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Summary

A global transition to low carbon and renewable energy is happening now, with offshore

wind at the center of the revolution. However, challenges related to the installation of

offshore wind turbines must be solved to realize the full potential of offshore wind in a

sustainable future and to ensure profitability. Today, the number of eligible installation

vessels is scarce, and vessel day rates make a significant contribution to the installation

cost and wind farm life cycle cost. The problem studied in this thesis is that of designing

charter contracts for installation vessels at offshore wind farms. The goal is to minimize

both the charter costs and project duration of the installation phase, while considering

uncertainty in the weather conditions and complying with many real-life restrictions. More

specifically, the mix of vessels that should be chartered, the start and end date of these

vessels’ charter periods, as well as which options to include in their contracts must be

decided on. To achieve this, operational schedules that include information on which

activities the chartered vessels are to perform, and when, are considered.

A two-stage stochastic mathematical formulation for the design of charter contracts is

presented. As the formulation proves to be difficult to solve for realistic test instances

using a commercial solver, we propose a Dantzig-Wolfe reformulation of the mathematical

formulation that combines schedules into a feasible project plan in order to design the

contracts. The schedules are generated by a number of subproblems formulated as shortest

path problems with resource constraints on acyclic networks of nodes, and we present two

labeling algorithms to solve these. A branch-and-price algorithm with the extension of

a primal heuristic is implemented to solve the reformulated problem. A similar problem

with all the considered aspects has to the best of our knowledge not previously been

investigated in published research. Furthermore, branch-and-price is an approach scarcely

used to solve stochastic problems and the research on this topic is limited.

We find that the branch-and-price algorithm succeeds at finding much better dual bounds

compared with a commercial mixed integer programming solver. Computational results

reveal that our method finds up to 700% better dual bounds. This is mainly due to the

improved linear programming relaxation from the Dantzig-Wolfe reformulation. Further,

the implemented primal heuristic is able to exploit the generated schedules to find good

integer feasible solutions, resulting in lower optimality gaps for larger test instances.



Sammendrag

Verdenssamfunnet tar sikte p̊a å bli et lavkarbonsamfunn basert p̊a fornybare energikilder

innen kort tid. Havvind har vist potensiale til å kunne spille en sentral rolle i denne over-

gangen, men det er b̊ade tekniske og økonomiske utfordringer som m̊a løses før dette kan

realiseres fullt ut. En av utfordringene er at det i dagens marked er svært f̊a fartøy som

kan bidra i installasjonsfasen av en offshore vindpark. Dette resulterer i høye leiekost-

nader som gir et betydelig bidrag til de totale installasjonskostnadene og vindparkens

livssykluskostnad. I denne masteravhandlingen studerer vi et optimeringsproblem knyt-

tet til leiekontraktsbestemmelser for disse fartøyene under værusikkerhet, med sikte p̊a å

minimere b̊ade kostnader og varigheten av installasjonsfasen. Mer spesifikt, er m̊alet å

bestemme hvilke typer fartøy som skal leies inn, start- og slutt dato for deres leieperiode,

samt om det skal inkluderes kontraktuelle opsjoner. For å oppn̊a dette ser vi blant annet

p̊a operasjonelle tidsplaner med scheduling av aktiviteter for hvert fartøy.

Vi presenterer to ulike matematiske formuleringer av problemet. Først presenteres en to-

stegs stokastisk modell som viser seg å være vanskelig å løse for realistiske test instanser

ved bruk av en kommersiell solver. Derfor har vi gjort en Dantzig-Wolfe reformulering av

modellen og utviklet en branch-and-price algoritme med en enkel primal heuristikk som

løsningsmetode. I den reformulerte modellen kombineres tidsplaner for hvert enkelt fartøy

til en gyldig prosjektplan for fullføring av hele vindparken. Subproblemene som benyttes i

branch-and-price metoden løses som korteste-vei-problemer med ressursbegrensninger p̊a

et asyklisk nettverk, og vi presenterer to ulike labeling algoritmer for å løse disse. Et

lignende problem med tilsvarende detaljniv̊a har s̊a vidt vi vet ikke blitt studert i tidligere

publisert litteratur. Videre skiller v̊art arbeid seg fra eksisterende forskning ved at det er

lite utbredt å benytte branch-and-price for å løse stokastiske modeller.

V̊are resultater viser at ved å løse den dekomponerte modellen med branch-and-price

lykkes vi med å oppn̊a bedre duale grenser enn de som ble funnet med kommersiell solver

for den opprinnelige to-stegs modellen. V̊ar dekomponeringsmetode finner opp til 700

% bedre duale grenser. Dette skyldes hovedsakelig at den reformulerte modellen har en

sterkere LP-relaksering. Ved hjelp av primalheurisitkken er vi ogs̊a i stand til å oppn̊a et

lavere optimalitetsgap p̊a større testinstanser.
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Chapter 1

Introduction

Wind energy is vital to reach climate targets and to secure an affordable energy supply.

By 2030, the European Union (EU) will invest almost 20 billion Euros in the wind energy

market. Offshore wind will be a big part of this, and 60% of the investments will be aimed

at offshore wind specifically (Wu et al. 2019). Wind is an energy source that is abundantly

available and offshore wind farms can be installed and operated while respecting nature

and other users of the sea (NorthWind 2021). Today, offshore wind provides only a small

fraction of the global electricity supply, but it is set to expand significantly in the coming

decade (Lee and Zhao 2021). The European Commission predicts that there will be 300

GW installed offshore wind capacity in the EU by 2050 (NorthWind 2021). However,

success will depend on the development of cost-competitive solutions.

To enable the predicted increase in new offshore wind farm installations, the necessary

annual installation rate is about 28 GW/year by 2030 and about 45 GW/year by 2050

(Jagite 2022). Challenges related to installation and maintenance of turbines must be

addressed to realize the full potential of the wind energy sector in a sustainable future.

Today, the number of eligible installation vessels is scarce, and charter costs make a signi-

ficant contribution to the installation cost and wind farm life cycle cost. Thus, developing

optimized installation strategies for offshore wind farms is of interest to enable the massive

deployment of future offshore wind farms and to reduce costs.

The problem studied in this thesis is that of designing charter contracts for installation

vessels at offshore wind farms. A heterogeneous fleet of specialized vessels is needed to

perform the installation of offshore wind turbines. Charter contracts for these vessels

are entered into years in advance of the planned installation process. The vessels’ ability

to perform installation activities is highly weather dependent, and as strategic charter

decisions must be made without knowledge of weather forecasts for the time of installation,

the design of charter contracts is prone to uncertainty and risk. To hedge against the need

to charter extra vessels in the event of delays, charter contracts usually include options

to extend the contract period. The contract design problem comprises decisions on which

1



Chapter 1. Introduction

mix of installation vessels that should be chartered, the start and end date of these vessels’

charter period, and which options to include in their contracts. To decide this, we generate

operational schedules for the chartered vessels which specify when a vessel is to perform

certain installation activities. The optimal charter contracts minimize both charter costs

and end date of the installation process under the uncertainty of weather conditions.

In this thesis, a two-stage stochastic mathematical formulation for design of charter con-

tracts is presented. The problem of designing charter contracts under the uncertainty of

weather conditions is complex, and models with the necessary level of detail to describe

a realistic wind farm installation project are difficult to solve within reasonable computa-

tional time. The purpose of this thesis is to develop an improved solution method for the

problem. For this reason, we apply a Dantzig-Wolfe reformulation of the problem that

combines schedules into a feasible project plan in order to design the contracts. The sched-

ules are generated by a number of subproblems formulated as Shortest Path Problem with

Resource Constraints (SPPRC). We then develop a Branch-and-Price (B&P) algorithm

with the extension of a primal heuristic algorithm to solve the contract design problem.

Testing revealed that by introducing a Dantzig-Wolfe reformulation of the model, a tighter

Linear Programming (LP) relaxation of the problem is obtained. Further, the implemen-

ted B&P algorithm requires fewer Branch-and-Bound (B&B) nodes than the commercial

solver in order to obtain dual bounds of higher quality.

A similar problem with all the considered aspects has to the best of our knowledge not

previously been investigated. The existing literature on optimization of offshore wind farm

installation is scarce, and the majority does not consider the fleet size and mix aspect of

the problem. Our contribution is that we provide stochastic mathematical formulations,

that consider weather uncertainty and the use of multiple vessels for the installation of

an offshore wind farm. We also include the aspect of contractual options, which to our

knowledge has not been done in any published research papers. Furthermore, B&P is

an approach scarcely used to solve stochastic problems and the research on this topic is

limited.

The remainder of this thesis is organized as follows. In Chapter 2 we provide a general

introduction to the offshore wind farm installation process. Based on this, a problem

description is formulated in Chapter 3. Further, a review of scientific papers on relevant

problems is provided in Chapter 4. A two-stage stochastic formulation for the design of

charter contracts for installation vessels at offshore wind farms is presented in Chapter 5,

while a decomposed formulation for the problem is presented in Chapter 6. Chapter 7

gives a detailed description of how we apply B&P to solve the problem. In Chapter 8 we

explain the input data and introduce problem instances that form the basis for testing

the performance of our models. Computational results are presented and analyzed in

Chapter 9. We conclude and present final remarks in Chapter 10. Finally, we point out

interesting directions for future research on the problem in Chapter 11.

2



Chapter 2

Background

In this chapter, we provide a general introduction to offshore wind farm installation. The

content is to a large extent the same as in our earlier work, Bruu and Thorsen (2021). First,

we introduce the concept and main characteristics of an offshore wind farm in Section 2.1.

In Section 2.2 we provide a description of the offshore wind supply chain, with emphasis

on the main offshore installation activities and concepts. Common installation vessels are

further described in Section 2.3. Finally, we describe relevant aspects of vessel charter

contracts and how weather affects the installation process in Section 2.4 and Section 2.5,

respectively.

2.1 Anatomy of Offshore Wind Farms

An offshore wind farm is a power plant located on the continental shelf that generates

electricity by exploiting the natural movement of air. A systematic overview of the main

components of a wind farm is presented in Figure 2.1.

Figure 2.1: The main components of an offshore wind farm (DNV-GL 2018, p. 11).

3



Chapter 2. Background

The most important components of the plant are the wind turbines: generators that

convert wind power into electric power (Kyriakopoulos 2021). The number of turbines per

wind farm can vary from only a couple to more than 100. In 2019 the median number

of connected turbines per new wind farm connected to the European grid was 43 (Walsh

et al. 2020). The turbines are linked with array cables that connect them to an offshore

substation. At the substation, the voltage is increased before the power is transmitted to

onshore facilities through export cables (Ng and Ran 2016).

2.2 Offshore Installation Activities

Figure 2.2 illustrates the supply chain for offshore wind farms. Prior to installation, the

components must be manufactured. Depending on the distance from the manufacturing

port to the offshore site, finished components are transported either directly to the offshore

location or via an intermediate port facility, known as marshalling or staging port. Once

all turbines have been installed and connected to the grid, the Operations & Mainten-

ance (O&M) phase starts. This phase lasts for the entire life span of the wind turbines,

approximately 20 to 25 years. The last step in the supply chain is decommissioning.

Figure 2.2: The supply chain for offshore wind farms.

During the installation phase, the installation vessels operate in cycles. First, the vessel

is loaded with components, then the vessel sails to the offshore site where all components

on board are installed before the vessel returns to port to load a new set of components.

The main offshore installation activities to be performed during the installation of an

offshore wind farm are foundation installation, cable installation and turbine installation.

In addition to these main activities, one or more offshore substation must also be installed.

Substation installation is a heavy lift operation that can be done in parallel with the other

activities (BVG Associates 2019) and is not further discussed in this thesis. Due to varying

site conditions and the continuous development of sub-structures and turbine sizes, there

is no current standard for how to conduct these installation activities (Jiang 2021a). In the

following sub-sections, a brief overview of common methods for each activity is described.

Installation methods for floating wind turbines are out of scope for this thesis and have

been omitted.

4



Chapter 2. Background

2.2.1 Foundation Installation

The first component to be installed for an Offshore Wind Turbine (OWT) is the founda-

tion. Common foundation structures for bottom-fixed OWTs are monopile, Gravity-Based

Foundation (GBF), and jacket. Schematic drawings of these foundations are shown in Fig-

ure 2.3.

Figure 2.3: Illustration of monopile, gravity based and jacket foundations (Jiang 2021a).

Of these three foundation structures, the monopile is most used, followed by jackets

(Sánchez et al. 2019). The installation method differs based on which foundation type

is used. Choice of foundation depends on water depth and seabed characteristics. Table

2.1 is adapted from Sánchez et al. (2019) and provides some of the most accepted seabed

depth ranges for which the separate foundations are found suitable. However, in addition

to depth, other factors such as experience and resource availability also affect the preferred

solution (Sánchez et al. 2019).

Table 2.1: Seabed depth limitations for different foundation concepts (Sánchez et al.

2019).

Foundation Ashuri and Zaaijer, 2007 DNV, 2013 Iberdrola, 2017

GBF 0-10 m 0-25 m 0-30 m

Monopile 0-30 m 0-25 m 0-15 m

Jacket >20 m 20-50 m >30 m

5



Chapter 2. Background

2.2.2 Turbine Installation

Once the foundation is in place, installation of the actual wind turbine can begin. A

turbine consists of four main components: tower, nacelle, hub and blades. The three

main assembly strategies used for installation of OWTs are bunny ear, full rotor star

and separate parts installation (Vis and Ursavas 2016, BVG Associates 2019). For bunny

ear and full rotor star installation, parts of the assembly take place at port, reducing the

number of offshore operations. Despite requiring the highest number of offshore operations,

the separate parts method is the current preferred practice (BVG Associates 2019). This

might be because an increased number of pre-assembled pieces may prevent efficient use

of deck space on the transport vessel as well as it will require cranes with larger lifting

capacities (Jiang 2021a).

Figure 2.4 shows images of each of the methods mentioned above used in practice. The

images also illustrate the use of deck space and show jack-up vessels that are commonly

used for turbine installation due to the need for a stable platform for the tall lifting

operations (BVG Associates 2019).

(a) Bunny ear (b) Rotor star (c) Separate parts

Figure 2.4: Different turbine assembly strategies (Jiang 2021b).

2.2.3 Cable Installation

As explained earlier, array cables connect the OWTs to an offshore substation, and ex-

port cable enables transmission of power from the substation to onshore facilities. The

installation of these cables involves three main activities: cable laying, cable burial and

cable pull-in. Cable pull-in refers to the connection of the cable to either a turbine, sub-

station, or shore (BVG Associates 2019). According to our interviews with Ulstein and

Clarkson Platou, it is common to install the array cables during foundation installation,

while installation of export cables can be considered as an independent operation.

6
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There are two main strategies used for cable installation: simultaneous lay and burial,

and post-lay burial (BVG Associates 2019, Ng and Ran 2016). In the former, laying and

burial operations are coupled and performed by a single vessel. In the latter, laying and

burial is a two-stage process, performed by separate vessels (BVG Associates 2019).

2.3 Vessel Concepts

Various offshore vessels are involved during the installation phase of an offshore wind farm.

Other than the choice of technology and assembly strategies, the selection of vessels for

each activity is based on market availability, day rates and turbine sizes (Jiang 2021a). A

summary of common vessel concepts is provided in Table 2.2. The table is based on Jiang

(2021a), Ahn et al. (2017) and BVG Associates (2019). The day rates listed in the table

do not necessarily represent the present market and should therefore only be considered

as estimates.

Previously the fleet for foundation installation and turbine installation overlapped, but due

to increasing component sizes and weights, specialized vessels for the different operations

are entering the market, resulting in a diverging fleet for these operations (BVG Associates

2019). Whilst the most critical vessel characteristic for foundations installation vessels is

the lifting capacity in terms of weight, the most critical requirement for installing turbine

components is the crane’s lifting height capabilities. Thus, foundation installations are

increasingly being performed by floating heavy lift vessels, while specially designed jack-

up vessels with higher cranes and longer legs, Wind Turbine Installation Vessel (WTIV),

are used to install turbine components (Interview with Ulstein, Appendix A).

2.4 Charter Contracts

Charter contracts for vessels are usually entered two to four years in advance of the planned

installation process. The main elements of the contract are cost agreements and duration

of the charter period, and the contract parties are the charterer and the shipowner. All

information in this section is based on an interview with Clarksons Platou (Appendix B).

There are two main types of contracts used for offshore wind farm installation: time

charter contracts and fixed price contracts. Of these, time charter contracts are most

common. In time charter contracts the charge is based on day rates. When entering the

contract, the charterer agrees to lease the vessel (including crew) for a fixed number of

days. Additionally, the time charter contract may include options for the charterer to

extend the contract. This can be desirable in case of delays. Besides day rates, a time

charter contract includes a fixed project cost. This cost includes costs for mobilization

and engineering work. Variable costs such as fuel and harbor dues are not included in a

7



Chapter 2. Background

time charter contract. In fixed-price contracts the contract parties agree on a fixed price

for the shipowner to perform some task, for instance to install a given number of OWT

foundations.

In time charter contracts, day rates are influenced by the length of the charter period.

To secure revenue, shipowners aim to make the fixed charter period as long as possible.

Shorter or more flexible time charters may thus lead to higher day rates. Flexibility in the

form of options is always in favor of the charterer. A contract can contain several options

of different lengths and day rates that can be exercised individually. The charterer must

give reasonable notice if they want to exercise the agreed upon options, and if the option

is exercised, the charterer commits to paying day rates for the entire option period.

Table 2.2: Vessel concepts used for offshore wind farm installation.

Vessels Characteristics Day rates (USD)

Tugboat Used for towing non self-propelled 1 000 - 5 000

barges or floating foundations

Crane barge Crane capacity 1 000 - 4 000 tons 80 000 - 100 000

Jack-up barge Self-elevating 100 000 - 180 000

Seabed depth limitations

Not self-propelled

Crane capacity 200 - 1 300 tons

Cargo barge Large deck area for cargo 30 000 - 50 000

Not self-propelled

Monohull heavy Loading and lifting of heavy objects 250 000

lift vessel (e.g. OWT foundations)

Wind turbine Purpose-built jack-up vessel 150 000 - 250 000

installation vessel Self-elevating

Seabed depth limitations

Crane capacity 800 - 1 500 tons

Semi-submersible Large loading and lifting capacity 280 000 - 500 000

vessel Grat lifting height

Crane capacity 2 000 - 20 000 tons

Rock-dumping Dumping rocks for seabed 20 000 - 40 000

vessel preparations, scour protection

or cable burial

Cable-laying Cable installation (and burial) 115 000

vessel Equipped with ROV

Cable carousel with capacity up to

7 000 tons

Cable burial Used for post-lay cable burial 120 000

vessel Equipped wit various burial tools
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2.5 Weather Impacts

Weather plays a critical role in the planning and execution of installation activities for

OWTs. Due to safety considerations and vessel capabilities, each offshore operation can

only be performed under certain limits for wave height and wind speed. If an operation

cannot be performed due to the current weather conditions, this is known as a ”weather

delay”. Weather delays are common in offshore operations and make up a considerable

cost as vessel day rates must be paid regardless of whether or not the vessel can operate

due to weather conditions (BVG Associates 2019; Ng and Ran 2016).

