
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

co
no

m
ic

s
an

d
M

an
ag

em
en

t
D

ep
t.

of
 In

du
st

ria
l E

co
no

m
ic

s
an

d
Te

ch
no

lo
gy

 M
an

ag
em

en
t

Sigurd Sigurdsson Langfeldt, Magnus Hauge
Langholm, Tomas Haugland Spangelo

Neural Network Assisted Large
Neighborhood Search for Personnel
Rostering

Master’s thesis in Industrial Economics and Technology
Management
Supervisor: Anders Nordby Gullhav
Co-supervisor: Henrik Andersson
June 2022

M
as

te
r’s

 th
es

is

Sigurd Sigurdsson Langfeldt, Magnus Hauge
Langholm, Tomas Haugland Spangelo

Neural Network Assisted Large
Neighborhood Search for Personnel
Rostering

Master’s thesis in Industrial Economics and Technology Management
Supervisor: Anders Nordby Gullhav
Co-supervisor: Henrik Andersson
June 2022

Norwegian University of Science and Technology
Faculty of Economics and Management
Dept. of Industrial Economics and Technology Management

Master’s Thesis

Managerial Economics and Operations Research

TIØ4905

Neural Network Assisted Large
Neighborhood Search for

Personnel Rostering

Authors: Supervisor:
Sigurd Sigurdsson Langfeldt Assoc. Prof. Anders Nordby Gullhav
Magnus Hauge Langholm Co-supervisor:
Tomas Haugland Spangelo Prof. Henrik Andersson

Department of Industrial Economics

and Technology Management

June 9, 2022

Preface

This master’s thesis concludes our Master of Science degree in Industrial Economics
and Technology Management at the Norwegian University of Science and Technology
(NTNU), specializing in Managerial Economics and Operations Research. The mas-
ter’s programme is a part of the Department of Industrial Economics and Technol-
ogy Management and combines technology, management, and economics subjects.
In addition to specializing in Managerial Economics and Operations Research, we
have a background in Computer Science, especially Artificial Intelligence, from the
master’s programme. We started the work for this master’s thesis in January 2022
and concluded the work in June 2022. This thesis was written in collaboration with
Visma Resolve and based on the work with our specialization project for the fall
semester of 2021 in Langfeldt et al. (2021).

Firstly, we want to thank our supervisor, Anders Nordby Gullhav, and co-supervisor,
Henrik Andersson, for your guidance and invaluable feedback on our work. Further-
more, we want to thank you for the freedom to fully take advantage of our inter-
disciplinary background in Operations Research and Artificial Intelligence, which
allowed us to explore an exciting solution approach to combinatorial optimization
problems. We would also like to thank Martin Olstad, Jacub Jonik and Vlatka
Janeš from Visma Resolve for their guidance and feedback on possible directions
to explore in this thesis. Especially we would like to thank Martin Olstad for the
continuous feedback we received throughout the entire process.

Finally, we would like to express our sincere gratitude to our family and friends for
your unconditional support; you helped us stay motivated despite any challenges
and hiccups along the way.

Sigurd Sigurdsson Langfeldt, Magnus Hauge Langholm and Tomas Haugland Spangelo
Trondheim, Norway

June 2022

i

Abstract

Personnel rostering is an essential task for many organizations that can be complex
and time-consuming, yet it is often done manually. Our industry partner, Visma
Resolve, provides software solutions to automate the shift scheduling process, which
must balance generality and specificity to appeal to their diverse customers. We de-
note this general shift scheduling problem as the Resolve Rostering Problem (RRP).
Visma Resolve’s software solution uses a heuristic approach to solve their rostering
problem. Due to the recent popularity and advances in machine learning technol-
ogy, Visma Resolve have expressed interest in integrating such technology into their
solutions. Machine learning methods are also becoming increasingly popular in op-
eration research communities to solve combinatorial optimization problems, making
it an interesting academic research field.

This thesis aims to combine techniques from operations research and machine learn-
ing to solve a general shift scheduling problem. We present a Neural Network As-
sisted Large Neighborhood Search (NNALNS), which integrates an Artificial Neural
Network (ANN) in an Adaptive Large Neighborhood Search (ALNS). Using rein-
forcement learning techniques, we train the ANN to learn operator selection policies,
replacing the online learning mechanism of ALNS. NNALNS uses problem-specific
and search-based features as input to the ANN to provide information on the state
during the search.

The results in this thesis show that NNALNS manages to outperform ALNS on
all but one of the problem instances when the ANN is trained and tested on the
same instance. NNALNS also exhibits an ability to learn good, generalized opera-
tor selection policies applicable to different problem instances. In a real-world use
case, these results points in favor of using pre-trained policies. The RRP instances
for a particular customer of Visma Resolve are often similar in structure between
scheduling periods and can be solved by NNALNS without training new selection
policies.

By enriching the state representation with problem-specific features, NNALNS ob-
tains more rewards from the reinforcement learning environment. However, a possi-
ble disassociation between rewards and obtained objective values inhibits an increase
in objective value.

Our main contribution is the inclusion of an enriched state representation of the
RRP and the design of tailored operators for the problem. In addition, NNALNS
constitutes a novel solution approach to personnel rostering problems, bridging the
gap between machine learning and operations research.

ii

Sammendrag

Allokering av arbeidskraft er en essensiell oppgave hos mange organisasjoner som
kan være b̊ade kompleks og tidkrevende. Til tross for dette er den dominerende
praksisen å sette opp timeplaner manuelt. V̊ar industripartner, Visma Resolve,
leverer programvareløsninger for å automatisere skiftplanleggingsprosessen. Deres
programvareløsning må balansere generalitet og spesifisitet for å appellere til mange
ulike kunder. Vi kaller det generelle skiftplanleggingsproblemet til Visma Resolve for
Resolves skiftsplanleggingsproblem (Resolve Rostering Problem - RRP), og Visma
Resolves programvareløsning bruker heuristiske løsningsmetoder for å løse det. P̊a
grunn av den voksende populariteten og utviklingen til maskinlæring har Visma Re-
solve uttrykt at de ønsker å integrere maskinlæring i deres eksisterende løsning. Ogs̊a
innen operasjonsanalysemiljøer har maskinlæringsmetoder blitt populære for å løse
kombinatoriske optimeringsproblemer, hvilket gjør det til et spennende akademisk
forskningsfelt.

Denne masteroppgaven har som formål å forene teknikker fra operasjonsanalyse og
maskinlæring. Vi presenterer et nevralt nettverk-assistert nabolagssøk (Neural Net-
work Assisted Large Neighborhood Search - NNALNS) som integrerer et nevralt
nettverk i et adaptivt stort nabolagssøk (Adaptive Large Neighborhood Search -
ALNS). Vi trener det nevrale nettverket til å lære seleksjonsstrategier for oper-
atorer ved å bruke teknikker fra forsterket læring, hvilket erstatter den adaptive
læringsmekanismen til ALNS. NNALNS bruker problemspesifikke og søksbaserte
attributter som input til det nevrale nettverket for å beskrive tilstanden i løpet av
søket.

Resultatene i masteroppgaven viser at NNALNS klarer å utkonkurrere ALNS p̊a
alle instanser utenom én n̊ar det nevrale nettverket er trent og testet p̊a den samme
instansen. NNALNS viser ogs̊a evne til å kunne lære gode, generelle operatorse-
leksjonsstrategier som kan benyttes p̊a ulike probleminstanser. I praksis kan disse
resultatene peke mot at det er fordelaktig å bruke forh̊andstrente operatorseleksjon-
sstrategier. RRP-instansene for en spesifikk kunde av Visma Resolve er ofte like i
struktur mellom planleggingsperioder og kan derfor løses av NNALNS uten å måtte
trene nye nevrale nettverk.

Ved å berike tilstandsrepresentasjonen med problemspesifikke attributter s̊a klarer
NNALNS å sanke flere belønninger (rewards). Likevel kan en mulig dissosiasjon
mellom belønninger og objektivverdi hemme en økning i objektivverdi.

V̊art hovedbidrag er å inkludere en problemspesifikk tilstandsrepresentasjon og im-
plementasjonen av operatorer som er skreddersydd for RRPet. I tillegg utgjør

iii

NNALNS en nyskapende løsningstilnærming til skiftplanleggingsproblemer og bidrar
til å lukke gapet mellom maskinlæring og operasjonsanalyse.

iv

Contents

List of Figures viii

List of Tables xii

List of Algorithms xiv

Acronyms xv

1 Introduction 1

1.1 Outline . 3

2 Background and Theory 4

2.1 Terminology . 4

2.2 Personnel Rostering . 5

2.3 The Healthcare Industry . 6

2.4 Visma Resolve . 7

2.5 Reinforcement Learning . 8

3 Literature Review 15

3.1 Scoping the Resolve Rostering Problem 15

3.2 Literature Search Strategy . 16

3.3 Personnel Rostering Problems . 17

3.4 Solution Approaches . 21

3.5 Our Contribution . 31

4 The Resolve Rostering Problem 32

v

CONTENTS

4.1 Constraints . 32

4.2 Demand . 35

4.3 Objective . 36

4.4 Assumptions . 36

5 Mathematical Model 38

5.1 Indices . 38

5.2 Sets . 38

5.3 Parameters . 40

5.4 Decision variables . 41

5.5 Objective function . 42

5.6 Constraints . 42

6 Solution Method 46

6.1 Adaptive Large Neighborhood Search 46

6.2 Neural Network Assisted Large Neighborhood Search 60

7 Test Instances and Parameters 68

7.1 Test Instances . 68

7.2 Parameters . 70

8 Computational Study 74

8.1 Test Environment . 74

8.2 Experimental Setup . 75

8.3 Value of Problem-Specific Features 77

8.4 Comparative Study . 82

8.5 Selection Strategies . 85

8.6 Generalized Learning . 88

8.7 Limitations . 90

9 Concluding Remarks and Future Research 91

9.1 Concluding Remarks . 91

vi

CONTENTS

9.2 Future Research . 93

Bibliography 94

A Mathematical Model 102

A.1 Indices . 102

A.2 Sets . 103

A.3 Parameters . 103

A.4 Decision variables . 105

A.5 Objective function . 105

A.6 Constraints . 106

B Operators and Parameter Values 109

B.1 Operators . 109

B.2 Parameters . 111

C Computational Study 112

C.1 Comparative Study . 113

C.2 Value of Problem-Specific Features 119

C.3 Generalized Learning . 125

C.4 Selection Strategies . 129

C.5 Training . 142

vii

List of Figures

2.1 Agent interacting with the environment in RL 9

2.2 Example of a neuron . 11

2.3 A standard feedforward ANN . 12

2.4 Actor-critic architecture . 13

3.1 Prior stages to the RRP . 16

3.2 End-to-end learning . 26

3.3 ML to configure OR . 26

3.4 Using ML in OR algorithms . 27

4.1 Examples of illegal shift patterns . 33

4.2 Examples of rest violations . 34

6.1 Algorithmic sketch of ALNS for the RRP 47

6.2 Destroy operator types and selection strategy combinations 49

6.3 Selection strategy combinations for the repair operators 52

6.4 Selection strategy combinations for the shift swap operators 54

6.5 Selection strategy combinations for the shift change operators 55

6.6 Algorithmic sketch of NNALNS . 61

8.1 Bar chart of objective value improvement for NNALNS with and with-
out problem-specific features over ULNS on benchmark instances af-
ter 1000 iterations, averaged over 20 runs. 79

8.2 Bar chart of objective value improvement for NNALNS with and with-
out problem-specific features over ULNS on Visma instances after
1000 iterations, averaged over 20 runs. 80

viii

LIST OF FIGURES

8.3 Average cumulative reward over 20 runs with a 95% confidence inter-
val for two test instances using NNALNS with and without problem-
specific features and ALNS. 82

8.4 Average best objective value over 20 runs with a 95% confidence
interval for four benchmark instances using NNALNS, ALNS and
ULNS. The problem size increases from a) to d). 83

8.5 Box plot of best objective value for four benchmark instances after
1000 iterations of NNALNS, ALNS and ULNS over 20 runs. The
problem size increases from a) to d). 84

8.6 Moving average of operator selection count for ALNS and NNALNS
for V5-d42-e15. Notice the differences between the two plots in values
on the y-axis. 86

8.7 Total operator selection count for B1-B7. The three most frequently
chosen operators are labeled in the figure. 87

8.8 Total operator selection count for V1-V6. The three most frequently
chosen operators are labeled in the figure. 88

C.1 Box plot of best objective value for benchmark instances B1 through
B6 after 1000 iterations of NNALNS, ALNS and ULNS over 20 runs. 113

C.2 Box plot of best objective value for B7-d182-e50 after 1000 iterations
of NNALNS, ALNS and ULNS over 20 runs. 114

C.3 Box plot of best objective value for Visma instances after 1000 itera-
tions of NNALNS, ALNS and ULNS over 20 runs. 115

C.4 Average best objective value over 20 runs with a 95% confidence in-
terval for benchmark instances B1 through B6 using NNALNS, ALNS
and ULNS. 116

C.5 Average best objective value over 20 runs with a 95% confidence
interval for B7-d182-e50 using NNALNS, ALNS and ULNS. 117

C.6 Average best objective value over 20 runs with a 95% confidence
interval for Visma instances using NNALNS, ALNS and ULNS. . . . 118

C.7 Average best objective value over 20 runs with a 95% confidence
interval for the benchmark instances B1 through B6 using NNALNS
with and without problem-specific features. 119

C.8 Average best objective value over 20 runs with a 95% confidence
interval for benchmark instance B7-d182-e50 using NNALNS with
and without problem-specific features. 120

C.9 Average best objective value over 20 runs with a 95% confidence
interval for Visma instances V1 through V6 using NNALNS with and
without problem-specific features . 121

ix

LIST OF FIGURES

C.10 Average cumulative reward over 20 runs with a 95% confidence in-
terval for benchmark instances B1 through B6 using NNALNS with
and without problem-specific features and ALNS. 122

C.11 Average cumulative reward over 20 runs with a 95% confidence inter-
val for benchmark instances B7-d182-e50 using NNALNS with and
without problem-specific features and ALNS. 123

C.12 Average cumulative reward over 20 runs with a 95% confidence in-
terval for Visma instances V1 through V6 using NNALNS with and
without problem-specific features and ALNS. 124

C.13 Box plot of best objective value over 20 runs for the test instances in
the cross-instance experiments using NNALNS, ALNS and ULNS. . . 125

C.14 Average best objective value over 20 runs with a 95% confidence
interval for the test instances in the cross-instance experiments using
NNALNS, ALNS and ULNS. 126

C.15 Average best objective value over 20 runs with a 95% confidence
interval using NNALNS, ALNS and ULNS on V1 through V5 when
the policies are trained on small permutations of the instances. 127

C.16 Box plot of best objective value over 20 runs using NNALNS, ALNS
and ULNS on V1 through V5 when the policies are trained on small
permutations of the instances. 128

C.17 Moving average of operator selection count for ALNS and NNALNS
for B1-d14-e14. 129

C.18 Moving average of operator selection count for ALNS and NNALNS
for B2-d28-e16. 130

C.19 Moving average of operator selection count for ALNS and NNALNS
for B3-d28-e50. 131

C.20 Moving average of operator selection count for ALNS and NNALNS
for B4-d42-e45. 132

C.21 Moving average of operator selection count for ALNS and NNALNS
for B5-d56-e20. 133

C.22 Moving average of operator selection count for ALNS and NNALNS
for B6-d84-e22. 134

C.23 Moving average of operator selection count for ALNS and NNALNS
for B7-d182-e50. 135

C.24 Moving average of operator selection count for ALNS and NNALNS
for V1-d56-e9. 136

C.25 Moving average of operator selection count for ALNS and NNALNS
for V2-d70-e6. 137

x

LIST OF FIGURES

C.26 Moving average of operator selection count for ALNS and NNALNS
for V3-d46-e28. 138

C.27 Moving average of operator selection count for ALNS and NNALNS
for V4-d84-e8. 139

C.28 Moving average of operator selection count for ALNS and NNALNS
for V5-d42-e15. 140

C.29 Moving average of operator selection count for ALNS and NNALNS
for V6-d98-e15. 141

C.30 Best objective value development during training on V4-d84-e8. . . . 142

C.31 Total reward development during training on V4-d84-e8. 143

xi

List of Tables

3.1 Literature overview by search keywords. 16

6.1 Search-based features. 63

6.2 Problem-specific features. 64

7.1 Characteristics of test instances. 69

7.2 Acceptance criterion parameters. 71

7.3 Parameters for the neural networks in NNALNS. 72

7.4 Training parameters used during training of policies for NNALNS. . . 73

7.5 Training parameters used during generalized training of policies for
NNALNS. 73

8.1 Hardware and software specifications for the test environment. 74

8.2 How we select policies for NNALNS. 75

8.3 Training and testing datasets. 76

8.4 Alterations of original instances. 77

8.5 Summary of objective value improvement of NNALNS with and with-
out problem-specific features over ULNS after 1000 iterations on all
test instances, averaged over 20 runs. The best performing algorithm
is emphasized in bold text. 78

8.6 Improvement of cumulative reward over ALNS for NNALNS with and
without problem-specific features after 1000 iterations, averaged over
20 runs. The best performing algorithm is emphasized in bold text. . 80

8.7 Summary of results from the comparative study. The objective values
and improvements are after 1000 iterations, averaged over 20 tests,
and the best performing algorithm is emphasized in bold text. 85

8.8 Performance of NNALNS on test instance, when trained on train
instances. 89

xii

LIST OF TABLES

8.9 The performance of NNALNS on V1-V5 when trained on smaller
modifications of the same problem instance. 89

B.1 Naming convention for the destroy operator types. 109

B.2 Naming convention for selection strategies of the repair operators. . . 109

B.3 Destroy/Repair Pairs used in the computational study. 110

B.4 Hybrid operators used in the computational study. 110

B.5 Table of objective function weights. 111

B.6 Table of training parameters. 111

xiii

List of Algorithms

1 PPO, Actor-Critic version . 14
2 ALNS . 48
3 Repair . 51
4 Swap operators . 53
5 Shift Change Operators . 55
6 Hill Climbing . 56
7 Threshold Acceptance . 56
8 Simulated Annealing . 57
9 NNALNS . 62
10 Training . 67
11 Step . 67

xiv

Acronyms

ALNS Adaptive Large Neighborhood Search.

ANN Artificial Neural Network.

COP Combinatorial Optimization Problem.

DNN Deep Neural Network.

LNS Large Neighborhood Search.

MIP Mixed Integer Programming.

ML Machine Learning.

NN Neural Network.

NNALNS Neural Network Assisted Large Neighborhood Search.

NRP Nurse Rostering Problem.

OR Operations Research.

PPO Proximal Policy Optimization.

PRP Personnel Rostering Problem.

RL Reinforcement Learning.

RRP Resolve Rostering Problem.

ULNS Uniform Large Neighborhood Search.

xv

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Organizing labor resources is an essential part of most organizations. Especially
in tertiary industries where labor costs constitute a dominant part of an organiza-
tion’s expenses, effective use of labor resources becomes vital to a company’s ability
to deliver quality products and services. In Norway, the portion of companies in
service-based industries has grown from 55% to 78% over the last decade, placing
labor planning at an increasingly relevant position in society (SSB, 2013, 2020). A
common way of organizing labor is through shift-based work, predominantly when
organizations require labor services outside regular work hours. Shift-based working
arrangements often require a high degree of coordination and planning to provide
continuous services. However, setting up shift schedules can be a complex and time-
consuming task as several considerations must be addressed to ensure proper labor
allocation. Since labor consists of individual employees with different skills, edu-
cation, preferences, and agendas, this significantly complicates the process. Hence,
tools that can ease this task are of high value.

A Personnel Rostering Problem (PRP) refers to a problem of producing shift sched-
ules within a finite time horizon. In academia, Nurse Rostering Problems (NRPs),
which explicitly address work time scheduling in healthcare institutions where some
of the most demanding scheduling tasks are found, are prominent examples of PRPs.
NRPs are well-studied problems due to their complexity and societal importance.
They belong to the class of NP-hard problems, making them particularly hard to
solve as the complexity grows exponentially with the problem size. Nevertheless,
finding effective solution methods for NRPs can significantly impact how healthcare
institutions operate and utilize their workforce.

This thesis is the final submission for our master’s degree at NTNU. It is a con-
tinuance of a specialization project from the fall of 2021 (Langfeldt et al., 2021).
Extensive literature research on PRPs and the problem formulation from the spe-
cialization project report are included in this thesis. Our work is conducted in col-
laboration with Visma Resolve, a leading provider of commercial rostering software
in the Nordics.

Visma Resolve provides a complete rostering system to automate the task of con-
structing shift schedules. Their system needs to balance generality and specificity

1

CHAPTER 1. INTRODUCTION

to appeal to a broad set of customers from different industries with various needs
and scheduling practices. We denote the general shift scheduling problem at Visma
Resolve as the Resolve Rostering Problem (RRP). Although the RRP is a general
shift scheduling problem, it strongly links to NRPs. We view it as an NRP vari-
ant, which allows us to draw parallels to similar problems in the literature. A large
part of Visma Resolves’s customer base are institutions within the healthcare indus-
try. Hence, regarding it as an NRP variant does not cause a loss of generality or
relevance.

A challenge faced at Visma Resolve is for their system to produce desirable shift
schedules fast enough for their customers to see the value of transitioning from
manual to automatic shift scheduling. As exact solving methods are inadequate
for this purpose for the RRP, they apply heuristic solving approaches. However,
they are continuously exploring ways to improve their algorithms’ performance.
Due to the recent advances in Machine Learning (ML) methods, Visma Resolve
has expressed interest in integrating such technology with their current heuristic
solution. In the last decades, ML technology has become growingly popular in
many problem domains, fueled by the increased availability of data and computing
power (Jordan and Mitchell, 2015). Although ML is often associated with the field of
computer science, there are clear similarities between the problems ML addresses and
central topics in the academic field of Operations Research (OR). Thus, integrating
ML in traditional OR techniques, such as meta-heuristics, is a growing field of
research (Bengio et al., 2021). The purpose of this thesis is to experiment with
such an approach of combining OR and ML techniques to solve real-life rostering
problems, thus utilizing the strengths of two academic disciplines.

We present a Neural Network Assisted Large Neighborhood Search (NNALNS),
which integrates an Artificial Neural Network (ANN) in an Adaptive Large Neigh-
borhood Search (ALNS) framework. Using Reinforcement Learning (RL) tech-
niques, we train the ANN to learn operator selection strategies at different stages
of the search, replacing the online learning mechanism of ALNS. NNALNS includes
problem-specific features of an RRP solution and search-based features as input to
the ANN to provide information on the state during the search.

Our goals for this thesis are to:

1. Investigate whether NNALNS can learn more intelligent operator selection
strategies for the RRP compared to ALNS.

2. Include an enriched state representation of an RRP solution for NNALNS.

3. Examine the generalizability of learned selection strategies across different
RRP instances.

4. Develop operators tailored to the RRP targeting different properties of a so-
lution.

At Visma Resolve, the structure of shift schedules often varies between different
clients. The core idea is that by using pre-trained networks, an RL agent can learn

2

CHAPTER 1. INTRODUCTION

to exploit the structures for a particular client, thus being able to handle reasonable
changes to the problem.

The results in this thesis show that NNALNS manages to outperform ALNS on
all but one of the problem instances when the ANN is trained and tested on the
same instance. NNALNS also exhibits an ability to learn good, generalized opera-
tor selection policies applicable to different problem instances. In a real-world use
case, these results points in favor of using pre-trained policies. The RRP instances
for a particular customer of Visma Resolve are often similar in structure between
scheduling periods and can be solved by NNALNS without training new selection
policies.

The main contributions of this thesis are the development of NNALNS and com-
bining techniques from OR and ML to solve real-life rostering problems. Using
RL to learn operator selection strategies with complex destroy-repair operators, in
combination with smaller hybrid operators, forms a novel solution approach to a
PRP, namely the RRP. Furthermore, we include an enriched state representation
including problem-specific features as input to the ANN parameterizing the operator
selection strategy.

1.1 Outline

Chapter 2 provides the necessary background and theory to grasp the contents of the
rest of this thesis. In Chapter 3, we provide an extensive literature review relevant
to NNALNS and the RRP, before Chapter 4 presents the problem definition of the
RRP. Following, Chapter 5 describes the Mixed Integer Programming (MIP) formu-
lation of the RRP and Chapter 6 presents NNALNS and our adaptation of ALNS to
the RRP. Chapter 7 describes the test instances and parameter decisions, followed
by the empirical results of applying ALNS and NNALNS to these instances in Chap-
ter 8. Lastly, Chapter 9 concludes the most important results and contributions of
this master’s thesis and discusses interesting directions for future research.

3

CHAPTER 2. BACKGROUND AND THEORY

Chapter 2

Background and Theory

In this chapter, we present the relevant background and theory for this thesis.
Firstly, Section 2.1 presents terminology that is crucial to the understanding of
subsequent chapters regarding PRPs. Next, Section 2.2 provides a high-level mo-
tivation for works on the personnel rostering space, before the healthcare industry
is discussed in Section 2.3. We describe our industry partner, Visma Resolve, and
their problem regarding personnel rostering in Section 2.4. Lastly, Section 2.5 pro-
vides an introduction to RL concepts relevant to this thesis. Parts of this chapter
are derived from our specialization project (Langfeldt et al., 2021).

2.1 Terminology

This section shows some terms used throughout this thesis, which can be useful for
the reader to understand the content regarding PRPs in the subsequent sections and
chapters.

• Shift : A shift is a defined working time for a specific day that can be assigned
to one or more employees, where they can cover demand.

• Shift Pattern: A shift pattern is an ordered combination of shifts assigned to
an employee over a number of days. Some are more or less desirable than
others.

• Shift Schedule: A shift schedule, also referred to as a roster, is a complete plan
showing which shift patterns are assigned to employees within a finite time
horizon, and who covers what demand.

• Fairness : Fairness is a subjective term, but it generally regards the distribu-
tion of workload, generally undesirable shifts and shift patterns, and personal
request approval between employees in a roster.

• Competence: The ability, or in some cases the permission, to perform specific
tasks or cover specific types of demand.

4

CHAPTER 2. BACKGROUND AND THEORY

• Isolated (off) day : Working a single day without working neighboring days (or
opposite).

• Demand : The requirement that a certain number of employees work a specific
time period.

2.2 Personnel Rostering

Personnel rostering is the task of creating work schedules for a set of employees
within a finite time horizon. The problem is particularly important in shift-based
industries where the demand for labor is spread continuously throughout the day,
which requires labor outside regular working hours. This calls for more extensive
workforce coordination than regular working hour arrangements as the employees
can have significant variations in working times. Because some shifts and shift
patterns can be undesirable for many employees, it introduces the need to create
fair working schedules. Schedule planners need to balance between providing good
working conditions for their employees and allocating enough labor to meet the
demand to ensure high-quality services.

Presently, personnel rostering is usually done manually by the working staff. Man-
ual workforce planning is a complex and time-consuming task that risks creating
personnel allocations of inadequate quality. Poor schedules can be a source of con-
flicts, frustration and even be illegal in regards to domestic working regulations. The
complexity grows even further when the planning process takes the personal prefer-
ences of individual employees into account. This might result in unfair schedules as
more influential employees will have an advantage in the scheduling process. Per-
ceived fairness among employees has been identified as a key factor to promote good
working conditions and employee satisfaction as well as providing healthy working
environments (Wolbeck, 2019).

Decision support tools for personnel rostering have been studied in academia for
decades and have gained traction in many industries. There are several advantages
of computerizing workforce rostering: reducing planning time, evaluating schedule
allocations impartially between employees, and disallowing illegal schedules, to point
out a few. Nevertheless, the rostering problem itself varies largely between indus-
tries and application areas, complicating the process of developing useful general
scheduling support tools. In addition, the overall complexity of rostering problems
makes even moderate roster sizes computationally heavy, even for supercomputers.
However, the emergence of cloud computing technologies in the last decade has given
rise to automatic scheduling systems. This is because computation power has be-
come more available, cost-effective, and highly scalable, making it possible to create
good solutions within a reasonable time frame.

5

CHAPTER 2. BACKGROUND AND THEORY

2.3 The Healthcare Industry

The healthcare sector is a labor-intensive industry, where complex activity plan-
ning and coordination are central to operations, explaining the prevelence of NRPs
among PRPs. During the recent Covid-19 pandemic, healthcare institutions’ ca-
pacity has been under pressure, leading to stressed working conditions and long
hours for many healthcare employees. Norwegian healthcare unions have recently
expressed concerns about understaffing and poor working conditions among their
union members, which highly affects the quality of the delivered health services as
well as the working environment (Dagbladet, 2021). In addition, Norwegian health-
care institutions are already experiencing an increase in demand for health services
for years. Norway has, like many other industrialized countries, an increasingly
aging population. Combined with an increase in life expectancy, the demand for
health services is expected to grow in the future (SSB, 2019).

Medical breakthroughs and a higher frequency of complex treatment methods have
made resource planning in healthcare a complicated task. Healthcare planners need
to ensure that the highly specialized workforce is used efficiently and coordinates
the use of expensive and advanced medical equipment. Furthermore, stricter poli-
cies and regulations regarding waiting times for healthcare services are pushed by
the government. In Denmark, for example, it has been politically decided that all
patients have a right to be treated within 30 days of arrival (Range, 2021). Such
policies intensify the need for efficient allocation and coordination of the workforce.

Hospitals and similar healthcare institutions are good examples of shift-based orga-
nizations. Patients need to be treated and monitored at all hours of the day. Thus,
enough nurses, doctors, and other medical personnel need to be available to secure
a satisfying service level. Offering such a 24-hour service is a complex task, so the
health sector is an especially relevant area for personnel rostering problems.

Scheduling Practices in Healthcare Institutions

Shift scheduling practices vary between healthcare institutions. Three types of
scheduling processes are common, each having its strengths and weaknesses (Burke
et al., 2004):

• Centralized Scheduling. With a centralized scheduling practice, a departmen-
tal unit is responsible for creating schedules for its wards. The advantage
is that a dedicated scheduling workforce can work specifically to ensure that
demand is met in all the wards, increase cooperation between wards and ex-
ploit synergies. It also reduces the number of administrative tasks done by the
medical workforce. A disadvantage is that manually creating such schedules in
large departments might be challenging, and the workforce has less influence
on working times.

• Unit Scheduling. Unit Scheduling refers to schedule practices where smaller
units, such as a hospital ward, are responsible for the scheduling. Unit schedul-
ing makes the communication distance between the schedulers and the em-
ployees smaller, making it easier to satisfy personal requests. Conversely, this

6

CHAPTER 2. BACKGROUND AND THEORY

might lead to an unfair weighting of individual requests as the scheduler’s
relationship with the individual employees can influence their decisions.

• Self-scheduling. In self-scheduling, each employee constructs their own sched-
ule, which a head employee adjusts to cover the demand. This enables a
higher degree of autonomy and job satisfaction among the employees. On the
other hand, it can be inefficient, as skilled employees use more of their time
on planning. Large modifications might also be needed to meet the demand.

A common trait of the aforementioned scheduling processes is that they are time-
consuming tasks, and the main difference lies in the level of the organization at
which scheduling tasks are performed. Automating the schedule creation process
thus constitutes a great potential in health institutions to reduce time spent on
administrative tasks. It might free time for skilled nurses and doctors to improve
quality and increase capacity for health services. A survey from Danish hospitals
from 2008 shows that hospitals use, on average, 24 minutes on rostering per week per
nurse (Range, 2021). With a rough estimate, a hospital employing 3000 nurses adds
up to 62400 yearly working hours, equivalent to around 11 million DKK in yearly
labor costs used for rostering. In light of this, it is evident that even a moderate
reduction in time used for rostering can have a great impact.

2.4 Visma Resolve

The Visma Group, hereby referred to as Visma, is a Norwegian multinational com-
pany delivering software solutions and IT consulting services. It is considered one
of the top 5 software companies in the EU and is the leading supplier of Cloud ERP
systems in Europe. The company targets numerous markets and industries and is
organized through 130 subsidiaries located at more than 150 locations in Europe
and South America. Visma Resolve is Visma’s optimization unit delivering com-
mercial optimization software. Visma Resolve provides software solutions ranging
from route-optimization for home care services, course scheduling at schools, and
automatic kindergarten delegation in Norwegian municipalities to staff scheduling
and project planning tools. Visma Resolve’s focus is to develop algorithms that can
be integrated into other software modules, which enables integration with complex
ERP systems. Representatives from Visma Resolve believe that an increasing num-
ber of organizations have opened their eyes to the automation of complex planning
tasks such as personnel rostering.

