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Abstract

We evaluate the tree-based machine learning algorithms quantile regression forest (QRF) and quantile

gradient boosting (QGB) in the out-of-sample probabilistic forecasting of the equity risk premium

(ERP), conditioned on an established set of predictive variables. We predict both the monthly ERP

and its long-term level, i.e. its next 1-year and 5-year monthly average. To assess their performances,

we compare the models against two selected benchmark models, historical unconditional quantiles

and lasso quantile regression. For the 1-month and 1-year point estimates, the models struggle to

outperform the benchmark models. On the other hand, QRF and QGB perform well in producing

probabilistic forecasts, but they are not significantly better in comparison to the benchmark models.

For the 5-year predictions, both QRF and QGB perform significantly better than the benchmark

models when predicting both point estimates and all the prediction intervals up to the 60% interval.

Thus, we find these models to be valuable for predicting the long-term level of the ERP. The evaluation

of feature importance indicates that some of the variables are more important than others. For the

5-year ERP prediction, QRF and QGB show the output gap to be particularly useful.
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Sammendrag

Vi predikerer sannsynlighetsfordelingen til risikopremien i aksjemarkedet (ERP) ved hjelp av de tre-

baserte maskinlæringsalgoritmene quantile random forest (QRF) og quantile gradient boosting (QGB).

For å trene algoritmene brukes et velkjent og etablert datasett fra litteraturen. I tillegg til å predikere

den m̊anedlige risikopremien, predikerer vi fremtidig ett- og fem̊ars gjennomsnittlig m̊anedlig risiko-

premie. For å evaluere modellene sammenlignes de med to referansemodeller, en historisk modell og

en regularisert kvantilregresjonsmodell.

Ved predikering av m̊anedlig og ett̊ars risikopremie oppn̊ar verken QRF eller QGB bedre punktesti-

mater enn referansemodellene. Likevel oppn̊ar modellene gode resultater for predikering av sannsyn-

lighetsfordelingen til risikopremien. Tester for statistisk signifikans viser imidlertid at modellenes

prediksjoner ikke er signifikant bedre enn referansemodellene. Ved predikering av fem̊ars gjennomsnit-

tlig m̊anedlig risikopremie predikerer b̊ade QRF og QGB betydelig bedre enn referansemodellene, b̊ade

for punktestimater og for prediksjonsintervallene, særlig opp til 60%-intervallet. Vi fastsl̊ar dermed at

maskinlæringsmodellene er verdifulle for predikering av punktestimater og sannsynlighetsfordelingen

til den langsiktige risikopremien.

I tillegg evalueres enkeltvariablenes evne til å predikere ERP, og resultatene indikerer at noen variabler

er viktigere enn andre. Variabelen produksjonsgap (ogap) skiller seg ut som spesielt nyttig i predikering

av langsiktig fem̊ars gjennomsnittlig risikopremie, for b̊ade QRF og QGB.
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1 Introduction

The equity risk premium (ERP) is defined as the expected excess equity return over a risk-free alter-

native. Looking forward, the expected ERP cannot be directly observed and needs to be estimated.

Due to the premium’s importance in for example asset pricing and cost of capital calculation, its pre-

dictability is of great interest to both theorists and practitioners. There is no consensus on how to

estimate the premium, but as stated by Brotherson et al. (2015) and Damodaran (2021), the historical

unconditional mean is the most common approach. The topic of ERP prediction is well examined in

financial literature, but the results are mixed. While some argue that certain variables or models are

valuable in forecasting it, others disagree, finding no variable or model superior to the basic historical

unconditional mean. Despite an already extensive literature, new variables and models are constantly

being tested to improve the estimation of the expected ERP.

We explore a new approach for predicting the risk premium, utilising tree-based machine learning

models for probabilistic forecasting. Focusing on quantile predictions, we investigate and predict the

whole conditional distribution, and not only the conditional mean focused on in prior research. We

utilise an established set of predictive variables, giving us the opportunity to focus the evaluation

on the predictive models and compare the results to previous research. Further, we focus on out-of-

sample prediction due to its relevance to real prediction tasks. The main contribution of our work

is threefold: (i) we extend the common goal of predicting point estimates of the ERP by exploring

probabilistic forecasting using quantile predictions, (ii) generally, we add research on the applicability

of quantile random forests and quantile gradient boosting on financial data, and specifically on the

topic of ERP prediction, and (iii) we contribute to existing literature with a new assessment of the

established variables´ importance when predicting the ERP. In the rest of this section, we position our

work in the landscape of ERP predictions.

Traditionally, macroeconomic variables such as dividend-to-price (see, e.g. Fama and French (1998);

Ang and Bekaert (2007); Cochrane (2008)), earnings-to-price (see, e.g. Goyal and Welch (2008)),

inflation (see, e.g. Campbell and Vuolteenaho (2004)), interest rates (see, e.g. Campbell (1987)), and

risk measures (see, e.g. Guo (2006)) have been proposed as better predictors of the expected ERP than

the historical mean. Several papers discuss whether these variables have any predictive power at all and,

if so, to what extent. To compare and reassess the fragmented research under a common framework,

Goyal and Welch (2008) conduct a comprehensive examination of several suggested predictors of the

ERP and find that none perform well in predicting the ERP in-sample (IS) nor out-of-sample (OOS).

An extensive amount of research has attempted to validate their findings afterwards or improve them

by suggesting new variables with better predictive performance. Several claim to find variables that

are better, see e.g. Li et al. (2013) who suggest using the implied ERP as a predictor and Neely et al.

(2014) who suggest technical indicators. In Goyal et al. (2021), the authors reassess their original

suggested predictive variables, as well as a new set of suggested variables from literature published

after their original work, finding none of the variables, neither old nor new, to have significant IS or

OOS predictive performance.
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Due to the inconsistent predictive performance of univariate models, combination forecasts have in

general been suggested to increase forecast accuracy, see, e.g. Clemen (1989). Therefore, as an al-

ternative to the univariate examination by Goyal and Welch (2008), Rapach et al. (2010) suggest

integrating the forecasts based on single variables, which results in a strong OOS predictive power

against the historical mean. Duarte and Rosa (2015) propose combining forecasts from 20 univariate

and multivariate models based on historical mean, discounted cash flow models, time series regression,

cross-sectional regression, and surveys of professionals in order to predict the expected ERP. However,

the paper does not assess the combined model’s OOS predictive power. Neely et al. (2014) further

investigate a regression model that combines both fundamental and technical predictors through prin-

cipal components, resulting in forecasts that are superior to the univariate regressions of the predictors

separately.

Artificial intelligence, and machine learning in particular, for financial analysis is starting to become

a well-established connection, especially for stock return and price movement prediction (of the more

recent, see e.g. Ballings et al. (2015), Vijh et al. (2020), Rapach and Zhou (2020), and Basak et al.

(2019)). Though, in predicting the ERP, machine learning models are less utilised. Wolff and Neuge-

bauer (2019) investigate tree-based machine learning approaches for equity market predictions using

the provided dataset from Goyal and Welch (2008), but do not examine the premium. Their results

in predicting equity market returns with machine-learning models are mixed. A comprehensive com-

parative study of machine learning models to predict single asset risk premium and the aggregated

market premium is later performed by Gu et al. (2020) who use linear models (ordinary least squares

and elastic net), tree-based models (random forests and boosted regression trees), neural nets, and

dimensionality reduction techniques (principal component regression and partial least squares). They

find large economic gains when utilising machine learning forecasts, especially by applying trees and

neural nets. This research also partly uses the available dataset from Goyal and Welch (2008).

The studies discussed above provide mixed results for ERP prediction. This might be due to the

chaotic nature of stock returns, proven to unsettle even state-of-the-art predictive models. In other

areas subject to chaotic processes, there has been a growing interest in probabilistic forecasting tech-

niques, i.e. predictive models that can quantify their uncertainty. Dawid (1984) argues that forecasts

ought to be probabilistic by nature, and inspired by his work, several recent studies have covered this

material (see, e.g. Gneiting and Raftery (2007), Gneiting et al. (2007), Gneiting (2008), and Gneiting

and Katzfuss (2014)). Gneiting and Katzfuss (2014) define a probabilistic forecast as a predictive

probability distribution over future and unknown quantities of events of interest, with the aim of max-

imizing the sharpness subject to reliability of the predictive distributions or equivalently minimizing

the prediction intervals, based on available information.

As probabilistic forecasts incorporate uncertainty, this method has been proposed in recent decades

to be beneficial for financial forecasting of stock prices (see, e.g. Onkal and Muradoglu (1994)) and

macroeconomic forecasting of inflation rates (see, e.g. Garrat et al. (2003)). Following this line of

thought, a probabilistic forecast of the ERP is more interesting than only a point estimate that only
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describes one possible outcome. The additional information given by the probabilistic forecasts provides

the basis for better decision making. As an example, the practical study by Alessandrini et al. (2014)

shows that when trading future wind energy production, using probabilistic wind power predictions

can lead to higher economic gains than using deterministic forecasts alone. Curiously, we find that

there is little research on probabilistic ERP forecasting, despite the fact that there are several studies

of point estimation ERP forecasts.

Quantile regression, initially suggested by Koenker and Basset (1978), is a technique that enables

probabilistic forecasting. Meligkotsidou et al. (2014) connect the empirical evidence of non-normally

distributed stock returns, the risk premium´s exhibition of time-varying volatility, excess kurtosis, and

negative skewness, to the bad predictive performance of the variables investigated in Goyal and Welch

(2008). Rather, they suggest using the quantile regression technique to model the relationship between

a set of variables and the quantiles of the ERP. Applying this technique on ERP prediction, the authors

find the same set of variables investigated in Goyal and Welch (2008) to be better at predicting certain

conditional quantiles of the ERP, than predicting the conditional mean. Meligkotsidou et al. (2019)

continue the research on quantile regression applied to ERP prediction by implementing a multivariate

complete subset quantile regression framework for predicting the risk premium, resulting in significant

OOS predictive power compared to both the historical mean, and the earlier suggested combination of

single-variable quantile regression predictions (see Meligkotsidou et al. (2014)).

