicit crowding is used for generational GAs and implements tournaments between children

and their direct parents. This changes the implementation of generational GAs by allowing

parents to survive at the cost of their children. It is done by comparing the individuals most

alike. The approach works as follows (Galan and Mengshoel, 2010):

1. Parents (p1, p2) are selected through the given selection mechanism and paired for crossover

to generate children (c1, c2). Mutation is applied with a probability Pm.

2. Children (c1, c2) compete with one of their parents depending on the chosen distance

metric. Let d(i1, i2) denote the distance between two individuals, i1 and i2:

If d(p1, c1) + d(p2, c2) < d(p1, c2) + d(p2, c1)

w1 winner of competition between p1 and c1
w2 winner of competition between p2 and c2

else

w1 winner of competition between p1 and c2
w2 winner of competition between p2 and c1

In the tournament above, w1 and w2 denote the winners of the two local competitions, respec-

tively. Put in words, implicit crowding pairs parents and children based on their similarities.

If the sum of the distances between (p1, c1) and (p2, c2) is less than that of (p1, c2) and (p2,

c1), then p1 competes with c1 and p2 competes with c2. Else, p1 competes with c2 and p2
competes with c1. The winners of the pairs are kept for the new generation. In general, the

fittest individual triumphs, but more on this in Section 6.9.3.

38

Using implicit crowding in a steady-state GA does not have the intended e↵ect. The fitter

parents have a higher probability of being selected for reproduction, and these would also have

a higher probability of being replaced when o↵spring compete with their direct parents. The

less fit individuals, which are more seldomly selected, would then be included in the population

for a longer time, even though they are very similar to the fitter children.

6.9.2 Explicit Crowding

Explicit crowding is used for steady-state GAs and implements tournaments between a child

and a number of the most similar parents. To initiate a tournament using explicit crowding, the

k individuals most similar to a new child are identified. The child and the least fit individual

among the ones identified compete to decide who proceeds to the next generation. The k-nearest

approach that is used here is very sensitive to the parameter k, so this should be chosen carefully.

Figure 6.11: The k-nearest procedure for selecting who will compete with the newly created child (purple), when

k = 3. Individuals are represented as circles, with their respective fitness values denoted. The fitness is assumed

maximised in this example.

In Figure 6.11, explicit crowding with the k-nearest approach is visualised. The individuals

are represented as circles with respective fitness values denoted (fitness is assumed maximised).

The newly created child is marked in purple, and its three nearest neighbours are found inside

the dotted circle. Of these three individuals, the one with a fitness value of 7 is the least

fit. Therefore, this is the individual selected to compete with the o↵spring for survival. The

internals of the actual competition is described in the following section.

6.9.3 Replacement Rules

As described above, local competitions are created in both implicit and explicit crowding.

These competitions consist of replacement rules that are responsible for deciding which of

the two competing individuals wins. Typical replacement rules are Boltzmann replacement,

deterministic crowding, probabilistic crowding and generalised crowding (Galan and Mengshoel,

39

2010). In the next paragraphs, the latter three will be briefly explained. In these paragraphs,

the fitness function, f : Zn
+ 7! Z+, is assumed to be maximised, without loss of generality. For

minimisation problems, the function f can be substituted as 1/f instead.

Deterministic Crowding

In deterministic crowding, the survivor of the competition between parent p and child c is sim-

ply the individual with the highest fitness. Let Pc denote the probability that child c replaces

parent p in the population. Then it is given by the following expression:

Pc =

8
>><

>>:

1 if f(c) > f(p),

0.5 if f(c) = f(p),

0 if f(c) < f(p).

(6.2)

Probabilistic Crowding

In contrast to deterministic crowding, probabilistic crowding uses a non-deterministic rule to

choose a survivor between parent p and child c. The probability depends on the ratio of the

fitness between the two individuals. The probability that the child survives, Pc, is defined as

follows:

Pc =
f(c)

f(c) + f(p)
(6.3)

Generalised Crowding

In generalised crowding, the probability is scaled by a factor of �. This scaling factor o↵ers a

broad range of replacement rules by simply adjusting �. In generalised crowding, the probability

that child c survives the tournament, Pc, is defined as follows:

Pc =

8
>><

>>:

f(c)
f(c)+�⇥f(p) if f(c) > f(p),

0.5 if f(c) = f(p),
�⇥f(c)

�⇥f(c)+f(p) if f(c) < f(p).

(6.4)

Equation 6.4 assumes maximising f , as well as � 2 R+
[{0}. Notice that for � = 0, the

probability for generalised crowding becomes equal to that of deterministic crowding. Moreover,

for � = 1, generalised crowding turns into probabilistic crowding. For 0 < � < 1, it is possible

that the least fit of the competing individuals wins, but less likely than in probabilistic crowding.

Finally, for � > 1, the probability that the least fit individual wins the tournament is greater

than that of probabilistic crowding. Generalised crowding is implemented, as this implicitly

also leaves the option to test both deterministic and probabilistic crowding.

40

6.10 Replacement

A replacement scheme is used to avoid stagnation and replaces the least fit portion of the pop-

ulation, Pr, after a given number of iterations, t, without improvement in the fittest individual.

We propose three replacement schemes:

1. Random: Replace Pr of the population with randomly generated individuals.

2. GCH: Replace Pr of the population with individuals generated by the GCH described in

Section 6.3.

3. Mutate: Replace Pr of the population where half of the new individuals are made by

repeatedly choosing one of the individuals from the (1�Pr) fittest portion of the population

and mutating it once. The second half is randomly generating new individuals.

41

Chapter 7
Computational Study

This chapter describes the testing methodology, presents and discusses the results from tuning,

and concludes on the performance of the implemented algorithms. The focus is on tuning the

genetic algorithm (GA) and comparing it with the benchmark algorithms and the mathematical

model. Section 7.1 introduces the problem instances used for testing. Section 7.2 presents and

discusses the results of tuning the GA, whereas Section 7.3 comments briefly on tuning the

Iterated Greedy (IG) algorithm. Finally, the algorithms’ convergence and performance are

examined in Section 7.4 and Section 7.5, respectively.

All algorithms are implemented in the programming language Rust. The complete list of tech-

nical specifications is given in Table 7.1. A random seed is set to assure reproducible results.

In Rust, this is done by initiating a random number generator with the given seed and then

passing this generator to every operator in the GA that depends on random drawings. This is

equivalent to keeping a list of random numbers and drawing the next one every time any random

choice is made. The generator is re-initiated for the solution process of every problem instance,

which is equivalent to starting from the beginning of the list of random numbers. It should be

noted that the sequence of random numbers in Rust is system dependent, so to reproduce our

exact results, the tests would need to be performed in a similar environment.

Table 7.1: Hardware and software specifications used in the computational studies.

Processor 2.90 GHz Intel Core i7-10700

Memory 16 GB RAM

CPU Cores 8

Operating System Windows 10 Education

Rust version 1.59.0

Random seed 123

42

7.1 Problem Instances

To compare the algorithms, we use a set of 960 problem instances developed by Naderi et al.

(2010). The problem instances range between 20 and 120 jobs, 2 and 8 stages, and there are

between 1 and 4 machines in each stage. More specifically, there is a uniform distribution

of instances of 20, 50, 80, and 120 jobs and instances with 2, 4, and 8 stages. Moreover,

the processing times are generated from a uniform distribution [1, 99]. For the smaller problem

instances of 20 to 50 jobs, half of the instances have their set-up times drawn from a distribution

which is 25% of the processing time distribution. The other half has set-up times from the

processing distribution, meaning that set-up times and processing times are, on average, the

same size. The larger instances, 80 to 120 jobs, scales the set-up-to-processing distribution ratio

in four equally large levels: 25 %, 50 %, 100 % and 125 %. The variation in ratios ensures the

problem instances are of diverse characteristics, so the algorithms are evaluated for a wide range

of production situations. All instances are available for download from http://soa.iti.es.

The set of problem instances is called ”Instances for hybrid flexible flowshop problems with

setups”, and the download also includes a detailed description.

7.2 Tuning of Genetic Algorithm

This section presents results from tuning the GA, which is vital to its performance. Since there

are many parameters and combinations, the approach needs to be systematic. Section 7.2.1

describes the testing methodology, and in Section 7.2.2, the results are presented and discussed,

and the parameters are determined.

7.2.1 Methodology

Ninety-six problem instances are chosen to test set-ups of the GA, which is a representative

selection. The reasoning is twofold. (1) Limiting the test set helps to avoid overfitting, which

is a problem when tuning and testing on the same data set. Overfitting makes the resulting

algorithm adept at solving the problem instances it is tuned for but leads to a loss of generality.

(2) It saves time and simplifies testing. A representative selection is achieved by selecting eight

instances for each combination of jobs and stages. In addition, instances are selected with

representative set-up-to-processing time ratios.

A reasonable set of parameters that receive good results is found through preliminary tests.