Automatic Rostering

Visma Resolve has developed an automatic rostering system to create fair and ef-
ficient schedules for the workforce that comply with laws and work regulations.
The goal is for the system to be generalized and reusable across sectors with as
little customization as possible. The system builds on the principles of centralized
scheduling, but it has elements of self-scheduling by letting the employees include
preferred working hours in the schedule generation. Their automatic rostering sys-
tem utilizes modern cloud technologies to compute roster solutions. The algorithm

7

CHAPTER 2. BACKGROUND AND THEORY

integrates with the Visma-owned Medvind Workforce Management system, which
is a workforce management software available in Sweden. Several municipalities in
Sweden have already put the system to use, and Visma reports a 60% reduction in
schedule planning times among the active users.

Despite the success, Visma Resolve are continuously working on improving their
solution approach. Their current system uses a heuristic algorithm to solve their
rostering problem. However, they want to explore the possibility of incorporating
machine learning techniques into their solution approach to improve performance
and utilize the advantages of such technology.

2.5 Reinforcement Learning

This section is based on the introductory book on RL by Sutton and Barto (2018)
and aims to provide the necessary background to understand the solution method
we propose in Chapter 6.

RL is a branch of ML that concerns the mapping of states to actions in order to
maximize cumulative rewards. The learner, commonly referred to as the agent,
learns by exploring the environment through selecting actions and observing the
state change and reward signal. RL can, for example, be applied in a game-playing
setting where the ultimate goal is to learn a strategy that maximizes the probability
of winning, or it can be used in robotics to learn how a mobile robot should interact
with the environment.

2.5.1 Reinforcement Learning in the Machine Learning Do-
main

RL is not to be confused with the other two broad classes of ML, namely supervised
learning and unsupervised learning. Supervised learning is defined by the use of a
dataset in which each sample has several features and a label. The goal of supervised
learning is to learn a model that generalizes its responses to inputs to give the correct
label to samples not present in the dataset used for learning. The learning algorithm
is supervised by an external supervisor during training, effectively telling the model
how to respond to a subset of the data with the ultimate goal of training a model
that generalizes on unseen cases. Two examples of supervised learning are classifying
email as spam/no-spam and categorizing potential insurance customers into different
risk groups using historical data. Although supervised learning is widely studied and
suitable for many applications, it is not, in isolation, well suited for learning from
interaction with an environment. In interactive problems, where the state space can
be both unknown and stochastic, it is imperative that the agent can learn from its
experience by interacting with the environment.

As the name suggests, unsupervised learning does not have an external supervisor,
and the data used for training is thus not labeled. Although it is intuitive to think
that RL can be categorized as unsupervised learning, the goals of these two learning

8

CHAPTER 2. BACKGROUND AND THEORY

schemes are inherently different. Unsupervised learning is typically concerned with
learning hidden structures in the unlabeled data, which could, for example, be clus-
tering customers based on similar viewing patterns in order to make a recommender
system. Another typical application of unsupervised learning is data exploration.
On the other hand, the goal of RL is to maximize the cumulative reward, which is
not addressed by unsupervised learning.

2.5.2 Elements of Reinforcement Learning

Agent

Environment

action
atst

reward
rt

rt+1

st+1

state

Figure 2.1: How an agent interacts with the environment in RL. The agent performs
action at in state st to receive reward rt+1 and move to state st+1. Illustration from
Sutton and Barto (2018).

Figure 2.1 depicts how an RL agent interacts with the environment; this relates to
the four key elements of an RL system, namely a policy, a reward signal, a value
function, and a model of the environment. Do note that the notation presented is
only one of many ways to denote elements of RL.

The first key element of an RL system is a policy. A policy describes how the agent
acts in the environment. Intuitively, given states as inputs, the policy describes
which actions to take when in those states. π is often used as the symbol to describe
a policy, and a policy can be either deterministic or stochastic. In a stochastic
setting, π(a|s,θ) denotes the probability of selecting action a given a state s and a
parameterization θ.

The goal of an RL problem is defined by the reward signal. A reward signal measures
the agent’s performance with respect to the goal and decides what is good or bad.
For each action (i.e., step in the environment), the agent receives a numeric value
from the environment called a reward. A reward at time step t is denoted rt,
and is often a stochastic result of choosing action at−1 in state st−1, as Figure 2.1
illustrates. The only goal of the agent is thus to maximize the cumulative reward
from interacting with the environment. In practice, the reward signals are often
probabilistic functions with respect to the current state and the action taken.

As opposed to rewards, which give immediate feedback on whether or not a given
state is good or bad, a value function describes the expected future value of being in
a given state. For example, a state may often lead to a low immediate reward but

9

CHAPTER 2. BACKGROUND AND THEORY

has a high expectancy of future rewards because the state is necessary to visit to get
to some great series of states later on. The state-value function, which describes the
value of being in a given state, is often denoted V (s), and the action-value function,
which describes the value of taking a given action in a given state, is often denoted
Q(s, a).

The last element of RL systems, which is optional, is a model of the environment. RL
systems that make use of environment models use this to do planning, for example,
to estimate future rewards and states. Methods that use environment models are
called model-based methods, whereas methods that do not use models are called
model-free and are explicitly trial-and-error agents.

2.5.3 Approximate Methods for Reinforcement Learning

In the simplest form of RL problems, the state and action spaces are so small that
the value functions can be represented as arrays or tables. Solution methods for
such problems are called tabular solution methods, and they can often find exact
solutions. An exact solution, in this case, depicts a situation in which the optimal
value function and policy are found. However, real-life problems seldom have such
small state and action spaces, which is also the case for the RRP. This calls for so-
called approximate methods, which find approximate solutions that can be applied
adequately to problems of a much larger scale.

The goal of approximate methods is not to find the optimal policy and value function
but to find good approximations even though the state space is too large to explore
in its entirety. In order to do this, the approximations of the policy and value
function based on limited interaction with the environment (i.e., state space) need to
generalize well. Generalization from examples is what concerns supervised learning,
as Section 2.5.1 discusses, so we can apply function approximation methods from
this class of ML to parameterize the policy or value function. In relevance to the
solution method presented in Chapter 6, we take a closer look at one domain of
approximate methods for RL: deep RL.

Deep RL is the integration of ANNs and RL. The use of ANNs has been quite popular
in the last several years, and this is due to the powerful function approximation and
representation learning capabilities of ANNs (Arulkumaran et al., 2017, p. 1). Note
that the terms ANN, Neural Network (NN), and Deep Neural Network (DNN) are
often used interchangeably, although the latter is most commonly used to describe
ANNs of a certain depth.

2.5.4 Artificial Neural Networks

The somewhat loose inspiration behind ANNs is the human nervous system. An
ANN consists of several neurons, inspired by the neurons in the brain. The neurons
are interconnected and can transmit signals, similar to the brain’s synapses. Each
connection, or edge, has a weight associated with it. A neuron can be considered

10

CHAPTER 2. BACKGROUND AND THEORY

a processing unit with a summing part and an output part. The summing part
computes a weighted sum over the neuron’s inputs, and the output part produces
a signal from this. The signal is referred to as the activation of the neuron (Yeg-
nanarayana, 2009, Chapter 1). Figure 2.2 depicts the concept of a neuron in an
ANN. The neuron in gray is connected to neurons x1 and x2 with associated weights
w1 and w2, respectively. The first half of the gray neuron represents the summing
part, and the second half represents the output part. f is called the activation func-
tion, and it takes the weighted sum as inputs and outputs some numeric activation
value y. A common example of such an activation function is the logistic function,
f(x) = 1/(1 + e−x), where x is the weighted sum of the outputs from the previous
layer. The bias is b, and it is also added to the weighted sum.

Figure 2.2: Example of a neuron with two incoming connections. Illustration from
KNIME (2021).

Although there exists numerous architectural approaches to ANNs, we only elabo-
rate on standard feedforward ANNs. A feedforward ANN is an ANN with one input
layer, one output layer, and several intermediate hidden layers, where the latter de-
cides the depth of the ANN. A layer in a feedforward ANN consists of many neurons,
each of which is connected to all or some of the neurons in the next layer, except for
the output layer, which has no subsequent layers. Figure 2.3 depicts a feedforward
ANN with four layers: an input layer with four neurons, two hidden layers with four
neurons each, and an output layer with two neurons. Effectively, this means that
the input of the ANN is a vector of four numeric values, and the output is a vector
of two numeric values.

An ANN is initialized to have small, random weights. In order to train an ANN, a
function expressing its performance must be specified. Such a function is called a
loss function, and can for example be the mean squared error:

L(y, ŷ) =
1

n

n−1∑
i=0

||yi − ŷi||2, (2.1)

where y and ŷ are the target values and outputs of the ANN, respectively. n is
the number of samples, and yi and ŷi are target and output vectors for sample
i, respectively. By computing the partial derivative of the loss with respect to
any weight in the ANN, ∂L

∂wi
, the backpropagation algorithm can use the chain rule

11

CHAPTER 2. BACKGROUND AND THEORY224 Chapter 9: On-policy Prediction with Approximation

Figure 9.14: A generic feedforward ANN with four input units, two output units, and two
hidden layers.

than a feedforward ANN. Although both feedforward and recurrent ANNs have been
used in reinforcement learning, here we look only at the simpler feedforward case.

The units (the circles in Figure 9.14) are typically semi-linear units, meaning that they
compute a weighted sum of their input signals and then apply to the result a nonlinear
function, called the activation function, to produce the unit’s output, or activation.
Di↵erent activation functions are used, but they are typically S-shaped, or sigmoid,
functions such as the logistic function f(x) = 1/(1 + e�x), though sometimes the rectifier
nonlinearity f(x) = max(0, x) is used. A step function like f(x) = 1 if x � ✓, and 0
otherwise, results in a binary unit with threshold ✓. The units in a network’s input layer
are somewhat di↵erent in having their activations set to externally-supplied values that
are the inputs to the function the network is approximating.

The activation of each output unit of a feedforward ANN is a nonlinear function of the
activation patterns over the network’s input units. The functions are parameterized by
the network’s connection weights. An ANN with no hidden layers can represent only a
very small fraction of the possible input-output functions. However an ANN with a single
hidden layer containing a large enough finite number of sigmoid units can approximate
any continuous function on a compact region of the network’s input space to any degree
of accuracy (Cybenko, 1989). This is also true for other nonlinear activation functions
that satisfy mild conditions, but nonlinearity is essential: if all the units in a multi-layer
feedforward ANN have linear activation functions, the entire network is equivalent to a
network with no hidden layers (because linear functions of linear functions are themselves
linear).

Despite this “universal approximation” property of one-hidden-layer ANNs, both
experience and theory show that approximating the complex functions needed for many
artificial intelligence tasks is made easier—indeed may require—abstractions that are
hierarchical compositions of many layers of lower-level abstractions, that is, abstractions

Figure 2.3: A standard feedforward ANN with a input layer, a output layer and two
hidden layers. Illustration from Sutton and Barto (2018).

to propagate partial derivatives backward in the network and update the weights
accordingly. This is what is happening when an ANN is being trained (i.e., learning
the weights), and this is done over the entire training dataset multiple times. One
such pass of sending all the training data through the network, propagating the
partial derivatives backward, and updating the weights is called an epoch. How
much the weights are updated according to the partial derivatives is called the
learning rate. If the learning rate is zero, the updates will be zero, and the ANN is
not learning anything. The entire process of updating the weights for several epochs
is often called training.

The expressive power of an ANN is what makes it so suitable to use for function
approximation in approximate methods for RL. In fact, an ANN with only a single
hidden layer with a finite number of neurons with sigmoid activation functions can
approximate any continuous function on a compact region of the ANNs input space
to any degree of accuracy (Cybenko, 1989). Thus, an ANN is very suitable to
parameterize the policy or value function. The weights of the edges in the network
would, in that case, be the parameters of the policy or value function.

2.5.5 Proximal Policy Optimization

We have seen in Section 2.5.3 that the large state spaces and action spaces encoun-
tered in many RL problems make it infeasible to use exact methods and that we,
therefore, make use of approximate methods. Furthermore, the expressive power
of ANNs makes them suitable for function approximation in such methods. This
section describes a state-of-the-art family of approximate RL algorithms named

12

CHAPTER 2. BACKGROUND AND THEORY

Proximal Policy Optimization (PPO), first presented by Schulman et al. (2017). We
focus on the actor-critic version of PPO to scope this section.

Figure 2.4: Actor-critic architecture. Illustration from Sutton and Barto (1998).

Figure 2.4 shows the actor-critic architecture for RL. In this architecture, the policy
is also called the actor, and the value function is called the critic. In an approximate
method for RL following the actor-critic architecture, both the value function and
policy are approximated (i.e., learned). The value from the critic, or the value
function, is used together with the rewards to update the actor. In other words, an
agent consists of two parts: an actor and a critic.

Section 2.5.4 states that an ANN needs a loss function in order to compute gradients
and update the weights of the network. PPO introduced a novel loss function for
the actor:

LCLIP (θ) = −Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
, (2.2)

where θ is the parameters of the policy, Ât is the advantage estimate, rt(θ) is the
ratio between the new and the old policy (i.e., before and after updating the weights),
and ϵ is some small number. The ratio is given as

rt(θ) =
π(at|st,θ)

π(at|st,θold)
, (2.3)

and the clip function makes sure that the ratio is in the interval [1−ϵ, 1+ϵ]. Without
going into too much detail, the advantage estimate, Ât , is a measure of how good
or bad an action was in a given state, and usually involves discounted rewards
from subsequent timesteps and the value of being in the state from the critic. The
intuition behind the LCLIP loss is that we want to maximize (note the minus sign
before the expression on the right size) the probability of choosing an action with a
large advantage, but also to prevent the actor ANN from moving towards a policy
where rt(θ) is outside of the range [1− ϵ, 1+ ϵ]. That is, we do not want the updates
of the network weights to be too large.

13

CHAPTER 2. BACKGROUND AND THEORY

Algorithm 1 PPO, Actor-Critic version

Input: N : number of iterations, T : maximum number of time steps, E: number
of epochs

Output: θ: parameters of learned policy (actor), ϕ: parameters of learned value
function (critic)

1: Initialize the parameters for the actor ANN, θ
2: θold := θ
3: Initialize the parameters for the critic ANN, ϕ
4: ϕold := ϕ
5: n := 0
6: while n < N do
7: Select actions according to policy πθold in environment for T timesteps and

receive rewards
8: Compute advantage estimates Â1, . . . , ÂT and discounted rewards R1, . . . , RT

9: Train actor ANN (θ) and critic ANN (ϕ) for E epochs
10: θold := θ
11: ϕold := ϕ
12: n := n+ 1
13: end while
14: return θ, ϕ

Algorithm 1 provides the pseudocode for the actor-critic version of PPO. Please
note that this section has omitted to talk about the loss function of the critic ANN,
but a typical loss function is the mean squared error as in Equation (2.1). In that
case, ŷ would be the value outputted from the critic ANN and y, the target, would
be the discounted rewards. In Line 2 and Line 4 the old parameters for the actor
and critic are initialized, respectively. This is so that the network can be trained
through multiple epochs in Line 9 using stochastic gradient descent, which is also
one of the main contributions of PPO. The old parameters are not updated until the
network has trained for E epochs so that the old policy and value function remain
constant and the LCLIP loss function serves its purpose.

14

CHAPTER 3. LITERATURE REVIEW

Chapter 3

Literature Review

This chapter discusses the extensive literature relevant to NNALNS and the RRP.
Section 3.1 outlines the scope of our problem-related literature review, before Sec-
tion 3.2 describes our procedure for finding relevant literature. Following, Section 3.3
presents the key aspects of PRPs and common modeling approaches in the litera-
ture. Lastly, Section 3.4 describes solution approaches that are relevant for this
thesis, highlighting the use of ML in OR and PRPs.

3.1 Scoping the Resolve Rostering Problem

In OR, it is common to look at decisions and problems addressed in different orga-
nizational areas. Such areas can be financial, strategic, technological, or logistical.
Labor is an organizational resource with limited capacity restricted both by quantity
and labor regulations deciding the total amount of disposable hours. Individual em-
ployees are also distinguished by their competences and working positions, limiting
how disposable work hours can be allocated. As the RRP directly regards planning
and allocation of workforce resources, we consider it a resource capacity planning
problem in the literature, according to the common control and planning framework
proposed by Hans et al. (2012).

Another aspect to consider is the decision level within an organization where the
RRP is applicable. Figure 3.1 depicts prior decision stages that highly affect the
properties of an RRP instance. Firstly, an organization needs to decide the long-
term demand for labor. Such decisions comprise recruitment decisions, where man-
agement decides on the size and competence mix of the workforce to cover future
long-term demand. Workforce level decisions affect the RRP by setting an upper
bound on available labor. With available labor established, the demand for specific
competences in the planning period of the RRP needs to be forecasted. Tradition-
ally, demand is determined manually by expert knowledge and experience. Finally,
deciding how shifts are designed regarding start-time and duration needs to be ad-
dressed. The RRP presumes that the available workforce, the expected demand,
and the possible shift types are known for the whole planning horizon. The RRP
thus only consists of allocating shifts to the available workforce to meet the fore-

15

CHAPTER 3. LITERATURE REVIEW

casted demand during the whole planning period. Based on these considerations, we
position the RRP at an offline operational decision level within Hans et al. (2012)’
framework.

Figure 3.1: Prior stages to the RRP, affecting the properties of a problem instance.

3.2 Literature Search Strategy

This section presents our approach to finding relevant literature covering the key
aspects of PRPs and different modeling and solution techniques. We search for sci-
entific articles using the Google Scholar search engine, supplying keywords relevant
to our problem positioning and focus areas. Our strategy to find relevant literature
is to combine keywords covering the key aspects and focus areas of this thesis, both
when it comes to the RRP and solving approaches in OR and ML. As the litterature
on PRP and ML is quite extensive, we limit our search by examining the 10 most
relevant results for each keyword, according to the search engine.

Table 3.1 lists the most interesting keyword combinations we have used. Some
sources are found indirectly through references in literature from the search. This
is especially the case when using extensive literature surveys such as Burke et al.
(2004) for PRP literature, and Bengio et al. (2021) and Karimi-Mamaghan et al.
(2022) for ML literature.

Table 3.1: Literature overview by search keywords.

Concept 1 Concept 2

Nurse/Personnel Rostering/Scheduling
Problem

Fairness measures
Literature review

Survey
State of the art

Construction Heuristics
Metaheuristics

ALNS
AI

Machine Learning
Reinforcement Learning

Combinatorial Problems
AI

Machine Learning
Reinforcement Learning

Operations research
AI

Machine Learning
Reinforcement Learning

16

CHAPTER 3. LITERATURE REVIEW

3.3 Personnel Rostering Problems

This section presents the most important aspects of modeling PRPs and how previ-
ous works have approached them. These will provide a foundation for how we model
the RRP.

3.3.1 Demand

Demand for labor is an important topic in PRPs. Demand coverage constraints
ensure that the labor demand is met and can be considered a key identifier of a
PRP. There are different approaches to modeling demand, and we use the taxonomy
outlined by Ernst, Jiang, Krishnamoorthy and Sier (2004):

• Task based demand is to model demand as tasks with a duration, a time
window, and skill requirements. The demand level is constant for any given
task. Time windows may be longer than task duration, providing flexibility
in when the tasks must be done (Smet et al., 2016). Alternatively, tasks will
have a fixed time period, as in Smet and Vanden Berghe (2012); Beckmann
and Klyve (2016). This is the norm for PRPs (Ernst, Jiang, Krishnamoorthy
and Sier, 2004).

• Flexible demand rather separates the planning horizon into small, non-overlapping
time intervals (time steps) that are each assigned a level or range of demand.
Flexible demand is used by Grov et al. (2020), with a step length of 15-60
minutes. The RRP uses flexible demand with varying time steps.

• Shift based demand is the final approach to model demand, which assigns
specific demand requirements to the defined shifts (Ceschia et al., 2019; Trilling
et al., 2006).

Demand has a required level, denoting how many employees are needed. Kiefer
(2015); Della Croce and Salassa (2014); Abobaker et al. (2011) define demand to only
require a minimum number of employees and include demand as a hard constraint.
In later years it has become common to model demand as soft constraints, with a
minimum, desired, and maximum level, where deviation from the desired amount
penalizes the schedule (Beckmann and Klyve, 2016; Grov et al., 2020; Turhan and
Bilgen, 2020). Ceschia et al. (2019); Ouelhadj et al. (2012) use soft constraints
but only penalize negative deviation from the desired level. The RRP has hard
constraints on maximum and minimum demand and soft constraints on deviation
from an ideal level within these bounds.

Finally, using demand with competence requirements is common. The competence
requirements limit which employees can cover the demand, and they can either be
defined as categorical or hierarchical (Van den Bergh et al., 2013). The former
involves assigning a set of competences to each employee and demand, and any em-
ployee with one of the required competences can cover the demand. Ceschia et al.
(2020, 2019); Mischek and Musliu (2016) use categorical demand. For hierarchical

17

CHAPTER 3. LITERATURE REVIEW

competence requirements, the competences are ranked, and each nurse with a given
competence can cover any demand that requires that or any lower-ranked compe-
tence (Beckmann and Klyve, 2016; Ramli et al., 2020). Abobaker et al. (2011) only
include regular and senior nurses, where at least one senior nurse has to be assigned
to each shift. The RRP uses categorical competences.

3.3.2 Workload Restricitons

Regulations often impose some constraints on the legality of shift patterns. One
constraint that many papers use is limiting schedules to only assigning one shift per
day per employee (Grov et al., 2020; Bai et al., 2010; Abobaker et al., 2011; Ceschia
et al., 2019; Maenhout and Vanhoucke, 2010). Trilling et al. (2006) instead use an
upper limit of twelve working hours per day. Some enforce a maximum number of
accumulated hours per week (Beckmann and Klyve, 2016; Trilling et al., 2006), or
a maximum number of shifts per week (Ramli et al., 2020; Abobaker et al., 2011).
Finally, shift length can also be a subject of regulation, with minimum and maximum
duration constraints (Grov et al., 2020). The RRP has the usual constraint of one
shift per day as well as soft limits on the duration of shifts, in addition to the
constraints in Section 3.3.3 on legality of shifts patterns according to Norwegian
rest regulations

3.3.3 Rest

Another regulated aspect is employee rest. Daily rest is the most common type
of rest constraint and is usually modeled as a hard constraint since many countries
mandate a minimum amount of daily rest by law. One simple approach is a minimum
rest period between shifts, used by Maenhout and Vanhoucke (2010), among others.
Another common approach is that certain sequences of shift types are illegal, for
example, that a morning shift cannot follow a night shift. Bunton et al. (2017);
Ramli et al. (2020); Ceschia et al. (2019) incorporate this. Note that this requires
predefined shift types to define illegal sequences or that this is done manually for
instances. A final approach, used by Grov et al. (2020), is to require a consecutive
period of rest within each day. The period could be within calendar days or 24-
hour periods offset by a set time per employee. As this is a direct translation
of Norwegian law (Norweginan Working Environments Act §10-4, 2015), the RRP
incorporates this type of rest requirement.

Weekly rest is also usually required. Abobaker et al. (2011) sets a maximum number
of working days per week, while Trilling et al. (2006) uses a limit on accumulated
hours per week. This approach implicitly enforces a weekly rest amount and relies
on other constraints, for example, consecutive days or partial weekends, to achieve
more extended rest periods. The other approach is defining off shifts or off days and
setting a lower limit of them per week. Grov et al. (2020) define a set of off shift
with length upholding Norwegian law, which we emulate. Abobaker et al. (2011);
Turhan and Bilgen (2020) rather require a specific number of off days per week,
while Della Croce and Salassa (2014); Maenhout and Vanhoucke (2010) take this

18

CHAPTER 3. LITERATURE REVIEW

further in requiring that these off days are consecutive. A rest-related issue that is
rarely managed by solution approaches is breaks, which are usually assumed to be
handled by employees on a day-to-day basis.

3.3.4 Contracted Hours

Employees often have a contractually determined number of hours to work each
planning period. Grov et al. (2020) set the contracted hours as a hard ceiling on
accumulated work hours and penalizes negative deviation. Another approach is
to set upper and lower limits on deviation from contracted hours. Ramli et al.
(2020) sets these limits as hard constraints. Ceschia et al. (2019); Abobaker et al.
(2011); Trilling et al. (2006); Maenhout and Vanhoucke (2010) penalize, but allow,
deviation outside these limits. Note that contracted and accumulated hours can
also be represented as a number of shifts or days, dependent on shift structure. The
RRP has an ideal number of hours per employee and penalizes deviation, without
any upper or lower limit.

3.3.5 Weekends

It is agreed upon that working weekends is undesirable, but as demand is present
during weekends, this is rather an issue of fair distribution. Bunton et al. (2017);
Turhan and Bilgen (2020) set a hard maximum of working weekend days to distribute
the allocation between employees, while Ceschia et al. (2019) define a maximum
number of weekends an employee can work. Aside from simply working weekends,
it is agreed upon that it is undesirable to work partial weekends. That is, working
only on a Saturday or a Sunday. Grov et al. (2020); Kiefer (2015); Mischek and
Musliu (2016) penalize these sequences, while Ceschia et al. (2019) determines these
combinations to be illegal for select employees. The RRP penalizes a roster with
partial weekends.

3.3.6 Consecutiveness

A final time-related aspect of shift pattern quality is an uniform distribution of work.
Working isolated days is generally considered undesirable, and Turhan and Bilgen
(2020); Guessoum et al. (2020) do not allow it, while Grov et al. (2020) penalize
it. Another part of even work distribution is consecutive days. Working too few
or too many consecutive days is undesirable. Many works specify this to penalize
isolated days, and some extend this to isolated off days (Della Croce and Salassa,
2014). Ceschia et al. (2019); Ramli et al. (2020); Guessoum et al. (2020) set lower
and upper limits on consecutive days. Della Croce and Salassa (2014) only use
upper limits but disallow isolated days. Messelis et al. (2009) find that including
consecutiveness tends to make problems harder to solve in experiments, but it is
usually included in the literature nevertheless (Ouelhadj et al., 2012). The RRP
has soft constraints that penalize both isolated working days, too many consecutive

19

CHAPTER 3. LITERATURE REVIEW

days, and isolated off days.

3.3.7 Patterns

An aspect of schedule quality that is not strictly time-related but often combined
with other constraints to enforce time off is shift-type patterns. Working many
consecutive shifts of the same type can be considered undesirable. Della Croce and
Salassa (2014); Turhan and Bilgen (2020); Guessoum et al. (2020) have an upper
limit on consecutive shifts of the same type, while Abobaker et al. (2011); Mischek
and Musliu (2016) apply this to night shifts. The RRP does not penalize a schedule
where employees work many consecutive days with the same shift-type.

3.3.8 Preferences

Another aspect to consider are preferences requested by employees. Employees
can influence the schedules by including preferences in rostering systems, leading
to a higher degree of autonomy. Pato and Moz (2008) include preferences on a
shift level where employees can record undesirable shifts, and assignments of such
shifts are penalized in the objective function. Rönnberg et al. (2013) extend this
by allowing both hard and soft preferences to provide flexibility in an automatic
rostering system. A similar approach is taken by Grov et al. (2020), combining
blocked days with a preference score for working a specific day. Beckmann and
Klyve (2016) model preference by embedding personal inclinations for various shift
patterns, e.g., their personal preference of working a set of consecutive days. The
RRP considers both positive and negative preferences as soft constraints for working
or not working during specific time intervals, as well as hard constraints on blocked
hours throughout a day.

3.3.9 Fairness

In this thesis, we define fairness to denote the quality of a schedule for an individual
employee in terms of the fairness aspects described in Sections 3.3.4-3.3.8. This def-
inition is common in the literature, although some refer to balancing costs between
employees as fairness. Including fairness in PRPs is considered a difficult task, as
it requires quantification of subjective and qualitative evaluations. Furthermore, it
is a situation-dependent parameter. Nevertheless, it is an essential aspect of the
problem as research shows that ”schedules perceived as unfair can lead to decreased
job satisfaction, lower job performance and increased turnover rates” (Bard and
Purnomo, 2005). In an overview of different PRP model designs by Burke et al.
(2004), only a few extensively focus on the fairness aspect itself. However, Ouel-
hadj et al. (2012) argue that appropriate modeling of fairness is crucial for creating
acceptance of schedules generated by automated scheduling systems.

A final aspect of fairness considers cost distribution between the employees. Wolbeck
(2019) emphasize the following modeling techniques as the most common in the

20

CHAPTER 3. LITERATURE REVIEW

literature to address fairness distribution:

1. Minimizing the sum of all individual costs for the employees.

2. Minimizing costs of the employee with the highest costs

3. Minimizing difference between the employee with the highest and lowest costs.

4. Minimizing the mean costs.

5. Minimizing the standard deviation between costs for the employees.

6. Maximizing the percentage of approved preference requests from the employ-
ees.

The various approaches have different characteristics associated with them and usu-
ally use some combination of these techniques. Grov et al. (2020), as well as the
RRP, use a combination of (1) and (2).

3.3.10 Objective Function

All works on PRPs included in this literature review include fairness in their objec-
tive function. Aside from fairness, a majority of the works include demand deviation
as a part of the objective function, (Grov et al., 2020; Ouelhadj et al., 2012; Ceschia
et al., 2019; Kiefer, 2015; Mischek and Musliu, 2016; Turhan and Bilgen, 2020;
Ceschia et al., 2020; Bunton et al., 2017) among others. Fewer include the highest-
cost employee (Grov et al., 2020; Ouelhadj et al., 2012; Hadwan and Ayob, 2010).
The RRP includes the highest-cost employee and demand deviation in the objective
function in addition to the total fairness cost.

3.4 Solution Approaches

In the following section, we outline common approaches to solving PRPs. Sec-
tion 3.4.1 focuses on exact methods, while Section 3.4.2 covers common heuristic
approaches. Section 3.4.3 and Section 3.4.4 reviews how ML techniques are applied
in the field of OR and personnel rostering.

3.4.1 Mathematical Programming

Mathematical programming is a straightforward approach to many optimization
problems. Problems are usually modeled either as integer or mixed-integer formu-
lations, which define a search space that must be enumerated to find the optimal
solution (Lundgren et al., 2008). Mathematical programming techniques guarantee
an optimal solution given enough computational time, as any candidate solution is
either proven sub-optimal or optimal.

21

CHAPTER 3. LITERATURE REVIEW

For PRPs, the complexity of evaluating the quality of rosters usually means that
the search space is simply too large or of too high dimensionality to be effectively
reduced. Most PRPs also belong to the class of NP-hard problems. Mathematical
programming is therefore not dominant in nurse scheduling (Burke et al., 2006).
Instead, using sophisticated heuristics is a common approach. This is mainly due
to the individual preferences and the complexity of designing fair and balanced
schedules (Thornton and Sattar, 1997).

3.4.2 Heuristics

Heuristics are proximal methods for solving computational problems, usually ap-
plied to achieve a time/quality trade-off. The definition of heuristics may vary,
but we follow the definition by Wang (2010), which states that a heuristic is a
methodology derived from reasoning that can be used to achieve solutions to com-
putational problems through trial-and-error. Meta-heuristics are high-level heuristic
frameworks that employ strategies in a local improvement procedure to escape local
optima (Gendreau and Potvin, 2010).

Construction heuristics

A well-known class of heuristics is construction heuristics, aiming to construct so-
lutions to a problem from an empty or partial solution. Within the academic field
of personnel rostering, a limited amount of literature solely focuses on construction
heuristics as the main research contribution. Van den Bergh et al. (2013) classify 14%
of the papers they cover in their literature review to include a construction heuristic,
while Ernst, Jiang, Krishnamoorthy, Owens and Sier (2004) identify around 19%.
The more common use of construction heuristics in PRPs is to include them in ear-
lier stages of a solution method or other sub-problems incorporated into the final
solution by the main solution algorithm (Abobaker et al., 2011; Guessoum et al.,
2020; Brucker et al., 2005). Forsyth and Wren (1997) use a construction heuristic on
a PRP to evaluate different choices of parameters for their main algorithm by cre-
ating multiple solutions and calculating the probability of a solution being included
in the main algorithm. Ross and Marfn-Blazquez (2005) follow a similar approach
by using construction heuristics to attain metrics for the design of novel solution
algorithms.