Combining the quantile regression technique with machine learning algorithms can produce probabilis-

tic forecasts and have yielded promising results in other areas with volatile movements, see, e.g. Verbois

et al. (2018) that predict day-ahead solar irradiance, and Nowotarski and Weron (2018) who review the

advances in probabilistic forecasting of electricity prices. Several machine learning algorithms can be

used for the purpose of probabilistic forecasting, for which some models are more suitable than others.

Because the ERP is a continuous real number, the group of supervised machine learning algorithms

for regression is a natural starting point for model selection. These techniques model the relationship

between the dependent variable and the predictors. In the category of supervised algorithms, there is

a vast amount of simple to more complex models to consider, such as models based on extensions to

linear regression, neural nets, tree-based models, support vector machines, and k-nearest neighbours

(see, e.g. Hastie et al. (2017) and James et al. (2021)).

The different models mentioned above are, to varying degrees, optimized for different use cases. We

have decided to apply tree-based machine learning algorithms, i.e. gradient boosting and random

forests, chosen based on several factors. Firstly, they are transparent and easily interpretable, pointed

out by, e.g. Gu et al. (2020). Of their applied models, they find the most improved stock return

prediction using neural networks and trees. They find neural networks slightly better than trees

but acknowledge their shortcomings of transparency and interpretability. Secondly, the tree-based

models are non-parametric and are thus flexible in that we do not need to make assumptions about the

functional form of the relationship between the ERP and the predictors ex-ante. A further advantage of

trees is that they easily handle both continuous and categorical variables (see, e.g. James et al. (2021)).

3



Lastly, the above-mentioned study by Verbois et al. (2018) uses quantile gradient boosting and Vaysse

and Lagacherie (2017) use quantile regression forest, both with good results. A disadvantage of many

machine learning models is that they are prone to overfitting (see, e.g. Gu et al. (2020)), which is why

we use the regularized algorithms random forests and gradient boosting.

With our previously mentioned contributions, we distinguish from previous research. While several

previous studies do, to some extent, predict for longer horizons, most concentrate on 1-month or 1-

year predictions. We advocate for additionally considering the long-term level due to its relevance

for practical use. Therefore, while introducing probabilistic forecasting to ERP prediction, we add

to the existing literature by also predicting the long-term level of the ERP. Further, the evaluation

of probabilistic forecasts is dependent on appropriate evaluation metrics, which we introduce in the

context of ERP prediction. Finally, we seek to elaborate on the application of machine learning models,

as to our knowledge, quantile regression forest and quantile gradient boosting are not being applied

for ERP prediction in current literature. In that context, we assess the training and validation of these

models for predicting the premium with respect to its time series characteristics.

We proceed as follows. The quantile machine learning models need predictive variables to condition

the ERP on, and in section 2 we present the retrieval and preprocessing of our data, as well as its

characteristics. In section 3 we describe the models used to generate prediction intervals, the empirical

procedure for how to do it, and the metrics for evaluating forecasts produced by the models. Section

4 covers the results and discussion. Finally, we conclude and provide suggestions for further work in

section 5.
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2 Data

In this section, we present the data, i.e. the time series of monthly ERP and the set of selected

predictive variables to condition the ERP on. We begin by explaining the process of retrieving and

preprocessing the data before presenting relevant descriptive statistics.

2.1 Retrieval and preprocessing

As stated by Gu et al. (2020), there is a vast amount of available variables to condition the ERP on.

Our data is primarily based on a well-known and commonly used dataset for the prediction of ERP,

provided by Goyal and Welch (2008). This dataset is hereafter denoted GW1 and is generally comprised

of macroeconomic variables. Additional variables investigated in Goyal et al. (2021), which provides

an updated examination of the original variables as well as additional variables suggested in various

literature after their initial article, are included in a second dataset. This dataset is denoted GW2 and

includes more macroeconomic variables, as well as sentiment, cross-sectional stock information, and

technical indicators. The data needed to calculate the variables from GW2 are gathered from several

sources, but mainly from the Federal Reserve Bank of St. Louis, hereafter denoted MV. For details

about the data sources for this dataset, see the appendix made available by Goyal et al. (2021). Finally,

we further extend the dataset with seven macroeconomic variables retrieved from the macroeconomic

database of the Federal Reserve Bank of St. Louis. This selection is chosen based on the determinants

of the ERP presented in Damodaran (2021), where he, among others, covers economic risk, inflation

and interest rates, and monetary policy. All variables included in the dataset are seen in Table 1.

The variables in GW1 and GW2 are calculated according to the procedure described in Goyal and

Welch (2008) and Goyal et al. (2021) respectively. The variables in MV are calculated according to

the appendix of St. Fred. Descriptions of the variable transformations can be found in Table 1. The

ERP is calculated as the total return of the stock market, proxied by the S&P 500, minus the monthly

short-term interest rate tbl, as presented by Goyal and Welch (2008). In addition to predicting the 1-

month ERP, we also predict the 1-year and 5-year average monthly ERP. To calculate these to be used

as target variables, we use the 1 and 5-year return of the S&P500, minus the return if invested in the

t-bill over the same period. We calculate the average monthly ERP (note that this is not annualised,

but presented as a monthly rate) over the period to find its long-term monthly level.

The variables in GW1 and GW2 mainly consist of monthly frequencies. However, a few are quarterly

or annual. In addition, the variables start at different times. As we want to maintain accuracy by

avoiding to deal with missing data, we remove incomplete data. Thus, we select only the monthly

variables with start time in January 1960 or earlier. The variable tchi from GW2 is originally a

principal component of several technical indicators. For the purpose of analysing the importance of its

constituents, tchi is split into three parts: moving average, momentum, and volume. The final dataset

consists of 23 variables from GW1 and GW2.
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Variable Description

Panel A: GW1 - Variables from Goyal & Welch (2008)

dp Dividend-price ratio Difference between log of div and log of prices.
dy Dividend yield Difference between log of div and log of lagged prices.
ep Earnings-price ratio Difference between log of earnings and log of prices.
de Div-payout ratio Difference between log of div and log of earnings.
bm Book-to-market ratio B/M-ratio for the Dow Jones Industrial Average.
svar Stock variance Sum of squared daily returns on S&P500.
ntis Net equity expansion 12-month moving sum of net issues by NYSE listed

stocks divided by total market cap.
tbl T-bill 3-month U.S. Treasury Bill rate.
lty Long-term yield Long-term U.S. Government Bond yields.
ltr Long-term rate of return Long-term U.S. Government Bond returns.
tms Term spread Difference between lty and tbl.
dfy Default yield spread Difference between BAA- and AAA-rated corporate

bond yields.
dfr Default return spread Difference between corporate bond returns and ltr.
corpr High quality corporate bond rate Representing the high quality corporate bond market,

i.e. bonds rated AAA, AA, or A
infl Inflation U.S. Consumer Price Index.
Panel B: GW2 - Variables from Goyal and Welch (2021)

ogap Output gap Regressing log of industrial production yt on time t with
error vt being the gap, yt = β0 + β1t+ β2t

2 + vt.
dtoy Nearness to Dow 52 week high Difference between current value and the 52-week high

of the Dow Jones Index.
dtoat Nearness to Dow all-time high Difference between the current value and the all-time

high of the Dow Jones Index.
ygap Stock-bond yield gap Difference between aggregated dividends and the 10-

year U.S. T-bond yield (”Fed-model”).
rdsp Stock return dispersion Cross-sectional standard deviation on the set of 100 size

and book-to-market portfolios.
gip Growth in industrial production Year-end economic growth based on industrial produc-

tion.
tchi ma Moving average (M.a.) M.a. rule with buy signal when current price of S&P500

is greater or equal than m.a. of past nine months.
tchi vol Volume (Vol.) Vol-rule with buy signal when current on-balance vol.

(OBV) is greater or equal than m.a. of OBV past nine
months.

tchi mom Momentum (Mom.) Mom-rule with buy signal when current price of S&P500
is greater or equal than the price nine month past.

Panel C: MV - Macroeconomic variables St. Louis Fed Economic Database

clf16ov Labor force First log differences with lagged values.
unrate Unemployment rate First differences with lagged values.
rpi Real personal income First log differences with lagged values.
uempmean Avg. duration of unemployment First differences with lagged values. The variable is ag-

gregated per week.
houst Housing starts Log of total new privately-owned housing units started.
bogmbase Adjusted monetary base Second log differences with lagged values.
gdp Gross domestic product Normalised around zero.

Table 1: Included variables.
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2.2 Descriptive statistics

The final dataset includes the ERP and its lagged values, as well as 31 predictive variables spanning

from 1960:01-2020:01. Descriptive statistics of the ERP are presented in Table 2 and the variables in

Table 5 in Appendix A. Some important features of the ERP should be noted. First, the monthly

ERP has a standard deviation of 4.31% and is even more volatile than the monthly returns on S&P

500. The mean of the ERP is 0.43% while the median is 0.87%, indicating more extreme low values

than high ones, which the slight negative skew confirms. In addition, the distribution is leptokurtic,

indicating that the ERP has more extreme values than the normal distribution. tbl m denote the

monthly rate of tbl, which we use to calculate the monthly ERP.

ERP IndexReturn tbl m

Mean 0,43 % 0,81 % 0,37 %
Standard error 0,16 % 0,16 % 0,01 %
Median 0,87 % 1,20 % 0,38 %
Std 4,31 % 4,30 % 0,27 %
Kurt 2,40 2,46 0,88
Skew -0,67 -0,66 0,75
Min -24,77 % -24,25 % 0,00 %
Max 14,89 % 15,51 % 1,37 %
25th -1,90 % -1,56 % 0,18 %
75th 3,25 % 3,61 % 0,51 %

Table 2: Descriptive statistics of monthly realized ERP.