These parameters are used as the base case and listed in Table 7.2. With the base case es-

tablished, several values are tested at a time for one or two parameters. If a parameter value

performs better than the parameter value in the base case, its value is updated. Then, the

updated base case is used in the next test. This process repeats until all parameters are tested

with the ever-updating base case. We have not opted to test every parameter combination as

some do in the literature. It would be too time-consuming with the number of parameters

43

http://soa.iti.es

included in this study. Not testing all instances and all combinations of parameters might not

yield the optimal set-up, but meta-heuristics are not about absolute precision. As will be evi-

dent in Section 7.2.2, we do not consider the statistical significance of the performance of any

parameters for the same reason.

Table 7.2: The parameter values in the base case resulting from preliminary tests.

Parameter Value

Makespan calculation FIFO

Generational scheme Steady-state

Initialisation GCH (100 %)

Population size 150

Tournament size 2

Crossover PMX

Mutation Shift

Mutation probability 5 %

Local search No

Crowding No

Replacement No

During tuning, the GA is allocated time based on the size of the problem instances it solves.

The relevant size indicators are the number of jobs and stages, which determine the solution

and search space. This is in line with the literature as seen in, for instance, Naderi et al. (2010).

The exact time allocated is given by Equation 7.1, N being the set of jobs, and I the set of

stages.

Time (ms) = |N |
1.7

· |I| · 1.5 (7.1)

This equation results in 488 ms of run-time for the smallest problem instances consisting of 20

jobs and two stages. On the other end of the spectrum, the largest instances consisting of 120

jobs and eight stages are allocated about 41 s. The time starts at the first line of code, being

initialisation, and interrupts the algorithm during the final generation.

Several parameter values or algorithms are used to solve the same problem instances during

testing. To determine which performs better, they need to be compared with a suitable measure.

Using the average makespan is a poor measurement as the larger problem instances or those

with longer production or set-up times will dominate the smaller ones. We opt, therefore, to

use the relative percentage deviation (RPD) as defined by Equation 7.2. Algsol refers to the

makespan of a given algorithm, whereas Bestsol refers to the best makespan achieved by any

of the competing algorithms. Using the average RPD makes it possible to compare algorithms

despite varying problem sizes.

44

RPD =
Algsol �Bestsol

Bestsol
· 100% (7.2)

7.2.2 Tuning

This section presents the results from the tuning of the implemented GA. In total, 11 di↵erent

tests have been carried out. Only the most prominent results are discussed as this is a com-

prehensive study. The results from all tests are found in Appendix A. The second axis of all

graphs in this sub-section is the average RPD, as described in Section 7.2.1. The vertical bars

extending from the average RPD are the standard error of the mean (SEM) of the RPDs. SEM

measures how di↵erent the population mean likely is from a sample mean. This is calculated as

per Equation 7.3. Here, � refers to the standard deviation of the RPDs and n to the number

of instances.

SEM =
�

p
n� 1

(7.3)

Makespan calculation

It appears to be significant performance deviations between the two makespan calculation pro-

cedures presented in Section 5.2. In fact, the FIFO procedure results in a better makespan

value in 90 out of the 96 problem instances. The average RPD for the FIFO procedure is < 1%,

whereas it is 15 % for the first-completion procedure.

While examining the solutions made by the first-completion procedure, it becomes apparent

that the reason for the performance gap might be more intuitive than first anticipated. The

first-completion procedure always assigns machines the job that can be completed first. It

does not consider what jobs are currently in the bu↵er, ready to start processing. Therefore,

machines could end up idle, waiting for a job to finish in the previous stage. This defect is

illustrated with an example in Figure 7.1

Figure 7.1: The two alternatives of assigning job 2 and job 3 to a machine in an arbitrary stage.

Figure 7.1 is an example of the issue the first-completion procedure experiences when assigning

jobs to machines. For simplicity, the example only considers the assignment of two jobs on one

machine in an arbitrary stage. Job 1 is already assigned, whereas jobs 2 and 3 are not. Job 2

is available in the machine’s bu↵er at the moment when job 1 is done processed, whereas job

45

3 arrives at a later time. Moreover, job 2 has a considerably longer processing time than job

3 in this stage. The figure illustrates the schedules of processing job 2 before job 3 and vice

versa. With the first-completion procedure, the machine waits for job 3 rather than processing

job 2 first since it can complete job 3 the earliest. This corresponds to Alt 2, with idle time the

machine could have avoided with Alt 1.

We find the phenomenon to occur the most when the di↵erences in processing times are exten-

sive. The jobs with the shorter processing times will often be prioritised, leaving the jobs with

the longer processing times to be processed last. Another e↵ect, not evident from this example,

is that schedules derived from the first-completion procedure are very similar for di↵erent input

permutations. Similar schedules would not have been a problem had they been satisfactory.

However, they are, in general, worse than the schedules provided by the FIFO procedure. The

dismal performance of the GA could also be due to the symmetry the first-completion procedure

introduces. With a many-to-one mapping between the solution- and search space, the search

space has redundancy, as it operates with solutions without any practical significance. It also

flattens the search space, giving more solutions the same objective value making it di�cult

for search algorithms to manoeuvre. For these reasons, the FIFO procedure is chosen as the

makespan calculation procedure.

Generational scheme

The second entry in the base case is the generational scheme. Figure 7.2 shows the GA with a

steady-state generational scheme outperforming the GA with a generational set-up. Although

it is di�cult to say why this is for certain, one explanation could be the complexity of the search

and the lack of fit children. If, on average, the new generation is worse than the old, besides

the few solutions kept due to elitism, then using a GA changing the entire population in every

generation might not provide the same progression that a steady-state GA does. This reasoning

comes from the idea that, given enough diversity, changing an individual for a less fit one will

not take the search in the right direction. It is also in accordance with literature that has tested

both schemes (Ruiz and Maroto, 2006; Ruiz et al., 2006). For these reasons, steady-state is

included in the base case.

Generational Steady

0.2

0.4

0.6

0.8

R
PD

 (%
)

Figure 7.2: Average RPD for the generational and steady-state generational schemes.

46

Initialisation

Five di↵erent methods for initialising the population are considered. Like in most literature,

an entirely randomly generated population is tested. With a slight tweak, the population is

also initialised with randomly generated individuals and one individual created by the adapted

NEH heuristic. Finally, three di↵erent alternatives are tested with individuals created by the

Greedy Construction Heuristic (GCH). These alternatives include initialising 20 %, 50 %, and

100 % of the initial population with solutions from the GCH. The remaining individuals that

are not created by GCH are created randomly. From Figure 7.3, it is evident that initialising

the population with solutions solely from the GCH performs the best.

20 50 80 120

0.5

1

1.5

2

2.5

3

GCH (0.2)
GCH (0.5)
GCH (1.0)
NEH
Random

Number of jobs

R
PD

 (%
)

Figure 7.3: Average RPD for the di↵erent initialisation methods, grouped by the number of jobs.

It is not surprising that starting with reasonable solutions is better than the alternative. Es-

pecially knowing that there is no reason to believe these solutions to be less diverse than what

randomly generated solutions are. Figure 7.3 shows the gap from random and NEH to GCH

increases as the number of jobs increases. The increasing gap shows how more than one fit

solution grows in importance as the number of jobs increases.

Another observation is that the spread among 20%, 50%, and 100% fit solutions decreases as the

number of jobs increases. A reason could be that for larger problem instances, the extra search

time outweighs the gains of an initially all fit population. Figure 7.4 shows that creating 100%

fit individuals takes up a significant amount of the time for larger instances with 41 s run-time.

With the smaller instances, it is, to the contrary, insignificant. These results indicate that the

initial population benefits from a critical mass of fit individuals with a steady-state generational

scheme. However, increasing it further gives limited benefit, especially for the larger problem

instances. With 100% fit individuals being best for all instances, it is included in the base case.

47

0 20 40 60 80 100 120

85

90

95

100 GCH (1.0)
Random

Time (s)

M
ak

es
pa

n
(%

 o
f i

ni
tia

l)

Figure 7.4: Convergence of the average of ten problem instances with 120 jobs and 8 stages.

Figure 7.4 shows how the GA with random initialisation converges quickly for the first gen-

erations but never reaches the best initial solution created with GCH within the 41 s. This

phenomenon does not change when running them in parallel for a while longer. However, it is

possible that the random initialisation eventually would reach the level of a 100% GCH initial-

isation. Note that the graph does not include the progression of GCH improvements, and the

entire initialisation of GCH (1.0) is set to the best solution found at any time during initialisa-

tion. Since 100% GCH initialisation works best in the time frame considered in this thesis, it

is added to the base case.