Improvement heuristics

Improvement heuristics aim to alter existing solutions to improve the objective value.
They are often highly problem-specific as they often target specific aspects of a
problem that might create an improvement. For PRPs, the most basic improvement
heuristic is a single swap heuristic of shifts between two employees (Ceschia et al.,
2020). Dowsland (1998) use chained neighborhoods defined by a sequential set of
shift swaps for a fixed nurse, altering the whole shift pattern for a nurse, whereas

22

CHAPTER 3. LITERATURE REVIEW

Bellanti et al. (2004) use a greedy local search procedure to complete partial so-
lutions. Other improvement heuristics used on PRPs are swap-, change- and core
shuffle-heuristics (Ceschia et al., 2020). A final type of heuristics is destroy-repair
heuristics, referred to in this thesis as destroy-repair operators, which first destroys
a solution by removing shift allocations and then repairs the solution by assigning
new ones. These are typically used in ALNS (Ropke and Pisinger, 2006; Kiefer,
2015; Bilgin, 2012). NNALNS uses change- and swap operators and the standard
destroy-repair operators.

Meta-heuristics

Meta-heuristics are problem-independent algorithmic frameworks aiming to decide
the search procedure for iterative improvement of a solution. A popular category
of meta-heuristics used for PRPs is Local Search-based meta-heuristics (Burke,
De Causmaecker, Petrovic and Berghe, 2003). Simulated Annealing, Tabu Search,
Large Neighborhood Search, and Adaptive Large Neighborhood Search are all promi-
nent local search-based meta-heuristics. Another category is population-based meta-
heuristics, where Genetics Algorithms are common for PRPs (Burke et al., 2004).

Simulated Annealing is traditionally used in PRP heuristics as the last improvement
step in a larger heuristic scheme (Burke et al., 2004). Ceschia et al. (2020) use
simulated annealing on NRP instances using a geometric cooling scheme. Hadwan
and Ayob (2010); Turhan and Bilgen (2020) propose hybrid methods, where an
improvement step using simulated annealing follows a preliminary construction step.
The technique is also commonly applied as an acceptance criterion scheme in ALNS
(Grov et al., 2020; Pisinger and Ropke, 2010; Kallestad, 2021).

Tabu Search keeps track of a tabu-list in the local search to prevent cycling around
a local optimum. Ramli et al. (2020) use tabu search as their primary solution
algorithm for solving an NRP with embedded nurse preference, only preceded by a
semi-random initial step. Schrack et al. (2021) combine a tabu search with a genetic
algorithm on an NRP with multiple preference options on shifts, days, and holidays.

Large Neighborhood Search (LNS) is a meta-heuristic framework proposed by Shaw
(1998). It relies on a single pair of destroy and repair operators to construct a large
neighborhood. Here the neighborhood of a solution is implicitly defined by the de-
stroy and repair operators (Pisinger and Ropke, 2010). LNS was first successfully
applied on the Vehicle Routing Problem (Shaw, 1998). Gregory (2010) use the LNS
framework in an NRP setting with sliding time and nurse windows, restricting the
destroy operator to focus on three random days or nurses at a time. Smet and Van-
den Berghe (2016) apply LNS on large-scale shift assignment problems with multiple
tasks, fixing a varying part of the solution and re-optimize it using mathematical
programming to construct neighbors.

ALNS extends LNS by applying multiple competing destroy and repair operators.
Each operator gets a probability weight which is updated during the search accord-
ing to its performance. Ropke and Pisinger (2006) use the technique to solve vehicle
routing problems with time windows. Kiefer (2015) apply ALNS on an NRP, pre-

23

CHAPTER 3. LITERATURE REVIEW

calculating the probability weights of the operators using a simplified version of the
algorithm. They design destroy operators that remove shifts based on relatedness
measures between assignments and penalize assignments in the schedule. Their re-
pair operators follow both a greedy approach and address the hard constraints of
the problem. Bilgin (2012) use ALNS on a PRP, enforcing hard constraints on all
operators. Furthermore, their operators use random permutations of shift assign-
ments and single shift swaps between employees. Grov et al. (2020) use local search
operators in addition to the destroy repair scheme in order to target specific aspects
of the personnel schedule that affects the objective value.

Genetic Algorithms (GAs) are meta-heuristics, often described as population based,
inspired by evolution, that evolves a population of possible solutions. Solutions
evolve through filtering, mutation, and sharing of attributes to approximate an
optimal solution (Dean, 2008). These have become popular for solving NRPs (Wu
et al., 2013). Aickelin and Dowsland (2004) propose an indirect genetic algorithm for
an NRP that encodes the search space based on permutations of nurses to handle
the conflict between objectives and constraints, which they determine a common
problem for GAs. Bai et al. (2010) creates a hybrid GA by combining a GA with
simulated annealing to overcome the problem of evolving the solution at the later
parts of the search.

Hyper-Heuristics (HHs) are types of high-level meta-heuristics that aim to intelli-
gently choose, generate or combine lower-level heuristics to apply to a problem in a
given situation (Burke, Kendall, Newall, Hart, Ross and Schulenburg, 2003). The
term is, to some extent, used interchangeably with meta-heuristics in the literature,
and the two frameworks are somewhat overlapping. However, the key difference,
according to the definition by Burke, Kendall, Newall, Hart, Ross and Schulenburg
(2003) is that HHs operate on a higher abstraction level than traditional meta-
heuristics, searching in the heuristic space rather than in the solution space. HHs
are an increasingly popular approach to solving Combinatorial Optimization Prob-
lems (COPs) (Burke, Kendall, Newall, Hart, Ross and Schulenburg, 2003). Burke
et al. (2019) separate between two types of hyper-heuristics: Selection HHs and
Generation HHs. Selection HHs aim to select among predefined low-level heuris-
tics and Generation HHs generate new heuristics based on components from the
low-level heuristics. Based on the definition of Selection HHs, we argue that ALNS
can be viewed as a type of Selection HH due to its adaptive selection of operators.
However, the ALNS framework directly evaluates what solutions to accept or not,
putting it at the intersection between HHs and meta-heuristics. In this thesis, we
focus on Selection HHs as it relates the most to our solution method presented in
Chapter 6. HHs are identified as a promising field for integrating ML in OR, which
we elaborate on in Section 3.4.3.

Burke, Kendall and Soubeiga (2003) use a Selection HH approach with a Tabu
Search applied to timetabling and PRPs. Unlike in a textbook Tabu Search, the
tabu list contains recently applied heuristics rather than solutions, thus preventing
recent heuristics from being applied. Furthermore, heuristics are ranked according
to their performance. Their algorithm produces comparable results to state-of-the-
art problem-specific meta-heuristics. However, they report that it generalizes better
to different problems. Anwar et al. (2014) apply a Harmony Search-based HH to an

24

CHAPTER 3. LITERATURE REVIEW

NRP. Here sequences of heuristics are stored as vectors selected from a Harmony
Memory Matrix (HMM). In the search procedure, the HMM is altered, creating
new candidate heuristic vectors. The approach is similar to how genetic algorithms
mutate solutions to create new ones. The heuristics used are simple moves and
swaps of shifts in the schedule. Cowling et al. (2001) employs a hyper-heuristic to a
scheduling problem, using a choice function to select low-level heuristics. The choice
function includes information about the recent effectiveness of the heuristic, the
recent effectiveness of consecutive pairs of heuristics, and the time since a heuristic
was last applied. This approach yields better results compared to random and
greedy selection of heuristics.

3.4.3 Machine Learning in Operations Research

In recent years, ML has gained growing attention and popularity within academic
communities. It is considered one of the most rapidly growing research fields in
computer science (Jordan and Mitchell, 2015). Although ML techniques have been
around for decades, the internet has contributed to making enormous amounts of
low-cost data available, giving ML methods increased applicability in several prob-
lem domains (Jordan and Mitchell, 2015). Furthermore, OR communities are in-
creasingly looking to ML and ways of integrating ML in traditional OR methods,
especially for solving COPs (Bengio et al., 2021). The possible synergies between ML
and OR make ML a natural candidate for further research on optimization methods.
Automating parts of developing algorithms to solve COPs has clear advantages, as
the complex nature of the problems makes the design process time-consuming and
requires a high degree of expert knowledge (Bengio et al., 2021).

Integration Architectures

Bengio et al. (2021) classify three different algorithmic architectures of how ML can
be used in combination with OR methods.

1. End-to-end learning.

2. Learn how to configure an OR method.

3. Integrate ML in OR algorithms.

The term end-to-end learning is used to describe architectures where the ML models
learn structures of a COP itself, aiming to create and improve solutions. Figure 3.2
illustrates end-to-end learning architectures. Gu and Hao (2018) use a pointer net-
work with an ANN to solve the 0-1-Knapsack problem. A pointer network allows for
encoding sequential input of varying sizes into an ANN and outputting a permuta-
tion of the input. In Gu and Hao (2018), the network trains on optimal samples of
the problem in a supervised learning fashion, and the algorithm learns to obtain ap-
proximate solutions quickly. The disadvantage of using supervised learning to solve
COPs is that it relies on having already optimal solutions as labels for training.

25

CHAPTER 3. LITERATURE REVIEW

Bello et al. (2016) points out this issue and argues that the use of RL is more appro-
priate for solving COPs with ML. They apply a pointer network in an RL system to
solve the Traveling Salesman Problem (TSP). Their algorithm solves the TSP with
200 nodes to near optimality without any heuristic design. However, Bello et al.
(2016) report the method to be computationally expensive. Dai et al. (2017) uses a
Graph Neural Network (GNN), a network architecture that can process graphs as
input, to construct solutions to the TSP by iteratively adding nodes to the graph.
GNNs differ from pointer networks as the output represents the value of adding a
node n to a partially constructed graph instead of representing the graph itself. Dai
et al. (2017) argues that the main advantage of their solution method is its general-
izability across instances of different sizes; in addition, the method can be used on
other COPs where solutions can be represented as a graph.

Figure 3.2: End-to-end learning. Figure from Bengio et al. (2021).

Configuring an OR algorithm is another application of ML in OR pointed out by
Bengio et al. (2021). In such architectures, ML methods are used to affect the
input parameters of an OR method, as Figure 3.3 shows. For example, in OR prob-
lems involving stochastic elements, ML methods can be used initially to predict the
stochastic variables used in a deterministic model. A well-known example using this
architecture is the Google Maps application, which finds the path with the shortest
time distance between two locations (Derrow-Pinion et al., 2021). Here GNNs are
used to accurately predict traffic conditions and estimate travel time in road seg-
ments. The information is passed to a Dijkstra shortest-path algorithm to minimize
the estimated time of arrival (Derrow-Pinion et al., 2021; Mehta et al., 2019). An-
other approach to using ML to configure OR algorithms is to learn hyperparameters
of the OR method. Kruber et al. (2017) use supervised learning to train an ANN
that can decide which type of solver to apply to a MIP model. The purpose is to
determine if a problem can be decomposed using Dantzig-Wolfe formulations and
select a suitable solver to reduce solving time.

Figure 3.3: ML to configure OR. Figure from (Bengio et al., 2021).

The third architecture classified by Bengio et al. (2021) is the integration of ML into
OR algorithms. For such architectures, OR algorithms interact with ML methods

26

CHAPTER 3. LITERATURE REVIEW

during the solving process, as Figure 3.4 illustrates. NNALNS falls into this category,
because it is a modification of ALNS that uses an ANN that parameterize the policy
to select an operator in every iteration.

Alvarez et al. (2014) combine supervised ML with the Branch and Bound algorithm
to learn branching strategies. The goal is to mimic a Strong Branching strategy by
observing its branching decisions and learning these branching decisions at different
stages of the search. As Strong Branching is a computationally expensive procedure,
the rationale is that replacing it with a pre-trained neural network could yield a
significantly faster search procedure with comparable performance. Other attempts
at using ML methods to guide tree search algorithms are made by Balcan et al.
(2018) and Sabharwal et al. (2012).

Using ML to assist meta-heuristics has also gained growing interest in recent years
(Karimi-Mamaghan et al., 2022). ML is used to learn different aspects of meta-
heuristics, like algorithm selection, solution evaluation, evolution process in genetic
algorithms, initialization in improvement-based meta-heuristics and operator selec-
tion strategies (Karimi-Mamaghan et al., 2022). Nair et al. (2020) propose a Neural
Large Neighborhood Search as an extension to the LNS framework proposed by
Shaw (1998). The method aims to train a neural network to learn how to destroy
a solution. They encode a MIP formulation into a Constraint-Variable Incidence
Graph (CVIG) and use a Graph Convolution ANN to parameterize their policy and
value function. Consequently, the ANN learns to select destroy variables in the so-
lution. Subsequently, the solution is repaired using a MIP solver. Syed et al. (2019)
also use the LNS framework combined with ML, but target the repair operator by
using a trained ANN as an insertion operator. The ANN is trained using RL with
an actor-critic architecture. The method is applied to a Vehicle Routing Problem
with Time Windows and shows ability to scale well with larger problem instances.

Figure 3.4: Using ML in OR algorithms. Figure from Bengio et al. (2021).

Operator selection is an application area for ML in meta-heuristics outlined by
Bengio et al. (2021). The topic translates to Selection strategies in Selection Hyper-

27

CHAPTER 3. LITERATURE REVIEW

Heuristics. Adaptive selection of operators is one of the core characteristics of the
ALNS framework. However, the selection strategy in ALNS is stateless, thus only
considering the values of the operator weights and not the state of the search process
or solution. The motivation for introducing ML to learn intelligent operator selection
strategies is rooted in the fact that different operators can be more effective at certain
stages in the search. Hence, learning these patterns might give more efficient search
trajectories.

Kallestad (2021) propose a Deep RL HH in their master’s thesis. The algorithm uses
an ANN trained offline with RL to select simple removal and insertion heuristics.
They use search features to represent the state used as input to the network. Further-
more, the RL agent receives rewards according to the performance of the heuristics,
with the same reward function scheme as in a traditional ALNS. The method shows
promising results compared to an ALNS selection procedure. NNALNS also uses
RL to train an ANN for operator selection, but with problem-specific operators and
features in addition to the search-based features to solve the RRP.

Zhang et al. (2022) propose a similar Deep RL-based HH to solve COPs involving
uncertainties. They use a Double Deep Q-network trained to select among a set
of constructive heuristics to build solutions to a Container Terminal Truck Routing
Problem with uncertain service times. The RL agent receives a reward according
to how the low-level heuristic directly affects the objective function. Zhang and Lu
(2008) use RL in an evolutionary algorithm to select mutation operators. Here the
selection decision is what type of operator to choose at each mutation iteration of
the evolutionary algorithm. At each stage, new operators are constructed through
mutations of the selected operators. Zhang and Lu (2008) report that the algorithm
performs the same or better than standard mutation strategies.

3.4.4 Machine Learning in Personnel Rostering Problems

In the literature, ML is applied to learn different aspects of PRPs. Kumar et al.
(2019) use tensor operations and clustering techniques to learn constraints to be
applied to an NRP. The rationale is that the mathematical modeling of an NRP
is a time-consuming task that requires expert knowledge of mathematical modeling
methods. In addition, schedule requirements vary between hospital wards. However,
knowledge about the quality rosters is incorporated in manually created schedules
as only the best schedules are included. Automatic learning by example schedules
can help produce more precise models suited for specific wards. Their proposed
algorithm is capable of capturing underlying characteristics of the example schedules
and compares well with the actual constraints applied to the schedules.

Another way of using ML in PRPs found in the literature is to learn an evaluation
of the solution quality. Václav́ık et al. (2016) argues that evaluating the roster
quality in meta- and hyper-heuristics can be a computationally expensive task. They
propose an ML method to accelerate the evaluation phase in heuristics. The method
includes an ANN as a classifier that inputs two encoded solutions, one before and
one after a change is made and outputs if the change would lead to an improvement
or not. The algorithm includes a filtering mechanism to reject the majority of

28

CHAPTER 3. LITERATURE REVIEW

potentially bad solutions.

Shi and Landa-Silva (2018) use an approximate dynamic programming approach
to solve a multi-phased nurse rostering problem. Approximate dynamic program-
ming strongly links to the term RL in the ML community, as both methods rely
on the use of the Bellman Equation. Shi and Landa-Silva (2018) iteratively assign
pre-generated weekly shift patterns to nurses and approximate a value function for
several candidate allocations during a local phase procedure. Subsequently, the ap-
proximated value function is used in a global phase as a look-ahead policy. Langfeldt
et al. (2021) use a similar approach by dividing the time horizon into weekly shift
assignment problems and allocating pre-generated weekly shift patterns. The shift
pattern generation phase uses k-means clustering to cluster similar shifts in order
to reduce the number of possible shift pattern combinations.

Chen et al. (2021) use an ANN to guide a heuristic tree search to solve a PRP. The
ANN inputs features of the tree search and statistical properties of the solution and
output a value that reflects the distance a solution has to an optimal solution. This
value is used to evaluate the solution produced by each change heuristic included
in the algorithm and then choose which node in the tree to branch from. Thus, the
algorithm relies on supervised learning based on pre-calculated optimal solutions to
train the network. For training, pairs of features and the corresponding label are
produced by applying the heuristics on the optimal solutions multiple times and
assigning a value to the state, reflecting the number of times the heuristic is applied
when the state is encountered.

Oberweger (2021) propose a method inspired by the Neural Large Neighborhood
search presented in Section 3.4.3. The method is applied to a staff re-rostering
problem, which is strongly related to PRPs. They use a GNN architecture to learn
the destroy operator of LNS. For each day-nurse pair in the solution, the network
outputs a probability of that pair being a part of a destroy set given the current
state of the solution. After destroying the solution, it is repaired using a proposed
MIP formulation. The method is reported to surpass the results of a LNS with a
manually designed destroy operator on all measures, as well as being superior to a
MIP formulation of the problem in terms of optimality gap.

3.4.5 Feature Engineering

Zheng and Casari (2018) defines feature engineering as the process of extracting
numeric values from raw data and transforming them into formats that are suitable
for ML. They also claim that the majority of time building ML models is spent on
feature engineering and data cleaning. Feature engineering is a crucial step in an ML
pipeline, as it provides the input to ML models, but is rarely discussed on its own
(Zheng and Casari, 2018). Especially RL techniques rely on state representation.
A challenge occurs when the dimensions of the states vary across instances. This
section presents some approaches to feature engineering used in ML-assisted solution
approaches to PRPs.

In most PRPs, a two-dimensional matrix of shift allocations can represent the state.

29

CHAPTER 3. LITERATURE REVIEW

However, this requires that demand and competences are associated with shifts to
calculate demand coverage. Most PRPs in the literature adhere to this, but in
some works, like Grov et al. (2020), the demand is not given in terms of required
shift allocations but rather for time intervals. These problem definitions require
additional encodings to ascertain which employees cover what demand, expanding
a potential raw feature vector. Regardless, such state representations can be used
as input to an ANN. Chen et al. (2021) use the raw state representation as input
to a supervised learning-scheme to predict the distance from candidate solutions to
the optimal or near-optimal solution. They use this to assist the tree search in their
solution method to a PRP. Beddoe et al. (2009) use a portion of the solution matrix
around a soft constraint violation in a case-based reasoning approach to repair PRP
solutions, which also share similarities with supervised learning (Mitchell, 1998).
Gu and Hao (2018) use the graph representation of solutions as the input to their
pointer network.

In exchange for a raw state representation, most proposed solution methods use a
feature vector derived from solutions or search states as input to their ML-assisted
solution approaches. However, which features to use is both varied and not a focus
of most works, and while many works present their feature vectors, the impact of
different vectors is rarely explored (Zheng and Casari, 2018). Messelis and De Caus-
maecker (2010) classify possible features into two categories; static and dynamic.
As their name suggests, static features are constant attributes of problem instances.
These can be simple statistics, like the number of employees or days, or more com-
plex measures, like the average demand level compared to the number of available
employees. Messelis and De Causmaecker (2010) collect a large set of static features,
originally intended to determine the hardness of PRPs. Some works, like Alvarez
et al. (2014), incorporate static features in their feature vector, often when learning
across instances. The standard usage for static features is to describe the problem
size and complexity, where complexity refers to a measure of how difficult it is to
attain good solutions to a problem instance (Alvarez et al., 2014; Zarpellon et al.,
2020).

In contrast, dynamic features describe aspects of the current solution beyond the
static size and complexity. We choose to divide these into two categories: search-
based and problem-specific features. Search-based features are aspects of the current
state of the solution algorithm. These are natural inclusions in ANNs used to guide
hyper-heuristics. Kallestad (2021) exclusively use the state of a neighborhood search
as the input to an ANN to guide a HH. Works describing ANN-assisted branch-and-
bound methods, such as Khalil et al. (2016); Alvarez et al. (2014), often use the
status of the mathematical model of the current solution as features. Examples
are statistics regarding sensitivity analysis of the mathematical model and the fixed
variables. In this setting, Zarpellon et al. (2020) propose a feature vector that also
includes features of the search tree, for example, depth and sparsity. To the best of
our knowledge, most ML-assisted hyper-heuristics include search-based features in
their feature vectors, indicating the power of such a state representation.

Problem-specific dynamic features are aspects of a solution interpreted in terms of
the problem definition. In the case of personnel rostering, this can be statistics like
shift assignments per day or demand coverage. This way of state representation

30

CHAPTER 3. LITERATURE REVIEW

is less common than search-based features but still a common approach, especially
when operator selection is the task of the ML model. Chen et al. (2022) use problem-
specific features alongside search-based ones as input to a cross-instance ANN-policy
for operator selection. Beddoe et al. (2009) use only problem-specific features in a
case-based reasoning approach to nurse rostering. Compared to search-based fea-
tures, problem-specific features are less commonly used. This discrepancy may be
due to the reduced generalizability of using such features or how their distributions
may be different across problem instances. Generalizability and stable distributions
are both favored by the ML literature (Zheng and Casari, 2018). However, as one
may construct operators with problem-specific aspects in mind, we argue that such
features may be appropriate supplementation to search-based features in order to
identify low-level strategies for improving solutions. NNALNS uses both problem-
specific and search-based dynamic features as input for an ANN that parameterize
the operator selection policy.

3.5 Our Contribution

In summary, this thesis presents a problem definition and solution method that
draws inspiration from multiple similar works and contributes new ideas to solve
the particular problem presented by Visma Resolve.

The RRP is a PRP and draws its main inspiration from Grov et al. (2020), as they
also address a similar problem from Visma Resolve. The main difference from a
regular PRP is the inclusion of rest rules in order to adhere to Norwegian labor
law and the use of flexible demand to model the Visma dataset. Besides this, each
aspect of the RRP is well represented among other works on PRPs.

In terms of feature engineering, we propose a novel feature vector that includes the
regular search-based features found in most works on incorporating ML in solution
methods for PRPs. However, we combine this with a new set of problem-specific
features for the RRP into a vector of constant size; such a feature vector is not
commonly used.

We present a NNALNS that can be considered an improvement-based selection
hyper-heuristic, following the definitions of Burke, Kendall, Newall, Hart, Ross and
Schulenburg (2003); Burke et al. (2019). The initial solution is constructed by solving
a simplified MIP model, and NNALNS can be considered a modification of ALNS
that uses a pre-trained ANN that parameterizes the operator selection policy. We
combine ML and OR by using an ANN for operator selection, which is classified
by Bengio et al. (2021) as incorporating ML into OR. This approach is inspired by
Kallestad (2021). The ANN is trained by an implementation of a training algorithm
from the state-of-the-art PPO-family of RL algorithms (Schulman et al., 2017).

31

CHAPTER 4. THE RESOLVE ROSTERING PROBLEM

Chapter 4

The Resolve Rostering Problem

This chapter presents the definition of the Resolve Rostering Problem, denoted the
RRP. The problem definition is the same as in our specialization project (Langfeldt
et al., 2021). Section 4.1 describes the constraints of the RRP, while 4.2 discuss
demand modeling and Section 4.3 outlines the objective and related considerations.
Finally, Section 4.4 discusses the assumptions made when formulating the RRP, and
thus what is out of the scope of this thesis.

4.1 Constraints

A shift pattern is a sequence of shifts assigned to an employee. There are several
constraints on the structure of these patterns. Section 4.1.1 outlines the hard con-
straints that determine the legality of a shift pattern, while 4.1.2 discusses what
fairness aspects penalize or reward a schedule.

4.1.1 Hard Vonstraints on Shift Patterns

A shift pattern is a sequence of shifts that are assigned to an employee. There are
numerous requirements that a shift pattern needs to meet to be considered a legal
shift pattern. These requirements can be global in the sense that they need to be
met for all patterns, or they can be employee-specific. For the sake of completeness
and reproducibility, we elaborate on the requirements mentioned above.

Shared shift pattern requirements

A legal shift pattern can only contain one shift per day, and the day to which a shift
belongs is predefined. Also, a shift cannot overlap with another shift regardless of
the day the shift belongs to. This needs to be addressed in order to avoid overnight
shifts overlapping with a shift the following day.

All legal shift patterns have requirements on the weekly minimum continuous stretch
of rest. It can be helpful to view a continuous stretch of rest as a weekly off shift.

32

CHAPTER 4. THE RESOLVE ROSTERING PROBLEM

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Shift Shift Shift ShiftWeekly off shift Shift

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Shift Shift Shift ShiftWeekly off shift Shift

Overlap Two shifts the same day

a)

b)

Figure 4.1: a) Example of legal shift pattern and b) example of illegal shift pattern.

Consequently, all legal shift patterns must contain one weekly off shift per week in
the planning horizon, and the weekly off shifts cannot overlap with any work shifts
in the pattern. Figure 4.1 illustrates an example of a legal and illegal shift pattern
concerning the shared requirements.

Figure 4.1 a) illustrates a legal shift pattern with respect to the shared requirements.
That is, the shift pattern contains no overlap, a maximum of one shift per day and
one weekly off shift. Contrarily, Figure 4.1 b) illustrates an illegal shift pattern. The
weekly off shift overlaps with a regular work shift on day two. In other words, the
weekly requirement for minimum continuous rest is not met, although it appears to
be due to the weekly off shift. Furthermore, if the overnight shift from day five to
day six belongs to day five, the requirement of only having one shift per day is not
met.

Employee-specific shift pattern requirements

Each employee has a list of blocked hours. This list states the time intervals when
the employee cannot be assigned any shifts. A legal shift pattern for an employee
cannot contain any shifts that violate this.

The daily rest rules state that for a defined 24 hour period each day, an employee
should have a minimum amount of continuous rest. As the minimum amount of con-
tinuous rest and the definition of a 24 hour (i.e., offset) can vary among employees,
this is considered a employee-specific requirement. To exemplify, the daily rest rule
for a specific employee could be that between 06:00 one day and 06:00 the following
day, the employee needs to have at least 9 hours of continuous rest. By looking at
a specific shift and employee, there are three ways in which the daily rest rule can
be violated:

1. The shift violates the daily rest rule single-handedly.

2. The shift violates the daily rest rule if it is combined with another shift.

33

CHAPTER 4. THE RESOLVE ROSTERING PROBLEM

04:00, Tue

08:00, Tue 15:00, Tue 22:00, Tue 04:00, Wed

04:00, Tue

06:00, Tue 13:00, Tue 20:00, Tue 02:00, Wed

04:00, Wed

Shift

ShiftShift

Shift Shift

04:00, Tue 11:00, Tue 21:00, Tue 04:00, Wed

Shift

7 hours rest 7 hours rest

7 hours rest 6 hours rest

11 hours rest

7 hours rest

9 hours rest

6 hours rest

8 hours rest

a)

b)

c)

Daily rest rule: 04:00 Tuesday – 04:00 Wedesday, 8 hours required rest

Figure 4.2: a) Example of shift that single-handedly violates the daily rest rule, b)
example of shift that violates the daily rest rule if combined with another shift, and
c) example of shift that violates the daily rest rule if combined with two other shifts.

3. The shift violates the daily rest rule if it is combined with two other shifts.

The three cases are illustrated in Figure 4.2.

The daily rest rule in Figure 4.2 states that between 04:00 and 04:00 the following
day, there should at least be 8 hours of continuous rest. Figure 4.2 a) illustrates a
shift that cannot be a part of any shift pattern for an employee with the correspond-
ing day rest rule. Figure 4.2 b), on the other hand, shows that the shift indicated
by the grey box can be a part of a legal shift pattern, but not when combined with
the shift indicated by the red box. Lastly, Figure 4.2 c) shows that the shift indi-
cated by the grey box combined with any one of the two shift patterns indicated by
yellow boxes can be a part of a legal shift pattern. However, the grey shift cannot
be combined with both of the yellow shifts.

The weekly and daily rest requirements are not standard to PRPs, but rather our
modeling of the Norwegian Working Environments Act (Norweginan Working En-
vironments Act §10-4, 2015). We made this adaptation to model Visma Resolve’s
specific scheduling problem.

4.1.2 Fairness Costs

Fairness refers to the quality of a schedule for the assigned employee. Qualities
include collective preferences, like not working partial weekends, isolated days, or
individual preferences for specific hours. The selection of these fairness constraints
stems from the typical considerations in the literature discussed in Section 3.3.

34

CHAPTER 4. THE RESOLVE ROSTERING PROBLEM

First of all, there is a set of time-related fairness aspects. One of these is contracted
hours. Working hours accumulate throughout the planning horizon, and deviation
from the contractually set amount is penalized. Another time-related fairness aspect
is shift duration, as there is a preferred duration for shifts, and shifts deviating from
this range will penalize the schedule. We will not enforce hard limits on shift duration
as problem instances determine the possible shifts. Finally, it is considered good to
have longer weekly rest periods, and schedules with longer rest periods than the
minimum duration will be rewarded, up to an upper limit.

Secondly, there is a set of global preferences that all schedules are penalized for
breaking, regardless of the employee. It is desired to either work both days of a
weekend or neither. Working one day of the weekend is called a partial weekend and
penalizes a schedule. It is agreed upon that it is undesirable to work isolated days.
They refer to working one day and not the previous or following day. Similarly,
working isolated days off will also penalize the schedule. To work more than a
predefined number of consecutive days is also considered undesirable.

Finally, individual preferences affect the fairness of a schedule. Preferences can
denote an individual’s wishes to work or not work at specific time intervals. They
consist of the relevant time period and a score indicating the importance of the
preference, which can be positive or negative, to distinguish favorable or unfavorable
preferences. They can also model holidays by assigning the same negative preference
spanning the holiday to each employee and similarly model agreed-upon preferences
like working nights.

These fairness costs are accumulated per employee to calculate their fairness costs,
which penalizes the schedule. Note that meeting preferences and scheduling longer
weekly off shifts are considered desirable, reducing the fairness cost. A final prefer-
ence is that employees are treated equally. Therefore, a schedule is also penalized
for the worst individual fairness cost, which incentivizes scheduling employees to
equal quality.

4.2 Demand

Demand denotes that some employees with specific competences are required to
take a shift for the duration of the demand period. It spans a time period that
may or may not be within a single day. A certain number of employees are required
to take a shift that spans this period. To cover demand, an employee must have
the corresponding competence. Competences are categorical, meaning that there
is no hierarchical structure, and an employee must possess the actual competence
required. The number of employees is given as the desired amount, referred to
as ideal demand, but does also have a minimum and maximum legal limit. If the
demand is satisfied within these limits, the schedule is considered feasible concerning
demand. However, deviation from ideal demand penalizes a schedule.

35

CHAPTER 4. THE RESOLVE ROSTERING PROBLEM

4.3 Objective

The objective is to generate schedules that minimize aggregated fairness costs for
all employees while minimizing the total deviation from ideal demand coverage. In
addition to minimizing fairness for all employees, it is an objective to distribute
fairness between employees evenly.

4.4 Assumptions

We have made five assumptions in the RRP. The planning period is isolated, mean-
ing no information is carried into or out of the period. Some works include pa-
rameters that contain information carried on from earlier periods to enforce legality
constraints on the first shifts (Ouelhadj et al., 2012). Secondly, there are no holidays
in the problem. Each day is considered more or less the same, except for weekends
and the individual preferences of the employees. Holidays can be incorporated into a
problem instance by assigning these periods undesirable for all employees, similarly
to what is done by Turhan and Bilgen (2020).

Finally, there are a few minor assumptions that are noted by other works. We
assume that undesired and blocked hours have the same time-interval structures as
shifts, rather than spanning more abstract periods, for example, ”afternoons” or
”one afternoon each week.” Breaks are assumed to be covered by employees during
shifts and will not be considered in the schedules. Finally, any overlap between
shifts in order to transfer information is not required. Information transfer is not a
standard inclusion in rostering problems but common practice at hospitals (Nurmi
et al., 2016).