Several economic events in U.S. history have influenced the ERP. In previous research, such as Goyal

and Welch (2008) and Goyal et al. (2021), many predictors are dismissed due to their exceptional

performance during these events, e.g. the oil crisis in 1973-74 (see French (1997)). Thus, we find it

important to highlight two economic events of particular interest for our study: (i) the I.T. bubble,

where euphoria over the emerging I.T. market led the S&P500 to a total growth of 320% from the end

of 1994 to the end of 1999, with the subsequent collapse (see, e.g. Goodnight and Green (2010)). (ii)

The 2008 financial crisis resulted in the second-worst market crash in U.S. history, thus resulting in

the worst decline of the ERP in our dataset. Because of the need for consistent data on our variables,

we end our dataset in January 2020, thus not covering the ERP through the COVID-19 pandemic

starting March 2020.
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3 Models and empirical procedure

In this section, we present the predictive models and the empirical procedure. As claimed in Nowotarski

and Weron (2018), the most common way to construct probabilistic forecasts is through constructing

prediction intervals. We do so by combining the quantile regression technique with machine learning.

In subsection 3.1 we introduce the tree-based machine learning algorithms quantile regression forest

(QRF) and quantile gradient boosting (QGB). These models have hyperparameters that need to be

selected, and in subsection 3.2 we describe the learning procedure for tuning these parameters, as well

as the empirical procedure of generating the OOS quantile predictions. For comparison, we benchmark

the machine learning models against the historical unconditional model (historical model) and the lasso

quantile regression model (QR), described in subsection 3.3. Finally, in subsection 3.4 we describe the

evaluation metrics and statistical tests to assess the probabilistic forecasts.

3.1 Tree-based machine learning models

Tree-based machine learning algorithms are based on decision trees, introduced by Quinlan (1986),

and further described in Hastie et al. (2017), and James et al. (2021). Decision trees can be used

for both classification and regression, depending on the use case. As we aim to predict ERP as a

number, our use case dictates the need for regression. The simplest regression tree algorithm creates

one single tree based on all available data and recursively partitions the predictor space into several

distinct and non-overlapping rectangular regions. The final set of partitions is often described by and

visualized in a tree structure by a set of nodes: root node, internal nodes, and leaf nodes. The root

node and the internal nodes split the data on a certain predictive variable based on a loss function.

To yield a prediction of some unknown response variable, we start at the root node and follow a path

through internal nodes until we reach a leaf node. The leaf node then returns the mean of its contained

response values. The approach of growing one single tree is known for its high variance and infamous

overfitting. We implement two ensemble learning algorithms to reduce the variance, selected due to

their ability to predict the conditional quantiles and not only the conditional mean of the response.

3.1.1 Quantile regression forest

Let X denote the predictor matrix and Y the response vector. The general random forest (RF),

introduced by Breiman (2001), uses n independent observations (Yi, Xi), i = 1, . . . , n to grow a large

ensemble of trees, where various subsets of the data are used to build each tree. The variable subset

considered for splitting a node is determined at random. These features make the algorithm less prone

to overfitting, thus making RF suitable for high-dimensional regression (see, e.g. Hastie et al. (2017)).

As formulated in Meinshausen (2006) and Vaysse and Lagacherie (2017), given new data X = x, each

tree returns a prediction in the form of an estimate µ̂(x) of the conditional mean E(Y |X = x). The

weight wi(x, θ) described in Equation 2 is positive if the observation (Yi, Xi) is part of the same leaf
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l(x, θ) of the tree built from the random vector of variables θ in which x falls within, and zero otherwise.

µ̂(x) =

n∑
i=1

wi(x, θ)Yi (1)

wi(x, θ) =
1(Xi ∈ Rl(x,θ))

#[j : Xj ∈ Rl(x,θ))]
(2)

Further, 1(.) is the indicator function and Rl(x,θ) is the rectangular subspace defined by the leaf l(x, θ)

of the tree built from θ. The final result is an averaged prediction of K single tree outputs (see

Equation 3) and is the approximation of the conditional mean of the response variable. wi(x) is

formulated as in Equation 4.

µ̂(x) =
n∑

i=1

wi(x)Yi (3)

wi(x) = K−1
K∑
k=1

wi(x, θk) (4)

We implement QRF introduced by Meinshausen (2006). QRF is quite similar to RF, but differs in that

the weighted observations are used to provide approximations of the whole conditional distribution of

the response, and not only the conditional mean. QRF estimates the conditional distribution function

F (y|X = x) = P (Y ≤ y|X = x) by Equation 5.

F̂ (y|X = x) =
n∑

i=1

wi(x)1(Yi ≤ y) (5)

QRF returns one model per time step which can be used to predict all quantiles. This makes the QRF

consistent in its prediction of the conditional quantiles, i.e. predictions of the ERP at lower quantiles

are smaller than predictions of greater quantiles, see Meinshausen (2006). We implement QRF using

the Python package RandomForestQuantileRegressor from Skgarden. The algorithm in this package

is based on QRF as described by Meinshausen (2006).

As we will evaluate the importance of each variable when predicting the ERP, we further describe

the calculations performed at each partition to find the optimal variable to split on. Following the

mathematical description from the documentation of the Python package Sklearn, at node m, the data

available from the random subset is represented by Qm with nm samples. The node splits the data

into two subsets, as described in Equation 6 and Equation 7, based on a candidate split Ψ(j, tm) for

predictor j and threshold tm.
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Qleft
m (Ψ) = {(Yi, Xi) ∈ Qm|xij ∈ Qm ≤ tm} (6)

Qright
m (Ψ) = Qm \Qleft

m (7)

The quality of a split is measured by G, which is the weighted sum of the loss for partitioning the

observations based on the candidate split. For regression tasks the loss function H, when using mean

squared error, is described by Equation 9.

G(Qm,Ψ) =
nleft
m

nm
H(Qleft

m (Ψ)) +
nright
m

nm
H(Qright

m (Ψ)) (8)

H(Qm) =
1

nm

n∑
Yi∈Qm

(Yi − Ȳm)2 (9)

The parameters best suited to minimiseG are found by Equation 10. The above-mentioned procedure is

performed recursively on both subsets until the algorithm reaches the limit set by the hyperparameters

(described in subsection 3.2), depending on which threshold it hits first.

Ψ∗ = argminΨG(Qm,Ψ) (10)

3.1.2 Quantile gradient boosting

While QRF grows multiple trees simultaneously, the gradient boosting algorithm grows k = 1, . . . ,K

trees sequentially. The algorithm initialises by fitting the first tree f0 to minimise a loss function.

Each successive tree fk is then fitted to the negative gradient of the loss function evaluated based on

the estimate of the subsequent tree fk−1. The final output is then the estimate f̂(x) = fK(x). The

gradient is defined in Equation 11, where the loss function of using tree f to predict Y is defined in

Equation 12. To get QGB, we fit the gradient boosting tree on quantiles, using the quantile or pinball

loss function described in Equation 13, where τ denotes a quantile, e.g. the 0.5 quantile.

∂L(Yi, f(Xi))

∂f(Xi)
(11)

L(f) =

n∑
i=1

L(Yi, f(Xi)) (12)

Lτ (Yi, f(Xi)) =

{
τ(Yi − f(Xi)) Yi − f(Xi) ≥ 0

(τ − 1)(Yi − f(Xi)) otherwise
(13)

10



The mathematical equations are formulated as in Hastie et al. (2017). Otherwise, in regard to choosing

the feature to split on at each node, gradient boosting works in a similar fashion to QRF. Differing

from QRF, QGB might be inconsistent in its quantile predictions because it creates one model per

quantile.

To use QGB, we apply the Python package LightGBM. LightGBM adds two techniques on top of the

gradient boosting machine: gradient-based one-side sampling (GOSS) and exclusive feature bundling

(EFB). Roughly summarized, GOSS randomly drops small gradients that are under a given threshold,

and EFB reduces the feature space by bundling together sparse features that are almost mutually

exclusive. Both methods reduce computational time remarkably while preserving almost the same

accuracy. For a mathematical elaboration, we refer to Ke et al. (2017).

3.2 Learning procedure

From the total period spanning from 1960:01 to 2020:01, we start training the models using an initial

hold out period from 1960:01 to 1989:12 (1960:01 to 1989:01 for 1-year-ahead predictions and 1960:01

to 1985:01 for 5-year-ahead predictions). For all the different time horizons, the first time step we

predict is 1990:01. From that on, we train the model at each time step with new data being available

consecutively. We predict 19 quantiles in the following range {0.05, 0.1, . . . , 0.9, 0.95}, and at each time

step we train and validate the model by tuning the hyperparameters of the model to minimise the error

on the validation set, using a cross-validation procedure. Because we are working with time series data,

using regular cross-validation, i.e. splitting the data randomly in training and validation data, would

result in unintended ”peeking” into the future when tuning the hyperparameters. For this reason, we

follow the walk-forward cross-validation procedure to train the model for OOS prediction. Figure 1

shows the walk-forward cross-validation procedure at time t. In walk-forward validation, we split the

available data at time t into five parts. The first part is the first 1/5 of the data, the second part is

the first 2/5 of the data, and so on. Each part is then divided into a training set, visualised by the

light blue rectangles, and a validation set, visualised by the dark blue rectangles. The validation set

has the same size for all five validation runs. At each run, the most recent data is used for validation

and the data prior to that for training.