Table 2.3 is adapted from Paterson et al. (2018) and shows upper limits for wind speed

and wave height as well as estimated time spent for different installation activities per

OWT. However, these limits may be a bit conservative. For instance, a report by BVG

Associates (2019) states that the operating limits have increased and that the current

maximum wind speed for blade installation is 13 m/s at hub height. Activities such as

loading and unloading of turbine components in port and transshipment could also be

added to the list of activities affected by weather, this has been done in Rippel et al.

(2019). In the review by Rippel et al. (2019) it is also revealed that the installation of the

separate turbine parts have different limits, for instance, installation of turbine towers is

less sensitive to wind speed than installation of turbine blades.

Table 2.3: Weather limits for installation activities (Paterson et al. 2018).

Activity Weather limits Duration (h/OWT)

Wind Speed (m/s) Wave Height (m)

Foundation 12 2 48

Transition Piece 12 2 24

Turbine 8 2 24.5

Scour Protection 15 2.5 14.4

Cable Installation 15 1.5 31.7

Cable Burial 12 3 36

In general, the weather is harsher during winter. Hence, to minimize risk of weather delays,

it is common to plan for all installation activities to be performed in the summer months.

This means the vessel chartering market is prone to seasonality: high demand during

the summer months, followed by excess capacity in the winter. These market dynamics

influence the charter prices, and if installation activities are planned during the winter

months, lower day rates can be obtained. However, this price reduction must be seen in

combination with the higher expectancy of weather delays.
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Problem Description

The problem studied in this thesis is that of designing charter contracts for installation

vessels at offshore wind farms. The goal is to design a charter strategy that minimizes

both the overall charter costs and the completion time of the wind farm. Moreover, a

feasible strategy respects the operational restrictions elaborated below.

A wind farm consists of a predefined number of identical OWTs. The installation of

an OWT requires the following activities: foundation installation, cable installation and

turbine installation. As described in Section 2.2, the nature and details of these activities

depend on installation strategy and foundation design. In addition to the installation

activities, activities such as loading components onto a vessel in port and sailing between

port and the offshore site must be considered. Some activities must be performed in a

given order, for instance, the use of a monopile foundation requires a transition piece to

be in place before the turbine is installed. Moreover, only one activity can be performed

for a given OWT at a given time.

A specialized fleet of vessels is needed to perform the installation activities. The vessels

have different capacity and capability limitations and are often specialized to perform

certain activities. All vessels have upper limits on loading and lifting capacity in terms of

weight. Loading capacity is also determined by component sizes and available deck area

for storing them on board the vessel. Additionally, the installation activities have upper

limits for at which wave height and wind speed they can be performed, which restricts

when a vessel can perform specific activities.

Due to operational limitations, the installation of an offshore wind farm is highly influenced

by uncertain weather conditions. As a result of this it is common with weather delays.

Contractual agreements for vessel chartering are made years in advance of the installation

phase. Due to the long planning horizon and uncertainty related to weather conditions,

options for the charterer to extend the contract for a specific number of days may be

included in the charter contract. Options are included to hedge against the need to charter
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extra vessels in the event of weather delays. Then, if it becomes necessary to extend the

charter period for certain vessels in order to complete the planned activities arises, the

options can be exercised at a predefined cost.

All charter contracts include the following two cost components: variable costs and fixed

costs. The variable costs include daily charter rates and operating costs, whilst the fixed

costs include ship expenses, insurance, depreciation and overhead costs. Of the two vari-

able cost terms, charter rates are dominant and are thus the most important to consider.

Additionally, as described above, the charter contract may include options. The total

cost related to options also consists of two parts; an inclusion cost and an exercising cost.

The inclusion cost is paid regardless of whether the option is used or not, whereas the

exercising cost is only paid if the option is exercised.

Once the wind farm is installed and connected to the electricity grid, it starts to generate

income through production of electricity. If the installation phase is prolonged unnecessary,

the excess installation time can be regarded as an increased installation cost as it causes

loss of income due to loss of electricity production time. Hence, completion time of the

wind farm is of importance.

In summary, a charter strategy for vessels used to install an offshore wind farm should

minimize both charter costs and the end date of the installation phase. The decisions to

be made are which vessels to charter, the start and end date of their charter period, as well

as what options to include in the contracts. In order to evaluate the cost and effectiveness

of a given strategy, the expected installation costs and end date must be evaluated. This

involves assignment of activities to vessels in accordance with operational limitations, and

to provide installation schedules for the vessels that respect precedence requirements in

the installation sequence. Lastly, one must decide whether or not the options included

should be exercised.
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Literature Review

In this chapter, we provide a review of existing literature that is relevant for the problem

related to the design of charter contracts for installation vessels at offshore wind farms.

Firstly, we explain the search strategy in Section 4.1. The focus of Section 4.2 is literature

that directly addresses the planning problem for offshore wind farm installation, while

Section 4.3 discusses literature on the more general maritime fleet size and mix problem.

The content in these sections is to a large extent based on our earlier work (Bruu and

Thorsen 2021), but with added consideration for solution methods. In Section 4.4 we

review relevant literature on the application of B&P as a solution method for stochastic

problems. Finally, we summarize the contribution of this thesis in Section 4.5.

4.1 Search Strategy

The first part of the literature review is to a large extent based on cited articles in Rippel et

al. (2019), who provide a review of existing research in planning approaches for installation

of offshore wind farms. To the best of our knowledge, the literature on optimization of

offshore wind farm installation is limited. Therefore, as the installation of offshore wind

farms requires a fleet of different types of specialized vessels, we have included a review of

literature on the Maritime Fleet Size and Mix Problems (MFSMP). The MFSMP aims to

find the necessary number and type of vessels required to meet a service demand, usually

with the objective of minimizing costs. Many MFSMPs also include scheduling decisions,

which is highly relevant for our problem. When reviewing literature om MFSMP, the main

focus was given to stochastic formulations and solution methods for these. Literature on

the use of B&P for stochastic problems is also reviewed. Here, the main focus is given to

articles studying problems that resemble certain aspects of our problem, such as scheduling

decisions and two-stage stochastic formulations.
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The primary search engine used in the literature search was Google Scholar, a freely

accessible search engine for academic papers. Google Scholar ranks publications based on

where they are published, their author(s), and how often and recently it has been cited.

This ranking was used to confine our search. Our search words are presented in Table 4.1.

Table 4.1: Summary of search words used in the literature search.

Offshore Wind Farm Installation MFSMP Branch-and-Price

Stochastic Stochastic Stochastic

Weather uncertainty Weather uncertainty Dantzig-Wolfe

Planning/scheduling Offshore wind Planning/scheduling

4.2 Offshore Wind Farm Installation Problems

Operations research is applied within the field of installation of offshore wind farms for

scheduling of installation activities and to find optimal fleet configurations. Ait Alla et

al. (2013), Barlow et al. (2018), Irawan et al. (2017), Scholz-Reiter et al. (2011, 2010)

and Ursavas (2017) present (mixed) linear integer programs for this purpose. Common

modelling assumptions in these papers are that all OWTs are assumed to be in the same

location, that necessary components are available at the harbor, and that a predefined

installation sequence must be obeyed for each turbine. Different approaches are used to

enforce the predefined installation sequence. While Barlow et al. (2018) use an approach

based on project-scheduling, Scholz-Reiter et al. (2011) and Ursavas (2017) combine typical

multi-period production and job-shop formulations to ensure precedence requirements for

the installation activities.

Most of the reviewed papers consider the influence of weather conditions on the vessels’

ability to perform installation activities, but very few capture its uncertainty. Ait Alla et

al. (2013), Irawan et al. (2017), Scholz-Reiter et al. (2011) and Ursavas (2017) use discrete

weather categories, such as good, medium and bad to model weather conditions. Amongst

these, only Ursavas (2017) capture the uncertain nature of weather conditions through a

two-stage stochastic model, where the weather conditions are realized in the second stage,

and the first stage consists of charter decisions. The most common approach, which is

used in the remaining of the mentioned papers, is to pre-generate a weather scenario which

is given as deterministic input to the model. The generation of this weather scenario is

handled in different ways. For instance, Ait Alla et al. (2013) use weather data based on

forecasts from the last 50 years, while Irawan et al. (2017) use an algorithm to randomly

generate daily weather conditions for a year.
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Barlow et al. (2018) handle weather effects through a mixed-method approach that com-

prises a simulation algorithm and an optimization model. They use simulation to assign

activities to vessels, while the optimization model is used to find a schedule minimizing the

total duration of the installation project given the simulated assignment of activities. The

simulation model explores the impact of starting operations at different months through-

out the year based on historical weather data. Their method was successfully applied to

a case study with 120 turbines.

A common modelling choice for offshore wind farm installation problems is to use pre-

defined loading sets. This is done in Ait Alla et al. (2013), Scholz-Reiter et al. (2011) and

Ursavas (2017). A loading set consists of a specific number of the different OWT compon-

ents. Prior to each time a vessel leaves port, one of the predefined loading sets must be

selected, and its components loaded on board. The chosen loading set then defines which

activities the vessel can perform on its next voyage. Irawan et al. (2017) also use pre-

defined configurations of what a vessel should be loaded with to perform certain activities,

but the authors do not explicitly call these configurations for loading sets. Another com-

mon modelling feature is the use of discrete time periods, which is done in both Ait Alla

et al. (2013) and Irawan et al. (2017). Scholz-Reiter et al. (2011) and Ursavas (2017) use

discretization of time in their weather modelling, but vessel operations are not limited by

this discretization.

Two differentiating features of the existing literature are the number of vessels considered

in the models, and the measure of the objective function. Scholz-Reiter et al. (2011)

and Ursavas (2017) aim to minimize the duration of the project and consider only a

single installation vessel that can perform two activities: installation of sub-structures

and installation of top-structures. Barlow et al. (2018) also present an objective related

to minimization of project duration, but similar to Ait Alla et al. (2013) and Irawan et

al. (2017), their model considers multiple vessels and the fact that different vessels have

different capabilities in terms of which activities they can perform. Contrary to Scholz-

Reiter et al. (2011), who state that they consider minimization of the installation time to

be proportional to the installation costs, Irawan et al. (2017) considers these objectives to

be conflicting and accounts for this by introducing a bi-objective model. Ait Alla et al.

(2013) only minimize installation costs in their objective.

The different takes on the objective function can to some extent be seen in relation to the

number of vessels considered in the models. With only one installation vessel, cost and

project duration may be contemplated as proportional, but with multiple vessels this is

no longer the case. Hiring many vessels over a shorter time period may allow for faster

completion of the wind farm, but due to fixed vessel costs and limited availability this

can be more costly than hiring fewer vessels to complete the wind farm over a longer time

period.
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Some papers solely focus on the installation of the top-structure and try to identify the

best turbine installation strategy by resolving the problem for different methods. Backe

and Haugland (2017) and Sarker and Faiz (2017) have formulated mathematical models for

this purpose. While Backe and Haugland (2017) also consider decisions regarding which

vessels and ports to use to minimize installation costs under different strategies, Sarker

and Faiz (2017) have predefined a homogeneous fleet of jack-up vessels and focus on time

minimization. A weakness of the latter is that weather impacts are not accounted for. In

Backe and Haugland (2017), the weather is considered in a deterministic manner based

on historic data. Furthermore, the model of Sarker and Faiz (2017) is formulated as an

algorithm rather than an optimization problem and does not consider scheduling.

The installation of an offshore wind farm is a complex problem, and the proposed models

are often complicated and hard to solve to optimality for realistic problem instances.

Scholz-Reiter et al. (2011) solve their single vessel model for a test instance with 12 turbines

and three weather categories in less than a minute. Nonetheless, the authors point out that

increasing the number of turbines and weather categories increases the solution time and

ultimately makes the model unsolvable. Backe and Haugland (2017), Irawan et al. (2017)

and Ursavas (2017) face similar problems with their models. To handle larger and more

realistically sized test instances with more vessels, time periods and turbines, Irawan et

al. (2017) propose metaheuristic approaches using Variable Neighbourhood Search (VNS)

and Simulated Annealing (SA). Their study concludes that the metaheuritic approaches

generally outperform the exact method used in CPLEX in terms of computing time, and

that VNS seems to be more efficient than SA. To handle a larger number of weather

scenarios in their model, Ursavas (2017) develops a Benders based decomposition method

to solve linear relaxations of the model and uses B&B to find integer solutions. The model

is successfully applied to two real-life projects in the North Sea.

Several simulation models have also been proposed to investigate aspects related to install-

ation of offshore wind farms. Lange et al. (2012) develop a tripartite tool consisting of an

input tool, a simulation tool and an evaluation tool which can be applied to several parts

of the offshore wind supply chain. Due to the wide scope of their decision tool, the install-

ation process is simplified compared to other models solely focusing on the installation

process. Beinke et al. (2017) suggests a discrete-event and agent-based simulation model

aimed at examining the potential of a joint use of resources in the installation phase of

offshore wind energy, whilst Muhabie et al. (2018) has implemented a discrete-event sim-

ulation approach to investigate the effect of stochastic parameters on different installation

procedures.
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4.3 Maritime Fleet Size and Mix Problems

Pantuso et al. (2014) present a literature survey for the MFSMP. They distinguish between

single-period MFSMP, which comprises problems that aim to find a fleet of vessels that is

to remain unchanged over time, and multi-period MFSMP, also referred to as the Maritime

Fleet Renewal Problems (MFRP), which comprises problems that seek adjustments to

an existing fleet to accommodate market changes. Single-period MFSMPs are further

categorized as either strategic or short-term. Strategic MFSMPs usually involve building,

purchasing, sale and/or scrapping of ships. The problem studied in this report is closest

related to what Pantuso et al. (2014) refer to as the short-term MFSMP, dealing with

chartering and deployment of vessels in a constant fleet.

4.3.1 Offshore Wind Farm Operations and Maintenance

The MFSMP has been applied within several different maritime industries, but within the

offshore wind supply chain existing research mainly revolves around O&M. The offshore

wind farm O&M problems aim to identify a cost-efficient fleet of vessels, and sometimes

helicopters, to support O&M operations. There are several similarities to the installation

problem: the operations are weather dependent, different vessel concepts are required for

different types of activities, and vessel scheduling and charter periods must be considered.

However, the nature of the problem differs from the installation problem due to uncer-

tainty about which task will be necessary to perform and the use of offshore depot bases.

Furthermore, while installation is a one-time event in the life span of an offshore wind

farm, O&M is a reoccurring planning problem, and acquisition of vessels on a permanent

basis is more relevant.

As for offshore wind farm installation, the influence of weather conditions is relevant for

the vessels’ ability to perform O&M activities. Gundegjerde et al. (2015), Gutierrez-

Alcoba et al. (2019) and St̊alhane et al. (2021, 2019, 2016) capture the uncertain nature

of weather conditions through stochastic mathematical formulations for the offshore wind

farm O&M problem. Most of the mentioned papers have formulated two-stage models,

where the first stage comprises vessel charter and acquisition decisions. The second stage

consists of deployment decisions and takes place after weather is revealed and demand

for maintenance (occurred failures) is known. An exception is St̊alhane et al. (2021) who

propose a dual-level stochastic model, that considers both long-term strategic uncertainty

and short-term operational uncertainty in a single optimization model. The other ex-

ception is Gundegjerde et al. (2015) who formulate a three-stage stochastic model. The

additional stage is an intermediate stage, where one is allowed to charter in extra vessels.

Their results showed that the use of a stochastic model gave significant value compared

to previous deterministic formulations.
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The stochastic mathematical formulations of the MFSMP are solved using a variety of

solution methods. Gundegjerde et al. (2015) transform their three-stage formulation into

a scenario tree node-based deterministic equivalent before solving their model in a com-

mercial Mixed Integer Program (MIP) solver and were able to solve test instances of

realistic size. St̊alhane et al. (2016) also solve their model using a commercial MIP solver,

while St̊alhane et al. (2021) propose an ad hoc integer L-shaped method with customized

optimality cuts as a solution method to their problem. The results of St̊alhane et al.

(2021) show that the proposed method outperforms solving the deterministic equivalent

using a commercial MIP solver.

Both Gutierrez-Alcoba et al. (2019) and St̊alhane et al. (2019) apply a priori generation

of possible operational patterns for each vessel. Gutierrez-Alcoba et al. (2019) solve their

model using two different methods. First, they present a deterministic equivalent of a

two-stage stochastic MILP based on a priori generation of possible operational patterns

and solve it using a commercial solver. Gutierrez-Alcoba et al. (2019) argue that, due to

anticipation, a drawback of the deterministic MILP formulation is that costs are underes-

timated compared to what can be achieved in practice under incomplete information. A

heuristic that simulates the practical scheduling of O&M activities is also presented, with

the aim of providing a better cost estimate. In the heuristic, no anticipation of weather

conditions and failures are considered. Only information on weather and failure events

at the beginning of each shift, when the scheduling decisions are made, are considered.

Their results show a slight increase in costs when the heuristic is used. Furthermore, it is

observed that the heuristic allows for more slack in the scheduling, increasing the ability

to react to random events, and indicating that in practice, the best vessel plan contains

more vessels than that predicted by an a priori information model. St̊alhane et al. (2019)

solve their model using a heuristic algorithm to generate a subset of the feasible patterns,

and performs an ad hoc Dantzig–Wolfe decomposition, where parts of the second stage

problem remain in the master problem. The heuristic uses a labeling algorithm based on

a SPPRC to generate patterns.

4.3.2 Other Industries

Most of the research on MFSMPs is related to shipping, a business renowned for its

volatility. Nonetheless, at the time Pantuso et al. (2014) conducted their survey, there were

only a handful of studies including uncertain elements for the MFSMP. Among these, Meng

and Wang (2010) model a short-term MFSMP for container shipping involving chartering

and deployment decisions, where they used chance constraints to tackle uncertain shipment

demand. Meng et al. (2012) extended the problem to include transshipment and handle

uncertainty through a two-stage stochastic Integer Programming (IP) model.