Several vital decisions or tasks are not in the scope of this thesis. The problem of
meeting the long-term demand of labor is not within the scope of this thesis. Thus,
the number of employees, their contracted hours, and their competences are given.
Note that this means we do not consider wages and thus do not evaluate schedules on
labor costs, except that schedules are penalized for over-staffing. Demand forecasting
is also out of scope, as the problem instances determine desired demand and limits
on deviation from ideal coverage. Hence, demand modeling is also out of scope.
Moreover, this thesis does not cover shift design, as problem instances define the
available shifts. All these decisions are vital to the resulting performance of the
organization. However, as reducing costs is not the objective of the RRP, it is
natural that these decisions are out of scope.

Aside from the aforementioned out-of-scope decisions determined by the problem
instances, a few elements are not considered by this thesis. Uncertainty is a no-
table consideration. The desired demand is exact, and no forecasting nor stochas-
tic optimization techniques are required to determine parameter values. Similarly,
employee-specific blocked or undesired hours are all decided before the scheduling,
so the availability of each employee is known. Hence, the schedules are not evaluated
on their robustness nor flexibility but instead penalized for scheduling more or fewer
employees than necessary. As we discuss in Chapter 3, we consider the RRP to be

36

CHAPTER 4. THE RESOLVE ROSTERING PROBLEM

offline operational and do not consider events that may occur during the planning
horizon.

37

CHAPTER 5. MATHEMATICAL MODEL

Chapter 5

Mathematical Model

This chapter describes the MIP formulation of the RRP we describe in Chapter 4.
We define sets by upper case calligraphic letters, parameters by upper case Latin
letters, and decision variables and indices by lower case Latin letters. We derive this
model from the formulation of Grov et al. (2020). For sets, parameters, and decision
variables, subscripts indicate indices, and we use superscripts to indicate particular
meanings or specifications for sets.

5.1 Indices

The following indices are used in the model to denote different elements of sets.

e : Employee e
c : Competence c.
t : Time interval t.
s : Shift s.
r : Off shift r.
i : Day i.
j : Week j.

5.2 Sets

Below we list all sets in the model. Some sets are trivial, and not explained, but
others are elaborated upon if relevant.

38

CHAPTER 5. MATHEMATICAL MODEL

I : Set of days.
ISAT : Set of Saturdays, excluding the final day in the planning horizon.
J : Set of weeks.
E : Set of all employees.
EC
c : Set of all employees with competence c.

C : Set of competences.
CE
e : Set of the competences of employee e.

T : Set of time intervals with demand.
T R
r : Set of time intervals overlapping weekly off shift r.

S : Set of shifts.
SI
i : Set of shifts on day i.

SO
t : Set of shifts overlapping time interval t.

SV AL
e : Set of valid shifts for employee e, SV AL

e ⊆ S.
SDRC
es : Set of shifts that breaks the daily rest rule for employee e if taken

together with shift s, SDRC
es ⊆ SV AL

e .
SDRS
es : Set of shifts that breaks the daily rest rule for employee e if

employee e is assigned to shift s and two of the shifts in SDRS
es ,

SDRS
es ⊆ SV AL

e .
R : Set of weekly off shifts.
RJ

j : Set of off shifts in week j.

ISAT is the subset of I that contains Saturdays, excluding the last if the final day
in the planning horizon is a Saturday, as this would not be considered a partial
weekend. Demand in the RRP is modeled as time intervals t with demand, making
up the set T . Following the definition in Section 4.1, each shift in S belongs to the
day it begins, and SI

i is the subset of shifts that start on the day i. SO
t is the set of

shifts that overlap time interval t, and that can be assigned to employees to cover
the demand in t.

A lot of constraints regarding rest and shift validity are handled by the sets SV AL
e ,

SDRC
es and SDRS

es . SV AL
e is the subset of S which one can assign to employee e. Shifts

can be invalid by having such a long duration that it breaks daily rest rules outright
or if they overlap with the employee’s blocked hours, and these shifts are not added
to SV AL

e . SDRC
es is the set of shifts that cannot be assigned to employee e if that

employee is already assigned to shift s without breaking the daily rest rule. SDRS
es is

the set of shifts that would break the daily rest rule if employee e is assigned to shift
s and two shifts in SDRS

es , but where assigning s and one in SDRS
es is legal. Daily rest

rules are elaborated in Section 4.1.

While rest, both daily and weekly, is defined as the absence of working shifts, we
choose to model weekly breaks as taking a weekly off shift. A weekly off shift
restricts an employee from covering demand or taking other shifts when assigned
to that weekly off shift and represents a longer continuous rest period. R is the
set of all possible weekly off shifts. Each weekly off shift has a duration above the
minimum required weekly rest, and it cannot span multiple weeks. T R

r is the set of
time intervals that overlap weekly off shift r, used to ensure that an employee is not
covering demand while taking his or her weekly off shift.

39

CHAPTER 5. MATHEMATICAL MODEL

5.3 Parameters

The following parameters and weights are used in our model of the RRP:
Instance Parameters

Dtc : Minimum demand coverage for competence c in time interval t.
Dtc : Ideal demand coverage for competence c in time interval t.
Dtc : Maximum demand coverage for competence c in time interval t.
V R
r : Duration of off shift r.

V R : Minimum weekly off shift duration.

V
R

: Maximum rewarded weekly off shift duration.
Be : Weekly contracted hours for employee e.
LCD : Desired maximum number of consecutive days.
Pes : Preference score for employee e working shift s.
V S
s : Length of shift s.

V
S

: Desired shift length, upper limit.
V S : Desired shift length, lower limit.
V T
t : Duration of time interval t.

Demand is given as a upper-, ideal-, and lower level of coverage per time interval
with demand t, per competence c, as the parameters Dtc, Dtc and Dtc respectively.
Off shift duration, V R

r , as well as their minimum duration and maximum reward,

V R and V
R
are given in hours. Contracted hours, Be, denotes the contractually set

number of work hours each week for employee e. LCD determines the number of
consecutive days an employee can work without incurring a penalty, and employees
are penalized per day over this limit. We calculate preferences as a preference score,
Pes, that is rewarded if employee e works shift s. A positive value indicates a desire
to work that shift and thus reduces the fairness cost, while a negative value denotes
a desire not to work and therefore increases the fairness cost. Duration of shifts and
off shifts, V S

s and V T
t respectively, are given in hours, as well as the soft bounds on

shift length, V
S
and V S.

Weights

AF : Adjustment factor for weighting the lowest individual fairness cost.
AB

e : Adjustment factor for weighting cost of deviating from contracted hours.
W F : Weight of the lowest individual fairness cost.
WD+ : Weight of excess demand coverage.
WD− : Weight of deficit demand coverage.
WR : Weight of weekly off shift score.
WB : Weight of contracted hours difference.
W PW : Weight of partial weekends.
W IW : Weight of isolated work days.
W IO : Weight of isolated off days.
WCD : Weight of consecutive days.
W P : Weight of preference score.
W SL : Weight of shift duration.

40

CHAPTER 5. MATHEMATICAL MODEL

We introduce two adjustment factors to dynamically value different parts of the
objective function based on relevant instance attributes. The adjustment factor
AF scales the importance of the worst fairness cost, scaling with the number of
employees. AB

e scales the cost of deviating from contracted hours per employee
based on their number of contracted hours. That is, a one-hour deviation for an
employee with 13 hours of contractually set weekly work should be penalized harder
than a one-hour deviation for an employee with 37 hours. The weights define the
impact of breaking each soft constraint.

5.4 Decision variables

xes =

{
1, if employee e is assigned to shift s

0, otherwise

yetc =

1, if employee e covers one unit of demand in time interval t

with competence c.

0, otherwise

wer =

{
1, if employee e takes the weekly off shift r

0, otherwise

γei =

{
1, if employee e takes a work shift on day i

0, otherwise

ρSAT
ei , ρSUN

ei =

1, if employee e works a partial weekend by working

Saturday or Sunday, respectively

0, otherwise

σei =

{
1, if employee e works an isolated day on day i

0, otherwise

ϕei =

{
1, if employee e takes an isolated off day on day i

0, otherwise

πei =

1, if employee e starts a sequence of consecutive working days

exceeding the desired limit on day i

0, otherwise

δ+tc, δ
−
tc = respectively excess and deficit demand coverage with respect to ideal.

demand in time interval t for competence c.

fe = variable for storing fairness-related costs for employee e.

g = variable for storing the highest fairness cost.

λ+
e , λ

−
e = deviation between worked and contracted hours for employee e.

µtc = difference between covered and minimum demand for competence c

in time interval t.

41

CHAPTER 5. MATHEMATICAL MODEL

The variables xes, yetc and wer can be considered the main decision variables, as
these decisions determine a schedule. The other variables can be considered auxiliary
variables, as they hold violations of soft constraints or other values used to calculate
the objective value.

5.5 Objective function

min z =
∑
e∈E

fe (5.1a)

+W FAFg (5.1b)∑
t∈T

V T
t

∑
c∈C

(WD+δ+tc +WD−δ−tc) (5.1c)

The objective is to minimize the total fairness cost of the schedule and total devi-
ation from ideal demand coverage. The first term (5.1a) is the total fairness cost
of all employees, calculated based on how well the schedule adheres to the various
fairness aspects. The second term (5.1b) adds the highest individual fairness cost
to incentivize balancing the fairness costs between employees. The final term (5.1c)
is the total deviation from ideal demand coverage. While the schedule must meet
minimum demand coverage and not exceed the maximum, it will be penalized for
deviating from ideal demand coverage. The weights, WD+ and WD−, make it possi-
ble to weigh excess and deficit demand coverage differently. The deviation for each
time interval t is scaled according to its duration, V T

t .

5.6 Constraints

Demand constraints∑
e∈EC

c

yetc = Dtc + µtc ∀t ∈ T , c ∈ C (5.2)

µtc ≤ Dtc −Dtc ∀t ∈ T , c ∈ C (5.3)

µtc +Dtc −Dtc = δ+tc − δ−tc ∀t ∈ T , c ∈ C (5.4)

The demand constraints ensure that demand-related variables are of the correct
value. As we mention in Section 4.2, demand is given as legal bounds and an ideal
coverage per time interval t and competence c. Constraints (5.2) enforce that µtc, the
auxiliary variable storing demand coverage above the minimum amount is correct
and, together with its non-negativity constraint, enforces that the schedule meets
minimum demand. Constraints (5.3) enforce that demand coverage is not above
maximum limits. Constraints (5.4) ensure that the demand deviation variables
have correct values.

42

CHAPTER 5. MATHEMATICAL MODEL

Work allocation∑
s∈SI

i

xes = γei ∀e ∈ E , i ∈ I (5.5)

∑
s∈SO

t

xes =
∑
c∈C

yetc ∀e ∈ E , t ∈ T (5.6)

∑
c∈C

yetc ≤ 1 ∀e ∈ E , t ∈ T (5.7)

The work allocation constraints handle logical dependencies between variables nec-
essary for theRRP. Constraints (5.5) and the binary restrictions on γei enforce that
at most one shift is taken each day per employee, as well as a correct value of γei.
Constraints (5.6) ensure that an employee is assigned to a shift when covering de-
mand. Finally, while an employee can cover different competences throughout a day,
Constraints (5.7) restrict employees from covering more than one unit of demand at
the same time.

Rest constraints

2xes +
∑

s′∈SDRC
es

xes′ ≤ 2 ∀e ∈ E , s ∈ S (5.8)

xes +
∑

s′∈SDRS
es

xes′ ≤ 2 ∀e ∈ E , s ∈ S (5.9)

∑
r∈RJ

j

wer = 1 ∀e ∈ E , j ∈ J (5.10)

|T R
r |wer ≤

∑
t∈T R

r

(1−
∑
c∈C

yetc) ∀e ∈ E , r ∈ R (5.11)

As elaborated in Section 4.1.1, an employee must have a continuous period of rest
of a certain length every individually defined 24-hour period. Shifts can be long
enough for this to be impossible and are thus not added to SV AL

e . Beyond these
shifts, different sequences of shift allocations can break this daily rest rule. Some
pairs of shifts span periods where, if taken by the same employee on subsequent
days, they will break the rest rule. For each shift, we, therefore, add all other shifts
where this would be the case to the set SDRC

es . This set is created per employee, as
they can have differently defined 24-hour periods. The set will contain shifts on days
on either side of the relevant day that are too close to the relevant shift. With this
set, Constraints (5.8) ensure that these illegal pairs of shifts are not taken. The final
way shift sequences can break the daily rest rule is if an illegal sequence of three
shifts is taken. Consider three shifts belonging to subsequent days. The shift we are
evaluating belongs to the day in the middle. Either shift can be taken together with
the shift we are considering, as the employee will have satisfactory rest. However,
if an employee takes a shift on both days as well as the middle day, they will not
provide satisfactory rest. All shifts with this property, evaluated based on the shift
s, are added to the set SDRS

es . With the set SDRS
es , Constraints (5.9) ensure that the

daily rest rule is not broken in this way. The set is, of course, only a subset of SV AL
s ,

43

CHAPTER 5. MATHEMATICAL MODEL

as many sequences of shifts can be assigned on consecutive days without breaking
the daily rest rule.

Constraints (5.10) enforce that each employee takes exactly one weekly off shift
each week, thus enforcing the weekly rest rule, while Constraints (5.11) enforce that
employees do not cover demand when assigned to a weekly off shift.

Fairness

Fairness costs can be considered the main bulk of the objective function. Con-
strains (5.12) calculate individual employees’ fairness costs. Terms (5.12a)-(5.12d)
calculate the fairness cost for isolated working days, isolated off days, consecutive
days, and partial weekends, respectively. Terms (5.12e)-(5.12g) calculate how much
each assigned shift’s duration deviates outside desired limits, the deviation from
contracted hours, and preference score, respectively. Term (5.12h) calculates the
duration of each weekly off shift above the minimum amount and will not give re-
wards for durations longer than the maximum rewarded weekly off shift duration,

V
R
. Lastly, Constraints (5.13) make sure that the variable g is equal to the fairness

cost of the employee with the highest fairness cost.

fe = W IW
∑
i∈I

σi (5.12a)

+WIO

∑
i∈I

ϕei (5.12b)

+WCD

∑
i∈I

πei (5.12c)

+WPW

∑
i∈ISAT

(ρSAT
ei + ρSUN

e(i+1)) (5.12d)

+WSL

∑
s∈SV AL

e

max (V S
s − V

S
, V S − V S

s , 0)xes (5.12e)

+WBA
B
e (λ

+
e + λ−

e) (5.12f)

−WP

∑
s∈SV AL

e

Pesxes (5.12g)

−WR

∑
r∈R

min(V R
r − V R, V

R
)wer ∀e ∈ E (5.12h)

g ≥ fe ∀e ∈ E (5.13)

Constraints (5.14)-(5.18) ensure that the fairness-related auxiliary variables have
the correct values. Constraints (5.14) ensure that deviation from contracted hours
is correct, while Constraints (5.15) enforce that partial weekends are penalized. Note
that a single Saturday or Sunday at the edges of the planning horizon is not counted
as a partial weekend, and ISAT does not include a Saturday if it is the last day of
the planning horizon. Constraints (5.16)-(5.17) ensure that isolated workdays and
off days are counted correctly, while Constraints (5.18) count the number of days in
a sequence of consecutive days above the desired limit.

44

CHAPTER 5. MATHEMATICAL MODEL

∑
s∈SVAL

V S
s xes + λ+

e − λ−
e = |J |Be ∀e ∈ E (5.14)

γei − γe(i+1) = ρSAT
ei − ρSUN

e(i+1) ∀e ∈ E , i ∈ ISAT (5.15)

γei − γe(i−1) − γe(i+1) ≤ σei ∀e ∈ E , i ∈ {2, 3, ..., |I| − 1} (5.16)

γe(i−1) − γei + γe(i+1) − 1 ≤ ϕei ∀e ∈ E , i ∈ {2, 3, ..., |I| − 1} (5.17)

i+LCD∑
i′=i

γei′ − LCD ≤ πei ∀e ∈ E , i ∈ {1, 2, ..., |I| − LCD} (5.18)

Variable definition constraints

xes ∈ {0, 1} ∀e ∈ E , s ∈ SV AL
e (5.19)

yetc ∈ {0, 1} ∀e ∈ E , t ∈ T , c ∈ Ce (5.20)

wer ∈ {0, 1} ∀e ∈ E , r ∈ R (5.21)

δ+tc, δ
−
tc ∈ Z+ ∀t ∈ T , c ∈ C (5.22)

ρSAT
ei , ρSUN

e(i+1) ∈ {0, 1} ∀e ∈ E , i ∈ ISAT (5.23)

γei, σei, ϕei, πei ∈ {0, 1} ∀e ∈ E , i ∈ I (5.24)

µtc ∈ Z+ ∀t ∈ T , c ∈ C (5.25)

λ+
e , λ

−
e ≥ 0 ∀e ∈ E (5.26)

fe, free ∀e ∈ E (5.27)

g, free (5.28)

45

CHAPTER 6. SOLUTION METHOD

Chapter 6

Solution Method

This chapter presents our solution method for the RRP. Firstly, Section 6.1 describes
how we adapt ALNS for the RRP, which entails all of the operators, stopping crite-
ria, acceptance criteria, reward function, how we construct the initial solution, and
some adjustments concerning infeasible solutions. Following, Section 6.2 describes a
modification to ALNS that we name NNALNS. Instead of using an adaptive weight
scheme to alter the probability distribution for operator selection, NNALNS uses an
ANN that is pre-trained using RL to map any given state to a probability distribu-
tion over the operators. In order for the state of the search to be used as input to
an ANN, we perform feature engineering to encode the state as a feature vector of
fixed size.

6.1 Adaptive Large Neighborhood Search

Based on Ropke and Pisinger (2006), this section describes ALNS for the RRP in
detail to set the foundation for the NNALNS algorithm in Section 6.2. Firstly, Sec-
tion 6.1.1 outlines the algorithmic framework for ALNS. Following, Section 6.1.2
describes how an initial solution is found, before Section 6.1.3 presents the opera-
tors designed for the RRP. Section 6.1.4 and Section 6.1.5 describes the different
acceptance and stopping criteria, respectively. Lastly, Section 6.1.6 elaborates on the
operator selection and adaptive weights, Section 6.1.7 describes the reward function,
and Section 6.1.8 explains which measures are taken with respect to feasibility.

6.1.1 Algorithmic Framework

ALNS is an extension of the LNS framework, where several sub-heuristics, or oper-
ators, compete during the neighborhood search. Each operator has a weight asso-
ciated with it, and the weights of the operators are updated according to a reward
function, which Section 6.1.7 describes. At each operator decision point, an operator
is sampled according to the probability distribution given by the weights. Figure 6.1
illustrates the flow of ALNS.

46

CHAPTER 6. SOLUTION METHOD

Initial solution

Adaptive selection of
operator

Operator

New solution Update weight for
selected operator

Acceptance
criterion

Stop?

No

Yes Finished

Figure 6.1: Algorithmic sketch of ALNS for the RRP.

Algorithm 2 provides the pseudocode for ALNS. Input to the algorithm is an initial
solution from which to start the search, and the output is the best solution found
throughout the search. In Line 1, the weights of the operators are initialized to the
same value so that the probability distribution is uniform. The current solution,
xcurrent, and the best solution, xbest, are initialized to the initial solution in Line 2-3.
Line 4-14 constitute the main loop of ALNS. Firstly, an operator is selected according
to the probability distribution given by the weights of the operators. An operator
is commonly referred to as the pair of a destroy operator and a repair operator.
However, as Section 6.1.3 describes, we also propose some hybrid operators which
cannot easily be split into a destroy and repair operator. Following the operator
selection, the selected operator is applied to the current solution, resulting in the
candidate solution xcandidate. The candidate solution is either accepted or rejected
according to some acceptance criterion. If the possibly new current solution is better
than the current best solution, xbest is updated. Lastly, the weight for the selected
operator is then updated in Line 13 according to how well the operator performed.
This main loop is repeated until the stopping criterion is met and ALNS terminates
with the best solution, xbest.

47

CHAPTER 6. SOLUTION METHOD

Algorithm 2 ALNS

Input: x0: initial solution
Output: xbest: best solution found

1: InitializeWeights()
2: xcurrent := x0

3: xbest := x0

4: while stopping criterion not met do
5: o := SelectOperator()
6: xcandidate := o(xcurrent)
7: if Accept(xcandidate, xcurrent) then
8: xcurrent := xcandidate

9: end if
10: if f(xcurrent) < f(xbest) then
11: xbest := xcurrent

12: end if
13: UpdateWeights()
14: end while
15: return xbest

6.1.2 Initial Solution

ALNS requires an initial solution as a starting point for the search. To construct
such a solution for the RRP, we propose a simple construction model solved as a
MIP model reflecting the mathematical model presented in Chapter 5, but with an
altered objective function. The altered objective, shown in Equation (6.1), is to
minimize the total number of shifts assigned in the solution.

min z =
∑
e∈E

∑
s∈SV AL

e

xes (6.1)

The altered objective removes the soft constraints from consideration, focusing on
creating a feasible solution to the RRP satisfying rest rules and minimum demand
coverage. Consequentially, it expands the solution space making the problem signif-
icantly easier to solve and allowing us to obtain an initial solution to the RRP more
quickly.

6.1.3 Operators

Operators are an integral part of the ALNS framework. The operators alter a
current solution to produce a new candidate solution. Consequently, the set of
possible operators to apply to a problem directly defines the search space in the
neighborhood search. As operators are highly problem-specific, they need to be
designed to reflect the problem to be solved. We propose several types of operators
for the RRP that capture various properties of the problem. For inspiration, we use
operator types that are commonly used for NRPs according to Pillay and Qu (2019),
being larger destroy-repair operators, shift swap, and shift change operators.

48

CHAPTER 6. SOLUTION METHOD

Destroy Operators

The destroy operators in ALNS aim to destroy different parts of a solution to ensure
sufficient exploration of the neighborhood. In the RRP, destroying a solution corre-
sponds to removing shift allocations and the corresponding demand coverage from
the solution. Selection of which shift allocations to remove is what differentiates the
destroy operators for the RRP. Each destroy operator returns a destroyed solution
along with a destroy-specific set, d, which describes which part of the solution that
has been removed:

We categorize the destroy operators in this thesis into four types:

• Week destroy : Remove all shift allocations within k number of weeks in the
solution.

• Employee destroy : Remove all shift allocations for k employees in the solution.

• Day destroy : Remove all shift allocations on a targeted set of days in the
solution.

• Shift destroy : Remove a targeted set of shift allocations from the solution.

The different types reflect what part of the solution the operators target. However,
a selection strategy is needed to choose the particular part to destroy. We use four
selection strategies:

• Greedy : Select greedily according to the objective function.

• Uniform random: Select stochastically according to a uniform probability dis-
tribution.

• Weighted random: Select stochastically according to a weighted probability
distribution.

• Targeted : Select specifically targeted elements.

Figure 6.2 shows how the various destroy types are combined with the selection
strategies.

Destroy

Shift Week

Weighted randomUniform random Greedy

Day Employee

Targeted

Figure 6.2: Destroy operator types and selection strategy combinations.

49

CHAPTER 6. SOLUTION METHOD

Week Destroy

Since many of the costs of an RRP solution are week specific or related to sequences
of shifts, destroying a whole week is a natural choice. A week can be regarded as
an isolated schedule allowing us to calculate the soft constraint violation costs as-
sociated with each week in isolation, thus measuring separate parts of the solution.
To select which week to destroy, we use three selection strategies. The uniform ran-
dom selection strategy selects random weeks of the solution. Contrary, the greedy
selection strategy chooses the week with the highest costs. This is calculated accord-
ing to the soft constraint violations, being the total fairness costs of the employees
in (5.1a), the cost of the employee with the highest fairness costs in (5.1b), and
demand costs in (5.1c), though measured within a weekly timeframe. Lastly, the
weighted random selection strategy falls between the two, selecting weeks accord-
ing to a weighted probability distribution based on the total costs for each week.
The three selection strategies give us three levels of stochasticity, which we argue is
beneficial as it diversifies the neighborhood search. The destroy-specific set for the
week destroy operators contains the selected weeks.

Employee Destroy

Removing shift allocations for employees is an appropriate choice for the RRP as it
directly addresses the fairness costs in the objective function (see Equation (5.1a)).
We use the same three strategies as for the week destroy operators to select which
employee to remove from the solution, namely uniform random selection, weighted
random selection, and greedy selection. However, for the greedy and weighted selec-
tion strategies, the cost associated with each employee is calculated according to the
individual fairness cost, defined by Equation (5.12). The destroy-specific set for the
employee destroy operators contains the employees where shifts have been removed.

Day Destroy

We include day destroy operators to target specific days of the solution. Since
most of the objective value costs are related to sequential patterns in the solution
(e.g., consecutive days costs, isolated day costs), it is hard to measure the costs
for a specific day. Thus, the aforementioned greedy, weighted random, and uniform
random selection strategies do not apply to these operator types. Instead, we apply
a targeted day selection strategy. The Demand Day Destroy operator selects all days
in the solution where the minimum demand has not been met, thus targeting hard-
constraint violations linked to demand coverage. The Weekend Destroy operator
destroys whole weekends in the solution to allow a repair operator to restructure the
shift allocation on weekends, targeting the partial weekend costs (Constraints (5.15)
in the objective function. The destroy-specific set for the day destroy operators
contains the destroyed days.

Shift Destroy

The shift destroy operators allow focused targeting of shift allocation removals within
the solution. We include a Partial Weekend Destroy operator that removes all shift
allocations that cause a partial weekend in the solution, thus explicitly targeting
partial weekend shift allocations. In addition, the Demand Shift Destroy opera-

50

CHAPTER 6. SOLUTION METHOD

tor removes a given percentage of the shift allocations on days where demand is
not covered, chosen stochastically according to a uniform probability distribution.
This selection strategy is beneficial in situations where only small re-allocations are
needed to satisfy demand on a given day. Instead of removing all shifts on that day,
fewer shifts are removed, keeping the majority of the shift allocations.

Repair Operators

In the ALNS framework, repair operators are used to reconstruct destroyed solutions.
The repair operators need to handle both cost- and feasibility-aspects of a problem,
and it is beneficial to have repair operators that address different problem aspects to
create a variation in how solutions are reconstructed. For the RRP, reconstruction
means assigning shifts to employees to cover demand.

All the repair operators for the RRP have the same structure. However, they differ
by using different combinations of selection strategies to choose shifts, employees,
and competences to add to the solution. Algorithm 3 outlines the procedure for
how our repair operators reconstruct destroyed solutions. Firstly, in Line 2, the
algorithm constructs a set, S, that contains the candidate shifts extracted from
the destroy-specific set, d. Such filtering narrows the possible shift allocations,
forcing the repair operator to focus on areas that have been destroyed by a destroy
operator. The repair operator then selects a shift from S in Line 4, creates a set, E,
of candidate employees who can work the shift in Line 5, and selects the employee to
assign the shift among the candidates in Line 10. Finally, it selects the competence
the employee uses during the shift in Line 11. The chosen allocation is then added
to the solution in Line 12. This procedure repeats until a stopping criterion is met.

Algorithm 3 Repair

Input: x: Destroyed Solution, d: Destroy-specific set
Output: x′: Repaired Solution

1: x′ := x
2: S := GetIncludedShifts(x′, d)
3: while stopping critera not met do
4: s := GetShift(x′, S)
5: E := GetPossibleEmployees(x′, s)
6: if |E| = 0 then
7: I := I \ s
8: Continue
9: end if

10: e := GetEmployee(x′, s, E)
11: c := GetCompetence(x′, s, e)
12: x′ := AssignShift(x′, e, s, c)
13: end while
14: return x′

51

CHAPTER 6. SOLUTION METHOD

Repair

Greedy Weighted randomShift selection

Employee selection Weighted randomUniform random Greedy

GreedyCompetence selection

Uniform random

Figure 6.3: Selection strategy combinations for the repair operators.

The repair algorithm makes it possible to construct various repair operators that use
different selection strategies for shifts, employees, and competences to reconstruct
a solution. Figure 6.3 shows all the selection strategies we use to form RRP repair
operators.

Shift Selection

The positive impact of adding a shift to a schedule, independent of which employee
takes it, is linked to how much demand the shift potentially can cover. Hence, a
natural approach is to select the shift that covers the most unsatisfied demand, as
this facilitates covering demand and thus enforces feasibility. However, as excess
demand coverage is penalized in the objective function in the RRP, it is preferable
to select a shift that overlaps time intervals with the highest demand deficit from
the ideal demand. This is calculated according to Equation (6.2), where Os is the
set of time intervals overlapped by shift s, Dtc is the ideal demand coverage and DF

tc

is the already filled demand for competence c in time interval t.

argmax
s∈S

∑
t∈Os

∑
c∈C

(Dtc −DF
tc) (6.2)

We use three different shift selection strategies: uniform random, greedy, and weighted
random selection. The uniform random strategy selects shifts among the shift in-
cluded in S according to a uniform probability distribution. The greedy selec-
tion strategy selects shifts from S according to Equation (6.2). Furthermore, the
weighted shift selection strategy selects shifts according to a weighted probability
distribution based on the covered demand deficit associated with each shift.

Employee Selection

The employee selection process in the repair operators is twofold. Firstly, there are
hard constraints to consider, such as daily and weekly rest rules that might not
be fulfilled if the employee is assigned the selected shift. The repair operators filter
such violations and construct a set E of candidate employees. Employees are selected
from this set according to different strategies depending on the repair operator.

52

CHAPTER 6. SOLUTION METHOD

The employee selection strategies we use are structured similarly to many of the
destroy operators, namely with three levels of stochasticity. To define a greedy
selection choice, we measure the impact on the objective function if the shift is
assigned to each candidate employee and choose the employee that gives the best
impact on objective value. The weighted random selection strategy uses these values
to calculate a weighted probability distribution and selects accordingly.

Competence Selection

As an employee can cover demand for different competences at different time in-
tervals during the same shift, the repair operators greedily choose the competences
based on the demand deviation in each time interval overlapped by the selected shift
and the employee’s competences.

Destroy-Repair Combinations

The destroy and repair operators combine to form a complete operator that outputs
a new solution to the RRP. Appendix B.1 provides a complete list of all destroy-
repair pairs used in this thesis.

Hybrid Operators

In addition to the classical destroy-repair operators, we also implement some oper-
ators that do not follow such a framework. These are either operators tailored to
specific fairness aspects or operators intended to impose small changes to a solution.

Swap Operators

Swap operators constitute a class of operators that swap the shift allocations of pairs
of employees, with the intent to impose small changes to a solution. Swapping shifts
has the advantage of scheduling the same shifts after the swap. Demand coverage
should therefore remain the same, as each employee covers what the other drops,
except for employees with different competences. Algorithm 4 shows the simple
swap operator, which selects two pairs of employees and shifts and swaps their shift
allocations on these days.

Algorithm 4 Swap operators

Input: xcurrent: current solution
Output: xcandidate: candidate solution

1: for k iterations do
2: e1 := ChooseInitialEmployee(xcurrent)
3: d1 := ChooseInitialDay(xcurrent, e1)
4: e2, d2 := ChooseOtherDayAndEmployee(xcurrent, e1, d1)
5: xcandidate := SwapShifts((e1, d1), (e2, d2))
6: end for
7: return xcandidate

53

CHAPTER 6. SOLUTION METHOD

Employees are selected either uniformly random, greedily, or targeted. The greedy
choice is to select the employees with the highest fairness cost. The targeted selection
is to select one employee that has weeks without weekly off shifts, paired with a
random employee. Days are selected either uniformly random or greedily, where
the greedy choice is to select the day where unassigning the employee’s shift would
improve the objective value the most. Figure 6.4 illustrates the variations of swap
operators.

Shift Swap

TargetedUniform randomEmployee selection

Uniform random

Greedy

Day selection Greedy

Figure 6.4: Selection strategy combinations for the shift swap operators.

Aside from selection strategies, swap operators can also differ in the number of swaps
performed. We refer to this as the size of the swap operator.