Figure 1: Visualisation of the walk-forward cross-validation procedure for selecting the hyperparam-
eter values.
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As stated by Gu et al. (2020) the tuning of parameters has little guidance in theory. Therefore, we

optimize the hyperparameters based on a set of selected values, see Table 3. Learning the optimal

hyperparameters is performed through a grid search on the different hyperparameter combinations,

following the walk-forward cross-validation procedure. That effectively means that adding new hyper-

parameters has an exponential computational cost. Additionally, by simulating an environment where

the models are reset for each time period, this procedure is repeated for every single time step, further

increasing the computational cost. For this reason, most parameters are set to their default standards

in the packages by Skgarden and LightGBM. More details on the hyperparameters are as follows:

1. Number of estimators: This refers to the number of trees used in the fitting procedure. For both

QRF and QGB, this is the number of trees grown. However, the two models behave differently

when adjusting this hyperparameter. The original paper by Breiman (2001) on the random forest

algorithm states that increasing the number of estimators does not lead to overfitting, although

this has been contested later by Segal (2003). At some point, the improvement of adding more

trees is minimal, and it is subject to a trade-off between increased accuracy and computational

time. In our case, the dataset is sufficiently small to have a stable performance when the number

of trees is set at 100. On the other hand, QGB has a trade-off between the number of trees and

the learning rate. Generally, a higher number of stages leads to a lower optimal learning rate

Friedman (2001). This range is set between 100 and 500 with intervals in hundreds.

2. Learning rate: The learning rate lowers the contribution of each tree and is a property only seen

in gradient boosting. During empirical testing, we find that lower learning rates lead to less

overfitting and better generalization errors, which aligns with findings from previous studies (see

Friedman (2001)).

3. Minimum number of samples per split and per leaf: The minimum sample size required to create

an internal split in a node or the minimum number of samples required to create a leaf node.

By nature, the two dictate each other, as the creation of a leaf node is dependent on whether a

node has been split. If the minimum sample split is lower than the minimum sample leaf, the

latter will override the former, and the split will not be created. Empirically, the difference in

the validation error is insignificant when tuning both simultaneously. For this reason, only the

leaves are tuned to avoid high computational costs.

4. Max depth: This is the maximum depth of the tree. Greater depths increase the bias and reduce

the variance. In our training, high max depths seem to increase the bias further for broader

quantiles than for the median, making the intervals narrow. When the minimum number of

samples in leaf nodes is set to a relatively high number, this artificially lowers the maximum

possible depth, as maximum depth is controlled by the number of available samples.

All the tuned hyperparameters with their corresponding values can be found in Table 3. As an end

note, to reproduce the same results of our training, the parameter random state should be set to 0.
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QRF QGB

Nr. of estimators ∈ [100] ∈ [100, 200, 300, 400, 500]
Learning rate - ∈ [0.001, 0.005, 0.01, 0.05, 0.1]
Min samples per leaf ∈ [2, 5, 10, 20, 30, 50] ∈ [2, 5, 10, 20, 30, 50]
Max depth ∈ [2, 5, 10, 15, 20] ∈ [2, 5, 10, 15, 20]

Table 3: Sets of selected hyperparameter values.

3.3 Benchmark models

We implement two benchmark models for comparison and verification of the results: historical uncon-

ditional quantiles and lasso quantile regression. Thus, at each time step, we calculate the median and

the 18 other quantiles corresponding to those predicted by the tree-based machine learning models

described above. The historical model is based on the empirical quantiles calculated using all past

ERP data at each time step.

We further implement a multivariate quantile regression model with L1-penalization, also called lasso

quantile regression (see e.g. Koenker and Basset (1978) and Li and Zhu (2008)). The advantage

of adding the L1-penalty is that it automatically performs variable selection by shrinking the fitted

coefficient toward zero. The regularization term adds a hyperparameter λ. For each quantile τ ,

we fit the regression model formulated in Equation 14 which utilises the loss function formulated in

Equation 13. Here, f(Xi) is β
τXT

i . We use the QR implementation provided by the Python package

Sklearn, and follow the same walk-forward cross-validation approach as described in subsection 3.2 to

find the optimal λ. QR can, as QGB, possibly be inconsistent in its predictions because it creates one

model per quantile. We impose a rule such that the benchmark models achieve consistent quantiles to

ensure that they are built on the same set of foundations as QRF.

min
β

n∑
i=1

Lτ (Yi, β
τXT

i ) + λ∥β∥L1 (14)

3.4 Evaluation metrics

When evaluating the probabilistic forecast, we study the common properties for deterministic forecasts,

namely measurement error and bias, and the additional properties specific to probabilistic forecasts,

namely reliability and sharpness. Compared to deterministic forecasts, probabilistic forecasts have a

larger number of properties, thus comparing different models is more complicated. Scoring rules that

account for prediction accuracy, reliability and sharpness are introduced to help rank the different

probabilistic forecasts. This section introduces the different metrics used to assess the properties of

the forecasts, relevant scoring rules and methods to measure statistical significance.
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3.4.1 Evaluation metrics for point estimates

Denote Ŷi,τ as the quantile forecast. The median, τ = 0.5, is used as our point forecast. As a measure

of the prediction accuracy for each model, the mean absolute error (MAE) is calculated at each time

step, see Equation 15. We use MAE instead of MSE because the latter punishes outliers more harshly

than MAE, making MAE slightly more desirable in our setting, as we do not want extraordinary events

like economic recession or stock market bubbles to carry too much weight in the aggregated errors. In

addition, as ERP is an economic variable, MAE is a more precise representation of the deviation seen

from a practical view.

MAE = n−1
n∑

i=1

|Yi − Ŷi,0.5| (15)

In addition to MAE, we evaluate the point estimates by prediction bias and correlation. Prediction

bias is the average difference between the forecasts and the true values and can be measured by the

mean bias error (MBE). The MBE can be positive or negative, revealing whether the model suffers

from systematic overprediction or underprediction. We further evaluate the correlation between the

point forecasts and the realised ERP using the Pearson correlation coefficient.

3.4.2 Evaluation metrics for probabilistic forecasts

The probabilistic forecasts are represented by prediction intervals (PI) based on the corresponding

predicted quantile values. Equation 16 is the central (1−α)×100% PI, where li is the predicted value,

Ŷi,τ , for the lower quantile τ = α
2 , and ui the predicted value for the the upper quantile τ = 1− α

2 .

PIi,α = [li, ui] (16)

When evaluating probabilistic forecasts, we cannot compare the predicted distribution to the true

distribution because the true distribution is non-observable. We need suitable metrics to evaluate the

probabilistic forecasts, and literature on the evaluation of probabilistic forecasts suggests reliability

and sharpness (see, e.g. Gneiting and Raftery (2007)). Reliability refers to the statistical consistency

of the PIs. A PI is considered reliable if its empirical coverage matches the nominal coverage, e.g.

the 90% PI should cover 90% of the observations. Sharpness is a measure of the concentration of the

distribution, and it does not include the actual observations. Thus, an arbitrarily sharp forecast can

easily be created, and comparing the sharpness of two models is only of relevance if their reliability

is equal. Reliability and sharpness are, therefore, closely related metrics, well described in previous

literature where the probabilistic forecast is desired to maximize sharpness subject to reliability (see,

e.g. Gneiting and Raftery (2007) and Nowotarski and Weron (2018)).
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As a measure of the reliability of a forecast, the prediction interval coverage probability (PICP) with

nominal coverage rate (1 − α) can be used. The PICPα is calculated as the coverage rate of the

central prediction interval, PIi,α, and is described in Equation 17 where a ”hit”, Ii is described in

Equation 18. If PICPα ∼ (1−α) for any α, then the model produces a reliable forecast. As a measure

of the sharpness of the probabilistic forecasts, we use the prediction interval width PIWα = ui − li

and prediction interval average width (PIAW) for different nominal coverage rates.

PICPα = n−1
n∑

i=1

Ii (17)

Ii =

1 if Yi ∈ [li, ui] → ’hit’

0 if Yi /∈ [li, ui] → ’miss’
(18)

To test whether the PIs constructed by a model are significantly reliable, we use both the Kupiec test

and the Christoffersen test. The Kupiec test developed by Kupiec (1995) is a likelihood ratio test (LR)

to evaluate whether a model provides the correct unconditional coverage. The test rejects the null

hypothesis of an accurate (1−α)× 100% PI if the fraction of ”misses” is statistically different from α.

The statistic is defined in Equation 19, where c = (1 − α), π = n1/(n0 + n1), and n0 and n1 are the

number of ”misses” and ”hits” respectively. The statistic is distributed asymptotically as χ2(1).

LRUC = −2ln

{
(1− c)n0cn1

(1− π)n0πn1

}
(19)

The Kupiec test has been claimed to be unsuitable for time series in that it only indicates whether a

forecast is significantly reliable on average, not considering the clusters of outliers or violations of the

PI. Therefore, Christoffersen (1998) has developed a conditional coverage test, which is a joint test for

unconditional coverage and independence. The independence test is presented in Equation 20 and is

distributed as χ2(1).

LRInd = −2ln

{
(1− π2)

n00+n10πn01+n11
2 )

(1− π01)n00πn01
01 (1− π11)n10πn11

11

}
(20)

where π2 = (n01+n11)/(n00+n01+n10+n11), nij is the number of observations with value i followed

by j and πij = P(It = j|It−1 = i). When evaluating the first order condition, LRCC is the sum of the

unconditional coverage test and and an independence test LRCC = LRUC +LRInd, and is distributed

asymptotically as χ2(2). Both the Kupiec test and the Christoffersen test the null hypothesis of an

accurate coverage rate. Thus, for both tests a lower test statistic is better, i.e. we don’t want to be

able to reject the null. Both tests are further model free, in that they do not test the models, only the

forecasts produced by the models.
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3.4.3 Scoring rules

When comparing two probabilistic forecasts, a compromise has to be made between reliability and

sharpness. Scoring rules are proposed to find an optimal trade-off between the properties and help

rank the different models. It is important that the scoring rule is proper, a characteristic described

in, e.g. Gneiting and Raftery (2007), which simply means that the average score of the forecast has

to be less or equal to the average score of the true distribution, see, e.g. Nowotarski and Weron

(2018). Wrinkler (1972) introduced a proper scoring rule for evaluating PIs that assesses reliability

and sharpness jointly, as presented in Equation 21. Narrow prediction intervals are rewarded, while

”misses” incur a penalty whose size depends on α.