Others consider uncertain elements without stochastic model formulations. Fagerholt et

al. (2010) combine optimization and simulation to solve a strategic MFSMP for tramp
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shipping, where they consider uncertainty in timing and quantity of cargoes. Crary et

al. (2002) solve their mixed integer program with different realizations of random input

parameters to find the best performing fleet of combat ships for the US Navy. Alvarez et

al. (2011) present a robust MIP model for a bulk shipping MFRP, with random variations

in selling and purchasing prices for ships, as well as charter rates.

Pantuso et al. (2016) try to evaluate if better results are obtained by using two-stage

stochastic programming compared to a deterministic model with average values. The

MFRP of liner shipping is used as a case study. Uncertain elements in this problem are

related to the shipping market and include ship purchasing and selling prices, charter rates,

and demand. Pantuso et al. (2016) found that the stochastic model valued flexibility in the

sense that it awaited sale of ships longer than the deterministic model. The deterministic

model did not value the option of keeping an extra vessel in the fleet ”just in case” it

could be needed in some future scenario, resulting in higher expected costs, compared

to the stochastic solution. Their conclusion is that the stochastic model performs better,

which is consistent with what Bakkehaug et al. (2014) found in their multi-stage stochastic

approach to a similar problem, and what Arslan and Papageorgiou (2017) found when they

studied a tactical MFSMP for bulk shipping.

Another industry where the MFSMP has been applied, is the offshore Oil & Gas (O&G)

supply. As for O&M, problems related to O&G supply share several similarities with our

problem. A contribution to stochastic consideration within MFSMPs related to O&G is

Shyshou et al. (2010), who studied a problem related to offshore anchor handling opera-

tions. Their aim was to decide how many vessels to charter on long term contracts, and for

how long, versus the need to supply the fleet with expensive spot charters in times with an

excess requirement for anchor handling operations, caused by earlier weather delays. The

trade-off between chartering vessels on long term contracts versus spot charters is closely

related to the offshore wind farm installation problem. To handle weather uncertainty,

Shyshou et al. (2010) use a discrete event simulation framework.

Fagerholt and Lindstad (2000) study a short-term MFSMP concerning weekly scheduling

for offshore supply vessels and present a deterministic IP model based on pre-generated

voyages. The underlying problem is similar to the Vehicle Routing Problem (VRP) with

multiple vehicles and time windows. Post analysis is used to evaluate the robustness of

the solution. A similar problem is studied by Halvorsen-Weare et al. (2012), who try to

make it more realistic by including aspects such as spread of departure times from the

depot, capacity constraints for the depot and limitation on duration of voyages. Halvorsen-

Weare and Fagerholt (2011) further extend the supply vessel problem by combining the

deterministic model from Halvorsen-Weare et al. (2012) with simulation to ensure a more

robust solution with respect to weather uncertainty. Their results show that the inclusion

of robustness criteria gives a lower predicted cost compared to the deterministic model

where no such criterion is considered.
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The MFSMPs are commonly solved using either simulation (Arslan and Papageorgiou

2017; Shyshou et al. 2010), commercial solvers for MIPs (Alvarez et al. 2011; Crary et al.

2002; Meng and Wang 2010; Pantuso et al. 2016), heuristic approaches (Bakkehaug et al.

2014), or combinations of these methods (Fagerholt et al. 2010). An exception is Meng

et al. (2012), who propose an algorithm that integrates sample average approximation

with dual decomposition and Lagrangian relaxation approach to solve their model.

4.4 Branch-and-Price for Stochastic Problems

B&P (Barnhart et al. 1998) is an exact solution method that combines a B&B search

with column generation. The use of B&P for solving stochastic integer (or mixed-integer)

programs is relatively new. Although consideration of uncertainty is limited in offshore

research, stochastic programming is widely used in operations research in other industries.

Further, a variety of applications, such as those arising in scheduling, routing, location

and production planning, lead to integer and combinatorial optimization models, which is

relevant to our problem.

Christiansen and Lysgaard (2007), Yuan et al. (2015), McKinnon and Yu (2016), Wang

et al. (2020) and Yanıkoğlu and Yavuz (2022) implement B&P algorithms for solving

stochastic scheduling and routing problems within different industries. Yuan et al. (2015)

study a problem related to the daily scheduling and routing of caregivers in home health

care. They consider stochastic service times and skill requirements, where caregivers can

care for specific patients. This is similar to our problem, where vessels can perform spe-

cific activities and the time it takes to perform these activities is stochastic due to weather

dependencies. Wang et al. (2020) and Yanıkoğlu and Yavuz (2022) model scheduling de-

cisions under uncertainty. Wang et al. (2020) study a problem related to scheduling of earth

observation satellites under stochastic impact of clouds, while Yanıkoğlu and Yavuz (2022)

study a problem of machine scheduling with sequence-dependent setup times. Christiansen

and Lysgaard (2007) formulate a two-stage stochastic model for the capacitated vehicle

routing problem with stochastic demand. Similarly, McKinnon and Yu (2016) formulate a

multi-stage stochastic model for a single commodity distribution problem under uncertain

demand for a fleet of ships.

The B&P algorithm is also used to solve capacitated lot sizing problems and multistage

stochastic capacity planning problems by Lulli and Sen (2004), Singh et al. (2009) and

Zhang et al. (2020). Although location and production planning applications differ from

the problem studied in this thesis, they still have similarities. For instance, in the context of

the stochastic bin-packing problem studied in Zhang et al. (2020), the bins can correspond

to vessels that are available for a given period, while the items can represent activities,

and the item sizes can represent the time it takes to perform an activity. Silva and Wood

(2006) survey B&P for two-stage stochastic MIPs, including routing, scheduling and the
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general allocation problem. They also implement B&P algorithms for a stochastic facility-

location problem and report that the B&P method can be significantly faster than solving

the original problem using a classical B&B approach.

The B&P algorithm is applicable to the deterministic equivalent of both two-stage and

multi-stage stochastic MIPs. Then the original stochastic problem is decomposed into a

collection of deterministic subproblems, which are linked together by a master problem.

Often, the resulting master problem and/or subproblems can reflect well-studied optim-

ization problems. For instance, Yuan et al. (2015) formulate their master problem as a

classical set partitioning problem that combines routes for caregivers into feasible sched-

ules, and Wang et al. (2020) formulate their problem into a set packing master problem,

that combines schedules for satellite orbits to maximize profits of successful observations.

Also McKinnon and Yu (2016) formulate their master problems as a set partitioning prob-

lem, but with extra inventory constraints to accommodate storage limits at ports. The

common ground for McKinnon and Yu (2016) and that of Yuan et al. (2015), is that

they both study routing problems. Christiansen and Lysgaard (2007) also study a routing

problem, but in their master problem the partitioning constraints are changed into cover-

ing constraints in order to obtain a smaller dual solution space. A set partitioning master

problem is also formulated in Silva and Wood (2006).

In several of the reviewed papers the subproblems are versions of the shortest path prob-

lem, and labeling algorithms based on dynamic programming are presented to solve them

(Christiansen and Lysgaard 2007; Yuan et al. 2015; McKinnon and Yu 2016). While the

subproblems in Christiansen and Lysgaard (2007) and Yuan et al. (2015) concerns routing

of vehicles, the subproblems in McKinnon and Yu (2016) are ship routing problems. How-

ever, not all subproblems are routing problems. Yanıkoğlu and Yavuz (2022) solve one

subproblem per machine, and Wang et al. (2020) solve one subproblem per satellite orbit,

formulated as a constrained longest weighted path planning problem. In Silva and Wood

(2006), the subproblems are stochastic and are formulated as multi-dimensional knapsack

problems, solved by B&B with explicit constraint branching.

When implementing a B&P algorithm different algorithmic design choices must be made,

including decisions on search and branching strategies in the enumeration tree. Yanıkoğlu

and Yavuz (2022) demonstrate that a search strategy that prioritizes improvement of the

dual bound yields the best computational performance. Hence, they choose to adopt a

best-first search. However, a best-first strategy may require a long time to obtain feasible

solutions, which can be problematic for computationally demanding problems, as the

search may terminate before finding an acceptable feasible solution. Thus, McKinnon and

Yu (2016) suggest to combine a best-first strategy with a depth-first strategy, where a

depth-first search is used in the beginning to find feasible solutions early in the search,

before moving on to a best-first strategy to produce better bounds and prove optimality.
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Yuan et al. (2015) use a best-first search strategy where they branch on mandatory and

forbidden arcs, which is standard for the VRP. Christiansen and Lysgaard (2007) develop

a more advanced branching scheme for their routing problem, based on accumulated ex-

pected demand. If a customer is visited by two paths, with different expected demands, a

threshold is set between these expectation values. Then one branch is created where paths

with expected demand larger than this threshold are forbidden, and another branch is cre-

ated where paths with lower expected demand than the threshold are forbidden. Their

computational results show that the strategy based on accumulated expected demand is

able to solve more problem instances and tends to search fewer nodes before reaching

optimum than traditional branching on single flow variables.

Lulli and Sen (2004) use the common branching strategy to find a fractional variable that

should be integer in a feasible solution, and make two branches, one where the variable is

required to be smaller or equal to the fractional value rounded down to the nearest integer,

and one where the variable must be greater or equal to the fractional value rounded up

to the nearest integer. Adopting a similar scheme, Yanıkoğlu and Yavuz (2022) select to

branch on the variable with the largest integer infeasibility, that is, the integer variable

with the fractional value closest to 0.5. Zhang et al. (2020) use a pair-based branching

strategy that determines whether or not two particular items are allocated in the same

bin.

Generally, the authors of the reviewed articles found that B&P algorithms outperformed

other exact solution methods due to stronger LP relaxation. However, as the size of the

test instances increase, the computational effort increases. McKinnon and Yu (2016) find

that this is highly dependent on subproblems complexity, and their computational results

show that around 75–94% of the computational time to solve the problem is used to solve

the ship subproblems.

Algorithmic extensions aimed at accelerating the search in the B&P method can allow

for larger problems to be solved. A common strategy is to use heuristic approaches, both

to initialize the column generation algorithm, and throughout the search. Yuan et al.

(2015) expand their B&P algorithm to include both a greedy heuristic and a variable

neighbourhood descent. They use the greedy heuristic to generate initial columns, and

find that this heuristic is efficient for speeding up solution process at the root node of

the search tree as it effectively reduces the objective value and stabilise the values of dual

variables. Yanıkoğlu and Yavuz (2022) adapt a heuristic algorithm where they sort jobs

on due dates and make assignments based on this, and find that this heuristic significantly

improves the performance of their solution algorithm. Yuan et al. (2015) further extend

their algorithm to return multiple columns in every iteration of the column generation

algorithm, which is another common acceleration strategy for B&P algorithms. This

is also done by Zhang et al. (2020) who investigate the choices between returning all

improving columns and returning only the first improving column and found that their
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model performed best when selecting all columns. Finally, the problem structure of the

decomposed model in which there typically is independence among all the subproblems

makes the B&P method amenable to parallelization. This will speed up each iteration of

the column generation algorithm and can therefore lead to faster convergence.

4.5 Our Contribution

Although the relevance of offshore wind energy has increased steadily, the research on op-

timization problems related to offshore wind farm installation is scarce. To our knowledge,

only five published papers suggest (mixed) integer programming formulations of the in-

stallation planning problem. A summary of relevant aspects of the modelling approach in

these papers compared to our formulations is given in Table 4.2. Additionally, the applied

solution methods are stated.

The combination of a stochastic approach to handle weather effects and the possibility

of including several vessels has, to our knowledge, not been investigated in optimization

research for offshore wind farm installation. Additionally, we contribute to the research

on applying B&P for stochastic problems, which is a scarcely investigated research area.

Another feature that differentiates our thesis from previously published research on op-

timization of offshore wind farm installation, is the possibility of adding options to the

charter contract of a vessel. This adds flexibility to the solutions and gives a more realistic

model formulation as options are a common part of a real-life charter contracts.

Finally, the possibility of easily changing activities, and thus allowing for consideration

of new technologies and installation procedures, has not been given much attention. Our

model is expressed in a general manner, allowing users to define input parameters to fit

their problem. This means that the model can be used to evaluate different installation

strategies, including solutions for floating wind turbines and other future solutions.

Table 4.2: Comparison of our problem and relevant studies.

Paper
Multiple

Vessels

Two-Stage

Stochastic
Options

This thesis ✓ ✓ ✓

Scholz-Reiter et al. (2011)

Irawan et al. (2017) ✓

Ursavas (2017) ✓

Ait Alla et al. (2013) ✓

Barlow et al. 2018 ✓
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Mathematical Model

In this chapter, we present a mathematical formulation for the problem described in

Chapter 3. The formulation is to a large extent based on the formulation presented

by Bruu and Thorsen (2021). In Section 5.1 we describe the main characteristics of the

mathematical model. The mathematical formulation is presented in Section 5.2. Finally,

Section 5.3 describes parameter calculations while Section 5.4 addresses reduction and

fixing of variables. The deterministic equivalent of the model is presented in Appendix C.

5.1 Description of the Model

We have formulated a stochastic and time discrete model for design of charter contracts

for installation vessels at offshore wind farms. To determine the charter period for each

vessel, operational schedules for each vessel are designed. The following sections describe

our modeling choices and assumptions.

5.1.1 Stochastic Two-Stage

To account for uncertainty in weather conditions, the problem is modeled as a two-stage

stochastic optimization problem. The first stage occurs two to four years in advance of

the installation phase and includes decisions on which vessels to charter and for what

time periods, as well as which options to include in their charter contracts. The second

stage occurs after realization of the weather conditions and aims to assign the chartered

vessels to the necessary installation activities and decide whether or not to exercise the

included options. Through this stochastic approach, the optimal solution will reveal the

charter strategy that gives the best expected objective value across all weather realizations.

That is, the solution found may not be optimal for any isolated realization of the weather

conditions, but it is the solution that is best on average, which is a good approach to

handling the weather uncertainty.
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Although weather conditions are realized from day to day during a real-life project, our

choice of a two-stage model implicates the assumption that the weather for the entire

planning horizon is revealed at the beginning of the installation phase. This is a reasonable

assumption as contract costs are defined by the start of the charter period, regardless of

whether or not the vessel begins to operate. Hence, it should never be beneficial not to

use the first available weather window. For this reason, it is unlikely that realization of

the weather through a multi-stage formulation would affect the scheduling decisions.

5.1.2 Time Discretization

The planning horizon is divided into a set of time periods of equal length, making the

problem formulation time discrete. It is assumed that all durations in the model can be

expressed as an integer number of time periods. Hence, all activities start at the beginning

of a time period and finish at the end of a time period. In reality, the duration of each

activity may not add up to a multiple of the length of a time period. In such cases, the

duration is rounded to fit with the chosen time discretization.

5.1.3 Round Trips

The second-stage model is built on a vessel round trip concept inspired by the single-vessel

models by Scholz-Reiter et al. (2011) and Ursavas (2017). A round trip, henceforth also

referred to as a tour, consists of the following processes: (1) load the vessel in port, (2) sail

to the offshore wind farm site, (3) perform installation activities, and (4) return to port.

The start and end times of a tour are considered to be the first time period of loading

in port, and the final time period of sailing back to port after performing the installation

on site, respectively. A vessel can have multiple tours throughout its charter and option

period, but these cannot overlap in time. For modeling purposes, an upper limit on the

number of tours per vessel has been predefined by a set Iv. The purpose of this set is to

provide unique indices for each tour a vessel conducts, and its size should be set so that

it does not restrict a vessel’s possible schedules.

5.1.4 Installation Activities

The set of installation activities is defined so that each activity should be performed exactly

once for each OWT. Furthermore, the set of installation activities is ordered. That is, the

order of activities in the set should correspond to the installation sequence.
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5.1.5 Loading Sets

Each vessel has a set of predefined loading sets that consists of a set of installation activ-

ities. Prior to each time a vessel leaves port, one of the predefined loading sets must be

selected, and the resources required to perform its activities must be loaded on board.

Hence, the chosen loading set defines which activities the vessel can perform on its next

round trip. The resources required for a loading set cannot exceed the vessel’s weight ca-

pacity, lifting capabilities, and available deck area. Further, a loading set cannot contain

activities the vessel is unable to perform.

5.1.6 Unfinished OWTs

There is a predefined number of OWTs that should be installed. In some cases, it may be

impossible to complete all installation activities within the planning horizon for all weather

realizations. To avoid infeasibility in such cases, the model is allowed not to complete all

OWTs against a penalty in the objective function.

5.1.7 Other Assumptions

We assume that a vessel only can be chartered once during the project period. Further,

we do not consider travel times between turbine locations since these are negligible. Op-

erational costs related to fuel consumption and port fees are disregarded in the model

formulation as these are assumed to be negligible in comparison to the charter costs. We

also assume that sailing and loading of vessels are operations that are not affected by

weather conditions. Lastly, uncertainties beyond weather conditions, for instance, vessel

and component availability, are not considered.

5.2 Mathematical Formulation

This section introduces the sets, parameters and decision variables used in the mathemat-

ical formulation, as well as objective functions and the constraints the models are subject

to. The first stage model is presented in Section 5.2.1, whilst the second stage model is

presented in Section 5.2.2.
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5.2.1 First Stage Model

The first stage model consists of strategic decisions to be made before realization of the

weather conditions, including which vessels to charter and which options to include in the

charter contracts.

Definition of Sets

V - Set of vessels, indexed by v

T - Set of time periods, indexed by t

O - Set of options, indexed by o

Definition of Parameters

CF
v - Fixed charter cost for vessel v

CV
v - Variable charter cost for vessel v per time period in its fixed charter period

Kv - Minimum length of a tour for vessel v

PF
ov - Price for including option o in the contract for vessel v

Definition of Variables:

sCtv - 1 if charter of vessel v starts in time period t, 0 otherwise

eCtv - 1 if charter of vessel v ends in time period t, 0 otherwise

αv - 1 if vessel v is chartered in the project, 0 otherwise

βtv - 1 if vessel v is on fixed charter in time period t, 0 otherwise

µov - 1 if option o is included in the contract for vessel v, 0 otherwise

Objective

min
∑
v∈V

CF
v αv +

∑
t∈T

∑
v∈V

CV
v βtv +

∑
o∈O

∑
v∈V

PF
ovµov + Eξ[Q(αv, βtv, µov, e

C
tv, ξ)] (5.1)

The costs in the first stage consist of fixed charter cost, variable charter cost and option

inclusion price. As expressed in (5.1), the objective is to minimize these costs, as well

as the expected value of the second stage objective, Q, which is further explained in

Section 5.2.2.

