
Pose Estim
ation of Aquaculture Crane U

sing IM
U

s
Irfan Ljevo

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Irfan Ljevo

Pose Estimation of Aquaculture
Crane Using IMUs

Master’s thesis in Subsea Technology
Supervisor: Christian Holden, NTNU
Co-supervisor: Sveinung Ohrem, SINTEF & Bent Oddvar Arnesen
Haugaløkken, SINTEF
July 2022M

as
te

r’s
 th

es
is





Irfan Ljevo

Pose Estimation of Aquaculture Crane
Using IMUs

Master’s thesis in Subsea Technology
Supervisor: Christian Holden, NTNU
Co-supervisor: Sveinung Ohrem, SINTEF & Bent Oddvar Arnesen
Haugaløkken, SINTEF
July 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering





Departement of Mechanical and Industrial Engineering,
Faculty of Engineering

TPK4960 – Robotics and Automation

Pose Estimation of Aquaculture Crane
Using IMUs

Author: Irfan Ljevo

Supervisor: Christian Holden, NTNU
Co-supervisors: Sveinung Ohrem, SINTEF

Bent Oddvar Arnesen Haugaløkken, SINTEF

Trondheim
July 2022





Preface

This report documents the work performed in connection with my Master’s thesis during the
spring semester of 2022. It represents one full semester of work and completes my two-year
Master of Science program in Sub-sea technology (MIUVT) at the Norwegian University of
Science and Technology (NTNU).

Automation and robotics have always been fields that have fascinated me growing up, and
provided motivation for choosing this both as an object of my research, and as a choice of
my studies. With a background in electrical engineering, specialized in automation, I realized
importance and potential in exploring such topic, which made me even more interested in
performing research regarding this specific problem. There are still many issues that need to be
resolved in this field, and I am happy to have been given the chance to contribute.

I would like to thank my supervisor and co-supervisors at NTNU and SINTEF, Professor
Holden, Dr. Haugaløkken, and Dr. Ohrem, for providing insight, research material and hard-
ware needed in order to carry out a successful research. I would also like to extend my gratitude
for all the time and effort my supervisors have generously shared in order to help me in my re-
search, both in theoretical and practical aspects. Lastly, I would like to express my gratitude to
the closest friends and family for all the encouragement, motivation and support that they have
provided, especially my mother and father who have led the way all these years and convinced
me that five years can pass in an instance.

Trondheim, July, 2022

iii





Abstract

Salmon is one of Norway’s most exported goods, therefore aquaculture sector is among the
most significant in the country. As a result, creating changes in this area will be essential to
obtain more success, which will then give enhanced competitive advantage over other industries
in other regions of the world. It is essential to continue making investments in technologies
and strategies that will address the industry’s existing issues and difficulties. One of the main
challenges is the dynamic environment where the work is to be performed. Ships performing
their tasks out in the open seas will be heavily influenced by the wind and the motion of the
ocean. For the reasons mentioned above, it is crucial to stabilize crane operations when working
in an offshore environment. Operating an offshore crane is a difficult task that requires the
operator to simultaneously regulate the load’s position, anticipate vessel motion, and account
for load sway. For many years, there have been various proposals that would partly solve
problems caused by the dynamic environment of the ocean. Systems like heave compensation,
anti-rolling tanks, bilge keels, active fins and more, have been implemented in order to stabilize
the entire vessel. These systems are proven to be effective and are well tested in the field.
The downside is that they are relatively expensive and are not easily retrofitted on to the ship.
Therefore, another approach has to be taken in order to reduce the cost, and to implement
solutions which will make crane operations both easier and safer.

The research done in this report was based on exploitation of the Inertial Measurement Unit
(IMU). Capabilities of the relatively expensive industrial IMU were examined in order to give
insight into whether this sensor is capable of providing reliable measurements which could help
to make crane operations either fully or semi-automated. The reliability of the data, and the
overall performance of the sensor, was tested in hypothetical situations. The IMUs are known
to suffer from various errors like white noise and bias, all of which will have to be minimized
as much as possible if the IMU is to provide quality measurements. In addition to errors,
motion of the vessel and the tasks performed on the deck of the ship will also greatly influence
performance of the IMU. The results show that the IMU is capable of estimating pitch and roll
angles of the crane links, if it is positioned properly and is isolated from the outside disturbances
like man made vibrations, electromagnetic fields, etc. Unfortunately, the IMU is not capable
of providing direct estimations of the position, due to the fact that none of IMU’s sensors are
capable of reliably estimating the position of the desired object, directly. Integration of the
accelerometer or gyroscope readings will lead to a completely false position estimations due to
the fact that both readings contain bias offset which will cause position estimations to drift over
time. With this said, the work performed in this thesis shows that the dynamic environment
of the ocean would create numerous disturbances that would have a great impact on the IMU.
This fact, in conjunction with inherent IMU weaknesses, shows that IMU alone is not capable
of delivering desired results.
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Sammendrag

Et av norges største eksport varer er laks, derfor er akvakultur sektoren en av de mest betydelige
sektorene i landet. Det vil derfor være avgjørende å skape endringer innenfor dette området for
å oppnå størst mulig suksess, noe som vil da gi økt konkurransefortrinn i forhold til andre
bransjer i andre regioner av verden. I tillegg er det viktig å fortsette å investere i teknologi og
strategier som vil påvise bransjens eksisterende problemer og utfordringer. En av de primære
utfordringene er det dynamiske miljøet hvor arbeidet skal utføres. Skip som utfører deres opp-
gaver ute på havet vil være sterkt påvirket av vinden og havbevegelsen. Grunnet de overnevnte
utfordringene er det avgjørende å stabilisere krandriften når arbeidet utføres i et offshoremiljø.
Offshore krandrift er en kompleks oppgave som krever at operatøren må samtidig kontrollere
posisjonen til lasten, forutsi fartøyets bevegelse og kompensere for lastens svai. Det har vært
ulike forslag opp gjennom årene som har delvis løst problemer forårsaket av det dynamiske
miljøet i havet. Systemer som heave compensation, anti-rolling tanks, bilge keels, active fins
og mer, er implementert for å stabilisere hele fartøyet. Disse systemene har vist seg å være
effektive og er godt testet i feltet. Ulempen er at de er relativt dyre og kan ikke lett etter-
monteres på skipet. Derfor, må et annet alternativ bli tatt i bruk for å redusere kostnadene, og
implementere løsninger som vil gjøre kranoperasjoner både enklere og sikrere.

Forskingen i denne rapporten baserte seg på utnyttelse av Inertial Measurement Unit (IMU).
Funksjonaliteten til den relativt dyre industrielle IMU ble undersøkt for å gi innsikt i om denne
sensoren er i stand til å gi pålitelige målinger som kunne bidra til å gjøre kranoperasjoner enten
hel- eller halvautomatiserte. Påliteligheten til dataene, og sensorens generelle ytelse, ble testet
i hypotetiske situasjoner. IMUene er kjent for å avvike på grunn av ulike feil som hvit støy og
bias, som alle må minimeres mest mulig dersom IMU skal gi kvalitetsmålinger. I tillegg til feil,
vil bevegelse av fartøyet og oppgavene som utføres på skipets dekk også ha stor innflytelse på
ytelsen til IMU. Resultatene viser at IMU er i stand til å estimere roll and pitch vinklene av
kranlenkene, hvis den er riktig plassert og er isolert fra ytre forstyrrelser som menneskeskapte
vibrasjoner, elektromagnetiske felt, osv. IMU er ikke i stand til å gi direkte estimeringer av
posisjonen, grunnet at ingen av IMUs sensorer gir pålitelige estimeringer av posisjonen til det
ønskede objektet. Integrasjon av akselerometeret eller gyroskopmålinger vil føre til fullstendig
falske posisjonsestimater på grunn av at begge avlesningene inneholder bias forskyvning som
vil føre til at posisjonsestimater avviker over tid. Arbeidet utført i denne oppgave viser til at det
dynamiske miljøet i havet vil skape mange forstyrrelser som har stor innvirkning på IMUen.
Dette viser til at i tillegg til de underliggende IMU-svakhetene så vil ikke denne sensoren være
i stand til levere resultatene som ønskes oppnådd.
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Chapter 1

Introduction

1.1 Problem statement and objective
This report will investigate capabilities provided by the Inertial Measurement Unit in order to
deliver pose estimation of the crane joints and load. Previous master’s thesis [1] written on this
subject documented research regarding use of expensive and cheap IMUs. More specifically,
difference between obtained measurements and their ability to provide reliable pose estimation
and control of the suspended crane load. This research showed that both cheap and expensive
IMU will provide data which can be used in order to estimate rotation angles and use this
knowledge in control structure. Obvious differences between low and high-end IMU were in
the precision of the sensor measurements and the level of corruptions in the form of bias, drift
and white noise.

The basis of this report is examination of the exploitation of IMU sensors. Sensors will be used
in order to determine how reliable they are to provide pose estimation of the crane end-effector
and load suspended on it (crane hook). Inertial measurement unit used in this research is Bosch
XDK110, which is relatively expensive, having current price of 200 USD. Being more expen-
sive and with far more capabilities than standard low end IMUs, it still suffers from the same
corruptions and irregularities which are also occurring with the cheap 100 NOK IMUs. Prob-
lems like drift, bias, scale factor and white noise are all typical issues faced by the inertial units
regardless of their cost and quality. Therefore, this report will also look into methods for re-
moving or minimizing such problems, as well as methods for minimizing external disturbances
coming from the environment.

The nature of the dynamic environment provided by the ocean will introduce numerous diffi-
culties which will have great effect on the performance of the IMU. This fact will also be taken
into consideration, because IMUs will be heavily affected by the disturbances coming from the
wind and sea currents. All of the mentioned above has to be taken into consideration in order to
fully understand inertial measurement units and their limitations. Obtaining an understanding
of the capabilities, limitations and physical motions will provide the basis for possible solutions
in instances where IMU fails to deliver the desired results.
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If ship mounted cranes are to be stabilized, the control algorithm would require sensors that
provide reliable data regarding the crane’s orientation and position. All of the necessary in-
formation can be obtained if the crane had preinstalled sensors provided by a manufacturer,
for example a rotary encoder connected to the crane’s revolute joint, which measures rotation
directly. If the sensors are not preinstalled on the crane, the alternative to this would be to
retrofit the crane with the desired sensors afterwards. Due to the diversity in deck mounted
cranes, which are as diverse as the task they are performing, it is highly unlikely for all cranes
to have preinstalled sensors that are already positioned and calibrated for the task. Additionally,
it is not always the case that preinstalled sensors are of desired quality and complexity. Sensor
failures and malfunctions are always possible, thus it would not help to have an inbuilt sensor
which can be difficult to replace or to calibrate.

For this reason, it is worth investing time and resources in researching methods to automate
crane operations with the sensors that are retrofitted on the links and joints. Another impor-
tant aspect are the finances. Cranes with the inbuilt sensor systems are more expensive than
the ones that are not incorporating such systems. Manufacturing cranes with built-in sensors
would require multiple expenses in different stages of development. Crane’s links and joints
would have to be modified to host sensors. This would potentially include increasing the size
of the component and developing special electromagnetic protection for the sensor. In order
to make the sensor system more user-friendly, companies would have to invest in the devel-
opment of a simpler software. All of the mentioned above would increase the cost of buying
a crane with inbuilt sensors. Thus, it is natural to assume that a retrofitted sensor system
would be significantly more cost-efficient. This approach would also allow for greater flexi-
bility when considering different types of sensors. One would have much greater freedom to
choose methods and approaches when deriving and implementing control strategy. The crane
that is mentioned through this research is SINTEF owned, and is mounted on the SINTEF ship,
used for the aquaculture purposes. As of the writing of this report, the ship seen in Figure 1.1
is stationed in Frøya. The SINTEF crane that is to be automated can be seen in Figure1.2.

Figure 1.1: SINTEF ship.

2



Figure 1.2: SINTEF crane, from [1].

To summarize, the objectives of this research are:

• Understand IMU’s method of operation and its inner workings.

• Investigate problems that will occur when using an IMU in the determined environment.

• Learn procedures used to either eliminate or minimize effects of those problems as much
as possible.

• Understand limitations of the IMU when used to obtain pose estimation. Provide sugges-
tions for the possible solution to those limitations.

• Evaluate different types of filters which can be used in order to improve upon the quality
of the measurements.

• Compare different filtering methods.

• Derive equations describing position of the suspended load.
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1.2 Literature study
Cranes are machines that are used for transporting heavy loads or hazardous materials from
one place to another [2]. Diversity in tasks that are to be executed in harbors, or on the open
seas, have caused the need for cranes to be both land fixed and ship mounted. Through history,
ships were one of the main means of transportation of people and goods. With the industrial
revolution in the 19th century and globalization in the late 20th and early 21st century, ships
have become one of the main means of transporting various merchandise around the world.
With this expansion came also the need for ships to have on board crane, which would allow
for loading and offloading in harbors which are not equipped with adequate crane systems.

Historically, cranes were predominantly stationed on land, mostly in harbors and construction
sites. The first historical mention of the use of hoisting mechanism in Ancient Greece goes back
to 530 BC, mainly concerning construction of the temple of Artemis in Ephesus. With this said,
it is false to assume that this is the first use of the crane system, taking into consideration that
great structures like the ones in Egypt and Mycenae are much older [3]. Deck mounted cranes,
as they are known today, first started appearing in the late 19th and early 20th century. Battle-
ship USS Kearsarge was the first military vessel to be decommissioned and modernized to host
a deck mounted crane capable of lifting 250 tons [4]. In the second half of 20th century with
the advancements in the oil industry, like sub-sea production and exploitation, ship mounted
cranes became crucial as they were the main tool for the heavy lifting construction operations.

In order to achieve maximum flexibility and operational area, cranes are built using different
components which allow for multiple motions and degrees of freedom(Dof). Cranes usually
incorporate revolute and prismatic joints, which allow for rotational and translational type of
motion, as it can be seen in Figure 1.3.