Sα,i(li, ui;Yi) = (ui − li) +
2

α
(li − Yi)1[Yi < li] +

2

α
(Yi − ui)1[Yi > ui] (21)

Further, we use the pinball loss as a proper measure of fit per quantile, previously presented in sub-

subsection 3.1.2. We can average the score both per quantile and over all quantiles to evaluate the

quantile predictions.

3.4.4 Test of equal predictive performance

We use the Diebold-Mariano test (DM test) created by Diebold and Mariano (1995) to determine

whether forecasts generated by one model are significantly better than those generated by a different

model. The test is model-free in that no models are needed, only two forecast error series, alternatively,

two scoring result series for evaluating probabilistic forecasts. Thus, the DM test can both be applied

to test for equal predictive performance of point and interval forecasts. Denote dt = loss(e1t)−loss(e2t)

as the difference in loss (e.g. a quadratic or absolute loss function) between the two forecasts compared,

and d = 1
T

∑T
i=1 dt denotes the sample mean of dt. Under the null hypothesis, the test statistic tends

towards the normal distribution, see Equation 22, and states that there is no difference in the predictive

accuracy between the two forecast series (H0 : E[dt] = 0). The two-sided alternative hypothesis states

that the forecasts are not equally accurate (H1 : E[dt] ̸= 0). The null can be rejected if |DM | is
greater than a critical value. In practice, it is normal to run the test one-sided, where the alternative

hypothesis is that one forecast is less accurate than the other. We will perform the test in such a

manner. The DM test requires the loss differentials to be covariance stationary, referred to as the

Assumption DM by Diebold (2012) (see Equation 23).

DM =
d

σ̂dt
∼ N (0, 1) (22)

AssumptionDM :

{
E[dt] = µ
cov(dt, dt−τ ) = γ(τ)
0 < σ2

dt
< ∞

(23)
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4 Results and discussion

The probabilistic forecasts from all the models are presented in Figure 2, which show the 10%, 50%

and 90% PIs of the 1-month, 1-year and 5-year ERP. The points are the realised ERP. As seen, the

monthly realised ERP is volatile, seemingly acting like a white noise process, which partly explains

why the 1-month risk premium is difficult to forecast. For the 1-year and 5-year horizons, the realised

ERP shows signs of emerging patterns.

(a) Historical model 1-month. (b) Historical model 1-year. (c) Historical model 5-year.

(d) QR 1-month. (e) QR 1-year. (f) QR 5-year.

(g) QRF 1-month. (h) QRF 1-year. (i) QRF 5-year.

(j) QGB 1-month. (k) QGB 1-year. (l) QGB 5-year.

Figure 2: Plot of 10%, 50%, and 90% prediction intervals generated by the models.
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The figures illustrate some of the differences between the models. For the historical model, the PIs

show little adaptation through time, while QR, QRF, and QGB are more adaptive. When predicting

the 1-month ERP, all the models are approximately static, likely because there is no clear pattern for

the machine learning models to learn. Conversely, for the 1-year ERP forecasts, the machine learning

models show signs of adaptation, and even more on the 5-year horizon. From around the year 2000

and forward, QGB and QRF look reasonably accurate, but they fail to predict the IT bubble spike in

the 1990s. This could be because the models had not seen such extreme ERP values in the past or

simply due to the incrementally increasing training sets. Regarding the 2008 financial crisis, the 5-year

predictions of QRF and QGB are quite accurate, whereas the 1-year predictions are more impacted by

this event. The figures further illustrate the differences in sharpness between the models, see, e.g. the

far sharper PIs generated by QGB 5-year in Figure 2l relative to QR 5-year in Figure 2f.

In the following, we conduct a systematic analysis of the performance of the models’ abilities to produce

probabilistic forecasts of the ERP. The point forecasts are first evaluated in subsection 4.1 and the

probabilistic properties of the models are then evaluated in subsection 4.2. We further evaluate the

importance of each variable in predicting the ERP subsection 4.3. We focus on the results of the

1-month and 5-year predicted ERP because the models for the 1-month and 1-year predictions yield

similar outcomes. All analyses of the 1-year predictions are presented in Appendix A.

4.1 Evaluation of point estimates

The MAEs of the models are presented in Figure 3, both for three separate decades from 1990 to 2020,

as well as the total average error over the whole prediction period. For the 1-month predictions, all

the models have almost equal predictive performances, and the DM test confirms that the forecasts

produced by QRF and QGB are not significantly better than the forecasts produced by the benchmark

models, see Table 4. As we could have expected QRF and QGB to generate better point estimates

since they are more complex models, we believe this further substantiates the results of Goyal and

Welch (2008) and Goyal et al. (2021), illustrating the difficulty of predicting the 1-month ERP.

(a) 1-month. (b) 5-year.

Figure 3: MAE bar charts of 1-month and 5-year point estimates.
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(a) Historical model and QR. (b) QRF and QGB.

Figure 4: Median predictions against the realised 5-year average ERP.

For the 5-year ERP, QRF and QGB show considerably lower MAE than the benchmark models from

the year 2000 and forward. In the decade between 1990 and 2000, the QRF and QGB do not have

considerably lower errors. This is partly due to the effect of the IT bubble. Another reason why QRF

and QGB get lower MAE in comparison to the benchmark models through time is because of the

incrementally larger amount of data available for training. Their performances against the historical

model are the greatest between 2010–2015, with QRF and QGB having 62% and 51% lower MAE,

respectively. Over the total period, QRF and QGB have 29% and 27% lower MAE. The DM test

supports these findings, i.e. the forecasts produced by QRF and QGB are significantly better than

the forecasts produced by the benchmark models. The considerable lower MAE of QRF and QGB

compared to the benchmark models proves the machine learning models to be valuable in predicting

the long-term level of the ERP. The MAE performances are further illustrated in Figure 4, which shows

the 5-year predicted median for the models against the realised ERP. The benchmark models generate

somewhat static predictions, while from the year 2000 and forward, QRF and QGB are clearly able to

predict the realised values.

1m 1yr 5yr

Model Stat p-val Stat p-val Stat p-val

Panel A: Hist as benchmark
QR 1.38 0.08 -1.11 0.87 0.87 0.19
QRF -0.43 0.67 -2.70 1.00 12.10 0.00**
QGB -0.19 0.57 -0.51 0.69 10.95 0.00**

Panel B: QR as benchmark
Hist -1.38 0.92 1.11 0.13 -0.87 0.66
QRF -1.60 0.95 -2.29 0.99 11.43 0.00**
QGB -1.20 0.88 0.45 0.33 10.64 0.00**

Table 4: Diebold-Mariano test where H0: Benchmark and model x have the same accuracy, and
H1: Benchmark is less accurate than model. (*) denotes significance at the 5% level and (**) denotes
significance at the 1% level.
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(a) Historical model 5-year. (b) QR 5-year.

(c) QRF 5-year. (d) QGB 5-year.

Figure 5: Scatter plot of predicted against realised ERP, with their correlation.

Scatter plots of the 5-year forecasts against the realised ERP are shown in Figure 5, with the Pearson

correlation between the forecasts and the realised ERP presented at the bottom right corner of each

plot. Ideally, the median forecasts (in dark blue colour) would lay perfectly over the identity line, i.e.

the stapled line in the figure. The median plots of the benchmark models are horizontally oriented

and show that the medians almost consistently predict the same value, independently of the realised

ERP. QRF and QGB are, to a greater extent, aligned with the identity line and show a greater

correlation with the realised ERP. Damodaran (2021) evaluates the ERP predictions mainly on a

model’s correlation with realised ERP, and in regard to this, QRF and QGB yield good results.

The medians of QRF and QGB are mostly below the identity line, which indicates a prediction bias,

i.e. the models tend to systematically predict lower ERP than what is realised. This is also supported

by the MBE results, which show QRF and QGB to be more biased than the benchmark models.

Nonetheless, this additional bias is almost completely incurred during the IT bubble. Plots of MBE

are illustrated in Figure 14 in Appendix A. Interestingly, all models considerably reduce their bias

between 2000–2010. For QRF and QGB, this is because the models fit the realised ERP better than

before. In contrast, subsequent periods of overprediction and underprediction seem to cancel each

other out for the benchmark models.
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Along with the medians, the predicted 0.05 and 0.95 quantiles are plotted. A greater proportion of

the predicted 0.95 quantile is below the stapled line for all models, while almost none of the predicted

0.05 quantile are above it. This observation indicates that the models generally are too low in their

predictions of the upper quantiles, which again is a result of the IT bubble. The medians of QRF and

QGB are mostly below the identity line, which indicates a prediction bias, in this case that the models

tend to systematically predict lower ERP than what is realised. This is also supported by the MBE

results, which show QRF and QGB to be more biased than the benchmark models. Nonetheless, this

additional bias is almost completely incurred during the IT bubble.

4.2 Evaluation of probabilistic forecasts

We present the results of the probabilistic forecasts below. We begin by presenting the scores of the

PIs, before presenting the results of the constituent parts of the score, namely reliability and sharpness.

4.2.1 Scoring of prediction intervals

The results of the Wrinkler scoring rule are normalised by the mean and standard deviation of the

realised ERP for the purpose of comparison. Figure 6 presents the normalised distribution of the

interval score at each time step for the 10%, 50%, and 90% PIs for the 1-month and 5-year predictions.

Generally, we observe that the upper tails of the box plots are longer than the lower. This implies that

intervals often are far off when they first miss an actual value. Further, the interval scores for 1-month

predictions are quite similar, and none of the models stands out, analogous to the results of the point

estimates. Conversely, the average interval score of both QRF and QGB show superior performance

against the benchmark models on a 5-year horizon, excluding the 90% PI.

(a) 1-month. (b) 5-year.

Figure 6: Interval score boxplots for the 1-month and 5-year predictions, with the median (orange
line) and mean (red triangle). Lower interval scores are better, and 0 is considered a perfect score.
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As the differences between the models in Figure 6 are hard to detect, we further inspect the interval

scores by plotting their relative performance against the historical model as a baseline in Figure 7.

