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Preface
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Thesis. It is written in the spring semester of our last year in the program Industrial Economics and
Technology Management, under the Faculty of Economics and the Department of Industrial Economics
and Technology Management at the Norwegian University of Science and Technology (NTNU). The
thesis builds upon the specialization project we conducted in the previous semester (Asplin et al., 2021).
We tackle the same problem, but develop alternative solution methods. Parts of the thesis are therefore
based on Asplin et al. (2021).

The purpose of the thesis is to research the value of stochastic programming when planning for uncertainty
in demand at a surgical clinic. It is furthermore to investigate the value of incorporating flexibility in
surgery schedules. In order to investigate this properly, and due to the complexity of the stochastic
optimization problem, we develop heuristic solution methods. Lastly, we aim to make a contribution to
the literature and to provide a prototype for a planning tool for surgical clinics.

We would like to acknowledge the contributions in the work of this thesis of the people at both NTNU
and the Clinic of Surgery at St. Olavs Hospital. Thanks to our supervisors from the Department of
Industrial Economics and Technology Management, Anders Gullhav and Thomas Bovim, who have been
a great support when tackling the fields of both operations research and health care. Thanks to our
contacts in the management and surgical staff at the Clinic of Surgery at St. Olavs Hospital who helped
us understand the dynamics and objectives of the surgical clinic. Thanks to Pia Isaksen and Martine
Svag̊ard for the work they did in their master’s thesis based on the same surgical clinic, allowing us to hit
the ground running in both our specialization project and this thesis (Isaksen and Svag̊ard, 2021). Lastly,
we would like to thank our fellow students of TIØ4905. It’s been a pleasure working in an office space
with such an open learning environment, where both time and knowledge have been shared across teams.

Øyvind Asplin, Erlend Johan Corneliussen and Katarina Van de Pontseele

Trondheim, June 7th 2022
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Sammendrag

Befolkningen i Norge og andre i-land vokser og blir eldre. Dette gjør det utfordrende å møte
pasientetterspørselen p̊a sykehus. I den n̊aværende fire-̊ars-planen til Helse- og omsorgsdepartementet
er m̊alet å møte denne etterspørselen p̊a bærekraftig vis (Ministry of Health and Care Services, 2020b).
Effektiv kirurgisk planlegging er et viktig tiltak for å n̊a dette m̊alet, da over 70% av alle
sykehispasienter har behov for kirurgisk behandling (Bovim et al., 2020). Til tross for at kirurgisk
planlegging b̊ade er innviklet og tidkrevende blir det stort sett gjort manuelt. Operasjonsanalyse kan
være med p̊a å automatisere denne oppgaven og dermed bidra til å n̊a m̊alet om et mer bærekraftig
helsevesen.

I denne masteroppgaven tar vi for oss det taktiske problemet med å lage en modifisert kirurgisk
masterplan (modifisert MSS) for den Kirurgisk klinikk p̊a St. Olavs Hospital. En modifisert MSS er en
gjentakende syklisk timeplan der kirurgiske spesialiteter blir tildelt operasjonsrom p̊a ulike dager. Et
gitt operasjonsrom p̊a en gitt dag i en MSS kalles en tidsluke. Det som skiller en modifisert MSS fra en
vanlig MSS er at noen av tidslukene i hver syklus ikke tildeles en spesialitet før tett opptil hver
planleggingsperiode. Disse kan da benyttes av de spesialitetene med størst behov i hver syklus.
Planleggingsverktøyet har som m̊al å minimere mengden umøtt etterpørsel ved å hensynta usikkerheten
i etterspørsel for ulike kirurgiske inngrep. Den overordnede hensikten til masteroppgaven er å vurdere
verdien i å ta hensyn til usikkerheten i pasientetterspørsel og verdien av å tillate fleksible tidsluker i
kirurgisk planlegging. Det er mange faktorer som bør tas i betraktning i kirurgisk planlegging. Vi har
valgt å hensynta begrensninger i antall operasjonssrom, ansatte og kapasiteten til sengepostene for
postoperativ behandling.

Vi implementerer planleggingsverktøyet som en stokastisk to-stegs-modell. Informasjon om
distribusjonen av pasientetterpørsel er kjent i førstesteget, men den faktiske etterspørselen for ulike
kirurgiske inngrep er avsløres i andresteget. De kirurgiske inngrepene blir aggregert til
operasjonsgrupper gjennom en klynge-algoritme utviklet i Isaksen and Svag̊ard (2021). Hver
operasjonsgruppe tilhører én kirurgisk spesialitet og opereres derfor kun i tidsluker tildelt denne
spesialiteten i den mofifiserte MSSen. Usikkerheten i etterpørsel blir modellert ved å simulere
etterspørselsscenarier for operasjonsgruppene, som s̊a brukes som input til modellen. Klyngingen av
kirurgiske inngrep og simuleringen av etterpørsel er basert p̊a data fra 2019 fra Kirurgiske klinikk ved
St. Olavs Hospital. Den stokastiske to-stegs-modellen er krevende å løse, og vi utvikler derfor tre
heuristikker. Den enkleste fikserer den beste førstestegsløsningen funnet med et s̊akalt mixed integer
program (MIP) i løpet av en gitt tid. Den optimerer deretter andrestegsproblemet. De to andre
heuristikkene benytter seg begge to av metoden simulated annealing (SA) i førstesteget. Den ene
benytter seg s̊a av en MIP i andresteget, mens den andre benytter seg av en gr̊adig
konstruksjonsheuristikk (GCH) i andresteget.

Den modifiserte MSSen er fleksibel ved at den tillater noen fleksible tidsluker is den kirurgiske
timeplanen. Disse blir, i motsetning til fikserte tidsluker, tildelt en spesialitet først i andresteget n̊ar
pasientetterpørselen er kjent. Mengden fleksible tidsluker i den modifiserte MSSen er en parameter i
modellen. V̊ar analyse av verdien av å planlegge for usikkerhet i kombinasjon med fleksibilitet viser at
det å øke fleksibilitet minker mengden umøtt etterpørsel opp til et gitt punkt. Med v̊ar inputdata, der
nedstrøms sengekapasitet ikke er begrensende, stagnerer verdien av fleksibilitet ved rundt 10%. Den
forventede umøtte etterpørselen over en fire-ukers planleggingsperiode er da omtrent 35.7% lavere enn
n̊ar modellen er løst uten fleksibilitet. Vi utfører ogs̊a analyser p̊a instanser med redusert nedstrøms
sengekapasitet, men disse viser seg å være betydelig mer komplekse å løse. Ved å kraftig redusere
antallet scenarier derimot, klarer vi å undersøke verdien av fleksibilitet med mer mindre kapasitet p̊a
sengepostene. Resultatene viser at verdien av fleksibilitet minker med reduksjonen i sengekapasitet.
Med den gitte objektivfunksjonen og inputdataen v̊ar ser vi ingen verdi i å planlegge for usikkerhet i
pasientetterpørsel, med mindre vi ogs̊a tillater fleksibilitet. Konklusjonen er dermed at b̊ade verdien av
å modellere etterspørselen stokastisk og verdien av fleksibilitet, sannsynligvis er avhengig av
inputdataen og hvordan man definerer verdi.
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Abstract

The population in Norway and other developed countries is growing and aging. This makes it
increasingly difficult to meet patient demand in hospitals. In the current four-year plan of the
Norwegian Ministry of Health and Care Services, the goal is to meet patient demand in a sustainable
manner (Ministry of Health and Care Services, 2020b). With up to 70% of all hospital patients needing
surgical intervention (Bovim et al., 2020), efficient surgical scheduling is an important effort in reaching
this goal. Surgical planning is intricate and time-consuming, but is mostly done manually. Operations
research can be used to automate and optimize these tasks, and thus contribute to the goal of
sustainable health care services.

This thesis deals with the tactical problem of creating a modified Master Surgical Schedule (modified
MSS) for the Clinic of Surgery at St. Olavs Hospital. A modified MSS is a cyclic schedule that assigns
operating rooms to surgical specialties on different days, and typically repeats itself for six to twelve
months before being revised. The combination of an operating room and a day in an MSS is referred to
as a slot. What separates a modified MSS from a regular MSS, is that some slots during each cycle are
not fixed to a specialty. These can be assigned to the specialties that need them the most in different
cycles. The objective of the planning tool is to minimize the expected amount of unmet demand by
considering uncertainty in demand for different surgical procedures. The overall purpose of this thesis
is to find both the value of taking uncertainty in patient demand into account, and the value of
incorporating flexibility when assigning operating rooms in surgical scheduling. There are many factors
to account for in surgical scheduling. We consider limitations in operating room capacities, staff and
the capacities of bed wards for post-operative care.

The planning tool is implemented as a stochastic two-stage model. Distributional information of
demand is known in the first-stage, while the actual demand for different surgical procedures is revealed
in the second-stage. Surgical procedures have been aggregated to surgery groups by a clustering
algorithm developed in Isaksen and Svag̊ard (2021). Each surgery group belongs to a surgical specialty,
and is scheduled into slots assigned to their affiliated specialty in the modified MSS. Uncertainty in
demand is modeled by simulating demand scenarios for the different surgery groups and using these as
input to the two-stage model. The clustering of surgical procedures and simulation of demand is based
on 2019 data from the Clinic of Surgery at St. Olavs Hospital. Due to the stochastic two-stage
optimization model being computationally demanding, three heuristic solution methods are developed.
The first is a simple matheuristic that fixes the best first-stage solution found with a mixed integer
program (MIP) in a given time, and then evaluates that solution further with a MIP. The two others
are both implemented using simulated annealing (SA) in the first-stage. One is a matheuristic,
combining SA in the first-stage with a MIP in the second-stage. The other is fully heuristic, using a
greedy construction heuristic (GCH) in the second-stage.

The modified MSS allows us to incorporate flexibility in the surgical schedule in the form of flexible
slots. As opposed to fixed slots, flexible slots are assigned to specialties in the second-stage, when
patient demand is known. The amount of flexible slots in the modified MSS is given as a percentage
out of all the slots. Our analyses of the value of planning for uncertainty in combination with
flexibility, reveal that increasing flexibility reduces the expected amount of unmet demand up to a
point. For our input data, where the downstream bed ward capacities are non-binding, the value of
flexibility stagnates at around 10%. At this level, the expected unmet demand over a four week
planning period is approximately 35.7% lower than if the model is solved with no flexibility. We also
perform the analyses on instances with reduced capacity of downstream bed wards, but these are more
complex to solve. When vastly reducing the number of scenarios, however, we are able to investigate
the value of flexibility with more constraining bed ward capacities. The results show that the value of
flexibility decreases with the reduction in capacity. With our objective function and input data, we are
not able to detect value in planning for uncertainty in demand, unless also incorporating flexibility. In
conclusion, both the value of modeling demand stochastically and incorporating flexibility are likely
dependent on the input data and how we define value.
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Glossaries

Table 1: Terminology related to the health care industry used in this thesis.

Term / Abbreviation Explanation

Bed ward Where patients may spend the night in the hospital post surgery
Elective surgery A surgical procedure planned in advance
Emergency surgery An unforeseen surgical procedure not planned in advance
EN The Department of Breast and Endocrine Surgery
GN The Department of Lower Gastrointestinal Surgery
GO The Department of Upper Gastrointestinal Surgery
IC ward Intensive care ward
ICU Intensive care unit
Inpatient Patients that stay in the hospital overnight
Intensive care Care of patients that need close supervision
KA The Department of Vascular Surgery
KENS The medium care ward belonging to The Department of Breast and En-

docrine Surgery
KGAS1 The medium care ward belonging to The Department of Lower Gastroin-

testinal Surgery
KGAS2 The medium care ward belonging to The Department of Upper Gastroin-

testinal Surgery
KKAS The medium care ward belonging to The Department of Vascular Surgery
KURS The medium care ward belonging to The Department Urology
LOS Length of stay
Master Surgical Schedule Repeating cyclic schedule that assigns time slots to surgical departments
MC ward Medium care ward
MCU Medium care unit
Medical specialty A branch of medical practice that focuses on a group of related medical

conditions
Modified MSS MSS with some flexible slots
MSS Master Surgical Schedule
OR Operating room
Outpatient Patients that do not stay in the hospital overnight
Time slot A given operating room on a given day in the master surgical schedule
TOV Intensive monitoring unit
UR The Department of Urology
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Table 2: Abbreviations and terminology related to optimization used in this thesis.

Term / Abbreviation Explenation

A-BEESE Adaptive balanced explorative and exploitative search with estimation
ACO Ant colony optimization
BEESE Balanced explorative and exploitative search with estimation
CSMIP Mixed integer program with the alternative cutting stock inspired formu-

lation presented in Appendix B implemented in Gurobi Optimizer
EEVS Expectation of the expected value solution
ESD Empirical standard deviation
EV Objective value of the solution to the expected value problem
EV problem Expected value problem
EVS Solution to the expected value problem
FMIP Mixed integer program with the base formulation presented in Chapter 5

implemented in Gurobi Optimizer
FMIP-2SMIP Heuristic algorithm which runs FMIP first and then 2SMIP in the second

stage at the end for the best obtained FSS
FSS First stage solution
GA Genetic algorithm
GCH Greedy construction heuristic
GCHD Greedy construction heuristic daywise
GCHP Greedy construction heuristic periodwise
GCHS Greedy construction heuristic slotwise
LBBD Logic-based Bender’s method
MIP Mixed integer program
MSSP Master surgical scheduling problem
Optimality gap (Primal bound - dual bound) / primal bound
OV Objective value
OVRP Objective value of the recourse problem
R-BEESE Randomized balanced explorative and exploitative search with estimation
RP Recourse problem
RPS Recourse problem solution
SA Simulated annealing
SA-GCH-2SMIP Heuristic algorithm with SA in the first stage and GCH in the second

stage + 2SMIP in the second stage at the end for the best obtained FSS
SA-2SMIP Heuristic algorithm with SA in the first stage and 2SMIP in the second

stage
SAA Sample average approximation
SS Stochastic solution
TS Tabu search
VSS Value of stochastic solution
2SMIP Mixed integer program with the base formulation presented in Chapter 5

with a fixed first stage solution implemented in Gurobi Optimizer
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Chapter 1

Introduction

With a growing and aging population in Norway and other developed countries, it is becoming increas-
ingly difficult to meet patient demand in hospitals. Furthermore, people are expecting more from the
health care services, and expenses are increasing steadily (Hulshof et al., 2012). Up to 70% of all hospital
patients are in need of some kind of surgical intervention (Bovim et al., 2020). This makes it increasingly
important to exploit available hospital resources through efficient surgical scheduling in order to treat
more patients (Bovim et al., 2020). According to Batista et al. (2020), the biggest challenges ahead are
in reducing patient waiting lists and waiting times.

A great deal of scientific literature has been devoted to the optimization of health care services, focusing
on different aspects of the industry and using different approaches. The common goal is to organize the
health care services in both an effective and efficient manner (Hulshof et al., 2012). Despite the extensive
research and applied changes in the industry, we see that there is still plenty of room for improvement.
Surgical planning is intricate and time-consuming, but most of it is still done manually. It is furthermore
done by health professionals, who are often untrained in optimization and whose time is better spent
treating patients. Therefore, we add to the existing literature on efficient tactical surgical scheduling, by
combining promising practices and trends. This thesis is based on and applied to data from the Clinic
of Surgery at St. Olavs Hospital. Its overall purpose is to find both the value of taking uncertainty in
patient demand into account and the value of incorporating flexibility when assigning operating rooms
(OR) in surgical scheduling. We develop a mixed integer program (MIP) and propose three heuristic
solution methods to solve it. For larger instances of the problem, the heuristic solution methods find
good solutions in reasonable time, whereas the MIP solved by a commercial solver sometimes struggles
to even find feasible solutions. In developing these solution methods, we furthermore aim to create a
valuable prototype of a planning tool for surgical clinics.

The planning tool is implemented as a stochastic two-stage model. Distributional information of demand
is known in the first-stage, while the actual demand for different surgical procedures is revealed in the
second-stage. This allows parts of the decision-making to be postponed until the second-stage, when
all uncertain parameter values have been revealed. Surgical schedules are often developed to be cyclic
(Hulshof et al., 2012), which means that a fixed schedule is repeated periodically. A cyclic structure,
compared to a non-cyclic structure, increases stability and predictability for surgical and downstream
resources. However, a fully cyclic schedule leaves no room for adaptations to demand. Compared to a
more flexible schedule, this increases the size of patient waiting lists (Hulshof et al., 2012). The objective
of our MIP is to level patient demand by minimizing patient waiting lists. Therefore, we propose a
surgical schedule that is partly cyclic and partly non-cyclic. In doing this, we seek to reap the benefits of
a cyclic schedule while also allowing for some flexibility, thereby reducing the size of patient waiting lists.
The model’s output is a modified Master Surgical Schedule (MSS). A modified MSS is a partly cyclic
schedule that assigns ORs to surgical specialties on different days, which is then repeated for a certain
amount of time (Hulshof et al., 2012). It incorporates flexibility in the schedule by allocating some of the
ORs to surgical specialties in the second-stage, when patient demand is known. Our main contribution
to the literature is thus in adding to the practices of two-stage modeling and heuristic solution methods
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for such models, as well as integrating flexibility in surgical scheduling.

In the following paragraph, we present the overall purpose of each section in this thesis. Chapter 2
covers information about the industry in which this thesis is situated and the data on which it is based.
We review relevant literature and our contribution to the literature in Chapter 3, before presenting
relevant techniques and methods used. The optimization problem is described in detail in Chapter 4,
including its restrictions, the objective and the decision delineation. We present the mathematical model
in Chapter 5, including the assumptions made, the notation and the model formulation. In Chapter 6,
we describe the logic behind the heuristic solution methods and explain how they take advantage of the
problem structure. The process of generating interesting test instances from raw data and ensuring that
the heuristics are implemented efficiently is covered in Chapter 7. The solution methods are tested and
compared in Chapter 8, and the value of both stochasticity and flexibility is examined. Lastly, we present
concluding remarks Chapter 9.
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Chapter 2

Background

This section concerns the relevant industry and concrete case on which this thesis is based. In Section 2.1
we present the Norwegian health care system, before moving on to relevant industry terminology in
Section 2.2. Finally, in Section 2.3 we present the hospital and clinic studied in this thesis as well as
the aggregated data that has been used. The section has been shortened compared to the corresponding
section in Asplin et al. (2021), but is otherwise identical to before.

2.1 The Norwegian Health Care System

Public hospitals in Norway are owned by the state and supervised by the Ministry of Health and Care
Services (Ministry of Health and Care Services, 2020a). The Norwegian government renews its plan for
the national health and hospitals every fourth year (Ministry of Health and Care Services, 2020b). This
serves as a guideline for the direction in which the health services should develop during the period. The
current goal is to meet patient needs in a sustainable manner. With the ongoing demographic changes
and people expecting more from the health care services, it is becoming increasingly difficult to meet
demand with the available resources. Consequently, sustainable health care services require that we
exploit the available technology and staff competency, and that tasks are solved as efficiently as possible.

2.2 Surgical Care Terminology

Hospitals normally consist of clinics, which are further split into departments. The departments are
commonly associated with a medical specialty, which is a branch of medical practice that focuses on a
group of related medical conditions. The surgical clinic is a vital part of hospitals and has a large impact
on the operations of the hospital as a whole (Hulshof et al., 2012). It performs surgeries on patients
to repair injuries, correct defects and cure diseases. As the scheduling of surgical procedures affects
departments throughout the hospital, one should also consider upstream and downstream resources
when planning (Samudra et al., 2016). In order to more easily elaborate on these topics later on, we
proceed by presenting some hospital- and surgical care-specific terminology.

Patients are normally split into two classes based on their characteristics, namely elective patients and
emergency patients. The former are patients whose surgeries can be planned in advance, while the latter
are patients whose surgeries are unforeseen and therefore need to be made room for on short notice
(Samudra et al., 2016). This means that we know the elective patient demand for some time in advance,
but we normally do not know the emergency patient demand until the day of surgery. Additionally,
elective patients can be split into inpatients, meaning patients who stay at the hospital at least one night
after their treatment for observation and care, and outpatients, meaning patients who leave on the day
of their treatment.
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When staying overnight, inpatients either stay at one of the medium care units (MCU) or the intensive
care units (ICU), each consisting of one or more bed wards. Here, the patients are provided with care
and are given a bed and food for at least one night (Hulshof et al., 2012). The ICU is for patients in need
of intensive care through close supervision or specific medical equipment. The medical specialties at a
hospital normally have an associated and separate MC ward, while IC wards are often shared resources.
The length of stay (LOS) is the number of nights an inpatient stays at a ward, and the bed utilization
in a ward is the ratio of occupied beds versus the total number of available beds.

Most elective patients are able to perform the necessary preparations for surgery at home. Some do,
however, need to come in earlier for imaging and preparations. Afterward, the time spent in the operating
theater can according to Isaksen and Svag̊ard (2021) be divided into three phases, namely pre-knife,
knife time and post-knife. Pre-knife consists of preoperative care and normally involves hair removal
and anesthesia. This is either done in the operating room (OR) dedicated for the operation, or in a
preoperative room. Knife time is the phase where the actual operation is executed. Post-knife is the
time reserved for initial recovery when the patient wakes up from anesthesia. This is normally done in a
separate area, namely the post-anesthesia care unit. Lastly, the patient is either sent home for recovery
or admitted to one of the aforementioned MCUs or ICUs.

A common way of allocating hospital resources to medical specialties is through block scheduling. This
involves assigning surgery groups to operating time blocks (Fei et al., 2010), also called time slots. In
order to do this, surgery groups must be identified. This is normally based on the specialty that a patient’s
diagnosis belongs to, the patient’s medical urgency and their resource requirements, such as expected
surgery duration and LOS (Hulshof et al., 2012). Block schedules that repeat themselves periodically
are called cyclic block schedules or master surgical schedules (MSS) (van Oostrum et al., 2008). These
are normally set for six months to a year, namely the planning horizon. During this time the MSS is
repeated every one to four weeks, depending on the length of a cycle.

2.3 Surgical Care Services at St. Olavs Hospital

The surgical clinic discussed in this thesis is part of St. Olavs Hospital. It is the University Hospital
for Mid-Norway and is integrated with the Norwegian University of Science and Technology, located in
Trondheim (St. Olavs Hospital, 2016d). St. Olavs Hospital has several regional functions for the more
than 700,000 inhabitants of Møre and Romsdal and Trøndelag, such as patient treatment, research and
education. Its three main locations are at Øya in central Trondheim, Orkdal and Røros, with the hospital
at Øya being the largest.

The surgical clinic at St. Olavs Hospital has facilities in both Orkdal and at Øya in Trondheim. We
focus on the latter location in this thesis, as they receive the most complicated diseases and treatments
of patients, in addition to dealing with more uncertainty and resource demand per patient (Isaksen and
Svag̊ard, 2021). From here on out, the surgical clinic at Øya is referred to as the Clinic of Surgery,
or simply as St. Olav. We delimit our study to five of the eight departments at the clinic, namely
the Department of Upper Gastrointestinal Surgery, the Department of Lower Gastrointestinal Surgery,
the Department of Urology, the Department of Vascular Surgery and the Department of Breast and
Endocrine Surgery (St. Olavs Hospital, 2016c). Each department is associated with a medical specialty,
also referred to as a surgical specialty, and one or more downstream care units.

The following sections are partly based on the thesis of Isaksen and Svag̊ard (2021). We have been given
access to anonymized raw patient data from 2019 from the Clinic of Surgery, as well as a cleansed and
analyzed version of the same data by Isaksen and Svag̊ard (2021). Furthermore, we have been given
access to information that Isaksen and Svag̊ard (2021) received during meetings with hospital staff, and
have ourselves acquired additional information through a meeting with staff at the Clinic of Surgery.
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2.3.1 Specialties and Care Units

The Department of Lower Gastrointestinal Surgery (GN) receives patients with illnesses in their lower
abdomen or intestinal tract. The Department of Upper Gastrointestinal Surgery (GO) receives patients
with illnesses in the upper part of their digestive system. Both departments have an associated MC
ward, namely KGAS1 for GN and KGAS2 for GO. Both MC wards have 16 available beds (St. Olavs
Hospital, 2016b).

The Department of Urology (UR) carries out treatments on patients with illnesses in the kidney, urinary
tract and prostate areas. The associated MC bed ward, KURS, has a capacity of 16 beds (St. Olavs
Hospital, 2016e).

The Department of Vascular Surgery (KA) treats patients with medical conditions in their veins (St.
Olavs Hospital, 2016f). The associated MC bed ward, KKAS, has a capacity of 9 beds (Isaksen and
Svag̊ard, 2021).

The Department of Breast and Endocrine Surgery (EN) takes in patients with vascular, breast and
hormone-producing gland illnesses (St. Olavs Hospital, 2016a). The associated MC bed ward, KENS,
has a capacity of 3 beds (Isaksen and Svag̊ard, 2021).

Additionally, the Clinic of Surgery has access to two ICUs. One is simply called the ICU and is a shared
resource with the other departments at the hospital. The other is the intensive monitoring unit (TOV),
which is only used by the Clinic of Surgery and has a capacity of 7 beds (Isaksen and Svag̊ard, 2021).

The aforementioned bed capacities represent the maximum number of beds that are available during the
weekdays. The bed capacities are slightly reduced during the weekends, as presented in Table 2.1. The
number of beds in the ICU is the average number of beds available to the Clinic of Surgery, as it is a
shared resource (Isaksen and Svag̊ard, 2021).

Table 2.1: Specialties’ affiliation to the bed wards with their corresponding bed capacities during week-
days and weekends.

Bed Ward Specialty Number of Beds
Weekdays Weekends

KGAS1 Lower Gastrointestinal GN 16 14
KGAS2 Upper Gastrointestinal GO 16 14
KURS Urology UR 16 12
KKAS Vascular KA 9 7
KENS Breast and Endocrine EN 3 2
TOV All - 7 5
ICU All - 4 1

2.3.2 Operating Rooms

The previously mentioned departments have in total seven ORs dedicated to elective surgeries. Their
opening hours are 07:30 to 15:30 during the weekdays, with the possibility of extending the opening
hours to 17:00. Each OR can only be utilized by a subset of the specialties, as indicated in Table 2.2.
(Isaksen and Svag̊ard, 2021)

In addition to the elective ORs, the Clinic of Surgery has access to three of the emergency ORs in the
Emergency and Cardiothoracic Centre during the day (Isaksen and Svag̊ard, 2021). Two of them are
shared with the other clinics at the hospital, while the third is exclusive to the Clinic of Surgery. During
the night, only one emergency OR is available across all clinics.
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Table 2.2: The affiliation of specialties and operating rooms. Dark gray indicates that an OR is suitable
for the specialty.

Specialty
OR

GA-1 GA-2 GA-3 GA-4 GA-5 GA-6 GA-7

GN
GO
UR
KA
EN

Although the emergency and elective ORs are separated, there are three occasions on which an emer-
gency patient may be operated on in an elective OR. If there is idle time in an elective OR and there
are emergency patients waiting for surgery, they may fill the available time window. Furthermore, an
emergency patient may be operated on in an elective OR if their case is sufficiently urgent, thus delaying
the planned elective procedures. Lastly, an emergency patient with a complicated medical condition may
require a certain level of surgical expertise or experience. If the surgeons working in the elective line are
more experienced and specialized within the field, the emergency patient is transferred to the elective
line. This may also result in delays in the planned elective procedures. Emergency patients may only be
scheduled to an elective OR if the OR is assigned to the specialty that the patient’s diagnosis is affiliated
with. The assignment of specialties to ORs will be discussed in more detail in the following section.

2.3.3 Surgery Scheduling

The current schedule at the Clinic of Surgery is a yearly MSS. It consists of a fixed two-week cycle, and
specifies which specialty has access to a given OR on a given day in the cycle. Furthermore, it specifies
whether or not the opening hours are extended for a given slot, which hereafter will be referred to as an
extended slot. Experience has shown that full-day slots, where an OR is assigned to a specialty for an
entire day, result in fewer cancellations than half-day slots. The MSS for the Clinic of Surgery in 2019
was therefore as presented in Table 2.3 (Isaksen and Svag̊ard, 2021). We choose to refer to the MSS
from 2019, since the data used in this thesis is also from 2019. The Admission Office is responsible for
assigning patients to time slots. This is done manually, and is normally completed one to three weeks
ahead of the surgery date. The clinic has a weekly meeting on Thursdays where they discuss the surgery
schedule for the following week and make adjustments if necessary.

Table 2.3: MSS in 2019 at St. Olav. Each cell represents a slot, defined by an OR, the specialty it is
assigned to and the day of the two-week cycle. Weekends (W) are excluded from the MSS.

Odd Weeks Even Weeks

Room
Day

1 2 3 4 5 W 8 9 10 11 12 W

GA-1 EN EN* UR EN* GN - EN EN* EN EN* - -
GA-2 UR EN UR UR EN - UR KA UR UR EN -
GA-3 UR UR* UR* - - - UR UR* UR* - - -
GA-4 GN* GN* GN* GN* GN - GN* GN* GN* GN* GN -
GA-5 GO* GO* GO* GO* GO - GO* GO* GO* GO* GO -
GA-6 UR UR UR UR* UR - UR UR UR UR* UR -
GA-7 GO* GN GO GN - - GO* GN GO GN GN -
’*’ indicates an extended slot
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Chapter 3

Related Literature

In the following sections, we review existing literature that is relevant to this thesis. First, we present
what decisions must be made at what time in healthcare services in Section 3.1. Recent surgery scheduling
literature is categorized in Section 3.2. Next, we discuss in Section 3.3 how this thesis contributes to
the existing literature. Lastly, in Section 3.4, we introduce techniques and methods within operations
research that are particularly relevant to this thesis. Section 3.1 has been shortened, but is otherwise
identical its corresponding section in Asplin et al. (2021). Section 3.2 and Section 3.3 are both inspired
by Asplin et al. (2021), but with substantial alterations.

3.1 Planning Decisions in Healthcare

Within the healthcare industry, decisions about how resources should be distributed in order to meet
current and future demands are constantly being made. This is called resource capacity planning, and
can in healthcare be classified based on when a decision is being made and within which healthcare
service. Hulshof et al. (2012) is one of many to propose such a taxonomy, where the timing is spread
out on the vertical axis and the different healthcare services make up the horizontal axis. Section 3.1 is
primarily based on the work of Hulshof et al. (2012), focusing on the parts of the taxonomy most relevant
to our study.

The vertical levels were first proposed by Anthony (1965), and consist of strategic planning, tactical
planning and operational planning. The strategic level has a long planning horizon and concerns an
organization’s long-term goals. It involves structural decision making, like a facility’s location and the
dimensioning of resource capacities (Hulshof et al., 2012). The tactical level has a medium planning
horizon and typically involves the construction of a master schedule, where staff is assigned to tasks
in given time periods (Samudra et al., 2016). The operational level has a short planning horizon and
mostly involves staffing from day to day and the scheduling of patients (Samudra et al., 2016). This
level can be further split into offline and online planning. Offline operational planning is done before
the schedule execution, when elective demand is known, but emergency demand is not (Hulshof et al.,
2012). Online operational planning is done during schedule execution and mostly involves reacting to
unplanned events, which are common in the healthcare industry (Hulshof et al., 2012).