Population size

Preliminary testing found a population size of about 150 to be best. Thus, test values are chosen

based on this and what others have used previously, which is generally a bit below 150. The

results broken down by the number of jobs can be found in Figure 7.5. Note that a population

size of 50 is the worst option for all but 120 jobs and is significantly better for 80 than 20

and 50 jobs. This behaviour could be connected to the initialisation of the population. The

GA spends a large amount of its available time generating the initial population for the larger

instances. A smaller population size allows for more time to perform crossover and mutation,

whereas a population size of 300 probably does not have any time for this. That could explain

why the performance of the GA for the larger problem instances is inversely proportional to the

population size. Nevertheless, this study looks to maximise the performance of the GA for all

problem instances. With a population size of 150 having the lowest average RPD, it is included

in the base case.

48

20 50 80 120

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
100
150
300
50

Number of jobs

R
PD

 (%
)

Figure 7.5: Average RPD for di↵erent population sizes, grouped by the number of jobs of problem instances.

Tournament size

A tournament size of 2 is best on average and close to the best for all problem instance sizes in

the number of jobs and stages. The second best option is 3, indicating that tournaments among a

few individuals are the most e↵ective. As the steady-state generational scheme prioritises elitism

over diversity, a small tournament size gives the opposite e↵ect. All the graphs containing the

results of this test are included in the Appendix A. A tournament size of 2 is kept in the base

case.

Crossover

The fifth entry in the GA’s base case is the crossover. The results from this test are plotted in

Figure 7.6. BCBX is the best operator out of the four implemented crossover operators. This

operator finds excellent solutions for the smaller problem instances of 20 and 50 jobs. However,

for the larger instances, other crossover operators perform better. This is likely because BCBX

operates similarly to GCH and spends more time generating children as the problem instances,

and hence job permutation sizes increase. SBOX and SJOX do not have this disadvantage for

the larger problem instances and outperform the other crossovers for 80 and 120 job instances.

When looking at performance categorised by the stages in problem instances, the BCBX is again

superior out of the standard crossover operators. The di↵erence is most prominent in problem

instances with eight stages. The outperformance in many stages can be due to choosing blocks

that work well for more than the first stages. BCBX uses domain knowledge and tests several

alternative solutions. This search is more complicated and might draw more use of the extra

complexity of the BCBX operator.

49

20 50 80 120

0.5

1

1.5

2

2.5

3
BCBX
PMX
Q-Learning
Random
SBOX
SJOX

Number of jobs

R
PD

 (%
)

2 4 8

0.5

1

1.5

2

2.5

3
BCBX
PMX
Q-Learning
Random
SBOX
SJOX

Number of stages

R
PD

 (%
)

Figure 7.6: Average RPD for the crossover operators, grouped by the number of jobs (left) and the number of

stages (right).

Choosing a random crossover operator is never the best option out of all the crossover methods

tested here, but it performs well overall. It has the second-lowest average RPD, indicating that

varying the choice of crossover has some merit. With a random choice, the BCBX is chosen

su�ciently often for a random choice to beat the other standard crossovers in BCBX’s optimal

range. In addition, it is punished less severely for the larger instances, using enough of the

quicker crossover operators to ensure su�ciently many iterations.

The best choice of an operator is to choose it adaptively, as here implemented by a version of

Q-learning. It gives, by far, the lowest average RPD and is among the best alternatives across

all sized problem instances. After running the algorithm, inspecting the Q-table shows that

BCBX is chosen more often for the smaller problem instances, and PMX, SJOX, and SBOX are

chosen more for the larger ones. Before this test, however, the internal parameters of Q-learning

are tuned. The results can be found in Appendix A. The best options are a learning rate of 0.2

and an epsilon of 0.25. These parameters emphasise that although the algorithm should be able

to learn, it should also be able to reconsider rather quickly and keep choosing a large portion

of the crossover operators at random. Since it performs best overall, Q-learning is adopted into

the base case.

Mutation

Out of the four mutations, Shift and Greedy perform nearly equally well. They receive an

average RPD well below Swap and Reverse. Possible reasons for this could be that Shift mostly

maintains blocks of jobs in the job permutations while giving only one job a new relative order,

whereas most of the other jobs keep their immediate predecessor and successor. This is one of

the aspects described thoroughly in the literature. On the other hand, Greedy breaks down the

solutions more but uses domain knowledge to build them up again. It may not keep the blocks

but ensures the creation of some that are probably just as good or better. These mutations

cater well to the sequence-dependent set-up times, which Reverse and Swap do not. Reverse

changes the whole order of a section, potentially increasing set-up times, and Swap breaks up

twice as much of the order as Shift does.

50

Shift Greedy Swap Reverse Random

0.6

0.7

0.8

0.9

1

Mutation type

R
PD

 (%
)

Figure 7.7: Average RPD for the di↵erent mutation operators.

The best option is to use them all by choosing a random one each time. This sits well with the

intention of using mutations in the first place, which is to induce diversity. Potentially, more

of the search space will be covered by switching the mutator. For these reasons, the random

choice is included in the base case. Note also that the performance of mutations is tightly

coupled with the mutation rate. The mutation rate is tested, and the results can be found in

Appendix A. While the literature commonly uses mutation rates around 2%, these tests with

a random mutation operator find the best choice to be 10%. It is the dominant option in most

categorisations according to size.

An adaptive approach with Q-learning could have been applied for mutation operators as well.

However, there is less di↵erence in which mutation operator performs best for the di↵erent sized

problem instances than for crossover operators. Since there is less di↵erence, there is likely less

of a performance enhancement to gain from an adaptive choice. Therefore, and to limit the

number of parameters, Q-learning is not tested for mutations.

Local search

Contrary to the results of Murata et al. (1996); Ruiz and Maroto (2006); Ruiz et al. (2006);

Yu et al. (2018), a local search does not improve the performance of our GA. The results are

displayed in Figure 7.8. Here, 5, 50, and 500 iterations of IG have been tested after o↵spring is

created through crossover and mutation. The lack of improvement could be caused by the local

search seizing time from the other operators of the GA that use the time better. One iteration

of IG takes significantly more time than one iteration of the crossover and mutation operators,

except for BCBX and Greedy. The time complexity is similar to that of these operators. Another

coinciding reason could be how IG destroys and rebuilds job permutations, similarly to what

51

BCBX and Greedy do. The e↵ect of an extra search with the same concept as these operators

is probably limited. None of the four aforementioned papers uses BCBX nor Greedy, which fits

well with the hypothesis.

There appears to be a trend in Figure 7.8 indicating that more iterations of IG are better than

fewer. Nevertheless, we refrain from increasing the number of iterations further as it could

potentially dominate the GA. With 500 iterations, IG is already the most time-consuming

operator of the GA. Notice that IG is tuned, and the results are presented in Section 7.3. Since

the local search does not improve the GA, it is not included in the base case.

5 50 500 No Local Search

0.5

1

1.5

Iterations

R
PD

 (%
)

Figure 7.8: Average RPD for di↵erent number of iterations for the local search and no local search.

Crowding

The crowding methods are tuned before testing their impact on the GA. The results from

each of these tests are found in Figure 11 and Figure 12 in Appendix A. It shows that both

deviation distance crowding and exact match crowding are best with a crowding scale of zero

and k-nearest of 20. This implies deterministic crowding and comparison to 20 neighbours.

The results further indicate that increasing the number of neighbours could provide even better

results. It is not tested as it would increase the selection pressure and undermine the rationale

for crowding in the first place.

With tuning revealing that deterministic crowding with many neighbours dominates the alter-

natives, it is no surprise that no crowding is, in fact, better. This is the equivalent of increasing

the neighbourhood size to equal the population size. Figure 7.9 shows how no crowding is better

than the tuned crowding methods for all categories of problem instance sizes grouped by the

number of jobs. It can be seen in Appendix A, Figure 13, that this is true with regards to the

number of stages as well.

52

20 50 80 120

0

0.5

1

1.5

2 Deviation Distance
Exact Match
No Crowding

Number of jobs

R
PD

 (%
)

Figure 7.9: Average RPD for crowding with the two di↵erent distance metrics compared to no crowding, grouped

by the number of jobs.

There are several reasons why crowding might not have the intended e↵ect on the GA. One

could be how crowding a↵ects the replacement in the steady-state GA. Without crowding, the

o↵spring replace the worst individuals in the population. With crowding, fitness is no longer

the sole criteria for keeping o↵spring. Furthermore, tournament selection has a bias towards

selecting fitter individuals as parents. The parents are likely to be similar to their o↵spring,

and with probabilistic crowding, with few neighbours, the parents could be replaced by a less fit

o↵spring. In every generation where this happens, the search can, in theory, regress. While this

is the intention of crowding, it is built on the assumption of lacking diversity. If the diversity is

satisfactory, there is no good reason to replace fit solutions with less fit ones.

Although crowding does not generally provide better results, it is apparent from Figure 7.9

that exact match crowding provides better results as the problem instances grow in the number

of jobs. This might be due to the increase in the search space, for it might also increase the

number of local optima. Then, crowding is likely to be more helpful in spreading the solutions

across these local optima.