This figure includes all of the PIs, as well as incorporating the results from the DM test. For 1-month

predictions, the mean interval scores of QR, QRF and QGB are performing better than the historical

model, as shown in Figure 7a. However, the DM test shows that only the predictions generated by

QR and QRF are significantly better than the predictions generated by the historical model for most

PIs. In fact, QR ends up as the best-performing model, implying that neither QRF nor QGB is

more valuable than the benchmarks in predicting the probabilistic distribution of the 1-month ERP.

Additional results from the DM test together with test statistics and p-values can be found in Table 6

in Appendix C.

(a) Mean interval score for 1-month predicted ERP. (b) Mean interval score for 5-year predicted ERP.

Figure 7: Interval score compared to the historical benchmark model. Significantly better perfor-
mance at the 1% (5%) significance level is denoted by the large (small) circles.

For 5-year predictions, the DM test confirms that forecasts produced by both QRF and QGB are

significantly better than the benchmark models for most of the PIs. Notably, the relative mean

interval scores of these models decrease as the interval widens. This reduction is due to the IT bubble

disrupting the performance of the wider PIs. To elaborate, the 90% PIs of QRF and QGB are more

adaptive in the years preceding and during the IT bubble in comparison to the historical model. At

the same time, it is during this period that they incur their relative worse interval scores compared to

the historical model. After the bubble, their 90% PIs visibly stabilise at a wide level, see Figure 2i and

Figure 2l, doing this to be able to cover similar ERP values in the future. After the IT bubble, QRF

and QGB score relatively similar to the benchmark models throughout the remainder of the sampling

period. Summarised, the remarkable drop in performance of QRF and QGB compared to the historical

model for the 90% PIs is due to a higher score incurred during the initial period. The more central

PIs are not considerably affected by the IT bubble for their further performance, i.e. they are able to

adjust to the movement of the long-term level of the ERP.
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4.2.2 Reliability and sharpness of prediction intervals

In the following part of this section, we present the models’ reliability and sharpness to analyse the

constituents of the interval score. Figure 8 shows the PICP, which measures the reliability of the

forecasting models. A model is perfectly reliable if the line perfectly covers the stapled grey line.

All the models seem reliable in predicting the 1-month ERP, and the results from the Kupiec test in

Figure 9a verify that they are significantly reliable. However, Figure 9c shows that the conditional

coverage is not statistically significant for the greater PIs, i.e. the sequence of ”hits” and ”misses” for

a PI is not random and comes in clusters (see Equation 18).

(a) 1-month. (b) 5-year.

Figure 8: Reliability plots of 1-month and 5-year predictions.

For the 5-year predictions, the models seem less reliable in Figure 8b, and the unconditional coverage

test in Figure 9b confirms that only QRF is significantly reliable. The rest of the models are far below

the 1:1 line and do not manage to capture the percent of values that the PIs should. When we further

apply the Christoffersen test, QRF is no longer significantly reliable. The reason is that the model

”misses” too many values sequentially, as previously seen in Figure 2.

Sharpness is conditional to reliability, i.e. to distinguish if a model’s forecast is better than another

based on sharpness, the models should be approximately equally reliable. The relative sharpness of

QR, QRF and QGB compared to the historical benchmark model are presented in Figure 10. For the

1-month ERP predictions, the Christoffersen test shows that all models are significantly reliable for

the lower PIs, and we can thus compare their sharpness to analyse the performance of the models. As

seen in Figure 10a, QR, QRF and QGB are all consistently sharper than the historical model for the

PIs above 10%. Since all models are equally reliable, QR, QRF and QGB outperform the interval score

of the historical benchmark due to this slight improvement. For the 5-year predicted ERP, Figure 10b

shows that QGB is performing approximately 25% better than the historical benchmark for all of the

PIs. Interestingly, the rest of the models (historical, QR and QRF) achieve approximately the same

sharpness. However, since QRF outperforms all of the models on reliability, the resulting interval score

is greater than that of the benchmark models.
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(a) Kupiec test, 1-month. (b) Kupiec test, 5-year.

(c) Christoffersen test, 1-month. (d) Christoffersen test, 5-year.

Figure 9: Likelihood Ratio Statistics for 1% (solid line) and 5% (dashed line) significance level of
reliability. LR values greater than 10 or 30 are set to 10 or 30, for the Kupiec and Christoffersen test
respectively.

As mentioned previously in subsection 3.3, the quantiles of QR and QRF are always consistent. We

emphasize that when we specify consistency amongst the quantiles, the models’ predictions are less

sharp, which can possibly lead to a lower interval score. We observe this case in Figure 10b, where

there is an evident gap between the consistent (historical, QR & QRF) and the inconsistent (QGB)

models.

(a) 1-month. (b) 5-year.

Figure 10: Sharpness of QR, QRF and QGB compared to the historical benchmark model.
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4.2.3 Pinball loss for quantile predictions

Figure 11 shows both the average pinball loss per quantile and over all quantiles. For the 1-month

predictions, the average loss over all quantiles is similar, while QRF and QGB have a lower average

loss for the 5-year predictions. The losses differ for each quantile, where central quantile prediction

losses generally contribute more to the total average losses than the outer quantile prediction losses.

Since the quantiles of QRF are set to minimise the mean pinball loss of all quantiles, QRF is more

reliant on good central estimates when choosing hyperparameters. Conversely, this is not a problem

for QR and QGB, as they model each quantile by optimising its pinball loss.

(a) Average pinball loss over all quantiles. (b) Average pinball loss per quantile.

Figure 11: Pinball loss.

4.3 Evaluation of feature importance

QRF and QGB both report the variable or feature importance when growing the tree by averaging

the impurity-based feature importance of each tree (see Equation 8). The feature importance provides

information on which features from Table 1 the model considers important for predicting the ERP. As

QRF and QGB grow trees differently, the feature importances returned by the models end up different.

In the following subsections, we analyse the feature importances, focusing on the 5-year predictions as

the models yield the best performances for this time horizon. All of the models’ feature importances

can be found in Appendix D.

4.3.1 The main contributing variables of the models

Figure 12 shows the most important features over the prediction period for the 5-year predictions.

The output gap is undoubtedly given the most importance in both models, denoted ogap in the figure.

This variable is a well-known macroeconomic measure of the difference between the actual output of

an economy and the potential output of the economy. Cooper (2009) concludes that the variable has

strong predictive power on U.S. stock returns on a monthly basis, but this was later dismissed by
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(a) Feature importance in QRF. (b) Feature importance in QGB.

Figure 12: Feature importance returned by QRF and QGB for the 5-year predictions.

Goyal et al. (2021), who argues that the variable has an insignificant IS coefficient and poor OOS

performance. Our results suggest that the variable is a strong decision contributor, although in a

multivariate non-linear model and on a longer time horizon.

Notably, both models share almost the same ten best performing variables, although not in the exact

same magnitude. Long-term yield (lty), dividend-price ratio (dp), book-to-market ratio (bm) and net

equity expansion (ntis) were all given over 5% importance by both models. In Goyal et al. (2021) all

mentioned variables have poor OOS-performance predicting five years ahead. In our case, the variables

in GW1 generally have more importance than those in GW2 and MV. However, both gross domestic

product (gdp) and total new privately-owned housing units (houst) from MV are given fairly high

importance in the models. All other variables are deemed almost irrelevant.

The individual performance of variables can be partly credited to how they are engineered. Our dataset

is mainly engineered for monthly prediction, and augmenting the horizon will favour the variables that

capture more historical data. Most of the variables in MV are calculated as the difference between two

months or the value at the current time point. The main contributor to the performance of ogap is

likely explained by it being the only variable based on a regression on all of its previous values, thus

capturing fluctuations over a longer time period. The capturing of a trend is also likely a convenience

for variables that use 12-month moving sums or averages, such as ntis and dp. This property of the

well-performing variables implies that our variables could benefit from feature engineering to better

predict the long-term ERP.

4.3.2 Evolution of the feature importances

A recurring point from previous literature on the prediction of the ERP, e.g. Goyal and Welch (2008)

and Goyal et al. (2021), is that certain predictors only perform well due to specific economic events,

such that good predictive performances are highly influenced by the starting or ending point of the data
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used in the research. An advantage of using a multivariate model, in contrast to using a simple linear

model, is the ability of the weights to change over time to capture new information. Figure 13 shows

the evolution of the feature importance during the test period. The models have a clear distinction

in that the feature importance of QRF is more stable over time in comparison to QGB, primarily

due to the EFB attribute of LightGBM described in subsection 3.1.2. ogap is the most important

variable for the most recent years in the dataset, except in QGB. Another interesting insight is that

ntis has decreasing importance, implying that the variable has become less influential over the years.

Conversely, we see the opposite development with bm. In QRF, bm start with 3.3% importance in

1990, then increases to its maximum of 10.4% in 2001 before ending as the most important feature

with 7.9% in 2015. This development is even greater in QGB, where it finisishes as high as 32.8%.

(a) Evolution of the feature importance for QRF from 1990-2015.

(b) Evolution of the feature importance for QGB from 1990-2015.

Figure 13: The development of the feature importances during the test period. Darker colour yields
greater importance. As we stop training five years before the prediction point, 2000 on the x-axis
means the feature importance from the training data up to 1995.
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4.3.3 Remarks on the interpretation of feature importance

As a final remark, the variables with high feature importance should not uncritically be regarded

as having superior predictive power. Even though a variable is given high importance, it may have

contributed to bad model performance. E.g. ntis is given high importance in the years leading up to

the IT bubble, but in this period, the models perform poorly. There is simply no way to know if the

high importance of ntis made the models prediction better or worse. Furthermore, both QRF and

QGB are biased towards variables with higher cardinalities. When the tree-based models create their

splits, the number of possible splits grows non-linearly with the cardinality. This can lead to variables

with higher cardinality achieving higher feature importance (see Strobl et al. (2007) and Zhu (2020)).