Hulshof et al. (2012) suggests a horizontal axis consisting of six healthcare services. These services
are strongly connected, as a patient may, and often will, move between them. Figure 3.1 displays the
full taxonomy as proposed by Hulshof et al. (2012), with both the vertical and horizontal levels. We
now proceed by presenting the two healthcare services that are relevant to surgical clinics and to this
thesis. For each of them, we look at decisions that need to be made on the strategic, tactical and offline
operational planning levels, focusing especially on tactical planning.
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Source: Hulshof et al. (2012)

Figure 3.1: Full taxonomy for resource capacity planning and control in the healthcare services.

3.1.1 Surgical Care Services

The surgical care services perform operations on patients in order to repair injuries, correct defects and
cure diseases. Most strategic surgical planning has already taken place at St. Olav, and is therefore not
within the scope of this thesis.

Tactical planning
As previously mentioned, the resources set at the strategic level are allocated to specialties at the tactical
level. The cyclic structure of an MSS, compared to a non-cyclic block schedule, increases stability and
predictability for surgical and downstream resources. However, a cyclic schedule leaves no room for
adaptations to demand. Compared to a more flexible schedule, this increases the size of patient waiting
lists (Hulshof et al., 2012). Hulshof et al. (2012) and Fei et al. (2010) suggest modified block scheduling as
a compromise between a non-cyclic and a cyclic plan. Here, only a part of the operating time capacity is
assigned as in block scheduling, while the remainder of the capacity is planned at a later stage. This leaves
some ORs on some days free for adapting to fluctuations in patient demand. When the block schedule
has been set, an admission policy must be made. Taking the schedule into account, it determines how
many surgeries should be performed from each surgery group on each day (Adan et al., 2009). It must
do this while balancing staff satisfaction, patient service and resource utilization (Hulshof et al., 2012).

Operational planning
At the offline operational planning level, planned surgical cases are assigned to an OR, date and time
of the day. Surgical case scheduling can be done integrally in one step, but is often decomposed into
several steps (Hulshof et al., 2012). First, the planned length of the surgical case must be decided, which
includes cleaning time and slack time. There’s a trade-off between reserving too little slack time, which
leads to staff overtime and patient waiting time, and reserving too much slack time, which results in idle
time in the OR. Second, each surgical case must be assigned a date in an OR, and then a starting time
(Hulshof et al., 2012). Surgical case scheduling is often done in isolation. It should, however, take into
consideration other care services, such as the inpatient care services in order to avoid full bed wards,
thus ensuring an increase in efficiency.
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3.1.2 Inpatient Care Services

The inpatient care services are where hospitalized patients are provided with care and are given a bed
and food for at least one night (Hulshof et al., 2012). Both the MCUs and the ICUs are part of the
inpatient care services.

Strategic planning
As mentioned before, strategic planning is mostly beyond the scope of this thesis, also within the inpatient
care services. However, there are some minor changes, or at least assumptions, that may be relevant at
the strategic level. The inpatient care facility at a hospital is normally divided into several medical care
units, each with its designated staff, beds and equipment. The aim is to ensure that patients are taken
care of by appropriately skilled nurses with the right equipment, while using the available resources
efficiently. Each specialty normally has its own, dedicated care unit, although this is not necessarily
optimal. Merging care units, also called pooling, could lead to economies of scale and improved efficiency
(Hulshof et al., 2012). One should, however, be careful when pooling care units for surgery groups
in need of different service levels or nursing skills, as it requires the highest service level and nursing
competence for all patients in the ward (Hulshof et al., 2012). It may also induce costs for installing
extra equipment on all beds (Hulshof et al., 2012). Thus, the decision of whether to merge care units or
not is case-dependent, and should be based on an evaluation of utility versus costs.

Tactical planning
At the tactical level of inpatient care services, bed reallocation is the first step to consider (Hulshof
et al., 2012). Medium-term demand forecasts may show that decisions made at the strategic level are
not optimal. With a somewhat flexible layout, beds can be moved around to meet the anticipated changes
in demand. Although beneficial, one should not overlook the costs related to changing bed capacity and
the effects on staff planning. Admission control determines what patients can be admitted to a given ward
at a given time (Hulshof et al., 2012). It involves policies that aim to match demand and supply, such
that cancellations and misplacements are minimized, while bed occupancy is maximized. Earmarking is
a common admission control policy where a number of beds in a ward are reserved either for emergency
or elective patients (Hulshof et al., 2012). Overflow policies decide what should be done when all reserved
beds for a patient type are occupied. Policies that allow for some overflow take advantage of the same
benefits as pooling. Lastly, surgical and inpatient care services should coordinate in order to avoid
substantial differences in demand and therefore cancellations in elective surgeries.

Operational planning
At the offline operational planning level, elective patients are assigned to a bed in a ward where their
medical needs will be met (Hulshof et al., 2012). This is normally done a few days prior to the scheduled
surgery.

3.2 Operating Room Planning and Scheduling

Optimization has several applications in healthcare services, but in this thesis we focus on the tactical
planning level of surgical care services in particular. There are many things to consider when studying
hospital optimization that will define the scope and the outcome of the study. Fortunately, many re-
searchers have tackled surgical scheduling before us. This helps us to identify promising practices and
trends to consider in our study, as well as less explored approaches. We will in the following section
classify recent surgery scheduling literature through a simple framework based on the work of Samudra
et al. (2016). It is structured based on 6 different descriptive fields which are either problem or technically
oriented, and studies 29 selected papers.
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3.2.1 Patient Characteristics

As previously mentioned, hospital patients are normally split into elective patients and emergency pa-
tients, based on the urgency of their treatment needs. The amount of literature related to elective patients
is extensive compared to that of emergency patients (Samudra et al., 2016). Out of the 29 papers we have
studied, all of them include elective patients, but only nine of them also model emergency patients. One
can further split elective patients into inpatients, meaning patients who stay overnight, and outpatients,
meaning patients who leave the hospital on the day of their treatment. Many papers focus mainly on
inpatients due to their inherent demand for care unit resources (Vanberkel et al., 2011; Fügener et al.,
2014; Batista et al., 2020). Although we are seeing a substantial shift towards more outpatient care, the
amount of literature focusing on these patients remains stagnant (Samudra et al., 2016).

When studying surgical scheduling, one should at least account for emergency patients (Samudra et al.,
2016). In practice, the unplanned patients can be taken care of in several ways. One way is to integrate
them as part of the elective schedule, normally through planning extra slack throughout the day. Both
Adan et al. (2009) and Adan et al. (2011) incorporate a reservation policy for emergency patients,
meaning they reserve buffer capacity for these patients. Another approach is to separate them from the
elective schedule through dedicated emergency ORs, like Cappanera et al. (2014) and Fügener (2015).
Although the latter benefits from a decrease in both overtime and the number of elective cancellations,
it also reduces the available surgery time for elective patients.

Patients are often categorized based on the surgical specialty they belong to and their surgery type,
making up surgery groups, as in van Oostrum et al. (2008) and Visintin et al. (2016). This allows for
a generalization of patients in optimization models. Specialties are normally assigned to different ORs,
allowing for a partly independent surgical scheduling. Different surgery types from a given specialty can,
however, be performed in the same OR and should be scheduled efficiently.

3.2.2 Performance Measures

In optimization modeling, the performance measure chosen will favor one or more stakeholders over the
others. Some researchers attempt to include the interests of several stakeholders through multi-objective
optimization. Schneider et al. (2020) attempts to maximize OR utilization while minimizing the variance
of the bed usage at wards. Bovim et al. (2020) maximizes the number of elective patients scheduled for
surgery while minimizing the number of elective cancellations and the number of patients staying in wards
not meant for them. Several papers solve their optimization problem separately for different objectives,
such as Mannino et al. (2012). These approaches are all ways of incorporating various performance
measures in order to consider several stakeholders’ interests.

Overtime is, according to Samudra et al. (2016), the most commonly used performance measure. It
can have several undesirable consequences, such as surgery cancellations, dissatisfaction of staff, down-
stream schedule interference and increased costs for the hospital. Both Kamran et al. (2018) and Heydari
and Soudi (2016) incorporate the minimization of overtime as part of their multi-objective. Mannino
et al. (2012) seeks to minimize overtime hours, while incorporating a light robustness modeling approach
through setting a fixed maximum length on patient queues. Patient waiting time is another common
performance measure. It is most often related to the waiting time on the day of the surgery due to
delays, but also access time, corresponding to the size of the patient waiting list. Kamran et al. (2018)
incorporates the latter as part of its multi-objective function. There are other frequently used perfor-
mance measures, such as maximizing hospital revenue (Bruni et al., 2015; Fügener, 2015) or minimizing
hospital costs (Lamiri et al., 2009; Wang et al., 2014; Kim and Mehrotra, 2015), leveling of the bed uti-
lization in the downstream care units (Isaksen and Svag̊ard, 2021; van Oostrum et al., 2008; Beliën and
Demeulemeester, 2007), maximizing OR utilization (van Oostrum et al., 2008; Fei et al., 2010; Schneider
et al., 2020), minimizing idle time (Fei et al., 2010), maximizing throughput (M’Hallah and Visintin,
2019; Spratt and Kozan, 2016) and maximising overall patient satisfaction through adjusting to their
preferences (Makboul et al., 2021).
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3.2.3 Decision Delineation

Decision delineation indicates what type of decisions are being made within surgery scheduling and
to whom they apply. Common decisions in tactical planning involve assigning specialties, surgeons or
patients to a date, time, OR or amount of capacity. Some papers take on several of these decisions.
While Fei et al. (2010) first assigns a date to each patient and then an OR and a time, Beliën and
Demeulemeester (2007) first assigns a specialty to each slot and then each patient to a slot and time.

A substantial part of the literature addresses the scheduling of surgery groups instead of individual
patients (Samudra et al., 2016). Most of the papers we have studied, such as Neyshabouri and Berg
(2017), Kumar et al. (2018) and Vanberkel et al. (2011), group patients in such a manner. Furthermore,
the assignment of ORs and dates, i.e. slots, has received the most focus. In both Bovim et al. (2020) and
Cappanera et al. (2014), specialties are assigned to slots. It is common to assign patients to a slot first,
and then later on to a starting time within the slot. This is because the former is more easily planned
weeks ahead, while the latter is normally determined closer to the surgery date. Fei et al. (2010) does
exactly this in two stages. The assignment of capacity normally involves assigning slots to specialties,
often resulting in an MSS. Many of the studied papers do this, with some examples being Cappanera
et al. (2014), Mannino et al. (2012), Schneider et al. (2020) and Makboul et al. (2021).

3.2.4 Up- and Downstream Facilities

Surgical scheduling affects both up- and downstream services within the hospital. An integrated ap-
proach takes this into account when performing surgical scheduling, while an isolated approach does not.
According to Samudra et al. (2016), both approaches are equally common in the literature. The majority
of the papers we have studied use an integrated approach. An example of an upstream service to consider
is outpatient clinics. Due to the scope of this thesis, however, we focus on literature accounting mainly
for downstream resources. Bovim et al. (2020) and M’Hallah and Visintin (2019) both consider the
availability at the downstream bed wards when developing an MSS. Several of the papers do, however,
take an isolated approach for simplicity, such as Abdeljaouad et al. (2020) and Kamran et al. (2018).

The MSS greatly affects the bed management for inpatient care services. Fügener et al. (2014) develops
an MSS with the objective of minimizing the costs in the care units. Furthermore, Beliën and Demeule-
meester (2007), Vanberkel et al. (2011) and Isaksen and Svag̊ard (2021) all optimize the MSS in order
to level the expected bed occupancy in the downstream wards.

3.2.5 Uncertainty

Several elements of surgical care services contain uncertainty, making the task of surgery scheduling
challenging. While deterministic approaches ignore uncertainty, stochastic approaches attempt to take
uncertainty into account. According to Samudra et al. (2016), most stochastic models in the literature
incorporate uncertainty in the form of emergency patient arrivals, like Bovim et al. (2020), or surgery
durations, like Schneider et al. (2020). Some also incorporate uncertainty in the LOS post surgery at
care units, such as Kumar et al. (2018), and many model the uncertainty of several factors. M’Hallah
and Visintin (2019) looks at uncertainty in both surgery durations and LOS. Bruni et al. (2015) assumes
stochasticity in both emergency patient arrivals and surgery durations. Incorporating some sort of
uncertainty is not uncommon, as more than half of the papers studied in Samudra et al. (2016) model
stochasticity.

One way of incorporating stochasticity is through multi-stage modeling, more commonly reduced to
two-stage modeling. The latter splits the problem into two stages, where first-stage decisions are made
before knowing the value of the stochastic parameters, while second-stage decisions are made after
observing their outcome (King and Wallace, 2003). The objective is to find a first-stage solution that
is expected to perform well when taking all possible parameter outcomes into account. Makboul et al.
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(2021) initially assigns specialties to slots in the first-stage, based on all possible parameter outcomes.
It then decides upon the optimal number of surgeries to perform in a slot in the second-stage, after
knowing the parameter realizations. Both Kumar et al. (2018) and Kim and Horowitz (2002) take a
different approach by planning the complete schedule in the first-stage. The recourse decisions in the
second-stage therefore determine cancellations and alterations that need to be made after the actual
realization of the parameters. Two-stage modeling is discussed in further detail in Section 3.4.1.

Another way of adapting to uncertainty in data is through incorporating flexibility in the model. Vis-
intin et al. (2016) incorporates the flexible management of several resources, concluding that there are
substantial benefits to managing either surgical teams or ORs flexibly. The first enables swaps between
specialties assigned to slots, and the second enables a more flexible assignment of surgeries to slots,
meaning both surgeries that are expected to result in a long LOS and a short LOS can be assigned to the
same slot. Oliveira et al. (2021) also allows for flexibility by allowing changes to the MSS to be made on
a weekly or monthly basis, following the dynamic patient demand. A flexible rolling horizon and flexible
long-term solution are compared to a static long-term solution. Oliveira et al. (2021) finds that flexibility
improves key performance indicators, such as total waiting time, tardiness and throughput. Although
flexibility positively affects the objective value, it negatively affects the stability in the schedule. This
creates a trade-off, where flexibility in the MSS makes it easier to meet demand, and stability in the
MSS makes it easier to satisfy staff (Oliveira et al., 2021).

3.2.6 Operations Research Methodology

The research methodology used in a paper provides information about the type of analysis that is
performed and the solution or evaluation technique that is applied (Samudra et al., 2016). Several of
the papers studied incorporate discrete-event simulation in order to examine the performance of their
models. Examples are Cappanera et al. (2014) and Mannino et al. (2012). Some use sample average
approximation (SAA) to solve stochastic optimization problems, such as M’Hallah and Visintin (2019)
and Kamran et al. (2018). Adan et al. (2011) uses goal programming, van Oostrum et al. (2008) uses
column generation and most papers use mixed integer programming (MIP). Lastly, several of the studied
papers use heuristics to find good solutions more quickly. Beliën and Demeulemeester (2007) develops
a repetitive MIP heuristic, which involves sequentially solving a set of MIPs. After each MIP, another
constraint is added to the model, thereby limiting the solution space. Fügener et al. (2014) uses an
incremental improvement heuristic, where only one swap of two slots is allowed to an existing MSS. This
is repeated for a defined number of maximum swaps. Lamiri et al. (2009) incorporates several heuristics,
including the multi-start method, tabu search (TS) and simulated annealing (SA).

SA is one of the most commonly used heuristics for scheduling problems (Abdeljaouad et al., 2020).
The algorithm continuously moves from the current solution to a neighboring solution, accepting worse
solutions with a probability that decreases over time (Spratt and Kozan, 2016). This allows SA to
escape local optimums while searching for the global optimum. Fügener (2015) and Abdeljaouad et al.
(2020) both start with an initial MSS solution, either received from the hospital or created through a
construction heuristic, which is then iteratively improved through an SA algorithm. Both Lamiri et al.
(2009) and van Essen et al. (2014) advance their SA algorithm through continuously keeping track of
the best solution found so far. In the studied papers, neighborhood structures from which one chooses
the next solution are found in several ways. One common approach is through swaps, where a specialty
operating on one day is swapped with a specialty operating on another day, i.e. a swap of two slots. The
neighborhood then consists of all feasible swaps with the current solution. Vanberkel et al. (2011), van
Essen et al. (2014), and Schneider et al. (2020) all implement such neighborhood structures.

12



CHAPTER 3. RELATED LITERATURE

3.3 Our Contribution to the Literature

In this thesis, we develop a planning tool for the tactical level in surgical care services. We do so through
a two-stage stochastic model, accounting for the uncertainty in elective patient demand. We propose
four solution methods, ranging from an exact MIP that can solve small instances of the problem, to
an entirely heuristic SA algorithm that is applicable to larger instances. Its outcome is a modified
MSS, where specialties are assigned to slots. Flexibility is incorporated by leaving a percentage of the
slots open, thereby allowing some decisions to be made at a later stage when new information about
elective patient demand is known. The focus is on elective patients, including both inpatients and
outpatients, and downstream care units are integrated into the model. The objective is to minimize the
total length of the elective patient waiting list. Our main contribution to the literature is thus in adding
to the practices of two-stage modeling and heuristic solution methods for such models, in addition to
incorporating flexibility in the MSS. The value of flexibility is investigated for various levels of flexibility
and under different conditions, such as with varying bed ward capacities.

Table 3.1 and Table 3.2 show some of the most relevant characteristics of the studied papers, compared
to this thesis. The ways in which they were found, either through other papers or through search phrases
on Google Scholar, are presented in Appendix E.
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Table 3.1: The table summarizes some of the most relevant characteristics of the studied papers, compared to this thesis. The last three columns indicate
whether or not a paper incorporates an MSS, whether or not it integrates downstream units and whether or not it makes use of heuristic solution methods,
respectively.

Paper Patients Performance measure Uncertainty MSS Integrated Heuristic

This thesis Elective Min patient list Stochastic elective patient demand +
two-stage

✓ ✓ ✓

Isaksen and Svag̊ard (2021) Elective +
emergency

Min peak bed occupancy level Stochastic LOS ✓ ✓

van Oostrum et al. (2008) Elective Multi-objective: Max OR utilization +
level bed utilization

✓ ✓

Adan et al. (2009) Elective Multi-objective: Min overutilization +
min underutilization

Stochastic LOS ✓ ✓

Fei et al. (2010) Elective Multi-objective: Max OR utilization +
min overtime costs + min idle time

✓ ✓ ✓

Cappanera et al. (2014) Elective Min max ORs and beds utilization +
min gap between max and min values of
ORs and beds utilization + min sum of
quadratic overrun of ORs and beds uti-
lization from threshold

✓ ✓

Mannino et al. (2012) Elective Min overtime + balance patient list
length

✓

Beliën and Demeulemeester (2007) Elective Min bed shortage Stochastic number of patients operated
per day

✓ ✓ ✓

Vanberkel et al. (2011) Elective Balance ward occupancy ✓ ✓
Fügener et al. (2014) Elective Min cost in downstream units Stochastic LOS ✓ ✓ ✓
Adan et al. (2011) Elective +

emergency
Min deviations of the resources’ con-
sumption to the target levels

Stochastic LOS ✓

Bruni et al. (2015) Elective +
emergency

Max revenues Stochastic emergency patient demand +
surgery duration

✓

Lamiri et al. (2009) Elective +
emergency

Min overtime costs and patients’ related
costs

Stochastic emergency patient demand ✓

Wang et al. (2014) Elective +
emergency

Min expected operating costs Stochastic emergency patient demand +
surgery duration

✓

Bovim et al. (2020) Elective +
emergency

Max number of elective patients sched-
uled for surgery + min number of elec-
tive cancellations + min number of pa-
tients waiting in wards not designated
for them

Stochastic two-stage ✓
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Table 3.2: The table summarizes some of the most relevant characteristics of the studied papers, compared to this thesis. The last three columns indicate
whether or not a paper incorporates an MSS, whether or not it integrates downstream units and whether or not it makes use of heuristic solution methods,
respectively.

Paper Patients Performance measure Uncertainty MSS Integrated Heuristic

Fügener (2015) Elective Max revenues Stochastic elective patient demand ✓ ✓

M’Hallah and Visintin (2019) Elective Max throughput
Stochastic LOS + surgery duration +
two-stage

✓

Batista et al. (2020)
Elective +
emergency

Multi-objective: Min resource utiliza-
tion + min costs

Stochastic two-stage ✓

Makboul et al. (2021) Elective
Max time between surgery date and due
date

Stochastic two-stage ✓ ✓

Neyshabouri and Berg (2017) Elective Min costs Stochastic two-stage ✓ ✓

Kamran et al. (2018)
Elective +
emergency

Multi-objective: Min waiting time +
min tardiness + min cancellations + min
overtime + min number of surgery days
for each surgeon

Stochastic surgery duration + two-stage

Heydari and Soudi (2016)
Elective +
emergency

Multi-objective: Min makespan + min
overtime

Stochastic two-stage

Spratt and Kozan (2016) Elective Max number of surgeries performed Stochastic surgery duration ✓ ✓

Abdeljaouad et al. (2020) Elective
Min opening duration + min surgeons’
waiting times

Stochastic ✓

Visintin et al. (2016) Elective Max number of scheduled surgeries ✓ ✓

van Essen et al. (2014)
Elective +
emergency

Many different objectives ✓ ✓

Schneider et al. (2020) Elective
Max OR utilization + min variance of
bed usage at wards

Stochastic surgery duration ✓ ✓ ✓

Kumar et al. (2018) Elective Max throughput Stochastic LOS ✓ ✓
Kim and Mehrotra (2015) Min staffing costs + min resource costs Stochastic two-stage ✓

Oliveira et al. (2021) Elective
Min deviations of the assigned OR time
to target value

✓ ✓ ✓
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3.4 Relevant Techniques and Methods in Operations Research

This section is meant to give an overview of techniques and methods that are particularly relevant to
this thesis. We start by giving an introduction to stochastic programming in Section 3.4.1, mainly based
on King and Wallace (2003). In Section 3.4.2 we discuss methods for generating scenarios in stochastic
models, mainly based on Kaut and Wallace (2003). Section 3.4.3 concerns the SAA method for evaluating
the performance of stochastic models. This last part is based on Ahmed and Shapiro (2002), as well as
Shapiro and Philpott (2007). Lastly, in Section 3.4.4 we introduce several solution methods for stochastic
optimization problems of varying problem sizes and complexity. Note that due to the lack of consistency
in mathematical notation throughout this literature, the notation in this thesis may deviate somewhat
from the cited works.

3.4.1 Stochastic Programming

Stochastic programming is a part of mathematical programming and operations research that studies
how to incorporate uncertainty into decision making (King and Wallace, 2003). The motivation behind it
is to obtain solutions that perform well in problems containing uncertainty. Ignoring such uncertainties
can lead to serious issues when modeling decisions are put to life in the real world, and unanticipated
events occur. What may look like a perfect solution for a given set of parameter values, can perform
terribly for a very similar set of values. This is often referred to as a knife-edge property, and is the
reason that deterministic models often perform poorly on average (King and Wallace, 2003). Stochastic
programs, however, model what might happen and how to act in these different situations. By doing
this properly, decisions that perform better on average can be made, since they account for a range of
parameter values.

In the real world, decisions made at one point in time often have implications for decisions and outcomes in
the future. Stages are the points in time where decisions are made in a model. Introducing stages enables
us to model how decisions made at one point in time impact decisions made after new information has
surfaced. This is an important concept in stochastic programming. It is worth mentioning that modeling
stages in deterministic models does not make sense, as no new information is revealed in a deterministic
setting.

The simplest form of a model with stages is an inherently two-stage model, often called an invest-and-use
model. In these models, the first-stage decision is a major long-term decision or investment, while the
remaining second-stage decisions represent the use of this investment. Second-stage decisions are often
referred to as recourse decisions, as they can be considered corrective actions after the realization of a
random variable. In this section we only cover models with relative complete recourse, which means
that no first-stage decision can yield an infeasible problem in the second-stage (Shapiro and Nemirovski,
2005). Ahmed and Shapiro (2002) proposes a standard formulation for such a two-stage model with
recourse.

min
x∈X
{f(x) := cTx+ E[Q(x, ξ(ω))]} (3.1)

Q(x, ξ(ω)) := inf
y∈Y
{qT y : Wy ≥ h− Tx} (3.2)

Here, f(x) is the objective function, x is the first-stage decisions with its feasible set X and cT is an
arbitrary cost matrix. (3.2) is called the the recourse function, and depends on both the first-stage
decisions and an uncertain parameter vector ξ(ω) = (q(ω), T (ω),W (ω), h(ω)). ω represents a realization
of some randomness. The recourse function includes second-stage decision variables y with its feasible
set Y and it connects the first- and second-stage as it has corrective abilities after the realization of the
random parameter vector. In (3.2) the expectation of the recourse function is taken with respect to the
probability distribution of ξ(ω). Note that all parameters do not need to be random and that there is
an infinite number of realizations of ω if the probability distribution of ξ(ω) is continuous.
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Shapiro and Nemirovski (2005) discuss several questions that naturally arise with respect to such a
formulation. They consider topics like the probability distribution, the discretization of a continuous
world, the complexity of the problem, and whether using expectation in the second-stage is even an
appropriate measure. Nevertheless, these topics are not within the scope of this thesis.

Even though stochastic models seek to deal with an uncertain future, it is necessary to make assumptions
about the future in order to construct such a model. For stochastic programming to be applicable, the
distribution of the future must be discrete. This discretization of the future is called a scenario tree, and
each discrete event of this tree is called a scenario. A scenario contains one realization of each random
variable present in the model, as illustrated by Figure 3.2.

Figure 3.2: A visualization of a general scenario tree with the presented notation

If we assume a discrete probability distribution with a finite number of realizations, {ω1, ω2, ...ωN}
with probabilities {p1, p2, ...pN}, we can describe the stochastic process with a scenario tree ξN =
{ξ(ω1), ...ξ(ωN )}. N is the number of scenarios in the second-stage of the scenario tree. In such a
discrete world, it is possible to describe the deterministic equivalent of the problem as follows:

min
x∈X,y∈Y

{cTx+
∑

i=1..N

piqiyi : Wiyi ≥ hi − Tix}, (3.3)

where yi is the recourse decision in scenario i, qi, Wi, hi and ti are the parameter realizations in scenario
i and pi is the probability of scenario i occurring. This deterministic equivalent is more practical for
computational reasons as it is possible to model discretely. The general information and decision structure
of a two-stage problem is presented in Figure 3.2.
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One can to some degree evaluate how well the two-stage model performs versus a completely deterministic
model. This evaluation is referred to as the value of the stochastic solution (VSS), and is the difference
between the expectation of expected value solution (EEVS) and the optimal objective value of the
recourse problem (OVRP). The expected value solution (EVS) is found by fixing the uncertain parameters
to their expected values, and solving the resulting expected value (EV) problem. The EEVS is then the
expected performance of the EVS across all scenarios used in the recourse problem (RP). A practical
way of doing so is by fixing the solution in the RP to the EVS and solving it. The algorithm is presented
below.

1. Solve the two-stage model with a scenario tree ξN with N scenarios in the second-stage, and record
the OVRP

OV RP = min
x∈X,y∈Y

f(x, y; ξN ) (3.4)

2. Find the expected values of the uncertain parameters over all N scenarios

ξ̄N :=
1

N

N∑
n=1

ξn (3.5)

3. Solve the EV problem with deterministic parameters and register the EVS

EV S :=
{
x : argmin

x∈X,y∈Y
f(x, y; ξ̄N )

}
(3.6)

4. Find EEVS by calculating the average EVS over all scenarios

EEV S := min
y∈Y

f(y;x, ξN ) (3.7)

5. Calculate VSS as

V SS = EEV S −OV RP (3.8)

VSS is a simple way of estimating how good the solution from a stochastic program is compared to the
solution of its deterministic counterpart.

Lastly, we describe the terms robustness and flexibility, as defined in King and Wallace (2003). When
making decisions under uncertainty, we wish to withstand random events, but also accommodate them. In
a two-stage model, robustness is in the first-stage decisions and flexibility is in the second-stage decisions.
Flexibility lets us act if a system enters a disturbed state, while robustness lowers the probability of ending
up in such a phase. Assuming that both robustness and flexibility come at a cost, they do not make
sense to introduce in deterministic models. The simple explanation for this is that it will never pay off to
invest in insurance for contingencies that are assumed to never occur. Deterministic models are always
option free.
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3.4.2 Scenario Generation

A challenge with stochastic models is to establish good scenario trees. The goal is that the scenario
generation procedure should not affect the solution of the problem. Kaut and Wallace (2003) discusses
different scenario generation methods and their quality. The seven proposed methods are very briefly
described in Table 3.3.

Table 3.3: Short description of the seven methods for scenario generation proposed by Kaut and Wallace
(2003)

Scenario Generation Method Description

Conditional sampling
Sample marginals in a vector from only one univariate random
variable and evolve the process downwards in the tree

Sampling from specific marginals
and correlations

Sample marginals in a vector from different distributions and
possibly add the correlation between them

Moment matching
Use statistical properties of the marginals in a vector to con-
struct discrete distributions that satisfy those properties

Path-based
Generate complete paths first and use clustering algorithms to
construct a scenario tree from them in a second step

”Optimal discretization”
Approximate a stochastic process (scenario tree) that mini-
mizes an error in the objective function

Scenario reduction Reduce the size of an existing scenario tree

Internal sampling Generate a scenario tree during the solution process

Conditional sampling is the most common method for scenario generation. Here, several values are
sampled from a stochastic process for every node of the scenario tree. This is done either by sampling
directly from the distribution or by evolving the process downwards in the scenario tree by sampling
conditional on realizations in parent nodes. In a two-stage process, it does not make sense to evolve the
process, since there is only one time step. The norm is to sample from univariate random variables, and
when sampling from a random vector, every marginal is sampled separately before combining samples
afterward. Kaut and Wallace (2003) discusses the problems with sampling random vectors, since scenario
trees grow exponentially with the size of the vector. If n samples are drawn from each of k marginals
in a random vector, the result is nk different scenarios. They also propose several methods to improve a
sampling algorithm, however this is outside the scope of this thesis.

According to Kaut and Wallace (2003), there are at least two minimal requirements that a scenario
generation method must satisfy:

1. Stability: If one generates several scenario trees with the same input, one should get the same
optimal objective value when testing the model with these trees

2. No bias: The scenario tree should not introduce any bias compared to the true distribution
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Stability tests for scenario trees
The second requirement stated above can be difficult to confirm, since the true solution of a stochastic
problem is rarely known. However, the first requirement can, to some degree, be tested. Kaut andWallace
(2003) introduces two measures to evaluate the stability of a scenario generation method, namely in-
sample stability and out-of-sample stability. First, let us denote the scenario tree of the true stochastic
process ξ̃ and our approximated discrete process ξ̆. If we generate M scenario trees,{ξ̆1, ...ξ̆M}, and find
optimal solutions, {x∗1, ..., x∗M} with objective values {f(x∗1; ξ̆1), ..., f(x∗M ; ξ̆M )}, then in-sample stability
is obtained if

f(x∗m; ξ̆m) ≈ f(x∗k; ξ̆
k) ∀ m, k ∈ 1...M

and out-of-sample stability if

f(x∗m; ξ̃) ≈ f(x∗k; ξ̃) ∀ m, k ∈ 1...M

For the in-sample stability, the problem only needs to be solved for the generated scenario trees. However,
testing for out-of-sample stability requires evaluating the first-stage solutions on the true distribution,
ξ̃. The problem with this is that full knowledge of ξ̃ is rare, and even with full knowledge, it might not
be straight forward to evaluate f(x; ξ̃).