Figure 1.3: Crane degrees of freedom, from [5]
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Typical cranes, as seen in Figure 1.3, are in general considered as under-actuated systems.
Meaning that they have more degrees of freedom than actuators [6]. In practice, this means that
deriving a control scheme for such systems is more demanding, considering the fact that there
are different degrees of freedom which cannot be controlled directly with an actuator. Under-
actuated systems are nonlinear systems that lack feedback and are more complex [6]. The
reason for this property of the crane system is due to the fact that cranes have to be light, easily
maintained, robust and cheap. Therefore, cranes usually have as few actuators as possible.
With this said, not all cranes are constructed with their simplicity as the main strategy. Crane
construction and functionality is as various as tasks that are to be carried out, regardless of
where the crane is stationed.

Most cranes that are land based experience very little to no disturbances. The only disturbance
which can influence crane operations to a noticeable degree is the wind. However, offshore
crane operations are exposed to continuous disturbances like wind and motion caused by the
sea waves and currents [7]. All these disturbances will cause the ship to experience motion
which will have an effect on the crane in heave elevation and in roll, pitch and yaw movement,
as seen in Figure 1.4. On board cranes are mainly operated by human operators using manual
control input in order to control motion of the crane. This also means that any unwanted motion
caused by the disturbances will have to be eliminated using operator input. Naturally, success
in eliminating the unwanted motions is solely based on the operator’s training and intuition,
which is acquired through experience. With this said, it can be concluded that the onboard
safety conditions are completely dependent on the skills of the crane operator and his/hers
ability to predict and counteract the motion caused by the ocean and wind. Fully or semi-
automated cranes would increase the safety of the crane operations and allow for easier crane
operations. If automation of the crane is to be achieved, the control algorithm would require a
mathematical model of the system. The crane, seen in Figure1.2, is consisting of two revolute
and one prismatic joint. The position of the crane load, can be modeled using Euler-Lagrange
equations [2]. The position of the crane hook, also known as the end-effector, can be obtained
from the mathematical model describing the crane kinematics. The kinematics equations can
be obtained by using robot theory and the Denavit Hartenberg convention [8].

Figure 1.4: Representation of heave, roll, pitch and yaw, from [9].
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The mathematical model describing the crane load, requires sensors to calculate the angle be-
tween the wire and the suspension point. This angle can be provided by an IMU, connected
to the crane hook. This is achievable by using a wireless IMU connected to the hook, in con-
junction with the mathematical model of the hook and the wire [10]. Low cost IMU will suffer
from various error terms, therefore different filtration methods have to be implemented in order
to achieve the greatest possible precision of the estimated parameters.

Since the crane will be operating in the dynamic environment, it is crucial for the control
algorithm to have an estimator tasked with estimating the motion of the ship caused by the
waves. The waves will cause the load to sway with the specific frequency which must be
included in the system so that the control algorithm can compensate for the motion. This can
be performed using a feed-forward controller, where disturbances caused by the waves are
compensated for before they can affect the system.

The IMU will be able to provide orientation estimations for the crane links. Direct roll and
pitch values will be provided by the accelerometer, in addition to the angular rate measurements
provided by the gyroscope. The IMU will have to be used together with other sensor in order to
ensure the best possible quality of the estimated parameter. If the IMU is to be used alone, the
noisy accelerometer and gyroscope would quickly cause perceived motion to radically deviate
from the true motion [11].

1.2.1 Related work
History of the IMU begins in the 1930s, where it was used in aircraft navigation. Because of its
constraints mainly in size, cost and power consumption, IMU usage at the time was restricted to
bulk applications and thus, unpopular for smaller size devices and consumer applications [12].
Further innovations like the gyroscope based compass [13] allowed for navigation and heading
calculations. As early as 19th century, ships started using anti-roll bilge keels as the mean for
roll stabilization [14]. After that came a series of innovations like ballast tanks (antiroll tanks)
and active fins [15], all of them with the intent to stabilize the ship’s motion during travel.
Unfortunately, such systems are not cheap and cannot be easily installed on a ship which does
not have this type of stabilization system from before. In addition to the fact that the vessel is
still going to experience motion due to disturbances.

Offshore cranes are the major actor on-board of platforms and vessels in transporting and lifting
operations. Under rough sea conditions, offshore crane operations result in many problems
such as load sway, positioning accuracy, collision avoidance and manipulation security, etc.
To monitor ships movement, commercial offshore cranes usually adopt some motion detection
unit like IMU and Motion Reference Unit (MRU). Then, according to this data input, a control
system calculates how actuators have to react to such movements [16].

Yingguang Chu, Filippo Sanfilippo, Vilmar Æsøy and Houxiang Zhang at the Aalesund Univer-
sity College [16], presented anti-sway and anti-heave algorithm which would provide reliable
control of vessel during potential sub-sea lifting operations. In 2016 Ning Xianliang, Zhao
Jiawen, and Xu Jianan [17] investigated use of IMU in order to estimate heave velocity by mo-
tion transformation. This velocity is used in conjunction with the heave filter in order to derive
a mathematical equation describing the ship’s vertical movement. The equation is later used as
a model in the active heave compensation system.
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Florentin Rauscher, Samuel Nann and Oliver Sawodny [10] investigated crane motion control
using an IMU. They presented a method to estimate angle of the wire using a wireless IMU
mounted on the hook. In addition, methods for filtering IMU data were presented, as well as
modeling of the hook and the wire. A complimentary filter was used in order to improve upon
data quality, while a Kalman filter was used for simple estimations of an angle between the
wire and the crane assembly.

Article written by Liyana Ramli, Zaharuddin Mohamed and others [2] gave comprehensive
review of the crane control strategies based upon different crane types. Anti-sway systems
available on the market are also presented. The master thesis written by O. Gjelstenli [18], at
NTNU, provides in depth insight into mathematical models describing crane and load move-
ment needed for an effective anti-sway control.

Norhafizan Ahmad, Raja Ariffin Raja Ghazilla, and Nazirah M. Khairi [12] wrote the article
describing IMU. The article describes various aspects of the IMU like data accuracy, size,
response rate, and IMU Dof. It provides information regarding several application fields for
the IMU. According to the article, IMUs are used in robotics, medical rehabilitation, sports,
navigation systems etc. In 2008, Chris C. Ward and Karl Iagnemma investigated use of the slip
detector algorithm which uses measurements from the IMU, GPS, and front wheel encoders in
order to detect wheel slip of the robot car [19].

Manon Kok, Jeroen D. Hol and Thomas B. Schön wrote about the use of inertial sensor for the
position and orientation estimation [20]. The article gives detailed description of the proba-
bilistic models, models for estimation of the position and orientation, as well as calibration and
filtering methods. Weixin Yang, Alexandr Bajenov and Yantao Shen implemented IMU on the
snake robot with the intention of measuring translation and providing trajectory tracking [21].

Shenghai Wanga, Yuqing Suna, Haiquan Chena and Jialu Du proposed an improvement to the
three-post direct ship motion compensation (DSMC) designed by Barge Master [22]. This
system mounts the crane on top of a three-post stabilization platform, which stabilizes crane
operations under rough seas conditions. The system measures ship’s motion and directly com-
pensates in roll, pitch and heave by a 3-axis motion platform. Performance of such platforms is
still limited due to size of the components and their functionality in the dynamic environment.

Thor I. Fossen in his book [23], gives detailed information regarding mathematical modeling,
rigid body kinetics and kinematics of the marine craft. Models for ships, offshore structures and
underwater vehicles are described in detail, together with sensors and signal filtering methods.
The book also provides historical information regarding various innovations significant for the
marine vessels and motion control.
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1.3 Report structure
Chapter 2 will provide the reader with the information regarding the IMU used in this thesis.
IMU’s inner workings are presented together with the code used to extract the data using Matlab
and Python script. Additionally, the IMU limitations and potential disturbances identified.
In Chapter 3, the equations used to obtain Euler angles are presented and typical problems
like the gimbal lock are explained. Chapter 4 deals with the digital processing of the IMU
measurements. Digital filtering methods like the low-pass filters are shown together with the
method for the sensor fusion. Chapter 5 shows mathematical modeling of the suspended crane
load using the Lagrange equations. Additionally, Runge-Kutta iterative integration method is
presented. Chapter 6 is the final chapter providing results obtained from the methods described
in Chapters 2-6.
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Chapter 2

Inertial Measurement Unit (IMU)

2.1 Bosch XDK110 Cross-Domain Developement Kit
The goal of this research is to use Bosch XDK110 cross-domain development platform in
order to read data which is provided by the numerous sensors available within the platform.
The XDK is a universal programmable sensor device and IoT (Internet of Things) prototyping
platform with an open SDK. This device is an industrial platform which combines multiple
sensor communication protocols in order to achieve maximum flexibility and application use.
Bosch XDK combines multiple MEMS sensors like accelerometer, gyroscope, thermometer,
magnetometer, humidity sensor etc. Bosch XDK is an industrial unit which currently costs 250
USD. In addition to sensors, it also possesses multiple communication protocols like Bluetooth
4.0 low energy and wireless LAN. XDK is equipped with the 32-Bit microcontroller (ARM
Cortex M3), which has 1 MB Flash and 128 kB RAM. In order to achieve maximum flexibility
when used, XDK has an internal 560 mAh Li-Ion rechargeable battery. It also has SD card
slot which allows for data to be logged on the SD card while performing measurements. Full
capabilities of the XDK are listed in Tables 2.1, 2.2 and 2.3.

Table 2.1: Bosch XDK110 sensors.

Name Type
BMA280 Accelerometer
BMG160 Gyroscope
BMM150 Magnetometer
BMI160 Accelerometer/Gyroscope
BME280 Humidity/Pressure/Temperature
AKU340 Ambient Noise

MAX44009 Ambient Light
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Table 2.2: Bosch XDK110 communication.

Name Type
Cable USB 2.0

Wireless Bluetooth; Wireless LAN
LED 1x green, 1x yellow, 1x orange, 1x red

Table 2.3: Bosch XDK110 technical specifications.

Name Value
Temperature Range -20 - 60 °C operating, 0 - 45 °C charging

Humidity 10 - 90 %, non condensing
IP Rating IP 30 (IEC 60529)

Flammability classification HB (IEC 60695-11-10/-20; CSA C 22.2)
Voltage 5 V DC

Charging Current 500 mA maximum
Communication (cable) USB

Wireless LAN IEEE 802.11 b/g/
Bluetooth 4.0 IEEE 802.15.1
Cable length <3m

Figure 2.1: Bosch XDK110 Cross-Domain Development Kit.
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2.2 Software
In order to program the XDK, Bosch has supplied a software called XDK Workbench, which
also includes a direct interface to the XDK community and the XDK API documentation.
Workbench offers two programming languages, Eclipse Mita and C. Eclipse Mita is a pro-
gramming language made in order to simplify programming of the embedded platforms for the
users without embedded development background. This makes it much more user-friendly and
much easier to learn than the standard C. Mita is event-based, e.g. events triggered by sensors,
timers or connectivity.
This development style makes it fit perfectly for IoT applications where devices spend most of
the time either in hibernation or some other form of power saviour mode. Thus it is possible
for sensors to wake up, perform the operation and go back to power saving mode. Listing 2.1
gives an example of accelerometer data being printed to the terminal using Eclipse Mita code:

e v e r y 100 m i l l i s e c o n d s {
v a r x = a c c e l e r o m e t e r . x _ a x i s . r e a d ( ) ;
v a r y = a c c e l e r o m e t e r . y _ a x i s . r e a d ( ) ;
v a r z = a c c e l e r o m e t e r . z _ a x i s . r e a d ( ) ;
p r i n t l n ( ‘ A c c e l e r o m e t e r o u t p u t :

\ n x : ${x}mg \ n y : ${y}mg \ n z : ${ z }mg ‘ ) ;
}

Listing 2.1: Printing accelerometer readings.

Due to its simplicity and available examples on the Bosch and Eclipse Mita sites, it was decided
that Mita will be used as a programming language. As mentioned in Section 2.1, the XDK
offers multiple sensors which can easily be configured and extracted using Mita script. When
the Mita script is compiled and executed, it is converted to the C code. This is performed in
order to leverage debugging tools, efficient compilers and existing infrastructure provided by
the C programming language. Meaning that Mita still has possibility to use C libraries. In
Mita script, every sensor has to be configured before it can be practically used. When being
configured, user defines different parameters like the bandwidth, range, mode of operation etc.
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Figure 2.2: XDK Workbench software.
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2.3 Choice of sensors
For this research, 3-axis accelerometer and 3-axis gyroscope are going to be primary sensors
used for the purpose of obtaining needed data. Pose estimation is a task that implies finding
or estimating position and orientation of the desired object. With this said accelerometer, gy-
roscope and magnetometer are the three sensors which will provide orientation in the form of
roll, pitch and yaw. Using trigonometry equations together with the physical dimensions of the
crane, it is also possible to obtain the position of the tracked object.

For the purpose of finding angle of the joints, more specifically roll and pitch values, gravita-
tional acceleration will be used together with the angular velocity provided by the gyroscope.
When finding yaw angle, magnetometer is the sensor which would be used in order to achieve
such a task. Magnetometers are sensors that measures the strength and sometimes direction of
the Earth’s magnetic field [24]. It detects fluctuations in Earth’s magnetic field, by measuring
magnetic flux density at the sensor’s point. Using those fluctuations, it is capable of finding a
vector pointing at the Earth’s magnetic North pole. This vector is later used in order to obtain
yaw angle, a task which can’t be effectively executed by neither accelerometer nor gyroscope.

The magnetometer sensor will not be used in this research. This is due to the great uncertainty
whether the sensor would be reliable and useful in the scenario where IMU is mounted on a
ship crane. This concern is due to the fact that magnetometer measures magnetic field which
can be distorted by both soft and hard iron sources, thus corrupting the measurements. A soft
iron source is a source that cannot generate magnetic field, while hard iron sources can generate
magnetic field. Magnetometer must be calibrated in order to eliminate as much of those cor-
ruptions as possible, but this does not solve the problem. Ship deck is an area where magnetic
field is influenced by the soft iron sources like deck floor, railings and crane component, all of
which are made from various metals. In addition, ships also host hard iron sources capable of
generating its own magnetic field, like power cables and electrical motors. It is also important
to emphasize that magnetometers also have to be calibrated to compensate for the changes in
the Earth’s magnetic field, which will occur if the ship changes its geographical location.