The same argument can be made for the variables with low cardinality, which are seldom picked as a

split and are thus deemed insignificant in the models.

28



5 Conclusion and suggestions for further work

We evaluate quantile regression forest (QRF) and quantile gradient boosting (QGB) in the probabilistic

forecasting of the ERP. Our findings show that neither QRF nor QGB achieves significantly better

performance against the benchmark models in predicting the 1-month point estimate. This supports

the findings in previous literature by Goyal and Welch (2008) and Goyal et al. (2021). When predicting

the probabilistic distribution, QRF and QGB perform slightly better than the historical benchmark

model when evaluated on the Wrinkler interval score. Although, they do not outperform the quantile

regression benchmark model. The results regarding reliability, an essential constituent of the interval

score, prove both the models to be suited for probabilistic forecasting as an extension to point estimates.

Both models produce reliable predictions at a 1% significance level for all prediction intervals (PI)

according to the Kupiec test and for the PIs < 70% according to the Christoffersen test. Nonetheless,

as the benchmark models are significantly reliable as well, QRF and QGB are not more valuable for

the purpose of probabilistic forecasting.

When predicting the 5-year ERP, we find that QRF and QGB produce significantly more accurate point

estimates than the benchmark models, with 29% and 27% lower MAE, respectively. According to the

Kupiec test, the results from the probabilistic forecasts show that only QRF produces significantly

reliable predictions for the PIs < 60%. When we apply the Christoffersen test, none of the models’

predictions are reliable. This test punishes sequential violations, i.e. clusters of when PIs fail to

cover the realised ERP, which is evident for all models during several time periods. However, when

evaluating the probabilistic forecast by the Wrinkler score, the results show that QRF and QGB create

significantly better forecasts than the benchmark models for PIs < 60%, with an average of 22%

and 24% lower average interval score, respectively. The conclusion is that QRF and QGB produce

remarkable results in predicting the point estimates against the benchmark models on a long-term level

and, in addition, are significantly better in forecasting most of the prediction intervals.

Lastly, the tree-based models report the feature importance of each variable for each time step. The

variable output gap shows promising potential as a long-term predictor in our models and is by far

regarded as the most important variable throughout the majority of our sample period. Nevertheless,

further exploration of variables more suited for long-term prediction is needed to prove the predictive

power of the output gap.

With our work, we want to emphasise that probabilistic forecasts are well-suited for forecasting the

ERP. Following the evaluation of the quantile machine learning models, we find potential areas for

further work that can contribute to increase the performance of the forecasts. In general, we advocate

for continuing the research of forecasting the long-term ERP and highlight two areas for further work:

(i) improving the dataset of predictor variables and (ii) exploring other ways of creating probabilistic

forecasts.
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For predicting the long-term level of the ERP, the variables should be selected or engineered to be

suitable for this purpose. The prevalent issue of our variables is that most of them represent short-term

movements, thus being more suitable for short-term predictions. We have excluded variables with a

quarterly or annual frequency. However, their inclusion should be considered in more detail when

building new datasets since predicting on a long-term time scale implies that the data granularity can

be coarser. We also encourage trying other new variables that could be relevant for long-term ERP

prediction. As an example, our models are not able to capture the effect of the IT bubble. When

looking at our variables, there are generally few that could describe the phenomena of ”hype”. We

believe that variables such as the growth of new investors in the equity market or data that could

describe a bandwagon effect could be of interest to implement and analyse.

As for the quantile machine learning models, the technology seems to have some starting difficulties.

The inconsistency of the quantiles in QGB, in particular, is problematic. Since the point estimation

is relatively successful, experiments should be conducted on alternative ways to build the quantiles

around the median, as the QRF does. Alternatively, other ways to create probabilistic forecasts could

be explored. We especially advocate investigating quantile regression neural networks to evaluate their

performance in ERP prediction, both in predicting power and stability.
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A Additional Graphs

(a) MAE for 1-month. (b) MBE for 1-month.

(c) MAE for 1-year. (d) MBE for 1-year.

(e) MAE for 5-year. (f) MBE for 5-year.

Figure 14: MAE and MBE bar charts of 1-month, 1-year, and 5-year point predictions.
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(a) Historical model 1-month. (b) Historical model 1-year. (c) Historical model 5-year.

(d) QR 1-month. (e) QR 1-year. (f) QR 5-year.

(g) QRF 1-month. (h) QRF 1-year. (i) QRF 5-year.

(j) QGB 1-month. (k) QGB 1-year. (l) QGB 5-year

Figure 15: Model forecast correlation with realised ERP.
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Figure 16: Interval score boxplots of the 1-year ERP with median (line) and mean (triangle).

(a) Reliability 1-year. (b) Average sharpness score for the 1-year ERP.

(c) Average interval score for the 1-year ERP.

Figure 17: Results compared to the historic benchmark model.
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(a) Kupiec 1-year. (b) Christoffersen 1-year.

Figure 18: Likelihood Ratio Statistics for 1% (solid line) and 5% (dashed line) significance level of
reliability. LR values greater than 10 or 30 are set to 10 or 30, for the Kupiec and Christoffersen test
respectively.
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B Additional tables

Mean Median Min Max Std 25th 75th Kurt Skew

erp 0.004 0.009 -0.248 0.149 0.043 -0.019 0.033 2.400 -0.669
dp -3.613 -3.536 -4.524 -2.753 0.393 -3.945 -3.349 -0.786 -0.095
dy -3.607 -3.529 -4.531 -2.751 0.392 -3.937 -3.347 -0.757 -0.100
ep -2.863 -2.884 -4.836 -1.899 0.425 -3.098 -2.675 2.820 -0.568
de -0.750 -0.778 -1.244 1.380 0.303 -0.913 -0.598 15.867 2.771
bm 0.486 0.431 0.121 1.207 0.256 0.286 0.637 -0.159 0.839
svar 0.002 0.001 0.000 0.073 0.005 0.001 0.002 127.981 10.246
ntis 0.010 0.013 -0.056 0.051 0.020 -0.003 0.024 0.007 -0.582
tbl 0.045 0.046 0.000 0.163 0.032 0.022 0.061 0.857 0.740
lty 0.062 0.059 0.006 0.148 0.028 0.042 0.080 0.132 0.627
ltr 0.006 0.004 -0.112 0.152 0.029 -0.010 0.023 2.593 0.437
tms 0.018 0.017 -0.037 0.046 0.014 0.007 0.029 -0.221 -0.226
dfy -0.010 -0.009 -0.034 -0.003 0.004 -0.012 -0.007 4.639 -1.793
dfr 0.000 -0.001 -0.074 0.098 0.015 -0.006 0.006 7.525 0.676
infl 0.003 0.003 -0.019 0.018 0.004 0.001 0.005 3.055 0.041
ogap 1.278 1.267 0.974 1.415 0.074 1.219 1.345 -0.443 -0.145
ygap -4.711 -4.740 -6.360 -3.660 0.395 -4.940 -4.450 1.080 -0.239
rdsp 3.047 2.785 1.779 12.341 1.096 2.379 3.317 18.296 3.328
gip 0.002 0.003 -0.136 0.062 0.010 -0.002 0.006 63.063 -4.168
rpi 0.003 0.003 -0.051 0.123 0.007 0.001 0.005 102.196 5.049
clf16ov 0.001 0.001 -0.040 0.017 0.003 0.000 0.003 42.217 -2.890
unrate 0.002 0.000 -0.176 2.341 0.093 -0.020 0.018 556.588 22.062
uempmean 0.002 0.000 -0.574 0.458 0.048 -0.021 0.024 41.518 -0.518
houst 7.220 7.279 6.170 7.822 0.310 7.076 7.412 1.213 -0.996
bogmbase 0.000 0.001 -0.160 0.152 0.021 -0.007 0.008 16.807 0.156
gdp -0.012 0.012 -8.451 2.891 1.267 -0.561 0.772 4.883 -1.124

Table 5: Descriptive statistics
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Prediction interval 10 20 30 40 50 60 70 80 90

Stat p-val Stat p-val Stat p-val Stat p-val Stat p-val Stat p-val Stat p-val Stat p-val Stat p-val

Panel A: 1-month
Hist - QR 1.53 0.06 2.43 0.01 1.91 0.03* 2.25 0.01** 2.39 0.01** 3.37 0.00** 3.47 0.00** 4.28 0.00** 3.67 0.00**
Hist - QRF -0.02 0.51 0.26 0.40 0.67 0.25 0.83 0.20 1.12 0.13 1.82 0.03* 2.17 0.02* 2.31 0.01** 2.37 0.01**
Hist - QGB 0.10 0.46 0.16 0.44 0.10 0.46 0.08 0.47 0.30 0.38 0.45 0.32 0.37 0.35 0.58 0.28 0.61 0.27
QR - Hist -1.53 0.94 -2.43 0.99 -1.91 0.97 -2.25 0.99 -2.39 0.99 -3.37 1.00 -3.47 1.00 -4.28 1.00 -3.67 1.00
QR - QRF -1.34 0.91 -1.70 0.95 -0.81 0.79 -0.80 0.79 -0.75 0.77 -1.20 0.88 -1.46 0.93 -2.30 0.99 -1.26 0.90
QR - QGB -0.07 0.53 -0.07 0.53 -0.08 0.53 -0.12 0.55 0.09 0.46 0.09 0.47 -0.18 0.57 -0.28 0.61 -0.17 0.57