There is a practical difference between the two measures. Having out-of-sample stability means the real
performance of a solution x∗m is stable and does not depend on the scenario tree ξ̆m used for solving
the optimization problem. However, if there is not in-sample stability, we can not determine how good
the obtained solutions are in reality. Lacking out-of-sample stability is arguably more problematic than
lacking in-sample stability, since the performance of the solution depends on what scenario tree is used.
It should be noted that it is possible to lack in-sample stability in the objective value, but still have
in-sample stability in the solution. In-sample stability in the solution will naturally cause out-of-sample
stability, as the solutions are similar. In conclusion, if observing in-sample instability in the objective,
one should look at the solution as well. Kaut and Wallace (2003) comments that for most practical
applications, there will be either both in- and out-of-sample stability or none of them. As a result, an
in-sample stability test is often sufficient, but an out-of-sample test should be performed if there is a
practical way of doing so.

Kaut and Wallace (2003) suggests three ways of performing an out-of-sample test:

1. Monte Carlo simulation methods (if the true stochastic process ξ̃ is known)

2. Backtesting with historical data (testing how well solutions x∗m would have performed in the past)

3. Generating a large tree from a scenario generation method believed to be stable and testing how
solutions x∗m perform on this

In this thesis, the true stochastic process is assumed to be known, and Monte Carlo simulation will then
be the obvious choice (Kaut and Wallace, 2003).

Monte Carlo simulation
Monte Carlo simulation is a type of simulation that relies on repeated random sampling for statistical
analysis (Raychaudhuri, 2008). The basic idea of Monte Carlo simulation is described in the steps that
follow. First, samples of a random variable are drawn from a distribution, or from a sample space
which is called bootstrapping. Next, the samples are evaluated under some mathematical conditions and
output is generated. When this process is repeated many times, statistical analysis can be performed
on the output, either by treating the samples as an empirical distribution or by fitting them to a known
probability distribution. The precision of the analysis increases with the number of samples.
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Shapiro and Nemirovski (2005) argues that Monte Carlo sampling techniques are reasonably efficient for
solving two-stage stochastic problems with recourse, provided certain conditions are met:

1. The solution space X is fixed and feasible regardless of the realization of the uncertain parameter
vector ξ

2. For all x ∈ X and ξ ∈ Ξ, the objective function f(x, ξ) is real, meaning the problem is feasible and
bounded

3. The stochastic program can be solved efficiently by a deterministic algorithm, provided the number
of scenarios is not ”too large”

When dealing with linear stochastic two-stage models with relatively complete recourse, which we will
do in this thesis, all three conditions are met (Shapiro and Nemirovski, 2005).

3.4.3 Sample Average Approximation

Sample average approximation (SAA) is an approach based on Monte Carlo simulation to solve stochastic
optimization problems. It is a technique where one can estimate the objective function value from random
samples of scenarios.

The motivation behind SAA is to find good candidate solutions and good estimates of a stochastic
program, without introducing the large number of scenarios needed to represent a stochastic process’
distribution. Increasing the size of the scenario tree will increase the size of the problem and therefore
also its solution time. By how much is, however, problem-specific. Consequently, the SAA method lets
us keep the problem at a manageable size, while still producing good solutions. This is done by resolving
the model an appropriate number of times with different random samples of the process’ distribution.

Given a sample of N scenarios from the random variable’s probability distribution, E[Q(x, ξ(ω)] from
(3.1) can be approximated by 1

N

∑N
n=1Q(x, ξ̆n) where ξ̆n = ξ̆(ωn). Then we can approximate the true

problem in (3.2) by solving

zN = min
x∈X

f̂(x) (3.9)

f̂(x) := cTx+
1

N

N∑
n=1

Q(x, ξ̆n) (3.10)

Problem (3.9) is called the sample average approximation problem. The optimal value zN and corre-
sponding solution x̂N give an estimate of the true stochastic problem in (3.1) when we include a sample of
N scenarios in the calculation. By the Law of Large Numbers f̂(x)→ f(x) when N →∞, however this
convergence is at a rate of Op(N

−1/2) by the Central Limit Theorem. This states that for a sufficiently
large sample (sampled with replacement), the distribution of the sample will be approximately normal.

The SAA method is used to calculate some well-known statistical measures of the solution. It proceeds
by solving the SAA problem repeatedly for M independently generated scenario trees, each including N
scenarios. Optimal objective values z1N , z2N , ...zMN and corresponding solutions x̂1N , x̂2N , ...x̂MN are obtained,
and then

z̄N =
1

M

M∑
m=1

zmN (3.11)

σ̂2
z̄N

=
1

(M − 1)M

M∑
m=1

(zmN − z̄N )2 (3.12)
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denote the average and empirical variance of the optimal objective value, respectively. We can then
estimate the true objective value of our solutions, f(x̂), by generating a new large scenario tree of size
N ′ ≫ N and testing our M optimal solutions x̂1N , x̂2N , ...x̂MN on this tree. The estimated true performance
and empirical variance of a solution then becomes

ẑmN ′ = cT x̂mN +
1

N ′

N ′∑
n=1

Q(x̂mN , ξn) (3.13)

and

σ̂m2
N ′ =

1

N ′(N ′ − 1)

N ′∑
n=1

(
cT x̂mN +Q(x̂mN , ξn)− ẑmN ′

)2
(3.14)

The measures calculated above can now be used to estimate the optimality gap of a candidate solution
x̂mN as ẑmN ′ − z̄N with an estimated variance of σ̂2

z̄N
+ σ̂m2

N ′ . There are, however, different post-processing
rules for deciding which of the M candidate solutions x̂ to choose. Such rules could include choosing the
solution yielding the smallest optimality gap. A step-by-step guide that summarizes the method above
is presented below (Ahmed and Shapiro, 2002).

1. Choose the sizes of N ,M and N ′ based on problem-specific characteristics

2. For each m ∈ 1, 2, ...M do

(a) Generate a random scenario tree ξ̆m of size N

(b) Solve the SAA problem min
x∈X

f̂(x)

(c) Generate an independent scenario tree of size N ′ ≫ N and calculate ẑmN ′ and σ̂m2
N ′ by (3.13)

and (3.14)

3. Calculate z̄N and σ̂z̄N by equation (3.11) and (3.12)

4. Estimate the optimality gap ẑmN ′ − z̄N ((3.13) - (3.11)) and its corresponding variance σ̂2
z̄N

+ σ̂m2
N ′

((3.12)+(3.14)) for every solution x̂mN and choose the preferred solution according to some rule

3.4.4 Solution Methods for Stochastic Optimization Problems

Optimization problems can be solved either through exact or heuristic solution methods. Exact solution
methods find the optimal solution, but are often too time-consuming for complex optimization problems
(Bianchi et al., 2008). Heuristic solution methods do not guarantee finding the optimal solution, but they
do, however, often find sufficiently good solutions (Bianchi et al., 2008). Furthermore, heuristic solution
methods are typically less time-consuming than exact ones, at least for larger instances of complex
optimization problems. This section focuses mainly on stochastic optimization problems and ways in
which to solve them, depending on their problem size and complexity.

One way of solving optimization problems is through decomposition methods. This is a way to tackle
large-scale optimization problems that cannot be handled by MIP solvers (Laesanklang and Landa-
Silva, 2017). The idea is to exploit the problem structure. Decomposition methods divide the problem
into subproblems that are easier to solve than the original problem, also called the master problem
(Laesanklang and Landa-Silva, 2017). Each subproblem is then solved separately, before their solutions
are put back together to form a solution to the master problem (Laesanklang and Landa-Silva, 2017;
Andersson, 2021). This can be done in two ways, either through constraint decomposition or variable
decomposition (Laesanklang and Landa-Silva, 2017). In the former, constraints or cuts are added to the
problem, thereby narrowing the feasible region and improving the bounds. In the latter, the problem is
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solved in two stages. In the first-stage, the values for a set of variables are fixed. In the second-stage,
the optimal solution for the remaining variables is found, given the variable values set in the first-
stage (Laesanklang and Landa-Silva, 2017). Bender’s decomposition is one such decomposition method
(Laesanklang and Landa-Silva, 2017), and it is also one of the most commonly used decomposition
algorithms (Guo et al., 2021). Like other decomposition methods, it can be implemented either as an
exact or a heuristic solution method (Laesanklang and Landa-Silva, 2017; Guo et al., 2021). When its
subproblems contain integer variables, the classical Bender’s decomposition cannot be applied (Guo et al.,
2021). Modified variants, such as logic-based Bender’s method (LBBD), have therefore been developed.

LBBD is an exact technique that has become increasingly popular over the last decade for solving com-
binatorial optimization problems (Roshanaei and Naderi, 2021). The technique has shown promising
performances when applied to healthcare optimization problems, as long as the problem can be decom-
posed into an assignment problem in the first-stage and a packing, routing or scheduling problem in the
second-stage (Roshanaei and Naderi, 2021). Roshanaei and Naderi (2021) applies LBBD to its deter-
ministic integrated operating room planning and scheduling problem, which proves to outperform the
existing Branch-Price-Cut algorithm. Guo et al. (2021) applies LBBD to a stochastic operating room
scheduling problem. The surgery durations are modeled stochastically in order to derive more robust
schedules, and the problem is modeled in both two and three stages. The two-stage LBBD reduces both
the solution time and the optimality gap when compared to their MIP in a commercial solver.

As previously mentioned, exact solution methods often struggle to perform well for larger instances of
stochastic optimization problems, and even small instances may require a lot of computational effort due
to the problem complexity. Stochastic multi-stage models further increase the problem size drastically by
introducing scenarios. In contrast to exact solution methods, metaheuristics are often able to find good
solutions to realistically sized problem instances, using far less computational time (Bianchi et al., 2008).
It is possible, and often convenient, to combine metaheuristics with exact methods, as the combination
may help in reaching solutions of higher quality in a reasonable amount of time (Juan et al., 2021). This
is called matheuristics, which have become popular over the last decade (Juan et al., 2021).

Two central concepts in metaheuristics are exploration and exploitation (Blum and Roli, 2003). Ex-
ploration describes the global search for promising solutions in the entire feasible region, whereas ex-
ploitation describes the local search for improved solutions in promising subregions (Andradóttir and
Prudius, 2009). The two forces are both contrary and complementary to each other, and they determine
the metaheuristic’s behavior (Blum and Roli, 2003). One must find a balance between the two forces in
order to efficiently explore the search space (Bianchi et al., 2008).

With the increasing popularity of metaheuristics, there are many to choose from when solving stochastic
optimization problems. Examples of metaheuristics that have proven to be successful when applied to
stochastic optimization problems are ant colony optimization (ACO), tabu search (TS), genetic algo-
rithms (GA) and simulated annealing (SA) (Bianchi et al., 2008). ACO is according to Bianchi et al.
(2008) one of the most successful nature-inspired metaheuristics, mimicking the foraging techniques of
real ants (Blum and Roli, 2003). It is a probabilistic method that in essence is about finding good paths
through graphs. TS relies on memory, as it uses information from the past to make better choices in
the search process (Juan et al., 2021). Instead of stopping at a local optimum, it explores by choosing
solutions that worsen the objective. To prevent going back and forth between the same improving and
non-improving solutions, the heuristic keeps a tabu list. This is a list of the last solutions visited, making
these temporarily illegal. In GA, a population of solutions evolves over several generations through the
operators selection, crossover and mutation (Juan et al., 2021). Selection comes first, evaluating the
current solutions through a fitness criteria. Based on this, only some of them are chosen to be part of the
reproduction process. Second, new solutions are created through the crossover and mutation operators,
thereby creating new offspring and diversifying the population. Lastly, the new generation fully or partly
replaces the previously existing population. SA is often said to be the oldest of the metaheuristics (Blum
and Roli, 2003). It builds on the principles of local search heuristics, but with modifications in order
to explore the entire solution space (Blum and Roli, 2003). In each iteration, a neighboring solution to
the current solution is found (Blum and Roli, 2003). If the neighbor has a better objective value, it is
chosen as the new solution. If it has a worse objective value, it may still be chosen, with a probabil-
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ity depending on a control parameter called the temperature (Lundgren et al., 2010). In order for the
method to converge, the temperature decreases over time, thereby reducing the probability of choosing
worse solutions (Lundgren et al., 2010). The algorithm puts emphasis on exploration and global search
at the start, gradually moving towards exploitation and local search towards the end.

Unlike SA, similar methods such as balanced explorative and exploitative search with estimation (BEESE)
emphasize both exploration and exploitation throughout the entire search (Andradóttir and Prudius,
2009). At each iteration, randomized BEESE (R-BEESE) chooses two solutions, one from a global, and
therefore explorative neighborhood, and one from a local, and therefore exploitative, neighborhood. The
explorative solution is chosen with probability p and the exploitative solution is chosen with probability
1-p (Andradóttir and Prudius, 2009). Whereas R-BEESE randomly chooses the neighborhood in which
it finds the next solution, adaptive BEESE (A-BEESE) adaptively alternates between picking from the
explorative and the exploitative neighborhood, aiming to use a suitable neighborhood at each stage
(Andradóttir and Prudius, 2009). Once again, we observe the centrality of balancing exploration versus
exploitation in metaheuristics. It defines the different methods and largely determines their performance.

Out of the solution methods mentioned, SA is particularly popular due to its simplicity, runtime and
solution quality (Spratt and Kozan, 2016). It tends to outperform other relevant heuristics like TS and
GA (Spratt and Kozan, 2016), and is one of the most commonly used heuristics for scheduling problems
(Abdeljaouad et al., 2020).
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Problem Description

The problem described in this section involves creating a modified MSS for a surgical clinic. This is also
called a modified block schedule, as described in Section 3.1.1. Due to the problem being identical to
the one in Asplin et al. (2021), the only changes made to this section are some clarifications.

Time slots are the components of an MSS. A slot is defined as a full day of access to one of the elective
ORs belonging to the surgical clinic. Out of the total number of slots available during a cycle, a fraction
of these must be fixed to a surgical specialty, while the remaining are considered flexible slots. When a
specialty is assigned a fixed slot, they will have access to the corresponding OR on that day in every cycle.
Flexible slots, however, may be assigned to a specialty on a date closer to the actual execution of that
week’s schedule. The benefit of flexible slots is that they can contribute to accommodating fluctuations
in demand for different surgical procedures. Flexible slots are what differentiates a regular MSS from a
modified MSS. The term MSS hereafter refers to a modified MSS.

The decisions of this problem are made at different points in time, as illustrated in Figure 4.1. Deciding
which slots should be fixed and what specialties they should be assigned to is done once, typically just
before the start of a new calendar year. This forms the cyclic MSS that is typically repeated for the
following six to twelve months, referred to as the planning horizon. The assignment of specialties to
flexible slots and subsequent packing of surgeries into the schedule is, however, performed closer to the
execution of each planning period. It is best to make these decisions as close to the planning period
as possible, due to the increased accuracy of the accumulated information on demand. Patients at the
Surgical Clinic at St. Olav are informed of the timing of their surgical procedure one to three weeks
prior to its execution. Therefore, we propose a two-week time gap between the assignment of specialties
to flexible slots and the start of the planning period. The length of a planning period can be chosen
arbitrarily, but it must correspond to the length of one or more cycles. For example, the planning periods
in Figure 4.1 consist of two cycles each.

The different specialties have different needs in terms of facilities and equipment, and should only be
assigned to ORs that fit their needs. Another limiting resource of the surgical clinic is its staff. The
clinic comprises a set of surgical specialties, each with a predefined number of surgical teams available
for each day in a cycle. The number of surgical teams available limits the number of slots a specialty
can be assigned on a day. To each surgical specialty belongs a set of surgery groups. A surgery group
consists of patients with equal surgery duration and LOS after surgery, and may only be operated by
surgeons within the specialty that their group belongs to.

A third limiting resource is the capacity in the MC and IC wards downstream of the ORs. Each surgery
group is associated with one MC ward and one or more IC wards. The individual wards have a predefined
number of beds available for each day of a cycle, and the number of beds occupied by patients may not
exceed this capacity. If a patient stays in an IC ward after surgery, they subsequently spend at least one
night in an MC ward before being checked out. If a patient goes directly to an MC ward after surgery,
they will not move to an IC ward afterward.
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The sum of surgery durations for patients scheduled for surgery in a slot, including the time it takes to
clean the OR after surgery, should not exceed the time available in the slot. By default, all ORs open
and close at the same time every day that they are open, and thus a slot represents a default number of
available minutes. However, a slot can be extended by postponing the closing of the OR. The maximum
number of slots a specialty can extend during a cycle is predefined. Lastly, only fixed slots are eligible
for extension.

Uncertainty is present in the demand for different surgery groups. The schedule should therefore accom-
modate fluctuations in demand. This requires assigning fixed slots in such a way that the schedule is
robust to different levels of demand, taking into account that the remaining flexible slots can be used
to respond to fluctuations in demand. In reality, there is also uncertainty in the surgery durations and
LOS for the different surgery groups, but this is considered deterministic.

The objective in this problem is to minimize the expected amount of unmet demand at the end of a
planning period. We assume that demand corresponds to the patients that are in line for surgery at the
point in time where the schedule for a planning period is packed with patients from the different surgery
groups. Accordingly, the expected unmet demand corresponds to the total surgery time of the patients
in line for surgery that do not fit when packing the schedule. For example, if all patients except two are
scheduled for surgery, the unmet demand is the sum of these two patients’ surgery times.

Figure 4.1: An illustration of the relation between the planning horizon, the planning period and the
MSS cycles. Letters inside a slot mean that the slot is assigned to a specialty as a fixed slot, and ”*”
signifies that the slot is extended. ”#” means that a slot is flexible.
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Chapter 5

Mathematical Model

In this section, we develop a two-stage stochastic model to tackle the problem described in Chapter 4.
The model creates a cyclic MSS for a surgical clinic that takes into account uncertainty in demand.
We also cater to fluctuations in demand by allowing for some flexibility in the MSS. Section 5.1 is the
same as in Asplin et al. (2021). Section 5.2 and Section 5.3 are mostly identical to before, with some
mathematical modifications. In addition to the MIP formulated in this section, we have formulated an
alternative MIP inspired by the cutting stock problem. This alternative formulation (CSMIP) mostly
performs inferior to the MIP formulated in this section, and will therefore not be introduced in the body
of this thesis. However, the formulation of the CSMIP can be found in Appendix B.

5.1 Model Assumptions

In this thesis, we make some simplifications in order to reduce the complexity of the problem. Since the
introduction of stochastic parameters and additional decision stages generally increase the complexity of
a problem, several assumptions with regard to the problem setting are made. Our model assumptions are
threefold. First, we introduce assumptions made with regards to the surgical clinic in Section 5.1.1, before
proceeding to elaborate on those of the clinic’s patients in Section 5.1.2. To conclude the model assump-
tions, we go into some details on how the modeling of stochastic parameters is handled in Section 5.1.3.
In this last part, we also argue why a two-stage model is appropriate for our problem.

5.1.1 The Surgical Clinic

First and foremost, emergency patients are not taken into account. While emergency patients are a
part of the surgical clinic’s responsibility, the vast majority of the clinic’s resources are used for elective
patients.

Surgical teams within the same specialty are considered homogeneous. This means to say that differences
in experience and performance of the staff in each surgical team are not taken into account, and have
no impact on the duration of surgeries. The time it takes to clean an OR and prepare it for the next
surgery is assumed to be constant. It is also assumed that after the last surgery of the day the ORs are
cleaned and prepared for the first operation the following day.

At the bed wards downstream of the ORs, simplifications are made in order to handle the uncertainty
in different patients’ LOS. Most importantly, the numbers of occupied beds in wards are modeled as
expected values. Obviously, a patient either occupies a bed or not in reality. However, since a patient’s
LOS is uncertain, we consider the use of expected occupancy to be more fitting than forcing the LOS of
patients to be a predefined integer. Going into a planning period, it is assumed that some of the beds
at the wards are occupied by patients operated prior to the planning period. For each ward and day
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in the planning period, the leftover bed occupancy from prior periods is modeled as a constant. This
mechanism is described in detail in Section 5.3.2.

5.1.2 The Patients

Patients within the same surgery group are considered homogeneous. This implies that they have the
same surgery duration, as well as probabilities of staying in their affiliated wards after surgery. Further-
more, it is assumed that for every surgery group the probability of a patient from this group staying in an
affiliated ward on a given night after their surgery is known and unconditional. To exemplify how these
probabilities translate to expected bed occupancy, we consider an example where a patient is operated
on a Monday. If the patients in the surgery group that this patient belongs to have a probability of 0.5
of staying in an affiliated ward one day after surgery, then this patient will occupy 0.5 beds in that ward
on the night between Monday and Tuesday.

As mentioned in Chapter 4, patients who stay in IC wards post-surgery will always move to an MC ward
afterward. However, this dependency is challenging to model. Since we do not assume whether a patient
stays in a ward or not, but merely count the probability of the patient staying in a ward on a night after
their surgery, we do not know which patients actually end up staying in the IC wards. We circumvent
this obstacle by simply assuming that patients may have positive probabilities of both staying at an IC
ward and an MC ward, meaning that they contribute to occupancy at both wards simultaneously.

5.1.3 Modeling Stochastic Parameters

The idea of a two-stage stochastic model is to take into account the uncertainty of some parameters by
making decisions based on several possible realizations of them. The mathematical model formulated in
Section 5.3 includes a set of scenarios. Each of these scenarios contains an integer value demand for each
surgery group. The generation of scenario trees is described in Section 7.1.3.

Modeling in two stages is obviously a simplification of reality in our case. First of all, the patients
are not referred for surgery in batches once a month. In fact, they probably arrive in line for surgery
quite continually in time. However, modeling continuous arrivals is very challenging, and simplifying the
arrival of new information in stages is a common way to tackle this. Considering surgical clinics usually
pack their schedules with surgeries for one or more weeks at a time, the aggregation to stages is not that
unreasonable either.

Even though modeling with stages might be an appropriate approach, it might not be intuitive why
two stages are more suitable than many. Since an MSS in practice is used for several consecutive cycles
and planning periods, a multi-stage model might seem more suitable at first glance. However, the main
implication of one planning period on the next, is the patients that will occupy beds in wards in the
next planning period. Also, multi-stage models are notoriously complex to solve as they grow in size.
This motivates us to reduce the problem into two stages, and by addressing the dependencies between
planning periods that were just mentioned, this is arguably not unreasonable. Once again, we detail how
bed occupancy across different planning periods is handled in Section 5.3.2.

The information structure of the two-stage model is illustrated in Figure 5.1. In the first-stage, we
only know the distribution for different surgery groups’ demand, while the actual demand is known in
the second-stage. The assignment of fixed slots and extensions are done in the first-stage, while the
assignment of flexible slots and packing of surgeries are second-stage decisions. Figure 5.2 illustrates how
the continual arrivals of patients translate to aggregated demand used in the second-stage decisions. The
main output of our model is the MSS with assigned fixed slots and unassigned flexible slots. Figure 5.2
describes how such an MSS could be used in reality by assigning flexible slots and packing the schedule
with patients at regular intervals. In this example, we have assumed planning periods of four weeks.
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Figure 5.1: The figure gives an overview of the information and decision stages alongside a generic
scenario tree for surgery group demands.

Figure 5.2: The figure exemplifies how arrival of new information is aggregated, and the timing of patient
arrivals relative to each planning period.
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5.2 Notation

Sets and indices
W Wards, indexed w
S Specialties, indexed s
SRr Specialties suitable for OR r, indexed s
G Surgery groups, indexed g
GWw Surgery groups that can receive postoperative care at ward w, indexed g
GSs Surgery groups that can receive treatment from specialty s, indexed g
R ORs, indexed r
RS

s ORs suitable for specialty s, indexed r
RG

g ORs suitable for group g, indexed r

D Days in planning period, indexed d
C Scenarios, indexed c

Parameters
Πc Probability of scenario c occurring
Cg Unit cost of not meeting the demand of surgery group g
TC Cleaning time post-surgery
LSD
g Surgery duration of a patient in surgery group g

F Maximum percentage of flexible number of slots
Nd Total number of available ORs on day d
UX
s Maximum number of times a specialty s may extend its opening hours during a cycle

I Number of cycles in the planning horizon
Ksd Number of surgical teams from specialty s available on day d
Hd Default amount of time available in a slot if it is assigned at day d
E Additional time available if a slot’s opening hours are extended
Qgc Number of patients from surgery group g in line for surgery in scenario c
Pgwd Probability that a patient from surgery group g occupies a bed in ward w, on the night

d days after surgery
Jw Maximum number of nights a patient may stay in ward w
Bwd Number of available beds at ward w on the night following day d
Ywd Expected number of occupied beds in ward w on the night following day d in the current

planning period, by patients operated in a prior planning period

Variables
First-stage decision variables:

γsrd

{
1 if specialty s is assigned a fixed slot in room r on day d

0 Otherwise

λsrd

{
1 if specialty s extends opening hours in room r on day d

0 Otherwise

Second-stage decision variables:

δsrdc

{
1 if specialty s is assigned a flexible slot in room r on day d in scenario c

0 Otherwise

xgrdc Number of patients from surgery group g operated in room r on day d in scenario c

Auxiliary variables:
agc Number of patients from surgery group g waiting in line for surgery, but not scheduled

for surgery in scenario c
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5.3 Model Formulation

The above-defined sets and indices, parameters and variables are used to make up a stochastic mixed
integer program (MIP) below. After introducing the objective, we present the constraints in an order
that follows the logic of a two-stage stochastic model.

5.3.1 Objective Function

min
∑
c∈C

Πc

∑
g∈G

Cgagc (5.1)

The objective function, (5.1), minimizes the expected cost of all patients in line for surgery, but not
scheduled for surgery. The scenario probabilities, Πc, sum to 1, and thus the objective function can be
considered an expected value.

5.3.2 Constraints

∑
s∈S

∑
r∈RS

s

∑
d∈D

γsrd ≥

⌈
(1− F )

∑
d∈D

Nd

⌉
(5.2)

Constraint (5.2) ensures that a minimum percentage of the total number of slots in the planning period is
fixed, and thus implicitly sets an upper bound for the number of flexible slots. Since the LHS sums over
binary variables, the sum will always be integer. Consequently, the RHS is rounded up to the nearest
integer to make the constraint tighter. The interpretation of this constraint is that the number of fixed
slots may range from the lower bound given by the RHS to 100%. This constraint is likely to be binding
since the objective function provides no incentive to fixate slots, while flexible slots can contribute to
meeting more demand.

λsrd ≤ γsrd s ∈ S, r ∈ RS
s , d ∈ D (5.3)∑

r∈RS
s

∑
d∈D

λsrd ≤ UX
s s ∈ S (5.4)

Constraints (5.3) and (5.4) regulate which and how many slots may be extended. The former enforce
that a slot may only be extended if it is assigned to a specialty as a fixed slot, implying that flexible
slots are not to be extended. The latter ensure that each specialty does not extend more slots during the
planning period than they are allowed. Exceptions from the tendency of (5.2) to be binding can occur
when the flexibility parameter, F , allows for fewer fixed slots than the total number of slots that may
be extended. Since only fixed slots can be extended, the number of fixed slots is likely determined to be
at least as high as the total number of slots that may be extended.
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γsrd = γ
sr(

|D|
I

+d)
s ∈ S, r ∈ RS

s , d = 1, ..., |D| − |D|
I

(5.5)

λsrd = λ
sr(

|D|
I

+d)
s ∈ S, r ∈ RS

s , d = 1, ..., |D| − |D|
I

(5.6)

Constraints (5.5) and (5.6) ensure that fixed and extended slots repeat themselves in predefined cycles
throughout the planning period. This translates to the fixed slots being equal in all cycles. The calcula-
tion of index d on the RHS of both constraints facilitates changes in the input parameters D and I. The
constraints work for all planning period lengths, |D|, and number of cycles, I, so long as the length of a

cycle, |D|
I , is an integer.

∑
s∈S

γsrd + δsrdc ≤ 1 r ∈ RS
s , d ∈ D, c ∈ C (5.7)∑

r∈RS
s

γsrd + δsrdc ≤ Ksd s ∈ S, d ∈ D, c ∈ C (5.8)

∑
s∈S

∑
r∈RS

s

γsrd + δsrdc ≤ Nd d ∈ D, c ∈ C (5.9)

Constraints (5.7)-(5.9) tie together the assignment of slots in the first- and second-stage. Constraints
(5.7) ensure that no ORs are double-booked by allowing for at most one specialty to be assigned to a
slot, either as a fixed or flexible slot. Constraints (5.8) further state that no specialty should be assigned
more slots on a day than it has teams available. Finally, constraints (5.9) regulate the total number
of ORs that may be assigned on a day, either fixed or flexible. The motivation of this constraint is to
enable restricting the OR capacity, while still letting the model make the decision of what ORs to use.
Constraints (5.7) - (5.9) are all defined for every scenario, because the second-stage variable, δsrdc, may
differ in every scenario. This means to say that flexible slots may be assigned to different specialties in
different scenarios.

∑
g∈GS

s

(Lg +TC)xgrdc ≤ Hd(γsrd + δsrdc) + Eλsrd s ∈ S, r ∈ RS
s , d ∈ D, c ∈ C (5.10)

Constraints (5.10) link the assignment of slots to the scheduling of surgeries. It does so by making sure
that the total planned operating and cleaning time in a slot does not exceed the slot’s available time,
possibly including additional time gained by extending the slot. Another important implication of (5.10)
is that patients can only be planned for surgery in a slot assigned to the specialty that their surgery
group belongs to. The RHS of the constraints will be zero for all specialties, except for the one that it is
assigned to. Consequently, no patients from surgery groups not belonging to that one specialty can be
planned for surgery in the slot.

∑
r∈R

∑
d∈D

xgrdc + agc = Qgc g ∈ G, c ∈ C (5.11)

Constraints (5.11) keep track of the unmet demand of surgery group g in scenario c through the auxiliary
variable agc. This variable is used in the objective function to penalize unmet demand. Since both xgrdc
and agc are non-negative integer variables, the constraints above make sure that we cannot plan more
patients for surgery than there are patients in line for surgery, in every surgery group in every scenario.

32



CHAPTER 5. MATHEMATICAL MODEL

∑
s∈SR

r

δsrdc ≤
∑
g∈G

xgrdc r ∈ R, d ∈ D, c ∈ C (5.12)

Constraints (5.12) ensure that a flexible slot is only assigned to a specialty if there is at least one planned
operation in that slot. This can potentially cut away many second-stage solutions that are practically
identical in scenarios where some flexible slots are redundant.