As shown in Table 2.1, the XDK posesses multiple accelerometers and gyroscopes. BMI160
Accelerometer/Gyroscope is an IMU which is included in the XDK. This means that the user
of the XDK practically has the ability to choose which accelerometer and gyroscope to use.
Either to choose BMG160 and BMA280 gyroscope and accelerometer, or to choose BMI160
gyroscope accelerometer package. After some trials it was concluded that there is no noticeable
difference between individual accelerometer-gyroscope (BMA280-BMG160) and IMU pack-
age BMI160 containing another set of accelerometer-gyroscope. For this reason it was chosen
to use individual accelerometer (BMA280) and gyroscope (BMG160). As of now, notation
IMU will only be used when refering to the XDK as a whole.
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2.4 Measurement output and limitations
XDK110 BMA280 accelerometer gives scaled acceleration measurements in gravitational force
(mG). When IMU is at rest on a steady surface like a table top, with the axis pointing as shown
in Figure 2.3, the sensor should transmit measurements of 1000 mG for Az and 0 mG for both
Ax and Ay. These are the perfect measurements that will not be achievable in reality due to
different errors and imperfections present in the measurements.

Figure 2.3: Orientation of sensing axis for accelerometer and gyroscope.

BMG160 gyroscope transmits scaled angular rate measurements in degrees per second. Sensi-
tivity axes for the gyroscope are the same as for the accelerometer. If gyroscope is positioned
as described before, on the table top at rest without any disturbances, it should measure angular
velocity of 0 degrees per second for all sensitivity axis. Maximum sampling frequency of both
BMA260 and BMG160 is in theory 2 kHz but in reality it reaches maximum of 1 kHz. This is
due to the limitations in the I2C protocol which is used as a communication between accelerom-
eter/gyroscope and the MCU. Practically, an application which tries to read data from the two
sensors, which both are set to sample rate of 1kHz, cannot be read by the MCU with 1kHz
each. This means that a programmer has to be careful when setting the sample rate of every
sensor. Additionally, the sampling rate is also influenced by interrupts, which are performed by
the freeRTOS operating system[25].

For this research, it was concluded that the sampling frequency of 100 Hz is going to be chosen.
This is derived from the assumption that 100 Hz sampling frequency is more than sufficient
for measuring movement of the crane during operation. When performing lifting operations,
the deck mounted crane will be speed limited and will therefore not be able to perform rapid
movement due to the safety concerns. For this reason, it is assumed that the sampling frequency
of 100 Hz will be more than sufficient for the task.
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2.5 Measurement errors
With the advancements in electronics, inertial measurement units became smaller and cheaper.
This allowed hobbyists to have access to MEMS IMU components for as low as 75NOK.
Every sensor suffers from certain errors caused either by the environment or by the imperfec-
tions during manufacturing process. In the case of a IMU, it suffers from measurement errors
which are manifested in form of bias, scaling factor, white noise etc. By integrating measure-
ments in the potential navigation algorithm, these errors will be accumulated leading to the drift
in output. Regardless of cost, all IMU sensors will suffer from errors like bias, white noise and
bias drift. This is the case for every IMU, from the cheapest IMU to the military grade IMUs
used on nuclear submarines for the purpose of navigation when submarines are under surface
for months at the time. In general, IMU errors can be categorised into two categories: stochas-
tic and deterministic. Deterministic errors are the ones that can be detected in their entirety by
monitoring the output, and can be attributed to manufacturing process and differences in com-
ponents. Stochastic errors cannot be exactly measured. They can be approximated statistically.
Such errors are usually electric noise interfering with the system’s output and is assumed to be
Gausian in nature [26]. Deterministic errors can be removed by calibration, while stochastic
errors like white noise can be dampened with the use of filters.

2.5.1 Bias
Bias is deviation from the true measured value in form of a constant offset. Bias can be caused
by a variety of factors. Some of them are imperfections during manufacturing process and en-
vironmental temperature. As seen of Figure 2.4, bias is a constant offset from the true value
which has to be removed if accelerometer and gyroscope are to be used in some type of inte-
gration algorithm like the dead reckoning. The bias is typically measured in units of gravity
G for an accelerometer, and change in angle over time for gyroscope, expressed in radians per
second (rad/s) [27]

Figure 2.4: Illustration of bias, from [27, p. 17].
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2.5.2 White noise
White noise is a random error signal that is present with the given sensor measurements. Qual-
ity of the components used to build an IMU is one of the factors which contributes to the
presence of white noise in the measurements. Proximity of electrical motors or power lines
is an external factor which has to be taken into consideration when using IMU or any other
sensors. Electrical current, either in power cables or coils of the electric motors, will produce
changing magnetic field which will have an effect on the white noise quantity. As seen in
Figure 2.5, white noise is a fluctuation about ideal set of data [27]. This type of error can be
removed with the use of digital filters.

Figure 2.5: Illustration of white noise, from [27, p. 18].

2.5.3 Bias drift
Bias drift, or moving bias as it is also called, is the drift in bias over time. The most important
aspect with the bias drift is that it drifts depending on time, environmental factors and stochastic
factors. Bias drift is a serious problem since it creates more issues than the white noise. To
illustrate, after the first integration (e.g. to estimate angle from angular velocity) the error due
to noise grows proportionally to the square root of time. The error due to bias drift will grow
proportionally to the time itself. This type of error is usually present in gyroscopes and is
attributed to changes in drive frequency and structural asymmetries [28]. Bias drift must not be
confused with random walk. Random walk is caused by integration of the errors like the bias
drift and white noise which causes long term growth in the output measurements [29, p. 31].
One of the potential solutions to this problem is to implement a zero update to the gyroscope.
In case of an aquaculture crane, if the crane’s starting position (zero position) is known, than a
control algorithm would cancel accumulated error every time the crane is stationary in its zero
position. Of course, implementation of such solution is completely determined by the tasks
that are to be executed by the crane.
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2.6 Obtaining measurements

By using Mita script, one can extract sensor measurements. Before extracting the measure-
ments, sensors have to be configured, as shown in the Listing 2.2. After importing packages,
the user must configure sensors and determine the values of the detectable range and bandwidth
of the inner AD/DA low-pass filter, using two setup functions. After reviewing the content
from the Bosch Developer website [30, 31] and reviewing the accelerometer and gyroscope
response, it was decided that the configuration seen in Listing 2.2 below will be used for the
further research.

package main ;
i m p o r t p l a t f o r m s . xdk110 ;

s e t u p Gyroscope_BMG160 {
r a n g e = Range_250s ;
bandwid th = Bw_12Hz ;

}
s e t u p a c c e l e r o m e t e r {

bandwid th = BW_500Hz ;
r a n g e = Range_8G ;

}

e v e r y 10 m i l l i s e c o n d s {
v a r gyro_x = g y r o s c o p e . x _ a x i s . r e a d ( ) ;
v a r gyro_y = g y r o s c o p e . y _ a x i s . r e a d ( ) ;
v a r gyro_z = g y r o s c o p e . z _ a x i s . r e a d ( ) ;

v a r a c c e l _ x = a c c e l e r o m e t e r . x _ a x i s . r e a d ( ) ;
v a r a c c e l _ y = a c c e l e r o m e t e r . y _ a x i s . r e a d ( ) ;
v a r a c c e l _ z = a c c e l e r o m e t e r . z _ a x i s . r e a d ( ) ;

p r i n t l n ( ‘ ${ gyro_x } ${ gyro_y } ${ gyro_z }
${ a c c e l _ x } ${ a c c e l _ y } ${ a c c e l _ z } ‘ ) ;

}
Listing 2.2: Configuration and printing of the accelerometer and gyroscope readings.
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For the accelerometer configuration, after inspection and trial, it was concluded that the band-
width of 500 Hz was to be used for the inner low-pass filter. For the gyroscope, after inspection
and trial, it was concluded that the bandwidth of 12 Hz gave the best gyroscope response with
the least ripples and high sensitivity spikes. Range configuration is specially important for both
the accelerometer and gyroscope. The reason for this is due to the fact that in order to achieve
the greatest range sensitivity, one must sacrifice resolution of the sensor. Bosch Developer
web site[31] gives detailed description on the relationship between range and resolution. As
described, 500 deg/s range for the gyroscope will result in resolution of 0.25 deg/s. For this
reason, accelerometer range was set to 8G, while gyroscope range was set to 250 deg/s. Lower
resolution for the accelerometer could also be chosen due to the assumption that the IMUs con-
nected to the crane will never experience force greater than 4G, even under possible high seas
conditions.

When compiling and running code presented in Listing 2.2, XDK Worbench gives command
to the IMU to start sending desired data. This data is then sent via USB cable to the USB port
which is then printed on the Workbench terminal. XDK Workbench does not have functionali-
ties like Python or Matlab, thus in order to work with the data coming from the XDK, one must
be able to capture measurements with either Python or Matlab scripts.

Figure 2.6: Illustration of serial port communication.

The accelerometer and gyroscope data is sent to the USB port where it is captured by either
Matlab or Python and is then interpreted and used by the script, as seen in Figure 2.6. Important
to note is that two pieces of software or peripheral devices cannot listen to the same USB port
at the same time. For this reason, one must compile and run IMU code in XDK Workbench,
when compilation is finished and IMU is transmitting the desired data, the user must terminate
the Workbench software so that other programs can access the data that is being sent to the
USB port. Accessing the IMU data via USB port is shown in Appendix A using Matlab and
Python. Matlab offers serial port function for the purposes of creating object of the serial port.
This object gives access to the information sent via USB port, as it can be seen in Listing 2.3.
Function serial port takes four input arguments, from which two are mandatory and two are
optional. Name of the USB port and baudrate are mandatory to specify. In Listing 2.3, the
com port name is "COM6" and baudrate is 9600 bits/sec. The com port name will be different
for each computer. In Windows, com port name is designated COM#, while in Linux name
is designated as /dev/ttyACM#. Baudrate is very important to specify, since it is a measure of
how fast data is moving between instruments that use serial communication [32].
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c l e a r BoschIMU ;
r a t e = 9600 ;
BoschIMU = s e r i a l p o r t ( "COM6" , r a t e )

g y r o _ a c c e l _ m a t = z e r o s ( 1 0 0 0 , 7 ) ; %Empty m a t r i x
n =1; %Coun te r
t S t a r t = c l o c k ;

w h i l e n <=10000
d a t a = r e a d l i n e ( BoschIMU ) ;
s t r = s p l i t ( d a t a ) ;

f o r i = 1 : 6
g y r o _ a c c e l _ m a t ( n , i ) = s t r 2 d o u b l e ( s t r ( i ) ) ;

end
t S t o p = e t i m e ( c lock , t S t a r t ) ;
g y r o _ a c c e l _ m a t ( n , 7 ) = t S t o p ;

i f ( t S t o p > 50)
b r e a k ;

end
n=n +1;

end
Listing 2.3: Extracting IMU measurements from the USB port using Matlab script.

Figure 2.7: BMA280 accelerometer measurements.
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Figure 2.8: BMG160 gyroscope measurements.
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2.7 Allan analysis
As mentioned in Chapter 2.5, every inertial measurement unit regardless of its quality and cost
will have a certain degree of error in the output measurements. Inertial systems design and
performance prediction depends on the accurate knowledge of the sensors’ noise model. This
can be achieved with the frequency-domain approach of modeling by using power spectral
density (PSD) to estimate transfer function of the noise model. Unfortunately, this is difficult
for nonsystem analysts to understand. The Allan variance is a time-domain- analysis technique
originally developed to study the frequency stability of precision oscillators. Being a directly
measurable quantity, it can provide information on the types and magnitude of various noise
terms [33].

For this reason, Allan analysis is crucial to perform, specially in cases when noise model is
necessary to derive in order to enhance performance of the inertial unit. Kalman filter, es-
pecially Extended Kalman Filter (EKF), requires estimator of state space signal model of the
process. The signal model dynamics describe how the process may be evolving. Once the sys-
tem has been identified, Kalman filter theory requires noise covariance matrices Q and R [34].
These matrices are used by the algorithm to determine how much original measurements are
to be trusted according to the noise information provided by the noise covariance matrices. In
this case Allan investigation would be beneficial since it would provide information regarding
which noise is present in the measurements, and the magnitude of that noise.

Before performing Allan analysis, it is beneficial to calculate standard deviation of the ac-
celerometer and gyroscope data. Standard deviation provides information regarding noise level
of the dataset. If data consists of random spikes and dips, it will have a high deviation value
and will therefore be considered as noisy data. Standard deviation can be used in order to get
a general understanding of the white noise magnitude. But it will not provide sufficient results
if it is to be implemented on a set of data which is collected over a long period of time. As
the dataset is increasing with time, the values for the standard deviation will increase as well
due to the fact that the standard deviation diverges with the square root of the data length. Ad-
ditionally, the standard deviation is significantly dependent on the filter form, e.g., linear least
squares, as well as the clock deviations [35]. For the purpose of calculating variance and stan-
dard deviation, IMU data will be logged for approximately 30 minutes with the frequency of
100 Hz.

When performing Allan analysis, IMU measurements will be logged for a long period of time,
in this case it was chosen to collect the measurements for 5 hours. For this purpose, IMU was
placed on a flat surface with the Az axis pointing towards the sky. Data was logged with the
sampling frequency of 100 Hz for 5 hours which accounted for 1.8 million data samples. If the
test was to be successful, it is important for IMU to be completely undisturbed for the duration
of the data logging. For a vector A made up of N scalar samples, according to [36], the standard
deviation is defined as:

S =

√√√√ 1
N−1

N

∑
i−1
|Ai−µ|2 (2.1)
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where µ is mean of A:

µ =
1
N

N

∑
i=1

Ai (2.2)

Importing the file to the BoschIMU_script.m Matlab script, as seen in Appendix A.2, de-
scribed in and performing calculations using inbuilt standard deviation and variance functions
gives:

Table 2.4: Variance values for each axis.

Axis Variance
Ax 22.05
Ay 34.85
Az 28.59
Gx 0.00
Gy 0.00
Gz 0.00

Table 2.5: Standard deviation values for each axis.