An important note regarding crowding is the testing conditions. The tests are run for an amount

of time found to allow convergence without crowding. As crowding is used to delay convergence,

it is natural that it does not improve the performance with limited run-time. These results could

be very di↵erent with increased run-time. However, this thesis aims to solve the problem with

limited time, so no changes are made, and crowding is not included in the base case.

Replacement

The final test examines if new individuals should replace a given portion of the population

upon stagnation. The three di↵erent methods, mutate, random, and GCH are tested with a

53

replacement rate of 20%, as they are described in Section 6.10. That means the least fit 20%

is replaced in case of stagnation. From Figure 7.10, it is apparent that the mutation scheme

performs quite well compared to the others and is better than having no replacement scheme

at all. This result aligns with many of the earlier tests indicating su�cient diversity. This

could explain why introducing new randomly generated solutions has a negative impact. If the

diversity is satisfactory, the only e↵ect is to replace solutions close to local optima. Introducing

new individuals with GCH could alleviate the problem by providing solutions close to local

optima. However, creating new solutions with this heuristic is very time-consuming. The

results are clear; the extra time it takes to generate fit replacement individuals is not worth it.

Mutate, 1000

Random, 1000

GCH, 1000

Mutate, 3000

Random, 3000

GCH, 3000

Mutate, 5000

Random, 5000

GCH, 5000

No replacement

0.4

0.6

0.8

1

1.2

1.4

R
PD

 (%
)

Figure 7.10: Average RPD for di↵erent replacement schemes compared to no replacement. The first axis shows the

replacement scheme, as well as number of iterations without improvement in the best solution before replacement.

In order to determine how large the portion of the population should be replaced, a separate

test is performed. The results from this test is found in Figure 15 in Appendix A. The best

results are found by replacing 20 % of the population with the mutate scheme in the case of 3000

iterations without improvement to the best solution. Here, replacing a higher percentage of the

population might introduce too many random solutions. In addition, it might remove too many

of the high-quality individuals the GA has spent a considerable amount of time generating.

Summary

The final values for all parameters after tuning the GA are summarised in Table 7.3. These

parameters are used to compare the GA with its benchmarks in the following sections. As

previously mentioned, there might be a bias towards the values we introduced as the base case

at the start of tuning. An example of this is the replacement rate of 20% used when testing

replacement type. Other replacement types might have proven more e↵ective if a replacement

rate of 80 % was used. This is listed as a weakness of the experimental design of these tests.

Nevertheless, running the GA with a combination of all parameter values is considered too

time-consuming and makes it more challenging to analyse and discuss results for the individual

parameters. The limited time also favours GAs that converge within the allocated time, and

changing the time might give other results.

54

Table 7.3: Summary of the final parameter values in the base case for the GA.

Parameter Value

Makespan calculation FIFO

Generational scheme Steady-state

Initialisation GCH (100 %)

Population size 150

Tournament size 2

Crossover Q-learning

Learning rate 0.2

Epsilon 0.25

Mutation Random

Mutation probability 10 %

Local search No

Crowding No

Replacement type Mutate

Replacement iterations 3000

Replacement rate 20 %

7.3 Tuning of Iterated Greedy

In order to make a fair comparison, the IG algorithm is also tuned. IG consists of two param-

eters, making for a less comprehensive tuning. The parameters are the temperature and the

number of jobs removed from the sequence of jobs for each iteration. The results are displayed

in Figure 7.11. It is clear that setting d = 2 consistently performs better than all other values

for d. The temperature is less important, but a value of T = 0.5 has the lowest RPD and is

carried forward.

0.0, 2
0.0, 3
0.0, 5
0.0, 8
0.1, 2
0.1, 3
0.1, 5
0.1, 8
0.2, 2
0.2, 3
0.2, 5
0.2, 8
0.3, 2
0.3, 3
0.3, 5
0.3, 8
0.4, 2
0.4, 3
0.4, 5
0.4, 8
0.5, 2
0.5, 3
0.5, 5
0.5, 8

0.6

0.8

1

1.2

1.4

1.6

T, d

R
PD

 (%
)

Figure 7.11: Average RPD for di↵erent values of temperature and number of jobs in IG.

55

7.4 Convergence Tests

Before comparing GA to IG on all 960 problem instances, it is vital to understand how much

time it takes for them to converge. Knowing their convergence allows allocating a reasonable

amount of time for a fair comparison. It is also interesting to see how the best solutions improve

over time, as it indicates how the stages of the algorithms operate.

The GA and IG solve ten problem instances of 20, 50, 80, and 120 jobs, all with eight stages to

test maximum run time. The makespan value of the best solution in every iteration is recorded

for both algorithms. Note that the GA performs no iterations before the initial population is

generated. All makespan values before the first iteration of the GA are set to the makespan of

the best schedule of the initial population. We do this to indicate what time is spent initialising

and what is spent iterating. The results are averaged over the ten instances and displayed in

Figure 7.12. The second axis is denoted by the percentage of the makespan of any of the two

algorithms’ first, worst, solution. With its NEH starting position, IG’s first iteration is the

worst starting point in all cases.

0 1 2 3 4 5

85

90

95

100 GA
IG

20 jobs, 8 stages

Time (s)

M
ak

es
pa

n
(%

 o
f i

ni
tia

l)

0 5 10 15 20 25

90

92

94

96

98

100 GA
IG

50 jobs, 8 stages

Time (s)

M
ak

es
pa

n
(%

 o
f i

ni
tia

l)

0 10 20 30 40 50 60

92

94

96

98

100 GA
IG

80 jobs, 8 stages

Time (s)

M
ak

es
pa

n
(%

 o
f i

ni
tia

l)

0 20 40 60 80 100 120

94

95

96

97

98

99

100 GA
IG

120 jobs, 8 stages

Time (s)

M
ak

es
pa

n
(%

 o
f i

ni
tia

l)

Figure 7.12: Convergence tests for the GA and IG for di↵erent number of jobs.

Again, we vary the allocated time according to the number of jobs and stages of problem

instances. Thus, the values along the first axis vary in the di↵erent graphs in Figure 7.12. The

56

GA and IG seem to converge well within the time provided for all problem instance sizes. IG

generally improves rapidly over the first iterations and converges quicker than the GA for 20,

50, and 120 jobs. For problem instances with 80 jobs, IG seems to converge slower than the

GA. Ultimately, the results show the algorithms have minor improvements after about 2/3s of

the time. For this reason, Equation 7.4, allocating about 2/3s of the time used in these tests,

are used for their final comparison.

Time (ms) = |N |
1.7

· |I| · 3.0 (7.4)

Another observation is how the GCH consistently provides better initial solutions to the GA

than NEH provides IG. However, NEH only provides one solution. GCH has 150 chances of

producing a better solution, as there are 150 individuals in the initial population. Nevertheless,

this emphasises the importance of generating quality initial solutions in the GA.

7.5 Performance Tests

The algorithms are compared performance-wise with the tuned parameter values and the ap-

propriate run-time. First, however, the GA is compared with the results from the mathematical

model in Section 7.5.1. Then, in Section 7.5.2, the performance of the four solution methods

are evaluated.

7.5.1 Comparison with Mathematical Model

In this section, the solutions from the GA are compared to the solutions from the mathematical

model introduced in Chapter 4. Since the mathematical model is not the main focus of this

thesis, not much e↵ort has been put into further improving the model by introducing symmetry-

breaking constraints, lower-bound calculations, or any other enhancements.

As the mathematical model requires significantly more memory than the GA, it is run on

Solstorm. Solstorm is a shared cluster provided by the Department of Industrial Economics

and Technology Management at the Norwegian University of Science and Technology. The

specifications of the hardware and software are listed in Table 7.4. The model is implemented

in Gurobi through their Python interface. The problem is very complex, so only the smallest

problem instances of 20 jobs and two stages are used. Five problem instances are tested, and

each of those is run for 48 hours.

57

Table 7.4: Hardware and software specifications for the implementation of the mathematical model.

Processor 2.2GHz AMD Opteron

Memory 128GB RAM

CPU Cores 16

Operating System CentOS 7.9

Python version 3.9.6

Gurobi version 9.1.2

In Table 7.5, information on the running of the mathematical model is listed along with com-

parable information on the GA. These results show that the GA outperforms the mathematical

model in solution quality and e�ciency. The GA sees an average improvement of 8.2 % over the

mathematical model, with a fraction of the time. Moreover, the mathematical model cannot

close the gap between the lower bound and the best integer solution. In the end, the average

gap is still 95.7 %.

Table 7.5: Comparison between the mathematical model and GA.

Mathematical model Genetic algorithm

Problem (#) Makespan Gap (%) Time (s) Makespan Time (s)

1 651 95.4 % 172 800 612 0.5

2 641 95.5 % 172 800 627 0.5

3 612 97.5 % 172 800 568 0.5

4 556 95.0 % 172 800 522 0.5

5 484 95.2 % 172 800 375 0.5

Average 588.8 95.7 % 172 800 540.8 0.5

The convergence of the mathematical model’s upper and lower bound is abysmal, as Figure 7.13

displays. The results of the five instances, also displayed in Table 7.5, are averaged for every

second and plotted.