Shift Change Operators

The other class of hybrid operators consists of the shift change operators. They
change a schedule by assigning employees to a different shift, or no shift, on a
specific day. These operators do not benefit from maintaining demand coverage,
which the swap operators do. However, these operators can improve solutions where
shift assignments are ineffective, that is, the shifts incur unnecessary fairness costs
without covering demand. Algorithm 5 shows the basic shift change operator. A
set of employee-day pairs are selected to be changed, and the main loop greedily
selects the best shift to assign based on an estimation of the costs of these shift
assignments.

Figure 6.5 shows the various selection strategies. We choose employees either ran-
domly or based on individual fairness costs. However, as it is difficult to ascertain
the fairness costs of a single day without costly estimations, the days to change are
chosen randomly. The number of changes may vary. One tailored shift change oper-
ator is to select employees and days that incur isolated off day-penalties. We include
this operator to reduce isolated off day- and partial weekend penalties and improve
the score for weekly off shift duration (Constraints (5.12b), (5.12d) and (5.12h).

54

CHAPTER 6. SOLUTION METHOD

Algorithm 5 Shift Change Operators

Input: xcurrent: initial solution
Output: xcandidate: new solution

1: pairs := GetEmployeeDayPairs(xcurrent)
2: xcandidate := xcurrent

3: for pair in pairs do
4: e, d := employee, day from pair
5: impacts := list of zeros with length equal to the number of shifts
6: shifts := list of shifts valid for e on d
7: for s in shifts do:
8: impacts[s] := GetIndividualAssignmentImpact(pair, s)
9: end for

10: sbest := argmax(impacts)
11: xcandidate := AssignShift(xcandidate, e, d, sbest)
12: end for
13: return xcandidate

Shift Change

TargetedUniform randomEmployee selection Greedy

Shift selection Greedy

Figure 6.5: Selection strategy combinations for the shift change operators.

6.1.4 Acceptance criteria

After applying the selected operator on the current solution during an iteration of
ALNS, a new candidate solution is found. The candidate solution can be accepted
or rejected, dependent on the acceptance criterion and quality. We include three
acceptance criteria in this thesis, which are not problem-specific and are widely
studied in the literature (Pillay and Qu, 2019, p. 63).

Hill Climbing

Algorithm 6 provides the pseudocode for hill climbing. Only a candidate solution
that improves the objective value is accepted using hill climbing. If ALNS is stuck
in a local optimum, the search is over because there are no improving solutions in
the neighborhood.

55

CHAPTER 6. SOLUTION METHOD

Algorithm 6 Hill Climbing

Input: xcurrent: current solution, xcandidate : candidate solution
Output: accept: boolean indicating if the candidate solution is accepted

1: accept := false
2: if f(xcandidate) < f(xcurrent) then
3: accept := True
4: end if
5: return accept

Threshold Acceptance

The second acceptance criterion is threshold acceptance, which was first presented
by Dueck and Scheuer (1990). Algorithm 7 provides the pseudocode for threshold
acceptance in the case of a minimization problem, like the RRP. As for hill climbing,
the input is a candidate solution and the current solution. Threshold acceptance
accepts a solution if the candidate solution constitutes an improvement in objective
value or if the absolute value of the ratio between the difference in objective value
between the current and candidate solution and the objective value of the candidate
solution is below a threshold. The threshold is updated at each iteration according
to the equation

Tt+1 = Tt − k,

where Tt and Tt+1 are the thresholds before and after the update, respectively, and
k is some constant. The threshold update does not need to be restricted to being
linear.

Initially, the threshold is set to some value so that the acceptance criterion is not
too restrictive; we want ALNS to explore the solution space in earlier iterations. As
the threshold decreases, the acceptance criterion becomes more conservative.

Algorithm 7 Threshold Acceptance

Input: xcurrent: current solution, xcandidate: candidate solution
Output: accept: boolean indicating if the candidate solution is accepted

1: T := GetThreshold()
2: ∆ := f(xcurrent)− f(xcandidate)
3: accept := False
4: if diff > 0 or Abs(∆

f(xcandidate)
) ≤ T then

5: accept := True
6: end if
7: UpdateThreshold()
8: return accept

Simulated Annealing

Kirkpatrick et al. (1983) first introduced simulated annealing, before Ropke and
Pisinger (2006) applied it for the first time in the context of ALNS. The inspi-

56

CHAPTER 6. SOLUTION METHOD

ration behind simulated annealing is drawn from statistical mechanics; annealing
in metallurgy involves heating and controlled cooling of a material. Similarly, the
temperature in simulated annealing is initially high before it is cooled down in a
controlled manner. The temperature directly affects whether a candidate solution is
accepted, comparable to the threshold in threshold acceptance. However, simulated
annealing is stochastic because the temperature affects the probability of selecting
a non-improving solution.

Algorithm 8 constitutes the pseudocode for simulated annealing. An improving
candidate solution is always accepted using simulated annealing as the stopping
criterion. If the candidate solution is not an improving solution, the expression
e(f(xcurrent)−f(xcandidate))/T , where T is the temperature, is compared to a random
number p sampled uniformly from the continuous interval [0, 1]. The candidate
solution is accepted if p is smaller than or equal to the above expression. If all other
things are left constant, a decrease in the temperature will lower the probability of
selecting a non-improving solution. At the end of each iteration, the temperature
is updated. Although many variants exist, this thesis uses the update given by
Tt+1 = αTt, where α is some small number less than one.

To find the initial temperature, L number of iterations of ALNS where all candidate
solutions are accepted is run. During this preliminary run, the difference, ∆, in
Line 2 is recorded for all non-improving solutions. After L iterations, the initial
temperature is calculated as

T0 = − ∆

ln(0.8)
,

where ∆ is the average difference. The rationale is that the initial temperature
should be so that there is approximately an 80% chance of accepting the average
non-improving solution.

Algorithm 8 Simulated Annealing

Input: xcurrent: current solution, xcandidate: candidate solution
Output: accept: boolean indicating if the candidate solution is accepted

1: T := GetTemperature()
2: ∆ := f(xcandidate)− f(xcurrent)
3: accept := false
4: if ∆ < 0 then
5: accept := True
6: end if
7: p = RandomNumber() ▷ Random number in the interval [0, 1⟩
8: if ∆ ≥ 0 and p ≤ Exp(−∆

T
) then

9: accept := True
10: end if
11: UpdateTemperature()
12: return accept

57

CHAPTER 6. SOLUTION METHOD

6.1.5 Stopping Criteria

ALNS searches through the solution space for many iterations. The stopping cri-
terion decides the number of iterations performed in ALNS. Below we describe the
different stopping criteria in this thesis.

Max Iterations

Max iterations is a straightforward stopping criterion, and the only thing needed
is to keep track of how many iterations ALNS has performed. When the specified
number of iterations is reached, the stopping criterion returns true, and the search
is finished.

Not Accepted Count

A slightly more sophisticated stopping criterion is what we name not accepted count.
The not accepted count stopping criterion terminates ALNS when a given number
of iterations without having an accepted solution is reached. The counter resets to
zero every time a solution is accepted. The rationale behind this stopping criterion
is the belief that a local optimum is reached when all candidate solutions have been
rejected for a given number of iterations, and there is no point in continuing the
search.

6.1.6 Adaptive Weights and Operator Selection

ALNS selects an operator each iteration according to a probability distribution based
on the weights. The probability distribution is given by

P (O = o) =
wo∑N
i=1 wi

, (6.3)

where O is a random variable, wo is the weight for operator o and N is the number
of operators. The weight for the selected operator is updated at the end of each
iteration based on how well the operator performed. The weight update is given by

wo,t+1 = (1− α) · wot + α · rt, (6.4)

where wot and wo,t+1 are the weights for the selected operator o in iteration t before
and after the update, respectively. The reaction factor, α, controls how we weigh
the previous weight relative to the newly received reward, rt. The reward is based
on the performance of the operator, which Section 6.1.7 elaborates on. If α is set to
zero, the weights will not be updated at all, and if α is one we only care about the
most recently received reward. Section 2.5.4 briefly describes the learning rate used
for training an ANN, and the reaction factor in ALNS can be easily compared.

The weight updates and stochastic selection of operators make it so that at any given
point in time during ALNS, the probability of selecting well-performing operators is

58

CHAPTER 6. SOLUTION METHOD

higher than the probability of selecting operators that have performed worse. This
is with the belief that operators that have previously performed well will continue
to perform well. If not, their weights will decrease, and so will their probability of
being selected.

6.1.7 Reward Function

After an operator is selected and applied to a solution in ALNS, the new candidate
solution can either be rejected or accepted. Based on whether the solution was
accepted or not and how good the new solution is if accepted, we use the following
reward function to reward the performance of the selected operator:

r(xcurrent, a, x
′
current, xbest) =

5 if f(x′

current) < f(xbest)

3 if f(x′
current) < f(xcurrent)

1 if a = 1 ∧ x′
current ̸= xcurrent

0 otherwise

. (6.5)

xcurrent is the current solution before the selected operator is applied, f(xcurrent) is
the corresponding objective value, x′

current is the current solution after the selected
operator is applied, xbest is the best solution encountered thus far, and a = 1 and
a = 0 indicate that the candidate solution is accepted and rejected, respectively.
The reward is used to update the weight for the selected operator, as Section 6.1.6
describes.

The highest reward of five is rewarded if the new solution has a better objective value
than the best solution known at that iteration, which makes sense as the ultimate
goal for ALNS is to terminate with as good a solution as possible. The second highest
reward of three is rewarded if the new current solution has a better objective value
than the previous. Lastly, the reward function distinguishes between cases where
the candidate solution is accepted and rejected. If a solution x is accepted, but the
objective is worse than the previous solution, we still want to reward the operator
that resulted in x. Even though it is not a better solution, the fact that it is accepted
means that the search is progressing. The reward function will not give a reward
other than zero if the accepted solution is the same as the previous solution.

6.1.8 Feasibility

Since the optimal solution might not be reachable from the initial solution without
traversing infeasible neighbors, we allow ALNS to accept infeasible solutions when
searching. Restricting the traversal of the neighborhood to only the feasible region
could remove good potential paths toward better solutions. Therefore, we relax
some hard constraints, heavily penalize infeasible solutions and let ALNS traverse
the neighborhood as usual. This means that the acceptance criterion can accept
infeasible solutions. However, as they are heavily penalized, they are less likely to
be improving solutions and are thus less likely to be accepted, dependent on the

59

CHAPTER 6. SOLUTION METHOD

acceptance criterion. When a new best solution is found, it is ensured that it is
feasible.

Only some hard constraints are relaxed. This is due to implementation limitations
and what we consider appropriate. We do not, for example, allow an employee to
cover more than one unit of demand simultaneously, as this could prove challenging
to repair. We also keep constraints that enforce the correct value on auxiliary vari-
ables. The relaxed hard constraints are daily- and weekly rest rules, blocked hours,
and demand coverage; in other words, the rest- and demand constraints we outline in
Section 5.6. Violations of these constraints are counted and weighted by individual
violation weights. We set these weights an order of magnitude above other weights
to incentivize finding feasible solutions. Setting this weight is a tradeoff between
incentivizing exploration of the infeasible region and finding feasible solutions.

The new objective is given as

min z =
∑
e∈E

fe (6.6a)

+W FAFg (6.6b)

+
∑
t∈T

V T
t

∑
c∈C

(WD+δ+tc +WD−δ−tc) (6.6c)

+WDV νd +WRV νr +WOV νo +WBV νb, (6.6d)

where νd, νr, νo and νb denote the number of demand, daily- and weekly rest and
blocked hours violations with corresponding weights, respectively. The violation
variables are non-negative.

6.2 Neural Network Assisted Large Neighborhood

Search

This section describes a modification to ALNS where the adaptive weights are re-
moved. The operator selection is performed using an ANN which is pre-trained using
a version of the RL algorithm PPO. The network receives a feature vector repre-
senting the state and outputs a probability distribution over the operators. We call
this algorithm NNALNS. The reasoning is that the ANN can parameterize a better
selection strategy than the adaptive weights used in ALNS. In fact, a meta-study
by Turkeš et al. (2021) found that the adaptiveness of ALNS only gives a 0.14%
improvement over the non-adaptive version with a constant uniform distribution.

Firstly, Section 6.2.1 outlines the algorithmic framework for NNALNS. Following,
Section 6.2.2 describes the different features that constitute the feature vector used
as input for the ANN. Lastly, Section 6.2.3 describes how the ANN is trained and
provides details for the specific PPO algorithm used during training. See Section 2.5
for a brief walkthrough of RL.

60

CHAPTER 6. SOLUTION METHOD

6.2.1 Algorithmic Framework

Figure 6.6 illustrates how NNALNS works, and by comparing the figure to Figure 6.1
it should be clear the the differences between NNALNS and ALNS are minimal.
NNALNS is an extension of the LNS framework, where several sub-heuristics, or
operators, compete during the neighborhood search; that is also true for ALNS, and
the main difference lies in the adaptive weights of ALNS. ALNS updates weights for
the operators during a run of the algorithm and selects an operator in each iteration
according to the probability distribution given by the weights. On the other hand,
NNALNS uses a pre-trained ANN to output the probability distribution in each
iteration given a feature vector representing the state. That is, we can somewhat
loosely say that ALNS learns on the go, whereas NNALNS learns prior to a run.

Initial solution

Selection of operator
using Artificial Neural Network

Operator

New solution Acceptance
criterion

Stop?

No

Yes Finished

Figure 6.6: Algorithmic sketch of NNALNS.

Algorithm 9 provides the pseudocode for NNALNS. The input is an initial solution,
x0, which is found solving the MIP model described in Section 6.1.2, and a policy,
πθ, parameterized by the weights of an ANN, θ. The policy describes for any given
state during the search, s, the probability of selecting operator o as π(o|s,θ). In
Line 4 a feature vector representing the state is extracted, and in the following line
an operator is selected according to the probability distribution

P (O = o) = π(O = o|s,θ), (6.7)

where O is a random variable, and o is a particular operator. Following the operator
selection, the selected operator is applied to produce a candidate solution that is
accepted or rejected according to the acceptance criterion. This is no different
from ALNS, but there is no need to update the weights for the selected operator
based on the performance; the policy already represents a mapping from any given
state to the corresponding probability distribution over the operators. Selecting an
operator, finding a new candidate solution, and using the acceptance criterion to
accept or reject the candidate solution is repeated until the stopping criterion is
met. Section 6.1.5 describes different stopping criteria for ALNS and NNALNS.

61

CHAPTER 6. SOLUTION METHOD

Algorithm 9 NNALNS

Input: x0: initial solution, πθ: policy
Output: xbest: best solution found

1: xcurrent := x0

2: xbest := x0

3: while stopping criterion not met do
4: s := GetFeatureVector(xcurrent)
5: o := SelectOperator(πθ, s)
6: xcandidate := o(xcurrent)
7: if Accept(xcandidate, xcurrent) then
8: xcurrent := xcandidate

9: end if
10: if f(xcurrent) < f(xbest) then
11: xbest := xcurrent

12: end if
13: end while
14: return xbest

6.2.2 Feature Vector

We encode the state of the RRP as matrices of shift assignments and demand cover-
age. Introducing such a state encoding would result in a substantial input layer for
an ANN, which could increase the training required. Most importantly, features like
the raw schedule encoding would result in feature vectors of varying lengths between
instances. As this would exclude learning across instances, such a feature vector is
unsuitable. Therefore, we propose a feature vector consisting of problem-specific
and search-based attributes of constant size, intended to describe both the relevant
qualities of a current solution and the state of the search.

Search-Based Features

The first part of the feature vector consists of search-based features, as we classify in
Section 3.4.5. Such features describe the state of the search algorithm without intro-
ducing problem-specific concepts. These are appropriate for several reasons. First
of all, they are analogous to the information available to an ALNS. As NNALNS
can be considered a modification of ALNS, and these features have proven effective
for ALNS, they should be reasonable for NNALNS as well. Secondly, by defini-
tion, such features are more generalizable than problem-specific ones. While feature
ranges and distributions may vary considerably between problems or even instances,
they do not need to be tailored according to the problem definition and are thus
more general. Search-based features are far from the key to generalizability but
nevertheless good attributes for a feature vector.

The goal of search-based features is to facilitate high-level strategies regarding the
search procedure. Such strategies can be insights like detecting and handling local
optima, automatically evaluating the exploration/exploitation tradeoff, or assessing

62

CHAPTER 6. SOLUTION METHOD

Table 6.1: Search-based features.

Feature Description

reduced cost The difference in objective value compared to the previous solution

cost from min Difference in objective value compared to the currently best solution

min cost The currently best objective value

cost The current objective value

no improvement The number of iterations since last improvement of objective value

is legal Whether the current solution is feasible

index step The iteration number

was changed Whether the last operator changed the solution. 1 if true, 0 otherwise

unseen Whether the current solution has been encountered before, 1 if true,
0 otherwise

last action sign Whether the previous operator improved the solution, 1 if true, 0
otherwise

last action The previous operator applied, 1-hot encoded

ac status The status of the acceptance criterion. Threshold value for threshold
acceptance, temperature and cooling schedule for simulated anneal-
ing

the appropriate degree of change for a particular search state. Our selection of
search-based features is inspired by Kallestad (2021) and can be found in Table 6.1.

Many diverse selections of features could be justified, as their impact on the ANN’s
ability to learn search strategies is complex and composite. Therefore we suggest
some general qualities that one should be able to determine from the state intuitively
and choose features to cover these qualities:

• Total search state - how well the entire search process has fared thus far.

• The local search state - the current trajectory of the search and local optima.

• Minimize repeated or unnecessary operator choices.

The intent of the ANN is to learn such structures automatically, but considering
such areas could facilitate a suitable state representation. The majority of the
attributes are dedicated to the local search state, as reduced cost, cost from min,
cost, no improvement, is legal and last action sign all describe current changes and
attributes related to local optima. The total search state is described by min cost,
index step and ac status, as they convey how far along the search is and the current
best solution. Finally, was changed, unseen and last action are intended to stop the
ANN from repeatedly choosing operators without positive impact. Features where
maximum and minimum values are known are normalized. Where this is impossible,
we scale them according to problem size to achieve values between zero and one.

63

CHAPTER 6. SOLUTION METHOD

Problem-Specific Features

Table 6.2: Problem-specific features.

Feature Description

assigned ratio (4) Percentage of days each employee is assigned to a shift;
mean, std, max, min

uncovered demand ratio (1) Percentage of days that have uncovered demand

individual cost ratio (4) Individual employees’ fairness costs, compared to total
fairness cost; mean, std, max, min

weekly cost ratio (4) Individual weeks’ fairness costs, compared to total fair-
ness cost; mean, std, max, min

fairness aspect ratios (8) Ratio of different fairness aspects’ contribution to total
fairness cost

fairness ratio (1) Ratio of the total fairness cost compared to total objective
value

The other part of the feature vector consists of problem-specific features, which are
meant to provide the ANN with insight to develop lower-level strategies. While the
search-based features are intended to decide how the search should be conducted,
the problem-specific features are instead intended to determine how to best improve
a current solution. To achieve this, we present some requirements that we believe a
feature vector should describe:

• Solution structure

• Complexity - how difficult it is for the operators to satisfy different constraints
in the current solution

• Objective function relatability - features describing the current cost of the
different parts of the objective function.

Aside from these requirements, we introduce two restrictions on the problem-specific
features. The first is that we must ensure that the feature vector is of constant
length, and the second is that individual features are of the same scale regardless
of instance size. The first restriction disallows features akin to ”fairness cost per
employee” as the number of employees varies between instances. Instead, we use
the mean, maximum, minimum, and standard deviation of aspects like individual
fairness and weekly costs as features. The second restriction requires the features
to be ratios instead of accumulated values. Normalization is not possible for the
problem-specific features as the maximum and minimum values are not known. We
instead use ratios, as described in Table 6.2.

Table 6.2 describes the problem-specific features. As there is no way to repre-
sent individual shift assignments without breaking the first restriction mentioned

64

CHAPTER 6. SOLUTION METHOD

above, we use the assignment ratio to describe the schedule structure. uncov-
ered demand ratio, individual cost ratio and weekly cost ratio handle complexity, as
more of these costs indicate a difficulty in scheduling different parts of the problem.
The same features, together with the fairness aspect ratios and fairness ratio, also
cover the objective since they make up the different parts of the objective function.

6.2.3 Training

The premise for NNALNS to perform well is that the parametrization of the policy,
πθ, represents a good mapping from any state, s, to a probability distribution over
the operators. To accomplish this, the ANN that parameterizes the policy needs
to be trained. In this thesis, we use a version of PPO that uses the actor-critic
architecture to train the ANN. Section 2.5 provides the necessary foundation for RL
to understand this section.

Algorithm 10 describes how the ANN that parameterizes the policy is trained. The
input for the training algorithm is an environment, e, the number of weight updates
for the ANN, U , the number of epochs per weight update, N , and the number of
episodes between each update, E. The environment, in this case, is an abstract
object that keeps track of the state of the search. It keeps track of things such as
the current solution, the best solution, and the initial solution and can therefore be
viewed as ALNS without the weights. The RL agent learns by repeating the process
of selecting an operator, applying it to the environment, and perceiving the reward
and new state.

Line 1-4 initialize the weights for the actor-ANN and the critic-ANN. Following,
the training algorithm will perform E episodes before each update. An episode
is defined as a complete run of NNALNS until the stopping criterion is met. The
agent (i.e., actor and critic) interacts with the environment by applying an operator.
Algorithm 11 describes how the environment changes as a consequence of the agent’s
interaction. After E episodes, advantages are calculated as

Ât =
∞∑
l=0

(γλ)lδt+l, (6.8)

where δt = rt + γVϕold
(st+1) − Vϕold

(st), t is the iteration number within a single
episode, and rt is the perceived reward from choosing and applying an operator in
iteration t. Section 6.1.7 describes the reward function for ALNS, and the same is
used for training the policy for NNALNS to get a fair comparison. The discount
factor, γ, and exponential weight discount, λ, are numbers in the interval [0, 1]. δt is
assumed to be zero when t is greater than the length of the episode, and Vϕold

(st) is
the value estimate for state st from the value function parameterized by the critic-
ANN. Equation (6.8) corresponds to the generalized advantage estimate, which was
proposed by Schulman et al. (2015). Before updating the weights of the actor and
critic, the discounted cumulative rewards are also calculated according to

Rt =
∞∑
l=0

γlrt+l, (6.9)

65

CHAPTER 6. SOLUTION METHOD

where rt is assumed to be zero if t is greater than the length of the episode.

The advantages and discounted cumulative rewards are a part of the loss function
used to calculate gradients to update the weights in the actor-ANN and critic-ANN.
The loss function we use in this thesis is given by

L(θ,ϕ) =−min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât) (6.10a)

+ β(Vϕ(st)−Rt)
2 (6.10b)

− µH(πθ(st)), (6.10c)

where (6.10a) is the LCLIP loss for the actor which Section 2.5.5 describes, (6.10b)
is the mean squared error loss for the critic, and (6.10c) is an entropy bonus for
the actor. β and µ are used to scale the size of the critic’s loss and entropy bonus
relative to the LCLIP loss. The entropy bonus is a part of the loss function because
we want to incentivize the actor-ANN to output a more unpredictable probability
distribution; we want the agent to explore the consequences of choosing different
operators instead of converging too quickly to a local optimum.

After the agent has repeated the process of interacting with the environment for E
episodes and then updating the weights for N epochs U times, the training algorithm
terminates and returns the parameters of the actor-network and critic-network. The
parameters of the actor-network parameterize a policy, which can be used for the
NNALNS algorithm. Although we use the same reward function in Algorithm 10
and ALNS, it is critical to note that the ultimate goal in RL is to maximize the
cumulative reward. The consequence of this is that though the agent can learn how
to receive a higher cumulative reward than ALNS, this does not necessarily mean
that NNALNS performs better than ALNS in terms of objective value. When an
RL agent learns to achieve high returns in an unexpected way without achieving
the goal intended by the designer of the reward function, it is referred to as reward
hacking (Yuan et al., 2019).

66

CHAPTER 6. SOLUTION METHOD

Algorithm 10 Training

Input: e: environment, U : number of updates, E: episodes per update, N :
number of epochs

Output: θ: parameters of learned policy (actor), ϕ: parameters of learned value
function (critic)

1: Initialize the parameters for the actor ANN, θ
2: θold := θ
3: Initialize the parameters for the critic ANN, ϕ
4: ϕold := ϕ
5: for update := 1, 2, . . . , U do
6: T := 0
7: for episode := 1, 2, . . . , E do
8: s := Reset(e)
9: while episode is not finished do

10: Select operator o according to policy πθold

11: snew, r := Step(e, o)
12: Buffer(s, r, o)
13: s = snew
14: T := T + 1
15: end while
16: end for
17: Compute advantage estimates Â1, . . . , ÂT and discounted rewards R1, . . . , RT

18: Train actor-ANN (θ) and critic-ANN (ϕ) for N epochs
19: θold := θ
20: ϕold := ϕ
21: end for
22: return θ, ϕ

Algorithm 11 Step
Input: e: environment, o: operator
Output: snew: new state

1: xcurrent = GetCurrentSolution(e)
2: xcandidate := o(xcurrent)
3: acc := Accept(xcandidate, xcurrent)
4: if acc then
5: xcurrent := xcandidate

6: end if
7: if f(xcurrent) < f(xbest) then
8: xbest := xcurrent

9: end if
10: snew, r := UpdateState(e, xcurrent, xbest, acc)
11: return snew, r

67

CHAPTER 7. TEST INSTANCES AND PARAMETERS

Chapter 7

Test Instances and Parameters

In this chapter, we present the test instances and parameter decisions used in Chap-
ter 8. Firstly, Section 7.1 provides a discussion of the characteristics of the test
instances and their implications for NNALNS and ALNS. Following, Section 7.2
presents our choice of important parameter values.

7.1 Test Instances

We conduct the tests of NNALNS and ALNS on 13 problem instances. Approx-
imately half of them are real-life problem instances provided by Visma Resolve,
referred to as Visma instances. Parts of the problem definition of the RRP, for
example, competence requirements, are derived directly from the structure of the
instances in this dataset.

The other half of the test instances are derived from the publicly available NRP
benchmark dataset (Nurse Rostering Benchmark Instances, 2014). We refer to them
as the Benchmark instances. Many works within the NRP community use this
dataset to benchmark the performance of solution algorithms on NRPs (Brucker
et al., 2010; Asta et al., 2016; Smet, 2018). Since the instances are designed for a
particular NRP (Burke et al., 2008), we modify them to fit our problem definition
while maintaining the characteristics of the different instances. We include the
benchmark data to test ALNS and NNALNS on a broader range of instances to
conduct a sufficient number of tests. In addition, the benchmark instances are
sorted somewhat systematically regarding problem size, allowing us to assess the
algorithms’ performance on an increasing instance size.

Table 7.1 lists all the instances included in the computational study, along with
their key characteristics. We name instances after the dataset they stem from:
’B’ for Benchmark and ’V’ for Visma. The asterisk symbol (*) denotes instances
derived from altering other test instances, such as adding extra employees or days.
Furthermore, the naming convention includes the number of days and employees in
the instance, resulting in the format ’V/BX-dXX-eXX’.

68

CHAPTER 7. TEST INSTANCES AND PARAMETERS

Table 7.1: Characteristics of test instances.

Instance Days Employees Shift-types Demand intervals/day
B1-d14-e14 14 14 2 2
B2-d28-e16 28 16 2 2
B3-d28-e50 28 50 6 4
B4-d42-e45 42 45 6 10
B5-d56-e20 56 20 3 4
B6-d84-e22 84 22 3 4
B7-d182-e50 182 50 6 4
V1-d56-e9 56 9 31 24
V2-d70-e6 70 6 13 19
V3-d46-e28 46 28 30 17
V4-d84-e8 84 8 4 5
V5-d42-e15 42 15 15 20
V6-d98-e15* (V5) 98 15 15 20

Instance Size

Problem size can, to some degree, be assessed from the descriptive data. Here, size
refers to an approximate assessment of the number of variables and constraints in a
MIP model. The number of days and employees describes the length of the planning
horizon and the number of employees that can be assigned to a shift each day of this
period. Therefore, this is a reasonable estimation of the problem size. Another size
measure is the number of shift types, denoting the number of possible assignments
each day for each employee.

The problem instances provide a wide range of sizes, from two weeks to six months,
from eight to 100 employees, and from one to 30 shifts each day. The benchmark
data is, in these terms, more varied. Both datasets contain about the same number
of days on average, but the benchmark data contains, on average, more than double
the number of employees, although some outliers exacerbate this. However, the
Visma data contains considerably more shift-types.

Instance Complexity

On the other hand, complexity can be hard to assess from the descriptive data
alone. Several factors come into play when deciding how hard a problem instance
is to solve and are often more difficult to determine from statistics. An example
of such a factor is demand structure, where many aspects can increase complexity.
The legal deviation from ideal demand is an essential factor, and in most real-life
instances, the minimum and ideal coverage are identical. The magnitude of demand
requirements is also important for complexity, especially compared to the number
of employees. While not a perfect measure, the number of demand intervals can
indicate how difficult it is to cover demand. Note that this is not a description of
how much demand there is, but rather how demand varies throughout the day. In
this regard, the Visma data seems complex. Combining this with the fact that the

69

CHAPTER 7. TEST INSTANCES AND PARAMETERS

Visma data also contains more shift-types, the Visma instances appear much more
difficult to solve. Preliminary testing supports this hypothesis.

7.2 Parameters

This section outlines the most important parameters used during the computational
study and reasoning behind our parameter choices. Parameter configuration highly
affects the behavior of the system. However, the number of parameters concern-
ing both ALNS and NNALNS is large. Thus, the number of possible parameter
combinations quickly explodes in size. As our thesis is for the most part concerned
with the operator selection in the ALNS framework, we use the same parameters
for NNALNS and ALNS. Many of the parameters are decided based on preliminary
testing.

7.2.1 Problem Parameters

The problem parameters include the weighting of the various costs included in the
objective function of the problem, described in Section 5.3. These weights highly
affect the structure of the solutions produced by the algorithm. As we are comparing
operator selection strategies and not whether the solutions produced are satisfactory
in a real-world setting or not, we do not investigate the effect of applying different
cost weight configurations. Instead, the cost weights are set according to preliminary
studies of the RRP (Langfeldt et al., 2021). Simple preliminary tests show that these
are reasonable weights as they give a balanced cost distribution between the different
types of costs. A table of the cost weights is included in Table B.5 in Appendix B.

The violation weights described in Section 6.1.8, ensures traversal in the infeasible
region for ALNS and NNALNS. The weights need to be set to values that balance the
allowance of infeasible solutions but favor the feasible ones. We set these weights to
100. Observations made during preliminary testing showed that with these values,
both infeasible and feasible solutions were included in ALNS and NNALNS, with
the majority being feasible.

7.2.2 NNALNS and ALNS Parameters

NNALNS and ALNS can be configured in various ways as shown in Chapter 6. This
section provides the configurations of NNALNS and ALNS held constant during the
computational study.

Reaction Factor

We set a value of 0.3 for the reaction factor, α, used to update the weights of the
operators in ALNS. The rationale is that we believe this to be a reasonable weighting

70

CHAPTER 7. TEST INSTANCES AND PARAMETERS

between previous rewards and the immediate reward.

Operators

Section 6.1.3 outlines the different types of operators we develop for the RRP. Each
destroy operator can be paired with each repair operator and vary in size. We
employ destroy-repair pairs with fixed destruction sizes. In addition, we include
all of the hybrid operators presented in Section 6.1.3, with a pre-set size. In total,
this yields 27 operators. Tables B.3 and B.4 list the operators we use during the
computational study.

Kallestad (2021) conclude that heuristic selection using ANNs perform better with
an increased number of heuristics/operators compared to ALNS. However, prelimi-
nary testing indicates that this might not be the case for NNALNS when applied to
the RRP, using complex destroy-repair operators and hybrid operators. Thus, we
limit the number of operators to the ones presented in Appendix B.1.

Stopping Criterion

To be able to compare NNALNS with other operator selection strategies at the same
iteration stage, we use max iterations as the stopping criterion in our computational
study. We set the maximum number of iterations to 1000. Preliminary tests indicate
that the best objective value converges before 1000 iterations for many problem in-
stances. Therefore we limit ourselves to measuring performance after 1000 iterations
during the computational study.

Acceptance Criterion

We have explored different acceptance criteria during preliminary testing. Among
hill climbing, simulated annealing and threshold acceptence, threshold acceptance
showed the most promising results. Based on these observations, we use threshold
acceptance in the computational study. The linear decay of the threshold is set to
0.0025 so that only improving solutions are accepted after 400 iterations. As we
set the stopping criterion to 1000 iterations, the exploration phase of the search is
limited to 40% of the total number of iterations. By exploration phase, we mean
the iterations in which the acceptance criterion can accept non-improving solutions.
Table 7.2 summarizes the acceptance criterion parameters.