26



Chapter 5. Mathematical Model

Charter Constraints

∑
t∈T

sCtv = αv, v ∈ V, (5.2)

∑
t∈T

sCtv −
∑
t∈T

eCtv = 0, v ∈ V, (5.3)

∑
t∈T

teCtv −
∑
t∈T

tsCtv ≥ Kvαv, v ∈ V. (5.4)

Constraints (5.2) state that all vessels included in the fleet must have a start time for

their fixed charter period. Further, constraints (5.3) ensure that if a vessel’s fixed charter

period starts, it must also end, while constraints (5.4) define the end of a vessel charter

period so that it succeeds its start. Kv is a lower bound on the number of time periods

vessel v is chartered, given that it is chartered.

βtv = β(t−1)v + sCtv − eC(t−1)v, t ∈ T \ {1}, v ∈ V, (5.5)

sCtv = βtv, t = 1, v ∈ V, (5.6)

µov ≤ αv, o ∈ O, v ∈ V. (5.7)

βtv is set to one in the fixed charter period for each vessel by constraints (5.5) and (5.6)

set. Constraints (5.7) ensure that options can only be included for vessels that have been

chartered.

Binary Constraints

αv ∈ {0, 1}, t ∈ T , v ∈ V, (5.8)

βtv ∈ {0, 1}, t ∈ T , v ∈ V, (5.9)

sCtv ∈ {0, 1}, t ∈ T , v ∈ V, (5.10)

eCtv ∈ {0, 1}, t ∈ T , v ∈ V, (5.11)

µov ∈ {0, 1}, o ∈ O, v ∈ V. (5.12)

The first stage decision variables are made binary by constraints (5.8)-(5.12).
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5.2.2 Second Stage Model

The second stage model consists of operational decisions to be made upon weather realiz-

ation, i.e. scheduling of installation activities using the chartered vessels.

Definition of Sets

V - Set of vessels, indexed by v

T - Set of time periods, indexed by t

A - Set of installation activities, indexed by a

Lv - Set of loading sets for vessel v, indexed by l

Iv - Set of tours for vessel v, indexed by i

O - Set of options, indexed by o

Definition of Parameters

DL
lv - Duration of loading loading set l for vessel v

DS
v - Duration of sailing from port to site or vice versa for vessel v

Lo - Length of option o given in time periods

NT - Total number of turbines to be installed

NL
al - Number of times installation activity a can be performed if a vessel is loaded

with loading set l

M1
atv(ξ) - Big-M in the last round trip constraint for the combination of activity a,

time period t and vessel v

M2
av - Big-M used in first activity constraint for activity a and vessel v

M3
v - Big-M used in third activity constraint for vessel v

PE
ov - Price for exercising option o for vessel v

PL - Penalty cost for lost income

PU - Penalty cost for unfinished OWTs

Tatv(ξ) - Number of time periods it takes vessel v to complete activity a if it is started

in time period t

eCtv - 1 if charter of vessel v ends in time period t, 0 otherwise

αv - 1 if vessel v is chartered in the project, 0 otherwise

βtv - 1 if vessel v is on fixed charter in time period t, 0 otherwise

µov - 1 if option o is included in the contract for vessel v, 0 otherwise
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Definition of Variables

eP - Last time period of the project

u - Number of unfinished OWTs

sTitv - 1 if the first period of tour i for vessel v is in time period t, 0 otherwise

sAaitv - 1 if activity a starts in time period t in tour i for vessel v, 0 otherwise

δilv - 1 if loading set l is loaded onto vessel v for tour i, 0 otherwise

γov - 1 if option o is exercised for vessel v

Objective

In the second stage model the objective is to minimize costs and the final completion date

based on the realization of the uncertain parameters.

Q(α, β, µ, eC , ξ) = min
∑
o∈O

∑
v∈V

PE
ovγov + PUu+ PLeP (5.13)

The objective (5.13) minimizes the cost of exercising options, the cost of unfinished OWTs

and the cost of lost income. By minimizing cost of lost income the completion time of the

wind farm is also minimized.

Round Trip Constraints

∑
t∈T

sTitv ≤ αv, v ∈ V, i ∈ Iv, (5.14)

sTitv ≤ βtv, i = 1, v ∈ V, (5.15)∑
t∈T

sTitv ≥
∑
t∈T

sT(i+1)tv, v ∈ V, i ∈ Iv \ {|Iv|}. (5.16)

Constraints (5.14) state that each tour can only have one start time and that the vessel

must be chartered to start a tour. Further, constraints (5.15) restricts the first tour for

each vessel to start within the vessel’s fixed charter period. By requiring that tours of lower

indices should be utilized before higher indexed tours, constraints (5.16) reduce symmetry.

(t+ Tatv +DS
v )s

A
aitv ≤

∑
t∈T

tsT(i+1)tv +M1
atv(1−

∑
t∈T

sT(i+1)tv), a ∈ A, t ∈ T , v ∈ V, i ∈ Iv \ {|Iv|},

(5.17)

Constraints (5.17) ensure that a vessel cannot start a new tour before its previous tour

has ended.
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Activity Constraints

∑
τ∈T

τsTiτv +
∑
l∈L

(DL
lv +DS

v )δilv ≤ tsAaitv +M2
v (1− sAaitv), a ∈ A, t ∈ T , v ∈ V, i ∈ Iv.

(5.18)

Constraints (5.18) secure that the first activity during a tour does not start before the

vessel has been loaded and sailed to site.

∑
a∈A

t∑
t′=t−Tatv+1

sAait′v ≤ 1, t ∈ T , v ∈ V, i ∈ Iv, (5.19)

∑
a∈A

∑
t∈T

sAaitv ≤M3
v

∑
t∈T

sTitv, v ∈ V, i ∈ Iv, (5.20)

∑
t∈T

sTitv ≤
∑
a∈A

∑
t∈T

sAaitv, v ∈ V, i ∈ Iv. (5.21)

That a vessel can perform at most one activity in each time period, is ensured by con-

straints (5.19). Constraints (5.20) state that no installation activities can be scheduled

to a tour that is not taking place, while constraints (5.21) ensure that no tours without

scheduled activities are started.

Loading Constraints

∑
l∈Lv

δilv ≤ 1, v ∈ V, i ∈ Iv, (5.22)

∑
t∈T

sAaitv ≤
∑
l∈Lv

NL
alδilv, a ∈ A, v ∈ V, i ∈ Iv. (5.23)

Constraints (5.22) restrict a vessel to load only one loading set for each tour, while con-

straints (5.23) ensure that the number of times a vessel performs an installation activity

during a tour does not exceed the number defined by the loading set on board.

Project Plan Constraints

(t+ Tatv +DS
v − 1)sAaitv ≤

∑
τ∈T

τeCτv +
∑
o∈O

Loγov, a ∈ A, t ∈ T , v ∈ V, i ∈ Iv, (5.24)

∑
v∈V

∑
i∈Iv

t∑
t′=1

sAait′v ≤
∑
v∈V

∑
i∈Iv

t−T(a−1)t′v∑
t′=1

sA(a−1)it′v, a ∈ A \ {1}, t ∈ T , (5.25)

∑
t∈T

∑
v∈V

∑
i∈Iv

sAaitv ≥ NT − u, a = |A|. (5.26)
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Constraints (5.24) ensure that activities are scheduled to take place within each vessel’s

charter period, consisting of both fixed charter period and option period. Precedence

between installation activities according to the order of the set of installation activities is

ensured by constrains (5.25). That each activity is performed at least the same number of

times as number of turbines to be installed, is ensured by constraint (5.26). This constraint

allows installation of more turbines than required. However, this will not be profitable in

the optimal solution due to additional costs. As explained in Section 5.1.6, the variable u

is included to allow for unfinished turbines in case the realized weather conditions make

it impossible to complete all OWTs within the time horizon of the model.

eP ≥ (t+ Tatv +DS
v − 1)sAaitv, a ∈ A, t ∈ T , v ∈ V, i ∈ Iv, (5.27)

γov ≤ µov, o ∈ O, v ∈ V. (5.28)

The end date for the installation project is defined by constraints (5.27), which demands

the value of eP to be greater or equal to the final time period where an activity is performed.

Constraints (5.28) forbid exercising options that are not included in a vessel’s contract.

Binary and non-negativity constraints

eP ≥ 0, integer, (5.29)

u ≥ 0, integer, (5.30)

δilv ∈ {0, 1}, v ∈ V, l ∈ Lv, i ∈ Iv, (5.31)

sTitv ∈ {0, 1}, t ∈ T , v ∈ V, i ∈ Iv, (5.32)

sAaitv ∈ {0, 1}, a ∈ A, t ∈ T , v ∈ V, i ∈ Iv, (5.33)

γov ∈ {0, 1} o ∈ O, v ∈ V. (5.34)

Constraints (5.29) and (5.30) restrict the variables eP and u to be non-negative and integer.

The remaining variables are made binary by constraints (5.31) - (C.33).

5.3 Parameter Definitions

In this section we describe parameter definitions. First, we explain the definitions of the

big-M parameters. Thereafter, we explain how we have defined the maximum number of

tours Iv, minimum length of tours Kv, and weather-dependent activity duration Tatv(ξ).

All of these parameters, except for Iv, are calculated in the same manner as described in

Bruu and Thorsen (2021).
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5.3.1 Calculation of Big-M Parameters

To make the LP-relaxation of constraints (5.17) as tight as possible, M1
v can be set to the

maximal value of the left hand side of the constraints, and can be calculated as shown in

Equation (5.35).

M1
atv(ξ) = t+ Tatv(ξ) +DS

v (5.35)

M2
av, appearing in constraints (5.18), can be set to the latest possible start time of an

activity that allows for the activity to be completed and the vessel to sail back to port

before the end of its charter and option period. Introducing DA
a as the minimum number

of time periods required to complete activity a, the parameter is calculated as shown in

Equation (5.36).

M2
av = |T | −DS

v −DA
a (5.36)

In constraints (5.20) the big-M parameter, M3
v , can be set to the maximum size of the

allowable loading sets for vessel v. Thus, M3
v can be calculated as shown in Equation

(5.37).

M3
v = max

l∈Lv

{
∑
a∈A

Nal}. (5.37)

5.3.2 Number of Tours

The maximum number of tours can be found through a minimization problem for each

vessel. Introducing xl as the number of times loading set l is loaded onto the vessel, and

Av as the set of activities vessel v can perform, the minimization problem for each vessel

can be formulated as the knapsack problem described by Equations (5.38) - (5.40).

Iv = min
∑
l∈Lv

xl, (5.38)

s.t
∑
l∈Lv

Nalxl ≥ NT , a ∈ Av, (5.39)

xl ≥ 0, integer l ∈ Lv. (5.40)

The objective (5.38) minimizes the number of tours by minimizing the number of loading

sets that are loaded onto the vessel. Constraints (5.39) are knapsack constraints that

ensure that the vessel loads enough resources to complete the activities it can perform for

all planned turbines. There may be more vessels that can perform the same activities, but

worst case, a single vessel should perform the activity for all OWTs, and Iv must be large

enough to allow this. The final constraints, (5.40), enforces non-negativity and integer

requirements on the decision variables.
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5.3.3 Minimum Length of Tours

To tighten the LP-relaxation of constraints (5.4), the parameter Kv should be set as high

as possible. Based on the assumption that a charter contract must include a fixed charter

period, we believe it is reasonable to assume that a vessel must perform at least one round

trip within its fixed charter period, and that Kv can be set to the minimum length of a

vessel trip. This can be calculated as shown in Equation (5.41).

Kv = 2DS
v − 1 + min

l∈L|Flv=1
{DL

lv +min{
∑
a∈A

NalD
A
a ,

∑
a∈A|Nal ̸=0

NTDA
a }} (5.41)

For real-life projects, the number of turbines is expected to be higher than in our test

instances. If so, the parameter Kv may be calculated differently, as it is likely that one

would like more than one round trip for each vessel within their fixed charter period.

5.3.4 Activity Duration Parameter

The parameter Tatv(ξ) must be calculated for different realizations of ξ. This parameter

states how many time periods it will take vessel v to complete activity a if it is started

in time period t under the realized weather conditions ξ. Tatv(ξ) depends on the duration

of performing an activity (DA
a ), the weather limit for performing the activity with that

vessel, and the realized weather in each time period and scenario.

Figure 5.1 illustrates how Tatv(ξ) is calculated. The idea is that there must be enough

subsequent time periods with wave height and wind speed below the limit for a given

activity to complete the activity. If the wave height or wind speed in a given time period

is above the weather limits for the activity, referred to as ”bad weather” in the figure, the

activity cannot be performed in this time period, adding on to the value of Tatv(ξ).

Figure 5.1: Tatv(ξ) for an activity with DA
a = 3 starting in time period t = 1 .
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5.4 Reduction and Fixing of Variables

The mathematical model has a large number of variables and constraints, making it de-

manding to solve. In order to reduce the number of indifferent solutions to the model and

thus, the solution time, we have reduced and fixed some variables.

Firstly, variables sAaitv are only created if the corresponding parameter Tatv(ξ) is of equal

value as the duration of the activity a, that is, if Tatv(ξ) = DA
a . The reason behind this

is that it will never be preferable to choose a start time for an activity that leads to

longer activity duration than necessary. Secondly, variables sAaitv are not created if they

correspond to a parameter Tatv(ξ) that leads the completion time of the activity to be

after the final time period of the planning horizon. Finally, sAaitv variables that correspond

to combinations of activities and vessels that are not compatible are not created.

We have applied fixing of variables for αv, the binary variable indicating whether or not a

vessel v is chartered. If only one of the vessels in the set of vessels is capable of performing

a certain activity, the completion of the project is dependent on having that vessel included

in the chartered fleet. For such vessels, we have fixated αv to 1, indicating that the vessel

must be included in the optimal fleet.
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Decomposed Model

Optimization models for practical problems tend to become complex and hard to solve with

commercial solvers within a reasonable time. To solve such models, a common approach

is to exploit the problem structure through a reformulation, resulting in a sequence of

smaller and simpler problems that can be solved individually. Such methods are commonly

called decomposition methods. In Section 6.1, we discuss how we can exploit the problem

structure of the mathematical formulation presented in Chapter 5, henceforth referred to

as the original model. Then we present a decomposed model formulation in Section 6.2.

6.1 Problem Structure

In the deterministic equivalent to the original model, we identify a primal block angular

structure where the charter and project plan constraints constitute the set of linking

constraints. The remaining constraints and variables can be isolated for each combination

of a vessel v and a scenario s. This allows for |V| · |S| separate subproblems to be formed,

where S represents the set of scenarios. These subproblems reflect scheduling problems

over the entire planning horizon for combinations of a vessel and a scenario, whilst the

linking constraints constitute the master problem and connect the schedules into a feasible

project plan. Figure 6.1 illustrates the primal block angular structure of the original

model. For problems with such structure, Dantzig-Wolfe has proven to be an effective

decomposition method (Lundgren et al. 2010).

The primary motivation for applying decomposition techniques is to solve a sequence of

smaller and easier problems instead of solving one large problem (Lundgren et al. 2010).

Another benefit of using decomposition techniques is that we get a better description

of the convex hull of the original problem (Vanderbeck 2000). A tighter LP-relaxation

is obtained in a decomposed formulation since many of the (relaxed) integer and binary

requirements from the original MIP are preserved in the subproblems of the reformulation.
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Figure 6.1: Primal block angular structure of the problem formulation with separate

subproblems per vessel and scenario combination and linking constraints.

6.2 Reformulation of the Original Model

The decomposed model combines schedules into a fleet configuration that minimizes the

expected fleet cost and project duration. The schedule combination must comply with the

charter and project plan constraints from the original model. A prerequisite for the model

is that all possible schedules are known.

A schedule describes the installation sequence performed by a vessel v in scenario s and

provides the start and end time of the vessel’s operational period. Figure 6.2 illustrates

examples of feasible schedules. The letters L, S and A represent loading, sailing, and

performing an installation activity, respectively. The weather is categorized as bad if the

weather conditions exceed the operational weather limits for performing the activity.

Figure 6.2: Examples of schedules with one installation activity.
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We let Pvs represent the feasible schedules for vessel v in scenario s. A schedule p ∈ Pvs

is described by the parameters

Schedule p = [T start
p , T end

p , Bapt],

where T start
p and T end

p represents the first and final time period of a schedule p, respectively.

Bapt is a binary matrix where the value 1 indicates that an activity a ends in time period

t in schedule p. The duration of an activity a is denoted by the parameter DA
a .

The binary variables sCtv and eCtv of the original model are replaced by the integer variables

sCv and eCv in the decomposed formulation. Further, a binary variable λp is defined for

all p ∈ Pvs. This variable indicates whether a schedule p is used or not. For remain-

ing notation, see the deterministic equivalent of the original model (Appendix C). The

mathematical formulation of the decomposed model follows.

Objective

min
∑
v∈V

CF
v αv +

∑
v∈V

CV
v (eCv − sCv + αv) +

∑
o∈O

∑
v∈V

PF
ovµov

+
∑
s∈S

∑
v∈V

∑
o∈O

ps(P
E
ovγovs + PLePs + PUus)

(6.1)

The objective corresponds to the objectives of the original model, and minimizes fixed and

variable charter costs, the cost of including and exercising options, as well as penalties for

long completion time, resulting in lost income, and unfinished turbines.

Constraints

µov ≤ αv, o ∈ O, v ∈ V, (6.2)

γovs ≤ µov, o ∈ O, v ∈ V, s ∈ S, (6.3)∑
p∈Pvs

T start
p λp ≥ sCv , v ∈ V, s ∈ S, (6.4)

∑
p∈Pvs

T end
p λp ≤ eCv +

∑
o∈O

Loγovs, v ∈ V, s ∈ S, (6.5)

∑
v∈V

∑
p∈Pvs

t∑
t′=1

B(a+1)pt′λp ≤
∑
v∈V

∑
p∈Pvs

t−D(a+1)∑
t′=1

Bapt′λp, a ∈ A \ {|A|}, t ∈ T , s ∈ S, (6.6)

∑
p∈Pvs

λp = αv, v ∈ V, s ∈ S, (6.7)
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∑
t∈T

∑
v∈V

∑
p∈Pvs

Baptλp ≥ NT − us, a = |A|, s ∈ S, (6.8)

ePs ≥
∑

p∈Pvs

T end
p λp, v ∈ V, s ∈ S. (6.9)

Constraints (6.2) and (6.3) are identical to constraints (5.7) and (5.28) in the original

formulation, and ensure that options can only be included for vessels that have been

chartered, and that only included options can be exercised, respectively. Constraints

(6.4)-(6.7) are included to ensure that schedules are combined to a feasible project plan.