∑
g∈GW

w

∑
r∈R

d∑
δ=max {1,d+1−Jw}

Pwg(d−δ+1)xgrδc ≤ Bwd − Ywd w ∈ W, d ∈ D, c ∈ C (5.13)

Constraints (5.13) ensure that the expected number of occupied beds in a ward on the night following
day d does not exceed the number of beds available. Since the scheduling of surgeries is specific to each
scenario, so is the bed occupancy in wards. In order to explain how the constraints work, we consider
an instance of the constraints for some ward on a day in a scenario. The LHS sums over all surgery
groups that have a positive probability of staying in this ward after surgery and considers that these
patients may have been operated on in any OR. The index δ is introduced in order to take into account
all patients operated prior to the night following day d, but will only go as far back as the first day of the
planning period or Jw − 1 days back in time. Since Jw defines the maximum number of nights a patient
can stay in a ward after surgery, there is no need to look further back in time than this. Notice that the
LHS does not necessarily equate to the total expected number of occupied beds in the ward, since there
may be patients operated prior to the start of the planning period that still stay in the ward when the
planning period begins. These patients are taken into account by deducting the parameter Ywd from the
total number of beds available, Bwd, on the RHS.

γsrd = 0 s ∈ S, r ∈ {R\RS
s }, d ∈ D (5.14)

δsrdc = 0 s ∈ S, r ∈ {R\RS
s }, d ∈ D, c ∈ C (5.15)

xgrdc = 0 g ∈ G, r ∈ {R\RG
g }, d ∈ D, c ∈ C (5.16)

Constraints (5.14) and (5.15) ensure that a specialty is not assigned to an OR that is not suitable. This
is done for every specialty by forcing the assignment variables to be 0 for all slots affiliated with an OR
that is not suitable for the specialty. Furthermore, (5.16) makes sure that patients can not be planned
for surgery in ORs that are not suitable for their corresponding surgical specialty.

γsrd, λsrd ∈ {0, 1} s ∈ S, r ∈ R, d ∈ D (5.17)

δsrdc ∈ {0, 1} s ∈ S, r ∈ R, d ∈ D, c ∈ C (5.18)

Constraints (5.17) and (5.18) make sure variables for assigning slots are binary. This is necessary to
reflect that a slot cannot be split between different specialties, and corresponds to a full day of access to
an OR.

xgrdc ∈ Z+ g ∈ G, r ∈ R, d ∈ D, c ∈ C (5.19)

agc ∈ Z+ g ∈ G, c ∈ C (5.20)

Constraints (5.19) and (5.20) ensure that the given variables are integer and non-negative. This entails
that the number of patients from a surgery group planned for surgery in a slot cannot be negative or
fractional. Likewise, the auxiliary variable, agc, must be a non-negative integer to reflect the number of
patients from each surgery group that has not been scheduled for surgery.
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Chapter 6

Solution Methods

As we reveal in Chapter 8, the MIP from Chapter 5 can find near-optimal solutions for small instances
of the MSSP when implemented in a commercial solver. However, instances with flexibility and any
considerable amount of scenarios prove challenging to find good solutions for. In this chapter, we propose
a simple extension of the MIP, as well as two different search heuristics based on a simulated annealing
(SA) framework. Section 6.1 provides an overview of the four different solutions methods, while the
remainder of Chapter 6 concerns the two SA heuristics. In Section 6.2 we detail how the SA heuristics
search through first-stage solutions. Section 6.3 describes the greedy construction heuristic (GCH) used
in the second-stage of one of the SA heuristics.

6.1 Overview of Solution Methods

From here on out, the MIP in Chapter 5 will be referred to as the Full MIP (FMIP) when it is implemented
in a commercial solver and solves both the first- and second-stage simultaneously. When the implemented
MIP is used to find the optimal second-stage solution for a fixed first-stage solution, we refer to it as the
second-stage MIP (2SMIP). Preliminary testing reveals that the primal bounds of solutions found with
FMIP can be lowered quite significantly by fixing the best first-stage solution found and evaluating it
with the 2SMIP. This is a simple matheuristic, and we will refer to this extension as FMIP-2SMIP.

Chapter 6 primarily concerns the two SA heuristics. Both heuristics share the same first-stage method,
but differ in how they evaluate first-stage solutions in the second-stage of the MSSP. The first variant
uses the 2SMIP in the second-stage (SA-2SMIP). The other variant uses a GCH to find second-stage
solutions, but evaluates the best first-stage solution found at the end of the SA with the 2SMIP (SA-
GCH-2SMIP). A top-level flowchart is presented in Figure 6.1, giving an impression of how both of the
SA heuristics search through first-stage solutions.

In Table 6.1 the different solution methods are listed with their abbreviated names. The table displays
how the solution methods solve the first- and second-stage of the MSSP. The methods range from the
entirely exact FMIP to the almost completely heuristic SA-GCH-2SMIP.

Table 6.1: Overview of solution methods proposed and whether they solve the first- and second-stage of
the MSSP using exact or heuristic solution methods.

Solution method FMIP FMIP-2SMIP SA-2SMIP SA-GCH-2SMIP

First-stage Exact Exact* Heuristic Heuristic
Second-stage Exact Exact Exact Heuristic**

*The first-stage solution is fixed before it has been proven optimal, and the first-stage is therefore not solved exactly.
**During the evaluation of candidate first-stage solutions, the second-stage is solved heuristically using GCH. The
best candidate first-stage solution found at termination of the SA algorithm is evaluated using 2SMIP (exact method).
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The FMIP is versatile in the sense that it can be used to solve the first- and second-stage simultaneously,
but this can be very time-consuming. While FMIP-2SMIP will not find any different first-stage solutions
than the FMIP, it evaluates the first-stage solutions to optimality. The SA heuristics become necessary
for instances where the FMIP and FMIP-2SMIP can no longer produce good first-stage solutions.

Figure 6.1: Top-level flowchart of the two SA heuristics’ logic.

6.2 First-Stage Simulated Annealing Heuristic

Algorithm 1 provides a pseudocode for the first-stage SA heuristic. In Section 6.2, the word ”solution”
refers to a first-stage solution to our two-stage problem. The performance of a solution (first-stage
solution) is the value of the objective function from Section 5.3 for the corresponding optimal second-
stage solution. The initial solution for the search, φ0 = {γ0, λ0}, is constructed by solving the expected
value problem as detailed in Section 6.2.1. We define the current solution as φ, the best local solution
found as φL and the best solution found globally as φG. In each iteration an operator o ∈ O is used
to define the neighborhood to draw from. The neighbourhood of solution φ defined by operator o is
denoted No(φ). Each operator in O has an equal chance of being used, and in combination, they enable
reaching all feasible first-stage solutions. The operators are detailed in Section 6.2.2. In each iteration
a candidate solution is evaluated by a function h(φ), and compared to the performance of the current
best local solution h(φL). This evaluation function is the 2SMIP for SA-2SMIP, while it is the GCH for
SA-GCH-2SMIP: A move is made if the candidate solution performs better than the current local best
solution. Moves can also be made to worse-performing solutions, depending on an acceptance criterion
determined by the temperature t and the solution’s performance. The algorithm consists of temperature
levels with a predetermined number of iterations M for each level. It starts at an initial temperature
T and decreases at the end of each level according to a temperature function d(T ). The procedure
terminates when a minimum temperature Tmin is reached.
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Algorithm 1 First stage simulated annealing improvement heuristic

1: Construct initial solution φ0; φ← φ0; φL ← φ0; φG ← φ0 (See Algorithm 2)
2: while T ≥ Tmin do
3: m = 0
4: while m < M do
5: Sample operator o from O
6: Sample solution φ from No(φ)
7: if h(φ) < h(φL) then
8: φL ← φ
9: if h(φL) < h(φG) then

10: φG ← φL

11: end if
12: else
13: ∆ = h(φ)− h(φL)
14: ξ = random number, uniformly drawn from U[0,1]
15: if ξ ≤ e−∆/T then
16: φL ← φ
17: end if
18: end if
19: m = m+ 1
20: end while
21: T = d(T )
22: end while
23: return φG

6.2.1 Construction of Initial Solution

Intuitively, the amount of OR time each specialty is assigned should roughly reflect that specialty’s
relative share of the surgical clinic’s total demand. Therefore, a reasonable initial solution in Algorithm 1
is the expected value solution (EVS). As described in Section 3.4.1, this is the solution to the EV problem
associated with the stochastic two-stage problem being solved. The EV problem is deterministic, and
therefore significantly easier to solve to optimality than its stochastic counterpart.

While the EVS is a well-suited initial solution for instances of the MSSP with no flexibility, it is not
capable of intelligently distributing flexible slots in instances where flexibility is allowed. This is because
the EVS stems from a deterministic problem where the demand is certain, and thus we are indifferent to
whether a slot is fixed or flexible. The distribution of flexible slots in the MSS is, however, not irrelevant
in the stochastic problem. We propose two actions to remedy the EVS’ indifference to flexibility. First,
we demand that the number of flexible slots is constant by treating Constraint (5.2) as an equality. This
ensures that we do not get an EVS with fewer flexible slots than the allowed maximum. Second, we
seek to let flexible slots benefit as many specialties as possible. To exemplify, we consider a flexible
slot in the EVS that is affiliated with an OR suitable for two different specialties. If one of these
specialties is assigned a fixed slot that day in an OR suitable for the same two specialties in addition to
other specialties, this slot is more valuable as a flexible slot. Pseudocode for the construction of initial
solutions is presented in Algorithm 2.
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Algorithm 2 Construction heuristic for initial first stage solution

1: Solve EV-problem with MIP-solver by treating Equation 5.2 as an equality
2: D ← set of days; R ← set of rooms
3: RF

d ← set of flexible rooms on day d; RNF
d ← set of fixed rooms on day d

4: RX
d ← set of rooms with extended opening hours on day d

5: for d ∈ D do
6: while ∃

{
i ∈ RF

d , j ∈ RNF
d : |SRj | > |SRi |,SRi ⊂ SRj

}
do

7: RF
d : Add j and remove i

8: RNF
d : Add i and remove j

9: end while
10: end for

6.2.2 Operators

In the following section, we present the three operators that are necessary in order to make changes to
the MSS. Together they make it possible to reach all feasible first-stage solutions, assuming the numbers
of flexible and extended slots are at their upper limit.

Reassigning Fixed Slots
This operator focuses on only one slot in the MSS and makes changes within that slot. It swaps the
specialty that is assigned to a given room on a given day with another specialty. The slot must be non-
extended both before and after the swap, and the day, room and new specialty are all chosen randomly.
A swap must satisfy all constraints. First, a new specialty can only be chosen among the specialties for
whom the relevant OR is suitable. Second, there must be enough surgical teams available on that day
for the new specialty.

Moving Extended Slots
This operator focuses on two slots in the MSS and performs a swap between those. An extended slot
assigned to a specialty is swapped with a non-extended slot assigned to that same specialty. That means
that the extension is moved from one slot to another. Both slots are chosen randomly, as long as they
are not on the same day, as this would create symmetric solutions.

Swapping Fixed Slots with Flexible Slots
This operator focuses on two slots in the MSS and performs a swap between those. The first slot is a
fixed slot, either extended or not, and the second slot is a flexible slot. Both slots are chosen randomly,
but no swap is made between slots on the same day, as this would create symmetric solutions. The move
must furthermore satisfy the following model restrictions. The fixed slot can only be moved to a room
where its associated specialty is allowed to operate and to a day on which there are enough surgical
teams available for that specialty.

6.3 Second-Stage Greedy Construction Heuristic

The heuristic proposed in Algorithm 1 involves evaluating first-stage solutions φ with a function h(φ).
This evaluation requires assigning values to all second-stage variables, and is an optimization problem
itself. It is preferable to obtain optimal solutions to these problems, because this gives the most accurate
comparison of first-stage candidates. However, as shown in Chapter 8, solving the resulting packing
problem to optimality for larger instances in reasonable time, is not realistic with the 2SMIP. We propose
a Greedy Construction Heuristic (GCH) to evaluate first-stage solutions. This heuristic exploits the
fact that the packing problem can be decomposed into one independent subproblem for each scenario.
The only dependency between the subproblems is the first-stage solution, but this is fixed beforehand.
Consequently, the values of second-stage variables in one scenario have no impact on the second-stage
variables of other scenarios.
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The GCH uses a logic similar to that of a cutting stock problem. In the works of this thesis, an alternative
formulation to the MIP presented in Chapter 5 has been developed. This formulation is inspired by the
cutting stock problem presented in Appendix B. A description of the GCH follows, but looking at the
cutting stock formulation can be of help to understand the logic of the GCH. The GCH involves generating
patterns that show how many patients from each surgery group that can be scheduled into a slot. As
opposed to assigning an integer number of individual patients to each slot, as in the mathematical model
in Chapter 5, one pattern is assigned to each slot. The logic and procedure for generating patterns are
detailed in Section 6.3.1, and a description of the GCH is provided in Section 6.3.2.

6.3.1 Generating Patterns

The patients of the surgical specialties are split into one or more surgery groups, each with their own
surgery duration. A pattern belonging to a specialty is a combination of surgeries from its surgery groups.
The surgeries are unordered and can appear up to several times. Adding together the total surgery and
cleaning time of the surgeries in a pattern yields its duration, which cannot exceed the time available
in a slot. Extending a slot is therefore likely to expand the number of possible patterns a specialty can
take on. The patterns belonging to a specialty are the collection of all possible patterns, either in a
non-extended or an extended slot. Figure 6.2 illustrates an example of the pattern generation logic while
the full sets of patterns for each instance can be viewed in Appendix F.

Patterns 1-8 are non-extended patterns while Pattern 9* is an extended pattern

Figure 6.2: Example of pattern generation with one surgical specialty and three surgery groups with
expected surgery durations of 120, 170 and 270 minutes. Slots have a total length in time of 450
minutes, with a possibility to extend opening hours with 90 extra minutes. Each procedure has an
expected cleaning time of 30 minutes that must be accounted for.
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6.3.2 Description of Routine

The GCH is intended to estimate the performance of first-stage solutions of the two-stage MSSP, and
is detailed in Algorithm 3. To understand the procedure, consider an instance of the MSSP with |C|
demand scenarios. At the point where Algorithm 3 is called, the first-stage variables of the problem
are all fixed, and what remains is assigning flexible slots to specialties and packing the schedule with
surgeries. This yields one subproblem for every scenario, meaning that we must pack |C| schedules for
different demand scenarios. Any notation used in Algorithm 3 that is not explained below, has been
introduced in Section 5.2.

Solving a scenario starts by letting the initial scenario objective, zc, be the duration of all surgeries
demanded in that scenario, including cleaning time. After this, sets of patterns for non-extended and
extended slots are copied for every specialty. We refer to these sets as Ps and Px

s , respectively. Since any
pattern that is feasible for a non-extended slot is also feasible for an extended slot, Ps ⊂ Px

s . The sets
being copied, Ps,init and Px

s,init, are generated beforehand. Since the GCH is called in every iteration of
an SA heuristic, generating Ps,init and Px

s,init each time the GCH is called would not be very efficient.
Before commencing with the packing of fixed slots, infeasible patterns are removed from Ps and Px

s .
This is necessary in order to avoid the unlikely case that one of the patterns include more patients from
a surgery group than there is demand for that group during the entire planning period in that scenario.

The algorithm proceeds to pack fixed slots. We present three different variants of the algorithm in
Section 6.3.3. All three variants assign patterns to fixed slots before considering flexible slots, but they
differ in the order in which they pack within the fixed slots and the flexible slots, respectively. What
follows is a general description of the GCH, independent of the order in which slots are packed. For
each fixed slot the best feasible pattern, p, available to the specialty assigned to the slot, is chosen.
Feasibility is checked by controlling that the capacity of care wards is not exceeded by choosing the
pattern. After choosing a pattern for the slot, the duration of the pattern is deducted from the current
scenario’s objective. We denote the duration of a pattern Dp. In addition, the occupation of wards
is updated and the sets of patterns for the relevant specialty are updated. Updating the sets involves
removing patterns that contain more patients from a surgery group than there is leftover demand for
that group at the current time of the heuristic.

After all the fixed slots are packed, each flexible slot is assigned to a specialty and then packed. For
each flexible slot, the algorithm considers what specialty is able to pack the slot with the most valuable
pattern, provided the OR is suitable for the specialty and that they have a surgical team available. When
all scenarios are packed, an overall objective function is calculated. This is the estimated performance
of the first-stage solution used to evaluate it in Algorithm 1.
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Algorithm 3 Second-stage greedy construction heuristic

1: for c ∈ C do
2: zc =

∑
g∈G Qgc(L

SD
g + TC)

3: for s ∈ S do
4: Ps ← Ps,init
5: Px

s ← Px
s,init

6: Remove infeasible patterns from Ps and Px
s

7: end for
8: for fixed slots in MSS do
9: s← specialty assigned to the fixed slot

10: if slot is not extended then
11: p← best pattern in Ps not overfilling care wards
12: else
13: p← best pattern in Px

s not overfilling care wards
14: end if
15: zc = zc −Dp

16: Update bed ward occupation
17: Remove infeasible patterns Ps and Px

s

18: end for
19: for flexible slots in MSS do
20: S ′ ← specialties with available surgical teams and able to operate in this OR
21: p← best pattern in Ps not overfilling care wards for s ∈ S ′
22: zc = zc −Dp

23: Update bed ward occupation
24: Remove infeasible patterns from Ps
25: end for
26: end for
27: z =

∑
c∈C Πczc

28: return z

6.3.3 Variants of GCH

The order in which fixed and flexible slots are traversed in Algorithm 3 is not irrelevant. We define three
variants of the GCH that are tested in Chapter 8. For each variant, we explain the way fixed slots are
addressed. Each variant packs flexible slots after all fixed slots are packed, but traverses the two groups
of slots by the same logic. Figure 6.3 illustrates the order in which each variant addresses slots. The
subfigures are meant as examples, and not a blueprint for the schedules are packed every time one of the
variants of GCH is called.
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Greedy Construction Heuristic Slotwise (GCHS) traverses fixed slots by the index of the day in ascending
order. Within each day, ORs are traversed by ascending index. Consequently, the first fixed slot being
packed with a pattern is OR 1 on day 1 of the planning period. This is, of course, provided that this
slot is not a flexible slot. See Figure 6.3a for an illustrative example.

Greedy Construction Heuristic Daywise (GCHD) traverses days by ascending index, but considers all
slots of a day simultaneously. This means that the slot that can be filled with the pattern with the
longest duration will be packed first and so on. When all fixed slots of a day are filled, GCHD continues
with the proceeding day. See Figure 6.3b for an illustrative example.

Greedy Construction Heuristic Periodwise (GCHP) considers all unpacked fixed slots in every iteration,
and fills the one that can hold the pattern with the longest duration first. In all likelihood, this involves
packing the extended slots of the planning period first. See Figure 6.3c for an illustrative example.

(a) Greedy Construction Heuristic Slotwise (GCHS)

(b) Greedy Construction Heuristic Daywise (GCHD)

(c) Greedy Construction Heuristic Periodwise (GCHP)

Figure 6.3: GCH’s traversing logic. The tables exemplify the order in which fixed slots are first addressed
on the left, and then flexible slots afterwards on the right. The numbers represent an example of the
order of addression for the three variants; in slots’ ascending order in (a), in days’ ascending order in
(b) and in no constrained order at all in (c). This way, the heuristics are most (a), less (b) and least (c)
constrained when making greedy choices in that respective order.

Intuitively, one would expect the performance of the variants above to progressively improve in the
order that they are presented. However, one would also expect them to progressively become more
computationally heavy. In Chapter 8, we compare the performance of these three packing procedures,
both in terms of the objective function and runtime.
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Chapter 7

Data and Implementation

In this section, we present how raw data has been used to generate test instances for the model formulated
in Chapter 5, as well as demonstrate how the solution methods of Chapter 6 have been implemented.
Section 7.1 concerns the raw data, the clustering algorithm to generate surgery groups and the scenario
generation procedure. The section is inspired by its corresponding section in Asplin et al. (2021), but
with substantial changes and additions. In Section 7.2 we explain how we determined what instances to
test, while Section 7.3 deals with the implementation of solutions methods.

7.1 Preparing Input Data

While the model formulated in Chapter 5 is intended to be applicable to surgical clinics in general, the
implementation in this thesis is based on the Clinic of Surgery at St. Olavs Hospital. Furthermore,
this thesis builds on Isaksen and Svag̊ard (2021), where data was gathered through interviews and the
hospital’s databases. The raw data and initial data cleaning is described in Section 7.1.1. The clustering
script used in this thesis is also developed by Isaksen and Svag̊ard, and we seek to provide a brief insight
into how it works in Section 7.1.2. In Section 7.1.3 we continue by describing how scenarios are generated
based on output from the clustering script.

7.1.1 Patients and Surgeries in 2019

The raw patient data stems from 2019 and is derived from two databases. The first provides information
on all patients who were treated at the Clinic of Surgery in 2019, and the second provides information
on all individual surgeries that were performed at the Clinic of Surgery during the year. For each
registered surgery, we combine the two databases in order to extract the specialty by which the surgery
was performed, the real surgery duration and the LOS of the patient in the MC wards post-surgery.
Unfortunately, we have not been given access to data on the LOS at the IC wards. Consequently, these
numbers are based on expert input from surgical staff at St. Olav. It is assumed that a LOS above 20
nights is unlikely. LOSs above 20 nights are therefore replaced with the median LOS of all surgical care
patients, which is two days (Isaksen and Svag̊ard, 2021).
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7.1.2 Clustering Surgical Procedures

The surgery groups and affiliated parameters used in this thesis are derived by clustering NSCP-codes
from surgeries performed at the Clinic of Surgery at St. Olav in 2019. To understand how the clustering
works, it is necessary to understand how individual surgeries are aggregated into surgery groups. Every
surgery performed by the clinic is registered with a set of NSCP-codes that define the procedure. All
unique sets of NSCP-codes from the 2019 data together form the components of the surgery groups in this
thesis. The relationship between individual surgeries, sets of NSCP-codes, surgery groups and specialties
is illustrated in Figure 7.1. Each unique set of NSCP-codes is exclusive to one surgical specialty, so a
clustering procedure is done for every specialty.

Figure 7.1: Relationship between individual surgeries, sets of NSCP-codes, surgery groups and specialties.

The idea of clustering sets of NSCP-codes is to identify groups of procedures that result in patients
with similar resource usage. The most relevant resources in our problem are OR time and beds in
postoperative wards. Consequently, the consumption of these resources for each set of NSCP-codes are
the features that are used when clustering. The output from the clustering is a set of surgery groups
for every surgical specialty, each with an average throughput for a period of two weeks during regular
activity. This average throughput is derived by scaling the yearly throughput of the surgery group,
which corresponds to scaling the total number of surgeries from 2019 that make up the surgery group. In
addition to average throughput, the script outputs surgery time and probabilities of staying in different
wards after surgery for every surgery group.

The script is based on the K-means clustering algorithm. This algorithm is initiated by randomly
defining k cluster centers, called centroids, in the hyperspace spanned by the features that define the
cluster objects. The first step in an iteration is then to assign each object, or set of NSCP-codes in our
case, to its closest centroid in terms of euclidian distance. Step two involves recomputing the coordinates
of the centroids to place them in the center of the objects that were assigned to them in the previous step.
This iterative process is continued until the centroids stabilize. The features that span the hyperspace
in the K-means clustering algorithm must be scalar and should be normalized. If the features are not
normalized, the algorithm will put more emphasis on features where the objects vary more in absolute
terms. As a result, the features used in this script have all been normalized by the method called
Max-Min normalization.
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7.1.3 Generating Scenarios

The generation of scenarios is performed in Python, and the following procedure outputs a scenario tree.
See Table 7.1 for a description of the input parameters. For every scenario c ∈ {1, ..., |C|}, a vector of
length |G| is populated with random samples from a uniform distribution over [0,1]. The demand in
scenario c for surgery group g is then determined by evaluating the inverse of a Poisson distribution
function with parameter Q̄g for the corresponding element in the random vector. An important detail
about the implementation is that the demand for each surgery group in a scenario is drawn independently
of others. This means that we assume no correlation between the demands of each surgery group. Also,
since all scenarios are generated by drawing from the same uniform distribution, they have the same
probability of occurring. Considering the probabilities in a scenario tree must sum to 1, the probability
of each scenario in a tree of |C| scenarios must then be 1

|C| . In order to reproduce results, a seed is set at
the beginning of the procedure. The standard pseudo-random number generator in Python is Mersenne
Twister.

Table 7.1: Description of the input parameters to the scenario generation.

Parameter Description

|C| Number of scenarios
|G| Number of surgery groups
Q̄g Mean demand for surgery group k
S Seed for random number generation

The assumption of the demand for different surgery groups following Poisson distributions is based on
moment matching, as described in Section 3.4.2. However, the only moment of the demand distributions
we have been able to infer from the 2019 data is the mean planning period demand. The quality of
the data prevented us from estimating other moments, such as variance, which in turn prevented more
sophisticated moment matching. Nevertheless, an underlying assumption of the Poisson distribution is
that the time between arrivals is exponentially distributed. This is a common assumption when modeling
queuing systems, and surgical clinics do in fact deal with patient queues. As such, we judged Poisson
distributions to be the best choice considering the quality of the data. In Section 8.6, we discuss this
topic further.
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7.2 Generating Test Instances

In Chapter 8 we analyze a multitude of instances of the problem. These are similar in many aspects, but
differ in others. In the following two subsections, we explain how we determine the number of surgery
groups, bed ward capacities, and how we tune the demand of the different sets of instances. Input data
for test instances is provided in Appendix F.

7.2.1 Determining the Number of Surgery Groups

In Section 2.3.1 we defined the five surgical specialties GN, GO, UR, VS and EN to be within the scope
of this thesis. Isaksen and Svag̊ard (2021) experimented with different numbers of surgery groups for
these specialties, and concluded that increasing the number of surgery groups was beneficial up to a
point. More surgery groups allowed for more ways of packing slots, which could lead to better utilization
of OR time and downstream bed ward capacities. However, increasing the number of surgery groups
also means that each group consists of fewer patients. From this, they determined instances with the
number of surgery groups ranging from 5 to 25, not necessarily equally distributed between the different
specialties.

In this thesis we work with three sets of instances with |G|= {5, 9, 25} surgery groups. The first of these
has only one surgery group for each surgical specialty, making the number of ways a slot can be filled
quite few. On the other side of the spectrum, the set of instances with 25 surgery groups yields a lot more
ways to fill slots with surgeries from different surgery groups. The parameters affiliated with each set of
instances are tabulated in Appendix F. The only parameters from the mathematical model in Section 5.2
that are not listed, are those for demand in each scenario and flexibility. What is listed, however, is the
expected demand during a planning period for each surgery group. In Chapter 8 we generate demand
scenarios based on these expected values, and test instances for a wide range of the flexibility parameter.

7.2.2 Tuning Demand and Managing Bed Ward Capacities

The three sets of instances all have an expected demand for each surgery group during a planning period.
Even though the clustering algorithm described in Section 7.1.2 uses the same input data regardless of
the number of surgery groups, the total demand in terms of minutes can vary by quite a lot. The total
demand in terms of minutes is the sum of demand for each surgery group multiplied by the surgery
group’s surgery duration. For example, the instances with 25 surgery groups have 30% fewer minutes of
total expected demand each month compared to instances with 9 surgery groups. This may be a result of
how uncertainty in surgery duration is accounted for in this thesis. If letting the surgery duration of each
surgery group be the average surgery duration of the surgeries in the cluster, we would underestimate
the surgery duration for 50% of the surgeries. To plan for some slack, we have set the surgery duration
of surgery groups to be the 65th percentile of the actual surgery durations in the cluster. This could
explain why the total number of minutes of expected demand decreases as the number of surgery groups
increases. While the instances with 9 surgery groups allow interesting analyses in Chapter 8, the demands
for the two other sets of instances have to be tuned.

The expected demand per surgery group has been tuned so that the optimal solution to the EV problem
for each instance just barely manages to operate on all patients. Since the objective function in our
model measures the amount of unmet demand, it is hard to compare two solutions that both manage to
operate on all patients. Having an expected demand that just barely allows for operating all patients
in the EV problem, makes it so that instances with scenarios generally result in an objective function
greater than zero.

Making changes to the parameters generated by the clustering algorithm has at least two other impli-
cations. First, we potentially move further away from the reality at the Clinic of Surgery at St. Olavs
Hospital. Second, results like the objective function from instances with different numbers of surgery
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groups become less interesting to compare. Nevertheless, we find the instances with tuned demand to
be more relevant for the purposes of this thesis, namely investigating the value of flexibility in surgical
scheduling and developing solution methods for two-stage stochastic problems.

In addition to tuning demand, our implementation contains three assumptions regarding downstream
bed wards. The first is that we have chosen to aggregate different bed wards into two distinct wards,
namely an MC ward and an IC ward. In Chapter 2 we presented five MC wards that each belong to a
surgical specialty at St. Olav, as well as two IC wards that are shared resources. Preliminary testing
using these original wards proved that some of these wards form bottlenecks long before others. In talks
with employees at the Clinic of Surgery at St. Olavs Hospital, it was revealed that in reality patients
belonging to one surgical specialty can be admitted to an MC ward belonging to another specialty if
needed. Therefore we have combined the five MC wards to one, and the two IC wards to one.

The second assumption concerns the parameter Ywd introduced in Section 5.2. Remember, Ywd is the
expected number of occupied beds in ward w on the night following day d in the current planning period,
by patients operated on in a prior planning period. Obviously, the actual value of Ywd will depend on
how many and what type of patients were operated on in the prior planning periods. Nevertheless,
we model bed occupancy using expected values, and as such, it is only fitting that expected values are
used for Ywd too. To determine values for Ywd we have therefore assumed that the number and types
of patients operated on in the previous planning period corresponds to a scenario where the demand for
each surgery group is equal to its expected demand. We assume that surgeries of patients from each
surgery group have been distributed evenly across all weekdays in the prior planning period. From this,
we calculate the values of Ywd.

The third assumption is regarding the capacities of MC wards relative to IC wards. Remember from
Section 5.2, Bwd is the number of available beds at ward w on the night following day d. Preliminary
testing in Chapter 8 reveals that there is considerable slack in bed ward capacity constraints for the
parameter values implemented for Bwd. Therefore, we perform several analyses in Chapter 8 where
we reduce the capacity of bed wards. The reduction is controlled through a scaling factor β which is
multiplied with Bwd for w ∈ W and d ∈ D. We investigate instances for β ∈ {0.4, 0.5, 0.6, 1.0}, where
β = 1.0 means original bed ward capacity and β = 0.4 corresponds to a 60% reduction in bed ward
capacities. The underlying assumption is therefore that the capacity of MC wards relative to IC wards
stays the same when they are both reduced from the original capacities provided by St. Olav.