Table 7.2: Acceptance criterion parameters.

Acceptence Criterion
Type Threshold acceptance
Initial threshold (T0) 1
Linear decay (k) 0.0025

71

CHAPTER 7. TEST INSTANCES AND PARAMETERS

Reward Function

We use the reward function described in Section 6.1.7. Our rationale is that by
using the same reward scheme for NNALNS and ALNS, it is possible to compare
cumulative rewards obtained by them. This allows us to evaluate the policy learning
ability for NNALNS, as the objective of RL is to maximize accumulated rewards
without directly considering our ultimate goal of finding the best possible solutions
in terms of objective value from an OR point-of-view.

Features

Table 6.1 and Table 6.2 show all the features available for constructing a feature
vector representing the state in NNALNS. In the computational study, we use either
only the search-based features in Table 6.1 or both the search-based features and
problem-specific features in Table 6.2. By doing this, we can compare the perfor-
mance of NNALNS with and without the problem-specific features.

Network Architectures

We use two ANNs during training of the policy representing the operator selection
strategy in NNALNS: one for the actor and one for the critic. Both networks are
standard feedforward ANNs with three fully connected hidden layers. The actor-
network includes an additional softmax layer on the output, to ensure that the
output values of the network sums to one to obtain a valid probability distribution.
Table 7.3 summarizes the network architectures.

Table 7.3: Parameters for the neural networks in NNALNS.

Hidden Layers Activation Function
Actor 3 Tanh
Critic 3 Tanh

Training Parameters

The training parameters affect the learning abilities of the actor-network and critic-
network. Table 7.4 shows the most important parameters used to train the policy
for NNALNS. Preliminary testing shows that the average cumulative reward per
episode between each update converges after around 50 updates for several instances.
Accordingly, we limit the number of updates to 50. Furthermore, we run 20 episodes
between each update to ensure that enough data is captured. This results in a total
of 1000 episodes during training. The learning rates for the actor-network and
critic-network are challenging parameters to set, as the optimal learning rate is
situation-dependant. We decide the learning rates based on empirical knowledge.
As we observed that the average cumulative reward increases after each update on
all instances during preliminary testing, we regard the learning rates as satisfactory

72

CHAPTER 7. TEST INSTANCES AND PARAMETERS

for this thesis. Furthermore, we use the Adam optimizer for training the ANNs,
which has shown to be a high-performance optimizer for PPO (Schulman et al.,
2017). More technical parameters related to PPO can be found in Table B.6 of
Appendix B.

Table 7.4: Training parameters used during training of policies for NNALNS.

Training parameters
Total # of episodes 1000
Episodes before update 20
Number of updates 50
Learning rate actor 0.0003
Learning rate critic 0.001
Optimizer Adam
Epochs 50

Generalized Training Parameters

For generalized training on instance permutations, we necessarily train the policies
on more than one permutation. Unrelated parameters remain unchanged, but the
number of episodes is adjusted. In order to run a sufficient number of episodes
per instance, we increase the number of episodes before each update to 32, result-
ing in eight episodes per permutation per update, or 1600 in total. Preliminary
testing indicates that eight episodes per instance is a reasonable trade-off between
computational time and sample size.

For generalized training across problem instances, we select three instances per
dataset. This allows us to choose varied training instances while leaving multi-
ple test instances for evaluation. We run ten episodes per instance to maintain a
similar computational time.

Table 7.5 presents the changed parameters for generalized learning. Parentheses
indicate the parameters for training across problem instances.

Table 7.5: Training parameters used during generalized training of policies for
NNALNS.

Training parameters
Total # of episodes 1600 (1500)
Episodes before update 32 (30)
Number of updates 50
Number of instances 4 (3)
Episodes per instance 8 (10)
Learning rate actor 0.0003
Learning rate critic 0.001
Optimizer Adam
Epochs 50

73

CHAPTER 8. COMPUTATIONAL STUDY

Chapter 8

Computational Study

This chapter presents and discusses computational results from using ALNS and
NNALNS on the instances of the RRP which we describe in Section 7.1. Firstly,
Section 8.1 provides a overview of the hardware and software specifications for the
test environment, before Section 8.2 describes how the tests are performed and
motivates them based on the goals we set for this thesis in Chapter 1. Following,
Section 8.3 discusses the value of adding problem-specific features to the feature
vector used in NNALNS. Section 8.4 provides a comparison of ALNS and NNALNS,
before Section 8.5 discusses selection strategies learned for NNALNS and compares
them to the selection strategies resulting from ALNS. Finally, Section 8.6 evaluates
NNALNS on its ability to generalize across problem instances.

8.1 Test Environment

We perform all tests on the Department of Industrial Economics and Technology
Management’s high-performance cluster, Solstorm, with the software and hardware
specifications in Table 8.1 to ensure fair comparisons.

Table 8.1: Hardware and software specifications for the test environment.

CPU 4 x AMD Opteron 6274
Cores / Frequency 64 / 2.2GHz
RAM 128 GB
Operating System CentOS Linux 7
Python version 3.9.5
Gurobipy version 9.1.2
PyTorch version 1.10.2
MPIRE version 2.3.0

We have written all implementations in this thesis in the programming language
Python. Gurobi is a commercial optimization solver used to solve the MIP model
we use for finding initial solutions, as described in Section 6.1.2, and Gurobipy is

74

CHAPTER 8. COMPUTATIONAL STUDY

the Python interface for this. During the policy training for NNALNS multiple
episodes are run in parallel before each update, utilizing the available CPU cores.
The parallelization is implemented using the fast and user-friendly multiprocessing
library MPIRE. We have implemented and trained all of the ANNs using the Python
package PyTorch. Lastly, the problem instances are provided in Extensible Markup
Language (XML) before being parsed into Python objects for further use.

8.2 Experimental Setup

The four overarching goals for this thesis are the motivation behind all of the dif-
ferent experiments we perform in the computational study. We want to investigate
whether NNALNS can learn more intelligent operator selection strategies for the
RRP compared to ALNS, include an enriched state representation of an RRP solu-
tion for NNALNS, examine the generalizability of learned selection strategies across
different RRP instances, and develop operators tailored to the RRP targeting dif-
ferent properties of a solution.

For the results discussed in the computational study we train two policies for each
problem instance according to the training algorithm (Algorithm 10). This is be-
cause we want to have one policy trained with both search-based features and
problem-specific features and one policy trained only with the search-based features
for comparison.

After each update in Line 18 of Algorithm 10 we obtain a version of the previous
policy where the parameters have been adjusted according to the data from the
intermediate episodes. Although the hope is that the policy improves after each
update, this is not guaranteed. Therefore, each result presented from applying
NNALNS to an instance is affected by the policy that is chosen as input. When
we want to discuss the performance of NNALNS concerning the objective value, we
select the policy that, on average, gave the best objective value during training.
On the other hand, we select the last policy obtained from training when we want
to discuss performance in terms of cumulative reward. This is because preliminary
testing shows that the last policy, on average, accumulates the most rewards. In
contrast, the policy that performs best in terms of objective value needs to be
assessed individually for each instance and training configuration (i.e., using all
features or only the search-based features). Table 8.2 summarizes how we select
policies according to the subject of interest for each instance. For further detail on
policy selection, see Appendix C.5.

Table 8.2: How we select policies for NNALNS.

Subject Strategy
Objective value Choose the policy that, on average, gave the best objective value
Reward Choose the last policy

When we compare the performance of NNALNS and ALNS, we also test a version of
ALNS that does not adaptively update the weights after each iteration as a baseline.

75

CHAPTER 8. COMPUTATIONAL STUDY

This version of ALNS has a constant, uniform probability distribution over the
operators, and we call it Uniform Large Neighborhood Search (ULNS). Section 8.3
discusses the differences between using only the search-based features and using
all of the features to assess the value of including an enriched state representation
of an RRP solution. In the comparative study in Section 8.4, we do not want to
focus on the value of using the problem-specific features. Therefore, we perform
training two times on each instance: one time using only search-based features and
one including all features. We then, for each instance, select one policy for each of
the two configurations according to Table 8.2, test both policies, and present the
best result. The comparative study addresses whether NNALNS is able to learn
more intelligent operator selection strategies for the RRP compared to ALNS or
not. Furthermore, Section 8.5 takes a closer look at the differences between the
operator selection strategies of NNALNS and ALNS.

Once the policies are selected, we test ULNS, ALNS and NNALNS with and without
problem-specific features 20 times on each test instance to account for the stochas-
ticity of the algorithms. The results we present in the computational study are the
average of the 20 runs, and each run consists of 1000 iterations.

Generalized Learning

Section 8.6 evaluates NNALNS on its ability to generalize across instances. Sec-
tion 8.6.1 discusses performance when NNALNS is trained on one set of instances,
and then tested on another. This will be referred to as cross-instance learning.
Section 8.6.2 evaluates the performance of NNALNS when trained on multiple mod-
ifications of one instance, and tested on the original instance. We refer to this as its
adaptability. We test adaptability as it might be challenging to generalize strategies
across significantly different instances, but more plausible to learn such strategies
for a set of modified instances, which models realistic changes between planning
periods. For these tests, we also run new tests of ULNS and ALNS as the initial
solutions might be different compared to the previous tests. Generalizability is only
tested within the datasets, as we expect a substantial difference between the two
datasets. In other words, a policy trained on Visma instances will not be used to
solve benchmark instances and vice versa.

For cross-instance testing, we divide the instances into training and test sets, see
Table 8.3. This split is arbitrary but intends to represent a diverse selection of
instances in each set. We run two sessions of training for each of the training sets,
one with and one without problem-specific features, and select the best policies for
the objective function, as in Table 8.2. We then test the policies on the test sets,
and select the best policy for each dataset.

Table 8.3: Training and testing datasets.

Set Visma Benchmark
Train V2, V4, V6 B1, B2, B3, B4
Test V1, V3, V5 B5, B6, B7

76

CHAPTER 8. COMPUTATIONAL STUDY

To measure adaptability, we implement an algorithm to permutate instances. This
algorithm can add employees and days to an instance or change the demand struc-
ture. The employees or days added are copies of random existing ones, while we
change the demand structure by swapping demand between days. Table 8.4 shows
the permutations used in our experiments. Each instance is altered to four different
training instances, and the trained policies are tested on the original instance to
run tests comparative with previous ones. Section 8.6.1 only considers the original
Visma dataset. This is because we regard adaptability to be most interesting to
examine in the case of real-world instances.

Table 8.4: Alterations of original instances.

Variation Added employees Added days Changed days
1 4 7 0
2 0 0 7
3 2 0 7
4 2 7 7

8.3 Value of Problem-Specific Features

In this section, we present and discuss the differences between using NNALNS
with policies trained with only search-based features and policies trained with both
search-based features and problem-specific features on the test instances. Firstly, Sec-
tion 8.3.1 looks at the differences in terms of objective value. Following, Section 8.3.2
discusses the differences in terms of cumulative reward. We refer to NNALNS with-
out the problem-specific features as ’NNALNS w/o all features’ and NNALNS with
all features as ’NNALNS w/ all features’ in the figures and tables.

77

CHAPTER 8. COMPUTATIONAL STUDY

8.3.1 Objective Value

Table 8.5: Summary of objective value improvement of NNALNS with and without
problem-specific features over ULNS after 1000 iterations on all test instances, av-
eraged over 20 runs. The best performing algorithm is emphasized in bold text.

ULNS NNALNS w/o all feat. NNALNS w/all feat.
Instance Obj. val Impr.(%) Obj. val. Impr.(%) Obj. val.
B1-d14-e14 -85.948 13.94 -97.930 0.25 -86.164
B2-d28-e16 -72.714 45.08 -105.494 -35.86 -46.642
B3-d28-e50 11.947 799.17 -83.530 521.06 -50.304
B4-d42-e45 1351.447 15.60 1140.622 12.27 1185.646
B5-d56-e20 321.291 57.600 136.238 39.55 194.231
B6-d84-e22 423.651 105.07 -21.497 91.11 37.655
B7-d182-e50 2052.894 62.64 766.906 58.14 859.305
V1-d56-e9 996.674 13.57 861.453 12.26 874.508
V2-d70-e6 -244.357 4.57 -255.526 -0.93 -242.076
V3-d46-e28 -244.114 86.52 -455.322 83.57 -448.127
V4-d84-e8 787.358 10.61 703.825 9.83 709.932
V5-d42-e15 1015.204 23.26 779.038 18.88 823.520
V6-d98-e15 2619.869 17.14 2170.797 28.53 1872.520

Table 8.5 summarizes the results from using NNALNS with and without problem-
specific features on all test instances, only considering the objective value improve-
ment over ULNS. Figure 8.1 and Figure 8.2 show bar charts of objective value im-
provement over ULNS on benchmark instances and Visma instances, respectively.
The results show that NNALNS performs better with only the search-based features
on all test instances except V6-d98-e15. This might be surprising, as one would ex-
pect that a policy with problem-specific features has more information about the
state. However, it is important to note that the policies are trained using RL; the
ultimate goal in RL is to maximize the expected cumulative reward. Hence, a richer
state representation may produce a better policy in terms of cumulative reward but
without a gain in objective value. In fact, the enriched state representation may
allow the RL agent to exploit structures of an instance to obtain more rewards at
the expense of our ultimate goal to obtain the best possible objective value from
an OR point-of-view. Another possible explanation is simply that more features
require more time in training. This might be because the ANN needs more data to
recognize the important features correctly, and an insufficient amount of data might
make the ANN favor features that do not contribute much. Section 8.3.2 explores
these possibilities further by looking at the cumulative rewards.

78

CHAPTER 8. COMPUTATIONAL STUDY

B1-d14-e14 B2-d28-e16 B3-d28-e50 B4-d42-e45 B5-d56-e20 B6-d54-e22 B7-d182-e50
Instance

0

200

400

600

800
Im

pr
ov

em
en

t o
ve

r U
LN

S
(%

)

0.25

-35.86

521.06

12.27
39.55

91.11
58.14

13.94
45.08

799.17

15.6
57.6

105.07
62.64

Algorithm
NNALNS w/ all features
NNALNS w/o all features

Figure 8.1: Bar chart of objective value improvement for NNALNS with and without
problem-specific features over ULNS on benchmark instances after 1000 iterations,
averaged over 20 runs.

79

CHAPTER 8. COMPUTATIONAL STUDY

V1-d56-e9 V2-d70-e6 V3-d46-e28 V4-d84-e8 V5-d42-e15 V6-d98-e15
Instance

0

20

40

60

80

Im
pr

ov
em

en
t o

ve
r U

LN
S

(%
)

12.26

-0.93

83.57

9.83

18.88

28.53

13.57

4.57

86.52

10.61

23.26

17.14

Algorithm
NNALNS w/ all features
NNALNS w/o all features

Figure 8.2: Bar chart of objective value improvement for NNALNS with and with-
out problem-specific features over ULNS on Visma instances after 1000 iterations,
averaged over 20 runs.

8.3.2 Reward

Table 8.6: Improvement of cumulative reward over ALNS for NNALNS with and
without problem-specific features after 1000 iterations, averaged over 20 runs. The
best performing algorithm is emphasized in bold text.

Cum. reward Improvement over ALNS (%)
Instance ALNS NNALNS w/o all feat. NNALNS w/all feat.
B1-d14-e14 238.85 210.86 207.14
B2-d28-e16 493.60 74.04 81.22
B3-d28-e50 454.15 103.77 112.56
B4-d42-e45 673.40 33.64 41.17
B5-d56-e20 622.60 41.33 46.05
B6-d84-e22 733.55 28.50 28.57
B7-d182-e50 869.60 43.90 42.98
V1-d56-e9 981.70 28.00 28.08
V2-d70-e6 585.50 77.33 66.40
V3-d46-e28 900.15 13.99 36.32
V4-d84-e8 788.95 22.82 22.83
V5-d42-e15 936.35 16.02 23.80
V6-d98-e15 1027.15 16.94 22.64

80

CHAPTER 8. COMPUTATIONAL STUDY

Table 8.6 shows the accumulated reward of ALNS and NNALNS with and with-
out problem-specific features. Recall that rewards are given based on the same
reward function per iteration for ALNS and NNALNS. The results show that for all
instances except B1-d14-e14, B7-d182-e50 and V2-d70-e60, NNALNS with problem-
specific features performs better in terms of cumulative reward. Furthermore, both
NNALNS with and without problem-specific features obtain larger cumulative re-
wards on all instances. This implies that the training scheme in Algorithm 10 is
successful from an RL point-of-view; by using RL, NNALNS is able to obtain more
rewards than ALNS.

In Section 8.3.1, we observe that NNALNS without problem-specific features out-
performs NNALNS with problem-specific features on almost all test instances in
terms of objective value. However, the situation is quite different when looking at
the cumulative reward. This observation points toward reward hacking; the addition
of problem-specific features allows the policy to exploit structures of an instance to
obtain more rewards at the expense of objective value. This explanation is more
plausible than the explanation that more features require more time in training
because we see that NNALNS with all features outperforms NNALNS with only
search-based features regarding rewards. In light of this, the reward function itself
is an interesting subject to explore for future research. A different reward function
might obliviate the problem with reward hacking while using the enriched state rep-
resentation as an advantage. Nevertheless, longer training times with all features is
also an interesting direction to explore for future research.

Figure 8.3 shows plots of cumulative reward by using NNALNS with and without
problem-specific features and ALNS on B2-d28-e16 and V5-d42-e15. An observation
is that the cumulative reward seems to converge around 400 iterations. This makes
sense, as the threshold in the acceptance criterion is zero at iteration 400. When the
threshold is zero, the acceptance criterion accepts only improving solutions, which
means that it is not possible to receive non-zero rewards unless the candidate solution
is an improvement in objective value over the current solution. See Appendix C.2.2
for the cumulative reward plots for all test instances.

81

CHAPTER 8. COMPUTATIONAL STUDY

0 200 400 600 800 1000
Iteration

0

200

400

600

800
R

ew
ar

d

Algorithm
NNALNS w/ all features
NNALNS w/o all features
ALNS

(a) B2-d28-e16

0 200 400 600 800 1000
Iteration

0

200

400

600

800

1000

1200

R
ew

ar
d

Algorithm
NNALNS w/ all features
NNALNS w/o all features
ALNS

(b) V5-d42-e15

Figure 8.3: Average cumulative reward over 20 runs with a 95% confidence interval
for two test instances using NNALNS with and without problem-specific features
and ALNS.

8.4 Comparative Study

In the comparative study, we want to compare the performance of NNALNS and
ALNS on different instances of the RRP. We use ULNS as a baseline and measure
the relative improvement for ALNS and NNALNS after 1000 iterations. By doing
this, we can gain insight into the value of having an adaptive strategy that changes
throughout the search. Although NNALNS is not adaptive in the sense that the
strategy, or policy, changes throughout the search, it is adaptive in the sense that
the probability distribution over the operators is dependent on the state of the search
and current solution.

82

CHAPTER 8. COMPUTATIONAL STUDY

0 200 400 600 800 1000
Iteration

1000

2000

3000

4000

5000

6000

7000
O

bj
ec

tiv
e

Va
lu

e
Algorithm

NNALNS
ALNS
ULNS

(a) B4-d42-e45

0 200 400 600 800 1000
Iteration

0

500

1000

1500

2000

2500

3000

3500

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS
ALNS
ULNS

(b) B5-d56-e20

0 200 400 600 800 1000
Iteration

0

1000

2000

3000

4000

5000

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS
ALNS
ULNS

(c) B6-d84-e22

0 200 400 600 800 1000
Iteration

0

5000

10000

15000

20000

25000

30000

35000

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS
ALNS
ULNS

(d) B7-d182-e5

Figure 8.4: Average best objective value over 20 runs with a 95% confidence interval
for four benchmark instances using NNALNS, ALNS and ULNS. The problem size
increases from a) to d).

Figure 8.4 shows the evolution of the best objective value for NNALNS, ALNS and
ULNS for 1000 iterations on a subset of the benchmark instances. We observe that
the curves representing the best objective values during the search are downwards
sloping for all algorithms. The fact that even ULNS, with a constant, uniform
probability distribution over the operators, can improve the objective value in this
way indicates that the operators we have developed can successfully improve the
objective value by targeting different properties of an RRP solution.

The benchmark instances are designed to have increased complexity and an increased
problem size with growing instance numbers. Thus, Figure 8.4 indicates that the
relative performance of NNALNS over ALNS and ULNS tends to increases as the
complexity and problem size increases, although the improvement of B7-d182-e5
is less than B6-d84-e22. It is hard to point out any similar pattern for the Visma
instances, as the problem size and complexity are hard to assess for a Visma instance.
To capture the spread, skewness, and variation of the distributions from the results
based on 20 runs, Figure 8.5 shows box plots of the best objective value after 1000
iterations. We see that the boxes representing the interquartile ranges for NNALNS
are below the boxes for ULNS and ALNS, which means that there is a significant

83

CHAPTER 8. COMPUTATIONAL STUDY

difference. All of the plots from the comparative study are present in Appendix C.1.

ULNS ALNS NNALNS
Algorithm

1000

1100

1200

1300

1400

1500

1600

Be
st

 O
bj

ec
tiv

e

(a) B4-d42-e45

ULNS ALNS NNALNS
Algorithm

0

100

200

300

400

500

Be
st

 O
bj

ec
tiv

e

(b) B5-d56-e20

ULNS ALNS NNALNS
Algorithm

100

0

100

200

300

400

500

600

Be
st

 O
bj

ec
tiv

e

(c) B6-d84-e22

ULNS ALNS NNALNS
Algorithm

500

750

1000

1250

1500

1750

2000

2250

2500

Be
st

 O
bj

ec
tiv

e

(d) B7-d182-e50

Figure 8.5: Box plot of best objective value for four benchmark instances after 1000
iterations of NNALNS, ALNS and ULNS over 20 runs. The problem size increases
from a) to d).

Table 8.7 summarizes the results from the comparative study. On all instances, both
NNALNS and ALNS perform better in terms of objective value. This indicates that
it is, in fact, beneficial to have a probability distribution over the operators that
varies throughout the search. Furthermore, NNALNS outperforms ALNS on all of
the test instances except for V2-d70-e6. This suggests that we can learn better
selection strategies using RL than the selection strategies arising from the adaptive
weight scheme in ALNS.

84

CHAPTER 8. COMPUTATIONAL STUDY

Table 8.7: Summary of results from the comparative study. The objective values
and improvements are after 1000 iterations, averaged over 20 tests, and the best
performing algorithm is emphasized in bold text.

ULNS ALNS NNALNS
Instance Obj. val Impr.(%) Obj. val. Impr.(%) Obj. val.
B1-d14-e14 -85.948 11.58 -95.900 13.94 -97.930
B2-d28-e16 -72.714 32.15 -96.094 45.08 -105.494
B3-d28-e50 11.947 533.59 -51.801 799.17 -83.530
B4-d42-e45 1351.447 4.94 1284.734 15.60 1140.622
B5-d56-e20 321.291 27.28 233.650 57.60 136.238
B6-d84-e22 423.651 64.25 151.467 105.07 -21.497
B7-d182-e50 2052.894 35.81 1317.684 62.64 766.906
V1-d56-e9 996.674 10.42 892.856 13.57 861.453
V2-d70-e6 -244.357 10.18 -269.229 4.57 -255.526
V3-d46-e28 -244.114 83.60 -448.195 86.52 -455.322
V4-d84-e8 787.358 7.31 729.753 10.61 703.825
V5-d42-e15 1015.204 18.43 828.073 23.26 779.038
V6-d98-e15 2619.869 17.85 2152.315 28.53 1872.520

8.5 Selection Strategies

In this section, we take a closer look at the operator selection policies of NNALNS
and how they compare to ALNS in terms of operator choices at different iteration
stages. The goal is to provide insight into similarities and differences between ALNS
and NNALNS in terms of selection strategies.

Figure 8.6 shows how operators are selected for each iteration on problem V5-d42-
e15. It is a moving average of the number of times each operator is chosen. The
figure clearly illustrates the key difference between ALNS and NNALNS. At the early
iteration stages, ALNS selects operators based on a uniform probability distribution
and gradually learns preferred operators based on the online feedback obtained dur-
ing the search. NNALNS on the other hand, exploits information acquired during
training already from the first iteration.

We observe that both ALNS and NNALNS tend to favor the same operators, which
indicates that NNALNS manages to capture generally high-performing operators on
the problem instance. This trend is present in the majority of the test instances.
However, NNALNS seems to choose these operators more frequently than ALNS;
notice the differences in values on the y-axis. Another interesting observation is that
the plots show a correlation between the selection strategies and the iteration stage
for both methods. Particularly, we see a shift in selection strategy after 400 iterations
when the acceptance criterion only accepts improving solutions. Additional operator
development plots are found in Appendix C.4

85

CHAPTER 8. COMPUTATIONAL STUDY

0 200 400 600 800 1000
Iteration

0.00

0.02

0.04

0.06

0.08

0.10

0.12
M

ov
in

g
av

er
ag

e
of

 o
pe

ra
to

r s
el

ec
tio

n
co

un
t

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(a) ALNS

0 200 400 600 800 1000
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
ov

in
g

av
er

ag
e

of
 o

pe
ra

to
r s

el
ec

tio
n

co
un

t

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(b) NNALNS

Figure 8.6: Moving average of operator selection count for ALNS and NNALNS for
V5-d42-e15. Notice the differences between the two plots in values on the y-axis.

86

CHAPTER 8. COMPUTATIONAL STUDY

Figure 8.7 and Figure 8.8 show the total number of times each operator was selected
for all instances. See Table B.3 and Table B.4 for the mapping between operator
number and name. We observe that for the benchmark instances, NNALNS tends
to favor the large destroy-repair operators like operators 1 and 5. In contrast, for
the Visma instances, the hybrid operators like operators 24 and 23 are selected
more frequently. These observations indicate structural differences between the two
datasets that induce different optimal selection policies. The differences can impede
generalized learning between the two datasets.

Figure 8.7: Total operator selection count for B1-B7. The three most frequently
chosen operators are labeled in the figure.

87

CHAPTER 8. COMPUTATIONAL STUDY

Figure 8.8: Total operator selection count for V1-V6. The three most frequently
chosen operators are labeled in the figure.

8.6 Generalized Learning

The value of using a pre-trained operator selection policy as in NNALNS relies on its
reusability across different variations of the problem. In this section, we investigate
the generalizability of learned selection policies. Section 8.6.1 explores NNALNS’
ability to learn selection policies between separate instances, whilst Section 8.6.2
measures its adaptability to small changes of the problem instances.

8.6.1 Cross-Instance Learning

A desirable property for NNALNS is to learn policies that are general across in-
stances. To measure this property, we divide the problem instances into a training
and test set as we explain in Section 8.2.

Table 8.8 summarizes the results when applying operator policies obtained from
the training set on the test set. For all the benchmark instances in the test set,
we observe that NNALNS outperforms ALNS regarding objective value, while for
the Visma instances, this is not the case. This discrepancy suggests that although
the benchmark instances vary more in size than the Visma instances, they are still
more homogeneous. This might be due to the fact that the benchmark instances are
created in a more standardized manner. The results indicate that a single optimal
selection policy is hard to capture for real-world instances. Nevertheless, NNALNS
still performs better than ULNS on all instances, implying that it is possible to
attain policies applicable to unseen real-world instances. However, more refined
parameter tuning might be needed, which is a topic for further research.

88

CHAPTER 8. COMPUTATIONAL STUDY

Table 8.8: Performance of NNALNS on test instance, when trained on train in-
stances.

ULNS ALNS NNALNS
Instance Obj. val Impr.(%) Obj. val Impr.(%) Obj. val
B5-d56-e20 318.221 25.40 237.388 43.08 181.139
B6-d84-e22 370.949 50.95 181.940 69.06 114.788
B7-d182-e50 2097.666 36.22 1337.945 43.96 1175.621
V1-d56-e9 1017.669 13.66 878.639 12.48 890.610
V3-d46-e28 -246.209 83.12 -450.864 75.15 -431.239
V5-d42-e15 968.22 12.87 843.631 12.69 845.394

8.6.2 Adaptability

As we see in Section 8.6.1, NNALNS struggles to learn a common selection policy
for the real-world instances provided by Visma Resolve, when compared to ALNS.
We now look at the effect of training NNALNS on small permutations of the same
instance to measure its robustness to smaller changes to the instances. Such mod-
ifications reflect real-world cases where, for example, a new employee is hired or
there are sudden changes to demand during or between scheduling periods. We
limit this test to the Visma instances, as cross-instance learning was possible for the
benchmark dataset. Furthermore, we regard adaptability to be most interesting to
examine in the case of real-world instances.

Table 8.9: The performance of NNALNS on V1-V5 when trained on smaller modi-
fications of the same problem instance.

ULNS ALNS NNALNS
Instance Obj. val Impr.(%) Obj. val Impr.(%) Obj. val
V1-d56-e9 966.201 4.94 918.608 15.96 812.008
V2-d70-e6 -234.051 14.08 -266.996 6.274 -248.735
V3-d46-e28 -247.351 80.11 -445.503 99.71 -493.972
V4-d84-e8 762.968 3.02 739.937 5.51 720.968
V5-d42-e15 962.171 11.96 847.072 12.85 838.569

Table 8.9 shows the performance of NNALNS when the policy is trained on modifica-
tions of the Visma instances. In this experiment, NNALNS outperforms ULNS and
ALNS on all problem instances except V2-d70-e6, indicating that the policy trained
on modifications of the problem is reusable on the original problem instance. It
is not surprising that the result for adaptability is not favorable for V2-d70-e6, as
NNALNS does not outperform ALNS on this instance in the comparative study.

In a real-world use case, these results points in favor of using a pre-trained operator
selection policy. The RRP for a particular customer of Visma Resolve is often
similar in structure between scheduling periods. By storing a pre-trained policy for
a particular customer, information acquired from previous periods can be reused for

89

CHAPTER 8. COMPUTATIONAL STUDY

a new scheduling period to obtain lower objective values without having to train a
new policy.

8.7 Limitations

There are some limitations to how we conducted this computational study. First
of all, there is considerable stochasticity in our solution method. Thus, the result
of training sessions can vary and yield different policies. However, we have only
trained NNALNS two times per instance or set of instances, once with and without
problem-specific features. We performed 20 tests per policy, which could have been
increased if not for limited computational capacity.

Another limitation is that the policy selection, as described in Section 8.2, is done
through a somewhat subjective process. Due to the stochasticity during training,
we do an evaluation of policies that have proved more effective than simply selecting
the final one. Such policy selection can present an issue of consistency, as it requires
insight into the algorithm and is inherently subjective. Furthermore, there might be
superior policies that we have not tested. Developing a more robust policy selection
method could be in order, both for consistency and better results.

Additionally, time is an aspect not considered in this computational study. The goal
of this chapter is to evaluate the performance of NNALNS, and thus the potential of
such a solution method. Training times are therefore not relevant for the discussion.
Furthermore, the results in Section 8.6 indicate that one can use pre-trained policies
on new problem instances, which lessens the cost of training. Solution times are
another matter, but as the time to obtain an output from the ANN in NNALNS
is negligible, the solution times of NNALNS and ALNS are equivalent. Potential
differences in time are rather due to operator selection.

Finally, there is a large number of hyperparameters, particularly related to the RL
training algorithm, which we have not tuned rigorously. We consider such tuning
out-of-scope due to time restrictions. More appropriate hyperparameter values could
yield better results, and extensive hyperparameter testing would provide further
insight into the solution method.

90

CHAPTER 9. CONCLUDING REMARKS AND FUTURE RESEARCH

Chapter 9

Concluding Remarks and Future
Research

We have set four overarching goals for this thesis; we want to investigate whether
NNALNS can learn more intelligent operator selection strategies for the RRP com-
pared to ALNS, include an enriched state representation of an RRP solution for
NNALNS, examine the generalizability of learned selection strategies across differ-
ent RRP instances, and develop operators tailored to the RRP targeting different
properties of a solution.

Section 9.1 concludes the most important results and main contributions of this
master’s thesis. Following, Section 9.2 discusses interesting directions for future
research.