Constraints (6.4) guarantees that the assigned schedule for each vessel starts after the

vessel is chartered, while constraints (6.5), adapted from constraints (5.24), secure that

each vessel’s charter doesn’t end before its assigned schedule ends. Further, constraints

(6.6) are adaptations of constraints (5.25) and ensure precedence between installation

activities according to the order of the set of installation activities. Constraints (6.7) are

convexity constraints and state that only one schedule can be performed by each chartered

vessel. Finally, adaptations of constraints (5.26) and (5.27) are added trough constraints

(6.8) and (6.9) respectively. Constraints (6.8) ensure that all turbines are either installed

or penalized in the objective, while constraints (6.9) define the end date for the project.

Binary and non-negativity constraints

ePs ≥ 0, integer, s ∈ S, (6.10)

us ≥ 0, integer, s ∈ S, (6.11)

sCv ≥ 0, integer, v ∈ V, (6.12)

eCv ≥ 0, integer, v ∈ V, (6.13)

αv ∈ {0, 1}, t ∈ T , v ∈ V, (6.14)

γovs ∈ {0, 1}, o ∈ O, v ∈ V, s ∈ S, (6.15)

µov ∈ {0, 1} o ∈ O, v ∈ V, (6.16)

λp ∈ {0, 1}, p ∈ Pvs, v ∈ V, s ∈ S. (6.17)

Constraints (6.10)-(6.13) restrict the variables ePs , us, s
C
v and eCv to be non-negative and

integer. The remaining variables are made binary by constraints (6.14)-(6.17).
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A Branch-and-Price Algorithm for

the Decomposed Model

A prerequisite for the decomposed model presented in Chapter 6 is that all possible sched-

ules are known. For realistic problem instances, it will be impractical, or even impossible,

to generate all schedules. To circumvent this problem, we propose to solve the model

using B&P, where only a subset of all schedules is explicitly generated, while the remain-

ing schedules are implicitly considered. We start by introducing an overview of the B&P

methodology in Section 7.1. We then present how we solve the subproblems in Sections 7.2

- 7.5, including pricing of schedules, description of subproblems, and two different labeling

algorithms. Lastly, we describe configurations for the B&P algorithm and acceleration

techniques in Section 7.6 and Section 7.7, respectively.

7.1 Overview of the Solution Method

Dantzig-Wolfe decomposition, introduced by Dantzig and Wolfe (1960), is a method that

combines a Dantzig-Wolfe reformulation of an optimization problem with a method to solve

the decomposed problem. The original problem is reformulated into a master problem and

a number of subproblems. For our problem, the model presented in Chapter 6 describes

the master problem. Constraints related to scheduling of operations for each vessel and

scenario combination from the original model are transferred to the subproblems.

To complete the Dantzig-Wolfe decomposition, a method for solving the reformulated

problem is needed. We apply a B&B approach, where the linear relaxation of the refor-

mulated problem is solved to obtain a lower bound at each node of the enumeration tree.

Due to the potentially very large number of schedules that need to be generated to solve

the problem, we apply a B&P algorithm where column generation is used to dynamically

generate the necessary schedules in each B&B node.
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In the B&P algorithm, an LP relaxation of the master problem that contains only a subset

of schedules, referred to as the Restricted Master Problem (RMP), is solved to obtain

primal and dual solutions to the problem. Dual information from the RMP solution is

passed on to the subproblems, which are solved to find negative reduced cost schedules.

The schedules from the subproblems solutions are then added to the current RMP and a

new iteration is started by re-optimizing the RMP.

The B&P method alternates between the RMP and the subproblems until we are unable

to generate a new schedule with negative reduced costs. Then, the optimal value of the

current RMP provides a lower bound for the current B&B node. If this solution violates

any of the integral requirements of the problem, and the bound of the node is better

than the best known integer solution, two new nodes are created by branching on some

properties of the problem. This process is repeated until all nodes are considered, and

the best feasible solution is returned as the optimal solution to the problem. The solution

process is illustrated in Figure 7.1. The shaded flowchart elements represent the column

generation algorithm performed in each B&B node.

Figure 7.1: Flowchart of the solution procedure.
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7.2 Pricing of Schedules

Let π4, π5, π6, π7, π8at and π
9 be the values of the dual variables associated with constraints

(6.4), (6.5), (6.6), (6.7) (6.8) and (6.9) in the decomposed model, respectively. The reduced

cost of a given schedule p can then be calculated as follows:

cp = min
∑
t2∈T

∑
a∈A\{|A|}

|T |∑
t1=t2+D(a+1)

π8at1Bat2 −
∑
t2∈T

∑
a∈A\{1}

|T |∑
t1=t2

π8(a−1)t1
Bat2

−T startπ4 − T end(π5 − π7)− π6 −
∑
t∈T

B|A|tπ
9 (7.1)

7.3 Subproblems

The subproblems needed to generate schedules for the RMP is presented in this section.

The objective of the subproblems is to find the minimum priced schedule for the RPM.

As described in Section 6.1, a series of |V| · |S| subproblems can be formulated. Each of

these subproblems can be formulated as a SPPRC on an acyclic network of nodes.

The underlying network in each subproblem is defined by three different node types:

loading nodes NL, activity nodes NA, and waiting nodes NW . The sets NL, NA and

NW are defined by Equations (7.2) - (7.4).

NL = Lv × T (7.2)

NA = Av × T (7.3)

NW = {1} × T (7.4)

Additionally, a source node o and a sink node d are included at the beginning and the

end of the network, respectively. The resulting network, N = NL ∪NA ∪NW ∪ {o, d}, is
illustrated in Figure 7.2.

Figure 7.2: Illustration of node structure in the subproblems.
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When a loading node is visited, the vessel is loaded with the corresponding loading set.

Each loading set node represents the time period in which loading and sailing to site is

completed, i.e., when the vessel is ready to start performing the activities corresponding to

the content of the loading set. When an activity node is visited, the vessel must perform

the corresponding installation activity once. The time index of the node represents the

final time period of the installation operation, including consideration of weather effects.

A waiting node represents doing nothing in a given time period. Such nodes are included

to allow for delayed start of the operating period or waiting between installation activities

due to weather conditions or precedence requirements on the installation sequence.

The set of nodes that are connected by arcs to a node n ∈ N depends on which of the

subsets NL, NA, NW , n belongs to. For instance, there are no arcs connecting loading

nodes to waiting nodes, as equivalent solutions can be obtained by visiting more waiting

nodes prior to loading. Let (i, t) ∈ N and (j, τ) ∈ N , represent nodes with time indices

t ∈ T and τ ∈ T , respectively, where i and j define which of the subsets NL, NA, or NW

the nodes belong to. The set of arcs, ((i, t), (j, τ)), in the network can then be described by

Equation (7.5), where DS , DL and Tat correspond to the parameters DS
v , D

L
v and Tatv(ξ),

respectively, as presented in Chapter 5, for the vessel and scenario realization that the

subproblem corresponds to.

((i, t), (j, τ)) :



i = o, j ∈ NL, τ = t+DL +DS

i ∈ N \ NL, j ∈ NL, τ = t+DL + 2DS

i ∈ N \ NL, j ∈ NW , τ = t+ 1

i ∈ N \ {o}, j ∈ NA, τ = t+ Ta(t+1)

i ∈ NA, j = d, τ = t+DS

(7.5)

Some arcs can be deemed non-preferable based on weather conditions. Hence, the following

arcs are eliminated from the network: (1) Arcs to activity nodes that are longer than

the duration of the activity the node represents, and (2) arcs to loading nodes that are

not connected to any arcs satisfying (1). These arcs can be removed because equivalent

schedules can be obtained from paths that visit more waiting nodes before the respective

activity or loading node is visited. The motivation for removing arcs is to make the labeling

algorithm presented in the next chapter more effective by limiting the number of possible

extensions.

7.4 An Activity Counting Labeling Algorithm

To solve the problems, an adaption of the labeling algorithm described in Irnich and

Desaulniers (2005) is applied. The algorithm is described in Algorithm 1, where U is the

set of unprocessed labels, which have not yet been extended, and P is the set of processed

labels. The algorithm is initialized with U = {L0}, where L0 represents a label at the
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source node, and P = ∅. Let Lt denote the set of all non-dominated labels in U ∪ P that

belong to a node with time index t. While there are unprocessed labels left in U , the
labeling algorithm invokes two procedures: a path extension procedure and a dominance

procedure.

The path extension procedure replaces an element L ∈ U by all of its feasible extensions,

(L, n), where n ∈ N , before L is transferred to the set P. To accelerate the overall

labeling algorithm, the dominance procedure tries to reduce the sets U and P according

to some criteria, further described in Section 7.4.4. This limits the number of necessary

extension steps. To further enhance performance, the algorithm prioritizes processing

labels corresponding to the lowest time indexed nodes. Let D represent the set of paths

that correspond to labels at the sink node. Once U = ∅, all paths in D are added to the

restricted master problem.

Algorithm 1 Pseudocode for the labeling algorithm

U = {L0}
while U ̸= ∅ do

L =remove first(U)
for each feasible extension L→ L′ do

t = time(L′)

if no label in Lt dominates L′ then

Lt = Lt ∪ {L′}
if L′ belongs to d then

D = D ∪ {L′}
else

U = U ∪ {L′}
for L̂ ∈ Lt do

if L′ dominates L̂ then

Lt = Lt \ {L̂}
end if

end for

end if

end if

end for

U = U \ {L}
P = P ∪ {L}

end while

Add all paths in D with negative reduced cost to RMP
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7.4.1 Labels

The following data is stored for each label:

• η, the node of the label

• ϕ, the predecessor label

• c, accumulated (reduced) costs

• a⃗, a vector of length |A| that represents the number of times each activity can be

performed with the resources on board the vessel

• f⃗ , a vector of length |A| that represents the number of times each installation activity

has been completed so far along the path

• s, start status. Set to 1 the first time a non-waiting node is visited

• r, activity start status. Set to 1 the first time an activity node is visited.

Henceforth, the notation η(L) is used to refer to the node of label L and similar notation

is used for the rest of the resources, i.e., ϕ(L), c(L), a⃗(L), f⃗(L), s(L), and r(L).

7.4.2 Initial Label

To initialize the algorithm described Section 7.4 an initial label, L0, is required. We define

L0 as described in Equations (7.6) - (7.9). ϕ(L) is not defined as there is no predecessor

label to the initial label.

η(L0) = (o, 0), (7.6)

c(L0) = −π6, (7.7)

a⃗(L0) = f⃗(L0) = 0⃗, (7.8)

s(L0) = r(L0) = 0. (7.9)
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7.4.3 Label Extension

When a label L is extended along an arc ((i, t), (j, τ)), a new label L’ at node (j, τ) ∈ N
is created. If j ∈ NA the following resource constraints must be satisfied: (1) the vessel

is loaded with the required resources to perform the activity, a, represented by node j,

and (2) the total number of completed activities of type a cannot exceed the number of

turbines to be installed throughout the project, NT , after node (j, τ) is visited.

Given that the extension to L’ is resource feasible, the information stored in the label is

updated by the Resource Extension Functions (REF) (7.10) - (7.16). Equations (7.10) and

(7.11) update the current node and the predecessor node, respectively. The accumulated

reduced costs are updated as described described in Equation (7.12). Equation (7.13)

updates the quantities of given activity resources on board a vessel, where l⃗(j) represents

the loading set corresponding to node (j, τ) ∈ NL, while the the calculation of f⃗(L′) is

shown in Equation (7.14). Finally, Equations (7.15) and (7.16) show how the start status

and the activity start status are updated.

η(L′) = (j, τ) (7.10)

ϕ(L′) = L (7.11)

c(L′) = c(L)−(π5−π7)(τ−t)+



∑|T |
t′=τ+DA

a+1
π8at′ , if j ∈ NA, a = 1

−
∑|T |

t′=τ π
8
(a−1)t′ − π9, if j ∈ NA, a = |A|∑|T |

t′=τ+DA
a+1

π8at′ −
∑|T |

t′=τ π
8
(a−1)t′ , if j ∈ NA, a ̸= 1, a ̸= |A|

−π4(τ −DL −DS + 1)(1− s(L)), if j ∈ NL,

0, if j ∈ NW ∪ {d}.
(7.12)

a⃗(L′) =


l⃗(j) if j ∈ NL

a⃗(L)− e⃗j if j ∈ NA

a⃗(L) if j ∈ NW

(7.13)

f⃗(L′) =

{
f⃗(L) + e⃗j if j ∈ NA

f⃗(L) if j /∈ NA
(7.14)

s(L′) =

{
1, if j ∈ NL, s(L) = 0

s(L), otherwise
(7.15)

r(L′) =

{
1 if j ∈ NA, r(L) = 0

r(L) otherwise
(7.16)
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7.4.4 Dominance Criterion

Let Li and L
′
i denote two partial paths from the source node to the node (i, t) ∈ N , and

let ψ(Li) represent the resource vector of Li. Desaulniers et al. (1998) show that if all

REFs along an arc ((i, t), (j, τ)) solely depend on ψ(Li), and all REFs are non-decreasing,

a standard dominance criterion can be applied to eliminate labels. The criterion is that

if ψ(Li) ≤ ψ(L′
i), then an extension of L′

i cannot lead to an optimal shortest path, and is

dominated by Li.

In the activity counting labeling algorithm the following must be satisfied for a label L1

to dominate another label L2:

1. t(L1) = t(L2)

2. s(L1) ≥ s(L2)

3. r(L1) ≥ r(L2)

4. c(L1) ≤ c(L2)

5. a⃗(L1) ≥ a⃗(L2)

6. f⃗(L1) ≤ f⃗(L2)

In addition to this, for L1 to dominate L2, the set of nodes that can be extended to

from η(L2) must also be possible to extend to from η(L1). Let XL
t represent the set of

nodes that can be extended to from a loading node with time index t, and let XW
t and

XA
t represent similar sets for waiting- and activity nodes, respectively. Based on the arcs

described in Section 7.3, the following relation between these sets can be established:

XL
t ⊂ XW

t ⊂ XA
t (7.17)

This implies that a label that belong to a loading node only can dominate labels belonging

to other loading nodes, that labels belonging to waiting nodes only can dominate labels

of other waiting nodes or loading nodes, while labels that belong to activity nodes may

dominate labels that belong to both loading and waiting nodes.

7.5 A Tour Counting Labeling Algorithm

In the algorithm in Section 7.4, henceforth referred to as the activity counting algorithm,

we limit the number of feasible paths by restricting the number of times each installation

activity can be performed. Another alternative is to restrict the number of times a vessel

can visit loading nodes in a feasible path, which is equivalent to restricting the number
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of round trips for a vessel. This is similar to our formulation of the second stage model

in Chapter 5, where the size of the set Iv puts an upper bound on the number of round

trips for vessel v. In this section we describe an alternative labeling algorithm for the

subproblem SPPRC based on this concept, henceforth referred to as the tour counting al-

gorithm. The two labeling algorithms are similar, but relevant adjustments are elaborated

on below.

A label in the tour counting algorithm contains the same data as the label described in

Section 7.4.3, except for f⃗ , which is replaced by a new resource, w. The new resource

counts the number of times loading nodes have been visited so far along the path, and

is initialized as described in Equation (7.18). Its REF is described in Equation (7.19).

All other resources are updated by the same REFs as in the activity counting labeling

algorithm.

w(L0) = 0 (7.18)

w(L′) =

{
w(L) + 1 if j ∈ NL

w(L) otherwise
(7.19)

The resource constraints that must be satisfied for feasible extensions in the tour counting

algorithm are: (1) to extend to a node (j, t) ∈ NA, the vessel must be loaded with the

required resources to perform the corresponding activity, and (2) w must be within its

resource window, as described in Equation (7.20).

w ∈ [0, Iv] (7.20)

The dominance criterion consists of the same requirements as for the activity counting

algorithm, with the exception of requirement 5 which is replaced by the requirement

described in Equation (7.21).

w(L1) ≥ w(L2) (7.21)

As the new requirement requires fewer pairwise comparisons, the dominance criterion of

the tour counting algorithm is less strict than that of the activity counting algorithm.

Hence, we expect more labels to be removed by dominance in this algorithm, which the-

oretically should speed up the computational time of the subproblems. However, the

increased speed comes at a cost. As we in the tour counting algorithm allow for gen-

eration of schedules where more turbines than necessary are installed, the dual bound

obtained by solving the restricted master problem will become weaker.
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7.6 Configurations for the Branch-and-Price Algorithm

To implement the B&P algorithm, different algorithmic design choices must be made.

First, we describe how we initialize the column generation algorithm. Then we describe the

search strategy, i.e., the order in which B&P nodes in the enumeration tree are explored.

Then, the branching strategy, i.e., how the solution space is partitioned to produce new

nodes, is defined. Finally, we define a termination criterion for the search.

7.6.1 Initial Schedules

In the root node of the enumeration tree there are no previously generated schedules. To

initialize the column generation algorithm, empty schedules for each vessel and scenario

combination are added to the RMP. An empty schedule is a schedule where no activities

are performed, and that has T start
p = T end

p = 0.

7.6.2 Search Strategy

The choice of search strategy can have significant consequences on the computational time

needed for the B&P algorithm to reach optimality. As the subproblems of the decomposed

model are complex and solving them is very time consuming, we want to limit the number

of B&B nodes that need to be solved to obtain the optimal solution. Further, as we

perform a Dantzig-Wolfe reformulation of the original problem, we expect a tight gap

between the solution in the root node of the enumeration tree and the optimal integer

feasible solution. Since we further extend the B&P algorithm with a primal heuristic for

finding good integer feasible solutions, which is introduced in Section 7.7, the focus in the

enumeration tree is on improving the dual bound. Therefore, to decide which node to

solve next, we employ a best first search strategy: we always investigate nodes with the

most promising optimistic bounds first. The optimistic bound of an unsolved B&P node

is defined by the objective value of its parent node.

7.6.3 Branching

As the shortest path labeling algorithm enforces integrality in the subproblems, the rel-

evant variables to branch on are those found in the master problem of the decomposed

model. We apply a hierarchical branching strategy, where the first stage decision vari-

ables of the original model are prioritized over the second stage variables. The us and ePs

variables are not considered for branching, as all solutions where any us variable is larger

than zero are considered infeasible, and ePs does not directly affect the first stage decisions

of contractual agreements.
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The first variables that are considered for branching are the binary αv variables, which

represent the decision of whether or not a vessel v is included in the chartered fleet. These

variables are prioritized as they have a large numerical impact on the objective function.

Another benefit of branching on αv, is that in the 0-branch it will not be necessary to

solve the subproblems related to vessel v, as it is not necessary to find new schedules for a

vessel that is not chartered. The 1-branch for a αv variable indicates that vessel v must be

chartered, and hence should perform some operations. This implies that the initial empty

schedule is infeasible in this branch, something we have imposed by giving it a penalty in

the objective function. The non-integer αv with the lowest v index is branched on first.