The results support the findings from Gravdal and Weidemann (2021). The authors found

that the mathematical model of a similar problem can only solve tiny problem instances to

optimality in a reasonable amount of time. A high number of constraints, considerable amounts

of symmetry in solutions, and slack due to several Big M-constraints were pointed out as the

most prominent limitations. This is also likely to be the reason for this implementation’s poor

performance. The lower performance of exact methods emphasises the use of approximate

methods in this field of research.

58

0 50k 100k 150k
0

200

400

600

800

1000

1200

1400 Objective
Best Bound

Time (s)

Av
er

ag
e

m
ak

es
pa

n

Figure 7.13: Improvement in best integer solution and lower bound averaged over the five problem instances for

the mathematical model.

7.5.2 Comparing Solution Methods

This section presents the results from running each of the four solution methods introduced in

Chapter 5 for all 960 instances. Once again, the average RPD is used to compare the algorithms.

The results are displayed as a scatter plot in Figure 7.14. The average RPDs indicate that the

construction heuristics perform notably worse than the meta-heuristics, which are relatively

equal in performance compared to the construction heuristics. It is important to note that both

meta-heuristics start with initialising solutions comparable to the construction heuristics and

then perform an additional search.

GA IG MDDR NEH

0

10

20

30

40

Algorithm

R
PD

 (%
)

Figure 7.14: Comparison of all the algorithms implemented, showing the average RPD for each of them.

59

MDDR displays worse performance than what the literature suggests it would (Naderi et al.,

2010). The reason for the deviation can be twofold. First, computers have improved signifi-

cantly. The meta-heuristics might get to perform more iterations in the same amount of time,

meaning that implementing a meta-heuristics is getting more powerful. The second reason could

be that the GA proposed in this thesis performs better than the peers used in Naderi et al.

(2010). Thus, MDDR likely performs worse relative to the algorithms it is compared to in this

thesis, and not in general to how it performed before. The beginning of Section 7.2.2 discusses

why the first-completion makespan calculation procedure is dominated performance-wise by

FIFO. The same reasoning can explain the lack of performance in MDDR. The schedules it

provides often contain too much idle time in the machines. However, this is primarily a prob-

lem when production and set-up times vary widely in the problem instances, and this will not

always be the case. Table 7.6 gives a di↵erent picture than the scatter plot altogether. MDDR

finds the best solutions for 30 problem instances out of any method, while NEH finds only one.

This can be explained by the increasing search space a↵ecting MDDR to a lesser degree, as

it is a simple assignment rule. On the other hand, the meta-heuristics will perform worse in

comparison.

Table 7.6: Number of best solutions found by each algorithms, grouped by number of jobs.

Number of jobs GA IG MDDR NEH

20 143 140 0 1

50 207 29 2 0

80 215 25 9 0

120 211 10 19 0

Total 776 204 30 1

Looking at the performance grouped by categories based on the size of the problem instances

in Figure 7.15 provides more insight. The di↵erence in performance between the construction

and improvement heuristics decreases as the number of jobs increases. This can be due to the

iteration-based improvement heuristics running for fewer iterations. These are more a↵ected by

the problem instances increasing in size than the construction heuristics. Therefore, it could be

assumed that the meta-heuristics perform worse, not the other way around. With an increase

in stages, the opposite trend can be observed. With more stages, the initial choices made in

the first stage have more time to manifest themselves. As the meta-heuristics experiment with

di↵erent orders, they can potentially repair initially bad choices that the construction heuristics

cannot. In addition, since the solution representation only consists of the order of jobs in the

first stage, the number of stages likely a↵ects the search less than the number of jobs for the

meta-heuristics. To sum up, an increase in the number of jobs is to the relative advantage of the

construction heuristics, whereas an increase in the number of stages is to the relative advantage

of the meta-heuristics.

60

20 50 80 120

0

10

20

30

40

50 GA
IG
MDDR
NEH

Number of jobs

R
PD

 (%
)

2 4 8

0

10

20

30

40

50 GA
IG
MDDR
NEH

Number of stages

R
PD

 (%
)

Figure 7.15: Average RPD for all algorithms for di↵erent number of jobs and stages, respectively.

Although the two meta-heuristics, IG and GA, perform quite similarly relative to the construc-

tion heuristics, there are notable di↵erences between these. IG has an average RPD of 3.24%,

whereas the GA has an average RPD of 0.35%. Moreover, the proposed GA has the lowest

average RPD in all size categories of the problem instances. It also finds the best solutions in

over 80% of the problem instances and, as discussed in Section 7.4, the convergence of the two

meta-heuristics is also very similar. The GA dominates the other solution methods except for

problem instances with 20 jobs.

In conclusion, it is not surprising that the more sophisticated improvement heuristics provide

the best results. The MDDR and NEH heuristics find better solutions than the two improve-

ment heuristics a few times but perform considerably worse overall. Of the two improvement

heuristics, the GA finds the best solutions, particularly when the instances grow in size.

61

Chapter 8
Concluding Remarks

This thesis aims to introduce a solution method for finding high-quality production schedules

for small manufacturing businesses. The production environment considered is inspired by

Haugstad Furniture Factory (Haugstad). The scheduling problem considers two major decisions.

First, each product needs to be allocated to a machine for every required process. Second,

every process’s start and finishing times need to be determined. All production is assumed to

be deterministic and according to the flowshop production environment. The objective is to

minimise the makespan; the total time of production.

The flowshop scheduling problem (FSP) is well-studied, but this is not the case for many of its

extensions and the combinations of those. This includes the hybrid flexible flowshop scheduling

problem with sequence-dependent set-up times (HFFSP SDST). This flowshop variant resembles

the characteristics of Haugstad. The variant has the limitations of any flowshop; a unidirectional

flow of products through stages where machines are grouped by function. Moreover, being both

hybrid and flexible, there are several machines in certain stages and products are allowed to

skip stages, respectively. Because of di↵erences in products, all machines need to be prepared

before processing. This operation is dependent on the current settings on the machine, making

the set-up sequence-dependent.

A mathematical model and several non-exact methods are implemented to solve the problem.

Two construction heuristics are implemented as benchmarks. These also provide starting so-

lutions for the meta-heuristics. Iterated Greedy is implemented as it has proved e↵ective in

literature and represents a simple meta-heuristic. Finally, we introduce a genetic algorithm

(GA) inspired by methods used for similar FSPs, other permutation problems, and popular

methods for GAs in general. All solution methods are tested on a set of publicly available

problem instances also used by other researchers.

Few studies have used GAs as a solution method for the HFFSP SDST. The GA proposed in

this thesis introduces several new components to the problem and combinations yet to be tested.

This includes two novel crossover and mutation operators using domain knowledge to improve

62

the individuals, an altered construction heuristic for generating fit initial populations, and an

adaptive crossover selection mechanism based on Q-learning.

The mathematical model introduced in this thesis is dominated by approximation methods in

terms of both run-time and absolute performance, which is in line with the previous study of

Gravdal and Weidemann (2021).

Among the non-exact solution methods, the GA finds the best schedules in 776 out of 960 prob-

lem instances, dominating the benchmarks. Moreover, several of the introduced components

outperform those presented in previous studies. While some are more e↵ective in niche cases,

others improve the algorithm across all problem instance sizes. Most notably, the adaptive

selection of crossover operators takes advantage of the former, as the di↵erent operators have

specific problem instance sizes at which they excel. The adaptive selection found the most

suitable operator and performed better than applying one specific or randomly choosing one

every iteration.

We have reasons to believe the GA introduced in this thesis is suited well to Haugstad. The

GA finds e�cient production schedules for problem instances of 120 products, eight stages,

and up to four machines in each stage in less than two minutes. These tests are performed on

inexpensive hardware that Haugstad can access.

Finally, we note that the introduced GA is likely to have some merit for other variants of the

flowshop scheduling problem. As long as the solution representation can be represented as

the order of jobs in the first stage and suitable assignment rules are established, the operators

introduced in this thesis are likely to produce good solutions. The GA could probably work

well for other similar factories and larger problem instances.

63

Chapter 9
Future Work

The genetic algorithm (GA) shows promising results for the hybrid flexible flowshop scheduling

problem with sequence-dependent set-up times (HFFSP SDST). However, there is still room

for improvement. These areas include the operators of the GA, the problem it is applied to,

and the data used to test it. In the following paragraphs, aspects of each of these areas are

discussed.

Concepts that did not have the intended e↵ect could be looked into and possibly improved.

For instance, the local search was intended to improve the new o↵spring but proved ine↵ective.