7.3 Implementing Solution Methods

The MIP from Chapter 5 has been implemented in Python and solved using Gurobi Optimizer (version
9.5.1). The computer used has an Intel® CoreTM i7-10700 CPU @ 2.90GHz, 16.0 GB of RAM and
runs on a 64-bit Windows 10 Education operating system. Regardless of what solution method is used,
input is read from an Excel file. There exists one such file for each set of surgery groups, and scenarios
are generated in Python based on parameters from Excel. Replicability in the scenarios is ensured by
setting a seed of choice at the beginning of the generation procedure. Tweaking of other parameters,
like flexibility and capacities in wards, is done in the Python code. In this way, several model runs for
ranges of parameters can be performed in loops, without intervention.

The implementation of the FMIP is straightforward in Gurobi. The time limit is set before the FMIP
is run, and if an optimal solution is found earlier, then the solver will terminate. The FMIP-2SMIP
is similar, and will simply fix the first-stage solution found by the FMIP at termination, and find the
corresponding optimal second-stage solution. The implementation of the SA heuristics requires some
more explaining, and we dedicate the remainder of Section 7.3 to describing this.
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7.3.1 Simulated Annealing with 2SMIP in the Second-Stage

As described in Section 6.2.1, the SA heuristics are initiated by solving the EV problem with the FMIP.
The values of the first-stage variables are then stored in a Python dictionary. From this point, the
implementations of the SA heuristics differ, depending on whether the evaluation of the candidate solution
is performed by the 2SMIP or by the GCH. The implementation of the SA-GCH-2SMIP is described in
Section 7.3.2. In the next few paragraphs, we focus on the SA-2SMIP.

Before starting the search, the first-stage solution obtained from the EVS has to be evaluated when
applied to the actual scenarios of the problem instance. Using the recorded values from the EVS, first-
stage variables in the Gurobi model object are fixed. In practice, this involves setting both the lower
and upper bound of the variables equal to the recorded values. The 2SMIP is then solved to optimality,
providing an objective value that is used when comparing to neighboring first-stage solutions in the
procedure that follows.

Using a MIP solver to consecutively solve several instances of the same problem can be very time-
consuming if the solver has to start from scratch in every iteration. Before the solver can start searching
the solution space, a Gurobi model has to be created. Creating the model and finding an optimal solution
can take minutes, and not seconds, for some of the instances tackled in this thesis. Spending minutes
evaluating every candidate solution would make the SA-2SMIP heuristic very slow. Fortunately, Gurobi
has a couple of features that can help mitigate this. Firstly, a Gurobi model can be stored temporarily
in a model object. This object has attributes like variables and constraints that can be altered during
runtime, making it possible to change the bounds of two variables for example. In this way, a new model
object does not need to be created in every iteration.

Even after the model is built though, finding an optimal second-stage solution from scratch can be time-
consuming. However, evaluating a neighboring first-stage solution essentially means changing a couple of
bounds and solving a very similar problem. The solution to this problem resembles that of the previous
one in most cases, and we exploit this by using a second feature of Gurobi. In a file format called .mst,
the values of variables can be stored and quickly loaded into a model object. This makes reoptimization
from a slightly different first-stage solution a lot faster, since the search is initiated close to the optimal
solution. If our heuristic search was an engine, using .mst files would equate to keeping the engine warm.
To give an understanding of the efficiency gained by reusing Gurobi model objects and storing solutions
in .mst files, we consider the solution time for 2SMIP for an instance with |G|= 9 surgery groups and
N = 250 scenarios. If the model has to be created and solved without reoptimization from a similar
solution, the build takes 2163 seconds, while finding the optimal second-stage solution takes 40 seconds.
If we have stored a model object and an .mst file from the previous iteration, however, the model does
not need to be built and reoptimazation takes 10 seconds. Figure 7.2 illustrates how a Gurobi model
object is used to evaluate neighboring first-stage solutions during the SA-2SMIP.

7.3.2 Simulated Annealing with GCH in the Second-Stage

The GCH is implemented with a focus on computational efficiency. When running the SA-GCH-2SMIP,
the GCH uses a quite different format to store solutions compared to the FMIP and 2SMIP. The mathe-
matical formulation in Section 5.3 uses the variables γsrd, λsrd and δsrdc to couple specialties with fixed,
extended and flexible slots. The GCH on the other hand comprises this information in a few matrices.

To describe a first-stage solution, two matrices with a row for each OR and a column for each day
in the planning period are used. The first matrix contains an index in each element, representing the
specialty that is assigned to that slot as a fixed slot. Flexible slots share the same index, since they are
not assigned yet in a first-stage solution. The second matrix has binary elements, signifying whether
slots are extended or not. A second-stage solution is stored in |C| matrices, one for each scenario, of the
same dimensions as above. Each element in these matrices contains the index of the pattern of surgeries
assigned to the slot in that scenario. A flowchart illustrating the implementation of the SA-GCH-2SMIP
is presented in Figure 7.3.
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Figure 7.2: Flowchart of implemented SA-2SMIP showing how a Gurobi model object is continually used
to evaluate candidate first-stage solutions (FSS), and how variable values are stored in .mst files after
moves.

Figure 7.3: Flowchart of implemented SA-GCH-2SMIP showing how GCH is used to evaluate candidate
first-stage solutions (FSS). First-stage solutions are stored in matrices that are altered during runtime.
The best first-stage solution found at the end of the search heuristic is evaluated by using the MIP.
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Chapter 8

Computational Study

This section contains analyses and discussion around results obtained through a computational study
of the Master Surgical Scheduling Problem (MSSP) presented in Chapter 4. Technical aspects related
to the optimization problem are covered in the first four sections. This includes investigating problem
size and drivers of complexity, as well as finding good scenario trees and tuning parameters for the SA
first-stage heuristic. The technical analysis culminates in Section 8.4 by comparing the performance of
the implemented solution methods. In Section 8.5, we apply the solution methods in order to assess
the value of flexibility in the MSSP. Lastly, in Section 8.6, we discuss the limitations of this study and
address some interesting topics for future research.

8.1 Problem Size and Complexity

In this subsection, we provide statistics showing the size and complexity of a range of problem instances.
We lean on these results when choosing problem instances to investigate in the continuation of this
computational study, as well as motivate the need for the heuristic solution methods introduced in
Chapter 6. All tests are from runs with the FMIP in Chapter 5 solved by Gurobi Optimizer. We define
problem complexity as the time it takes to obtain optimal solutions. For instances where obtaining
optimal solutions is not possible in one hour, we express complexity as the percentage optimality gap.
In this thesis, we follow the convention that an optimality gap for minimization problems is (primal −
dual)/primal. The size of instances is expressed as the number of rows, columns, binary variables and
nonzero elements after the presolver in Gurobi has been run.

Table 8.1 presents results for instances with a range of number of surgery groups and scenarios. As is
evident by the solution time in the rightmost column, the instances with 5 surgery groups are quite easily
solved to optimality in ten minutes or less. One could, however, argue that these instances are the least
interesting to investigate out of the nine tabulated. With only one surgery group per surgical specialty,
these instances generalize reality quite extensively. In this regard, the instances with 9 and 25 surgery
groups probably capture the dynamics of planning at a surgery clinic to a larger extent.

In mathematical modeling, there is generally a trade-off between modeling reality accurately and formu-
lating a model that is easy to solve. The optimality gaps [%] in Table 8.1 reveal that the instances with
9 surgery groups require a long time to obtain reasonable optimality gaps, and even more so for the ones
with 25 surgery groups. Furthermore, these instances are likely to require high numbers of scenarios
to achieve stability, as discussed in Section 8.2. With this in mind, it is natural to consider heuristic
solution methods.
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Table 8.1: Problem size and complexity at different instances of groups G and scenarios C at flexibility
F = 10% and normal bed ward capacity β = 1.0.

|G| F |C| β Prim Dual Gap Presolver Time
[min] [min] Row Col Bin Nonzero [s]

5 10% 10 1.0 667 667 0,0% 6310 5439 2810 53197 124
5 10% 50 1.0 1087 1087 0,0% 31205 26398 13253 265354 161
5 10% 100 1.0 1002 1002 0,0% 62330 52607 26338 530621 603

9 10% 10 1.0 310 236 23,7% 6404 7868 5024 84826 *3600
9 10% 50 1.0 792 565 28,7% 31480 38464 23918 423978 *3600
9 10% 100 1.0 2126 606 71,5% 62883 76627 47637 852415 *3600

25 10% 10 1.0 1580 738 53,3% 6571 17876 7222 197845 *3600
25 10% 50 1.0 3494 225 93,6% 32340 88685 35470 990299 *3600
25 10% 100 1.0 2190 325 85,2% 64572 176817 70159 1973904 *3600

All scenario trees have been generated by the same seed m = 1.
Row, Col, Bin and Nonzero refer to the constraints, variables, binary variables and non-zero elements in
the model after the presolver have been run.
* means that the maximum runtime is reached.

The size and complexity of a problem are typically positively correlated, but not without exceptions.
We see that the FMIP yields a smaller optimality gap for the largest instance than for the second-
largest instance in Table 8.1, but the results generally display larger optimality gaps for larger instances.
However, the problem complexity can also fluctuate depending on parameter values. Figure 8.1 shows
the optimality gaps after one hour for different levels of flexibility in (a) and different levels of bed ward
capacity in (b). Based on (a), the problem complexity seems to increase with more flexibility. This is
likely because the number of combinations of second-stage values increases. It could be that the growing
solution space that comes with increasing flexibility takes more time to search through.
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Figure 8.1: Optimality gaps after one hour for different levels of flexibility F and bed ward capacity β.
The problems in both (a) and (b) are run with a scenario tree of size N = 50 generated from the seeds
m ∈ {1, 2, . . . 30}. Furthermore, the problems in (a) are run with bed ward capacity factor β = 1.0, and
the problems in (b) with flexibility F = 10%.
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Looking at the trend line in (b), it seems like the problem becomes more complex as we reduce the
capacity to β = 0.6. However, the problem complexity seems to decrease when β moves from 0.6 to 0.4.
We hypothesize that this is due to the amount of slack in the model constraints at the three different
bed ward capacities. At β=1.0, there may be enough capacity at the bed wards so that surgeries can
be planned in ORs without really worrying about the wards downstream. The way in which the ORs
are utilized is then defining for the objective outcome, making the ORs the constraining resources. That
leaves a lot of slack in the constraints associated with the bed ward capacity. At β=0.4 on the other
hand, the bed ward capacity is the limiting resource. In these instances, it might not matter so much
how the ORs are utilized, since the bed wards are filled up long before the ORs anyway. In turn, this
could be the reason why these instances appear to be less complex than at higher values of β.

At β=0.6, we believe that there is little leeway in both how the ORs and the bed wards are utilized
most effectively. As a result, there is little slack in the constraints associated with both resources. The
variable interdependencies have a bigger impact on complexity when there is little slack in the constraints
connecting them. This is because one small change is likely to demand many more changes, in order
to keep satisfying all constraints. The combination of variable interdependencies and little slack in the
constraints connecting them then increase the problem complexity.

8.2 Stability

In this section, we determine the appropriate size of scenario trees for instances with |G| = {5, 9, 25}
surgery groups. The goal is to find the size needed in order for a first-stage solution’s performance to
not depend on how the tree is generated. For the scenario generation procedure implemented in this
thesis, this means that the performance of a first-stage solution when tested on a scenario tree should
not depend on what seed and size were used when generating that scenario tree.

With our notation, the out-of-sample stability criteria proposed by Kaut and Wallace (2003) reads:

min
ϕ∈Φ

f
(
ϕ;φm∗

N , ξ̃
)
≈min

ϕ∈Φ
f
(
ϕ;φk∗

N , ξ̃
)

m, k ∈ 1, 2, . . .M (8.1)

φm∗
N :=

{
{γ,λ} : argmin

ϕ∈Φ
f̂(ϕ; ξ̆mN )

}
(8.2)

Where ϕ is the full set of decision variables {γ,λ , δ,x} from the feasible set Φ defined in Chapter 5.
φm∗

N is the set of optimal first-stage decisions {γ∗,λ∗} for a scenario tree of size N generated with seed

m. We denote this scenario tree ξ̆mN , while ξ̃ denotes the true stochastic process. Lastly, f̂ denotes the

objective function of the minimization problem with f̂(ϕ)→ f(ϕ) when ξ̆ → ξ̃.

As our scenario trees are sampled using Monte Carlo simulation, we know the true stochastic process
and wish to find at which size N , ξ̆N ≈ ξ̃. Note that ξ̆N → ξ̃ when N → ∞. In other words, how
large our scenario trees must be in order to properly represent the underlying probability distribution for
the surgery groups’ demand. At this size, the scenario tree ξ̆N serves as a proxy for the true stochastic
process.

A drawback with the process described above is that finding N means finding optimal first-stage solutions
to potentially very large instances of the MSSP. As revealed in Section 8.1, this is not feasible for our
FMIP. Therefore, we take an alternative approach to finding N . A mathematical description follows
below in a procedure inspired by SAA.
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Procedure

1. Generate M ′ first-stage solutions by solving different SAA problems with small scenario trees of
size N ′

φm′∗
N ′ :=

{
{γ,λ} : argmin

ϕ∈Φ
f̂(ϕ; ξ̆m

′
N ′)

}
m′ = {1, 2, . . . ,M ′} (8.3)

2. For each first-stage solution m′:

(a) Evaluate the performance of the first-stage solution on scenario trees of growing size up to N ,
with M trees of each size

zm
′,m

N =min
ϕ∈Φ

f̂
(
ϕ;φm′∗

N ′ , ξ̆mN

)
m ∈ {1, 2, . . . ,M}, N ∈ {1, 2, . . . , N} (8.4)

(b) For each tree size N , calculate the empirical variance between the objective function values
of the M different trees

σ̂m′2
N =

1

M − 1

M∑
m=1

(
ẑm

′,m
N − 1

M

M∑
i=1

ẑm
′,i

N

)2
N ∈ {1, 2, . . . , N} (8.5)

3. For each tree size N , find the mean empirical variance σ̄2
N

σ̄2
N =

1

M ′ − 1

M ′∑
m′=1

σ̂m′2
N N ∈ {1, 2, . . . , N} (8.6)

4. Choose appropriate tree size N∗ as the smallest N where there is no significant reduction in mean
empirical variance by growing the tree further
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Results and findings
One stability test is performed for each of |G| ∈ {5, 9, 25} with flexibility F = 0% and initial bed ward
capacities with β = 1.0. For each number of surgery groups, the tree size N is increased with increments
of 10 until there is no visible benefit in increasing it. Furthermore, since the SAA method seeks to
approximate the objective value by averaging values derived from M scenario trees of each size, variance
in the objective value can be somewhat reduced by increasing M . We choose M = 30, weakly grounded
in the assumption that 30 is the minimal sample size where it is in our view reasonable to assume that
the Central Limit Theorem holds. For the same reason, we choose M ′ = 30. Lastly, we choose trees of
size N ′ = 3 when generating the independent first-stage solutions, as these problems are easy to solve.

We follow the procedure presented above, except that instead of solving zm
′,m

N to optimality in step 2(a),
we estimate it heuristically with GCHS as presented in Section 6.3.3. This is necessary, since the tests
involve solving (M ×M ′) second-stage problems for each tree size N , which is too time-consuming to
solve to optimality with the 2SMIP. Although estimating the objective values can seem inaccurate, we
see in Section 8.3.1 that the GCHS is closely correlated with the optimal solution.

Figure 8.2 shows how the mean empirical standard deviation σ̄N and its spread is developing as N
increases. We see from the figure that N∗ ≈ {350, 250, 600} for |G| = {5, 9, 25} seems like a reasonable
choice. From these points, there seems to be little to no reduction in standard deviation by growing the
scenario trees. Our hypothesis is that at these levels, we obtain the smallest scenario trees that properly
represent the true stochastic process. Consequently, these sizes will be used when solving and analyzing
the problem for the rest of this computational study.

To give credibility to the findings about tree size, we apply one of the tests for out-of-sample stability
suggested by Kaut and Wallace (2003). In Figure 8.12 of Section 8.5.1, we see results from using the
SA-2SMIP to solve the instance of |G| = 9, flexibility F = 0%, β = 1.0 and N = 250. We refer to
the optimal objective value found for this instance as z. If we evaluate the same first-stage solution
on a significantly larger scenario tree of size N = 2000 and find the optimal second-stage solution, we
can test for out-of-sample stability. The optimal objective value of the first-stage solution fixed on the
N = 2000 scenarios is denoted z′. The relative difference between the objective values z and z′ is less
than 0.23%. This suggests that our findings are reasonable, or at least that N∗ ≈ 250 for 9 surgery
groups is a well-performing scenario tree.

The fact that instances with |G| = 5 surgery groups seem to require more scenarios than those with
|G| = 9, is somewhat surprising. Considering the number of surgery groups represents the number of
stochastic parameters the instances have, we might expect that the number of scenarios needed to achieve
stable scenario trees would increase with the number of surgery groups. We speculate that the reason
why instances with |G| = 5 surgery groups need so many scenarios is a result of the surgery duration of
the surgery groups. Remember, these instances only contain one surgery group per surgical specialty,
yielding few ways of packing ORs with surgeries. Some of the surgery groups have surgery durations that
give very low utilization of ORs, just over 50%. The reason why these instances need many scenarios
to stabilize could therefore be a result of high variance in the objective for each scenario. A scenario
with abnormally many patients from one of the surgery groups that yield low utilization of ORs will
probably give a much worse objective value. Such a variance between objectives in different scenarios
could explain why so many scenarios are needed before the scenario trees become stable.
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(b) |G| = 9
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(c) |G| = 25

Figure 8.2: Empirical standard deviation σ̄N in the objective value for M ′ = 30 randomly generated
first-stage solutions, φm′

N estimated with GCH for |G| ∈ {5, 9, 25} at M = 30 different scenario trees ξ̆mN
of each size N . These φm′

N solutions are constructed by running the FMIP with flexibility F = 0%, initial
bed ward capacity β = 1.0 at M ′ = 30 different scenario trees ξ̆m

′
3 of size N ′ = 3.
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8.3 Preliminary Testing and Parameter Tuning of the Heuristics

This section contains two parts. The first, Section 8.3.1, concerns the GCH and how well it serves as a
substitute for the 2SMIP when evaluating first-stage solutions. In Section 8.3.2, we briefly describe how
the parameter values for the SA heuristic are determined.

8.3.1 Greedy Construction Heuristics’s Performance

In Section 6.3.3, we introduced three different variants of the GCH. Each have their own way of traversing
the slots in a first-stage solution when creating a second-stage solution. As we shall see in Figure 8.3
and Figure 8.4, the variants perform differently. These two figures display results from tests on instances
with 9 surgery groups and a range of flexibility levels. Figure 8.3 represents original bed ward capacity,
while the capacity is halved in Figure 8.4, where β = 0.5. This is the only part of the computational
study where this value of β is used. It is meant to be representative of the two other values of β that are
used when reducing bed ward capacities, namely β ∈ {0.4, 0.6}.

We assess the variants of GCH across three performance measures. These are correlation with the optimal
second-stage solution, runtime and the objective value itself. Correlation with the optimal second-stage
solution is an important measure because the GCH is intended to be a time-efficient proxy for the 2SMIP
when solving the second-stage. Since candidate first-stage solutions in the SA heuristics are accepted or
rejected based on their objective value when packed in the second-stage, we would like the GCH to be as
closely correlated with the optimal second-stage solution as possible. Since this heuristic is implemented
in order to be computationally efficient, the time it takes to evaluate a first-stage solution is also a
relevant performance measure. We would like to see the GCH come as close as possible to the optimal
objective value, but this is less important than correlation and runtime.

The graphs in Figure 8.3 and Figure 8.4 are averaged values for second-stage solutions of 30 first-stage
solutions at each level of flexibility visible on the horizontal axes. The first-stage solutions are generated
by using the FMIP to find the optimal first-stage solution to different problem instances with N ′ = 3
scenarios. These first-stage solutions are then fixed on new scenario trees of size N = 10 and packed
by each variant of the GCH, as well as being packed to optimality by the 2SMIP. Using modestly sized
scenario trees with N = 10 when fixing the first-stage solutions is done in order for the 2SMIP to be
able to solve the second-stage problems in reasonable time. However, since the scenarios can be packed
independently in the second-stage, we believe the results from these tests are representative for larger
size scenario trees as well.

First we consider the performance of the GCH variants for instances with the original bed ward capacity
as presented in Figure 8.3. The correlation with the optimal objective value is above 0.9 for all variants
when the flexibility level is 25% or lower. The correlation seems to diminish as the flexibility increases.
The reduction in correlation could be due to the fact that fixed slots are always packed before flexible slots
when using GCH. This could lead to second-stage solutions where fixed slots are packed with patterns
that demand a lot of beds downstream, while the bed wards could have been utilized more efficiently
by prioritizing the packing of a flexible slot. If there exists a flexible slot that can be assigned to a
specialty that can utilize the OR better with patients demanding less capacity downstream, then this
is superior to packing all fixed slots first. Looking at the variants’ average objective value relative to
the optimal solution in (b) of Figure 8.3, gives the impression that GCHP is significantly closer to the
optimal solutions than the two other variants.
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Figure 8.3: The plots compare objective values estimated with the GCH variants versus the optimal
objective values for M = 30 random generated first stage solutions φm

10 with |G| = 9 number of groups.
These solutions are constructed by running the 2SMIP with initial bed ward capacity β = 1.0 at M ′ = 30
different scenario trees ξ̆m

′
3 of size N ′ = 3 for each flexibility level.
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Figure 8.4: The plots compare objective values estimated with the GCH variants versus primal objective
values found by the 2SMIP for M = 30 random generated first stage solutions φm

10 with |G| = 9 number
of groups. These solutions are constructed by running the 2SMIP with initial bed ward capacity β = 0.5
at M ′ = 30 different scenario trees ξ̆m

′
3 of size N ′ = 3 for each flexibility level for 300s with an average

optimality gap < 3%.
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The performances of the GCH variants look less promising in Figure 8.4. The correlation in (a) is high
for GCHS and GCHD for flexibility levels below 15%. However, none of the variants demonstrate stable,
high correlation across all levels of flexibility. While the average optimal solutions become better in (b),
the GCH variants actually perform worse as the flexibility increases beyond 15%. Without investigating
this further, we speculate that the effect has the same cause as for β = 1.0, discussed above.

The time it takes for the three different variants to finalize a first-stage solution on a scenario tree of size
N = 10 is listed in Table 8.2. GCHP takes more than 30 and 6 times more time than GCHS and GCHD,
respectively. The runtime is negligible for an instance of this size, but will grow proportionally to the
number of scenarios. This is because the scenarios are packed one by one, and thus N = 100 scenarios
take 10 times longer to pack than N = 10. Even though we know from Section 8.1 that the complexity of
the problem is affected by the capacity of bed wards, the value of β has no significant impact on the run
times of the GCH variants. This can be explained by the fact that the procedure of these three heuristic
solution methods remains more or less unchanged, regardless of how much capacity there is downstream.
For comparison, the 2SMIP packs the instances where β = 1.0 in just under a second, but needs more
than 300 seconds to reach below 3% optimally gaps for some instances where β = 0.5.

Table 8.2: Average runtime from using the three presented variants of GCH to find a second-stage
solution for a general first-stage solution φ on a scenario tree ξ̆10 of size N = 10 across all flexibility
levels F .

Bed ward capacity factor GCHS GCHD GCHP

β = 1.0 0.0142s 0.0715s 0.4271s
β = 0.5 0.0145s 0.0602s 0.4275s

In conclusion, all three variants of the GCH are best suited for solving instances where the downstream
resources of bed wards are not running on high utilization. For β = 1.0, however, the variants show
a high correlation with the optimal solution. The most advanced variant of GCH, namely GCHP, on
average comes closer to the optimal solution. However, the correlations with the optimal second-stage
solution and the runtime are the most important performance measures. As long as the correlation with
the optimal second-stage solution is high, the evaluation of candidates should be fair. The best solution
found will be evaluated with the 2SMIP at the end of SA-GCH-2SMIP, so how close the GCH can come
to the optimal second-stage objective value is not as important as the correlation. Keeping the runtime
as low as possible is also beneficial for saving time. Therefore, we proceed this computational study using
the GCHS. For simplicity, we will continue to write GCH, but keep in mind that this refers to GCHS.

8.3.2 Simulated Annealing Parameter Tuning

The first-stage SA heuristic is implemented with four parameters. In this section, we present results from
tests performed for a large number of parameter combinations. The parameters’ notation, description and
tested values are listed in Table 8.3. The goal of performing this analysis is to find good parameter values
to use when comparing the solution methods in Section 8.4, as well as for the analyses in Section 8.5.

Table 8.3: SA parameters with description and values to be investigated during the parameter tuning.

Parameter Description Values

T0 Initial temperature 10, 102, 103, 104

α Temperature decrease factor 0.3, 0.6, 0.9
Imax Iterations between decreases 25, 50
Tmin Minimum temperature T ∗ 10−1, T ∗ 10−2
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Table 8.4 shows results for some of the most promising parameter combinations tested. Results for all
combinations are in Table D.5 in Appendix D. The problem instance used for these tests has |G| =
9 surgery groups, N = 250 scenarios, flexibility F = 10% and β = 1.0. For every combination of
parameters, the SA-GCH-2SMIP is run 50 times, and statistics regarding the objective value of the best
solution and last solution are presented. It should be mentioned that the best solution found in each run
of Table 8.4 is not evaluated with the 2SMIP. This choice was made in order to save time, since we test
48 combinations of parameters 50 times each.

Table 8.4: Statistics for the most promising parameter combinations from Table 8.3 after 50 runs each
with the SA-GCH-2SMIP (not using 2SMIP to evaluate the best solution). The table is an abbreviated
version of Table D.5 in Appendix D. Notice that the table is color coded from green to red representing
low to high values in each column, and that low values are preferred in all columns. The chosen parameter
combinations are highlighted in bold.

Parameters Best Objective End Objective Time

T0 α Imax Tmin µ̂o
b σ̂o

b L5%
b U95%

b µ̂o
e σ̂o

e L5%
e U95%

e µt
b µt

r

102 0.9 25 10−1 1608 186 1289 2009 1712 178 1396 2009 24 170
102 0.9 25 10−2 1632 152 1345 1982 1695 148 1439 1982 26 325
102 0.9 50 10−1 1540 138 1304 1928 1639 128 1430 1928 46 332
102 0.9 50 10−2 1601 151 1302 2051 1691 163 1390 2051 39 644
103 0.9 25 10−1 1537 90 1381 2366 1870 221 1416 2366 160 242
103 0.9 25 10−2 1483 91 1341 2347 1628 164 1364 2347 207 411
103 0.9 50 10−1 1483 83 1321 2292 1808 215 1380 2292 308 479
103 0.9 50 10−2 1467 76 1305 1975 1630 134 1341 1975 402 814
104 0.9 25 10−1 1794 124 1543 7983 4040 1530 1616 7983 30 258
104 0.9 25 10−2 1523 94 1323 2380 1830 226 1371 2380 407 504
104 0.9 50 10−1 1765 127 1491 6072 3580 1112 1962 6072 151 513
104 0.9 50 10−2 1489 94 1307 2984 1835 281 1451 2984 824 993

µ̂o
b , µ̂

o
e: sample average of best and end objectives, σ̂o

b , σ̂
o
e : empirical standard deviation of best and end objectives,

µ̂t
b, µ̂

t
r: sample average of time to find best objective and of total runtime, L5%

b , L5%
e : lower 5%-ile of best and end

objectives, U95%
b , U95%

e : Upper 95%-ile of best and end objectives

When choosing what combination of parameters to proceed with, we look at three statistics in particular.
Perhaps most important is the expected objective value of the best solution found, µ̂o

b . The SA heuristics
are meant to find solutions that minimize the objective, and thus the parameter combination that yields
the lowest µ̂o

b is a natural choice. If we in addition have a parameter combination that has little empirical
standard deviation in the end objective, σ̂o

b , then we can feel more confident that it will consistently
provide good results. The expected runtime of the SA heuristic is the last statistic we examine when
choosing the parameters. The values in the rightmost column of Table 8.4 reveal µ̂t

r, which is how long
the SA heuristic took on average for the 50 runs with each parameter combination. Note that the lowest
row in bold has the lowest µ̂o

b , but also one of the longest expected runtimes, µ̂t
r.

In the continuation of this computational study, we use one of two different parameter combinations.
Which one depends on how the candidate first-stage solutions of the SA heuristic are evaluated. If
they are evaluated heuristically, as in SA-GCH-2SMIP, the parameter values {T0, α, Imax, Tmin} =
{103, 0.9, 50, 0.01} are used. This combination yielded the lowest σ̂o

b , and with a heuristic evaluation
of first-stage solutions, the runtime is not an issue. For the SA-2SMIP, however, running the instance
in Table 8.4 for the same combination of parameters takes more than 15 hours. Using the 2SMIP to
evaluate first-stage solutions is much more time-consuming, and thus we settle for a slightly different
combination. All else the same, letting Imax = 25 instead of 50, cuts the runtime in half. Comparing σ̂o

b

for the two combinations shows that we are not sacrificing much in terms of the standard deviation of
the best solution we find either.
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8.4 Comparing Solution Methods

In this section, we compare the performance of the different solution methods implemented. This involves
a discussion around the trade-off between solution quality and solution time. We focus on the applicability
of each solution method, which means the results presented concern the larger instances of our problem.
The FMIP is used as a benchmark when evaluating the performance of the three heuristics. Section 8.4.1,
Section 8.4.2 and Section 8.4.3 concern the performance the FMIP-2SMIP, SA-2SMIP and SA-GCH-
2SMIP, respectively. In Section 8.4.4 we sum up by comparing the solution methods all-against-all.

As discussed in Section 8.1, the main drivers of complexity in our problem are problem size, flexibility
level and capacity of bed wards downstream of the ORs. The solution methods are all tested on an
instance with |G|= 9 surgery groups, N = 250 scenarios, flexibility F = 10% and original bed ward
capacity β = 1.0. This instance is chosen because we believe it demonstrates the potential of solution
methods, and how they differ in performance. For simplicity, we refer to the instance as the test instance
in the following subsections.

8.4.1 FMIP-2SMIP

The most basic of the heuristic solution methods is the FMIP-2SMIP. In Figure 8.5 we present the
evolution of primal and dual bounds from a 12 hour run on the test instance. The dashed orange
and blue lines show the best primal and dual bounds found after 12 hours by the FMIP, and serve as
benchmarks for the heuristic solution methods to come.
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Figure 8.5: FMIP-2SMIP versus FMIP development over time. The problem instance has |G| = 9 surgery
groups, N = 250 scenarios generated from seed m = 1, initial bed ward capacity β = 1.0 and flexibility
F = 10%. The FMIP has been run for 12 hours followed by the 2SMIP for approximately 200 seconds.
Notice that the vertical axis is logarithmic.

The FMIP-2SMIP is, as mentioned, an extension of the FMIP. We see 2SMIP improving the primal
bound found by the FMIP in the small segment in time after the FMIP terminates, represented by
the purple graph. Remember, the FMIP-2SMIP finds no other first-stage solutions than the FMIP,
but it evaluates the best first-stage solution found to optimality. The improvement is quite significant.
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Spending 200 seconds with the 2SMIP at the end of a 12-hour run, lowers the optimality gap from 51%
to 38%. With this in mind, there is no reason to not extend the FMIP with the 2SMIP.