Axis Standard deviation
Ax 4.69
Ay 5.90
Az 5.34
Gx 0.00
Gy 0.00
Gz 0.00

Since standard deviation cannot be used as a measurement of the performance, the method
which is independent of the data length has to be used. In this analysis, Allan’s definition and
results are related to five basic noise terms. Those terms are quantization noise, angle random
walk, bias instability, rate random walk and rate ramp. Allan variance will be calculated and
later used to obtain Allan deviation which will provide information regarding noise character-
istics.
It is assumed that there are N consecutive data points, each having a sample time of t0. Associ-
ated with each cluster, is a time T, which is equal to nt0. If the instantaneous output rate of the
accelerometer is a(t), the cluster average is defined as [37]:

ā(τ) =
1
τ

∫ tk+τ

tk
a(t)dt (2.3)
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where ā(t) represents the cluster average of the output rate for a cluster which starts from kth
data point and contains the n data points. Deffinition of the subsequent cluster average is:

āk+τ(τ) =
1
τ

∫ tk+2τ

tk+τ

a(t)dt (2.4)

The difference between the two cluster averages dk(τ) is:

dk(τ) = āk+τ(τ)− ā(τ) (2.5)

Here the quantity of interest is the variance of dk(τ) over all the cluster of the same size that
can be formed from the entire data. Thus, the Allan variance of length τ is defined as [34]:

σ
2(τ) =

1
2(N−2n)

N−2n

∑
k=1

[
ā(τ)− ā(τ)−µk

]2
(2.6)

Allan variance is calculated using equation:

σ
2(τ) =

1
2

〈(
yn+1− y2

n

)2〉
=

1
2τ2

〈(
xk+2M−2xk+M + xk

)2〉
(2.7)

where τ = Mτ0 and ⟨⟩ is the ensemble average. The ensemble average can be expanded to give
Allan variance equation, also known as overlapping method [38]:

σ
2(τ) =

1
2τ2(N−2M)

L−2M

∑
k=1

(
xk+2M−2xk+M + xk

)2
(2.8)

Finally, Allan deviation is used to examine noise characteristics:

σ(τ) =
√

σ2(τ) (2.9)
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2.8 Frequency domain analysis
Performing noise analysis is extremely important when considering sensors for different pur-
poses. Sensor noise will corrupt the measurements and will lead to distortion of the useful data.
For this reason, in addition to the Allan analysis, it is important to perform frequency domain
analysis. Allan analysis will provide information regarding the type of noise and its amplitude,
but it will not be sufficient since it is the time domain analysis. This is also true for variance
σ2 and standard deviation σ . Frequency domain analysis will provide information regarding
different frequency components found in the measured data. These frequencies can be pure
white noise, but they can also be disturbances measured by the IMU.

2.8.1 Fourier analysis
In order to obtain an understanding of the signal and its components, it is important to per-
form Fourier analysis of the signal. Fourier transform transforms a functions in space or time
domain into sinusoidal function in frequency domain [39]. This approach will allow for identi-
fication of different periodical disturbance signals that are present in the output measurement.
The frequency of the disturbances will be identified and will provide additional understand-
ing of the different frequency components that are included in the IMU output measurements.
This knowledge is extremely important since various disturbances can be identified and later
destroyed using for example notch filter (Band-stop filter). Accelerometer and gyroscope mea-
surements were imported in Python script, which performed calculations using numpy Fast
Fourier Transform algorithm. Calculations were performed in noise_density.py script, de-
scribed in Appendix A.1.9. The results can be seen in Figure 2.9.

Figure 2.9: Single-sided amplitude spectrum of the Ax.
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Figure 2.10: Single-sided amplitude spectrum of the Gx.

The Fast Fourier Transform is the algorithm used to compute the Fourier transform of the
signal. The Fourier transform states that every signal is the sum of multiple sinusoids, each
with specific frequency and amplitude. The plots in Figures 2.9 and 2.10 show multiple peaks
that represent sinusoidal waves contained within the measurements captured by the IMU. The
Figures 2.9 and 2.10 have both a frequency range from 0 to 50 Hz. Frequency of 50 Hz is the
Nyquist frequency (folding frequency) of the IMU’s sampling frequency. This is calculated
using the equation:

FN =
Fsampling

2
(2.10)

Figure 2.9 shows six major spikes at the frequencies of approximately 8 Hz, 12 Hz, 27 Hz, 30
Hz, 46 Hz and 49 Hz. The plot in Figure 2.10, shows multiple spikes spread out across the
entire 50 Hz range. The spike with the largest amplitude, at the frequency of approximately 8
Hz, seems to be the only sinusoidal component affecting the gyroscope measurements. Other
spikes are most likely products of the white noise, taken into consideration that the 8 Hz spike
is present in both accelerometer and gyroscope measurements. The Fourier transform gives
detailed information regarding amplitude and frequency of the sinusoidal component present
within the measured data. In order to obtain an understanding of the power possessed by the
each sinusoidal component, one must perform the power spectral density analysis.
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2.8.2 Power spectrum density analysis
Power spectrum density analysis (PSD) will provide insight into the power possessed by each
frequency component. In the noise_density.py Python script, described in Appendix A.1.10,
ScyPy’s signal.welch() function will be used in order to compute the PSD. The results from
the alculation results can be seen in the Figure 2.11.

Figure 2.11: Power spectral density of the accelerometer data.

Figure 2.11 shows the power of different frequency components contained by the accelerome-
ter measurements. The largest spikes in the spectral density occur at 12 Hz, 18 Hz, 46 Hz and
49 Hz. The frequencies which have power values below 1500 µG

√
Hz can be ignored since

they are most likely not the real part of the transform. The 12 Hz frequency component was
identified to be the frequency of the CPU cooling fan. While collecting the data for the anal-
ysis, IMU was placed on a table, close to the stationary PC. Due to the proximity of the two,
IMU was able to capture the frequency of the CPU fan, which was operating at the average
rotational speed of 700 RPM. Therefore, this frequency component can be considered to be the
disturbance coming from the environment. The sources of other frequency components, most
notably the ones at 18 Hz, 46 Hz and 49 Hz, are difficult to determine. These are also suspected
to be disturbance sources coming from the environment. The presence of the white noise is also
apparent and can be seen in Figure 2.11.
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The same procedure was performed with the gyroscope measurements. The results are seen in
Figure 2.12

Figure 2.12: Power spectral density of the gyroscope data.

The power spectral density analysis of the gyroscope data shows that it is only the Gx axis
measurement that is mostly influenced by the noise. The measurements captured by the Gy
and Gz axis do not possess any disturbances, thus the graphs plotted in Figure 2.12, are flat
and do not show any frequency components. Noise density values for both accelerometer and
gyroscope data are presented in Tables 2.6 and 2.7.

Table 2.6: Standard deviation values for each axis.

Accelerometer axis Noise density
[
µG
√

Hz
]

Ax 649.5801
Ay 728.1151
Az 730.0412

Table 2.7: Standard deviation values for each axis.

Gyroscope axis Noise density
[
d ps
√

Hz
]

Gx 0.000718
Gy 0.000113
Gz 0.000000
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2.9 Calibration
After inspecting Figure 2.7, it is apparent that the accelerometer requires removal of the bias
error. Figure 2.8 shows that gyroscope readings seem to be perfect without any constant bias.
Accelerometer readings are noticeably off their true value, that should be 1000 mG for Az and
0 mG for Ax and Ay. For the purpose of finding accelerometer bias, the same data file was used
as the one described in Section 2.7. The XDK was oriented with Az axis pointing at the sky
and was recording the data undisturbed for 5 hours. The sensor bias can be removed either
by calibration or by estimation using for example Kalman filter. In this task it was chosen to
perform calibration due to the complexity of Kalman filters. After processing the data from the
text file, the values shown in Table 2.8 were obtained:

Table 2.8: Bias values for each axis, Az pointing towards the sky

Axis Measured mean True val. Bias Unit
Ax 36.0 0.0 36.0 mG
Ay 25.0 0.0 25.0 mG
Az 1044.0 1000.0 44.0 mG
Gx 0.0 0.0 0.0 deg/s
Gy 0.0 0.0 0.0 deg/s
Gz 0.0 0.0 0.0 deg/s

The same procedure was performed two more times, once with Ax axis pointing towards the
sky and then with Ay pointing towards the sky, as seen in Tables 2.9 and 2.10.

Table 2.9: Bias values for each axis, Ax pointing towards the sky

Axis Measured mean True val. Bias Unit
Ax 1057.0 1000.0 57.0 mG
Ay 12.0 0.0 12.0 mG
Az -15.0 0.0 -15.0 mG
Gx 0.0 0.0 0.0 deg/s
Gy 0.0 0.0 0.0 deg/s
Gz 0.0 0.0 0.0 deg/s

Table 2.10: Bias values for each axis, Ay pointing towards the sky

Axis Measured mean True val. Bias Unit
Ax 21.0 0.0 21.0 mG
Ay 1035.0 1000.0 35.0 mG
Az -4.0 0.0 -4.0 mG
Gx 0.0 0.0 0.0 deg/s
Gy 0.0 0.0 0.0 deg/s
Gz 0.0 0.0 0.0 deg/s
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Results showed that the maximum bias value is at 5.7% of the gravitational acceleration. This
indicates that the accelerometer requires calibration. It is important to note is that the bias
values seen in Tables 2.8, 2.9 and 2.10 don’t necessarily require calibration. The need for
calibration is determined according to the task specifications and desired precision. Depending
on the precision requirements and by consulting the data quality from the IMU, the need for
calibration can be decided. Majority of the crane operations do notr require great precision,
thus one can decide if the calibration is required at all. Meanwhile, gyroscopes have to be
calibrated before they are used. Measurements provided by the gyroscope can suffer from bias
and bias drift. These errors will be extremely problematic if gyroscope data is to be used in
some type of integration algorithm like the dead reckoning. The simplest accelerometer model
for single axis sensors considers only a scale factor and constant offset, is given by the equation
[40]:

am(t) = Aa(t)+b (2.11)

where am(t) is the raw accelerometer output, A is the scale factor, b denotes the bias and a(t)
stands for the actual acceleration measurement which does not include bias error. For pose
estimation purposes, tri-axial accelerometers, composed of three, single-axis, orthogonally
mounted linear accelerometers, are employed. The generalization of the simplest single-axis
model for tri-axial accelerometers, which accounts for scale factor and bias, reads as [40]:

am(t) = Aa(t)+b (2.12)

where A ∈ R3x3 is a matrix that includes the scale factors and non-orthogonality corrections,
b ∈R3 is the matrix containing bias terms, a(t) is the matrix containing acceleration measured
in the absence of bias, from now on also called true value and:

am(t) =

ax(t)
ay(t)
az(t)

 (2.13)

From (2.12), one can obtain the calibration equation that will provide calibrated accelerometer
measurements. The equation states:

a(t) = A−1am(t)−b (2.14)

Calculation of the matrices will be performed in the calibration software. After A−1 and b
matrices are calculated, Equation 2.14 will be imported in Python and Matlab code in order to
calibrate the accelerometer.
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2.9.1 Procedure
Raw measurements of the three accelerometer axes were recorded to a text file using
recor_uncalib_data.py script, described in Appendix A.1.5. Afterwards, A−1 and b matri-
ces will be calculated using a software called Magneto [41]. In order to ensure best possible
quality, each outputted measurement was the average of 50 measurements taken while the IMU
is stationary. Function performing this task can be seen in Listing 2.4:

d e f RecordDa taP t ( s e r : S e r i a l P o r t ) −> t u p l e :
ax = ay = az = 0 . 0

f o r _ i n r a n g e (AVG_MEAS) : #AVG_MEAS=50
t r y :

d a t a = s e r . Read ( ) . s p l i t ( )
ax_now = f l o a t ( d a t a [ 3 ] ) / 1000 # from mG t o G
ay_now = f l o a t ( d a t a [ 4 ] ) / 1000
az_now = f l o a t ( d a t a [ 5 ] ) / 1000

e x c e p t :
s e r . C lose ( )
r a i s e S y s t e m E x i t ( " [ERROR ] : E r r o r s e r i a l c o n n e c t i o n . " )

ax += ax_now
ay += ay_now
az += az_now

r e t u r n ( ax / AVG_MEAS, ay / AVG_MEAS, az / AVG_MEAS)
Listing 2.4: Function for recording accelerometer measurements.

RecordDataPt function was called in the main loop to calculate the average of the measure-
ments.
During the measurement procedure, the IMU had to be fully stationary. Even the slightest
movement would have corrupted the measurements and the calibration procedure would have
to be performed again. The main loop prompts the user for the command to either perform
measurements or to quit and log recorded data to the text file. Function List2DelimFile takes
the data stored in the data vector and prints it to the text file designated by the FILENAME
input parameter. This procedure was performed as many times as it was necessary to capture
different orientations. In this particular case, 277 orientations were recorded.

For the calibration to be successful, one must capture both positive and negative orientations
for all three sensitivity axis. Performing less measurements is also possible and would also
result in successful calibration as long as positive and negative values are captured. One of
the biggest advantages of this calibration method is that it has to be performed only once. If
the IMU is to be used for a prolonged period of time, it is recommended to calibrate the IMU
again due to the drift and aging of the components [42]. Once enough orientations have been
recorded, the text file will be imported to Magneto, which will then calculate the matrices, as
seen in Figure 2.13.
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Figure 2.13: Magneto calibration software.

Matrix values of A−1 and b, seen in Figure 2.13, are copied to the plot_calib_data.py
Python script, described in A.1.5, which plots results of the calibration. As it can be observed
in Figures 2.15, 2.16 and 2.17, calibrated values are positioned closer to the center of the plot.
Additionally, calibrated data is positioned closer to the horizontal and vertical axis running
through origo. This is demonstrated in Figure 2.17. Unfortunately, the calibration method fails
to produce same results for all sensitivity axis. Raw measurements in the upper part of the plot
seen in Figure 2.15, are grouped closer to the vertical axis than the calibrated measurements.

Before performing the calibration, it was decided that the procedure will be considered suc-
cessful if it improves the accelerometer performance. Meaning that it is expected to remove as
much bias as possible, bringing the measurements closer to their true value. The method can
also be considered as successful in cases where the calibration fails, this will only happen if
such instances are rare when compared to the overall performance of the calibration. Due to
the non-orthogonality of the accelerometer sensitivity axis and the environmental influences, it
is impossible to completely remove the bias. It is therefore expected that in some instances,
calibrated data will fail to provide an improvement over the raw data. Since the implemented
calibration method is relatively simple to perform, it is expected that, in some cases, it will not
provide high-end results as would be the case with a more complex method.
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Figure 2.14: 3D representation of the calibration results.