While it was dropped from further consideration in this thesis, applying it with more care

might prove more successful. A potential drawback with our implementation is that it spends

the same amount of time on all new solutions, including the unfit. The local search could be

applied only to new individuals with makespan values within a certain percentage of the current

best individual’s makespan. Moreover, it could be interesting to apply more local searches at

the start or end phase of the search. Applying local search at the start could provide the GA

with an even larger head start than the Greedy Construction Heuristic can alone. Applying it

at the end could improve the best solutions to increase the GA’s absolute performance.

Another concept that failed to show the intended results is crowding. A significant drawback

with the k-nearest implementation is that individuals similar to fit o↵spring are likely also to

be fit. Thus, fit solutions are replaced, whereas low-quality solutions that are di↵erent are

kept. An alternative idea is: Instead of including the k nearest individuals to the o↵spring in

the tournament, it is possible to include the k least fit individuals. Then, let the most similar

among these k individuals compete for its place in the next generation.

Introducing a meta-model to replace the makespan procedure and quickly approximate an

individual’s fitness could speed up the search. The rationale for such a component is that

determining fitness is the procedure that takes up the most time for both the GA and Iterated

Greedy (IG). Furthermore, the number of iterations is tightly coupled with the aptness of

the resulting schedule. Hopefully, by speeding up the fitness evaluation and performing more

64

iterations, the schedules will be better. A neural network could be a suitable structure for a

meta-model as it is quick once trained and does not have to be 100% accurate.

The assignment of jobs to machines is another area of potential improvement. As of now,

jobs are assigned to the machine that can finish the job first. Such a simple dispatching rule

can miss out on many high-quality solutions. Instead, an agent could be used to assign jobs to

machines and improve to find a more e↵ective assignment rule. This agent could be implemented

with a reinforcement learning framework. The reward could be the makespan, which could be

discounted for every stage.

The HFFSP SDST incorporates extensions to make the modelling more realistic, but several as-

pects are still not covered. Examples are uncertainty in processing times, machine breakdowns,

deadlines, and multiple objectives. Uncertainty in processing times could be handled by working

with distributions, whereas machine breakdowns could be modelled by a predetermined chance

for every machine to break down during production. These changes would require a change

in objective to expected makespan. Deadlines are also very relevant and probe yet another

change in the objective. Tardiness, or total delay of products, is a better performance measure

in such a scenario. Finally, GAs are potent in finding the Pareto front in multiple objective

problems. Potentially interesting additional objectives are power consumption, raw material

use, and employee welfare.

All tests are performed on artificially generated data. It should be tested in the production

environment with real data to determine the actual value of the algorithm to a manufacturer.

Such data is di�cult to collect and systematise, but tuning the GA to the new requirements is a

relatively small task. As a final test, schedules from manual planning or other existing planning

systems could be used as benchmarks to determine the potential improvement.

65

Bibliography

Campbell, H. G., Dudek, R. A., and Smith, M. L. (1970). A heuristic algorithm for the n job,

m machine sequencing problem. Management Science, 16(10):B–630.

Chen, B., Potts, C. N., and Woeginger, G. J. (1998). A review of machine scheduling: Com-

plexity, algorithms and approximability. Handbook of Combinatorial Optimization, pages

1493–1641.

Cicirello, V. A. (2019). Classification of permutation distance metrics for fitness landscape

analysis. In International Conference on Bio-inspired Information and Communication, pages

81–97. Springer.

Colak, M. and Keskin, G. A. (2022). An extensive and systematic literature review for hybrid

flowshop scheduling problems. International Journal of Industrial Engineering Computations,

13:185–222.

Dannenbring, D. G. (1977). An evaluation of flow shop sequencing heuristics. Management

Science, 23(11):1174–1182.

Defersha, F. M. and Chen, M. (2012). Mathematical model and parallel genetic algorithm

for hybrid flexible flowshop lot streaming problem. The International Journal of Advanced

Manufacturing Technology, 62(1-4):249–265.

Eiben, A. and Smith, J. (2015). Evolutionary computing: The origins. In Introduction to

Evolutionary Computing, pages 13–24. Springer.

Engin, O., Ceran, G., and Yilmaz, M. K. (2011). An e�cient genetic algorithm for hybrid flow

shop scheduling with multiprocessor task problems. Applied Soft Computing, 11(3):3056–

3065.

Fan, K., Zhai, Y., Li, X., and Wang, M. (2018). Review and classification of hybrid shop

scheduling. Production Engineering, 12(5):597–609.

Farahmand-Mehr, M., Fattahi, P., Kazemi, M., Zarei, H., and Piri, A. (2014). An e�cient

genetic algorithm for a hybrid flow shop scheduling problem with time lags and sequence-

dependent setup time. Manufacturing Review, 1:21.

66

Fattahi, P., Hosseini, S. M. H., and Jolai, F. (2013). A mathematical model and extension

algorithm for assembly flexible flow shop scheduling problem. The International Journal of

Advanced Manufacturing Technology, 65(5):787–802.

Fernandez-Viagas, V. and Framinan, J. M. (2015). Neh-based heuristics for the permutation

flowshop scheduling problem to minimise total tardiness. Computers & Operations Research,

60:27–36.

Galan, S. F. and Mengshoel, O. J. (2010). Generalized crowding for genetic algorithms. In

Proceedings of the 12th annual conference on Genetic and evolutionary computation, pages

775–782.

Gantt, H. L. (1903). A graphical daily balance in manufacture. ASME Transactions, 24:1322–

1336.

Garey, M. R., Johnson, D. S., and Sethi, R. (1976). The complexity of flowshop and jobshop

scheduling. Mathematics of Operations Research, 1(2):117–129.

Gmys, J., Mezmaz, M., Melab, N., and Tuyttens, D. (2020). A computationally e�cient branch-

and-bound algorithm for the permutation flow-shop scheduling problem. European Journal

of Operational Research, 284(3):814–833.

Goldberg, D. E., Lingle, R., et al. (1985). Alleles, loci, and the traveling salesman problem.

In Proceedings of an international conference on genetic algorithms and their applications,

volume 154, pages 154–159. Lawrence Erlbaum Hillsdale, NJ.

Gómez-Gasquet, P., Andrés, C., and Lario, F.-C. (2012). An agent-based genetic algorithm

for hybrid flowshops with sequence dependent setup times to minimise makespan. Expert

Systems with Applications, 39(9):8095–8107.

González-Neira, E., Montoya-Torres, J., and Barrera, D. (2017). Flow-shop scheduling problem

under uncertainties: Review and trends. International Journal of Industrial Engineering

Computations, 8(4):399–426.

Gravdal, H. I. and Weidemann, J. (2021). Hybrid flexible flowshop scheduling in a norwegian

manufacturing factory (unpublished). Technical report, Norwegian University of Science and

Technology.

Gupta, J. N. and Sta↵ord, E. F. (2006). Flowshop scheduling research after five decades.

European Journal of Operational Research, 169(3):699–711.

Herrmann, J. W. (2006). A history of production scheduling. In Handbook of production

scheduling, pages 1–22. Springer.

Ho, J. C. and Chang, Y.-L. (1991). A new heuristic for the n-job, m-machine flow-shop problem.

European Journal of Operational Research, 52(2):194–202.

67

Hosseinabadi, A. A. R., Vahidi, J., Saemi, B., Sangaiah, A. K., and Elhoseny, M. (2019).

Extended genetic algorithm for solving open-shop scheduling problem. Soft Computing,

23(13):5099–5116.

Ignall, E. and Schrage, L. (1965). Application of the branch and bound technique to some

flow-shop scheduling problems. Operations Research, 13(3):400–412.

Johnson, S. M. (1954). Optimal two-and three-stage production schedules with setup times

included. Naval Research Logistics Quarterly, 1(1):61–68.

Mengshoel, O. J. and Goldberg, D. E. (2008). The crowding approach to niching in genetic

algorithms. Evolutionary Computation, 16(3):315–354.

Ministry of Trade Industry and Fisheries (2017). Industrien – grønnere, smartere og mer

nyskapende.

Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics,

38(8):114–117.

Murata, T., Ishibuchi, H., and Tanaka, H. (1996). Genetic algorithms for flowshop scheduling

problems. Computers & Industrial Engineering, 30(4):1061–1071.

Naderi, B., Ruiz, R., and Zandieh, M. (2010). Algorithms for a realistic variant of flowshop

scheduling. Computers & Operations Research, 37(2):236–246.

Nawaz, M., Enscore Jr, E. E., and Ham, I. (1983). A heuristic algorithm for the m-machine,

n-job flow-shop sequencing problem. Omega, 11(1):91–95.

Ombuki-Berman, B. and Hanshar, F. T. (2009). Using genetic algorithms for multi-depot vehicle

routing. In Bio-inspired algorithms for the vehicle routing problem, pages 77–99. Springer.