Looking at the primal bound of the FMIP as a function of time, the improvement diminishes quite heavily
after approximately 5 hours. Cutting the FMIP at this point in time and using the 2SMIP would likely
yield a decent primal bound in less time. Keep in mind, however, that the vertical axis in Figure 8.5 is
logarithmic. As such, the primal bound after 5 hours of the FMIP is above 2000.

8.4.2 SA-2SMIP

The SA-2SMIP evaluates first-stage solutions by using the 2SMIP to solve the second-stage. The solid
red graph in Figure 8.6 shows the objective value of the best solution found as a function of time for a
run of the SA-2SMIP on the test instance. This value of the best solution found was referred to as h(φG)
in Algorithm 1. In Figure 8.7 we provide a more detailed view of the SA-2SMIP’s run, where we also see
the objective value of the best local solution as a function of time h(φL). In the orange and blue graphs,
we recognize the primal and dual bounds of the FMIP.

As we can tell from the primal and dual bounds in Figure 8.6, the FMIP struggles to provide even
moderately well-performing solutions in the first four hours of running. After this, the optimality gap
falls markedly, before closing at a declining rate during the last half of the runtime. Both Figure 8.6 and
Figure 8.7 show the best run of SA-2SMIP, which was run ten times. Out of these ten runs, tabulated
in Table D.1 Appendix D, the average best objective found was 1033.4 minutes, while the highest best
objective was 1078.4. We see that SA-2SMIP starts at an initial solution that outperforms the best
primal found by the FMIP after 12 hours. The development of the SA-2SMIP’s run is difficult to see
in the logarithmic scale of Figure 8.6. Nevertheless, the graph serves to show that the heuristic finds a
good solution quickly, and that it is over the course of 9.5 hours able to improve the solution further.
The duration of a run with the SA-2SMIP depends on how many moves are made and what first-stage
solutions are being evaluated. The ten runs performed for this analysis ranged from 6 to 10 hours of
runtime. Since the number of first-stage solutions evaluated during a run is fixed, these runtimes mean
that it on average takes between 20 to 32 seconds to evaluate a first-stage solution.

Looking at the blue graph in Figure 8.7, we see how the heuristic explores more at the beginning where
the temperature is higher, and varies less and less as the temperature decreases. An interesting observa-
tion is that most of the ten runs with SA-2SMIP did not converge to the best solution found when the
algorithm neared the end. In fact, most of the runs found the best solution about halfway through the
runtime, and converged to a local best solution with a slightly higher objective value. The run plotted
in Figure 8.7 was in a good neighborhood of first-stage solutions in the final stages of the algorithm, and
we see how the intensified local search at low temperatures pays off. All runs provide good solutions,
but finding the very best solutions requires being in a good neighborhood near the end.
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Figure 8.6: SA-2SMIP versus FMIP development over time. The problem instance has |G| = 9 surgery
groups, N = 250 scenarios generated from seed m = 1, initial bed ward capacity β = 1.0 and flexibility
F = 10%. The FMIP has been run for 12 hours. The SA-2SMIP has been run 10 times, and the best
run is plotted. The other runs are tabulated in Appendix F in Table D.1. Notice that the vertical axis
is logarithmic.
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Figure 8.7: One of the lowest objective SA-2SMIP runs out of the 10 runs tabulated in Appendix D,
Table D.1 for |G| = 9 groups, a scenario tree ξ̆1250 of size N = 250 generated from seed m = 1, initial bed
ward capacity β = 1.0 and flexibility F = 10%.
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8.4.3 SA-GCH-2SMIP

SA-GCH-2SMIP evaluates candidate first-stage solutions heuristically. However, the 2SMIP is used to
evaluate the best solution found during runtime. As such, both SA-GCH-2SMIP and SA-2SMIP need
to be able to solve the second-stage more or less to optimality for some first-stage solution. Naturally,
the time it takes to solve the second-stage with the 2SMIP is a lot more important for SA-2SMIP, since
this is done in every iteration. In any case, the dependency on the 2SMIP makes SA-GCH-2SMIP most
interesting for problem instances where it can serve as a faster alternative to the SA-2SMIP. In Figure 8.8,
we see SA-GCH-2SMIP’s performance on the test instance.
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Figure 8.8: SA-GCH-2SMIP versus FMIP development over time. The problem instance has |G| = 9
surgery groups, N = 250 scenarios generated from seed m = 1, initial bed ward capacity β = 1.0 and
flexibility F = 10%. The FMIP has been run for 12 hours. The SA-GCH-2SMIP has been run 10 times,
and the best run is plotted. Results for all the runs are tabulated in Appendix D in Table D.2. Notice
that the vertical axis is logarithmic.

As in Section 8.4.2, SA-GCH-2SMIP has been run ten times. In these ten runs, the heuristic on average
yielded a best objective value of 1152.0, while the highest best objective value was 1176.8. On the
test instance, the SA-GCH-2SMIP takes less than 20 minutes on a run. This makes it possible to run
the heuristic several times and pick the best solution, and still spend less time than some of the other
solution methods. We see in Figure 8.9 how the SA-GCH-2SMIP explores and exploits during the search.
Remember that this heuristic evaluates twice as many candidate first-stage solutions at each temperature
level compared to the SA-2SMIP. The linear downward sloping sections at the end of the graphs are where
the 2SMIP evaluates the best first-stage solution.
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Figure 8.9: The lowest objective SA-GCH-2SMIP run out of the ten tabulated runs in Appendix D,
Table D.2. The problem instance has |G| = 9 surgery groups, N = 250 scenarios generated from seed
m = 1, initial bed ward capacity β = 1.0 and flexibility F = 10%.

8.4.4 Comparing Solution Methods Summary

To summarize the performance of the four solution methods, we present all results from the test instance
in Figure 8.10. Looking at the dashed lines from top to bottom, we see that the primal of the FMIP
is the highest objective value of the solution methods. The FMIP-2SMIP provides a noticeably better
objective value, but this is the same first-stage solution as the FMIP finds.

Both of the SA heuristics find better solutions than the FMIP/FMIP-2SMIP. We see that the SA-GCH-
2SMIP can serve as a faster alternative to the SA-2SMIP, albeit with slightly worse performing solutions.
Which one is preferable depends on how important solution quality is relative to runtime. If the goal is
to use the resulting first-stage solution at a real-life surgical clinic, then the runtime of 6-10 hours for the
SA-2SMIP is probably not a problem. After all, an MSS is typically used for 6-12 months before being
revised. However, if the goal is to perform analyses on several instances, then the faster SA-GCH-2SMIP
can give good solutions in far less time.

1 2 3 4 5 6 7 8 9 10 11 12

500

1,000

1,500

2,000

time [hours]

O
V

[m
in
u
te
s]

Primal FMIP

FMIP-2SMIP

SA-GCH-2SMIP

SA-2SMIP

Dual FMIP

Figure 8.10: Comparison of solution methods’ development over time. The problem instance has |G| = 9
surgery groups, N = 250 scenarios generated from seed m = 1, initial bed ward capacity β = 1.0 and
flexibility F = 10%. The results shown are the same runs as presented in Figure 8.5-8.9.
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8.4.5 Comparing Solution Methods on a Larger Instance of the Problem

To round off the comparison of solution methods, we test SA-GCH-2SMIP on an instance where SA-
2SMIP, for all intents and purposes, is too slow. In Section 8.2, we learned that for instances with |G|= 25
surgery groups, scenario trees should be of size N = 600 in order to properly reflect the underlying
demand distribution. Figure 8.11 shows a 12 hour run of the FMIP compared to SA-GCH-2SMIP. As
we can see, the FMIP terminates with an optimality gap of almost 99%. Extending the FMIP with the
2SMIP does help decrease the primal bound significantly, but the optimality gap remains high at 96%.

SA-GCH-2SMIP spends just shy of two and a half hours searching through different first-stage solutions,
while the last hour and a half of its runtime is spent evaluating the best first-stage solution with the
2SMIP. With the dual bound from the FMIP being so low, the solution found by the SA-GCH-2SMIP
still gives an optimality gap of 75%. Nevertheless, this solution is obviously far superior to that of the
FMIP-2SMIP.
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Figure 8.11: Solution metods’ development over time for a large instance of the problem. The problem
is solved for |G| = 25 groups, a scenario tree ξ̆1600 of size N = 600 generated from seed m = 1, initial bed
ward capacity β = 1.0 and flexibility F = 10%. The FMIP had a time limit of 12 hours, and the 2SMIP
in both FMIP-2SMIP and SA-GCH-2SMIP had an optimality gap cutoff on 1%.

Considering SA-GCH-2SMIP spent 1.5 hours evaluating the best first-stage solution with 2SMIP before
reaching an optimality gap below 1%, using SA-2SMIP is not an option for this instance. For the much
smaller instance tested in Section 8.4.2, SA-2SMIP spent on average 20-32 seconds evaluating a first-stage
solution to optimality, and that resulted in runs of 6-10 hours. If each iteration instead takes 1.5 hours,
SA-2SMIP is not a suitable solution method.
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8.5 Value of Flexibility

While the focus until now has been on the technical aspects of the optimization problem, we spend this
last section investigating the practical implications of flexibility in the MSSP. More concretely, we apply
the solution methods implemented in order to estimate how and to what degree flexible slots in an MSS
can increase the throughput of patients at the Clinic of Surgery at St. Olavs Hospital.

8.5.1 Value of Flexible Slots with Original Bed Ward Capacity

Figure 8.12a and 8.12b show results from runs of SA-2SMIP on instances with |G|= 9 surgery groups,
N = 250 scenarios, original bed ward capacities β = 1.0 and a range of flexibility levels F . For every
flexibility level F ∈ {0%, 5%, . . . , 30%}, the SA-2SMIP is run ten times, and the best objective found in
each run is plotted as a cross in Figure 8.12a.
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Figure 8.12: Value of flexibility illustrated in terms of objective value in (a) and VSS in (b). The red
graph in (a) is interpolated thorugh the best solutions obtained by SA-2SMIP for instances with |G|= 9
surgery groups, a scenario tree ξ̆1250 of size N = 250 generated from seed m = 1, original bed ward
capacity β = 1.0 and different flexibility levels F . The lowest objective value at each level F is used
for calculating the VSS in (b). The dual bounds in (a) are the best obtained dual for each flexibility
level found by the FMIP or CSMIP. Values are tabulated in Table D.3-D.4 and Table C.3-C.4 in the
appendices.

A red line is interpolated between the best solutions at every flexibility level in Figure 8.12a, displaying
how the objective value changes as a function of flexibility. The trend line suggests that the objective
value improves when increasing the level of flexibility up until 10%. Beyond this, there is no clear benefit
of added flexibility. The orange dashed line displays the best dual bounds found by running the FMIP
from Chapter 5 and the alternative cutting stock MIP (CSMIP) from Appendix B for 12 hours. While
the FMIP from Chapter 5 generally finds better primal solutions, the CSMIP has proven to often find
better dual bounds in the same amount of time. Runs of the two model formulations are compared
in Appendix C. The dual bounds give credibility to the general trend of the best solutions from the
SA-2SMIP. We can tell that for F = 0%, the SA-2SMIP has found very near-optimal solutions. This, in
combination with the fact that the dual bounds are lower for higher levels of flexibility, means that the
value of flexibility can potentially be even higher than what the red line in (b) shows.
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The initial benefit of allowing for some flexible slots is quite intuitive, because it allows for supply to
adapt to changes in demand by assigning flexible slots to the specialties that need it the most in each
scenario. Understanding why the incremental benefit diminishes from a flexibility level of 10% and
beyond, is not as intuitive. One possible explanation could be that there is simply not enough variance
in the demand for individual surgery groups. Perhaps 10% flexibility is enough to shift supply so that we
rarely observe a scenario where a slot is not packed with patients. The fact that the objective function
does not converge to zero as the flexibility increases, can be a bit confusing. Since we are measuring
unmet demand, it would seem as if the queues of patients grow bigger over time if we expect 1000 minutes
of unmet demand in an average planning period, even with higher levels of flexibility. This could be a
result of some scenarios where the demand for many surgery groups is higher than the average, so that
it is not possible to perform all surgeries in those scenarios. While in reality this backlog would at some
point be handled in periods with lower demand, our model does not allow for taking on backlog patients
in scenarios with low demand.

In Figure 8.12b the value of the stochastic solution (VSS) for the best solutions in Figure 8.12a is plotted.
Since our objective function measures the expected number of unoperated minutes, the VSS measures
how many minutes we expect to reduce unmet demand by over a planning period. In other words, the
VSS measures the value of using the stochastic solution as opposed to the deterministic EVS.

One reason that the VSS is so low in the case of no flexibility, could be the fact that the bed ward
capacity downstream is basically non-binding in Figure 8.12. We hypothesize that with idle capacity in
the bed wards downstream, it is not significant when each surgery is performed, so long as it is performed
during the planning period. Therefore, the objective function value is mainly dependent on how many
slots each specialty is assigned and not when these slots are placed in time. This would explain why
the stochastic solution (SS) and EVS perform the same. The EVS is the solution to the deterministic
problem where all surgery groups have demand equal to their expected demand. We would expect the
SS to assign approximately the same number of slots to each specialty as the EVS, since the scenarios
on average reflect the expected demand of each surgery group.

Despite the VSS being zero when we do not incorporate flexibility, the VSS increases as we increase
the flexibility. The shape of the graph in Figure 8.12b is closely related to the shape of the graph in
Figure 8.12a. The increase in VSS when increasing flexibility from 0% to 10% is the same as the reduction
in the best objective of Figure 8.12a when making the same jump in flexibility. It is fair to assume that
the increasing VSS is a result of the SS having the advantage of being able to use flexible slots as recourse
actions. The deterministic EVSs, on the other hand, contain only fixed slots, and therefore cannot adapt
supply to demand.

8.5.2 Comparing Value of Flexibility at Different Levels of Bed Ward Capacity

In this section, we investigate how introducing flexible slots affects the objective function value at three
different levels of bed ward capacity. These are the same levels that were presented in Section 8.1, namely
β ∈ {1.0, 0.6, 0.4}. These levels are intended to represent instances where the capacity is large, medium
and small. They result in a weekday utilization at the bed wards of ≈ 45%, ≈ 80% and ≈ 100% for the
instances tested in this section. The number of surgery groups remains |G|= 9.

The number of scenarios needs to be reduced in this part of the analysis compared to Section 8.5.1,
because of the added complexity of the reduced bed ward capacity, discussed in Section 8.1. Instances
with little capacity in bed wards have proven difficult for the SA heuristics to handle. To get comparable
results across different values of β, we will proceed to use the SAA method presented in Section 3.4.3.

As time is a limited resource for this analysis, we choose to test more instances rather than increasing
the run time and maintaining large scenario trees. She SAA problems zmN in (8.5) are solved for N = 10
and m ∈ {1, 2, . . . 30} at different levels of flexibility F and bed ward capacity β. Even with the number
of scenarios reduced to N = 10, however, we experience SAA problems where we are unable to get tight
optimality gaps. Therefore, we use the extended FMIP-2SMIP in order to obtain better primal bounds.

68



CHAPTER 8. COMPUTATIONAL STUDY

First, we run the FMIP for 1200 seconds, before fixing the first-stage solution and running the 2SMIP
for 120 seconds. The method is as follows for each SAA problem:

1. Run the FMIP model for 1200 seconds

zmN =min
ϕ∈Φ

f̂(ϕ; ξ̆mN ) (8.1)

f̂(ϕ; ξ̆mN ) :=
1

N

N∑
n=1

F (ϕ; ξ̆mn,N ) (8.2)

2. Fix the obtained first stage solution and run it again for 120 seconds

zm,fix
N =min

ϕ∈Φ
f̂(ϕ;φm∗

N , ξ̆mN ) (8.3)

φm∗
N :=

{
{γ,λ} : argmin

ϕ∈Φ
f̂(ϕ; ξ̆mN )

}
(8.4)

3. Calculate new primal bound

zmN = min(zm,fix
N , zmN ) (8.5)

Here f̂ is the overall objective function. F (ϕ; ξ̆mn,N ) is the objective function value in the n-th scenario,

ξ̆mn,N , of the scenario tree, ξ̆mN , of size N and sample m. ϕ is the set of decision variables, {γ,λ, δ,x}, φ
are the first stage decision variables {γ,λ} and Φ is the feasible set of ϕ, defined in the mathematical
model in Chapter 5. In our formulation, a scenario ξ̆mn,N is a vector of {Q1,n, . . . Q|G|,n}, where Qg,n is
the number of patients from group g in line for surgery in scenario n.

Figure 8.13 displays results for the three different bed ward capacities. Looking at (a), we see the same
trend and similar objective function values as in Figure 8.12 of Section 8.5.1. This gives credibility to
the results of the SAA method used in Figure 8.13.

As β decreases to 0.6, we see the trend line become less steep, and at 0.4, there is no clear benefit to
incorporating flexibility at all. Comparing the highest and lowest value of β exemplifies the impact of
capacity constraints downstream of the ORs. At β = 1.0 we are able to reap the full benefit of flexibility,
since there is seldom a problem with bed wards being full. When β = 0.4, however, the bed wards act as
bottlenecks downstream of the ORs. As such, it does not matter whether or not a slot is flexible or fixed.
Even with a completely fixed schedule at F = 0 %, the model seems to be able to make the most out
of the downstream bed ward capacity. It is obvious that the utilization of ORs is far lower for β = 0.4
than for higher values, since the objective function value is far higher. This means that fewer surgeries
are being planned than for the other two values of β. Taking this into consideration, β = 0.4 probably
represents an unrealistically small capacity of bed wards relative to the OR capacity in our instances.

To verify the analysis above, we illustrate the occupation of bed wards for each value of β in Figure 8.14.
Each subfigure shows the average number of occupied beds at the MC ward and IC ward relative to their
capacity. The occupation is the average of solutions across all flexibility levels F and scenario trees m
solved in Figure 8.13. As is evident in Figure 8.14a, there is an abundance of capacity in the MC ward,
while the occupation is close to the capacity in the IC ward on Fridays.

As β decreases in Figure 8.14b and c, the occupation line progressively comes closer to the capacity at both
wards. An interesting observation is that the number of unoccupied beds is greatest during weekends.
The capacity of both wards drops to a lower level on Fridays, and stays at this level throughout each
weekend. This is arguably not the best way to distribute the capacity, however. Since surgeries are
only performed on weekdays, there is no way to make use of the idle capacity at wards on Saturdays
and Sundays. Surgeries have to be planned such that the wards are not overfilled on Friday night, but
this will inherently result in idle capacity on the two days that follow. In terms of patient throughput,
moving some capacity from Sundays to Fridays would likely allow for higher utilization of bed wards.
We will not pursue this topic any further in this thesis.
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(b) β = 0.6
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(c) β = 0.4

Figure 8.13: The plots show the relation between percentage of flexible slots during a planning period
F and the objective value of the SAA problems zm10 from Equation 8.5. The SAA problems are solved
for M = 30 different scenario trees ξ̆m10 of size N = 10 generated from seed m ∈ {1, 2, . . . , 30} at three
different levels of bed ward capacities β = {1.0, 0.6, 0.4} for each flexibility level F .
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(c) β = 0.4

Figure 8.14: The plots show the average bed occupancy at both wards for three different bed ward
capacities β ∈ {1.0, 0.6, 0.4}. The plots are based on the results from the same SAA problems as in
Figure 8.13. The SAA problems are solved for M = 30 different scenario trees ξ̆m10 of size N = 10
generated from seed m ∈ {1, 2, . . . , 30} at three different levels of bed ward capacities β = {1.0, 0.6, 0.4}
for each flexibility level F .
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8.6 Limitations of the Study and Future Research

To finish Chapter 8, we highlight the limitations of the study, and point to some interesting topics for
future research. To give context to this discussion, we reiterate the overall purpose of this thesis, which is
to find both the value of taking uncertainty in patient demand into account and the value of incorporating
flexibility when assigning ORs in surgical scheduling.

We have reason to believe that the input data used in the implementation of our model does not properly
reflect the reality at the Clinic of Surgery at St. Olav. The data set mentioned in Section 7.1.1 was
not straightforward to process in order to fit the needs of our model, and several assumptions have been
made during implementation. The most significant one is perhaps our assumption that the demands for
different surgery groups follow Poisson distributions and are independent of each other. Even though we
have used the average throughput of patients in 2019 as our mean demand, we have also assumed that the
variance of each surgery group’s demand is equal to its mean. This last assumption is made for practical
reasons and due to a lack of data. If the demand of each surgery group follows a Poisson distribution,
we have indirectly assumed that the time between arrivals of patients in the queue is exponentially
distributed. In reality, a patient typically consults their doctor before being referred to a specialist at the
hospital, who decides if this patient should be put in line for surgery. Whether or not the time between
each patient a specialist puts in line for surgery is exponentially distributed is hard to tell from the 2019
data set. As a result, our model may be of limited use as a planning tool for the Clinic of Surgery at St.
Olav.

A topic that has been discussed a lot throughout Chapter 8, is the capacity of bed wards. As we have
seen, the complexity of our problem is highly dependent on this capacity. We choose to model the
occupation of bed wards as hard constraints in our optimization model, but others in the literature have
done so using soft constraints. Our choice to merge the different MC and IC wards into one MC ward
and one IC ward, has been an attempt to relax the bed ward capacity constraints somewhat. However,
letting these constraints be soft in the objective function could allow for interesting analyses too. This
could potentially help tackle the abrupt reduction in the capacity of bed wards that we have on weekends
in our test instances.

In this thesis, we define value through an objective function that measures the amount of unmet demand.
As we have seen in Section 8.5, we find value in flexibility in OR scheduling primarily when there
is sufficient capacity in downstream bed wards. Other definitions of value could, however, yield other
results. While flexibility may not reduce unmet demand when there is little capacity in bed wards, it could
provide other benefits. An example of such benefits is fairness in patient waiting time. Guaranteeing
a maximum waiting time before surgery could give patients more predictability and a sense of fairness.
Thus, if the objective function minimized the maximum waiting time of patients in line for surgery, this
could make flexibility valuable.

A large part of this thesis concerns solution methods for our stochastic two-stage model, and in Sec-
tion 8.4, we saw the two SA heuristics deliver solid results. The SA-2SMIP found the best solutions, but
is significantly more time-consuming than the SA-GCH-2SMIP. An interesting path for future research
could therefore be to further develop the heuristic evaluation of first-stage solutions in SA-GCH-2SMIP.
For example, extending the GCH with an improvement heuristic could give closer-to-optimal second-
stage solutions. This would probably be more time-consuming, but still less so than the 2SMIP. Another
way to improve the SA heuristics could be through breaking symmetry in first-stage solutions. The SA
heuristics currently evaluate a number of first-stage solutions that are practically identical. Breaking
symmetry in the first-stage could therefore make both of the SA heuristics more efficient, and more
likely to end up near the optimal solution.

The main challenge of our solution methods is to find good solutions when the bed ward capacity is
low. Consequently, alternative solution methods are also interesting to investigate. The structure of the
problem could make decomposition methods well suited. For instance, the scheduling could be split into
a master problem, where fixed slots are assigned, and subproblems, where flexible slots are assigned and
surgeries planned.
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Concluding Remarks

In order to meet the steady increase in hospital patient demand in Norway and many other countries, we
must better exploit the available resources. One way of doing so is through efficient surgical scheduling.
In this report, we have developed a two-stage stochastic model that outputs a modified MSS. We do this
in an attempt to reap the benefits of both a cyclic surgical schedule and the benefits of flexibility. The
modified MSS allows us to incorporate flexibility in the surgical schedule in the form of flexible slots. As
opposed to fixed slots, flexible slots are assigned to specialties in the second-stage, when patient demand
is known. By varying the input data, we were mainly interested in two things. First, we wanted to
find the value of taking uncertainty in patient demand into account. Second, we looked at the value
of incorporating flexibility in surgery scheduling. Due to the stochastic optimization problem being
computationally demanding, we have developed three heuristic solution methods. The first, FMIP-
2SMIP, is a simple matheuristic that fixes the best first-stage solution found with a mixed integer
program (FMIP) after a given time, and then optimizes the second-stage problem (2SMIP). The second,
SA-2SMIP, combines simulated annealing (SA) in the first-stage with an exact method (2SMIP) in the
second-stage. The third, SA-GCH-2SMIP, combines SA in the first-stage with a greedy construction
heuristic (GCH) in the second-stage, before optimizing the best first-stage solution found at the end
with an exact method (2SMIP). In the order presented, the heuristics become increasingly heuristic, but
also more time-efficient. This makes them appropriate for different problem instances. In creating these
heuristic solution methods, we contribute to the literature on efficient tactical surgical scheduling and
create a prototype for a planning tool at surgical clinics.

We were not able to detect any value in planning for uncertainty in patient demand without incorporating
flexibility. However, allowing for flexible slots reduces the expected unmet demand, as long as bed wards
are not bottlenecks. With our test instances, the value of flexibility stagnates at around 10% flexibility.
At this level of flexibility, we saw a reduction of 35.7% in unmet demand compared to the solution with
no flexibility. On average, this amounts to 556 surgery minutes during a four-week planning period, with
our input data. We deduce that the value of flexibility stagnates when the level of flexibility outgrows
the variance in patient demand. Furthermore, the flexibility in the assignment of ORs requires sufficient
capacity in downstream resources in order to reduce unmet demand.

In conclusion, planning for uncertainty can help reduce unmet demand if also incorporating flexibility in
an MSS. We can not rule out the possibility that other definitions of value would have revealed additional
benefits. We hope that this outcome incentivizes other researchers to incorporate flexibility when striving
to make surgical scheduling more efficient. Furthermore, we hope that the heuristic solution methods
developed can act as stepping stones for others when developing a fully functioning planning tool for
surgical clinics.
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Appendix A

Base Model Formulation

Sets and Indices
W Wards, indexed w
S Specialties, indexed s
SR
r Specialties suitable for OR r

G Surgery groups, indexed g
GW
w Surgery groups that can receive postoperative care at ward w, indexed g

GS
s Surgery groups that can receive treatment from specialty s, indexed g

R ORs, indexed r
RS

s ORs suitable for specialty s, indexed r
RG

g ORs suitable for group g, indexed r
D Days in planning period, indexed d
C Scenarios, indexed c

Parameters
Πc Probability of scenario c occurring
Cg Unit cost of not meeting the demand of surgery group g
TC Cleaning time post surgery
LSD

g Surgery duration of a patient in surgery group g
F Maximum percentage of flexible number of slots
Nd Total number of available ORs on day d
UX

s Maximum number of times a specialty s may extend its opening hours during a cycle
I Number of cycles in the planning horizon
Ksd Number of surgical teams from specialty s available on day d
Hd Default amount of time available in a slot if it is assigned at day d
E Additional time available if a slot’s opening hours are extended
Qgc Number of patients from surgery group g in line for surgery in scenario c
Pgwd Probability that a patient from surgery group g occupies a bed in ward w, on the night d days after surgery
Jw Maximum number of nights a patient may stay in ward w
Bwd Number of available beds at ward w on the night following day d
Ywd Expected number of occupied beds in ward w the night following day d in the current planning period by

patients operated on in the previous planning period

Variables
First stage decision variables:

γsrd

{
1 if specialty s is assigned a fixed slot in room r on day d

0 Otherwise

λsrd

{
1 if specialty s extends opening hours in room r on day d

0 Otherwise

Second stage decision variables:

δsrdc

{
1 if specialty s is assigned a flexible slot in room r on day d in scenario c

0 Otherwise

xgrdc Number of patients from surgery group g operated in room r on day d in scenario c

Auxiliary variables:
agc Number of patients from surgery group g waiting in line for surgery, but not scheduled for surgery in

scenario c
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Model formulation

min
∑
c∈C

Πc

∑
g∈G

Cgagc (A.1)

∑
s∈S

∑
r∈RS

s

∑
d∈D

γsrd −

⌈
(1− F )

∑
d∈D

Nd

⌉
≥ 0 (A.2)

λsrd ≤ γsrd s ∈ S, r ∈ RS
s , d ∈ D (A.3)∑

r∈RS
s

∑
d∈D

λsrd ≤ UX
s s ∈ S (A.4)

∑
s∈S

γsrd + δsrdc ≤ 1 r ∈ R, d ∈ D, c ∈ C (A.5)

∑
r∈RS

s

γsrd + δsrdc ≤ Ksd s ∈ S, d ∈ D, c ∈ C (A.6)

∑
s∈S

∑
r∈RS

s

γsrd + δsrdc ≤ Nd d ∈ D, c ∈ C (A.7)

∑
g∈GS

s

(Lg +TC)xgrdc ≤ Hd(γsrd + δsrdc) + Eλsrd s ∈ S, r ∈ RS
s , d ∈ D, c ∈ C (A.8)

∑
r∈R

∑
d∈D

xgrdc + agc = Qgc g ∈ G, c ∈ C (A.9)

∑
s∈SR

r

δsrdc ≤
∑
g∈G

xgrdc r ∈ R, d ∈ D, c ∈ C (A.10)

∑
g∈GW

w

∑
r∈R

d∑
δ=max {1,d+1−Jw}

Pwg(d−δ+1)xgrδc ≤ Bwd − Ywd w ∈ W, d ∈ D, c ∈ C (A.11)

γsrd = γ
sr(

|D|
I

+d)
s ∈ S, r ∈ RS

s , d = 1, ..., |D| − |D|
I

(A.12)

λsrd = λ
sr(

|D|
I

+d)
s ∈ S, r ∈ RS

s , d = 1, ..., |D| − |D|
I

(A.13)

γsrd = 0 s ∈ S, r ∈ {R\RS
s }, d ∈ D (A.14)

δsrdc = 0 s ∈ S, r ∈ {R\RS
s }, d ∈ D, c ∈ C (A.15)

xgrdc = 0 g ∈ G, r ∈ {R\RG
g }, d ∈ D, c ∈ C (A.16)

γsrd, λsrd ∈ {0, 1} s ∈ S, r ∈ R, d ∈ D (A.17)

δsrdc ∈ {0, 1} s ∈ S, r ∈ R, d ∈ D, c ∈ C (A.18)

xgrdc ∈ Z+ g ∈ G, r ∈ R, d ∈ D, c ∈ C (A.19)

agc ∈ Z+ g ∈ G, c ∈ C (A.20)

Constraint description
(A.1) Is the objective function, and minimizes the total expected cost of unmet demand.
(A.2) Ensures a minimum percentage of fixed slots.
(A.3) Ensure that a specialty can only extend a slot if it is assigned to that slot in the fixed schedule.
(A.4) Ensure that each specialty does not extend more days during the planning period than they are allowed.
(A.5) Ensure that no ORs can be double booked.
(A.6) Ensure that no specialty is assigned more ORs than they have teams available on that day.
(A.7) Ensure that we can not assign more ORs than there are ORs available each day.
(A.8) Ensure that the total planned operating and cleaning time in a slot does not exceed the slot’s available time. They
also ensure that patients can only be planned for surgery in a slot assigned to the specialty that they belong to.
(A.9) Keep track of the unmet demand of surgery group g in scenario c through the variable agc.
(A.10) Ensure that a flexible slot is only assigned to a specialty if there is at least one planned operation in that slot.
(A.11) Ensure that the expected number of beds occupied in a ward on the night following day d does not exceed the number
of beds available. They take into account the expected number of beds occupied by patients operated in the previous period.
(A.12) Ensure that fixed slots repeat themselves in every cycle of the planning period.
(A.13) Ensure that extended slots repeat themselves in every cycle throughout the planning period.
(A.14) and (A.15) ensure that a specialty is not assigned to an OR that is not suitable.
(A.16) ensures that no patients are scheduled in an OR not suitable for them.
(A.17) and (A.18) ensure that the given variables are binary.
(A.19) and (A.20) ensure that the given variables are integer and non-negative.
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Cutting Stock Formulation

We propose an alternative formulation inspired by the cutting stock problem by using the patterns of surgery groups
described in Section 6.3.1. A solution from the cutting stock formulation can be translated to variables of the base formulation
in Chapter 5 through the formula:

xgrdc =
∑

m∈M

Amgϕmrdc g ∈ G, r ∈ R, d ∈ D, c ∈ C

Note that we in this appendix only present additional notation, while most of the notation is the same as in Appendix A.
The performance of this formulation is compared to the performance of the base formulation in Appendix C.