The next variables considered for branching are µov. These variables represent the de-

cisions of whether or not to include option o in the contract for vessel v, and also these

variables have a considerable impact on the objective value. Similarly, to the branching

strategy for αv variables, the lowest indexed non-integer µov is branched on first.

Next, the variables sCv and eCv are branched on, again the lowest indexed non-integer

variables are prioritized. As these variables are non-binary, the branching must impose a

lower or upper bound on them. Let sC∗
v represent a non-integer value of a sCv variable in

the optimal node solution. Equations (7.22) and (7.23) show how the branching strategy

creates a new lower or upper bound on this variable, respectively. Similar equations also

apply for branching on the eCv variables.

sCv ≥
⌊
sC∗
v

⌋
+ 1 (7.22)

sCv ≤
⌊
sC∗
v

⌋
(7.23)

Branching on sCv and eCv also affects the characteristics of feasible schedules in the sub-

problems for vessel v. A lower bound requirement for sCv , poses a lower bound on the start

time of feasible schedules for vessel v, as described in Equation (7.24). Further, an upper

bound for eCv , combined with µov-branching decisions, affects the latest feasible end time

for schedules for vessel v. This is described by Equation (7.25), where µ̂ov equals zero if

the variable µov earlier has been branched to zero, and otherwise equals 1. Schedules that

break either of these bounds are forbidden in the master problem and are therefore not

generated during column generation for the relevant B&B node.

T start ≥
⌊
sC∗
v

⌋
+ 1 (7.24)

T end ≤
⌊
eC∗
v

⌋
+

∑
o∈O

Loµ̂ov (7.25)

Once all the first stage decision variables αv, µov, s
C
v , and e

C
v are integer, the second stage

decision variables γovs may be branched on. This is done in the same manner as for µov.
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Even when all of the αv, µov and γovs take integer values, the schedule variables, λp, are

not guaranteed to be integer. If the λp variables are non-integer for a subproblem, different

schedules are mixed. To guarantee reasonable charter contracts, such solutions are not

sufficient. Hence, we must apply a branching strategy that enforces integer values also for

these variables. To branch on the λp variables one by one would be very inefficient, as

there are many similar schedule opportunities in each subproblem. To affect a large range

of these variables, we apply a branching strategy where upper and lower bounds are set

on the parameters T start and T end for schedules in each subproblem. Schedules that break

these bounds are forbidden in the master problem and are therefore not generated during

column generation for the relevant B&P node.

The schedule start and end bounds can only be branched on for one subproblem at the

time, and bounds for T start parameters are branched on before bounds for T end. To

affect as many schedule variables as possible, the weighted average of the start times of

the schedules used in the solution, denoted T vs, is calculated for each subproblem and

rounded down to the nearest integer, as shown in Equation (7.26), where λ∗p represents

the value of λp in the node solution.

T vs ≤

 ∑
p∈Pvs

T start
p λ∗p

 (7.26)

We choose to execute the branching for the subproblem where the distribution of sched-

ule start times is most balanced around T vs. That is, the subproblem with the lowest

difference, dvs, in number of schedules with T start before and after T vs as expressed by

Equations (7.27) - (7.29).

Xvs = {p ∈ Pvs|T start
p > T vs ∧ λ∗p > 0} (7.27)

Yvs = {p ∈ Pvs|T start
p < T vs ∧ λ∗p > 0} (7.28)

dvs = |(|Xvs| − |Yvs|)| (7.29)

In the first branch, the upper bound of T start is set as described in Equation (7.30), while

in the second branch the lower bound of T start is set as described in Equation (7.31).

Branching on bounds for T end is done in the same manner.

T start ≤ T vs (7.30)

T start ≥ T vs + 1 (7.31)
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7.6.4 Termination Criterion

The B&P search is terminated if the optimality gap is less than a predefined value ϵ,

as expressed in Equation (7.32). The primal bound is the best found integer feasible

solution, and the dual bound is an optimistic bound on the objective, determined by the

lowest parent node objective to an unsolved B&P node.

Optimality gap =
Primal Bound−Dual Bound

Primal Bound
≤ ϵ (7.32)

The value of ϵ is set to 0.01%, which is a value commonly used in commercial solvers.

7.7 Acceleration Techniques

Algorithmic extensions aimed at accelerating the B&P algorithm have been implemented.

First, we expand the B&P algorithm by a primal heuristic to more quickly find integer

feasible solutions. A second extension is to add all schedules with negative reduced cost

to the RMP in each iteration. We also extend the algorithm by applying partial pricing.

Lastly, we include heuristic labeling for the subproblems.

7.7.1 Inclusion of a Primal Heuristic

To quickly find integer feasible solutions, we have included a primal heuristic into the

B&P algorithm. After the column generation algorithm produces an LP solution in a

B&B node, the RMP is re-solved with binary and integer requirements on the variables

to obtain an integer feasible solution. The primal bound is updated if the integer feasible

solution from the primal heuristic is better than the current best integer feasible solution.

Following the primal heuristic, the B&P algorithm returns to assess whether or not to

branch further, based on the node solution.

7.7.2 Generating Additional Schedules

A well known strategy for accelerating column generation is to return more than one neg-

ative reduced cost column to the master problem in each iteration of the column generation

procedure. To add more than one columns is particularly easy when the subproblems are

solved by dynamic programming, and generally decreases the number of necessary column

generation iterations (Desrosiers and Lübbecke 2005; Kallehauge et al. 2005). Hence, in

our implementation, we add all generated schedules with negative reduced cost to the

master problem in each iteration.
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7.7.3 Partial Pricing

When there are many subproblems it is often beneficial to consider only a few of them

each time the pricing problem is called (Desrosiers and Lübbecke 2005). This is known

as partial pricing. In our implementation, we solve the subproblems one by one. If a

subproblem returns at least one schedule with negative reduced cost, the schedules are

added to the RMP immediately, and the RMP is re-solved. Then the algorithm continues

to the next subproblem and repeats the procedure until no new schedules with negative

reduced costs are found in any of the subproblems.

Additionally, we inspect the dual values of a subproblem before it is solved. Subproblems

with dual values that are unchanged from the previous iteration are not solved. The

subproblem is also skipped, if the absolute values of its relevant duals sum up to zero.

7.7.4 Heuristic Labeling

Solving the labeling algorithm for the subproblems as described in Section 7.4 can be very

time consuming. To accelerate the search for new feasible schedules, we have added a

heuristic labeling algorithm. The heuristic labeling algorithm is almost the same as the

exact labeling algorithm described in Section 7.4, except for the dominance criteria, which

have been relaxed. The following criteria must be satisfied for a label L1 to dominate

another label L2 in the heuristic labeling algorithm:

1. t(L1) = t(L2)

2. s(L1) ≥ s(L2)

3. r(L1) ≥ r(L2)

4. c(L1) ≤ c(L2)

5. a⃗(L1) ≥ a⃗(L2)

6. η(L1) ∈ NL → η(L2) ∈ NL

When a B&P node is solved, the heuristic labeling algorithm is used until no new schedules

are found for any of the subproblems. Then, the exact labeling algorithm is used to search

for additional schedules. If the exact labeling algorithm identifies new schedules in a

subproblem, the heuristic labeling algorithm is resumed. This alternation between the

two algorithms continues until neither algorithm is able to find new schedules in any of

the subproblems, and the optimal solution to the B&P node is found.
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Instance and Scenario Generation

In this chapter, we present the test instances that form the basis for testing the performance

of our models. The chapter is to a large extent re-used from our project report (Bruu and

Thorsen 2021). First, we present the selection of input data and generation of weather

scenarios in Section 8.1. Then, penalty cost calculations are presented in Section 8.2.

Finally, tabular summaries of the test instances are given in Section 8.3.

8.1 Input Data

In this section, we describe the data used to generate test instances. To generate realistic

instances, the data is based on information given in Chapter 2, and interviews with Ulstein

International and Clarkson Platou presented in Appendices A and B. Additionally, general

knowledge from our studies within marine project engineering is applied.

8.1.1 Planning Horizon

As described in Section 2.5, it is common to plan for all installation activities to be

performed during the summer months due to harsher weather conditions during the winter.

Based on this, a planning horizon of four months, from April until the end of July, is

applied in the test instances. The planning horizon is created with a time discretization

of 12 hours, resulting in a total of 244 time periods.

8.1.2 Installation Activities

For testing purposes, installation of a monopile OWT is used as an example. The in-

stallation process then involves the following operations: installation of foundation and

transition piece, turbine installation, scour protection and cable installation and burial.
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Operations that are usually conducted by the same vessel are aggregated into a single

activity. Hence, installation of foundation and transition piece are regarded as a single

activity and referred to as installation of foundation. Further, we assume that a simultan-

eous lay and burial strategy is used for cable installation. The duration of this activity is

set to three time periods, reflecting the duration of cable burial which is the most time

consuming out of the two activities. Weather limits for what is referred to as ”cable

installation” in the table in Section 2.5 are used, as it is assumed that these reflect the

limitations of a Cable Laying Vessel (CLV), which can perform both activities.

A summary of the activities and their duration and weather limits is presented Table 8.1.

The activities are numbered from one to four, reflecting precedence requirements. Weather

limits and duration of activities are based on data presented in Section 2.5. In addition to

performing installation activities, the vessels must sail between port and the offshore site.

The duration of sailing depends on the vessels’ speed and the location of the wind farm.

For testing purposes, we set the time of sailing each way to one time period.

Table 8.1: Input data for activities, including durations and weather limits.

No. Activity
Duration

(time periods)

Wind limit

(m/s)

Wave limit

(m)

1 Installation of foundation 6 12 2

2 Installation of cables 3 15 1.5

3 Scour protection 1 15 2.5

4 Installation of turbine 2 8 2

8.1.3 Vessels

To complete the installation activities, a vessel pool consisting of a CLV, Jack-Up Barge

(JUB), Rock Dumping Vessel (RDV) and WTIV is included. The variable costs and

installation capabilities for each vessel are shown in Table 8.2. The cost data is based

on the day rates presented in Section 2.3, and our knowledge from studies within marine

project engineering. The variable costs are recalculated to correspond to 12-hour time

periods. As the Jack-Up Barge (JUB) is not self-propelled, the charter cost of a tug-boat

is included in its variable cost.

Table 8.2: Input data for vessels, including costs and abilities.

Vessel Variable Cost (USD/12h) Fixed Cost (USD) Installation activities

CLV 57 500 6 000 Cable laying and burial

JUB 71 500 6 000 Foundation

RDV 15 000 6 000 Scour protection

WTIV 100 000 6 000 Foundation; Turbine

54



Chapter 8. Instance and Scenario Generation

8.1.4 Options

In real-life charter contracts for installation vessels, the possibility of adding flexibility to

the contract through options is subject to negotiations and influences the overall cost of

the contract. In this thesis, we apply a simplified approach to contractual options through

inclusion and exercise prices for options, inspired by Voster and Kjelby (2020).

We define the exercise price of an option as the option length multiplied by day rates

for the option period. We assume the day rates increase by 10% in the option period

compared to normal day rates. Hence, the exercise price of an option can be expressed as

in Equation (8.1).

exercise price = 1.10 · day rate · option length (8.1)

The inclusion price of an option is calculated as described in Equation (8.2), where the

exercise price is multiplied by a factor γ. As options represent uncertain income, and hence,

a risk for the shipowner, γ can be considered to represent a degree of ”inconvenience” for

the shipowner. For the purpose of testing, this factor is set to 20%.

inclusion price = γ · exercise price (8.2)

The possibility of including options for one or two weeks (or both), corresponding to 14

and 28 time periods, respectively, for each vessel is included. The prices for including

and exercising these options are calculated as described above and presented in Table 8.3.

Note that the option length is given in number of time periods.

Table 8.3: Input data for option prices.

Vessel Option length Inclusion price (kUSD) Exercise price (kUSD)

CLV 14 177.1 885.5

28 354.2 1771

JUB 14 220.22 1101.1

28 440.45 2202.2

RDV 14 46.2 231

28 92.4 462

WTIV 14 308 1540

28 616 3080
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8.1.5 Loading Sets

The vessels have predefined loading sets. The size of each loading set is based on space

limitations on board the vessels, as well as the size of turbine components commonly used

today. An overview of the loading sets, including their resources, corresponding activity,

and the vessel the loading set belongs to, is shown in Table 8.4. The duration of loading

a loading set onto a vessel is set to one time period.

Table 8.4: Input data for loading sets, including corresponding activity and vessel.

Loading set Activity Vessel

10 × cable 2 CLV

4 × foundation 1 JUB

5 × scour protection 3 Rock Dumping Vessel

6 × turbine 4 WTIV

6 × foundation 1 WTIV

8.1.6 Weather Data

To account for uncertain weather effects, the scheduling problems for each vessel are solved

for different realizations of weather conditions. Different realizations of weather conditions

over the span of the planning horizon will henceforth be referred to as different scenarios.

Weather data was made available by the FINO (Forschungsplattformen in Nord- und

Ostsee) initiative, which was funded by the German Federal Ministry of Economic Affairs

and Energy (BMWi) on the basis of a decision by the German Bundestag, organised by

the Projekttraeger Juelich (PTJ) and coordinated by the German Federal Maritime and

Hydrographic Agency (BSH) (FINO 2021).

Measurements of specific wave height and wind speed from the FINO1 research platform

in the North Sea, collected from April 1st to July 31st for the years 2013 - 2020, were used

to generate eight weather scenarios, one corresponding to each year. We assume that the

weather scenarios are uniformly distributed, meaning that the probability of each weather

scenario is set to 1/|S|, where |S| is the total number of scenarios considered in the model.

Our mathematical models require each time period to have a given weather state in each

scenario. At FINO1, measurements of wind speed and wave height are made more frequent

than every 12 hours. We assume that a vessel cannot operate operate through a 12-hour

time period if the weather conditions at any point within this time period exceed its

operational limits. Hence, in the generation of scenarios, the weather state in each time

period is set to a conservative value equal to the maximum wind speed and wave height

over the 12 hours of weather data.
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8.2 Parameter Calculations

The penalty cost parameters used as weighting coefficients in the objective functions must

be calculated before solving the model. Their calculations are explained in this section.

8.2.1 Penalty Cost for Lost Income

To minimize the project end date, a penalty cost term for lost income is added to the

objective function, inspired by Hansen and Siljan (2017). A prolonged installation phase

causes loss of electricity production and potential revenue for the electricity providers.

Thus, the value of the penalty cost is represented by the lost revenues of not generating

electricity.

How much energy the wind farm can produce per time period can be found by multiplying

the capacity factor of each turbine by the total number of turbines in the wind farm and the

turbine rating. The capacity factor represents, on average, how much energy is produced

by a wind turbine and is given as a percentage of the turbine rating. To find revenues,

the generated electricity per time period must be multiplied by some time interval and an

electricity price, as expressed in Equation 8.4.

PL = Priceel · Capacity · Rating · nTurbines︸ ︷︷ ︸
Generated electricity

·Interval (8.3)

Based on values from offshore wind farms in the UK, a capacity factor of 40% is applied in

this thesis (Energy Numbers 2022). Further, a turbine rating of 8 MW is used based on our

knowledge from studies within marine project engineering. The energy price is calculated

as the average of energy prices from 2017-2021 with data from Nord Pool (Nord Pool AS

2020), and converted to USD based on average exchange rates over the same time period

(XE.com Inc. 2022). The applied time interval is 12 hours.

8.2.2 Penalty Cost for Unfinished OWTs

The penalty cost for unfinished turbines, PU , must be set to a value that ensures that it

does not become advantageous to not finish all planned turbines in the wind farm. Hence,

the penalty must be set higher than the cost of completing the installation activities

for each OWT. This cost will depend on vessel day rates and processing times for the

installation activities. For the test instances in this report, the penalty cost is set as

described in Equation (8.4), where |T | is the number of time periods in the test instance

and PL is the penalty cost for lost income.

PU = 10 000 000 + PL · |T | (8.4)
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8.3 Test Instances

In this section we present test instances for the problem of designing charter contract for

installation vessels at offshore wind farms. The test instances are made based on the input

data and weather scenarios presented earlier in this chapter.

The applicability of the model depends on the number of turbines it can be solved for, thus

test instances with an increasing number of turbines have been made. Further, the more

scenarios the model can handle, the better the uncertainty is accounted for. Therefore, we

have also created test instances with an increasing number of scenarios. Tabular summaries

of the test instances with number of turbines, scenarios, and activities, as well as available

vessels, are presented in Table 8.5 and Table 8.6. All test instances span 244 time periods

with a 12-hour time discretization.

Table 8.5: Test instances for increasing number of turbines.

Instance Turbines Scenarios Activities Vessels Time Periods

T2 2 1 4 CLV, JUB, RDV, WTIW 244

T4 4 1 4 CLV, JUB, RDV, WTIW 244

T6 6 1 4 CLV, JUB, RDV, WTIW 244

T8 8 1 4 CLV, JUB, RDV, WTIW 244

T10 10 1 4 CLV, JUB, RDV, WTIW 244

T12 12 1 4 CLV, JUB, RDV, WTIW 244

T14 14 1 4 CLV, JUB, RDV, WTIW 244

T16 16 1 4 CLV, JUB, RDV, WTIW 244

T18 18 1 4 CLV, JUB, RDV, WTIW 244

T20 20 1 4 CLV, JUB, RDV, WTIW 244
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Table 8.6: Test instances for increasing number of scenarios.