Ozsoydan, F. B. and Sağir, M. (2021). Iterated greedy algorithms enhanced by hyper-heuristic

based learning for hybrid flexible flowshop scheduling problem with sequence dependent setup

times: a case study at a manufacturing plant. Computers & Operations Research, 125:105044.

Papadimitriou, C. H. and Kanellakis, P. C. (1980). Flowshop scheduling with limited temporary

storage. Journal of the ACM (JACM), 27(3):533–549.

Pinedo, M. (2012). Scheduling, volume 29. Springer, 5. edition.

Rossit, D. A., Tohmé, F., and Frutos, M. (2018). The non-permutation flow-shop scheduling

problem: a literature review. Omega, 77:143–153.

Ruiz, R. and Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop

heuristics. European Journal of Operational Research, 165(2):479–494.

Ruiz, R. and Maroto, C. (2006). A genetic algorithm for hybrid flowshops with sequence

dependent setup times and machine eligibility. European Journal of Operational Research,

169(3):781–800.

68

Ruiz, R., Maroto, C., and Alcaraz, J. (2006). Two new robust genetic algorithms for the

flowshop scheduling problem. Omega, 34(5):461–476.

Ruiz, R., Şerifoğlu, F. S., and Urlings, T. (2008). Modeling realistic hybrid flexible flowshop

scheduling problems. Computers & Operations Research, 35(4):1151–1175.

Ruiz, R. and Stützle, T. (2007). A simple and e↵ective iterated greedy algorithm for the permu-

tation flowshop scheduling problem. European Journal of Operational Research, 177(3):2033–

2049.

Ruiz, R. and Vázquez-Rodŕıguez, J. A. (2010). The hybrid flow shop scheduling problem.

European Journal of Operational Research, 205(1):1–18.

Simon, D. (2013). Evolutionary optimization algorithms. John Wiley & Sons, 2. edition.

Sioud, A., Gagné, C., and Gravel, M. (2014). Metaheuristics for solving a hybrid flexible flow-

shop problem with sequence-dependent setup times. In International Conference on Swarm

Intelligence Based Optimization, pages 9–25. Springer.

Sioud, A., Gravel, M., and Gagné, C. (2013). A genetic algorithm for solving a hybrid flexible

flowshop with sequence dependent setup times. In 2013 IEEE Congress on Evolutionary

Computation, pages 2512–2516. IEEE.

SSB (2020). Arbeidskraftundersøkelsen, tabell 09788: Sysselsatte. Årsgjennomsnitt, etter statis-

tikkvariabel, kjønn, yrke og år.

Stoop, P. P. and Wiers, V. C. (1996). The complexity of scheduling in practice. International

Journal of Operations & Production Management, 16(10):37–53.

Suliman, S. (2000). A two-phase heuristic approach to the permutation flow-shop scheduling

problem. International Journal of Production Economics, 64(1-3):143–152.

Suzić, N., Forza, C., Trentin, A., and Anǐsić, Z. (2018). Implementation guidelines for mass

customization: current characteristics and suggestions for improvement. Production Planning

& Control, 29(10):856–871.

Taylor, F. W. (1919). The principles of scientific management. Harper & brothers.

Wang, H. (2005). Flexible flow shop scheduling: optimum, heuristics and artificial intelligence

solutions. Expert Systems, 22(2):78–85.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine Learning, 8(3):279–292.

Yu, C., Semeraro, Q., and Matta, A. (2018). A genetic algorithm for the hybrid flow shop

scheduling with unrelated machines and machine eligibility. Computers & Operations Re-

search, 100:211–229.

69

Appendix

In this appendix, the results from all tests performed in the computational study is found. There

are three di↵erent types of graphs for each test. All of them display the relative percentage

deviation (RPD) averaged over all problem instances tested. The RPD for the test run for a

specific problem instance is defined as in Equation 1:

RPD =
Algsol �Bestsol

Bestsol
· 100% (1)

In Equation 1, Algsol refers to the makespan of a given algorithm or parameter combination,

whereas Bestsol refers to the best makespan achieved by any of the competing algorithms. The

error bars in the graphs are the standard error of the mean (SEM), as defined in Equation 2. In

this equation, � refers to the standard deviation of the RPDs and n to the number of instances.

SEM =
�

p
n� 1

(2)

For each set of graphs from a particular test, the first graph shows the average RPD and SEM

across all sized problem instences. The second graph shows how the response variables vary

with the number of jobs. Finally, the third graph shows variations across the number of stages.

A Tuning of Genetic Algorithm

i

Makespan Procedures

FIFO First-completion

0

5

10

15

R
PD

 (%
)

20 50 80 120

0

5

10

15

20

FIFO
First-completion

Number of jobs

R
PD

 (%
)

2 4 8

0

5

10

15

20 FIFO
First-completion

Number of stages

R
PD

 (%
)

Figure 1: Makespan procedures.

ii

Generational Scheme

Generational Steady

0.2

0.4

0.6

0.8
R

PD
 (%

)

20 50 80 120

0

0.5

1

1.5

2
Generational
Steady

Number of jobs

R
PD

 (%
)

2 4 8

0

0.2

0.4

0.6

0.8

1

1.2
Generational
Steady

Number of stages

R
PD

 (%
)

Figure 2: Generational scheme.

iii

Initialisation

GCH (0.2) GCH (0.5) GCH (1.0) NEH Random

0.5

1

1.5

2

2.5

Initialisation

R
PD

 (%
)

20 50 80 120

0.5

1

1.5

2

2.5

3

GCH (0.2)
GCH (0.5)
GCH (1.0)
NEH
Random

Number of jobs

R
PD

 (%
)

2 4 8

0.5

1

1.5

2

2.5

3

GCH (0.2)
GCH (0.5)
GCH (1.0)
NEH
Random

Number of stages

R
PD

 (%
)

Figure 3: Initialisation.

iv

Population Size

50 100 150 300

0.7

0.8

0.9

1

1.1

1.2

1.3

Population Size

R
PD

 (%
)

20 50 80 120

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
100
150
300
50

Number of jobs

R
PD

 (%
)

2 4 8

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
100
150
300
50

Number of stages

R
PD

 (%
)

Figure 4: Population size.

v

Tournament Size

2 3 5 8

0.5

0.6

0.7

0.8

0.9

Tournament Size

R
PD

 (%
)

20 50 80 120

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
k=2
k=3
k=5
k=8

Number of jobs

R
PD

 (%
)

2 4 8

0.4

0.6

0.8

1

1.2
k=2
k=3
k=5
k=8

Number of stages

R
PD

 (%
)

Figure 5: Tournament size.

vi

Crossover

PMX BCBX SJ2OX SB2OX Random Q-Learning

0.6

0.8

1

1.2

1.4

1.6

1.8

Crossover

R
PD

 (%
)

20 50 80 120

0.5

1

1.5

2

2.5

3
BCBX
PMX
Q-Learning
Random
SBOX
SJOX

Number of jobs

R
PD

 (%
)

2 4 8

0.5

1

1.5

2

2.5

3
BCBX
PMX
Q-Learning
Random
SBOX
SJOX

Number of stages

R
PD

 (%
)

Figure 6: Crossover operators.

vii

Q-learning Crossover Parameters

0.05, 0.1
0.05, 0.25

0.05, 0.4
0.1, 0.1

0.1, 0.25
0.1, 0.4

0.2, 0.1
0.2, 0.25

0.2, 0.4

0.8

0.9

1

1.1

1.2

Learning rate, epsilon

R
PD

 (%
)

20 50 80 120

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 0.05, 0.1
0.05, 0.25
0.05, 0.4
0.1, 0.1
0.1, 0.25
0.1, 0.4
0.2, 0.1
0.2, 0.25
0.2, 0.4

Number of jobs

R
PD

 (%
)

2 4 8

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 0.05, 0.1
0.05, 0.25
0.05, 0.4
0.1, 0.1
0.1, 0.25
0.1, 0.4
0.2, 0.1
0.2, 0.25
0.2, 0.4

Number of stages

R
PD

 (%
)

Figure 7: Q-learning crossover parameters (learning rate, epsilon).

viii

Mutation

Shift Greedy Swap Reverse Random

0.6

0.7

0.8

0.9

1

Mutation type

R
PD

 (%
)

20 50 80 120

0.4

0.6

0.8

1

1.2

1.4

1.6 Greedy
Random
Reverse
Shift
Swap

Number of jobs

R
PD

 (%
)

2 4 8

0.4

0.6

0.8

1

1.2

1.4
Greedy
Random
Reverse
Shift
Swap

Number of stages

R
PD

 (%
)

Figure 8: Mutation types.

ix

Mutation Probability

0.0 0.01 0.02 0.05 0.1 0.2
0.6

0.7

0.8

0.9

1

1.1

1.2

Pm

R
PD

 (%
)

20 50 80 120

0.4

0.6

0.8

1

1.2

1.4

1.6

Pm=0.0
Pm=0.01
Pm=0.02
Pm=0.05
Pm=0.1
Pm=0.2

Number of jobs

R
PD

 (%
)