New Sets and Indices
M Patterns of operations, indexed m
MX Patterns of operations only suitable for extended days, indexed m
MNX Patterns of operations suitable for non-extended days, indexed m
MS

s Patterns associated with specialty s, indexed m
RM

m ORs suitable for pattern m, indexed r

New Parameters
PCS
mwd Accumulated probability that patients in pattern m occupy a bed in ward w, on the night d days after

surgery
Amg Number of patients from group g included in pattern m

New Variables
Second-stage decision variables:

ϕmrdc

{
1 if pattern m is assigned a to a slot in room r on day d in scenario c

0 Otherwise
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Model formulation

min
∑
c∈C

Πc

∑
g∈G

Cgagc (B.1)

∑
s∈S

∑
r∈RS

r

∑
d∈D

γsrd −

⌈
(1− F )

∑
d∈D

Nd

⌉
≥ 0 (B.2)

λsrd ≤ γsrd s ∈ S, r ∈ RS
s , d ∈ D (B.3)∑

r∈RS
s

∑
d∈D

λsrd ≤ UX
s s ∈ S (B.4)

∑
s∈S

γsrd + δsrdc ≤ 1 r ∈ R, d ∈ D, c ∈ C (B.5)

∑
r∈RS

s

γsrd + δsrdc ≤ Ksd s ∈ S, d ∈ D, c ∈ C (B.6)

∑
s∈S

∑
r∈RS

s

γsrd + δsrdc ≤ Nd d ∈ D, c ∈ C (B.7)

∑
m∈MS

s

ϕmrdc ≤ γsrd + δsrdc s ∈ S, r ∈ RS
s , d ∈ D, c ∈ C (B.8)

2
∑

m∈MX

ϕmrdc +
∑

m∈MNX

ϕmrdc ≤
∑
s∈S

λsrd + γsrd + δsrdc r ∈ R, d ∈ D, c ∈ C (B.9)

∑
m∈M

∑
r∈RG

g

∑
d∈D

Amgϕmrdc + agc = Qgc g ∈ G, c ∈ C (B.10)

∑
m∈MNX

∑
g∈G

Amgϕmrdc ≥
∑

s∈SRr

δsrdc r ∈ R, d ∈ D, c ∈ C (B.11)

∑
m∈M

∑
r∈RM

m

d∑
d′=max {1,d+1−Jw}

PCS
mw(d−d′+1)ϕmrd′c ≤ Bwd − Ywd w ∈ W, d ∈ D, c ∈ C (B.12)

γsrd = γ
sr(

|D|
I

+d)
s ∈ S, r ∈ RS

s , d = 1, ..., |D| − |D|
I

(B.13)

λsrd = λ
sr(

|D|
I

+d)
s ∈ S, r ∈ RS

s , d = 1, ..., |D| − |D|
I

(B.14)

γsrd, λsrd = 0 s ∈ S, r ∈ {R\RS
s }, d ∈ D (B.15)

δsrdc = 0 s ∈ S, r ∈ {R\RS
s }, d ∈ D, c ∈ C (B.16)

ϕmrdc = 0 m ∈ M, r ∈ {R\RM
m }, d ∈ D, c ∈ C (B.17)

γsrd, λsrd ∈ {1, 0} s ∈ S, r ∈ R, d ∈ D (B.18)

δsrdc ∈ {1, 0} s ∈ S, r ∈ R, d ∈ D, c ∈ C (B.19)

ϕmrdc ∈ {1, 0} m ∈ M, r ∈ R, d ∈ D, c ∈ C (B.20)

agc ∈ Z+ g ∈ G, c ∈ C (B.21)
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Constraint description
(B.1) Is the objective function, and minimizes the total expected cost of unmet demand.
(B.2) Ensures a minimum percentage of fixed slots.
(B.3) Ensure that a specialty can only extend a slot if it is assigned to that slot in the fixed schedule.
(B.4) Ensure that each specialty does not extend more days during the planning period than they are allowed.
(B.5) Ensure that no ORs can be double booked.
(B.6) Ensure that no specialty is assigned more ORs than they have teams available on that day.
(B.7) Ensure that we can not assign more ORs than there are ORs available each day.
(B.8) Ensure that each slot is filled with a legal pattern according to its assigned specialty.
(B.9) Ensure that each slot contains a legal pattern according to its type (extended, non-extended, flexible).
(B.10) Keep track of the unmet demand of surgery group g in scenario c through the variable agc.
(B.11) Ensure that a flexible slot is only assigned to a specialty if there is at least one planned operation in that slot.
(B.12) Ensure that the expected number of beds occupied in a ward on the night following day d does not exceed the number
of beds available. They take into account the expected number of beds occupied by patients operated on in the previous
period.
(B.13) Ensure that fixed slots repeat themselves in every cycle of the planning period.
(B.14) Ensure that extended slots repeat themselves in every cycle throughout the planning period.
(B.15) and (B.16) ensure that a specialty is not assigned to an OR that is not suitable.
(B.17) Ensure that a pattern is not assigned to an OR that is not suitable.
(B.18), (B.19) and (B.20) ensure that the given variables are binary.
(B.21) Ensure that the auxiliary variable agc is integer and non-negative.
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Appendix C

Comparing Base and Cutting Stock
Formulation

C.1 Problem Size

Table C.1: Problem size and complexity for the base model formulation with different numbers of surgery
groups |G| and scenarios |C| at flexibility F = 10% and original bed ward capacity β = 1.0.

Model |G| F |C| Prim Dual Gap Presolver Time
[min] [min] Row Col Bin Nonzero [s]

BASE 5 10% 10 667 667 0,0% 6310 5439 2810 53197 124
BASE 5 10% 50 1087 1087 0,0% 31205 26398 13253 265354 161
BASE 5 10% 100 1002 1002 0,0% 62330 52607 26338 530621 603

BASE 9 10% 10 310 236 23,7% 6404 7868 5024 84826 *3600
BASE 9 10% 50 792 565 28,7% 31480 38464 23918 423978 *3600
BASE 9 10% 100 2126 606 71,5% 62883 76627 47637 852415 *3600

BASE 25 10% 10 1580 738 53,3% 6571 17876 7222 197845 *3600
BASE 25 10% 50 3494 225 93,6% 32340 88685 35470 990299 *3600
BASE 25 10% 100 2190 325 85,2% 64572 176817 70159 1973904 *3600

All scenario trees have been generated by the same seed m = 1.
Row, Col, Bin and Nonzero refer to the constraints, variables, binary variables and non-zero elements in
the model after the presolver have been run.
* means that the maximum runtime is reached.
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Table C.2: Problem size and complexity for the cutting stock formulation for different numbers of surgery
groups |G| and scenarios |C| at flexibility F = 10%, with original bed ward capacity β = 1.0.

Model |G| F |S| Prim Dual Gap Presolver Time
[min] [min] Row Col Bin Nonzero [s]

CS 5 10% 10 667 667 0.0% 7745 9649 9600 121381 73
CS 5 10% 50 1087 1057 2.7% 38244 47328 47083 605890 *3600
CS 5 10% 100 1002 896 10.6% 76373 94417 93928 1211381 *3600

CS 9 10% 10 310 274 11.7% 7824 16308 16224 216584 *3600
CS 9 10% 50 951 674 29.1% 38580 81084 80658 1088621 *3600
CS 9 10% 100 4290 627 85.4% 76983 161967 161117 2177778 *3600

CS 25 10% 10 1598 1331 16.7% 8771 133195 132213 2093904 *3600
CS 25 10% 50 6069 950 84.4% 43293 666477 661564 10498566 *3600
CS 25 10% 100 7232 992 86.3% 86468 1330472 1320638 20954055 *3600

All scenario trees have been generated by the same seed m = 1.
Row, Col, Bin and Nonzero refer to the constraints, variables, binary variables and non-zero elements in
the model after the presolver have been run.
* means that the maximum runtime is reached.

C.2 Long Run Performance

Table C.3: Results from 12h runs of the base model formulation of the MIP on |G| = 9 groups solved for
a scenario tree ξ̆1250 of size N = 250 generated from seed m = 1 with original bed ward capacity β = 1.0
at each flexibility level F ∈ {0%, 5%, . . . 30%}.

Formulation |G| F N β Primal Dual Gap Time [h]

BASE 9 0% 250 1.0 1557.2 1544.6 0.8% 12
BASE 9 5% 250 1.0 2181.2 994.3 54.4% 12
BASE 9 10% 250 1.0 1475.1 721.1 51.1% 12
BASE 9 15% 250 1.0 1517.2 604.7 60.1% 12
BASE 9 20% 250 1.0 2559..0 554.0 78.4% 12
BASE 9 25% 250 1.0 2182.7 26.2 98.8% 12
BASE 9 30% 250 1.0 1357.6 48.0 95.8% 12

All scenario trees have been generated by the same seed m = 1.

Table C.4: Results from 12h runs of the cutting stock (CS) formulation of the MIP on |G| = 9 groups
solved for a scenario tree ξ̆1250 of size N = 250 generated from seed m = 1 with original bed ward capacity
β = 1.0 at each flexibility level F ∈ {0%, 5%, . . . 30%}.

Formulation |G| F N β Primal Dual Gap Time [h]

CS 9 0% 250 1.0 2101.2 1222.4 41.8% 12
CS 9 5% 250 1.0 3052.5 956.5 68.7% 12
CS 9 10% 250 1.0 2208.8 834.2 62.2% 12
CS 9 15% 250 1.0 4831.8 808.3 83.3% 12
CS 9 20% 250 1.0 3410.3 816.5 76.1% 12
CS 9 25% 250 1.0 2145.2 782.1 63.5% 12
CS 9 30% 250 1.0 3143.8 829.0 73.6% 12

All scenario trees have been generated by the same seed m = 1.
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Appendix D

Tabulated Results

D.1 SA Runs

Table D.1: Results from 10 runs of SA-2SMIP on |G| = 9 groups solved for a scenario tree ξ̆1250 of size
N = 250 generated with seed m = 1, original bed ward capacity β = 1.0 and flexibility F = 10% with
the same SA parameters {T0, α, Imax, Tmin}. The runs are sorted from lowest to highest objective value.

|G| F N β T0 α Imax Tmin Best OV Elapsed Time [h]

9 10% 250 1.0 1000 0.9 25 0.01 1001.3 9.5
9 10% 250 1.0 1000 0.9 25 0.01 1001.3 6.4
9 10% 250 1.0 1000 0.9 25 0.01 1013.0 9.0
9 10% 250 1.0 1000 0.9 25 0.01 1022.4 5.8
9 10% 250 1.0 1000 0.9 25 0.01 1035.0 7.0
9 10% 250 1.0 1000 0.9 25 0.01 1035.0 4.9
9 10% 250 1.0 1000 0.9 25 0.01 1045.9 8.0
9 10% 250 1.0 1000 0.9 25 0.01 1045.9 5.2
9 10% 250 1.0 1000 0.9 25 0.01 1055.5 7.5
9 10% 250 1.0 1000 0.9 25 0.01 1078.4 7.6

All scenario trees have been generated by the same seed m = 1.

Table D.2: Results from 10 runs of SA-GCH-2SMIP on |G| = 9 groups solved for a scenario tree ξ̆1250 of
size N = 250 generated with seed m = 1, original bed ward capacity β = 1.0 and flexibility F = 10%
with the same SA parameters {T0, α, Imax, Tmin}. The runs are sorted from lowest to highest objective
value.

|G| F N β T0 α Imax Tmin Best OV Elapsed Time [s]

9 10% 250 1.0 1000 0.9 50 0.01 1092.9 1045
9 10% 250 1.0 1000 0.9 50 0.01 1116.7 989
9 10% 250 1.0 1000 0.9 50 0.01 1136.9 992
9 10% 250 1.0 1000 0.9 50 0.01 1136.9 1008
9 10% 250 1.0 1000 0.9 50 0.01 1152.0 1017
9 10% 250 1.0 1000 0.9 50 0.01 1165.9 1039
9 10% 250 1.0 1000 0.9 50 0.01 1168.9 993
9 10% 250 1.0 1000 0.9 50 0.01 1176.2 979
9 10% 250 1.0 1000 0.9 50 0.01 1176.8 997
9 10% 250 1.0 1000 0.9 50 0.01 1176.8 1009

All scenario trees have been generated by the same seed m = 1.
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Table D.3: Results from 10 runs of SA-2SMIP on |G| = 9 groups solved for a scenario tree ξ̆1250 of
size N = 250 generated with seed m = 1, original bed ward capacity β = 1.0 and flexibility F ∈
{0%, 5%, 10%, 15%} with the same SA parameters {T0, α, Imax, Tmin}. The runs are sorted from lowest
to highest objective value at each flexibility level F .

|G| F N β T0 α Imax Tmin Best OV Elapsed Time [h]

9 0% 250 1.0 1000 0.9 25 0.01 1557.2 7.4
9 0% 250 1.0 1000 0.9 25 0.01 1557.2 9.8
9 0% 250 1.0 1000 0.9 25 0.01 1557.2 7.5
9 0% 250 1.0 1000 0.9 25 0.01 1557.2 8.4
9 0% 250 1.0 1000 0.9 25 0.01 1557.2 9.1
9 0% 250 1.0 1000 0.9 25 0.01 1557.2 7.5
9 0% 250 1.0 1000 0.9 25 0.01 1557.2 8.3
9 0% 250 1.0 1000 0.9 25 0.01 1557.2 9.1
9 0% 250 1.0 1000 0.9 25 0.01 1557.2 8.8
9 0% 250 1.0 1000 0.9 25 0.01 1557.2 9.9

9 5% 250 1.0 1000 0.9 25 0.01 1235.8 6.3
9 5% 250 1.0 1000 0.9 25 0.01 1235.8 7.7
9 5% 250 1.0 1000 0.9 25 0.01 1235.8 6.7
9 5% 250 1.0 1000 0.9 25 0.01 1235.8 6.9
9 5% 250 1.0 1000 0.9 25 0.01 1235.8 6.4
9 5% 250 1.0 1000 0.9 25 0.01 1235.8 8.0
9 5% 250 1.0 1000 0.9 25 0.01 1236.4 7.3
9 5% 250 1.0 1000 0.9 25 0.01 1236.4 7.3
9 5% 250 1.0 1000 0.9 25 0.01 1309.4 7.0
9 5% 250 1.0 1000 0.9 25 0.01 1309.4 7.5

9 10% 250 1.0 1000 0.9 25 0.01 1001.3 9.5
9 10% 250 1.0 1000 0.9 25 0.01 1001.3 6.4
9 10% 250 1.0 1000 0.9 25 0.01 1013.0 9.0
9 10% 250 1.0 1000 0.9 25 0.01 1022.4 5.8
9 10% 250 1.0 1000 0.9 25 0.01 1035.0 7.0
9 10% 250 1.0 1000 0.9 25 0.01 1035.0 4.9
9 10% 250 1.0 1000 0.9 25 0.01 1045.9 8.0
9 10% 250 1.0 1000 0.9 25 0.01 1045.9 5.2
9 10% 250 1.0 1000 0.9 25 0.01 1055.5 7.5
9 10% 250 1.0 1000 0.9 25 0.01 1078.4 7.6

9 15% 250 1.0 1000 0.9 25 0.01 1076.8 7.6
9 15% 250 1.0 1000 0.9 25 0.01 1088.9 8.3
9 15% 250 1.0 1000 0.9 25 0.01 1088.9 9.4
9 15% 250 1.0 1000 0.9 25 0.01 1088.9 6.8
9 15% 250 1.0 1000 0.9 25 0.01 1089.3 10.3
9 15% 250 1.0 1000 0.9 25 0.01 1089.3 7.0
9 15% 250 1.0 1000 0.9 25 0.01 1095.1 6.6
9 15% 250 1.0 1000 0.9 25 0.01 1095.1 7.2
9 15% 250 1.0 1000 0.9 25 0.01 1112.3 8.6
9 15% 250 1.0 1000 0.9 25 0.01 1112.3 9.5

All scenario trees have been generated by the same seed m = 1.
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Table D.4: Results from 10 runs of SA-2SMIP on |G| = 9 groups solved for a scenario tree ξ̆1250 of size N =
250 generated with seed m = 1, original bed ward capacity β = 1.0 and flexibility F ∈ {20%, 25%, 30%}
with the same SA parameters {T0, α, Imax, Tmin}. The runs are sorted from lowest to highest objective
value at each flexibility level F .

|G| F N β T0 α Imax Tmin Best OV Elapsed Time [h]

9 20% 250 1.0 1000 0.9 25 0.01 952.5 7.7
9 20% 250 1.0 1000 0.9 25 0.01 957.0 6.6
9 20% 250 1.0 1000 0.9 25 0.01 957.0 7.7
9 20% 250 1.0 1000 0.9 25 0.01 978.4 11.1
9 20% 250 1.0 1000 0.9 25 0.01 978.4 5.6
9 20% 250 1.0 1000 0.9 25 0.01 979.9 8.9
9 20% 250 1.0 1000 0.9 25 0.01 1001.3 8.2
9 20% 250 1.0 1000 0.9 25 0.01 1001.3 7.0
9 20% 250 1.0 1000 0.9 25 0.01 1011.5 8.5
9 20% 250 1.0 1000 0.9 25 0.01 1013.0 10.4

9 25% 250 1.0 1000 0.9 25 0.01 994.3 7.5
9 25% 250 1.0 1000 0.9 25 0.01 949.6 7.7
9 25% 250 1.0 1000 0.9 25 0.01 950.3 10.6
9 25% 250 1.0 1000 0.9 25 0.01 950.9 9.0
9 25% 250 1.0 1000 0.9 25 0.01 950.9 7.5
9 25% 250 1.0 1000 0.9 25 0.01 956.3 8.7
9 25% 250 1.0 1000 0.9 25 0.01 957.0 10.6
9 25% 250 1.0 1000 0.9 25 0.01 971.7 8.4
9 25% 250 1.0 1000 0.9 25 0.01 971.7 6.3
9 25% 250 1.0 1000 0.9 25 0.01 978.4 9.5

9 30% 250 1.0 1000 0.9 25 0.01 1060.8 9.0
9 30% 250 1.0 1000 0.9 25 0.01 957.8 15.9
9 30% 250 1.0 1000 0.9 25 0.01 961.5 8.0
9 30% 250 1.0 1000 0.9 25 0.01 961.5 8.6
9 30% 250 1.0 1000 0.9 25 0.01 962.2 14.3
9 30% 250 1.0 1000 0.9 25 0.01 963.6 14.4
9 30% 250 1.0 1000 0.9 25 0.01 963.6 12.0
9 30% 250 1.0 1000 0.9 25 0.01 984.6 9.7
9 30% 250 1.0 1000 0.9 25 0.01 995.7 10.8
9 30% 250 1.0 1000 0.9 25 0.01 1014.3 8.8

All scenario trees have been generated by the same seed m = 1.
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D.2 SA Parameter Tuning

Table D.5: Parameter tuning for simulated annealing algorithm. All combinations of parameters have
been run 50 times each. The most important elements of the table are summarized in Table 8.4, Chapter 8.

Parameters Best Objective End Objective Time [s]

T0 α Imax Tmin µ̂o
b σ̂o

b L5%
b U95%

b µ̂o
e σ̂o

e L5%
e U95%

e µt
b µt

r

10 0.3 25 0.1 1781 144 1532 1928 1781 144 1535 1928 4 17
10 0.3 25 0.01 1745 148 1491 1928 1747 147 1492 1930 5 31
10 0.3 50 0.1 1728 151 1467 1928 1729 151 1467 1930 6 32
10 0.3 50 0.01 1737 146 1496 1928 1738 146 1496 1931 4 60
10 0.6 25 0.1 1757 164 1427 1928 1757 164 1427 1928 4 38
10 0.6 25 0.01 1738 159 1464 1928 1739 158 1476 1937 5 74
10 0.6 50 0.1 1758 152 1520 1928 1760 151 1533 1939 5 74
10 0.6 50 0.01 1765 125 1565 1928 1765 125 1565 1928 4 145
10 0.9 25 0.1 1736 127 1504 1927 1738 126 1505 1934 4 159
10 0.9 25 0.01 1759 161 1460 1928 1760 161 1463 1942 10 314
10 0.9 50 0.1 1770 172 1456 1928 1770 171 1456 1934 4 314
10 0.9 50 0.01 1748 123 1552 1928 1750 123 1552 1945 6 627
102 0.3 25 0.1 1717 156 1464 1928 1781 221 1466 2338 9 20
102 0.3 25 0.01 1704 160 1454 1928 1747 177 1478 2153 11 34
102 0.3 50 0.1 1671 170 1421 1928 1743 206 1443 2237 13 36
102 0.3 50 0.01 1677 153 1450 1928 1741 186 1486 2165 13 64
102 0.6 25 0.1 1648 168 1382 1908 1699 193 1384 2360 15 43
102 0.6 25 0.01 1675 164 1412 1928 1720 198 1430 2200 15 78
102 0.6 50 0.1 1624 171 1401 1928 1700 187 1429 2087 21 82
102 0.6 50 0.01 1637 160 1379 1918 1714 169 1431 2119 19 152
102 0.9 25 0.1 1608 186 1368 1928 1712 178 1424 2009 24 170
102 0.9 25 0.01 1632 152 1435 1928 1695 148 1481 1982 26 325
102 0.9 50 0.1 1540 138 1381 1830 1639 128 1471 1928 46 332
102 0.9 50 0.01 1601 151 1373 1877 1691 163 1463 2051 39 644
103 0.3 25 0.1 1763 142 1528 1928 2649 929 1637 5744 8 24
103 0.3 25 0.01 1686 146 1479 1928 1969 429 1518 3454 19 42
103 0.3 50 0.1 1755 141 1524 1928 2485 650 1735 4147 15 46
103 0.3 50 0.01 1627 151 1423 1899 1789 264 1432 2495 45 81
103 0.6 25 0.1 1728 124 1528 1927 2191 541 1651 4220 27 56
103 0.6 25 0.01 1614 153 1430 1928 1798 354 1483 3476 46 95
103 0.6 50 0.1 1667 133 1460 1921 2041 306 1624 2992 69 111
103 0.6 50 0.01 1559 127 1389 1784 1697 219 1424 2312 103 188
103 0.9 25 0.1 1537 90 1417 1706 1870 221 1609 2366 160 242
103 0.9 25 0.01 1483 91 1350 1639 1628 164 1446 2347 207 411
103 0.9 50 0.1 1483 83 1368 1635 1808 215 1450 2292 308 479
103 0.9 50 0.01 1467 76 1353 1581 1630 134 1424 1975 402 814
104 0.3 25 0.1 1840 115 1610 1928 3751 1265 2193 7395 3 24
104 0.3 25 0.01 1807 121 1566 1928 3110 1093 1765 5714 8 46
104 0.3 50 0.1 1788 133 1511 1928 4198 1400 2218 7972 7 47
104 0.3 50 0.01 1774 128 1601 1928 2657 699 1796 4684 21 90
104 0.6 25 0.1 1797 135 1580 1928 4203 1439 2093 7539 7 58
104 0.6 25 0.01 1751 143 1519 1928 2276 637 1694 5125 28 110
104 0.6 50 0.1 1780 131 1537 1928 4062 1307 1977 7359 17 115
104 0.6 50 0.01 1648 137 1474 1897 2068 555 1564 4423 140 219
104 0.9 25 0.1 1794 124 1576 1928 4040 1530 2129 7983 30 258
104 0.9 25 0.01 1523 94 1364 1668 1830 226 1521 2380 407 504
104 0.9 50 0.1 1765 127 1586 1928 3580 1112 2246 6072 151 513
104 0.9 50 0.01 1489 94 1337 1662 1835 281 1497 2984 824 993

µ̂o
b , µ̂

o
e: sample average of best and end objectives, σ̂o

b , σ̂
o
e : empirical standard deviation of best and end

objectives, µ̂t
b, µ̂

t
r: sample average of time to find best objective and of total runtime, L5%

b , L5%
e : lower 5%-ile

of best and end objectives, U95%
b , U95%

e : Upper 95%-ile of best and end objectives
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Appendix E

Overview of Related Literature

Table E.1: Origin of the papers studied in Table 3.1 and Table 3.2. If found through a survey, the name
of the survey is presented in the first column. If found through Google Scholar, the search phrase is
presented in the second column.

Article Paper Search phrase

van Oostrum et al. (2008) Hulshof et al. (2012)
Adan et al. (2009) Hulshof et al. (2012)
Fei et al. (2010) Samudra et al. (2016)
Cappanera et al. (2014) Samudra et al. (2016)
Mannino et al. (2012) Samudra et al. (2016)
Beliën and Demeulemeester (2007) Samudra et al. (2016)
Vanberkel et al. (2011) Samudra et al. (2016)
Fügener et al. (2014) Samudra et al. (2016)
Adan et al. (2011) Samudra et al. (2016)
Bruni et al. (2015) Samudra et al. (2016)
Lamiri et al. (2009) Samudra et al. (2016)
Wang et al. (2014) Samudra et al. (2016)
Bovim et al. (2020) master surgery scheduling stochastic
Fügener (2015) master surgery scheduling stochastic
M’Hallah and Visintin (2019) master surgery scheduling stochastic
Batista et al. (2020) two stage stochastic healthcare
Makboul et al. (2021) two stage stochastic master surgical scheduling
Neyshabouri and Berg (2017) two stage stochastic master surgical scheduling
Kamran et al. (2018) two stage stochastic master surgical scheduling
Heydari and Soudi (2016) two stage stochastic master surgical scheduling
Spratt and Kozan (2016) Britt et al. (2021)
Abdeljaouad et al. (2020) Britt et al. (2021)
Visintin et al. (2016) master surgery scheduling swap
van Essen et al. (2014) Britt et al. (2021)
Schneider et al. (2020) Britt et al. (2021)
Kumar et al. (2018) surgery scheduling stochastic
Kim and Mehrotra (2015) surgery scheduling stochastic two stage
Oliveira et al. (2021) master surgery scheduling flexibility
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Appendix F

Input Data

F.1 5 Groups

The following section defines the sets and parameters used in Chapter 8. Flexibility F , demand scenarios Qgc and scenario
probabilities Πc have been excluded from this section as they change throughout the analysis. Flexibility F , the size of the
scenario tree N and its seed m and the bed ward capacity factor β are reported along with results.

Sets

Wards: W = {MC, IC}
Specialties: S = {GN,GO,UR,KA,EN}
Groups: G = {GN-a,GO-a,UR-a,KA-a,EN-a, }
Days: D = {1, 2, ..28}

Table F.1: GWw : Surgery groups that can receive postoperative care at ward w, indexed g. Each row
represents one set GWw for the ward w and 1 indicates that the group g is included in the set.

Ward

Group
GN-a GO-a UR-a KA-a EN-a

w\g 1 2 3 4 5
MC 1 1 1 1 1 1
IC 2 1 1 1 1 1

Table F.2: RS
s : ORs suitable for specialty s, indexed r. Each row represents one set RS

s for the
specialty s and 1 indicates that the room r is included in the set.

Specialty

Room
GA-1 GA-2 GA-3 GA-4 GA-5 GA-6 GA-7

r\s 1 2 3 4 5 6 7
GN 1 1 1 1
GO 2 1 1 1
UR 3 1 1 1 1
KA 4 1
EN 5 1 1

Parameters

Cleaning time: TC = 30

Number of cycles in planning period: I = 2

Additional time with extended slots: E = 90

Table F.3: Cg: Unit cost of not meeting the demand of surgery group g.

Cost GN-a GO-a UR-a KA-a EN-a
w\g 1 2 3 4 5

Cg 155 146 253.05 246 173
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Table F.4: LSD
g : Surgery duration of a patient in surgery group g.

Duration GN-a GO-a UR-a KA-a EN-a
w\g 1 2 3 4 5

LSD 125 116 223.05 216 143

Table F.5: Tg: Monthly expected demand of for surgery group g.

E[Demand] GN-a GO-a UR-a KA-a EN-a
g 1 2 3 4 5

Tg 62 44 58 4 56

Table F.6: Nd: Total number of available ORs on day d.

Day Mon Tue Wed Thu Fri Sat Sun Mon ... Sun
d 1 2 3 4 5 6 7 8 ... 28
N 7 7 7 7 7 0 0 7 ... 0

Table F.7: UX
s : Maximum number of times a specialty may extend its opening hours during a cycle.

Specialty GN GO UR KA EN
s 1 2 3 4 5
H 8 10 6 1 3

Table F.8: Ksd: Number of surgical teams from specialty s available on day d.

Specialty

Day
Mon Tue Wed Thu Fri Sat Sun Mon ... Sun

s\d 1 2 3 4 5 6 7 8 ... 28
GN 1 2 2 2 2 2 0 0 2 ... 0
GO 2 2 2 2 2 2 0 0 2 ... 0
UR 3 4 4 4 4 4 0 0 4 ... 0
KA 4 2 2 2 2 2 0 0 2 ... 0
EN 5 2 2 2 2 2 0 0 2 ... 0

Table F.9: Hd: Default number of available minutes in a slot on day d.

Day Mon Tue Wed Thu Fri Sat Sun Mon ... Sun
d 1 2 3 4 5 6 7 8 ... 28
H 450 450 450 450 450 0 0 450 ... 0

Table F.10: Bwd: Number of available beds at ward w on the night following day d.

Ward

Day
Mon Tue Wed Thu Fri Sat Sun Mon ... Sun

w\d 1 2 3 4 5 6 7 8 ... 28
MC 1 60 60 60 60 49 49 49 60 ... 49
IC 2 11 11 11 11 6 6 6 11 6

Table F.11: Jw: Maximum number of nights a patient may stay in ward w.

Ward MC IC
w 1 2
J 20 2
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Table F.12: Pwgd: Probability that a patient from surgery group g occupies a bed in ward w, on the night d days after surgery. The equivalent probabilities
for the cutting stock formulation can be translated from this table with the formula: PCS

mwd =
∑

g∈G Amg ∗ Pgwd ∀ m ∈M, w ∈ W.