Figure 2.15: XY axis calibration plot.
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Figure 2.16: XZ axis calibration plot.

Figure 2.17: YZ axis calibration plot.
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Chapter 3

Orientation representation

3.1 Euler angles
Accelerometers and gyroscopes measure gravitational linear velocity and angular velocity. The
raw measured data does not provide an intuitive understanding of the orientation of the IMU.
With the use of trigonometry, the measured angular velocities ωx, ωy, and ωz and the linear
acceleration ax, ay, and az, will be utilized to generate a representation of the orientation using
more comprehensible Euler angles.

According to Euler’s rotation theorem, any rotation may be described using three angles. If the
rotations are written in terms of rotation matrices, which represent rotation [43]. As explained
in Section 2.3, in this report magnetometer will not be used. Therefore, it will not be possible to
measure yaw angles, due to the fact that neither accelerometer nor gyroscope can measure the
yaw angle reliably. The accelerometer cannot measure yaw angle because rotation around its
sensitivity axes does not result in a change of acceleration relative to the gravity, as the gravity
vector and a sensitivity axis are aligned. The gyroscope could theoretically measure yaw angle
based upon angular velocity measured by the Gx axis. In practice, this is not possible because
the gyroscope data would have to be integrated in order to obtain absolute yaw angle. Due to
bias drift in the measurements, the gyroscope yaw measurements would drift off from the true
value. Additionally, integration of the bias would lead to the error accumulation which would
render the method completely useless after certain period of time.

The main technique for converting three-axis specific force from an IMU to roll and pitch
angles is based on the idea that the angle between the acceleration and gravity vectors can be
calculated using trigonometry. This is a static mapping that suffers from inaccuracies when
performing high-acceleration maneuvers [44, p. 21].

ab
imu = Rb

n
T
(Θ)(an

nmI
−gn)+bb

acc +wb
acc (3.1)

Where Θ = [θ ,φ ,γ]T is a vector of Euler angles and Rb
n

T
(Θ) is the rotation matrix from {b}

to {n}. Accelerometer bias vector and Gaussian white noise are donated as bb
acc and wb

acc
respectively [23, p. 330]. The b term in the exponent indicates that the vectors are expressed in
IMU’s body frame {b}
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From (3.1), roll and pitch angles can be calculated by assuming that the IMU at rest mea-
sures an

nmI
= 0. The initial accelerometer biases are generally eliminated by calibrating the

accelerometer for temperatures fluctuations. It is also vital to eliminate dynamic drift, which
may be accomplished by recalibrating the sensor when the vessel is still. Low-pass filtering
should also be used to eliminate measurement noise such that

ab := ab
imu−bb

acc ≈−Rb
n

T
(Θnb)gn (3.2)

From here

ax
ay
az

=−Rb
n

T
(Θnb)

0
0
g

=

 gsin(φ)
−gcos(φ)sin(θ)
−gcos(φ)cos(θ)

 (3.3)

Equation (3.3) gives the following ratios

ay

az
≈ tan(θ),

ax

g
≈ sin(φ),

a2
y +a2

z

g2 ≈ cos2(φ)

This gives static roll and pitch angles as a function of specific force

θ = arctan

(
−

ay

az

)
(3.4)

and

φ = arctan

(
−ax√
a2

y +a2
z

)
= arctan

(
ax

ay

)
(3.5)

Alternatively, pitch angle can also be obtained by

φ = sin(ax) (3.6)

Euler angles can also be obtained through the integration of the gyroscope measurements

θ = ωx(0)+
∫ t

0
ωx(t)dt (3.7)

where ωx(0) is the angular velocity value.
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3.2 The gimbal lock
Because of the definition of Euler angles, certain orientations of the IMU will lead to gimbal
lock. Gimbal lock occurs when one of the IMU axis is aligned with the gravitational vector, thus
one of the degrees of freedom is lost. Meaning that the axis is parallel with the gravitational
vector and can no longer measure the difference in the linear acceleration. Singularity and
gimbal lock are two distinct phenomena that are collectively referred to as the gimbal lock.
Despite the fact that the two phenomena are called by the same name, they are different from
each other. At the Euler angle singularity, there is an obvious loss of a degree of freedom.
However, there is no obvious loss of physical degree of freedom. With this said, the gimbal
lock is the term that can be associated with the physical loss of a degree of freedom, while
singularity is the term used to describe the gimbal lock mathematically [45, p. 34], that is,
when the Jacobian of the system is no longer full rank due to the orientation of the system.
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Chapter 4

Digital filtering methods

4.1 Low-pass filter
The results shown in Section 2.8 demonstrate that the accelerometer measurements suffer from
the white noise. This is even more apparent when for example observing the plot in Figure 6.5
In addition to the white noise, the IMU proved itself to be extremely sensitive to the distur-
bances coming from the environment in the form of various vibrations. To improve the quality
of accelerometer measurements, it is important to implement a digital filter that will filter out
any unwanted frequencies contained within the output data. In case of the IMU, the accelerom-
eter will measure all linear accelerations, not only gravitational acceleration. Thus, any artificial
vibrations induced by, for example, a hammer hitting the crane link, will be picked up by the
accelerometer and will corrupt the measurements. This also means that if the accelerometer is
to be used to find the orientation of the crane link, the IMU must be positioned in the center
of the rotational axis. If the IMU is not positioned in the center of the rotational axis, even the
slightest rotational movements will induce linear acceleration, which will be recorded by the
accelerometer.

The accelerometer’s sensitivity was investigated by placing the IMU on the table and recording
accelerometer data. The plot in Figure 4.1 demonstrates the obtained results. In the interval
between 3 and 8 seconds, the IMU was subjected to the man made vibrations. Within the
interval of 3 to 6 seconds, vibrations were created by slightly tapping the table with the metal
bar. The vibrations seen in the interval between 7 and 8 seconds are the result of shaking the
IMU from side to side. From the Figure 4.1, it can be seen that the accelerometer is very
sensitive and that it registers even the slightest vibrations induced on the table surface. In
the environment like the one found on the ship deck, vibration induced by humans and other
machines are certain to occur. A low pass filter therefore needs to be implemented in order to
smooth out accelerometer measurements as much as possible. The plot in Figure 4.2 indicates
that the gyroscope will also capture the same vibrations. Thus, it is also possible that the
filtering algorithm will have to be implemented to the gyroscope measurements as well. In
addition to the digital low-pass filter, it would also be beneficial to physically isolate the IMU
from any vibration sources found in the near vicinity.
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Figure 4.1: Man made vibrations captured by the accelerometer.

Figure 4.2: Man made vibrations captured by the gyroscope.
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First order low-pass filter is the first choice of the filter due to its simplicity. The first order
low-pass filter will have continuous transfer function:

H(s) =
U(s)
E(s)

=
ω0

s+ω0
(4.1)

In order to implement this transfer function in the digital environment, it has to be discretized
using discretization methods. For this task, multiple discretization methods can be used. Some
of them are zero order hold, bilinear method, trapezoidal approximation method, pole-zero
matching etc. In the case of this low-pass filter, it was decided to use the bilinear method also
known as the Tustin’s method.

4.1.1 Tustin’s method
As it can be seen in Figure 4.3, Tustin’s method is the discrete integration method which ap-
proximates numerical integration by taking a straight line between sampling points [46, p. 26].

Figure 4.3: Numerical integration using Tustin’s method, from [46, p. 26]

If (4.1) is to be used to design a filter with the equivalent behaviour, the system can be defined
by the first order differential equation

u(t)(s+ω0) = e(t)ω0 (4.2)

this gives

u̇(t)+ω0u(t) = e(t)ω0 (4.3)

Equation 4.3 can be solved by evaluating the integral

u(t) = ω0

∫ t

0
(e(τ)−u(τ))dτ (4.4)

The output of the continuous system will be observed at the time points t ∈ kT , where k = Z
and T is the sampling interval. To determine the integral, area of the shaded region has to
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be determined. The area of the shaded trapezoid depicted in the Figure 4.3 is given by the
equation:

u(kT ) = ω0

∫ kT

0
(e(t)−u(t))dt (4.5)

Equation (4.3) can be devided into two parts

u(kT ) = ω0

∫ kT−T

0
(e(t)−u(t))dt +ω0

∫ kT

kT−T
(e(t)−u(t))dt (4.6)

Solving the integral one gets

u(kT ) = ω0(e(kT −T )−u(kT −T ))+
T ω0

2
(e(kT −T )−u(kT −T )+ e(kT )−u(kT )) (4.7)

This gives

u(kT ) = u(kT −T )+
ω0T

2

[
e(kT −T )−u(kT −T )+ e(kT )−u(kT )

]
(4.8)

Equation 4.8 is converted to the Z-domain using Z-transform.

U(z) =U(z)z−1 +
T ω0

2

[
E(z)z−1−U(z)z−1 +E(z)−U(z)

]
(4.9)

U(z)
(

1− z−1 +
T ω0

2
z−1 +

T ω0

2

)
= E(z)

(
T ω0

2
z−1 +

T ω0

2

)
(4.10)

After rearranging (4.10), the transfer function formulation is obtained

H(z) =
U(z)
E(z)

=
ω0

T
2 (

z+1
z−1)+ω0

=
ω0

2
T (

1−z−1

1+z−1 )+ω0
(4.11)

When inspecting (4.1) and (4.11), it can be concluded that the Z-domain equivalent to the
continuous transfer function, could be obtained by simple substitution:

s← T
2

z+1
z−1

=
2
T

1− z−1

1+ z−1 (4.12)

Substituting the s term in (4.1) with the (4.12) gives the following equations:
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H(z) =
ω0

2
T
(1−z−1)
(1+z−1)

+ω0

(4.13a)

H(z) =
ω0

T
2 (1+ z−1)

(1− z−1)+ω0
T
2 (1+ z−1)

(4.13b)

H(z) =
ω0

T
2 (1+ z−1)

1− z−1 +ω0
T
2 +ω0

T
2 z−1

(4.13c)

H(z) =
ω0

T
2 (1+ z−1)

(1+ω0
T
2 )− (1−ω0

T
2 )z
−1

(4.13d)

Equation (4.13d can be represented with the constant coefficient difference equation, which has
the form

H(z) =
b0 +b1z−1

1−a1z−1 (4.14)

Equation (4.13d) has the following coefficients:

b0 = ω0
T
2

b1 = ω0
T
2

a1 = (1−ω0
T
2
)

Taking the coefficients from (4.14), the difference equation can be derived

y[n] = a1y[n−1]+b0x[n]+b1x[n−1] (4.16)

Equation (4.16) will be later used in the lowPassfilter.py script, described in Appendix
A.1.7, in order to perform real time filtering of the input signal. In order to ensure precision
and reduction of the fail margin, Python’s numpy and scipy libraries will be used to discretize
the continuous transfer function of the first order low-pass filter. The same equation can be
used in order to perform post-processing of the prerecorded data.
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4.1.2 Stability of the method
As mentioned in Subsection 4.1.1, there are multiple methods that perform discretization of
the continuous transfer functions. Each method has its positives and negatives, taking into
consideration complexity of the method, computational cost and stability. Due to the fact that
the first order low-pass filter equation is relatively simple, computational cost of the discretiza-
tion method can be ignored. Therefore, it was decided to base the choice of the discretization
method on the stability characteristics. Tustin’s method maps the entire left-half plain (LHP)
of the Laplace domain, to the unit circle in z-domain, as seen in Figure 4.4.

Figure 4.4: Mapping of the LHP to the unit circle in z-domain using Tustin’s method, from
[46].

The plot in Figure 4.4 indicates that the entire LHP of the Laplace domain is projected to the
stability unit circle of the discrete domain. This property is extremely important, since it en-
sures that the stability characteristics of the continuous system are preserved when converted
to the discrete domain. This is not always an instance with other discretization methods. For-
ward approximation method does not ensure complete mapping of the stable poles and zeros
from the continuous to the discrete domain. The reason for this property is due to the working
principle of the forward approximation method. Tustin’s method evaluates the function at the
current sampling point kT and the previous sampling point kT−T . The forward approximation
method evaluates the function at the current sample kT and the next sampling point kT +T .
Since Tustin’s method evaluates the function at the two known sampling points, it will remain
stable even if the sampling frequency is low. Meaning that Tustin’s method allows for much
lower sampling frequency while the method still remains stable. This is not the case with the
forward approximation method due to the fact that it requires estimated value of the function
at the current step kT and the next step kT +T . Quality of the estimation for the next step is
dependent on the sampling frequency and the derivative of the function. If the sampling fre-
quency is too low or the derivative of the function is large, the forward approximation method
will fail to produce sufficient estimation and the method will become unstable.
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4.1.3 System frequency
Design of the digital filter requires the cutoff frequency to be specified. Filter cutoff frequency
is the frequency at which damping is equal to -3 dB. The cutoff frequency has to be chosen in
order to ensure damping of the unwanted frequencies. With this said, it is important to have an
insight into the frequency at which the system operates. This is crucial to understand, since the
filter must not filter out the system’s frequencies. The Nyquist-Shannon criterion states [47]:

ωs ≥ 2ωmax (4.17)

Where ωs is the sampling frequency and ωmax is the maximum frequency of the system. The
same principle, as seen in (4.17), can be applied to the filter’s cutoff frequency. If aliasing is to
be avoided, the filter’s cutoff frequency has to be at least two times greater than the maximum
frequency of the system. In practice, due to imperfections in the filter’s attenuation rate, the
cutoff frequency should be larger than suggested.

ωs≫ ωmax (4.18)

Unfortunately, it was not possible to measure motion of the aquaculture crane, since access
to the crane itself was not possible. Measuring the crane’s movement is crucial to obtaining
precise information regarding the crane’s bandwidth. This information would later be used
to determine a suitable cutoff frequency for the low-pass filter. Since this is not possible, the
crane’s movement has to be assumed, as shown in the project report [48, p. 24]. In the project
report, the IMU was rotated around an imaginary axis, assuming that this motion of the IMU
would correspond to the motion of the crane link. Data captured by the accelerometer was
imported to Matlab, where Figure 4.5 was obtained.