2 4 8

0.5

1

1.5

2 Pm=0.0
Pm=0.01
Pm=0.02
Pm=0.05
Pm=0.1
Pm=0.2

Number of stages

R
PD

 (%
)

Figure 9: Mutation probability.

x

Local Search

5 50 500 No Local Search

0.5

1

1.5

Iterations

R
PD

 (%
)

20 50 80 120

0

0.5

1

1.5

2

2.5
5
50
500
No Local Search

Number of jobs

R
PD

 (%
)

2 4 8

0

0.5

1

1.5

2

2.5

3
5
50
500
No Local Search

Number of stages

R
PD

 (%
)

Figure 10: Local search.

xi

Deviation Distance Crowding

0.0, 2

0.0, 5

0.0, 10

0.0, 20

0.2, 2

0.2, 5

0.2, 10

0.2, 20

0.5, 2

0.5, 5

0.5, 10

0.5, 20

1.0, 2

1.0, 5

1.0, 10

1.0, 20

1.5, 2

1.5, 5

1.5, 10

1.5, 20

0.2

0.4

0.6

0.8

1

1.2

1.4

Crowding scale, k_nearest

R
PD

 (%
)

20 50 80 120

0

0.5

1

1.5

2

2.5 0.0, 10
0.0, 2
0.0, 20
0.0, 5
0.2, 10
0.2, 2
0.2, 20
0.2, 5
0.5, 10
0.5, 2
0.5, 20
0.5, 5
1.0, 10
1.0, 2
1.0, 20
1.0, 5
1 5 10

Number of jobs

R
PD

 (%
)

2 4 8
0

0.5

1

1.5

2

2.5 0.0, 10
0.0, 2
0.0, 20
0.0, 5
0.2, 10
0.2, 2
0.2, 20
0.2, 5
0.5, 10
0.5, 2
0.5, 20
0.5, 5
1.0, 10
1.0, 2
1.0, 20
1.0, 5
1 5 10

Number of stages

R
PD

 (%
)

Figure 11: Deviation distance crowding.

xii

Exact Match Crowding

0.0, 2

0.0, 5

0.0, 10

0.0, 20

0.2, 2

0.2, 5

0.2, 10

0.2, 20

0.5, 2

0.5, 5

0.5, 10

0.5, 20

1.0, 2

1.0, 5

1.0, 10

1.0, 20

1.5, 2

1.5, 5

1.5, 10

1.5, 20

0.5

1

1.5

2

2.5

Crowding scale, k_nearest

R
PD

 (%
)

20 50 80 120

0

1

2

3

4
0.0, 10
0.0, 2
0.0, 20
0.0, 5
0.2, 10
0.2, 2
0.2, 20
0.2, 5
0.5, 10
0.5, 2
0.5, 20
0.5, 5
1.0, 10
1.0, 2
1.0, 20
1.0, 5
1 5 10

Number of jobs

R
PD

 (%
)

2 4 8

0.5

1

1.5

2

2.5

3

3.5

4
0.0, 10
0.0, 2
0.0, 20
0.0, 5
0.2, 10
0.2, 2
0.2, 20
0.2, 5
0.5, 10
0.5, 2
0.5, 20
0.5, 5
1.0, 10
1.0, 2
1.0, 20
1.0, 5
1 5 10

Number of stages

R
PD

 (%
)

Figure 12: Exact match crowding.

xiii

Crowding Versus no Crowding

Deviation Distance Exact Match No Crowding

0.2

0.4

0.6

0.8

1

1.2

1.4

Distance metric

R
PD

 (%
)

20 50 80 120

0

0.5

1

1.5

2 Deviation Distance
Exact Match
No Crowding

Number of jobs

R
PD

 (%
)

2 4 8

0

0.5

1

1.5

2 Deviation Distance
Exact Match
No Crowding

Number of stages

R
PD

 (%
)

Figure 13: Crowding.

xiv

Replacement

Mutate, 1000

Random, 1000

GCH, 1000

Mutate, 3000

Random, 3000

GCH, 3000

Mutate, 5000

Random, 5000

GCH, 5000

No replacement

0.4

0.6

0.8

1

1.2

1.4

R
PD

 (%
)

20 50 80 120

0

0.5

1

1.5

2

GCH, 1000
GCH, 3000
GCH, 5000
Mutate, 1000
Mutate, 3000
Mutate, 5000
No replacement
Random, 1000
Random, 3000
Random, 5000

Number of jobs

R
PD

 (%
)

2 4 8

0.5

1

1.5

2
GCH, 1000
GCH, 3000
GCH, 5000
Mutate, 1000
Mutate, 3000
Mutate, 5000
No replacement
Random, 1000
Random, 3000
Random, 5000

Number of stages

R
PD

 (%
)

Figure 14: Replacement types.

xv

Replacement Rate

0.2 0.5 0.8 No replacement

0.15

0.2

0.25

0.3

0.35

0.4

Replacement rate

R
PD

 (%
)

20 50 80 120

0

0.2

0.4

0.6

0.8

0, 0.0
3000, 0.2
3000, 0.5
3000, 0.8

Number of jobs

R
PD

 (%
)

2 4 8

0.1

0.2

0.3

0.4

0.5
0, 0.0
3000, 0.2
3000, 0.5
3000, 0.8

Number of stages

R
PD

 (%
)

Figure 15: Replacement rates.

xvi

B Tuning of Iterated Greedy

0.0, 2
0.0, 3
0.0, 5
0.0, 8
0.1, 2
0.1, 3
0.1, 5
0.1, 8
0.2, 2
0.2, 3
0.2, 5
0.2, 8
0.3, 2
0.3, 3
0.3, 5
0.3, 8
0.4, 2
0.4, 3
0.4, 5
0.4, 8
0.5, 2
0.5, 3
0.5, 5
0.5, 8

0.6

0.8

1

1.2

1.4

1.6

T, d

R
PD

 (%
)

20 50 80 120

0.5

1

1.5

2
0.0, 2
0.0, 3
0.0, 5
0.0, 8
0.1, 2
0.1, 3
0.1, 5
0.1, 8
0.2, 2
0.2, 3
0.2, 5
0.2, 8
0.3, 2
0.3, 3
0.3, 5
0.3, 8
0 4 2

Number of jobs

R
PD

 (%
)

2 4 8

0.5

1

1.5

2

0.0, 2
0.0, 3
0.0, 5
0.0, 8
0.1, 2
0.1, 3
0.1, 5
0.1, 8
0.2, 2
0.2, 3
0.2, 5
0.2, 8
0.3, 2
0.3, 3
0.3, 5
0.3, 8
0 4 2

Number of stages

R
PD

 (%
)

Figure 16: Iterated greedy tuning.

xvii

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

co
no

m
ic

s
an

d
M

an
ag

em
en

t
D

ep
t.

of
 In

du
st

ria
l E

co
no

m
ic

s
an

d
Te

ch
no

lo
gy

 M
an

ag
em

en
t

Henrik Irgens Gravdal
Jørgen Weidemann

An Adaptive Genetic Algorithm for
the Hybrid Flexible Flowshop
Scheduling Problem With Sequence-
Dependent Set-up Times

Master’s thesis in Industrial Economics and Technology
Management
Supervisor: Henrik Andersson
Co-supervisor: Anders Gullhav and Maryna Waszak
June 2022

M
as

te
r’s

 th
es

is

	List of Tables
	List of Figures
	Introduction
	Literature Review
	Production Scheduling
	Literature Search Strategy
	The Flowshop Scheduling Problem
	Solution Methods
	Contribution

	Problem Description
	Mathematical Model
	Modelling Assumptions
	Mathematical Formulation

	Solution Methods
	Solution Representation
	Makespan Calculation
	First-In, First-Out
	First-Completion

	Construction Heuristic
	NEH
	Modified Dynamic Dispatching Rule

	Improvement Heuristics
	Iterated Greedy
	Genetic Algorithm

	Genetic Algorithm
	Objective
	Solution Representation
	Initialisation
	Selection
	Crossover
	Similar Job Order Crossover and Similar Block Order Crossover
	Best Cost Block Crossover
	Partially Mapped Crossover
	Adaptive Choice of Crossover Operators

	Mutation
	Shift
	Swap
	Reversal
	Greedy

	Local Search
	Generational Scheme
	Generational Genetic Algorithm
	Steady-State Genetic Algorithm

	Crowding
	Implicit Crowding
	Explicit Crowding
	Replacement Rules

	Replacement

	Computational Study
	Problem Instances
	Tuning of Genetic Algorithm
	Methodology
	Tuning

	Tuning of Iterated Greedy
	Convergence Tests
	Performance Tests
	Comparison with Mathematical Model
	Comparing Solution Methods

	Concluding Remarks
	Future Work
	Bibliography
	Appendix
	Tuning of Genetic Algorithm
	Tuning of Iterated Greedy