MC w\d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
GN-a 1 0.6281 0.539 0.4791 0.4499 0.3872 0.3357 0.2744 0.2131 0.1616 0.1337 0.1003 0.0864 0.0669 0.0418 0.0292 0.0209 0.0181 0.0125 0.0097 0.0014
GO-a 2 0.6158 0.5188 0.3861 0.3347 0.297 0.2713 0.2317 0.2 0.1505 0.1129 0.0911 0.0772 0.0673 0.0634 0.0475 0.0317 0.0257 0.0178 0.0079 0.004
UR-a 3 0.6182 0.4163 0.2612 0.1935 0.1459 0.1075 0.0827 0.0632 0.0495 0.0352 0.0287 0.0228 0.0176 0.0117 0.0085 0.0072 0.0065 0.0046 0.0033 0.0007
KA-a 4 0.4286 0.1224 0.0816 0.0612 0.0408 0.0408 0.0408 0.0408 0.0408 0.0408 0.0204 0.0204 0 0 0 0 0 0 0 0
EN-a 5 0.6035 0.2954 0.1201 0.0742 0.0316 0.0205 0.019 0.0095 0.0047 0.0047 0.0032 0.0032 0.0032 0.0016 0 0 0 0 0 0

IC w\d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
GN-a 1 0.4499 0.2312 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GO-a 2 0.3347 0.1743 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UR-a 3 0.1935 0.0977 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
KA-a 4 0.0612 0.0204 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EN-a 5 0.0742 0.0427 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table F.13: Ywd: Bed occupation from last planning period at ward w, d days into current planning period.

Ward w\d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
MC 1 15.1341 12.0295 9.505 7.4072 5.7522 4.441 3.4253 2.601 1.9586 1.4422 1.0514 0.7689 0.5344 0.3519 0.1955 0.0869 0.0174 0 0 0
IC 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table F.14: Patterns data. Set of patternsM with indication of whether they are in the subset of extendedMX or the non-extended patternsMNX and
which specialty they belong toMS

s . Amg is the numbers in the matrix indicating how many operations from group g that are included in pattern m.

G \M g\ m 1 2 3 4 5 6 7 8 9 10 11 12 13
GN-a 1 1 2 3
GO-a 2 1 2 3
UR-a 3 1 2
KA-a 4 1 2
EN-a 5 1 2 3

Duration 155.0 310.0 146.0 292.0 438.0 253.05 246.0 173.0 346.0 465.0 506.1 492.0 519.0
Extended 0 0 0 0 0 0 0 0 0 1 1 1 1

s 1 1 2 2 2 3 4 5 5 1 3 4 5
Specialty GN GN GO GO GO UR KA EN EN GN UR KA EN
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F.2 9 Groups

The following section defines the sets and parameters used in Chapter 8. Flexibility F , demand scenarios Qgc and scenario
probabilities Πc have been excluded from this section as they change throughout the analysis. Flexibility F , the size of the
scenario tree N and its seed m and the bed ward capacity factor β are reported along with results.

Sets

Wards: W = {MC, IC}
Specialties: S = {GN,GO,UR,KA,EN}
Groups: G = {GN-a,GN-b,GO-a,GO-b,UR-a,UR-b,KA-a,EN-a,EN-b}
Days: D = {1, 2, ..28}

Table F.15: GWw : Surgery groups that can receive postoperative care at ward w, indexed g. Each row
represents one set GWw for the ward w and 1 indicates that the group g is included in the set.

Ward

Group
GN-a GN-b GO-a GO-b UR-a UR-b KA-a EN-a EN-b

w\g 1 2 3 4 5 6 7 8 9
MC 1 1 1 1 1 1 1 1 1 1
IC 2 1 1 1 1 1 1 1 1 1

Table F.16: RS
s : ORs suitable for specialty s, indexed r. Each row represents one set RS

s for the
specialty s and 1 indicates that the room r is included in the set.

Specialty

Room
GA-1 GA-2 GA-3 GA-4 GA-5 GA-6 GA-7

r\s 1 2 3 4 5 6 7
GN 1 1 1 1
GO 2 1 1 1
UR 3 1 1 1 1
KA 4 1
EN 5 1 1

Parameters

Cleaning time: TC = 30

Number of cycles in planning period: I = 2

Additional time with extended slots: E = 90

Table F.17: Cg: Unit cost of not meeting the demand of surgery group g.

Cost GN-a GN-b GO-a GO-b UR-a UR-b KA-a EN-a EN-b
w\g 1 2 3 4 5 6 7 8 9

Cg 344 124 321.25 184 287.45 130 155 171 243.6

Table F.18: LSD
g : Surgery duration of a patient in surgery group g.

Duration GN-a GN-b GO-a GO-b UR-a UR-b KA-a EN-a EN-b
w\g 1 2 3 4 5 6 7 8 9

Cg 344 124 321.25 184 287.45 130 155 171 243.6

Table F.19: Tg: Monthly expected demand for surgery group g.

E[Demand] GN-a GN-b GO-a GO-b UR-a UR-b KA-a EN-a EN-b
g 1 2 3 4 5 6 7 8 9

Tg 26 34 16 26 14 118 4 52 2

Table F.20: Nd: Total number of available ORs on day d.

Day Mon Tue Wed Thu Fri Sat Sun Mon ... Sun
d 1 2 3 4 5 6 7 8 ... 28
N 7 7 7 7 7 0 0 7 ... 0

Table F.21: UX
s : Maximum number of times a specialty may extend its opening hours during a cycle.

Specialty GN GO UR KA EN
s 1 2 3 4 5
H 8 10 6 1 3
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Table F.22: Ksd: Number of surgical teams from specialty s available on day d.

Specialty

Day
Mon Tue Wed Thu Fri Sat Sun Mon ... Sun

s\d 1 2 3 4 5 6 7 8 ... 28
GN 1 2 2 2 2 2 0 0 2 ... 0
GO 2 2 2 2 2 2 0 0 2 ... 0
UR 3 4 4 4 4 4 0 0 4 ... 0
KA 4 2 2 2 2 2 0 0 2 ... 0
EN 5 2 2 2 2 2 0 0 2 ... 0

Table F.23: Hd: Default number of available minutes in a slot on day d.

Day Mon Tue Wed Thu Fri Sat Sun Mon ... Sun
d 1 2 3 4 5 6 7 8 ... 28
H 450 450 450 450 450 0 0 450 ... 0

Table F.24: Bwd: Number of available beds at ward w on the night following day d.

Ward

Day
Mon Tue Wed Thu Fri Sat Sun Mon ... Sun

w\d 1 2 3 4 5 6 7 8 ... 28
MC 1 60 60 60 60 49 49 49 60 ... 49
IC 2 11 11 11 11 6 6 6 11 6

Table F.25: Jw: Maximum number of nights a patient may stay in ward w.

Ward MC IC
w 1 2
J 20 2
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Table F.26: Pwgd: Probability that a patient from surgery group g occupies a bed in ward w, on the night d days after surgery. The equivalent probabilities
for the cutting stock formulation can be translated from this table with the formula: PCS

mwd =
∑

g∈G Amg ∗ Pgwd ∀ m ∈M, w ∈ W.

MC w\d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
GN-a 1 0.9811 0.959 0.9401 0.9306 0.8233 0.735 0.6088 0.4732 0.3596 0.2997 0.224 0.1924 0.1483 0.0946 0.0662 0.0473 0.041 0.0284 0.0221 0.0032
GN-b 2 0.3491 0.207 0.1147 0.0698 0.0424 0.02 0.01 0.0075 0.005 0.0025 0.0025 0.0025 0.0025 0 0 0 0 0 0 0
GO-a 3 0.957 0.9194 0.8172 0.7796 0.7043 0.6398 0.5538 0.4731 0.3495 0.2634 0.2043 0.1667 0.1398 0.1344 0.0968 0.0753 0.0645 0.043 0.0215 0.0108
GO-b 4 0.4169 0.2853 0.1348 0.0752 0.0596 0.0564 0.0439 0.0408 0.0345 0.0251 0.0251 0.0251 0.0251 0.0219 0.0188 0.0063 0.0031 0.0031 0 0
UR-a 5 0.9885 0.9828 0.9195 0.8793 0.6839 0.546 0.4368 0.3276 0.2471 0.1552 0.1322 0.092 0.069 0.046 0.0287 0.023 0.0172 0.0172 0.0057 0
UR-b 6 0.5709 0.3439 0.1771 0.1058 0.0771 0.0514 0.0375 0.0294 0.0242 0.0198 0.0154 0.014 0.011 0.0073 0.0059 0.0051 0.0051 0.0029 0.0029 0.0007
KA-a 7 0.4286 0.1224 0.0816 0.0612 0.0408 0.0408 0.0408 0.0408 0.0408 0.0408 0.0204 0.0204 0 0 0 0 0 0 0 0
EN-a 8 0.5885 0.2689 0.0869 0.041 0.0164 0.0115 0.0098 0.0049 0.0033 0.0033 0.0016 0.0016 0.0016 0 0 0 0 0 0 0
EN-b 9 1 1 1 0.9565 0.4348 0.2609 0.2609 0.1304 0.0435 0.0435 0.0435 0.0435 0.0435 0.0435 0 0 0 0 0 0

IC w\d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
GN-a 1 0.9306 0.489 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GN-b 2 0.0698 0.0274 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GO-a 3 0.7796 0.4355 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GO-b 4 0.0752 0.0219 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UR-a 5 0.8793 0.4655 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UR-b 6 0.1058 0.0507 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
KA-a 7 0.0612 0.0204 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EN-a 8 0.041 0.023 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EN-b 9 0.9565 0.5652 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table F.27: Ywd: Bed occupation from last planning period at ward w d days into current planning period.

Ward w\d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
MC 1 14.5328 11.5499 9.1267 7.1145 5.5274 4.269 3.2942 2.5017 1.8855 1.3898 1.0143 0.7426 0.5168 0.3405 0.1891 0.0843 0.017 0 0 0
IC 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table F.28: Patterns data. Set of patternsM with indication of whether they are in the subset of extendedMX or the non-extended patternsMNX and
which specialty they belong toMS

s . Amg is the numbers in the matrix indicating how many operations from group g that are included in pattern m.

G \M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
GN-a 1 1 1
GN-b 2 1 2 3 1 4
GO-a 3 1 1
GO-b 4 1 2 1
UR-a 5 1 1
UR-b 6 1 1 2 3 4
KA-a 7 1 2 3
EN-a 8 1 2 1 3
EN-b 9 1 1 2

Duration 344 124 248 372 321.3 184 368 287.5 130 417.5 260 390 155 310 171 243 342 414.6 468 496 505.3 520 465. 487.2 513.0
Extended 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

s 1 1 1 1 2 2 2 3 3 3 3 3 4 4 5 5 5 5 1 1 2 3 4 5 5
Specialty GN GN GN GN GO GO GO UR UR UR UR UR KA KA EN EN EN EN GN GN GO UR KA EN EN
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F.3 25 Groups

The following section defines the sets and parameters used in Chapter 8. Flexibility F , demand scenarios Qgc and scenario
probabilities Πc have been excluded from this section as they change throughout the analysis. Flexibility F , the size of the
scenario tree N and its seed m and the bed ward capacity factor β are reported along with result.

Sets

Wards: W = {MC, IC}
Specialties: S = {GN,GO,UR,KA,EN}
Groups: G = {GN-a,GN-b,GN-c,GN-d,GN-e,GN-f,GO-a,GO-b,GO-c,GO-d,GO-e,GO-f,

UR-a,UR-b,UR-c,UR-d,UR-e,UR-f,UR-g,KA-a,EN-a,EN-b,EN-c,EN-d,EN-e}
Days: D = {1, 2, ..28}

Table F.29: GWw : Surgery groups that can receive postoperative care at ward w, indexed g. Each row
represents one set GWw for the ward w and 1 indicates that the group g is included in the set.

ward/group GN-a GN-b GN-c GN-d GN-e GN-f GO-a GO-b GO-c GO-d GO-e GO-f
w\g 1 2 3 4 5 6 7 8 9 10 11 12

MC 1 1 1 1 1 1 1 1 1 1 1 1 1
IC 2 1 1 1 1 1 1 1 1 1 1 1 1

ward/group UR-a UR-b UR-c UR-d UR-e UR-f UR-g KA-a EN-a EN-b EN-c EN-d EN-e
w\g 13 14 15 16 17 18 19 20 21 22 23 24 25

MC 1 1 1 1 1 1 1 1 1 1 1 1 1 1
IC 2 1 1 1 1 1 1 1 1 1 1 1 1 1

Table F.30: RS
s : ORs suitable for specialty s, indexed r. Each row represents one set RS

s for the
specialty s and 1 indicates that the room r is included in the set.

Specialty

Room
GA-1 GA-2 GA-3 GA-4 GA-5 GA-6 GA-7

r\s 1 2 3 4 5 6 7
GN 1 1 1 1
GO 2 1 1 1
UR 3 1 1 1 1
KA 4 1
EN 5 1 1

Parameters

Cleaning time: TC = 30

Number of cycles in planning period: I = 2

Additional time with extended slots: E = 90

Table F.31: Cg: Unit cost of not meeting the demand of surgery group g.

Cost GN-a GN-b GN-c GN-d GN-e GN-f GO-a GO-b GO-c GO-d GO-e GO-f
w\g 1 2 3 4 5 6 7 8 9 10 11 12

Cg 1 94 302.5 378.5 382 238 427 97 241 218.5 455 265 302

Cost UR-a UR-b UR-c UR-d UR-e UR-f UR-g KA-a EN-a EN-b EN-c EN-d EN-e
w\g 13 14 15 16 17 18 19 20 21 22 23 24 25

Cg 1 256 240 91.5 241 136 335 82.5 136 172 164 116 217 255.5

Table F.32: LSD
g : Surgery duration of a patient in surgery group g.

Duration GN-a GN-b GN-c GN-d GN-e GN-f GO-a GO-b GO-c GO-d GO-e GO-f
w\g 1 2 3 4 5 6 7 8 9 10 11 12

LSD
g 1 64 272.5 348.5 352 208 397 67 211 188.5 425 235 272

Duration UR-a UR-b UR-c UR-d UR-e UR-f UR-g KA-a EN-a EN-b EN-c EN-d EN-e
w\g 13 14 15 16 17 18 19 20 21 22 23 24 25

LSD
g 1 226 210 61.5 211 106 305 52.5 106 142 134 86 187 225.5

Table F.33: Tg: Monthly expected demand of patient in surgery group g.

E[Demand] GN-a GN-b GN-c GN-d GN-e GN-f GO-a GO-b GO-c GO-d GO-e GO-f
g 1 2 3 4 5 6 7 8 9 10 11 12

Tg 38 8 3 3 22 3 22 14 8 3 5 3

E[Demand] UR-a UR-b UR-c UR-d UR-e UR-f UR-g KA-a EN-a EN-b EN-c EN-d EN-e
g 13 14 15 16 17 18 19 20 21 22 23 24 25

Tg 8 5 59 11 57 3 30 5 24 11 24 3 5
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Table F.34: Nd: Total number of available ORs on day d.

Day Mon Tue Wed Thu Fri Sat Sun Mon ... Sun
d 1 2 3 4 5 6 7 8 ... 28
N 7 7 7 7 7 0 0 7 ... 0

Table F.35: UX
s : Maximum number of times a specialty may extend its opening hours during a cycle.

Specialty GN GO UR KA EN
s 1 2 3 4 5
H 8 10 6 1 3

Table F.36: Ksd: Number of surgical teams from specialty s available on day d.

Specialty

Day
Mon Tue Wed Thu Fri Sat Sun Mon ... Sun

s\d 1 2 3 4 5 6 7 8 ... 28
GN 1 2 2 2 2 2 0 0 2 ... 0
GO 2 2 2 2 2 2 0 0 2 ... 0
UR 3 4 4 4 4 4 0 0 4 ... 0
KA 4 2 2 2 2 2 0 0 2 ... 0
EN 5 2 2 2 2 2 0 0 2 ... 0

Table F.37: Hd: Default number of available minutes in a slot on day d.

Day Mon Tue Wed Thu Fri Sat Sun Mon ... Sun
d 1 2 3 4 5 6 7 8 ... 28
H 450 450 450 450 450 0 0 450 ... 0

Table F.38: Bwd: Number of available beds at ward w on the night following day d.

Ward

Day
Mon Tue Wed Thu Fri Sat Sun Mon ... Sun

w\d 1 2 3 4 5 6 7 8 ... 28
MC 1 60 60 60 60 49 49 49 60 ... 49
IC 2 11 11 11 11 6 6 6 11 6

Table F.39: Jw: Maximum number of nights a patient may stay in ward w.

Ward MC IC
w 1 2
J 20 2
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Table F.40: Pwgd: Probability that a patient from surgery group g occupies a bed in ward w, on the night d days after surgery. The equivalent probabilities
for the cutting stock formulation can be translated from this table with the formula: PCS

mwd =
∑

g∈G Amg ∗ Pgwd ∀ m ∈M, w ∈ W.

MC g\d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
GN-a 1 0.2831 0.1292 0.0677 0.0246 0.0092 0.0062 0.0031 0.0031 0 0 0 0 0 0 0 0 0 0 0 0
GN-b 2 0.9875 0.9875 0.9875 0.9875 0.8125 0.6875 0.55 0.4 0.25 0.1625 0.125 0.1125 0.1125 0.0875 0.05 0.0375 0.0375 0.0125 0.0125 0
GN-c 3 0.5667 0.5 0.0667 0.0333 0.0333 0.0333 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GN-d 4 1 1 0.9706 0.9706 0.9706 0.9706 0.9706 0.9118 0.8235 0.7941 0.6765 0.6176 0.4118 0.3235 0.1765 0.0882 0.0882 0.0588 0.0588 0
GN-e 5 0.9286 0.8724 0.8265 0.7959 0.6633 0.5357 0.3776 0.25 0.1735 0.1276 0.0714 0.0612 0.051 0.0153 0.0153 0.0153 0.0153 0.0153 0.0102 0.0051
GN-f 6 1 1 1 1 1 1 1 0.8837 0.7442 0.6744 0.5581 0.4651 0.3488 0.2093 0.186 0.1395 0.093 0.0698 0.0465 0
GO-a 7 0.3424 0.1957 0.1087 0.0652 0.0489 0.0489 0.0435 0.0435 0.038 0.0272 0.0272 0.0272 0.0272 0.0217 0.0163 0 0 0 0 0
GO-b 8 0.906 0.8547 0.6752 0.6154 0.5385 0.4786 0.3761 0.3504 0.2479 0.1624 0.1026 0.0598 0.0427 0.0427 0.0427 0.0427 0.0256 0.0171 0 0
GO-c 9 0.5116 0.3721 0.1744 0.0465 0.0349 0.0349 0.0233 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0 0 0 0 0
GO-d 10 0.4063 0.3438 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0 0
GO-e 11 0.9796 0.9388 0.8776 0.8776 0.8571 0.7755 0.7347 0.5714 0.449 0.3673 0.3469 0.3265 0.3265 0.3265 0.2041 0.1429 0.1224 0.0816 0.0408 0
GO-f 12 1 1 1 1 0.8649 0.8108 0.7027 0.5946 0.4324 0.3514 0.2703 0.2432 0.1622 0.1351 0.1081 0.0811 0.0811 0.0541 0.0541 0.0541
UR-a 13 0.7143 0.6 0.3143 0.0571 0.0429 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UR-b 14 1 1 1 0.9783 0.7609 0.587 0.4565 0.2609 0.1957 0.0652 0.0652 0.0217 0 0 0 0 0 0 0 0
UR-c 15 0.1336 0.0382 0.0191 0.0095 0.0038 0.0038 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UR-d 16 0.981 0.9619 0.8476 0.7714 0.5333 0.3333 0.2095 0.1238 0.0571 0.0286 0.0286 0.019 0.0095 0.0095 0.0095 0 0 0 0 0
UR-e 17 0.8878 0.495 0.1804 0.0661 0.0441 0.024 0.02 0.018 0.018 0.012 0.01 0.008 0.008 0.006 0.002 0.002 0.002 0.002 0.002 0
UR-f 18 1 1 0.9512 0.9512 0.9512 0.9512 0.9512 0.9024 0.7561 0.561 0.439 0.3171 0.2683 0.1707 0.0976 0.0732 0.0488 0.0488 0 0
UR-g 19 0.7692 0.5577 0.4154 0.3577 0.2692 0.2 0.1423 0.1077 0.0885 0.0808 0.0615 0.0577 0.0423 0.0269 0.0269 0.0269 0.0269 0.0154 0.0154 0.0038
KA-a 20 0.4286 0.1224 0.0816 0.0612 0.0408 0.0408 0.0408 0.0408 0.0408 0.0408 0.0204 0.0204 0 0 0 0 0 0 0 0
EN-a 21 0.9058 0.5067 0.1973 0.0807 0.0269 0.0224 0.0179 0.0135 0.009 0.009 0.0045 0.0045 0.0045 0 0 0 0 0 0 0
EN-b 22 0.2072 0.009 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EN-c 23 0.5 0.1743 0.0321 0.0275 0.0138 0.0046 0.0046 0 0 0 0 0 0 0 0 0 0 0 0 0
EN-d 24 1 0.963 0.8889 0.8519 0.4074 0.2593 0.2593 0.1111 0.037 0.037 0.037 0.037 0.037 0.037 0 0 0 0 0 0
EN-e 25 0.3889 0.1667 0.0185 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IC g\d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
GN-a 1 0.0246 0.0123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GN-b 2 0.9875 0.85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GN-c 3 0.0333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GN-d 4 0.9706 0.0588 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GN-e 5 0.7959 0.2653 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GN-f 6 1 0.9302 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GO-a 7 0.0652 0.0217 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GO-b 8 0.6154 0.2735 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GO-c 9 0.0465 0.0116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GO-d 10 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GO-e 11 0.8776 0.2857 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GO-f 12 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UR-a 13 0.0571 0.0143 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UR-b 14 0.9783 0.913 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UR-c 15 0.0095 0.0038 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UR-d 16 0.7714 0.2667 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UR-e 17 0.0661 0.0341 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UR-f 18 0.9512 0.3415 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UR-g 19 0.3577 0.1769 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
KA-a 20 0.0612 0.0204 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EN-a 21 0.0807 0.0404 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EN-b 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EN-c 23 0.0275 0.0183 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EN-d 24 0.8519 0.5185 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EN-e 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table F.41: Ywd: Bed occupation from last planning period at ward w d days into current planning period.

Ward w\d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
MC 1 12.7463 10.0159 7.8196 6.0185 4.6257 3.5457 2.7226 2.0669 1.5641 1.1611 0.8521 0.6264 0.4366 0.288 0.1591 0.0709 0.0137 0 0 0
IC 2 0.0246 0.0123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table F.42: Patterns data. Set of patternsM with indication of whether they are in the subset of extendedMX or the non-extended patternsMNX and
which specialty they belong toMS

s . Amg is the numbers in the matrix indicating how many operations from group g that are included in pattern m.

G \M g\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
GN-a 1 1 2 1 1 3 2 4
GN-b 2 1 1
GN-c 3 1
GN-d 4 1
GN-e 5 1 1 1
GN-f 6 1
GO-a 7 1 2 1 1 1 1 3 2
GO-b 8 1 1 1
GO-c 9 1 1 2
GO-d 10
GO-e 11 1 1
GO-f 12 1 1
UR-a 13
UR-b 14
UR-c 15
UR-d 16
UR-e 17
UR-f 18
UR-g 19
KA-a 20
EN-a 21
EN-b 22
EN-c 23
EN-d 24
EN-e 25

Duration 94 302.5 378.5 382 238 427 188 396.5 332 282 426 376 97 241 218.5 265 302 194 338 315.5 362 399 437 291 435
Extended 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
Specialty GN GN GN GN GN GN GN GN GN GN GN GN GO GO GO GO GO GO GO GO GO GO GO GO GO

G \M g\m 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
GN-a 1
GN-b 2
GN-c 3
GN-d 4
GN-e 5
GN-f 6
GO-a 7 2 4
GO-b 8
GO-c 9 1
GO-d 10
GO-e 11
GO-f 12
UR-a 13 1 1 1 1
UR-b 14 1 1 1 1
UR-c 15 1 1 1 2 1 1 1 1
UR-d 16 1 1 1 1
UR-e 17 1 1 1 1 1 2 1
UR-f 18 1 1 1
UR-g 19 1 1 1 1 1 1 1
KA-a 20
EN-a 21
EN-b 22
EN-c 23
EN-d 24
EN-e 25

Duration 412.5 388 256 240 91.5 241 136 335 82.5 347.5 392 338.5 331.5 376 322.5 183 332.5 227.5 426.5 174 377 323.5 272 218.5 417.5
Extended 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Specialty GO GO UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR
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Table F.43: Patterns data. Set of patternsM with indication of whether they are in the subset of extendedMX or the non-extended patternsMNX and
which specialty they belong toMS

s . Amg is the numbers in the matrix indicating how many operations from group g that are included in pattern m.

G \M g\m 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
GN-a 1
GN-b 2
GN-c 3
GN-d 4
GN-e 5
GN-f 6
GO-a 7
GO-b 8
GO-c 9
GO-d 10
GO-e 11
GO-f 12
UR-a 13 1 1 1
UR-b 14 1 1 1
UR-c 15 2 1 2 1 3 2 2 2 1 1 1 1 4 3 3 2 2
UR-d 16 1 1 1
UR-e 17 1 2 1 3 2 1 1 1
UR-f 18
UR-g 19 2 1 2 1 2 1 1 1 2 2 1 2 3 1 1 2
KA-a 20
EN-a 21
EN-b 22
EN-c 23
EN-d 24
EN-e 25

Duration 165 439 430 421 423 414 405 274.5 424 319 265.5 415 363.5 310 256.5 406 408 354.5 301 247.5 366 410.5 357 401.5 348
Extended 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Specialty UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR

G \M g\m 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
GN-a 1
GN-b 2
GN-c 3
GN-d 4
GN-e 5
GN-f 6
GO-a 7
GO-b 8
GO-c 9
GO-d 10
GO-e 11
GO-f 12
UR-a 13
UR-b 14
UR-c 15 1 1 1 4 3 2 1
UR-d 16
UR-e 17 2 1 2 1
UR-f 18
UR-g 19 1 2 3 2 3 4 1 2 3 4 5
KA-a 20 1 2 3
EN-a 21 1 2 1 1 1 1
EN-b 22 1 1 2
EN-c 23 1 1
EN-d 24 1 1
EN-e 25 1 1

Duration 446 392.5 339 437 383.5 330 448.5 439.5 430.5 421.5 412.5 136 272 408 172 164 116 217 255.5 344 336 288 389 427.5 328
Extended 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s 3 3 3 3 3 3 3 3 3 3 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5
Specialty UR UR UR UR UR UR UR UR UR UR UR KA KA KA EN EN EN EN EN EN EN EN EN EN EN
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Table F.44: Patterns data. Set of patternsM with indication of whether they are in the subset of extendedMX or the non-extended patternsMNX and
which specialty they belong toMS

s . Amg is the numbers in the matrix indicating how many operations from group g that are included in pattern m.

G \M g\m 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
GN-a 1 1 1 1 2 3 5
GN-b 2 1
GN-c 3 1
GN-d 4 1
GN-e 5 2 1
GN-f 6 1
GO-a 7
GO-b 8 2 1 1
GO-c 9 1 1 1
GO-d 10 1
GO-e 11 1 1
GO-f 12 1
UR-a 13
UR-b 14
UR-c 15
UR-d 16
UR-e 17
UR-f 18
UR-g 19
KA-a 20
EN-a 21 1
EN-b 22 1 1 1 2 1
EN-c 23 1 2 1 1 2 1 2 3 2
EN-d 24 1 1 2 1
EN-e 25 1 1

Duration 280 381 419.5 232 333 371.5 434 404 444 396 348 449 472.5 476 521 476 490.5 520 470 455 482 459.5 506 483.5 520.5
Extended 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

s 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 2 2 2 2 2 2
Specialty EN EN EN EN EN EN EN EN EN EN EN EN GN GN GN GN GN GN GN GO GO GO GO GO GO

G \M g\m 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
GN-a 1
GN-b 2
GN-c 3
GN-d 4
GN-e 5
GN-f 6
GO-a 7 2 2 1 3 3 5
GO-b 8 1
GO-c 9 2 1
GO-d 10
GO-e 11 2 1
GO-f 12 1
UR-a 13 2 1 1 1 1 1
UR-b 14 1 2 1 1 1 1
UR-c 15 1 1 2 1 1
UR-d 16 1 1 2 1 1 1
UR-e 17 1 1 2 1 1 2 1 1 2 1
UR-f 18 1 1 1
UR-g 19 1 1 1 1
KA-a 20
EN-a 21
EN-b 22
EN-c 23
EN-d 24
EN-e 25

Duration 530 459 496 534 532 509.5 485 512 496 497 480 481 482 471 483.5 528 474.5 467.5 512 458.5 518 468.5 509 513 459.5
Extended 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

s 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Specialty GO GO GO GO GO GO GO UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR
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Table F.45: Patterns data. Set of patternsM with indication of whether they are in the subset of extendedMX or the non-extended patternsMNX and
which specialty they belong toMS

s . Amg is the numbers in the matrix indicating how many operations from group g that are included in pattern m.

G \M g\m 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
GN-a 1
GN-b 2
GN-c 3
GN-d 4
GN-e 5
GN-f 6
GO-a 7
GO-b 8
GO-c 9
GO-d 10
GO-e 11
GO-f 12
UR-a 13 1 1 1 1
UR-b 14 1 1 1 1
UR-c 15 3 2 1 3 2 1 3 2 2 1 1 5 4 3 2 2 1 1
UR-d 16 1 1 1 1
UR-e 17 2 3 3 1 1 2 1 2 1
UR-f 18 1
UR-g 19 2 1 2 3 1 2 3 1 2 3 1 1 1 2 2 3
KA-a 20
EN-a 21
EN-b 22
EN-c 23
EN-d 24
EN-e 25

Duration 500 530.5 521.5 512.5 503.5 514.5 505.5 496.5 487.5 515.5 506.5 455 497.5 499.5 488.5 490.5 457.5 502 493 537.5 484 528.5 475
Extended 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

s 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Specialty UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR

G \M g\m 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
GN-a 1
GN-b 2
GN-c 3
GN-d 4
GN-e 5
GN-f 6
GO-a 7
GO-b 8
GO-c 9
GO-d 10
GO-e 11
GO-f 12
UR-a 13
UR-b 14
UR-c 15 5 4 3 2 1
UR-d 16
UR-e 17 2 1
UR-f 18
UR-g 19 3 4 1 2 3 4 5 6
KA-a 20
EN-a 21 3 2 2 1 1 1 1
EN-b 22 1 2 1 3 1 1 1
EN-c 23 1 1 1 1 1 2 3 3 4
EN-d 24 1 1 1
EN-e 25 1 2 1 1

Duration 519.5 466 540 531 522 513 504 495 472.5 511 516 508 460 500 452 505 492 497 535.5 487.5 520 512 464
Extended 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

s 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Specialty UR UR UR UR UR UR UR UR EN EN EN EN EN EN EN EN EN EN EN EN EN EN EN
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