Figure 4.5: Frequency domain analysis, from [48, p. 24]
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The plot in Figure 4.5 shows one dominant frequency component. The sudden spike at 12.5
Hz corresponds to the frequency of the motion performed by the IMU. Therefore, it is assumed
that the crane system operates at a frequency of 12.5 Hz, with an assumed maximum frequency
of 15 Hz. With this said, it is decided that the suitable cutoff frequency would be 75 Hz. This
cutoff frequency is five times larger than the estimated maximum frequency, thus obeying the
Nyquist-Shannon criterion and leaving sufficient margin if the maximum frequency is larger
than 15 Hz.

4.2 Butterworth filter
The low-pass filter described in Section 4.1 performs the duty of filtering out unwanted fre-
quencies, most notably the ones coming from the white noise and the vibrations from the en-
vironment. Due to the fact that access to the crane was not allowed, it is very likely that some
other type of low-pass filter would be needed. The low-pass filters like Butterworth, Cheby-
shev and Bessel are popular filter types used when more advanced filtering method has to be
implemented.

Butterworth filter has the maximally flat response within the filter’s pass-band, optimized for
gain flatness. The attenuation is -3dB at the cutoff frequency. Additionally, it has a moderate
phase distortion. Chebyshev filters are designed with the ripple in the pass-band amplitude
response, but steeper roll-off at the cutoff frequency. Steeper roll-off will also result in mono-
tonicity in the pass-band region, along with poor transient response. Bessel filter is optimized
for maximally flat time delay, meaning that this type of filter has linear phase response and ex-
cellent transient response to a pulse input. Cutoff frequency is defined as the -3dB point [49].
Due to their respective characteristics, it was decided that the Butterworth filter would be the
most optimal choice of filter. Maximal flatness of the passband region, in addition to moderate
phase delay, are the reasons why Butterworth filter would be the most optimal filter type. The
IMU measurements are not pulses, therefore Bessel filter will not be used. According to Dessen
in [50], (4.19) can be used in order to calculate order of the Butterworth filter based solely upon
the filter’s passband and stopand requirements.

n≥
log D2

s−1
D2

d−1

2log ωs
ωd

(4.19)

where Ds and Dd are attenuation values for the passband and stopband, ωs and ωd are passband
and stopband frequencies. For the purpose of filtering the IMU measurements, it is decided
that the filter will have less than 2 dB attenuation in the passband for the frequencies below the
cutoff frequency of 75 Hz, while attenuation above the stopband frequency of 350 Hz is going
to be more than 50 dB. The values are inserted in (4.19) and the filter order is obtained

n≥
log10 50·2

20 −1
10 2·2

20 −1

2log2199.11
471.23

= 3.91
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The order has to be an integer which is equal or greater than the n. Dessen [50] proposes that
the 5th order Butterworth filter is the best choice of filter order. A 5th order filter would provide
the best trade-off between phase delay and the dampening factor. Due to the implementation
procedure for the digital Butterworth filter, it was decided that a 4th order Butterworth filter is
going to be designed. Continuous 4th order Butterworth filter has the transfer function.

H(s) =
1

(s2 +0.765367s+1)(s2 +1.847759s+1)
(4.20)

The 4th order Butterworth filter, seen in the Bode plot in Figure 4.6, is designed with the cutoff
frequency fc of 75 Hz and sampling frequency fs of 500 Hz.

Figure 4.6: Bode plot of 4th order Butterworth filter.

4.2.1 Digital Butterworth filter
A higher order Butterworth filter will provide higher attenuation rate and will allow for more
precise filtering of the frequencies above the cutoff frequency. Higher order filters will have to
be implemented as a cascade of multiple low order filters. In the case of a 4th order Butter-
worth filter, it will be implemented as a cascaded sequence of two 2nd order Biquad filters [51,
p. 512]. For the higher order filters, digital implementation, as seen in Section 4.1, would be
difficult to implement. This is because direct implementation, as seen in (4.16), would have a
and b coefficients that differ in several orders of magnitude. A digital filter, implemented using
a difference equation, would result in the stability of the filter being dependent on the floating
point precision of the computing algorithm. Single point floating precision will cause quantiza-
tion error, which would result in the filter becoming unstable. High order filters are sensitive to
quantization error, particularly for lower cutoff frequencies. Cascaded implementation of the
higher order filters has coefficients which are less different in orders of magnitude, thus single
point precision will not cause rounding errors.
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Biquad filter

The implementations of the digital Butterworth filter will be performed using Biquad filters.
Biquad filter is a 2nd order recursive filter. It realizes an arbitrary biquadratic transfer function,
thus the name Biquad filter. A generic linear second order filter which may be described in
terms of its action on a stream of samples by the following recurrence relation, given by [52]
as:

yn = b0xn +b1xn−1 +b2xn−2−a1yn−1−a2yn−2 (4.21)

where xn denotes the current input sample, xn−1 is the previous sample and yn is the output.
Taking the Z-transform of (4.21) gives a general discretized transfer function for the Biquad
filter

H(z) = K
b0 +b1z−1 +b2z−2

1+a1z−1 +a2z−2 (4.22)

Equation (4.22) can be represented by the difference equation:

y[n] = K1b0x[n]+b1x[n−1]+b2x[n−2]−a1y[n−1]−a2y[n−2] (4.23)

The difference equation (4.23) can be implemented in the digital environment using Direct
form I approach [53], as seen in Figure 4.7.

Figure 4.7: Direct form I block diagram.

The discretized transfer function, for the Biquad filter, is given by [54] as:

B(z) = K
(1+ z−1)2

(1− pkz−1)(1− p∗kz−1)
= K

1+2z−1 + z−2

1+a1z−1 +a2z−2 (4.24)

where p∗k is the complex conjugate of pk. Gain of each Biquad section has to be equal to 1 at
frequency of ω = 0. Letting z = e jω , then the z = 1. This gives:

Hk(z) = 1 = Kk
∑b
∑a

(4.25)
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this can further be simplified to give the expression for the gain values

Kk =
∑a
4

(4.26)

where a = [1 a1 a2] are the denominator coefficients of the Biquad section. This gives the
values for each of the coefficients:

b = [1 2 1] (4.27a)

a = [1 −2real(pk) |pk|2] (4.27b)

K =
∑a
4

(4.27c)

The coefficients and gain values seen in (4.27) are calculated using biquad_sinth.m script,
described in Appendix A.2. The transfer functions obtained for the two Biquad filters produce
the magnitude response as seen in the Figure 4.8. The response of the first filter has the desired
attenuation of -3dB at the cutoff frequency, while the magnitude response of the second filter
shows that it is slightly underdamped when compared to the first one. For a stable digital
filter, all poles of the B(z) have to be placed inside the unit circle, which implies the following
conditions for a1 and a2;

|a1|< 2, |a1|−1 < a2 < 1 (4.28)

Figure 4.8: Individual magnitude response for each Biquad section.
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Implementing two cascaded Biquad filters will allow for -3dB attenuation at the cutoff fre-
quency, as seen in Figure 4.9.

Figure 4.9: Magnitude response of the cascaded Biquad filters and the continuous Butterworth
filter

The cascaded implementation of the two 2nd order Biquad filters results in the combined mag-
nitude response, which is completely identical to the one obtained from the continuous Butter-
worth filter. The Biquad filters allow for the correct implementation of the Butterworth filter.
Cascading two 2nd order Butterworth filters would be an incorrect implementation, since at-
tenuation at the cutoff frequency would be -6 dB.
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4.3 Complementary filter

4.3.1 Methodology
The most crucial aspect of any autonomous vehicle operating in an unknown environment is
the ability to estimate the vehicle’s orientation in space. For this purpose, a vast variety of
sensors and signal methods can be used, and most of them have one common modality, which
is reliance on the inertial sensors. Triaxial accelerometers and gyroscopes are extensively used
for the purpose of providing orientation determined by roll, pitch and yaw angle. There are
a large variety of methods for orientation estimation, but in general two major groups can be
distinguished [55]. First, the Kalman filter based algorithms use a series of data observed
over time, which contain noise and other inaccuracies, to estimate unknown variables with
more accuracy [56]. Second, the complimentary filter based solutions, which offer more direct
solution that is not computationally demanding as it is the case with Kalman filter.

As mentioned in Section 2.5, all sensors will suffer from stochastic and deterministic errors.
This is also the case for accelerometers and gyroscopes. Both sensors are capable of pro-
viding orientation with respect to some frame of reference. Unfortunately, individual use of
accelerometer or gyroscope will not provide reliable orientation values due to their inherent
weaknesses. In general, accelerometers will suffer from the short term disturbances like white
noise, while gyroscopes will suffer from the long term disturbances like bias drift. If a gyro-
scope alone is to be used to obtain orientation, angular velocity will have to be integrated. Due
to bias drift, orientation estimates will drift over time, causing the method to become almost
useless after a long period of time. Accelerometer angle estimations will suffer from the short
term weaknesses like white noise, which will cause angle output to fluctuate. Unlike the gyro-
scope, the accelerometer will provide long term stability due to the fact that the gravity vector
does not change with time.

To improve the performance of both sensors, the sensor fusion algorithm must be implemented.
Sensor fusion is a method of integrating signals from multiple sources into a single signal or
information [57]. Since each sensor output contains noise and measurement errors, multiple
sensors can be used to determine the same property, but with the consensus of all sensors. This
way, sensor uncertainty can be reduced [58]. In the case of accelerometer and gyroscope, sen-
sor fusion would allow for merging of both sensors into one measurement unit. The resulting
output of the sensor fusion would not suffer from the pre-mentioned weaknesses. The com-
plimentary filter algorithm performs the merge of the gyroscope and accelerometer in a way
that the accelerometer compensates for the weaknesses of the gyroscope and vice versa. The
principal of the operational method for the complementary filter can be described by the block
diagram in Figure 4.10.
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Figure 4.10: Complimentary filter block diagram, from [59].

In Figure 4.10, the constant L represents the fixed fraction determining which sensor is go-
ing to perform low frequency, short term corrections. Since the accelerometer suffers from
the short term weaknesses, this constant would be greater for the gyroscope part. As seen in
complimentaryFilter_preRec.py script, described in Appendix A.1.4, the constant L is set
to 0.90 which corresponds to the gyroscope performing 90% of angle estimation in the short
term. The block diagram in Figure 4.10, will be implemented in the code in the form of the
equation given by [59] as:

angle =
(

1−L
)
· accel angle+L ·

(
gyro angle ·∆t +

angle
z

)
(4.29)

The complementary filter combines two measurements that complement one another. Since
the accelerometer suffers from high frequency white noise, and the gyroscope suffers from low
frequency bias drift, the complimentary filter runs these two measurements through the low-
pass and high-pass filters, thus eliminating low and high frequency disturbances. The L tunes
the cutoff frequency of the low-pass and high-pass filters, thus determining which frequencies
will be present in the output signal. The working principle can be seen in Figure 4.11.

Figure 4.11: Structure of the complimentary filter.
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Chapter 5

Mathematical modeling

5.1 Crane load
In this section, a mathematical model is derived for the load suspended on the crane hook,
using Lagrange mechanics. This entire chapter will be based on the mathematical equations
described in [60]. Lagrange mechanics is a powerful tool used to derive mathematical models of
the mechanical systems based upon kinetic and potential energy of the system, conventionally
labeled as T and V , respectively. A mathematical model of the system is described by a vector
of time-varying generalized coordinates donated q(t) ∈Rnc , that must be capable of describing
the ’configuration’ of the system at a given time t. Coordinates at a given time t are providing
information regarding the state of the system at a particular point in time.

Figure 5.1: Sketch of spherical pendulum.
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Before mathematical equations were derived, the following assumptions were made:

• Crane load is connected to the crane hook using a massless rod.

• The position of the crane hook (end-effector) is known.

• No external forces are acting upon the load.

• All friction is neglected.

Table 5.1: Notation for the spherical pendulum model.

Notation Description
θ Load sway angle
φ Load yaw angle
M Mass of the load
L Length of the hoisting rod

The assumption given above provided the basis for choosing the generalized coordinates vector
q(t) ∈ R3

q(t) = [φ θ L]T (5.1)

To simplify, explicit dependence of the generalized coordinates and other time-varying objects,
e.g. time-varying generalized coordinates q(t), will be simply noted as q.

5.1.1 Position
As seen in the plot in Figure 5.1, the position of the load can be described as

p =

Lsinθcosφ

Lsinθsinφ

Lcosθ

 (5.2)

5.1.2 Kinetic energy
The equation for the kinetic energy is given by

T =
1
2

M||p||2 = 1
2

MṗT ṗ (5.3)

where

ṗ =
∂p
∂q

q̇ (5.4)
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Performing derivation of the position, described in 5.4, the velocity matrix is obtained

ṗ =

−Lsinθsinφφ̇ +Lcosθcosφθ̇ + cosφsinθ L̇
Lcosφsinθφ̇ +Lcosθcosφθ̇ + sinφsinθ L̇

cosθ L̇−Lsinθθ̇

 (5.5)

The derivative of the position seen in (5.5) is inserted into (5.3) and gives

T =
1
2

M
[(

L̇cosθ −Lθ̇sinθ)2 +

(
L̇cosφsinθ +Lθ̇cosφcosθ −L ˙phisinφsinθ

)2

+

(
L̇sinφsinθ +Lφ̇cosφsinθ +Lθ̇cosθsinφ

)2] (5.6)

After cancelation of the terms

T =
1
2

M
(

L2
θ̇

2 +L2
φ̇

2sin2
θ

)
(5.7)

5.1.3 Potential energy
From Figure 5.1 it can be seen that the potential energy is described as

V =−Mg

0
0
z

 (5.8)

5.1.4 Lagrangian
Lagrange function is defined as

L (q, q̇) = T (q, q̇)−V (q) ∈ R (5.9)

The Euler-Lagrange equation then reads as:

d
dt

∂L

∂ q̇
− ∂L

∂q
= 0 (5.10)

After performing derivation and partial derivation, the equation of position is obtained

d
dt

∂L

∂ q̇
− ∂L

∂q
=

[
θ̈ − φ̇ 2cosθsinθ + g

Lsinθ

φ̈sin2θ +2φ̇sinθcosθθ̇

]
= 0 (5.11)
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Equation (5.11) gives the equation of the system acceleration.