Instance Turbines Scenarios Activities Vessels Time Periods

T2S2 2 2 4 CLV, JUB, RDV, WTIW 244

T2S4 2 4 4 CLV, JUB, RDV, WTIW 244

T2S6 2 6 4 CLV, JUB, RDV, WTIW 244

T2S8 2 8 4 CLV, JUB, RDV, WTIW 244

T4S2 4 2 4 CLV, JUB, RDV, WTIW 244

T4S4 4 4 4 CLV, JUB, RDV, WTIW 244

T4S6 4 6 4 CLV, JUB, RDV, WTIW 244

T4S8 4 8 4 CLV, JUB, RDV, WTIW 244

T6S2 6 2 4 CLV, JUB, RDV, WTIW 244

T6S4 6 4 4 CLV, JUB, RDV, WTIW 244

T6S6 6 6 4 CLV, JUB, RDV, WTIW 244

T6S8 6 8 4 CLV, JUB, RDV, WTIW 244

T8S2 8 2 4 CLV, JUB, RDV, WTIW 244

T8S4 8 4 4 CLV, JUB, RDV, WTIW 244

T8S6 8 6 4 CLV, JUB, RDV, WTIW 244

T8S8 8 8 4 CLV, JUB, RDV, WTIW 244

T10S2 10 2 4 CLV, JUB, RDV, WTIW 244

T10S4 10 4 4 CLV, JUB, RDV, WTIW 244

T10S6 10 6 4 CLV, JUB, RDV, WTIW 244

T12S2 12 2 4 CLV, JUB, RDV, WTIW 244

T12S4 12 4 4 CLV, JUB, RDV, WTIW 244

T12S6 12 6 4 CLV, JUB, RDV, WTIW 244

T14S2 14 2 4 CLV, JUB, RDV, WTIW 244

T14S4 14 4 4 CLV, JUB, RDV, WTIW 244

T16S2 16 2 4 CLV, JUB, RDV, WTIW 244

T16S4 16 4 4 CLV, JUB, RDV, WTIW 244

T18S2 18 2 4 CLV, JUB, RDV, WTIW 244

T18S4 18 4 4 CLV, JUB, RDV, WTIW 244

T18S6 18 6 4 CLV, JUB, RDV, WTIW 244

T20S2 20 2 4 CLV, JUB, RDV, WTIW 244

T20S4 20 4 4 CLV, JUB, RDV, WTIW 244

T20S6 20 6 4 CLV, JUB, RDV, WTIW 244
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Computational Study

In this chapter we study the effect of applying B&P to the problem of designing charter

contracts for installation vessels at offshore wind farms through testing of the instances

presented in Section 8.3. To provide a meaningful analysis, the results from solving the

decomposed model using B&P are compared to results from solving the original model

using a commercial MIP solver.

In Section 9.1, we compare the performance of the two labeling algorithms for solving the

subproblems of the decomposed model. Then, we analyze how the computational perform-

ance of the implemented B&P algorithm changes with different instance characteristics.

In Section 9.2 and Section 9.3 we study the effect of increasing the number of turbines

and the number of scenarios, respectively, and evaluate the ability of our B&P algorithm

to generate dual bounds and provide a tighter LP-relaxation.

The B&P algorithm is implemented in C++17, and combined with Gurobi Optimizer to

solve the RMP. The original model is implemented in Mosel and solved using FICO Xpress

with a single thread. Testing was conducted on a Lenovo NextScal nx360 M5 computer

with the specifications presented in Table 9.1. For practical purposes, the maximum run

time for each test instance was set to three hours. As the problem studied in this thesis is

a strategic long-term planning problem, a longer run time could be considered acceptable

if the models were to be used to provide decision support for real-life projects.

Table 9.1: Specifications on computer and solvers used for the computational study.

Processors 2× 2.3 GHz Intel E5-2670v3 12 core

RAM 64 GB

FICO Xpress Version 8.9.0

Gurobi Optimizer Version 9.5
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9.1 Comparison of the Labeling Algorithms

To see how the performance of the B&P method is affected by the choice of labeling

algorithm, we have run some test instances with both algorithms presented in Section 7.4

and Section 7.5. To cover different aspects of the model, random instances with varying

number of turbines and scenarios were chosen.

Table 9.2 shows, for each test instance, the number of seconds it took to solve the root node

(Root Time), the root node objective (Root Obj.), the final dual bound (Dual Bound),

final optimality gap (Gap (%)), as well as the number of processed B&B nodes (Nodes)

and number of generated schedules (Schedules) for the activity counting algorithm. The

same result data for the tour counting algorithm is displayed in Table 9.3. Both tables

show results after three hours of computational time.

Table 9.2: Results for the activity counting algorithm.

Instance Root Time (s) Root Obj. Dual Bound Gap (%) Nodes Schedules

T2S8 1 504 246 653 246 792 0.42 34 16 183

T4 356 524 007 524 338 0.00 4 6 244

T4S4 1 497 635 203 635 324 1.40 40 16 294

T8 985 1 974 083 1 976 299 27.49 76 16 700

T8S2 2 456 1 897 322 1 897 408 25.61 23 16 569

T10S4 7 276 2 579 733 2 579 733 21.90 3 34 343

T14S2 8 301 4 993 672 4 993 777 76.93 4 24 951

T20 2 898 35 807 532 35 808 024 73.90 19 18 484

Table 9.3: Results for the tour counting algorithm.

Instance Root Time (s) Root Obj. Dual Bound Gap (%) Nodes Schedules

T2S8 3 269 170 600 175 851 46.77 11 40 673

T4 381 415 222 420 850 19.81 162 24 239

T4S4 945 502 604 504 300 87.16 46 24 071

T8 648 1 418 583 1 421 587 95.06 57 29 916

T8S2 1 087 1 529 714 1 529 933 93.07 70 18 856

T10S4 2 151 2 298 952 2 299 003 96.18 19 29 479

T14S2 1 277 4 467 395 4 467 589 90.18 47 24 074

T20 806 35 805 726 35 811 862 73.90 29 32 184

There are positives and negatives for both algorithms. When we apply the tour counting

algorithm, the root node solution is found considerably faster than when we apply the

activity counting algorithm. This indicates that solving each node in the enumeration

tree requires less computational time with the tour counting algorithm compared to the
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activity counting algorithm. This is further supported by the fact that more nodes are

solved within the time limit. As a result of processing more B&B nodes, the tour counting

algorithm also generates a significantly higher number of schedules. However, as this

algorithm allows schedules where more OWTs than necessary are installed, the primal

heuristic is not able to combine these schedules into a feasible installation sequence for

the wind farm as a whole, indicated by the large optimality gaps.

If we look at the objective of the root node solution and the dual bounds, the activity

counting algorithm performs better, as stronger bounds are found. As neither of the

algorithms manage to improve the dual bound much from the root node solution, this

is a valuable aspect of the activity counting algorithm. Moreover, the activity counting

algorithm obtains significantly lower optimality gaps. This is because the primal heuristic

is able to find better integer solutions based on the schedules generated by this algorithm.

In the remainder of the computational study the activity counting algorithm is used.

9.2 Increasing the Number of Turbines

Table 9.4 shows, for each test instance, the total computational time in seconds (Time

(s)), root node objective (Root Obj.), final dual bound (Dual Bound), final optimality gap

(Gap (%)) and number of processed B&B nodes (Nodes) for the original model solved with

FICO Xpress when the number of turbines is increased. The same result data is shown for

the decomposed model solved with the B&P method in Table 9.5, with additional columns

that show the number of schedules generated (Schedules) and the percentage of schedules

that were generated by the heuristic labeling algorithm described in Section 7.7.4 (H (%)).

Table 9.4: Results from solving the original model with a commercial solver for instances

with an increasing number of turbines.

Instance Time (s) Root Obj. Dual Bound Gap (%) Nodes

T2 38 148 405 214 434 0.01 439

T4 22 398 143 525 377 0.00 25

T6 440 1 086 388 1 237 690 0.01 11 224

T8 10 800 761 060 2 000 608 0.11 230 652

T10 10 800 1 030 114 3 421 115 0.29 122 581

T12 10 800 1 769 153 4 298 728 8.76 54 220

T14 10 800 1 811 726 3 054 296 85.61 53 050

T16 10 800 2 100 427 3 778 077 85.61 53 850

T18 10 800 2 768 765 4 584 318 95.18 79 735

T20 10 800 1 828 331 4 447 344 97.69 72 673
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Table 9.5: Results from solving the decomposed model with the B&P method for in-

stances with an increasing number of turbines.

Instance Time Root Obj. Dual Bound Gap (%) Nodes Schedules H (%)

T2 139 213 716 213 745 0.00 4 1 669 67

T4 780 524 007 524 338 0.00 4 6 244 81

T6 10 800 1 156 686 1 158 079 6.24 169 11 577 52

T8 10 800 1 974 083 1 976 299 27.49 76 16 700 49

T10 10 800 2 779 661 2 782 447 22.77 36 19 228 69

T12 10 800 4 217 365 4 219 482 7.51 20 17 536 69

T14 10 800 5 168 978 5 169 917 9.72 17 13 101 67

T16 10 800 6 161 164 6 161 355 84.61 25 16 977 72

T18 10 800 7 260 563 7 261 153 90.65 15 19 200 64

T20 10 800 35 807 532 35 808 024 73.90 19 18 484 65

For the smallest instances we observe that the original model, solved with a commercial

solver, outperforms our B&P method. However, for instances with 12 or more turbines,

the B&P method is able to obtain better dual and primal bounds, and lower optimality

gaps.

There is a leap in optimality gap when the number of turbines is increased beyond 14 in

the original model, and 16 in the decomposed model. A closer study of the results reveals

that this is due to unfinished turbines in the primal solutions for these instances. There

is also a large leap in the final dual bound and root node solution obtained for instance

T20 compared to T18 with the B&P method. A closer look at the results for instance

T20 revealed that there are 1.6 unfinished turbines in the root node solution. This means

that it is not possible to install 20 or more OWTs with the given input data, and that

better weather conditions, more vessels, or more time periods are needed to complete

their installation. That the optimal solution has unfinished turbines can also explain the

decrease in optimality gap for this instance compared to the gap obtained for T16 and

T18.

For all the tested instances, the root node objective found by the B&P method is higher

than that found for the original model by the commercial solver. This indicates that the

decomposed model obtains a tighter LP-relaxation than the original model, as predicted.

In Figure 9.1, we show the percentual difference in the root node objective found by the

two methods. The difference is calculated as (rd − rc)/rc, where rd is the root node

objective obtained by solving the decomposed model with the B&P method, and rc is the

root node objective found by the commercial solver for the original model. For all tested

instances with eight or more turbines the improvement is more than 130%. As can be

seen from the figure, especially the instances with many OWTs have a large improvement

in root node objective.
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Figure 9.1: Percentual difference in the root node objective found by the B&P method

and the commercial solver.

Figure 9.2 shows the percentual difference in the dual bounds obtained from the decom-

posed model and the original model. The difference is calculated as (bd − bc)/bc, where bd

is the final dual bound obtained by solving the decomposed model with the B&P method,

and bc is the final dual bound obtained by the commercial solver for the original model.

As can be seen from the figure, the dual bounds for the instances with 14 or more turbines

are remarkably improved by the B&P method. The greatest bound improvement is found

for instance T20, where we observe more than 700% increase. The very large increase in

both dual bound and root node objective for test instance T20 is due to the stronger LP-

relaxation of the decomposed formulation, which avoids solutions with unfinished OWTs.

This is something that is not achieved by the LP-relaxation of the original model.

Figure 9.2: Percentual difference in dual bound obtained by the B&P method and the

commercial solver.
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We observe that there is very little improvement from the root node objective to the final

dual bound obtained by the B&Pmethod. This indicates that there is limited improvement

in the objective value as the enumeration tree is expanded. Hence, the stronger bounds

obtained by the B&P method, compared to the commercial solver, are mainly a result of

the better root node solutions. Nonetheless, we also note that the B&P method requires

a significantly lower number of nodes also for the instances that are solved to optimality

with both methods. For the test instances T2, T4 and T6 the B&P method only processes

4, 4 and 169 nodes, respectively, while the commercial solver must process a total of 439,

25 and 11 224 nodes, respectively, to prove optimality. However, the B&P method uses

a lot more computational time, indicating that it is very time consuming to solve each

node. At closer inspection, we revealed that it is the subproblems that take up most

of the computational time, and that especially the exact labeling algorithm is very time

consuming.

There is no obvious trend in the number of generated schedules for the presented instances.

However, the average percentage of heuristically generated schedules for the presented

instances is only 65%. Thus, there is potential to reduce the computational time of the

subproblems further by developing heuristics that are able to identify a larger share of

these feasible schedules faster than the exact labeling algorithm.

9.3 Increasing the Number of Scenarios

Tables 9.6 and 9.7 display results for the original model solved with a commercial solver

and the decomposed model solved with the B&P method, respectively, when the number of

scenarios is increased. Both tables show the following data for each test instance: the total

computational time in seconds (Time (s)), final dual bound (Dual Bound), final optimality

gap (Gap (%)) and number of processed nodes (Nodes). Additionally, Table 9.7 shows

the number of schedules generated during the B&P algorithm (Schedules). Testing of the

original model was stopped when the optimality gap did not fall below 90% during the

three-hour run time.

The data in Table 9.6 reveals that when the number of scenarios is increased, it becomes

more difficult to solve the problem. Though there is some variation, the overall trend is

that the dual bounds become weaker, and the optimality gaps increase. The conclusion

that an increased number of scenarios complicates the problem can also be drawn based

on the data in Table 9.7. However, unlike the results for the original model, the dual

bounds from the decomposed model do not necessarily decrease. On the contrary, for

both instances T18S4 and T20S4, the dual bound and optimality gap is strengthened

compared to test instances T18S2 and T20S2, respectively.
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Table 9.6: Results from solving the original model with a commercial solver for instances

with multiple scenarios.

Instance Time (s) Dual Bound Gap (%) Nodes

T2S2 1 108 242 697 0.01 32 158

T2S4 10 800 195 425 48.46 54 003

T2S6 10 800 134 345 93.89 25 903

T2S8 10 800 117 017 80.51 9 269

T4S2 512 606 223 0.01 5 946

T4S4 10 800 433 396 88.64 162 910

T4S6 10 800 458 684 32.89 12 700

T4S8 10 800 382 292 51.78 6 319

T6S2 10 800 1 191 318 0.46 97 201

T6S4 10 800 846 127 32.27 9 974

T6S6 10 800 659 466 61.66 5 639

T6S8 10 800 659 060 81.27 2 292

T8S2 10 800 1 142 722 88.39 61 009

T8S4 10 800 1 215 970 87.67 13 383

T8S6 10 800 905 164 69.90 2 971

T8S8 10 800 684 807 85.53 3 623

T10S2 10 800 2 188 201 36.14 66 603

T10S4 10 800 1 454 911 94.11 10 978

T12S2 10 800 1 932 766 95.38 35 455
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Table 9.7: Results from solving the decomposed model with the B&P method for in-

stances with multiple scenarios.

Instance Time (s) Dual Bound Gap (%) Nodes Schedules

T2S2 10 800 241 233 0.67 339 5 432

T2S4 10 800 259 206 0.16 101 11 800

T2S6 10 800 268 367 0.31 68 11 212

T2S8 10 800 246 792 0.42 34 16 183

T4S2 10 800 603 836 1.50 120 10 268

T4S4 10 800 635 324 1.40 40 16 294

T4S6 10 800 648 332 3.72 17 21 478

T4S8 10 800 588 211 4.19 8 30 998

T6S2 10 800 1 134 957 5.88 63 12 632

T6S4 10 800 1 115 245 4.36 17 20 656

T6S6 10 800 1 132 623 11.40 7 28 840

T6S8 10 800 1 044 808 11.07 3 35 404

T8S2 10 800 1 897 408 25.61 23 16 569

T8S4 10 800 1 780 836 21.48 8 25 733

T8S6 10 800 1 806 401 18.53 3 35 601

T8S8 10 800 - 100.00 0 46 981

T10S2 10 800 2 688 448 20.81 26 16 995

T10S4 10 800 2 579 733 21.90 3 34 343

T10S6 10 800 - 100.00 0 46 049

T12S2 10 800 3 900 422 13.75 8 24 553

T12S4 10 800 3 661 643 18.07 1 39 821

T12S6 10 800 - 100.00 0 56 071

T14S2 10 800 4 993 777 76.93 4 24 951

T14S4 10 800 - 100.00 0 45 471

T16S2 10 800 6 365 055 94.81 4 25 491

T16S4 10 800 - 100.00 0 29 395

T18S2 10 800 21 978 459 88.43 4 23 635

T18S4 10 800 23 346 642 85.87 1 27 701

T18S6 10 800 - 100.00 0 50 533

T20S2 10 800 55 793 312 81.49 8 26 119

T20S4 10 800 59 499 762 74.39 4 31 444

T20S6 10 800 - 100.00 0 45 583
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As there were unfinished turbines in the root node solution for the single scenario instance

with 20 turbines, we expect unfinished turbines in the root node solution also for T20S2

and T20S4. This explains why the dual bounds obtained by the decomposed method for

these instances are very high compared to the rest. The same behavior is observed for

T18S2 and T18S4, indicating that the additional scenarios have weather conditions that

make it impossible to complete the installation of all 18 turbines.

Similarly as for when the number of turbines is increased, the results show that the decom-

posed model again outperforms the original model in terms of finding good dual bounds,

and lower optimality gaps when multiple scenarios are introduced. Especially the dual

bounds for the instances with six or more turbines show great improvement, but also the

test instances with a lower number of turbines should be noted. For instance, the B&P

method obtains a gap below 1% for all instances with two turbines, and a gap below

5% for all instances with four turbines. These results are very good compared to those

obtained by the commercial solver, where the gaps for the same instances average around

50%. The only test instances for which the commercial solver obtains a lower gap than

the B&P method within the time limit are T2S2, T4S2 and T6S2. Furthermore, there are

some instances where the B&P method is not able to solve the root node within the time

limit. However, based on the trend from the other results, we expect that if given more

time, also the dual bound for these instances would be much stronger than those of the

original model.

Another observation from the results in Table 9.7, is that there are fewer processed nodes

and more generated schedules compared to the results for the single-scenario instances in

Table 9.5. The decrease in number of processed nodes is natural, as when the number of

scenarios is increased by one, the number of subproblems increases by the number of vessels

in the test instance. For the instances tested here, this means four additional subproblems

for each added scenario. Hence, more subproblems must be solved in each B&B node,

which increases the computational time for each node. In addition to there being more

subproblems, the increased number of schedules may be explained by the heuristic labeling

algorithm. Based on a closer study of the results, we believe that this algorithm identifies

more feasible schedules in the earlier iterations of the subproblems.

Overall, the results indicate that we are able to obtain good dual bounds with the B&P

method, but that the primal bounds become weaker when the test instances increase

in size, resulting in higher optimality gaps. Hence, to exploit the full potential of the

method, a search for better primal solutions is necessary. As mentioned, we observe that

the number of processed nodes is limited for the larger instances. If a greater number of

nodes were to be processed, this would increase the likelihood of finding nodes with integer

solutions, which can result in better primal bounds. Furthermore, with more nodes, more

schedules will be generated, which may enhance the performance of our primal heuristic,

which combines the existing schedules into the best possible integer solution.
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Concluding Remarks

In this thesis we have studied the design of charter contracts for installation vessels at

offshore wind farms. The problem involved decisions on the mix of vessels that should

be chartered, the start and end date of these vessels’ charter periods, as well as which

extension options to include in their contracts. We modeled the problem as a two-stage

stochastic mixed integer programming problem, and applied a Dantzig-Wolfe reformu-

lation to exploit the structure of the problem. Then, we developed a branch-and-price

algorithm with the extension of a primal heuristic to solve the problem.