9.1 Concluding Remarks

ML is a field with many recent advances that is currently of great interest. Visma
Resolve has expressed interest in integrating ML methods in traditional OR solution
methods to use for their PRP. We name this specific PRP the RRP. In this the-
sis, we have presented NNALNS, which is a modification of ALNS that integrates
ML by using an ANN that parameterizes the operator selection policy. We have
implemented many operators that target different aspects of an RRP solution. We
train the ANN using a training algorithm from the state-of-the-art family of RL
algorithms, PPO. The ANN uses a feature vector representing the state as input
to output a probability distribution over the operators, and we have explored an
enriched state representation that includes both search-based and problem-specific
features in the feature vector.

The results of the computational study show that the operators we include success-
fully improve the objective value from an initial solution. In fact, even a version of
ALNS with a constant, uniform probability distribution over the operators, namely
ULNS, can significantly improve the objective value. Furthermore, the results show
that ALNS and NNALNS, with varying probability distributions over the operators

91

CHAPTER 9. CONCLUDING REMARKS AND FUTURE RESEARCH

depending on the iteration stage, can take this improvement even further.

NNALNS outperforms ALNS on all instances but one in terms of objective value
when the policy is trained on one instance and tested on the same. We also see
from the results that there is a difference between the operator selection strategies of
NNALNS and ALNS. However, they are similar in the sense that the most frequently
selected operators for NNALNS are often the most selected operators for ALNS.
Both of these observations indicate that NNALNS is able to learn better operator
selection strategies than those that arise from ALNS.

In addition, we have looked at the performance of NNALNS in terms of generaliz-
ability. The results vary when we train the policy on a subset of the instances and
test on a different subset, which we refer to as cross-instance learning. The results
suggest that NNALNS with cross-instance policies can outperform ALNS when the
training and test sets consist of benchmark instances. However, the results do not
show that such policies can be used successfully with NNALNS on the real-world
instances provided by Visma Resolve.

We have also looked at generalizability in terms of adaptability. Adaptability is
when the policy is trained on several permutations of an RRP instance and tested
on the original. The permutations represent realistic changes to an RRP instance
for a particular organization from one scheduling period to the next. The results
for the real-world Visma instances are promising for adaptability; on all instances
but one, NNALNS outperforms ALNS. For a real-world use case, the results point
in favor of using a pre-trained operator selection policy. The RRP for a particular
customer of Visma Resolve is often similar in structure between scheduling periods.
By storing a pre-trained policy for a particular customer, information acquired from
previous periods can be reused for a new scheduling period to obtain lower objective
values without training a new policy.

The results of the computational study show that NNALNS with a policy that uses
only search-based features outperforms NNALNS with a policy that uses search-
based and problem-specific features in terms of objective value on most problem
instances. On the contrary, NNALNS with all features outperforms NNALNS with
only search-based features in terms of cumulative reward on most instances. This
points toward reward hacking; the addition of problem-specific features allows the
policy to exploit structures of an instance to obtain more rewards at the expense of
objective value. Another possible explanation is simply that more features require
more time in training.

In conclusion, the results show that NNALNS is a promising solution approach to
the RRP. Especially, the results regarding adaptivity on the Visma instances have
significant implications for real-world use cases. Using pre-trained networks, an RL
agent can learn to exploit the structures for a particular client of Visma Resolve,
thus performing well on reasonable changes to the problem.

92

CHAPTER 9. CONCLUDING REMARKS AND FUTURE RESEARCH

9.2 Future Research

One important goal of future research would be to address the potential reward
hacking described in Section 8.3.2. Applying a different reward function could help
close the gap between the reward- and objective functions and align the training
with the problem definition, thus improving the performance of NNALNS. It could
also allow NNALNS to benefit from an enriched state representation, as a problem-
specific feature vector has shown to yield larger rewards. Ideas to explore are a
more sparse reward scheme or further integrating the objective function into the
reward function. Section 8.3.1 and Section 8.3.2 also discuss that more time in
training might be required when we use both the search-based features and problem-
specific features. Therefore, this should also be a topic for future research as it
could potentially increase the performance of NNALNS with the enriched state
representation.

Future research into different unexplored aspects of the solution method could also
improve its performance. Rigorous hyperparameter tuning could yield more effective
values where we have opted to use standard ones. Another possibility for improve-
ment would be to test different acceptance criteria, which may guide the search
more advantageously than those tested. Similarly, the problem-specific features and
operators have remained the same throughout testing, and more rigorous testing of
other selections could yield choices that would improve performance. A final way
to improve NNALNS could be to create an algorithm for selecting policies. Such an
algorithm could return better policies than doing this subjectively and potentially
stop the training when a certain stopping criterion is met to save time.

Finally, one could explore other ways to integrate RL into ALNS. A possible alter-
ation of NNALNS would be to combine the offline learning with the online adapt-
ability of ALNS by scaling the probability distribution from the ANN according to
the adaptive weights in ALNS. Another application area could be the acceptance
criterion, where an ANN could parameterize the acceptance criterion instead of the
operator selection strategy.

93

BIBLIOGRAPHY

Bibliography

Abobaker, R. A., Ayob, M. and Hadwan, M. (2011), Greedy constructive heuris-
tic and local search algorithm for solving nurse rostering problems, in ‘2011 3rd
Conference on Data Mining and Optimization (DMO)’, IEEE, pp. 194–198.

Aickelin, U. and Dowsland, K. A. (2004), ‘An indirect genetic algorithm for a nurse-
scheduling problem’, Computers & operations research 31(5), 761–778.

Alvarez, A. M., Louveaux, Q. and Wehenkel, L. (2014), A supervised machine learn-
ing approach to variable branching in branch-and-bound, in ‘In ecml’, Citeseer.

Anwar, K., Awadallah, M. A., Khader, A. T. and Al-betar, M. A. (2014), Hyper-
heuristic approach for solving nurse rostering problem, in ‘2014 IEEE Symposium
on Computational Intelligence in Ensemble Learning (CIEL)’, pp. 1–6.

Arulkumaran, K., Deisenroth, M. P., Brundage, M. and Bharath, A. A. (2017),
‘Deep reinforcement learning: A brief survey’, IEEE Signal Processing Magazine
34(6), 26–38.

Asta, S., Özcan, E. and Curtois, T. (2016), ‘A tensor based hyper-heuristic for nurse
rostering’, Knowledge-based systems 98, 185–199.

Bai, R., Burke, E. K., Kendall, G., Li, J. and McCollum, B. (2010), ‘A hybrid
evolutionary approach to the nurse rostering problem’, IEEE Transactions on
Evolutionary Computation 14(4), 580–590.

Balcan, M.-F., Dick, T., Sandholm, T. and Vitercik, E. (2018), Learning to branch,
in J. Dy and A. Krause, eds, ‘Proceedings of the 35th International Conference on
Machine Learning’, Vol. 80 of Proceedings of Machine Learning Research, PMLR,
pp. 344–353.

Bard, J. F. and Purnomo, H. W. (2005), ‘Preference scheduling for nurses using
column generation’, European Journal of Operational Research 164(2), 510–534.

Beckmann, F. R. and Klyve, K. K. (2016), Optimisation-based nurse scheduling for
real-life instances, Master’s thesis, NTNU.

Beddoe, G., Petrovic, S. and Li, J. (2009), ‘A hybrid metaheuristic case-based rea-
soning system for nurse rostering’, Journal of Scheduling 12(2), 99–119.

Bellanti, F., Carello, G., Della Croce, F. and Tadei, R. (2004), ‘A greedy-based
neighborhood search approach to a nurse rostering problem’, European Journal
of Operational Research 153(1), 28–40.

94

BIBLIOGRAPHY

Bello, I., Pham, H., Le, Q. V., Norouzi, M. and Bengio, S. (2016), ‘Neural combi-
natorial optimization with reinforcement learning’, CoRR .

Bengio, Y., Lodi, A. and Prouvost, A. (2021), ‘Machine learning for combinatorial
optimization: A methodological tour d’horizon’, European Journal of Operational
Research 290(2), 405–421.

Bilgin, B. (2012), Advanced Models and Solution Methods for Automation of Per-
sonnel Rostering Optimisation, PhD thesis, Katholieke Universiteit Leuven.

Brucker, P., Burke, E. K., Curtois, T., Qu, R. and Vanden Berghe, G. (2010), ‘A
shift sequence based approach for nurse scheduling and a new benchmark dataset’,
Journal of Heuristics 16(4), 559–573.

Brucker, P., Qu, R., Burke, E. and Post, G. (2005), A decomposition, construction
and post-processing approach for nurse rostering, New York.

Bunton, J. D., Ernst, A. T. and Krishnamoorthy, M. (2017), An integer program-
ming based ant colony optimisation method for nurse rostering, in ‘2017 Federated
Conference on Computer Science and Information Systems (FedCSIS)’, IEEE,
pp. 407–414.

Burke, E., De Causmaecker, P., Petrovic, S. and Berghe, G. V. (2003), Variable
neighborhood search for nurse rostering problems, in ‘Metaheuristics: computer
decision-making’, Springer, pp. 153–172.

Burke, E. K., Causmaecker, P. D., Petrovic, S. and Berghe, G. V. (2006), ‘Meta-
heuristics for handling time interval coverage constraints in nurse scheduling’,
Applied Artificial Intelligence 20(9), 743–766.

Burke, E. K., Curtois, T., Qu, R. and Vanden-Berghe, G. (2008), ‘Problem model
for nurse rostering benchmark instances’, ASAP, School of Computer Science,
University of Nottingham, Jubilee Campus, Nottingham, UK .

Burke, E. K., De Causmaecker, P., Berghe, G. V. and Van Landeghem, H. (2004),
‘The state of the art of nurse rostering’, Journal of scheduling 7(6), 441–499.

Burke, E. K., Hyde, M. R., Kendall, G., Ochoa, G., Özcan, E. and Woodward, J. R.
(2019), A classification of hyper-heuristic approaches: revisited, in ‘Handbook of
metaheuristics’, Springer, pp. 453–477.

Burke, E. K., Kendall, G. and Soubeiga, E. (2003), ‘A tabu-search hyperheuristic
for timetabling and rostering’, Journal of heuristics 9(6), 451–470.

Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P. and Schulenburg, S. (2003),
Hyper-heuristics: An emerging direction in modern search technology, in ‘Hand-
book of metaheuristics’, Springer, pp. 457–474.

Ceschia, S., Dang, N., De Causmaecker, P., Haspeslagh, S. and Schaerf, A. (2019),
‘The second international nurse rostering competition’, Annals of Operations Re-
search 274(1), 171–186.

95

BIBLIOGRAPHY

Ceschia, S., Guido, R. and Schaerf, A. (2020), ‘Solving the static inrc-ii nurse ros-
tering problem by simulated annealing based on large neighborhoods’, Annals of
Operations Research 288(1), 95–113.

Chen, Z., De Causmaecker, P. and Dou, Y. (2021), Deep neural networked as-
sisted tree search for the personnel rostering problem, in ‘Proceedings of the 13th
International Conference on the Practice and Theory of Automated Timetabling-
PATAT’, Vol. 2.

Chen, Z., De Causmaecker, P. and Dou, Y. (2022), ‘A combined mixed integer
programming and deep neural network-assisted heuristics algorithm for the nurse
rostering problem’, Available at SSRN 4020057 .

Cowling, P., Kendall, G. and Soubeiga, E. (2001), A hyperheuristic approach to
scheduling a sales summit, in E. Burke and W. Erben, eds, ‘Practice and Theory
of Automated Timetabling III’, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 176–190.

Cybenko, G. V. (1989), ‘Approximation by superpositions of a sigmoidal function’,
Mathematics of Control, Signals and Systems 2, 303–314.

Dagbladet (2021), ‘F̊ar coronakjeft: - unødig’. [Online; accessed November 15, 2021].
URL: https://www.dagbladet.no/nyheter/far-coronakjeft—unodig/74631099

Dai, H., Khalil, E. B., Zhang, Y., Dilkina, B. and Song, L. (2017), ‘Learning com-
binatorial optimization algorithms over graphs’, CoRR .

Dean, J. (2008), Staff scheduling by a genetic algorithm with a two-dimensional
chromosome structure, in ‘Proc of the 7th Conference on the Practice and Theory
of Automated Timetabling, Montreal, Canada’.

Della Croce, F. and Salassa, F. (2014), ‘A variable neighborhood search based
matheuristic for nurse rostering problems’, Annals of Operations Research 218, 1–
15.

Derrow-Pinion, A., She, J., Wong, D., Lange, O., Hester, T., Perez, L., Nunkesser,
M., Lee, S., Guo, X., Wiltshire, B., Battaglia, P. W., Gupta, V., Li, A., Xu,
Z., Sanchez-Gonzalez, A., Li, Y. and Velickovic, P. (2021), ETA Prediction with
Graph Neural Networks in Google Maps, Association for Computing Machinery,
New York, NY, USA, p. 3767–3776.

Dowsland, K. A. (1998), ‘Nurse scheduling with tabu search and strategic oscilla-
tion’, European journal of operational research 106(2-3), 393–407.

Dueck, G. and Scheuer, T. (1990), ‘Threshold accepting: A general purpose opti-
mization algorithm appearing superior to simulated annealing’, Journal of Com-
putational Physics 90(1), 161–175.

Ernst, A. T., Jiang, H., Krishnamoorthy, M., Owens, B. and Sier, D. (2004), ‘An an-
notated bibliography of personnel scheduling and rostering’, Annals of Operations
Research 127(1), 21–144.

96

BIBLIOGRAPHY

Ernst, A. T., Jiang, H., Krishnamoorthy, M. and Sier, D. (2004), ‘Staff scheduling
and rostering: A review of applications, methods and models’, European journal
of operational research 153(1), 3–27.

Forsyth, P. and Wren, A. (1997), ‘An ant system for bus driver scheduling’, Research
Report Series - University of Leeds School of Computer Science .

Gendreau, M. and Potvin, J.-Y. (2010), Handbook of Metaheuristics, Springer New
York, NY.

Gregory, P. (2010), ‘Nurse rostering competition entry: Lns, restarts and state
machines’, Annals of Operations Research .

Grov, H., Kallevik, E. and Nærland, S. (2020), Optimizing real-life personnel
scheduling problems through shift design and a parallel adaptive large neigh-
borhood search, Master’s thesis, NTNU.

Gu, S. and Hao, T. (2018), A pointer network based deep learning algorithm for
0–1 knapsack problem, in ‘2018 Tenth International Conference on Advanced
Computational Intelligence (ICACI)’, pp. 473–477.

Guessoum, F., Haddadi, S. and Gattal, E. (2020), ‘Simple, yet fast and effective
two-phase method for nurse rostering’, American Journal of Mathematical and
Management Sciences 39(1), 1–19.

Hadwan, M. and Ayob, M. (2010), A constructive shift patterns approach with sim-
ulated annealing for nurse rostering problem, in ‘2010 International Symposium
on Information Technology’, Vol. 1, IEEE, pp. 1–6.

Hans, E. W., Van Houdenhoven, M. and Hulshof, P. J. (2012), A framework for
healthcare planning and control, in ‘Handbook of healthcare system scheduling’,
Springer, pp. 303–320.

Jordan, M. I. and Mitchell, T. M. (2015), ‘Machine learning: Trends, perspectives,
and prospects’, Science 349(6245), 255–260.

Kallestad, J. V. (2021), Developing an intelligent hyperheuristic for combinatorial
optimization problems using deep reinforcement learning, Master’s thesis, The
University of Bergen.

Karimi-Mamaghan, M., Mohammadi, M., Meyer, P., Karimi-Mamaghan, A. M. and
Talbi, E.-G. (2022), ‘Machine learning at the service of meta-heuristics for solving
combinatorial optimization problems: A state-of-the-art’, European Journal of
Operational Research 296(2), 393–422.

Khalil, E., Le Bodic, P., Song, L., Nemhauser, G. and Dilkina, B. (2016), Learning
to branch in mixed integer programming, in ‘Proceedings of the AAAI Conference
on Artificial Intelligence’, Vol. 30.

Kiefer, A. (2015), Large Neighborhood Search for the Nurse Rostering Problem,
PhD thesis, Technische Universität Wien.

97

BIBLIOGRAPHY

Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983), ‘Optimization by simulated
annealing’, Science 220(4598), 671–680.

KNIME (2021), ‘A friendly introduction to [deep] neural networks’. [Online;
accessed May 5, 2022].
URL: https://www.knime.com/blog/a-friendly-introduction-to-deep-neural-
networks

Kruber, M., Lübbecke, M. E. and Parmentier, A. (2017), Learning when to use a
decomposition, in ‘International conference on AI and OR techniques in constraint
programming for combinatorial optimization problems’, Springer, pp. 202–210.

Kumar, M., Teso, S., De Causmaecker, P. and De Raedt, L. (2019), Automating
personnel rostering by learning constraints using tensors, in ‘2019 IEEE 31st In-
ternational Conference on Tools with Artificial Intelligence (ICTAI)’, pp. 697–704.

Langfeldt, S. S., Spangelo, T. H. and Langholm, M. H. (2021), A stepping horizon
construction heuristic for personnel rostering.

Lundgren, J., Rönnqvist, M. and Värbrand, P. (2008), Optimization, Studentlitter-
atur.

Maenhout, B. and Vanhoucke, M. (2010), ‘Branching strategies in a branch-and-
price approach for a multiple objective nurse scheduling problem’, Journal of
scheduling 13(1), 77–93.

Mehta, H., Kanani, P. and Lande, P. (2019), ‘Google maps’, Int. J. Comput. Appl
178(8), 41–46.

Messelis, T. and De Causmaecker, P. (2010), ‘An nrp feature set’.

Messelis, T., Haspeslagh, S., Bilgin, B., De Causmaecker, P. and Vanden Berghe, G.
(2009), Towards prediction of algorithm performance in real world optimisation
problems, in ‘Proceedings of the 21st Benelux conference on Artificial Intelli-
gence.’, pp. 177–183.

Mischek, F. and Musliu, N. (2016), Integer programming and heuristic approaches
for a multi-stage nurse rostering problem, in ‘PATAT 2016: Proceedings of the
11th international conference of the practice and theory of automated timetabling,
PATAT’.

Mitchell, T. (1998), Machine Learning, McGraw Hill, Ohio.

Nair, V., Alizadeh, M. et al. (2020), Neural large neighborhood search, in ‘Learning
Meets Combinatorial Algorithms at NeurIPS2020’.

Norweginan Working Environments Act §10-4 (2015).

Nurmi, K., Kyngäs, J. and Kyngäs, N. (2016), ‘Synthesis of employer and employee
satisfaction–case nurse rostering in a finnish hospital’, Journal of Advances in
Information Technology Vol 7(2).

98

BIBLIOGRAPHY

Nurse Rostering Benchmark Instances (2014). [Online; accessed January 30, 2022].
URL: http://www.schedulingbenchmarks.org/nrp/

Oberweger, F. F. (2021), A Learning Large Neighborhood Search for the Staff Reros-
tering Problem, PhD thesis, Wien.

Ouelhadj, D., Martin, S., Smet, P., Ozcan, E. and Berghe, G. V. (2012), ‘Fairness
in nurse rostering’.

Pato, M. V. and Moz, M. (2008), ‘Solving a bi-objective nurse rerostering problem
by using a utopic pareto genetic heuristic’, Journal of Heuristics 14(4), 359–374.

Pillay, N. and Qu, R. (2019), Hyper-Heuristics: Theory and applications, Natural
Computing Series, Springer Nature, Cham, Switzerland.

Pisinger, D. and Ropke, S. (2010), Large neighborhood search, in ‘Handbook of
metaheuristics’, Springer, pp. 399–419.

Ramli, R., Ahmad, S. N. I., Abdul-Rahman, S. and Wibowo, A. (2020), ‘A tabu
search approach with embedded nurse preferences for solving nurse rostering prob-
lem’, International Journal for Simulation and Multidisciplinary Design Opti-
mization 11, 10.

Range, T. M. (2021), Lecture on hospital optimization, IØT NTNU.

Rönnberg, E., Larsson, T. and Bertilsson, A. (2013), Automatic scheduling of nurses:
What does it take in practice?, in ‘Systems Analysis Tools for Better Health Care
Delivery’, Springer, pp. 151–178.

Ropke, S. and Pisinger, D. (2006), ‘An adaptive large neighborhood search heuristic
for the pickup and delivery problem with time windows’, Transportation science
40(4), 455–472.

Ross, P. and Marfn-Blazquez, J. (2005), Constructive hyper-heuristics in class
timetabling, in ‘2005 IEEE Congress on Evolutionary Computation’, Vol. 2, IEEE,
pp. 1493–1500.

Sabharwal, A., Samulowitz, H. and Reddy, C. (2012), Guiding combinatorial opti-
mization with uct, in ‘International conference on integration of artificial intelli-
gence (AI) and operations research (OR) techniques in constraint programming’,
Springer, pp. 356–361.

Schrack, J., Ortega, R., Dabu, K., Truong, D., Aibin, M. and Aibin, A. (2021),
Combining tabu search and genetic algorithm to determine optimal nurse sched-
ules, in ‘2021 IEEE Canadian Conference on Electrical and Computer Engineering
(CCECE)’, pp. 1–7.

Schulman, J., Moritz, P., Levine, S., Jordan, M. and Abbeel, P. (2015), ‘High-
dimensional continuous control using generalized advantage estimation’.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O. (2017), ‘Proxi-
mal policy optimization algorithms.’, CoRR .

99

BIBLIOGRAPHY

Shaw, P. (1998), Using constraint programming and local search methods to solve
vehicle routing problems, in ‘International conference on principles and practice
of constraint programming’, Springer, pp. 417–431.

Shi, P. and Landa-Silva, D. (2018), Approximate dynamic programming with
combined policy functions for solving multi-stage nurse rostering problem, in
G. Nicosia, P. Pardalos, G. Giuffrida and R. Umeton, eds, ‘Machine Learning,
Optimization, and Big Data’, Springer International Publishing, Cham, pp. 349–
361.

Smet, P. (2018), Constraint reformulation for nurse rostering problems, in ‘Proceed-
ings of the 12th international conference on the practice and theory of automated
timetabling’, PATAT, pp. 69–80.

Smet, P., Ernst, A. T. and Berghe, G. V. (2016), ‘Heuristic decomposition ap-
proaches for an integrated task scheduling and personnel rostering problem’, Com-
puters & Operations Research 76, 60–72.

Smet, P. and Vanden Berghe, G. (2012), A matheuristic approach to the shift min-
imisation personnel task scheduling problem, in ‘9th International Conference on
the Practice and Theory of Automated Timetabling’, Citeseer, pp. 145–160.

Smet, P. and Vanden Berghe, G. (2016), Large neighbourhood search for large-scale
shift assignment problems with multiple tasks, pp. 339–352.

SSB (2013), ‘Fra jordbruk til tjenester’. [Online; accessed November 21, 2021].
URL: https://www.ssb.no/nasjonalregnskap-og-konjunkturer/artikler-og-
publikasjoner/ attachment/152574? ts=142c712cb58

SSB (2019), ‘Eldrebølgen legger press p̊a flere omsorgstjenester i kommunen’.
[Online; accessed November 20, 2021].
URL: https://www.ssb.no/helse/artikler-og-publikasjoner/eldrebolgen-legger-
press-pa-flere-omsorgstjenester-i-kommunen

SSB (2020), ‘Fakta om norsk næringsliv’. [Online; accessed November 21, 2021].
URL: https://www.ssb.no/nasjonalregnskap-og-konjunkturer/faktaside/norsk-
naeringsliv

Sutton, R. S. and Barto, A. G. (1998), Reinforcement Learning: An Introduction,
MIT Press.

Sutton, R. S. and Barto, A. G. (2018), Reinforcement Learning, Adaptive Compu-
tation and Machine Learning series, 2 edn, Bradford Books, Cambridge, MA.

Syed, A. A., Akhnoukh, K., Kaltenhaeuser, B. and Bogenberger, K. (2019), Neural
network based large neighborhood search algorithm for ride hailing services, in
P. Moura Oliveira, P. Novais and L. P. Reis, eds, ‘Progress in Artificial Intelli-
gence’, Springer International Publishing, Cham, pp. 584–595.

Thornton, J. and Sattar, A. (1997), Nurse rostering and integer programming revis-
ited, in ‘International conference on computational intelligence and multimedia
applications’, Citeseer, pp. 49–58.

100

BIBLIOGRAPHY

Trilling, L., Guinet, A. and Le Magny, D. (2006), ‘Nurse scheduling using inte-
ger linear programming and constraint programming’, IFAC Proceedings Volumes
39, 671–676.

Turhan, A. and Bilgen, B. (2020), ‘A hybrid fix-and-optimize and simulated anneal-
ing approaches for nurse rostering problem’, Computers Industrial Engineering
145, 106531.

Turkeš, R., Sörensen, K. and Hvattum, L. M. (2021), ‘Meta-analysis of metaheuris-
tics: Quantifying the effect of adaptiveness in adaptive large neighborhood search’,
European Journal of Operational Research 292(2), 423–442.

Václav́ık, R., Šcha, P. and Hanzálek, Z. (2016), ‘Roster evaluation based on classifiers
for the nurse rostering problem’, Journal of Heuristics 22(5), 667–697.

Van den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E. and De Boeck,
L. (2013), ‘Personnel scheduling: A literature review’, European Journal of Oper-
ational Research 226(3), 367–385.

Wang, Y. (2010), ‘A sociopsychological perspective on collective intelligence in meta-
heuristic computing’, International Journal of Applied Metaheuristic Computing
1(1), 110–128.

Wolbeck, L. A. (2019), ‘Fairness aspects in personnel scheduling’.

Wu, J.-j., Lin, Y., Zhan, Z.-h., Chen, W.-n., Lin, Y.-b. and Chen, J.-y. (2013),
An ant colony optimization approach for nurse rostering problem, in ‘2013 IEEE
International Conference on Systems, Man, and Cybernetics’, IEEE, pp. 1672–
1676.

Yegnanarayana, B. (2009), Artificial neural networks, PHI Learning Pvt. Ltd.

Yuan, Y., Yu, Z. L., Gu, Z., Deng, X. and Li, Y. (2019), ‘A novel multi-step
reinforcement learning method for solving reward hacking’, Applied Intelligence
49(8), 2874–2888.

Zarpellon, G., Jo, J., Lodi, A. and Bengio, Y. (2020), ‘Parameterizing branch-and-
bound search trees to learn branching policies’, arXiv preprint arXiv:2002.05120
12.

Zhang, H. and Lu, J. (2008), ‘Adaptive evolutionary programming based on rein-
forcement learning’, Information Sciences 178(4), 971–984.

Zhang, Y., Bai, R., Qu, R., Tu, C. and Jin, J. (2022), ‘A deep reinforcement learning
based hyper-heuristic for combinatorial optimisation with uncertainties’, European
Journal of Operational Research 300(2), 418–427.

Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: princi-
ples and techniques for data scientists, O’Reilly Media, Inc.

101

APPENDIX A. MATHEMATICAL MODEL

Appendix A

Mathematical Model

In this appendix we present a compact version of the mathematical model repre-
senting the RRP in Chapter 5.

A.1 Indices

e : Employee e
c : Competence c.
t : Time interval t.
s : Shift s.
r : Off shift r.
i : Day i.
j : Week j.

102

APPENDIX A. MATHEMATICAL MODEL

A.2 Sets

I : Set of days.
ISAT : Set of Saturdays, excluding the final day in the planning horizon.
J : Set of weeks.
E : Set of all employees.
EC
c : Set of all employees with competence c.

C : Set of competences.
CE
e : Set of the competences of employee e.

T : Set of time intervals with demand.
T O
r : Set of time intervals overlapping weekly off shift r.

S : Set of shifts.
SI
i : Set of shifts on day i.

SO
t : Set of shifts overlapping time interval t.

SV AL
e : Set of valid shifts for employee e, SV AL

e ⊆ S.
SDRC
es : Set of shifts that breaks the daily rest rule for employee e if taken

together with shift s, SDRC
es ⊆ SV AL

e .
SDRS
es : Set of shifts that breaks the daily rest rule for employee e if

employee e is assigned to shift s and two of the shifts in SDRS
es ,

SDRS
es ⊆ SV AL

e .
R : Set of weekly off shifts.
Rj : Set of off shifts in week j.

A.3 Parameters

Instance parameters

Dtc : Minimum demand coverage for competence c in time interval t.
Dtc : Ideal demand coverage for competence c in time interval t.
Dtc : Maximum demand coverage for competence c in time interval t.
V R
r : Duration of off shift r.

V R : Minimum weekly off shift duration.

V
R

: Maximum rewarded weekly off shift duration.
Be : Weekly contracted hours for employee e.
LCD : Desired maximum number of consecutive days.
Pes : Preference score for employee e working shift s.
V S
s : Length of shift s.

V
S

: Desired shift length, upper limit.
V S : Desired shift length, lower limit.
V T
t : Duration of time interval t.

103

APPENDIX A. MATHEMATICAL MODEL

Weights

AF : Adjustment factor for weighting the lowest individual fairness cost.
AB

e : Adjustment factor for weighting cost of deviating from contracted hours.
W F : Weight of the lowest individual fairness cost.
WD+ : Weight of excess demand coverage.
WD− : Weight of deficit demand coverage.
WR : Weight of weekly off shift score.
WB : Weight of contracted hours difference.
W PW : Weight of partial weekends.
W IW : Weight of isolated work days.
W IO : Weight of isolated off days.
WCD : Weight of consecutive days.
W P : Weight of preference score.
W SL : Weight of shift duration.

104

APPENDIX A. MATHEMATICAL MODEL

A.4 Decision variables

xes =

{
1, if employee e is assigned to shift s

0, otherwise

yetc =

1, if employee e covers one unit of demand in time interval t

with competence c.

0, otherwise

wer =

{
1, if employee e takes the off shift r

0, otherwise

γei =

{
1, if employee e takes a shift on day i

0, otherwise

ρSAT
ei , ρSUN

ei =

1, if employee e works a partial weekend by working

Saturday or Sunday, respectively

0, otherwise

σei =

{
1, if employee e works an isolated day on day i

0, otherwise

ϕei =

{
1, if employee e takes an isolated off day on day i

0, otherwise

πei =

1, if employee e starts a sequence of consecutive working days

exceeding the desired limit on day i

0, otherwise

δ+tc, δ
−
tc = respectively excess and deficit demand coverage with respect to ideal.

demand in time interval t for competence c.

fe = variable for storing fairness costs for employee e.

g = variable for storing the highest fairness cost.

λ+
e , λ

−
e = deviation between worked and contracted hours for employee e.

µtc = difference between covered and minimum demand for competence c

in time interval t.