[
θ̈

φ̈

]
=

[
φ̇ 2cosθsinθ − g

Lsinθ

−2φ̇
cosθ

sinθ
θ̇

]
(5.12)

5.2 Explicit 4th order Runge-Kutta method
Ordinary differential equations (ODE) presented in Section 5.1 will have to be solved in order
to obtain values for the system acceleration, derived in (5.12). Due to the nature of the ODE, it
is not possible to compute the solution numerically or otherwise, from the initial conditions to
the arbitrary time. ODEs have a unique solution from the initial conditions to the arbitrary time.
Therefore, if approximation of the solution is to be obtained, one must implement one of the
numerical integration methods. The most commonly used method for the numerical integration
is the Runge-Kutta (RK) integration method. Due to their relative computational simplicity, it
was decided to use explicit Runge-Kutta method.

The explicit Runge-Kutta method uses the iterative Euler method in order to approximate solu-
tion to the ODE. Efficiency and the computational cost is dependent on the order of the method,
which is defined by the stages s. Taking into consideration computational cost and efficiency,
it was decided to implement the 4th order explicit Runge-Kutta method, also known as RK4.
The number of stages of an explicit RK method defines the computational complexity of evalu-
ating one step xk→ xk+1 in the integrator. Each integration step performed by the RK requires
evaluation of the equations in (5.12). Therefore, it can be concluded that the lower order meth-
ods are more preferable, due to their relative balance between efficiency and the computational
complexity. RK4 offers the best trade-off between computational complexity (CPU time) and
accuracy. It has s = 4 stages, thus integration order of this scheme is

||xn− x(T )|| ≤ c||∆to|| (5.13)

where c > 0 is a constant and o is the order of the method, in this case o = 4. The ∆t should
be small, thus becoming exponentially smaller as the order increases. By increasing order
of the method, the computational complexity rises proportionally, but the accuracy is gained
exponentially. It is also possible to use higher order methods when estimating the solution of
the ODE. After the observation of (5.13), it may appear that the increase in stages will produce
better approximations. With the explicit RK methods, after the 4th order RK, higher number
of stages does not produce exponentially higher rate of error elimination with the respect to
computational complexity. For a greater number of stages, the order stops increasing as quickly
as the number of stages. This results in increased computational cost that is not justified by the
exponential increase in performance of the method. The RK4 can be defined by the Butcher
tableau

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6
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The RK4 method approximates solutions to a differential equation of the form

ẋ = f (x,u), x(0) = x0 (5.14)

over a time interval [0,T ]. Approximation of the solution is performed by assembling the RK
step

xk+1 = xk +∆t
(

1
6

K1 +
1
3

K2 +
1
3

K3 +
1
6

K4

)
(5.15)

where

K1 = f
(

xk,u(tk)
)

(5.16a)

K2 = f
(

xk +
∆t
2

K1,u
(

tk +
∆t
2

))
(5.16b)

K3 = f
(

xk +
∆t
2

K2,u
(

tk +
∆t
2

))
(5.16c)

K4 = f
(

xk +∆tK3, u
(

tk +∆t
))

(5.16d)
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Chapter 6

Results

6.1 Allan analysis
Equations (2.8) and (2.9) were implemented in AllanDevAnalsis.py, described in Appendix
A.1.1 , which calculated Allan variance and deviation of the IMU accelerometer measurements.
Calculation results are plotted in Figure 6.1:

Figure 6.1: Allan deviation plot for the accelerometer data.

The type of noise present in the measurements can immediately be determined just by in-
specting the slope of the plotted graphs. As a reference, in addition to three graphs for three
acceleration axes, a red line with the slope of −1

2 was plotted. Slope of −1
2 or -1 indicates that

output measurements contain quantization noise. The quantization noise is one of the errors in-
troduced into an analog signal by encoding it in digital form. That noise is caused by the small
differences between the actual amplitudes of the points being sampled and the bit resolution
of the AD converter [34]. This analysis confirms that the accelerometer output suffers from
Gaussian white noise, which is also apparent when examining Figure 2.7.
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The same procedure with the same rules can be performed on gyroscope readings. According
to MathWorks article [38], the gyroscope measurement model is as follows:

Ω(t) = ΩIdeal(t)+BiasN(t)+BiasB(t)+BiasK(t) (6.1)

Where three noise parameters are N (angle random walk), K (rate random walk), and B (bias
instability).

For each sample, gyroscope output angle θ has to be calculated:

θ(t) =
∫ t

Ω(t ′)dt ′ (6.2)

Using (2.8) and (2.9), Allan deviation of the gyroscope data can be plotted.

Figure 6.2: Allan deviation plot of the gyroscope data.

Figure 6.2 shows only two plots for the Gx and Gy sensitivity axis. This is because for the
duration of 5 hours, the Gz axis did not record a single deviation value. As in Figure 6.1, the
red line indicates slope of −1

2 . It can be seen that the plots indicate the presence of the white
noise in the gyroscope measurements. From the plots in Figure 6.2, it is possible to calculate
values for the angle random walk and bias instability. In order to calculate angle random walk,
Allan deviation at τ = 1 has to be determined. For the Gx axis, the Allan deviation value at
time τ = 1 is 0.00069, while for the Gy axis, the deviation value is 7.243 ·10−5. These values
are multiplied by 60 to get angle random walk in deg/

√
hr, as shown in [61]:

Nx = 0.00069
deg

s
·60

s√
hr

= 0.0414
deg√

hr
(6.3a)

Ny = 7.24 ·10−5 deg
s
·60

s√
hr

= 0.0043
deg√

hr
(6.3b)
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where N is the angle random walk coefficient for each of the respected axis. Computing bias
instability requires Allan deviation value at the point where the graph’s value stops declining
at the same rate as before. For the Gx the value 1.91 ·10−5 is at τ = 988, while for the Gy the
value 1.16 ·10−5 is at τ = 5123, as shown in [61]:

Bx = 1.91 ·10−5 · deg
s
· 3600

0.664
s√
hr

= 0.1
deg
hr

(6.4a)

By = 1.16 ·10−6 deg
s
· 3600

0.664
s

hr
= 0.0063

deg√
hr

(6.4b)

6.2 Calibration
As seen in Figure 2.13, Magneto gives the following matrix values:

A−1 =

 0.971938 −0.000028 −0.002435
−0.000028 0.959990 −0.005411
−0.002435 −0.005411 0.975702

 (6.5)

and

b =

0.020051
0.010337
0.003964

 (6.6)

Content of both matrices is imported to the (2.14) in BoschIMU_script.m script, where cali-
brated and uncalibrated data is plotted and compared. Figures 6.3, 6.4 and 6.5, show accelerom-
eter measurements when the IMU is positioned with the Az pointing towards the sky. The same
procedure is performed for the other two axes. Axis Ax and Ay are oriented towards the sky
and data is logged for 10 seconds each. The results shown in Tables 6.1, 6.2 and 6.3 indicate
that the calibration method is successful, due to the lesser presence of the bias term in the mea-
surements. As mentioned earlier, some axis orientations are better calibrated than the others.
This is apparent when the specific sensitivity axis is pointed towards the sky and is supposed to
measure an acceleration value of 1000 mG. In these positions calibration method removes over
50 % of the bias value, as seen in Table 6.2. In Table 6.1 and 6.3, calibration removes more
than 80 % of the bias value. The method is not always successful to the same extent, as seen
for Ay axis in Table 6.2. In these instances, the calibrated Ay measurement has 35 % less bias
than the raw data. For Az and Ax axis in Figure 6.3, the calibration method removed 17 % and
5 % of the bias term, respectively. Small removal values, like the 5 %, can be considered as a
negligible improvement over the uncalibrated measurements.
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Figure 6.3: Calibration results for Ax.

Figure 6.4: Calibration results for Ay.
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Figure 6.5: Calibration results for Az.

Table 6.1: Comparison of raw and calibrated measurements for Az

Calibrated RawAxis True Measured Bias Measured Bias Unit

Ax 0 20.64 20.64 23.84 23.84 mG
Ay 0 -1.29 -1.29 4.47 4.47 mG
Az 1000 1006.50 6.05 1031.70 31.70 mG

Table 6.2: Comparison of raw and calibrated measurements for Ax

Calibrated RawAxis True Measured Bias Measured Bias Unit

Ax 1000 1024.70 24.70 1054.30 54.30 mG
Ay 0 2.04 2.04 2.21 2.21 mG
Az 0 5.01 5.01 7.78 7.78 mG

Table 6.3: Comparison of raw and calibrated measurements for Ay

Calibrated RawAxis True Measured Bias Measured Bias Unit

Ax 0 23.56 23.56 24.88 24.88 mG
Ay 1000 1006.90 6.90 1050.40 50.40 mG
Az 0 32.47 32.47 38.86 38.86 mG
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6.3 Low-pass filter
Equation (4.16) was implemented in lowPassfilter_realTime.py script, described in Ap-
pendix A.1.7. The results can be seen in Figure 6.6.

Figure 6.6: Implementation of the real time low-pass filtering.

The low-pass filter algorithm performs real time filtering of the raw accelerometer data. As
seen in the Figure 6.6, filtered data are much less noisy than the raw accelerometer data. The
low-pass filter removes the white noise and smooths the accelerometer output. From the plot in
Figure 6.6, it can be seen that the filter is efficient in removing white noise and the disturbances
coming from the environment. During the time interval 8 to 25 seconds, the IMU was oriented
at different orientations, in addition to being exposed to vibrations. The vibrations occurring at
11 and 21 seconds are suppressed by the filter, ensuring that the accelerometer output is stable
and not susceptible to vibrations. The filter is designed with a sampling frequency of 1000
Hz. This sampling frequency is more than sufficient for the task of sampling the accelerometer
output. The acceptable sampling frequency, in conjunction with the successful discretization,
results in a stable digital filter capable of filtering out disturbances. As seen in Figure 6.6, the
small delay is present in the filter output, which is typical of the first order process.
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6.4 Butterworth filter
The Butterworth coefficients, seen in (4.27), are implemented in butter_lowPass_comp.py
script, described in Appendix A.1.3. The script performed filtering using both Butterworth and
low-pass filter on the ax measurements. The results can be seen in Figure 6.7.

Figure 6.7: Comparison of the Butterworth and low-pass filter.

The IMU was recording acceleration measurements for 20 seconds, while being undisturbed on
the table-top. The data set was filtered in real time and recorded to a .csv file that was processed
in the BoschIMU_script.m script. The results show that the 4th order Butterworth filter per-
forms better filtering than the first order low pass-filter. In the two plots seen in Figure 6.7, the
cutoff frequency for both filters was chosen to be at 50 Hz. After calculating standard deviation
for the filtered data, the results show that the Butterworth filter performs better filtering, as seen
in Table 6.4. Lower standard deviation values, as well as plots in Figure 6.7, indicate that the
Butterworth filter is the better filtration method when compared to the 1st order low-pass filter.
This is expected since 4th order filters offer steeper attenuation rates.

Table 6.4: Standard deviation values for the two filters

Name Standard deviation.
Butterworth filter 1.29
Low-pass filter 1.44
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6.5 Complementary filter
Testing of the complimentary filter implementation was performed using Reach Alpha 5 ma-
nipulator [62], as seen in Figure 6.8. Reach Alpha 5 manipulator is assumed to be the crane,
tasked of picking up an object and lifting it in the air. The IMU was attached to the third link,
on the axis of orientation of the third rotary joint, as seen in Figure 6.9.

Figure 6.8: Reach Alpha 5 underwater manipulator.

Figure 6.9: Positioning of the IMU on the Reach Alpha 5 manipulator.
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The Reach Alpha 5 manipulator performed sinusoidal movement, which was captured by the
accelerometer and gyroscope. The sensors measured the acceleration and angular velocity, that
were then utilized to produce reliable angle estimates. The plot in Figure 6.10 shows the pitch
angle estimation. The three graphs plotted represent angle estimations using accelerometer,
gyroscope and complimentary filter. By observing the figure, it is apparent that the compli-
mentary filter provides the best angle estimates. The angle estimates are both correct and less
noisy than the ones provided by the accelerometer and gyroscope. The accelerometer is provid-
ing correct angle estimations, but the estimates are noisy and are susceptible to vibrations. Due
to bias offset present in the gyroscope measurements, the integration algorithm causes angle
estimation to drift noticeably off the true value, thus rendering this method completely incor-
rect. The integration algorithm, described in (3.7), accumulates the error from the gyroscope
measurements and produces an incorrect angle estimates.

As mentioned in Section 4.1, the equations used to calculate the angle assume that the IMU
is positioned in the center of the rotational axis. If the IMU is not positioned in the center of
the rotational axis, the angle estimates provided by the complimentary filter will be incorrect.
In Figure 6.11, it can be seen that the angle estimates are unstable. The complimentary filter
produces incorrect estimations due to the linear accelerations induced by the movement of the
manipulator arm. Since the IMU is no longer positioned in the center of the rotational axis,
the accelerometer is no longer capable of measuring only the gravitational acceleration, thus
the angle estimates are no longer precise. Plots describing position and velocity of the Reach
Alpha 5 manipulator, when performing maneuvers, can be seen in Figures 6.12 and 6.13.

The plots in Figure 6.13 indicates that the manipulator arm is experiencing slight vibrations
when performing the movements. This is most noticeable in the situations when the joints
are changing direction of the movement. These vibrations are also one of the reasons for the
failure of the complimentary filter, as seen in Figure 6.11. The vibrations in combination with
the incorrect placement of the IMU leads to the incorrect angle estimations and an instability
of the sensor fusion algorithm.
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Figure 6.10: Complimentary filter angle estimates.