The branch-and-price method was tested on a series of test instances with a varying

number of turbines and weather scenarios. The results were compared with results from

solving the original stochastic formulation with a commercial solver, and revealed that our

method outperforms the commercial solver in terms of obtaining better dual bounds and

lower optimality gaps for most of the tested instances. The main reason why the branch-

and-price method succeeds at obtaining better dual bounds, is because the LP-relaxation

is much tighter. The lower optimality gaps are mainly a result of the better dual bounds,

but also a result of a successful heuristic search for integer solutions.

We tested two different labeling algorithms for the subproblems, which were formulated

as shortest path problems with resource constraints. One algorithm counted the number

of completed installation activities of each type along a path, while the other only counted

the number of round tours. From this we could observe a trade-off between the time it

took to solve each subproblem, and the strength of the solutions obtained by the relaxed

master problem. Counting of activities resulted in more complex subproblems due to an

increased number of resources in the labeling algorithm compared to the tour counting

labeling algorithm. However, the activity counting labeling algorithm gave a much stronger

relaxed master problem, and better dual bounds were obtained even though a lower number

of B&B nodes were processed within the predefined time limit with this algorithm.
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The time limit during testing was set to three hours. As the design of charter contracts for

offshore wind farm installation vessels is a strategic planning problem used for planning

years in advance of when the installation of the wind farm is to take place, solution time

is not a critical factor, and longer solution time may be accepted. Nonetheless, as only

the smallest instances are solved to optimality, the solution method needs more refining

before real managerial insight can be provided.
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Future Research

In this thesis, we apply a B&P algorithm to solve the problem of designing charter contracts

for installation vessels at offshore wind farms. Results from the computational study

indicate that the B&P algorithm succeeds at finding good dual bounds. However, efforts

aimed at reducing computational time and enhancing computational performance should

be considered. In Section 11.1 we identify potential directions for improving the current

implementation of the B&P algorithm. Further, the models proposed in this thesis do not

capture every aspect of the real-life problem. Relevant model extensions are suggested in

Section 11.2 to increase the applicability of the models. However, new model extensions

may further increase the computational complexity and should therefore not be considered

before an improved solution method is implemented.

11.1 Improvements to the Solution Method

A potential improvement to the solution method is to use a heuristic to pre-generate non-

empty schedules that the B&P algorithm can be initialized with. With initial schedules

where activities are performed, better dual values will be obtained from the RMP, and

the number of iterations needed in the column generation algorithm may be reduced.

The subproblems are complex, and solving them takes up a high percentage of the total

computational time. Hence, a decreased number of column generation iterations can speed

up the convergence of the B&P algorithm.

Another way to reduce the computational effort spent on solving the subproblems, and

thereby speeding up the overall solution method, is to apply a bidirectional labeling al-

gorithm. In bi-directional search an initial label is set both at the start and the end of

the network, and is extended forwards and backwards, respectively. The benefit of such

an approach is that forward and backward labels do not need to be propagated through

the entire network. Instead, the labels only need to be extended up to a half-way point.
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Then, paths originating from different sides of the network can be combined into complete

paths. This limits the overall number of labels created, and reduces the computational

burden of the subproblems.

The computational study revealed that for larger instances, the proposed solution method

is able to obtain much better dual bounds than those obtained by a commercial solver.

However, the optimality gaps are still quite large, as the method is unable to enhance the

primal bounds to the same degree. Hence, another possible improvement to the proposed

solution method is to develop additional primal heuristics. Identification of high-quality

primal bounds can help prune the enumeration tree, and by this reduce the computational

effort required to find the optimal solution.

Another observation from our computational study is that there is little improvement in

the objective value as the enumeration tree is expanded. This is a common problem for

B&P methods, and a possible remedy can be to extend the method to a branch-price-and-

cut method, where cutting planes are added to tighten the LP relaxation of the master

problem. Another possibility is to investigate the use of other branching strategies. Depth-

first search has the advantage of finding feasible solutions early, and can be combined with

the best-first strategy by first using depth-first search to find an early integer solution and

then switching to best-first search to produce better bounds. Additionally, a variety of

heuristics can be implemented to ease the search in the enumeration tree. Possible exten-

sions the current implementation of B&P is to include relaxation induced neighborhood

search (RINS) and diving methods to obtain good primal solutions faster.

Finally, to exploit the problem structure in which we have independence among all the

subproblems after the decomposition, an extension of solving the subproblems in parallel

can be implemented. This will speed up each iteration of the column generation algorithm

and can therefore lead to faster convergence.

11.2 Model Extensions

The planning problem related to installation of OWTs is complex. Although the model

proposed in this report accounts for many aspects of a real-life installation problem, ad-

ditional modifications can be implemented to make the model increasingly realistic. As of

now, the optimization model only considers uncertainty related to offshore weather con-

ditions. A possible extension to the model could be to include more uncertain parameters

in the installation process. Wind turbine technology quickly evolves towards larger and

more complex turbines; thus processing times provide a major source of uncertainty and

could be considered. Other interesting aspects are breakdowns on logistic resources like

vessels or vessel equipment, and transportation or supply chain delays.
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A final interesting extension is the implementation of a feeder vessel concept in the model.

Offshore installation vessels have high day rates. As a strategy to save costs, less expensive

feeder vessels can be used to transfer wind turbine parts from port to the offshore site.

Due to good infrastructure and availability of ports, it has so far been unnecessary to use

feeder vessels in Europe. However, increasing turbine sizes and wind farms located further

offshore is assumed to make this strategy relevant in the near future.
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Appendix

A Minutes, Ulstein International AS

Deputy managing director Jose Jorge Garcia Agis at Ulstein, September 29, 2021

Foundation Installation

Installation of foundations mainly requires the ability to perform heavy lifts. Historically,

jack-up vessels have been used for this purpose. However, due to increasing foundation

weights, the requirements for lifting operations are changing, and use of other vessel types

are emerging. The increased foundation weight is related to increasing turbine sizes. Also,

turbines are installed in deeper waters than earlier. Today, the most common vessels for

foundation installation are heavy lifters and monohull vessels. Vessels from the Oil &

Gas sector have been used, but specially adapted heavy lifters for the wind industry are

entering the market. Semi-submersible vessels may also be used, and Ulstein has recently

launched a new vessel concept, Alpha Lift, which can perform heavy lift crane operations

with the main deck submerged in water.

Turbine Installation

While there is usually no need to perform high lifts for foundation installations, installation

of turbine components requires vessels with the ability to perform higher and lighter lifts

due to the increased turbine sizes. To meet these requirements, a vessels concept known

as WTIV has been developed. These are specially adapted jack-up vessels for installation

of wind turbines with longer support legs and greater crane height.

Cable Laying and Burial

Two types of cables are needed when installing offshore wind farms: inter-array cables and

export cables. The inter-array cables connect the turbines internally at the wind farm.

These cables are often laid before the turbines are installed. A vessel with an Remotely

Operated Vehicle (ROV) will then be needed to connect the cables to the foundations,

as the cables are too heavy for divers to perform these operations. Cable laying can be

performed in parallel with other operations such as foundation installation. Today, the

availability of vessels decides when the cable laying activities are performed. Export cable
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laying is a parallel project and can be performed independently of other operations at the

wind farm.

Weather Effects

Weather conditions affect installation operations. Most vessels have an upper limit for

the specific wave height that they can operate in. For instance, dynamically positioned

monohull vessels cannot perform lifting activities for Significant Wave Height (HS) greater

than 2 meters. Semi-submersible vessels will be able to perform lifts at greater wave heights

than this.

Jack-up vessels are sensitive to both wave heights and wind speed, depending on the

activities to be performed. The vessels cannot jack up/down for HS greater than 1.5 due

to stress on the support legs. The time spent jacking up and down is approximately 6

hours for each direction. When the vessel is jacked up, its performance will no longer be

dependent on HS , but on wind speed. The vessel cannot be in a jacked-up position for wind

speeds exceeding approximately 10 m/s. However, it should be noted that lifts of turbine

parts at wind speeds higher than 10 m/s will normally not be performed regardless of vessel

capabilities, as it becomes difficult to position components accurately due to movements

in the crane.

Vessel Capacities

Turbine sizes increase with their ability to produce power. Turbines recently installed

have been in the range of 6-8 MW. Most turbine installation vessels can carry six turbines

of this size. In the near future, turbines in the size range 10-15 MW will enter the market,

and the current fleet of installation vessels will only be able to carry 2-4 turbines of this

size per trip. Normally, it takes one day to install each turbine. Hence, the increased

turbine size will increase the number of trips needed between the offshore site and the

port from approximately one trip per week to 2-3 trips per week.
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B Minutes, Clarksons Platou AS

Managing Director for Offshore Renewables Frederik C. Andersen at Clarksons, October

15, 2021

Vessel Contracts

Charter contracts are entered two to four years in advance of the installation phase. This

is to ensure availability of the required vessels. The charterer poses a request for a tender

which specifies the requirements of the contract. Then all providers compete to make

the winning tender offer that fulfils these requirements. In other words: the charterer can

decide exactly what they want and can choose between several contractual offers satisfying

their demands. Nonetheless, the requirements will affect the offering prices.

There are two main types of contracts used in offshore wind installation: fixed price

contracts and time charter contracts. Time charter contracts are most common.

Fixed Price Contracts

In a fixed price contract, the contract parties agree upon a fixed price for a specified scope,

e.g. to install 50 turbines. The price and time frame of the contract is defined by the

offerer’s estimates of how much time and money they will spend per turbine, with some

margins added.

Time Charter Contracts

In a time charter contract the charterer agrees to pay a daily rate to rent the vessel for

a predefined number of days. In addition to the predefined time period, the contract can

include options to extend the contract duration if necessary. The options can be of varying

number of days and can have separate day rates. Multiple options can be included in the

same contract. If the charterer decides to exercise their option, they agree to pay for the

entire option period.

Contractual options are always in favor of the charterer. The shipowner may demand

higher day rates if more options are requested, however, if the price is too high he might

not win the contract. The charterer must notify the shipowner in advance about whether

or not they want to exercise their options. This is to minimize risk for the shipowner, so

that they can plan and schedule vessels for upcoming projects. The length of the option

affects how far in advance notification should be given. The exact option terms are an

object of negotiation.

In addition to day rates the contract includes a ”project cost”. This cost can either be

included by increasing the day rates, or by adding a fixed cost to the contract. The

project cost covers special tasks the shipowner has to do to prepare the vessel for the

contract. This may include engineering work, deck preparations and a mobilization fee to
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transport the vessel to the correct start location. Costs for vessel crew are included in the

contract, but if the charterer wants to bring their own personnel, they have to cover their

accommodation costs. The charterer must also pay separately for variable costs such as

fuel and port fees.

The Role of Business Relations

The offshore business is largely based on relationships. The different parties are dependent

on building trust and good relations to ensure future contracts and business opportunities.

Seasonality

It is common to plan for installation of offshore wind farms to take place in the summer

due to better weather conditions. This makes the demand for installation vessels prone to

seasonality, and the huge demand makes the day rates peak during the summer months.

An interesting topic is thus to find ways to perform installation activities during winter,

when there is a lot of free capacity and day rates are lower.

Installation Sequence

Today, the common installation sequence is to install array cables after foundations, but

before turbine towers. Turbines are done lastly because they are very capital intensive, and

it is convenient to connect the pre-installed cables immediately after installation. Array

cable installation takes about two days per turbine. Installation timer per turbine is on

average 2.5 days.
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C Deterministic Equivalent of the Original Model

Sets

V - Set of vessels, indexed by v

T - Set of time periods, indexed by t

A - Set of installation activities, indexed by a

Lv - Set of loading sets for vessel v, indexed by l

Iv - Set of tours for vessel v, indexed by i

O - Set of extension options, indexed by o

S - Set of scenarios, indexed by s

Parameters

CF
v - Fixed charter cost for vessel v

CV
v - Variable charter cost for vessel v per time period in its fixed charter period

DL
lv - Duration of loading loading set l for vessel v

DS
v - Duration of sailing from port to site or vice versa for vessel v

Flv - 1 if vessel v can carry loading set l, 0 otherwise

Kv - Minimum length of a tour with vessel v

Lo - Length of option o given in time periods

NT - Total number of turbines to be installed

NL
al - Number of times installation activity a can be performed by a vessel loaded with

loading set l

M1
atvs - Big-M used in the first round trip constraint for the combination of activity a,

time period t and vessel v under weather scenario s

M2
av - Big-M used in first activity constraint for activity a and vessel v

M3
v - Big-M used in third activity constraint for vessel v

PF
ov - Price for including option o in the contract for vessel v

PE
ov - Price for exercising option o for vessel v

PL - Penalty cost for lost income

PU - Penalty cost for unfinished OWTs

Tatvs - Number of time periods it takes vessel v to complete activity a if it is started in

time period t under weather scenario s

ps - Probability of realization of scenario s
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Variables

αv - 1 if vessel v is chartered in the project, 0 otherwise

βtv - 1 if vessel v is on fixed charter in time period t, 0 otherwise

sCtv - 1 if charter of vessel v starts in time period t, 0 otherwise

eCtv - 1 if charter of vessel v ends in time period t, 0 otherwise

µov - 1 if option o is included in the contract for vessel v, 0 otherwise

ePs - Final time period of the installation process in scenario s

us - Number of unfinished OWTs in scenario s

sTitvs - 1 if first period of tour i for vessel v is in time period t in scenario s, 0 otherwise

sAaitvs - 1 if time period t is the first period of operation o in tour i for vessel v and

installation activity a is performed in scenario s, 0 otherwise

δilvs - 1 if loading set l is loaded onto vessel v for tour i in scenario s, 0 otherwise

γovs - 1 if option o is exercised for vessel v in scenario s, 0 otherwise

Objective

min
∑
v∈V

CF
v αv +

∑
t∈T

∑
v∈V

CV
v βtv +

∑
o∈O

∑
v∈V

PF
ovµov

+
∑
s∈S

∑
v∈V

∑
o∈O

ps(P
E
ovγovs + PLePs + PUus)

(C.1)

Charter Constraints

∑
t∈T

sCtv = αv, v ∈ V, (C.2)

∑
t∈T

sCtv −
∑
t∈T

eCtv = 0, v ∈ V, (C.3)

∑
t∈T

teCtv −
∑
t∈T

tsCtv ≥ Kvαv, v ∈ V, (C.4)

βtv = β(t−1)v + sCtv − eC(t−1)v, t ∈ T \ {1}, v ∈ V, (C.5)

sCtv = βtv, t = 1, v ∈ V, (C.6)

µov ≤ αv, o ∈ O, v ∈ V. (C.7)
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Round Trip Constraints

∑
t∈T

sTitvs ≤ αv, v ∈ V, i ∈ Iv, s ∈ S, (C.8)

sTitvs ≤ βtv, v ∈ V, i = 1, s ∈ S, (C.9)∑
t∈T

sTitvs ≥
∑
t∈T

sT(i+1)tvs, v ∈ V, i ∈ Iv \ {|Iv|}, s ∈ S, (C.10)

(t+ Tatvs +DS
v )s

A
aitvs ≤

∑
t∈T

tsT(i+1)tvs +M1
atvs(1−

∑
t∈T

sT(i+1)tvs), a ∈ A, t ∈ T , v ∈ V, i ∈ Iv \ {|Iv|}, s ∈ S.

(C.11)

Activity Constraints

∑
τ∈T

τsTiτvs +
∑
l∈L

(DL
lv +DS

v )δilvs ≤ tsAaitvs +M2
v (1− sAaitvs), a ∈ A, t ∈ T , v ∈ V, i ∈ Iv, s ∈ S,

(C.12)

∑
a∈A

t∑
t′=t−Tatvs+1

sAait′vs ≤ 1, t ∈ T , v ∈ V, i ∈ Iv, s ∈ S, (C.13)

∑
a∈A

∑
t∈T

sAaitvs ≤M3
v

∑
t∈T

sTitvs v ∈ V, i ∈ Iv, s ∈ S, (C.14)

∑
t∈T

sTitvs ≤
∑
a∈A

∑
t∈T

sAaitvs, v ∈ V, i ∈ Iv, s ∈ S. (C.15)

Loading Constraints

∑
l∈Lv

δilvs ≤ 1, v ∈ V, i ∈ Iv, s ∈ S, (C.16)

∑
t∈T

sAaitvs ≤
∑
l∈Lv

NL
alδilvs, a ∈ A, v ∈ V, i ∈ Iv, s ∈ S. (C.17)
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Project Plan Constraints

(t+ Tatvs +DS
v − 1)sAaitvs ≤

∑
τ∈T

τeCτv +
∑
o∈O

Loγovs, a ∈ A, t ∈ T , v ∈ V, i ∈ Iv, s ∈ S,

(C.18)

∑
v∈V

∑
i∈Iv

t∑
t′=1

sAait′vs ≤
∑
v∈V

∑
i∈Iv

t−T(a−1)t′vs∑
t′=1

sA(a−1)it′vs, a ∈ A \ {1}, t ∈ T , s ∈ S,

(C.19)∑
t∈T

∑
v∈V

∑
i∈Iv

sAaitvs ≥ NT − us, a = |A|, s ∈ S,

(C.20)

ePs ≥ (t+ Tatvs +DS
v − 1)sAaitvs, a ∈ A, t ∈ T , v ∈ V, i ∈ Iv, s ∈ S,

(C.21)

γovs ≤ µov, o ∈ O, v ∈ V, s ∈ S.
(C.22)

Binary and non-negativity constraints

αv ∈ {0, 1}, t ∈ T , v ∈ V, (C.23)

βtv ∈ {0, 1}, t ∈ T , v ∈ V, (C.24)

sCtv ∈ {0, 1}, t ∈ T , v ∈ V, (C.25)

eCtv ∈ {0, 1}, t ∈ T , v ∈ V, (C.26)

µov ∈ {0, 1}, o ∈ O, v ∈ V, (C.27)

ePs ≥ 0, integer, s ∈ S, (C.28)

us ≥ 0, integer, s ∈ S, (C.29)

sTitvs ∈ {0, 1}, t ∈ T , v ∈ V, i ∈ Iv, s ∈ S, (C.30)

sAaitvs ∈ {0, 1}, a ∈ A, t ∈ T , v ∈ V, i ∈ Iv, s ∈ S, (C.31)

δilvs ∈ {0, 1}, v ∈ V, l ∈ Lv, i ∈ Iv, s ∈ S, (C.32)

γovs ∈ {0, 1} o ∈ O, v ∈ V, s ∈ S. (C.33)
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