Panel B: 1-year
Hist - QR -1.15 0.87 -0.40 0.65 -0.17 0.57 0.31 0.38 2.39 0.01** 4.20 0.00** 5.69 0.00** 5.59 0.00** 4.25 0.00**
Hist - QRF -2.64 1.00 -2.14 0.98 -1.37 0.91 -0.80 0.79 0.30 0.38 1.15 0.13 1.18 0.12 0.94 0.17 0.89 0.19
Hist - QGB 0.48 0.32 0.03 0.49 0.31 0.38 1.24 0.11 1.99 0.02* 1.77 0.04 1.13 0.13 0.62 0.27 0.71 0.24
QR - Hist 1.15 0.13 0.40 0.35 0.17 0.43 -0.31 0.62 -2.39 0.99 -4.20 1.00 -5.69 1.00 -5.59 1.00 -4.25 1.00
QR - QRF -2.27 0.99 -2.06 0.98 -1.42 0.92 -1.10 0.86 -1.36 0.91 -2.58 0.99 -3.68 1.00 -3.99 1.00 -2.58 0.99
QR - QGB 1.61 0.05* 0.41 0.34 0.53 0.30 1.08 0.14 -0.14 0.55 -2.91 1.00 -4.85 1.00 -5.10 1.00 -3.27 1.00

Panel C: 5-year
Hist - QR 0.09 0.47 0.54 0.30 0.97 0.17 1.34 0.09 2.67 0.00** 1.61 0.05* 2.30 0.01** 2.99 0.00** 1.62 0.05*
Hist - QRF 12.04 0.00** 11.08 0.00** 10.06 0.00** 9.15 0.00** 7.54 0.00** 4.59 0.00** 1.91 0.03* -1.39 0.92 -7.25 1.00
Hist - QGB 11.03 0.00** 10.35 0.00** 10.53 0.00** 9.78 0.00** 9.07 0.00** 7.86 0.00* 6.25 0.00** 1.68 0.05* -7.47 1.00
QR - Hist -0.09 0.53 -0.54 0.70 -0.97 0.83 -1.34 0.91 -2.67 1.00 -1.61 0.95 -2.30 0.99 -2.99 1.00 -1.62 0.95
QR - QRF 10.81 0.00** 9.71 0.00** 8.84 0.00** 8.01 0.00** 6.04 0.00** 3.68 0.00** 0.75 0.23 -2.78 1.00 -6.87 1.00
QR - QGB 10.24 0.00** 9.35 0.00** 9.26 0.00** 8.47 0.00** 7.21 0.00** 6.47 0.00** 4.76 0.00** -0.61 0.73 -6.58 1.00

Table 6: Diebold-Mariano test where H0: Benchmark and model x have the same accuracy and H1:
Benchmark is less accurate than model. (*) denotes significance at the 5% level and (**) denotes
significance at the 1% level.
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C Evaluation of loss differentials

(a) 1 month (b) 1 year (c) 5 year

Figure 19: Absolute loss differentials for the historic model against QGB on predicting the 1-month,
1-year, and 5-year ERP. The lines show the mean and the 5% and 95% quantiles.

1m 1yr 5yr

Stat p-val Stat p-val Stat p-val

Panel A: Hist as benchmark
d(Hist,QR) -6.09 0.01 -4.95 0.01 -4.10 0.01
d(Hist,QRF) -7.23 0.01 -5.11 0.01 -3.46 0.05
d(Hist,QGB) -5.70 0.01 -5.49 0.01 -3.37 0.06

Panel B: QR as benchmark
d(QR,Hist) -6.09 0.01 -4.95 0.01 -4.10 0.01
d(QR,QRF) -6.66 0.01 -4.18 0.01 -3.66 0.03
d(QR,QGB) -5.48 0.01 -5.75 0.01 -3.54 0.04

Table 7: Augmented Dickey-Fuller for the absolute loss differentials for QRF and QGB against the
historic model and QR. The table shows that for all the 1 month and 1 year differential-series based
on the point estimates, we can reject the null of a unit root in the series with a significance at the 1%
level. For the 5 year series, we can reject all but one loss differential series at the 5% significance level.
The test is performed with lag order 7.
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Prediction interval 10 20 30 40 50 60 70 80 90

Stat p-val Stat p-val Stat p-val Stat p-val Stat p-val Stat p-val Stat p-val Stat p-val Stat p-val

Panel A: 1-month
d(Hist,QR) -5.64 0.01 -5.74 0.01 -6.01 0.01 -5.50 0.01 -5.43 0.01 -5.66 0.01 -5.43 0.01 -5.10 0.01 -6.06 0.01
d(Hist,QRF) -7.08 0.01 -7.00 0.01 -7.02 0.01 -6.79 0.01 -6.78 0.01 -6.60 0.01 -5.74 0.01 -5.99 0.01 -5.12 0.01
d(Hist,QGB) -8.73 0.01 -8.87 0.01 -8.73 0.01 -9.07 0.01 -9.09 0.01 -8.98 0.01 -9.08 0.01 -8.66 0.01 -8.44 0.01
d(QR,Hist) -5.64 0.01 -5.74 0.01 -6.01 0.01 -5.50 0.01 -5.43 0.01 -5.66 0.01 -5.43 0.01 -5.10 0.01 -6.06 0.01
d(QR,QRF) -6.98 0.01 -7.04 0.01 -6.63 0.01 -6.49 0.01 -6.54 0.01 -6.96 0.01 -6.48 0.01 -6.01 0.01 -5.99 0.01
d(QR,QGB) -8.80 0.01 -8.91 0.01 -8.68 0.01 -8.86 0.01 -9.07 0.01 -9.14 0.01 -8.72 0.01 -8.47 0.01 -9.48 0.01

Panel B: 1-year
d(Hist,QR) -4.75 0.01 -4.95 0.01 -4.85 0.01 -4.60 0.01 -4.46 0.01 -4.75 0.01 -5.27 0.01 -6.01 0.01 -5.34 0.01
d(Hist,QRF) -5.05 0.01 -4.96 0.01 -4.61 0.01 -4.57 0.01 -4.61 0.01 -4.83 0.01 -4.96 0.01 -5.68 0.01 -6.30 0.01
d(Hist,QGB) -5.53 0.01 -5.36 0.01 -5.32 0.01 -5.23 0.01 -5.35 0.01 -5.21 0.01 -6.17 0.01 -7.01 0.01 -6.25 0.01
d(QR,Hist) -4.75 0.01 -4.95 0.01 -4.85 0.01 -4.60 0.01 -4.46 0.01 -4.75 0.01 -5.27 0.01 -6.01 0.01 -5.34 0.01
d(QR,QRF) -4.12 0.01 -4.40 0.01 -4.08 0.01 -4.06 0.01 -3.81 0.02 -4.06 0.01 -4.42 0.01 -4.41 0.01 -5.21 0.01
d(QR,QGB) -5.46 0.01 -5.84 0.01 -5.53 0.01 -5.49 0.01 -5.03 0.01 -4.65 0.01 -5.30 0.01 -5.04 0.01 -5.58 0.01

Panel B: 5-year
d(Hist,QR) -4.97 0.01 -4.83 0.01 -5.04 0.01 -5.21 0.01 -5.58 0.01 -5.39 0.01 -4.53 0.01 -5.51 0.01 -5.72 0.01
d(Hist,QRF) -3.49 0.04 -3.48 0.05 -3.36 0.06 -3.15 0.10 -3.07 0.13 -3.06 0.13 -3.10 0.11 -3.35 0.06 -2.84 0.22
d(Hist,QGB) -3.52 0.04 -3.43 0.05 -3.65 0.03 -3.53 0.04 -3.16 0.10 -3.06 0.13 -2.99 0.16 -4.10 0.01 -4.02 0.01
d(QR,Hist) -4.97 0.01 -4.83 0.01 -5.04 0.01 -5.21 0.01 -5.58 0.01 -5.39 0.01 -4.53 0.01 -5.51 0.01 -5.72 0.01
d(QR,QRF) -3.89 0.01 -3.89 0.01 -3.69 0.02 -3.56 0.04 -3.53 0.04 -3.56 0.04 -3.53 0.04 -3.52 0.04 -2.97 0.17
d(QR,QGB) -3.82 0.02 -3.83 0.02 -4.09 0.01 -3.94 0.01 -3.51 0.04 -3.42 0.05 -3.52 0.04 -3.81 0.02 -4.27 0.01

Table 8: Augmented Dickey-Fuller for the absolute loss differentials for QRF and QGB against the
historic model and QR. The table shows that for almost all the differential-series based on the prediction
intervals we can reject the null of a unit root in the series. with a significance at the 1% level.
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D Additional feature importance plots.

This section of the appendix shows all feature importance plots for all the time horizons. The feature

importance per quantile is only of relevance for the QGB models, but we solely include the 5-year

QGB feature importance as it exemplifies all the other time horizons. For all plots, darker colour

yields greater importance.

D.1 Feature importance for each quantile

In quantile gradient boosting the model needs to be trained for each quantile, therefore each quantile

accordingly has a feature importance. As Figure 13b shows the average feature importance of all

quantiles. We have changed the dimensions by calculating the feature importance of each quantile

averaged over all the years in Figure 20. Despite the features having large differences inbetween them

at a given time, e.g. dp ranges from 0.01 to 0.09 at 2015-01, the differences smooth out over the test

period.

Figure 20: Feature importance for the different quantiles in quantile gradient boosting.
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D.2 Additional plots for the best feature importances of 1-month and 1-year pre-

dictions.

(a) Feature importance for QRF. (b) Feature importance for QGB.

Figure 21: Top 10 feature importances returned by QRF and QGB for the 1-month predictions.

(a) Feature importance for QRF. (b) Feature importance for QGB.

Figure 22: Top 10 feature importances returned by QRF and QGB for the 1-year predictions.
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D.3 Additional plots for the evolution of the feature importance.

(a) Evolution of the feature importance for QRF. (b) Evolution of the feature importance for QGB.

Figure 23: The development of the feature importances when predicting on the 1-month ERP.

(a) Evolution of the feature importance for QRF. (b) Evolution of the feature importance for QGB.

Figure 24: The development of the feature importances when predicting on the 1-year ERP.
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(a) Evolution of the feature importance for QRF. (b) Evolution of the feature importance for QGB.

Figure 25: The development of the feature importances when predicting on the 5-year ERP.
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