Figure 6.11: Failure of the complimentary filter angle estimates.
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Figure 6.12: Position of the Reach Alpha 5 joints.
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Figure 6.13: Velocity of the Reach Alpha 5 joints.
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6.6 Integration of the accelerometer measurements
Theoretically, the position of the object can be determined by the double integration of the
accelerometer measurements, as shown in (6.7). In practice, this is not achievable due to the
problems introduced by the bias and the white noise, present in the measurements. Integrated
accelerometer readings can be seen in Figure 6.14. In this experiment, the IMU was lifted 30 cm
into the air with the Az axis pointing upwards towards the sky. When the IMU reached the top
position, it was rapidly lowered to the original starting position. Acceleration measurements
were recorded and integrated in order to examine if the integration will produce the correct
displacement of 30 cm in both directions. As expected, integrated accelerometer readings
provide the position estimate that is not correct. Due to the accumulation of the bias error, the
position estimate indicates that the IMU has traveled a distance of 5 meters.

x(t) =
∫∫

a(t)dt (6.7)

The incorrect position estimate is the product of the error term being rapidly accumulated
through the double integration. Calibration methods and low-pass filters will not remove the
entire bias offset, thus it will not be possible to perform successful integration of the accelerom-
eter measurements.

Figure 6.14: Double integration of the accelerometer measurements.
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6.7 Mathematical model
The equations in (5.11), together with the RK method, are implemented in pendulum_calc.py
script, described in Appendix A.1.2. The calculation results can be seen in Figure 6.15.

Figure 6.15

The simulation is performed with the initial conditions of φ̇ = 1 and θ = 1. The plot in Figure
6.15 shows movement of the spherical pendulum when no damping is present in the system.
The starting conditions for this calculation, have to be chosen in a way that θ is never zero, due
to the fact that this mathematical model is singular when θ = 0. The second equation in (5.12)
is singular when θ = 0, because the sine term becomes 0 and the entire model goes to infinity,
thus crushing the Python scrip.

Figure 6.15 shows θ and φ angle of the spherical pendulum when no damping is present in the
system. Since there is no damping, the θ angle never goes to zero. This is because, as θ gets
closer to zero, the angular velocity φ̇ increases, and it propels the mass out, thus increasing the
θ angle and not allowing it to become zero or negative. This can be seen from the plot in Figure
6.15, as every time the angle θ gets closer to zero, the angular velocity φ̇ experiences a rapid
increase in the angular velocity, thus throwing the mass out.
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Chapter 7

Discussion

The main hardware component used in this thesis was the Bosch XDK110 which proved to
be a reliable tool for obtaining inertial measurements. The physical dimensions of the XDK
and the fact that it incorporates multiple sensors, allowed for much easier handling and greater
precision of the measurements. The fact that the XDK110 is an industrial IMU, created sig-
nificant problems, since industrial IMUs are not always user-friendly and can be quite difficult
to work with. This became prominent in the early stages of the research. Unlike with other,
cheaper IMUs, the producer of the XDK did not provide information on how to capture the
data transmitted by the XDK sensors via USB port. Availability of multiple programming lan-
guages, like Mita and C, allowed for easier programming of the XDK. Simplicity of the Mita
script and availability of the online sources simplified the process of configuring the sensors
and exploiting their full potential.

Due to the manufacturing imperfections, the accelerometer measurements included a notice-
able bias offset, which had to be removed in order to gain the greatest possible precision from
the accelerometer. This was performed using a simple calibration procedure, which was to the
greatest degree successful. One possible improvement to the calibration coefficients could be
to simply record as many orientations as possible, specially in the regions lacking these mea-
surements, like the third quadrant of the YZ plane in Figure 2.17. More advanced calibration
methods could have been used, in order to provide greater bias removal. This idea was rejected
due to the nature of the job that is to be performed at the ship deck. The majority of crane
operations do not require extreme precision, therefore it was assumed that the greater precision
of the accelerometer measurements will not be crucial.

Bosch developer page offers information on the inside calibration procedure for the XDK.
This procedure is performed in the XDK Workbench using C script with the calibration values
provided by the manufacturer. This script performs better calibration than the calibration pro-
cedure described in the Section 2.9. Unfortunately, C code was too complicated, and the time
limitations did not allow for further research. Gyroscope measurements were precise without
the major error terms. This was apparent after the gyroscope data was recorded to a file for five
hours. The measurements captured by the Gx and Gy axis did possess small amount of error,
while the Gz axis measurements were perfect without any drift or bias. Since the XDK also
provides another set of accelerometer and gyroscope sensors, it would be beneficial to conduct
more thorough experiments in order to determine more precisely which of the sensors are better
to use.
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Regardless of their cost and quality, all IMUs will suffer from bias offset and white noise.
For this reason, it was decided to perform frequency analysis of the accelerometer and gyro-
scope measurements. Looking at the results, Allan analysis showed that both the accelerometer
and the gyroscope suffer from white noise. Analysis of the gyroscope readings provided the
information regarding angle random walk and bias instability, both of which proved that the
gyroscope contains minimal bias and drift values. Frequency domain analysis provided infor-
mation regarding the frequency spectrum of the accelerometer and gyroscope measurements.
This demonstrated that the IMU is extremely sensitive to outside influences. The plot in Figure
2.9 demonstrates this observation, as it shows the 11 Hz frequency component which was iden-
tified as the CPU cooling fan. Performing the frequency analysis using the Fourier transform
is extremely important since it allows for identification of the various frequency components
present within the signal. This knowledge can later be used when designing filters, e.g. notch
filter, tasked with eliminating unwanted frequency components.

High frequency white noise present in the raw accelerometer measurements would potentially
create problems for the control structure, therefore the raw measurements have to be filtered
using some type of low-pass filter. The simple first order low-pass filter performed successful
filtering of the raw data. The standard deviation value calculated from the filtered data indicates
that the performance of the first order low-pass filter is slightly worse than that of a Butterworth
filter. In the report, due to the cascaded implementation procedure, it was decided to used 4th
order Butterworth filter. Implementing the Butterworth filter using the difference equation led
to the Python script crashing due to the rapid instability in the filter output, caused by the
quantization error. For this reason, cascaded Biquad implementation had to be implemented.
The filter’s cutoff frequency must obey Nyquist-Shannon sampling criterion shown in (4.17).
Since access to the crane was not permitted, the frequency of the crane had to be assumed,
therefore it is possible that the cutoff frequency for the filter is incorrect. An incorrect cutoff
frequency could result in inclusion of unwanted frequencies in the output signal, thus the cutoff
frequency could be chosen in a way that the filter provides the best possible filtration of the raw
data.

The Euler angles were chosen as the angle representation for the crane links and the suspended
load. This angle representation is known to suffer from singularity problems. Problems arising
from singularity can be resolved by using different type of angle representation like the quater-
nions. The quaternions would resolve singularity problems and would be much more precise
than the Euler angles. A four dimensional representation of the rotation angle, performed by
the quaternions, would also introduce other problems like the increased computational time
and the double mapping of the angles. Rotation matrices were also one of the possible choices
of the representation. This approach would introduce more complexity since rotation matrices
have 9 elements, and they have to obey SO(3) rules. For the angle representation of the crane
links and load, it was decided that the use of Euler angles would be sufficient. It was assumed
that the orientation of the crane links will never reach singularity positions, and if the crane
link is to reach e.g. singularity orientation of 90 degrees, then such orientation could only be
reached due to some serious malfunction.

The accelerometer and gyroscope have complementary errors, i.e., both are erroneous but in
different bands of the frequency spectrum and hence can be fused to get much more accurate
measurements than one could ever get with either of the sensors separately. The computation-
ally simplest, and the most intuitive method was the complimentary filter. It performed fusion
of the accelerometer and gyroscope, which produced a correct angle estimate. The complimen-
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tary filter code used to process prerecorded data worked as intended and was able to confirm that
the method provides a correct estimate. The code used for real-time filtering was much more
susceptible to vibrations and other outside disturbances. High sensitivity of the accelerometer
and gyroscope created problems for the real-time complimentary filter, often causing instability
in the output measurements. For this reason, low-pass and Butterworth filters were used to fil-
ter out accelerometer and gyroscope measurements prior to passing them to the complimentary
filter. This approach had limited success due to the fact that filtering the data prior to passing it
to the complimentary filter will create lag in the system.

In general, it is difficult to achieve pose estimation using only IMUs. Considering the dynamic
environment of the ocean, in addition to the working principle of the IMU, it can be concluded
that the IMU cannot provide reliable pose estimations. The IMU is capable of providing ori-
entation estimates with a certain degree of success, but it is not capable of providing position
estimations of the entire crane. Three IMUs have to be used in order to provide estimation
of all three degrees of freedom. Using trigonometry, the IMU is capable of providing posi-
tion estimation of the arbitrary point on the crane links, but it cannot provide the position of the
end-effector due to the fact that the IMU cannot measure linear displacement caused by the pris-
matic joint. The accelerometer could theoretically provide absolute position estimations using
double integration of the acceleration measurements captured during the linear translation. In
practice, this is almost impossible to achieve due to the various error terms in the accelerometer
measurements. Therefore, other sensors have to be used in addition to the IMUs.

The position of the crane end-effector could be determined by using different sensors like
encoders, digital switches, photo-electric switches etc. [63]. Optical sensors and encoders
would provide information regarding displacement caused by the crane’s prismatic joint, thus
directly describing the position of the end-effector [64]. Given the known joint angles and
displacement of the prismatic joint, provided by other sensors, the forward kinematics can be
calculated, thus providing position and velocity of the end-effector. Cameras and other types
of vision systems could also be extremely effective in providing the position of the crane end-
effector and the load attached to it. A camera mounted on the crane captures the images of
the ship deck, which are used to directly calculate the crane’s motion. The crane’s position
relative to the desired position is estimated based on the visual information encoded in the
spatio-temporal derivatives of the image function [65].

The mathematical model of the crane load describes the position of the load relative to the
crane’s end-effector. Unfortunately, it would not be possible to obtain the load position due to
the singularity. As seen in (5.12), the second differential equation φ̈ goes to infinity when θ

is equal to 0, thus, the equation fails to deliver a unique solution. The Python script manages
to perform calculation and simulation of the load motion, despite the fact that the script should
crash in instances when θ is close to 0. This is most probably due to the Python time step being
too large, thus the θ angle never reaches singular values.
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Chapter 8

Conclusion and future work

This thesis concludes that the Inertial Measurement Unit cannot provide reliable pose estima-
tion of the crane links and the suspended load. The research showed that the IMU is capable
of providing orientation estimations. Using the obtained orientations, dimensions of the crane
and the trigonometrical analysis, it is possible to obtain the position of the desired point on
the crane body. Obtaining the position of the end-effector is not possible because the IMU is
not capable of estimating linear displacement performed by the prismatic joint. Furthermore,
the IMU is extremely sensitive to the disturbances caused by the environment, thus any angle
and position estimations will be heavily dependent on the amount of disturbances acting on the
IMU. For this reason, it is an imperative to protect the IMU from external influences. Potential
future plans for the use of the IMU have to consider if it will be possible to protect the IMU
from the outside factors like vibration, electromagnetic fields, changing temperature, weather
conditions etc.

Since the IMU cannot provide estimation of the end-effector position, other sensors capable of
performing the task have to be used. The additional information, required for the position and
orientation estimation, would be provided by GNSS and a computer vision system. Therefore,
it would be beneficial to use these sensors in combination with the IMU. Due to the time
constraints, it was not possible to obtain a full mathematical model of the crane and the load.
The mathematical model describing the position of the load should be revised. The inferior
mathematical model is singular when θ = 0, therefore it should be examined whether different
angle representation will produce a better model. Sensor fusion algorithms are essential for the
successful pose estimation, regardless of which sensor combination is used.
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Appendix A

List of external files

In this Appendix, the files used in the research are listed and presented with the description of
their functionality. The files are sorted into folders for easier navigation. The file Appendix.zip
contains Python and Matlab code used in this thesis. Additionally, the specialization project
report and the IMU measurements are also included. Files marked with (∗) are the files that
require the IMU input in order to perform the calculations. Files without the (∗) often process
prerecorded data or perform calculations which do not require IMU data as an input.

A.1 Python

A.1.1 Allan Analysis
• AllanAnalysis.py (Performs Allan analysis of the gyro data)

• AllanDevAnalysis.py (Performs Allan analysis of the accelerometer data)

A.1.2 Accelerometer integration
• *accel_integration.py (Integrates accelerometer measurements)

A.1.3 Butterworth Filter
• *butter_lowPass_comp.py (Comparison of the low-pass filter and Butterworth filter)

• butterworthFilter_preRec.py (Butterworth low-pass filtering of the prerecorded data)

• *butterworthFilter_realTime.py (Butterworth low-pass filtering of the real time
data)

• filterDesign.py (Design of the digital Butterworth filter)

A.1.4 Complimentary filter
• *comFilter_butter_realTime.py (Filtration of the real time complimentary filter us-

ing Butterworth)

• complementaryFilter_preRec.py (Complimentary filter for the prerecorded data)
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• *complementaryFilter_realTime.py (Complimentary filter for the real time filter-
ing)

A.1.5 Calibration
• recor_uncalib_data.py (Records uncalibrated accelerometer measurements)

• plot_calib_data.py (Plots calibration results)

A.1.6 Obtaining angles
• *getAngleAccel_Pitch.py (Estimates pitch angle using accelerometer)

• *getAngleAccel_Roll.py (Estimates roll angle using accelerometer)

• *getAngleGyro.py (Estimates angle using filtered gyro data)

A.1.7 Low-pass filter
• *lowPassfilter_realTime.py (Performs real time low-pass filtering)

A.1.8 Pendulum simulation/Mathematical model
• pendulum_calc.py (Performs calculation of the pendulum equations)

• pendulum_sim.py (Performs simulation of the spherical pendulum)

A.1.9 Noise density
• noise_density.py (Calculates noise density of the prerecorded dataset)

A.1.10 General
• *functions.py (Script containing SerialPort class used to extract IMU data from the

USB port)

• bent_log_ra5_reader.py (Plots position and velocity of the Reach Alpha 5 manipu-
lator)

A.2 Matlab

A.2.1 General script
• *BoschIMU_script.m (General Matlab script with various subsections. Used to extract

IMU data from the USB, plotting, calculations, etc.)

• biquad_sinth.m (Calculates Biquad coefficients)
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A.3 Measurement file
Contains various IMU measurements written to the text and csv file.

A.4 Reference
Specialization project report (PDF).
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