A.5 Objective function

min z =
∑
e∈E

fe (A.1a)

+W FAFg (A.1b)∑
t∈T

V T
t

∑
c∈C

(WD+δ+tc +WD−δ−tc) (A.1c)

105

APPENDIX A. MATHEMATICAL MODEL

A.6 Constraints

Demand constraints∑
e∈EC

c

yetc = Dtc + µtc ∀t ∈ T , c ∈ C (A.2)

µtc ≤ Dtc −Dtc ∀t ∈ T , c ∈ C (A.3)

µtc +Dtc −Dtc = δ+tc − δ−tc ∀t ∈ T , c ∈ C (A.4)

Work allocation∑
s∈SI

i

xes = γei ∀e ∈ E , i ∈ I (A.5)

∑
s∈St

xes =
∑
c∈C

yetc ∀e ∈ E , t ∈ T (A.6)∑
c∈C

yetc ≤ 1 ∀e ∈ E , t ∈ T (A.7)

Rest constraints

2xes +
∑

s′∈SDRC
es

xes′ ≤ 2 ∀e ∈ E , s ∈ S (A.8)

xes +
∑

s′∈SDRS
es

xes′ ≤ 2 ∀e ∈ E , s ∈ S (A.9)

∑
r∈RJ

j

wer = 1 ∀e ∈ E , j ∈ J (A.10)

|T R
r |wer ≤

∑
t∈T R

r

(1−
∑
c∈C

yetc) ∀e ∈ E , r ∈ R (A.11)

106

APPENDIX A. MATHEMATICAL MODEL

Fairness

fe = W IW
∑
i∈I

σi (A.12a)

+WIO

∑
i∈I

ϕei (A.12b)

+WCD

∑
i∈I

πei (A.12c)

+WPW

∑
i∈ISAT

(ρSAT
ei + ρSUN

e(i+1)) (A.12d)

+WSL

∑
s∈SV AL

e

max (V S
s − V

S
, V S − V S

s , 0)xes (A.12e)

+WBA
B
e (λ

+
e + λ−

e) (A.12f)

−WP

∑
s∈SV AL

e

Pesxes (A.12g)

−WR

∑
r∈R

min(V R
r − V R, V

R
)wer ∀e ∈ E (A.12h)

g ≥ fe ∀e ∈ E (A.13)

∑
s∈SVAL

V S
s xes + λ+

e − λ−
e = |J |Be ∀e ∈ E (A.14)

γei − γe(i+1) = ρSAT
ei − ρSUN

e(i+1) ∀e ∈ E , i ∈ ISAT (A.15)

γei − γe(i−1) − γe(i+1) ≤ σei ∀e ∈ E , i ∈ {2, 3, ..., |I| − 1} (A.16)

γe(i−1) − γei + γe(i+1) − 1 ≤ ϕei ∀e ∈ E , i ∈ {2, 3, ..., |I| − 1} (A.17)

i+LCD∑
i′=i

γei′ − LCD ≤ πei ∀e ∈ E , i ∈ {1, 2, ..., |I| − LCD} (A.18)

107

APPENDIX A. MATHEMATICAL MODEL

Variable definition constraints

xes ∈ {0, 1} ∀e ∈ E , s ∈ SV AL
e (A.19)

yetc ∈ {0, 1} ∀e ∈ E , t ∈ T , c ∈ Ce (A.20)

wer ∈ {0, 1} ∀e ∈ E , r ∈ R (A.21)

δ+tc, δ
−
tc ∈ Z+ ∀t ∈ T , c ∈ C (A.22)

ρSAT
ei , ρSUN

e(i+1) ∈ {0, 1} ∀e ∈ E , i ∈ ISAT (A.23)

γei, σei, ϕei, πei ∈ {0, 1} ∀e ∈ E , i ∈ I (A.24)

µtc ∈ Z+ ∀t ∈ T , c ∈ C (A.25)

λ+
e , λ

−
e ≥ 0 ∀e ∈ E (A.26)

fe free ∀e ∈ E (A.27)

g free (A.28)

108

APPENDIX B. OPERATORS AND PARAMETER VALUES

Appendix B

Operators and Parameter Values

In this appendix we present the operators and parameter values that we use in
the computational study. Section B.1 contains all of the operators and possible
combinations, and Section B.2 presents parameter values.

B.1 Operators

Table B.1: Naming convention for the destroy operator types.

Destroy Operator Type Symbol
Uniform Random Week RW
Greedy Week GW
Weighted Random Week WW
Uniform Random Employee RE
Greedy Employee GE
Weighted Random Employee WE
Weekend WKD
Partial Weekend PW
Demand Day DD
Demand Shift DS
No Destroy ND

Table B.2: Naming convention for selection strategies of the repair operators.

Repair Selection Strategy Symbol
Greedy Employee Selection GES
Weighted Employee Selection WES
Random Employee Selection RES
Greedy Shift Selection GSS
Weighted Shift Selection WSS
Random Shift Selection RSS

109

APPENDIX B. OPERATORS AND PARAMETER VALUES

Table B.3: Destroy/Repair Pairs used in the computational study.

Operator Number Destroy Operator Repair Operator k
0 RW GES/GSS 1
1 RW WES/GSS 1
2 GW GES/GSS 1
3 GW WES/GSS 1
4 WW GES/GSS 1
5 WW WES/GSS 1
6 RE WES/GSS 2
7 RE GES/GSS 2
8 GE WES/GSS 2
9 GE GES/GSS 2
10 WE WES/GSS 2
11 WE GES/GSS 2
12 WKD WES/GSS 1
13 PW WES/WSS -
14 DD WES/RSS -
15 DD GES/WSS -
16 DD WES/WSS -
17 DS GES/GSS 0.5
26 ND WES/GSS -

Table B.4: Hybrid operators used in the computational study.

Number Type Employee Selection Day/Shift Selection Size
18 Swap Random Random 1
19 Swap Random Random 5
20 Swap Greedy Random 1
21 Swap Greedy Greedy 1
22 Swap Targeted Targeted -
23 Change Targeted Targeted -
24 Change Random Random 5
25 Change Greedy Random 1

110

APPENDIX B. OPERATORS AND PARAMETER VALUES

B.2 Parameters

B.2.1 Problem Parameters

Table B.5: Table of objective function weights.

Weight Value

Lowest individual fairness WF 0.1
Weekly rest duration WR 0.5
Contracted hours difference WB 1
Partial weekends WPW 8
Isolated work day WIW 10
Isolated off day WIO 10
Consecutive days WCD 12
Preference WP 0.1
Shift duration WSL 1
Demand coverage WD 0.01

B.2.2 Training Parameters

Table B.6: Table of training parameters.

Training parameters
Total # of episodes 1000
Episodes before update (E) 20
Number of updates (U) 50
Learning rate actor 0.0003
Learning rate critic 0.001
Optimizer Adam
Epochs (N) 50
Epslion for LCLIP loss (ϵ) 0.2
Discount factor (γ) 0.99
Exponential weight discount (λ) 0.97
Mini-batch size (% of total) 0.01
Critic loss weight (β) 0.5
Entropy bonus weight (µ) 0.01

111

APPENDIX C. COMPUTATIONAL STUDY

Appendix C

Computational Study

We only present a subset of the figures in the computational study in Chapter 8. In
this appendix we present additional figures and information relevant to the compu-
tational study.

112

APPENDIX C. COMPUTATIONAL STUDY

C.1 Comparative Study

ULNS ALNS NNALNS
Algorithm

130

120

110

100

90

80

70

60

Be
st

 O
bj

ec
tiv

e

(a) B1-d14-e14

ULNS ALNS NNALNS
Algorithm

175

150

125

100

75

50

25

0

25

Be
st

 O
bj

ec
tiv

e

(b) B2-d28-e16

ULNS ALNS NNALNS
Algorithm

200

150

100

50

0

50

100

Be
st

 O
bj

ec
tiv

e

(c) B3-d28-e50

ULNS ALNS NNALNS
Algorithm

1000

1100

1200

1300

1400

1500

1600
Be

st
 O

bj
ec

tiv
e

(d) B4-d42-e45

ULNS ALNS NNALNS
Algorithm

0

100

200

300

400

500

Be
st

 O
bj

ec
tiv

e

(e) B5-d56-e20

ULNS ALNS NNALNS
Algorithm

100

0

100

200

300

400

500

600

Be
st

 O
bj

ec
tiv

e

(f) B6-d84-e22

Figure C.1: Box plot of best objective value for benchmark instances B1 through
B6 after 1000 iterations of NNALNS, ALNS and ULNS over 20 runs.

113

APPENDIX C. COMPUTATIONAL STUDY

ULNS ALNS NNALNS
Algorithm

500

750

1000

1250

1500

1750

2000

2250

2500

Be
st

 O
bj

ec
tiv

e

Figure C.2: Box plot of best objective value for B7-d182-e50 after 1000 iterations of
NNALNS, ALNS and ULNS over 20 runs.

114

APPENDIX C. COMPUTATIONAL STUDY

ULNS ALNS NNALNS
Algorithm

700

800

900

1000

1100

1200
Be

st
 O

bj
ec

tiv
e

(a) V1-d56-e9

ULNS ALNS NNALNS
Algorithm

300

280

260

240

220

200

180

Be
st

 O
bj

ec
tiv

e

(b) V2-d70-e6

ULNS ALNS NNALNS
Algorithm

600

500

400

300

200

100

Be
st

 O
bj

ec
tiv

e

(c) V3-d46-e28

ULNS ALNS NNALNS
Algorithm

700

750

800

850

Be
st

 O
bj

ec
tiv

e

(d) V4-d84-e8

ULNS ALNS NNALNS
Algorithm

600

800

1000

1200

1400

Be
st

 O
bj

ec
tiv

e

(e) V5-d42-e15

ULNS ALNS NNALNS
Algorithm

1500

1750

2000

2250

2500

2750

3000

3250

Be
st

 O
bj

ec
tiv

e

(f) V6-d98-e15

Figure C.3: Box plot of best objective value for Visma instances after 1000 iterations
of NNALNS, ALNS and ULNS over 20 runs.

115

APPENDIX C. COMPUTATIONAL STUDY

0 200 400 600 800 1000
Iteration

100

0

100

200

300

400

500
O

bj
ec

tiv
e

Va
lu

e
Algorithm

NNALNS
ALNS
ULNS

(a) B1-d14-e14

0 200 400 600 800 1000
Iteration

200

0

200

400

600

800

1000

1200

1400

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS
ALNS
ULNS

(b) B2-d28-e16

0 200 400 600 800 1000
Iteration

0

1000

2000

3000

4000

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS
ALNS
ULNS

(c) B3-d28-e50

0 200 400 600 800 1000
Iteration

1000

2000

3000

4000

5000

6000

7000

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS
ALNS
ULNS

(d) B4-d42-e45

0 200 400 600 800 1000
Iteration

0

500

1000

1500

2000

2500

3000

3500

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS
ALNS
ULNS

(e) B5-d56-e20

0 200 400 600 800 1000
Iteration

0

1000

2000

3000

4000

5000

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS
ALNS
ULNS

(f) B6-d84-e22

Figure C.4: Average best objective value over 20 runs with a 95% confidence interval
for benchmark instances B1 through B6 using NNALNS, ALNS and ULNS.

116

APPENDIX C. COMPUTATIONAL STUDY

0 200 400 600 800 1000
Iteration

0

5000

10000

15000

20000

25000

30000

35000

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS
ALNS
ULNS

Figure C.5: Average best objective value over 20 runs with a 95% confidence interval
for B7-d182-e50 using NNALNS, ALNS and ULNS.

117

APPENDIX C. COMPUTATIONAL STUDY

0 200 400 600 800 1000
Iteration

800

1000

1200

1400

1600

1800
O

bj
ec

tiv
e

Va
lu

e
Algorithm

NNALNS
ALNS
ULNS

(a) V1-d56-e9

0 200 400 600 800 1000
Iteration

0

500

1000

1500

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS
ALNS
ULNS

(b) V2-d70-e6

0 200 400 600 800 1000
Iteration

0

1000

2000

3000

4000

5000

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS
ALNS
ULNS

(c) V3-d46-e28

0 200 400 600 800 1000
Iteration

750

1000

1250

1500

1750

2000

2250

2500

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS
ALNS
ULNS

(d) V4-d84-e8

0 200 400 600 800 1000
Iteration

1000

1500

2000

2500

3000

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS
ALNS
ULNS

(e) V5-d42-e15

0 200 400 600 800 1000
Iteration

2000

3000

4000

5000

6000

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS
ALNS
ULNS

(f) V6-d98-e15

Figure C.6: Average best objective value over 20 runs with a 95% confidence interval
for Visma instances using NNALNS, ALNS and ULNS.

118

APPENDIX C. COMPUTATIONAL STUDY

C.2 Value of Problem-Specific Features

C.2.1 Objective Value

0 200 400 600 800 1000
Iteration

100

0

100

200

300

400

500

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS w/ all features
NNALNS w/o all features

(a) B1-d14-e14

0 200 400 600 800 1000
Iteration

200

0

200

400

600

800

1000

1200

1400

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS w/ all features
NNALNS w/o all features

(b) B2-d28-e16

0 200 400 600 800 1000
Iteration

0

1000

2000

3000

4000

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS w/ all features
NNALNS w/o all features

(c) B3-d28-e50

0 200 400 600 800 1000
Iteration

1000

2000

3000

4000

5000

6000

7000

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS w/ all features
NNALNS w/o all features

(d) B4-d42-e45

0 200 400 600 800 1000
Iteration

0

500

1000

1500

2000

2500

3000

3500

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS w/ all features
NNALNS w/o all features

(e) B5-d56-e20

0 200 400 600 800 1000
Iteration

0

1000

2000

3000

4000

5000

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS w/ all features
NNALNS w/o all features

(f) B6-d84-e22

Figure C.7: Average best objective value over 20 runs with a 95% confidence inter-
val for the benchmark instances B1 through B6 using NNALNS with and without
problem-specific features.

119

APPENDIX C. COMPUTATIONAL STUDY

0 200 400 600 800 1000
Iteration

0

5000

10000

15000

20000

25000

30000

35000

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS w/ all features
NNALNS w/o all features

Figure C.8: Average best objective value over 20 runs with a 95% confidence interval
for benchmark instance B7-d182-e50 using NNALNS with and without problem-
specific features.

120

APPENDIX C. COMPUTATIONAL STUDY

0 200 400 600 800 1000
Iteration

800

1000

1200

1400

1600

1800
O

bj
ec

tiv
e

Va
lu

e
Algorithm

NNALNS w/ all features
NNALNS w/o all features

(a) V1-d56-e9

0 200 400 600 800 1000
Iteration

0

500

1000

1500

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS w/ all features
NNALNS w/o all features

(b) V2-d70-e6

0 200 400 600 800 1000
Iteration

0

1000

2000

3000

4000

5000

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS w/ all features
NNALNS w/o all features

(c) V3-d46-e28

0 200 400 600 800 1000
Iteration

750

1000

1250

1500

1750

2000

2250

2500

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS w/ all features
NNALNS w/o all features

(d) V4-d84-e8

0 200 400 600 800 1000
Iteration

1000

1500

2000

2500

3000

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS w/ all features
NNALNS w/o all features

(e) V5-d42-e15

0 200 400 600 800 1000
Iteration

2000

3000

4000

5000

6000

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS w/ all features
NNALNS w/o all features

(f) V6-d98-e15

Figure C.9: Average best objective value over 20 runs with a 95% confidence interval
for Visma instances V1 through V6 using NNALNS with and without problem-
specific features

121

APPENDIX C. COMPUTATIONAL STUDY

C.2.2 Reward

0 200 400 600 800 1000
Iteration

0

100

200

300

400

500

600

700

800

R
ew

ar
d Algorithm

NNALNS w/ all features
NNALNS w/o all features
ALNS

(a) B1-d14-e14

0 200 400 600 800 1000
Iteration

0

200

400

600

800

R
ew

ar
d

Algorithm
NNALNS w/ all features
NNALNS w/o all features
ALNS

(b) B2-d28-e16

0 200 400 600 800 1000
Iteration

0

200

400

600

800

1000

R
ew

ar
d

Algorithm
NNALNS w/ all features
NNALNS w/o all features
ALNS

(c) B3-d28-e50

0 200 400 600 800 1000
Iteration

0

200

400

600

800

1000
R

ew
ar

d

Algorithm
NNALNS w/ all features
NNALNS w/o all features
ALNS

(d) B4-d42-e45

0 200 400 600 800 1000
Iteration

0

200

400

600

800

R
ew

ar
d

Algorithm
NNALNS w/ all features
NNALNS w/o all features
ALNS

(e) B5-d56-e20

0 200 400 600 800 1000
Iteration

0

200

400

600

800

1000

R
ew

ar
d

Algorithm
NNALNS w/ all features
NNALNS w/o all features
ALNS

(f) B6-d84-e22

Figure C.10: Average cumulative reward over 20 runs with a 95% confidence interval
for benchmark instances B1 through B6 using NNALNS with and without problem-
specific features and ALNS.

122

APPENDIX C. COMPUTATIONAL STUDY

0 200 400 600 800 1000
Iteration

0

200

400

600

800

1000

1200

R
ew

ar
d

Algorithm
NNALNS w/ all features
NNALNS w/o all features
ALNS

Figure C.11: Average cumulative reward over 20 runs with a 95% confidence interval
for benchmark instances B7-d182-e50 using NNALNS with and without problem-
specific features and ALNS.

123

APPENDIX C. COMPUTATIONAL STUDY

0 200 400 600 800 1000
Iteration

0

200

400

600

800

1000

1200

R
ew

ar
d

Algorithm
NNALNS w/ all features
NNALNS w/o all features
ALNS

(a) V1-d56-e9

0 200 400 600 800 1000
Iteration

0

200

400

600

800

1000

R
ew

ar
d

Algorithm
NNALNS w/ all features
NNALNS w/o all features
ALNS

(b) V2-d70-e6

0 200 400 600 800 1000
Iteration

0

200

400

600

800

1000

1200

R
ew

ar
d

Algorithm
NNALNS w/ all features
NNALNS w/o all features
ALNS

(c) V3-d46-e28

0 200 400 600 800 1000
Iteration

0

200

400

600

800

1000

R
ew

ar
d

Algorithm
NNALNS w/ all features
NNALNS w/o all features
ALNS

(d) V4-d84-e8

0 200 400 600 800 1000
Iteration

0

200

400

600

800

1000

1200

R
ew

ar
d

Algorithm
NNALNS w/ all features
NNALNS w/o all features
ALNS

(e) V5-d42-e15

0 200 400 600 800 1000
Iteration

0

200

400

600

800

1000

1200

R
ew

ar
d

Algorithm
NNALNS w/ all features
NNALNS w/o all features
ALNS

(f) V6-d98-e15

Figure C.12: Average cumulative reward over 20 runs with a 95% confidence interval
for Visma instances V1 through V6 using NNALNS with and without problem-
specific features and ALNS.

124

APPENDIX C. COMPUTATIONAL STUDY

C.3 Generalized Learning

C.3.1 Cross-Instance Learning

ULNS ALNS NNALNS
Algorithm

100

150

200

250

300

350

400

Be
st

 O
bj

ec
tiv

e

(a) B5-d56-e20

ULNS ALNS NNALNS
Algorithm

0

100

200

300

400

500

600

Be
st

 O
bj

ec
tiv

e
(b) B6-d84-e22

ULNS ALNS NNALNS
Algorithm

800

1000

1200

1400

1600

1800

2000

2200

Be
st

 O
bj

ec
tiv

e

(c) B7-d182-e50

ULNS ALNS NNALNS
Algorithm

700

800

900

1000

1100

1200

1300

1400

Be
st

 O
bj

ec
tiv

e

(d) V1-d56-e9

ULNS ALNS NNALNS
Algorithm

500

400

300

200

100

Be
st

 O
bj

ec
tiv

e

(e) V3-d46-e28

ULNS ALNS NNALNS
Algorithm

700

800

900

1000

1100

1200

1300

1400

Be
st

 O
bj

ec
tiv

e

(f) V5-d42-e15

Figure C.13: Box plot of best objective value over 20 runs for the test instances in
the cross-instance experiments using NNALNS, ALNS and ULNS.

125

APPENDIX C. COMPUTATIONAL STUDY

0 200 400 600 800 1000
Iteration

0

500

1000

1500

2000

2500

3000

3500
O

bj
ec

tiv
e

Va
lu

e
Algorithm

NNALNS
ALNS
ULNS

(a) B5-d56-e20

0 200 400 600 800 1000
Iteration

0

1000

2000

3000

4000

5000

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS
ALNS
ULNS

(b) B6-d84-e22

0 200 400 600 800 1000
Iteration

0

5000

10000

15000

20000

25000

30000

35000

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS
ALNS
ULNS

(c) B7-d182-e50

0 200 400 600 800 1000
Iteration

800

1000

1200

1400

1600

1800

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS
ALNS
ULNS

(d) V1-d56-e9

0 200 400 600 800 1000
Iteration

0

1000

2000

3000

4000

5000

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS
ALNS
ULNS

(e) V3-d46-e28

0 200 400 600 800 1000
Iteration

1000

1500

2000

2500

3000

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS
ALNS
ULNS

(f) V5-d42-e15

Figure C.14: Average best objective value over 20 runs with a 95% confidence
interval for the test instances in the cross-instance experiments using NNALNS,
ALNS and ULNS.

126

APPENDIX C. COMPUTATIONAL STUDY

C.3.2 Adaptability

0 200 400 600 800 1000
Iteration

800

1000

1200

1400

1600

1800

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS
ALNS
ULNS

(a) V1-d56-e9

0 200 400 600 800 1000
Iteration

0

500

1000

1500

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS
ALNS
ULNS

(b) V2-d70-e6

0 200 400 600 800 1000
Iteration

0

1000

2000

3000

4000

5000

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS
ALNS
ULNS

(c) V3-d46-e28

0 200 400 600 800 1000
Iteration

750

1000

1250

1500

1750

2000

2250

2500
O

bj
ec

tiv
e

Va
lu

e
Algorithm

NNALNS
ALNS
ULNS

(d) V4-d84-e8

0 200 400 600 800 1000
Iteration

1000

1500

2000

2500

3000

O
bj

ec
tiv

e
Va

lu
e

Algorithm
NNALNS
ALNS
ULNS

(e) V5-d42-e15

Figure C.15: Average best objective value over 20 runs with a 95% confidence
interval using NNALNS, ALNS and ULNS on V1 through V5 when the policies are
trained on small permutations of the instances.

127

APPENDIX C. COMPUTATIONAL STUDY

ULNS ALNS NNALNS
Algorithm

800

1000

1200

1400

Be
st

 O
bj

ec
tiv

e

(a) V1-d56-e9

ULNS ALNS NNALNS
Algorithm

300

280

260

240

220

200

Be
st

 O
bj

ec
tiv

e

(b) V2-d70-e6

ULNS ALNS NNALNS
Algorithm

600

500

400

300

200

100

Be
st

 O
bj

ec
tiv

e

(c) V3-d46-e28

ULNS ALNS NNALNS
Algorithm

680

700

720

740

760

780

800

820

840

Be
st

 O
bj

ec
tiv

e

(d) V4-d84-e8

ULNS ALNS NNALNS
Algorithm

600

800

1000

1200

1400

Be
st

 O
bj

ec
tiv

e

(e) V5-d42-e15

Figure C.16: Box plot of best objective value over 20 runs using NNALNS, ALNS
and ULNS on V1 through V5 when the policies are trained on small permutations
of the instances.

128

APPENDIX C. COMPUTATIONAL STUDY

C.4 Selection Strategies

0 200 400 600 800 1000
Iteration

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
ov

in
g

av
er

ag
e

of
 o

pe
ra

to
r s

el
ec

tio
n

co
un

t

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(a) ALNS

0 200 400 600 800 1000
Iteration

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
ov

in
g

av
er

ag
e

of
 o

pe
ra

to
r s

el
ec

tio
n

co
un

t

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(b) NNALNS

Figure C.17: Moving average of operator selection count for ALNS and NNALNS
for B1-d14-e14.

129

APPENDIX C. COMPUTATIONAL STUDY

0 200 400 600 800 1000
Iteration

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
M

ov
in

g
av

er
ag

e
of

 o
pe

ra
to

r s
el

ec
tio

n
co

un
t

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(a) ALNS

0 200 400 600 800 1000
Iteration

0.0

0.2

0.4

0.6

0.8

M
ov

in
g

av
er

ag
e

of
 o

pe
ra

to
r s

el
ec

tio
n

co
un

t

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(b) NNALNS

Figure C.18: Moving average of operator selection count for ALNS and NNALNS
for B2-d28-e16.

130

APPENDIX C. COMPUTATIONAL STUDY

0 200 400 600 800 1000
Iteration

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
ov

in
g

av
er

ag
e

of
 o

pe
ra

to
r s

el
ec

tio
n

co
un

t
0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(a) ALNS

0 200 400 600 800 1000
Iteration

0.0

0.2

0.4

0.6

0.8

M
ov

in
g

av
er

ag
e

of
 o

pe
ra

to
r s

el
ec

tio
n

co
un

t

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(b) NNALNS

Figure C.19: Moving average of operator selection count for ALNS and NNALNS
for B3-d28-e50.

131

APPENDIX C. COMPUTATIONAL STUDY

0 200 400 600 800 1000
Iteration

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
ov

in
g

av
er

ag
e

of
 o

pe
ra

to
r s

el
ec

tio
n

co
un

t
0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(a) ALNS

0 200 400 600 800 1000
Iteration

0.0

0.1

0.2

0.3

0.4

M
ov

in
g

av
er

ag
e

of
 o

pe
ra

to
r s

el
ec

tio
n

co
un

t

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(b) NNALNS

Figure C.20: Moving average of operator selection count for ALNS and NNALNS
for B4-d42-e45.

132

APPENDIX C. COMPUTATIONAL STUDY

0 200 400 600 800 1000
Iteration

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
ov

in
g

av
er

ag
e

of
 o

pe
ra

to
r s

el
ec

tio
n

co
un

t
0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(a) ALNS

0 200 400 600 800 1000
Iteration

0.0

0.2

0.4

0.6

0.8

M
ov

in
g

av
er

ag
e

of
 o

pe
ra

to
r s

el
ec

tio
n

co
un

t

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(b) NNALNS

Figure C.21: Moving average of operator selection count for ALNS and NNALNS
for B5-d56-e20.

133

APPENDIX C. COMPUTATIONAL STUDY

0 200 400 600 800 1000
Iteration

0.00

0.02

0.04

0.06

0.08

0.10

M
ov

in
g

av
er

ag
e

of
 o

pe
ra

to
r s

el
ec

tio
n

co
un

t
0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(a) ALNS

0 200 400 600 800 1000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

M
ov

in
g

av
er

ag
e

of
 o

pe
ra

to
r s

el
ec

tio
n

co
un

t

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(b) NNALNS

Figure C.22: Moving average of operator selection count for ALNS and NNALNS
for B6-d84-e22.

134

APPENDIX C. COMPUTATIONAL STUDY

0 200 400 600 800 1000
Iteration

0.00

0.02

0.04

0.06

0.08

0.10

0.12
M

ov
in

g
av

er
ag

e
of

 o
pe

ra
to

r s
el

ec
tio

n
co

un
t

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(a) ALNS

0 200 400 600 800 1000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ov

in
g

av
er

ag
e

of
 o

pe
ra

to
r s

el
ec

tio
n

co
un

t

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(b) NNALNS

Figure C.23: Moving average of operator selection count for ALNS and NNALNS
for B7-d182-e50.

135

APPENDIX C. COMPUTATIONAL STUDY

0 200 400 600 800 1000
Iteration

0.00

0.02

0.04

0.06

0.08

0.10

M
ov

in
g

av
er

ag
e

of
 o

pe
ra

to
r s

el
ec

tio
n

co
un

t
0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(a) ALNS

0 200 400 600 800 1000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

M
ov

in
g

av
er

ag
e

of
 o

pe
ra

to
r s

el
ec

tio
n

co
un

t

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(b) NNALNS

Figure C.24: Moving average of operator selection count for ALNS and NNALNS
for V1-d56-e9.

136

APPENDIX C. COMPUTATIONAL STUDY

0 200 400 600 800 1000
Iteration

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
ov

in
g

av
er

ag
e

of
 o

pe
ra

to
r s

el
ec

tio
n

co
un

t
0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(a) ALNS

0 200 400 600 800 1000
Iteration

0.00

0.05

0.10

0.15

0.20

M
ov

in
g

av
er

ag
e

of
 o

pe
ra

to
r s

el
ec

tio
n

co
un

t

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(b) NNALNS

Figure C.25: Moving average of operator selection count for ALNS and NNALNS
for V2-d70-e6.

137

APPENDIX C. COMPUTATIONAL STUDY

0 200 400 600 800 1000
Iteration

0.00

0.05

0.10

0.15

0.20
M

ov
in

g
av

er
ag

e
of

 o
pe

ra
to

r s
el

ec
tio

n
co

un
t

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(a) ALNS

0 200 400 600 800 1000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ov

in
g

av
er

ag
e

of
 o

pe
ra

to
r s

el
ec

tio
n

co
un

t

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(b) NNALNS

Figure C.26: Moving average of operator selection count for ALNS and NNALNS
for V3-d46-e28.

138

APPENDIX C. COMPUTATIONAL STUDY

0 200 400 600 800 1000
Iteration

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
M

ov
in

g
av

er
ag

e
of

 o
pe

ra
to

r s
el

ec
tio

n
co

un
t

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(a) ALNS

0 200 400 600 800 1000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ov

in
g

av
er

ag
e

of
 o

pe
ra

to
r s

el
ec

tio
n

co
un

t

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(b) NNALNS

Figure C.27: Moving average of operator selection count for ALNS and NNALNS
for V4-d84-e8.

139

APPENDIX C. COMPUTATIONAL STUDY

0 200 400 600 800 1000
Iteration

0.00

0.02

0.04

0.06

0.08

0.10

0.12
M

ov
in

g
av

er
ag

e
of

 o
pe

ra
to

r s
el

ec
tio

n
co

un
t

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(a) ALNS

0 200 400 600 800 1000
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
ov

in
g

av
er

ag
e

of
 o

pe
ra

to
r s

el
ec

tio
n

co
un

t

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(b) NNALNS

Figure C.28: Moving average of operator selection count for ALNS and NNALNS
for V5-d42-e15.

140

APPENDIX C. COMPUTATIONAL STUDY

0 200 400 600 800 1000
Iteration

0.00

0.02

0.04

0.06

0.08

0.10

0.12
M

ov
in

g
av

er
ag

e
of

 o
pe

ra
to

r s
el

ec
tio

n
co

un
t

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(a) ALNS

0 200 400 600 800 1000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

M
ov

in
g

av
er

ag
e

of
 o

pe
ra

to
r s

el
ec

tio
n

co
un

t

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26

(b) NNALNS

Figure C.29: Moving average of operator selection count for ALNS and NNALNS
for V6-d98-e15.

141

APPENDIX C. COMPUTATIONAL STUDY

C.5 Training

As explained in Section 8.2, we vary between which policy we choose according
to the subject of interest during the computational study. When we measure the
performance of NNALNS in regards to the objective value, we choose the policy
that gave the lowest objective value during training. In contrast, when we compare
the reward obtained by NNALNS with and without problem-specific features in
Section 8.3.2, we use the last policy.

Figure C.30 and Figure C.31 illustrate the distinction between the two policies. In
Figure C.30 we see a downwards trend in the best objective after each update during
training. However, after 36 updates, the objective value increases. In Figure C.31 we
see that the total reward obtained after each update still increases after 36 episodes,
indicating that the network still learns to obtain more rewards.

Based on these observations, it is natural to choose the policy that performed the
best according to the objective value during training when we compare the perfor-
mance of NNALNS in terms of objective value. We choose the last policy for reward
comparisons because it enables us to compare the performance after an equal amount
of training. As we see in Figure C.31, the total reward shows an upward trend be-
fore a slight stagnation. This is a consistent pattern seen during preliminary testing.
Thus, choosing the last policy when we compare the performance of NNALNS in
terms of reward yields a fair comparison.

0 10 20 30 40 50
Update

700

710

720

730

740

750

760

770

Be
st

 O
bj

ec
tiv

e

Best objective policy

Last policy

Figure C.30: Best objective value development during training on V4-d84-e8.

142

APPENDIX C. COMPUTATIONAL STUDY

0 10 20 30 40 50
Update

700

750

800

850

900

950

To
ta

l r
ew

ar
d

Best objective policy

Last policy

Figure C.31: Total reward development during training on V4-d84-e8.

143

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

co
no

m
ic

s
an

d
M

an
ag

em
en

t
D

ep
t.

of
 In

du
st

ria
l E

co
no

m
ic

s
an

d
Te

ch
no

lo
gy

 M
an

ag
em

en
t

Sigurd Sigurdsson Langfeldt, Magnus Hauge
Langholm, Tomas Haugland Spangelo

Neural Network Assisted Large
Neighborhood Search for Personnel
Rostering

Master’s thesis in Industrial Economics and Technology
Management
Supervisor: Anders Nordby Gullhav
Co-supervisor: Henrik Andersson
June 2022

M
as

te
r’s

 th
es

is

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Introduction
	Outline

	Background and Theory
	Terminology
	Personnel Rostering
	The Healthcare Industry
	Visma Resolve
	Reinforcement Learning

	Literature Review
	Scoping the Resolve Rostering Problem
	Literature Search Strategy
	Personnel Rostering Problems
	Solution Approaches
	Our Contribution

	The Resolve Rostering Problem
	Constraints
	Demand
	Objective
	Assumptions

	Mathematical Model
	Indices
	Sets
	Parameters
	Decision variables
	Objective function
	Constraints

	Solution Method
	Adaptive Large Neighborhood Search
	Neural Network Assisted Large Neighborhood Search

	Test Instances and Parameters
	Test Instances
	Parameters

	Computational Study
	Test Environment
	Experimental Setup
	Value of Problem-Specific Features
	Comparative Study
	Selection Strategies
	Generalized Learning
	Limitations

	Concluding Remarks and Future Research
	Concluding Remarks
	Future Research

	Bibliography
	Mathematical Model
	Indices
	Sets
	Parameters
	Decision variables
	Objective function
	Constraints

	Operators and Parameter Values
	Operators
	Parameters

	Computational Study
	Comparative Study
	Value of Problem-Specific Features
	Generalized Learning
	Selection Strategies
	Training

