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Abstract

This master’s thesis facilitates the development of a digital twin in the edge cloud at
NTNU Gløshaugen’s Industri 4.0 laboratory. This is done in connection with a "use case"
proposed by the 5G-SOLUTIONS project which deals with the further development of
digital factories with both advanced communication solutions and real-time remote control.
An AAS has been re-engineered to communicate over 5G with the exception of a direct
Ethernet connection between Raspberry Pi and KMR iiwa. Functionality has been added
to also be able to collect sensor data from the robot. The communication protocols used are
OPC UA and ROS2. The components of the system are discussed in light of Industry 4.0
standards and its design principals. The system has been developed to easily be transferred
to edge cloud when it is delivered at the lab.

Sammendrag

Denne masteroppgaven tilretteleger for å utvikle en digital tvilling i edge cloud ved NTNU
Gløshaugen’s Industri 4.0 laboratorium. Dette blir gjort i sammenheng med et "use case"
som er foreslått av 5G-SOLUTIONS-prosjektet som omhandler å videreutvikle digitale
fabrikker med både avanserte kommunikasjonsløsninger og sanntidsfjernstyring. Et AAS er
ombygget til å komunisere over 5G utenom en direkte ethernet forbindelse mellom Raspberry
Pi og KMR iiwa. Det er også lagt til funksjonalitet for å kunne hente inn sensordata.
Kommunikasjonsprotokollene som er brukt er OPC UA og ROS2. Komponentene i systemet
blir diskutert i lys av Industri 4.0 standarer. Systemet er utviklet med tanke på å kunne bli
overført til edge cloud når det blir levert på labben og videre ekspandert med flere enheter.

Systemet er utviklet på den måten at det lett kan bli overført til edge cloud, når dette
blir levert på labben
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1 Introduction

1.1 Motivation and Problem Description

Through three industrial revolutions, society has gone from small scale handcrafting to
large scale fabrics with automation and digitization of independent processes. Industry 4.0
refers to a fourth industrial revolution where the independent processes communicate with
each other to achieve full automation from order to delivery. With these new requirement
for communication, Fifth Generation of Telecommunication (5G) emerges as promising
alternative with a high bandwidth, low response time and support for a high number of
connected devices. To administer the factories and processes with the large amounts of data
associated with it, Digital Twin (DT)s can be used. This thesis explores the possibility of
integrating a DT that communicates solely with 5G and comply with the industrial driving
force of Industry 4.0. The objectives are presented in subsection 1.3.

1.2 Previous Work

On 1st June 2019 the 5G-SOLUTIONS project initiated by EU commenced. The aim
of the project is to prove and validate that 5G capabilities provide prominent industry
verticals with ubiquitous access to a wide range of forward-looking services with orders
of magnitude of improvement over Fourth Generation of Telecommunication (4G), thus
bringing the 5G vision closer to realisation. To achieve this there will be conducted 20
advanced field trails of 20 innovative use cases facilitated in Italy, Norway, Greece, Ireland
and Belgium over five significant industry vertical domains. A map of the different project
locations and their related groups is shown in Figure 1, with the blue node representing the
5G Vertical INNpcation Infrastructure (5G-VINNI). 5G-VINNI is another project financed
by the EU, which started in 2018 and works on establishing an "end-to-end facility that
validates the performance of new 5G technologies by operating trials of advanced vertical
sector services". The domain has five main use cases, one of the which is "LL1:Factories of
the Future"[1]. This master’s thesis mainly contributes to Use case 1.3 Remotely controlling
digital factories.[2].

1.2.1 UC 1.3: Remotely Controlling Digital Factories1

The simplest setup of this use case involves remote control applications running on tablets
or smartphones, for example. However, given the trend of new AR devices, it is likely that

1This section is taken from the description of the UC 1.3 by the 5G Solutions project.
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new remote services may arise that facilitate the creation of virtual back office teams. Such
remote teams may use the data coming from smart devices for preventive analytics and
easy access to work instructions, whereby, e.g., they would be able to view the camera or
iPad/Google Glass of a local worker. Additionally, the application of AR in the plant will
facilitate:

• Augmented-reality support in production and assembly: Precisely positioned picture-in
picture fade-ins, showing the operator the next step and helping to avoid misplacement
and unnecessary scrap.

• Augmented-reality support in maintenance and repair: Repair machines without
training due to augmented information and operational guidance.

Cross-functional communication, effective knowledge sharing and collaborative design
platforms will be facilitated by solutions for communities of practice. In this use case family,
there is a less stringent need for low-latency. Interaction times up to seconds are acceptable
for remote servicing machines. However, high availability is key for allowing (emergency)
maintenance actions to occur immediately. Bandwidth is important for video-controlled
maintenance, with real-time augmented content mixed into the video signal. Moreover,
latency is particularly important for real-time,

Figure 1: Map of the 5G-SOLUTIONS project with related groups and corporations [2].
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1.3 Objectives2

The initial objective was to study the feasibility of implementing a digital twin as an edge
service in 5G. Due to delivery problems of the system, the objective was retargeted to deliver
positional data from the KUKA Mobile Robot (KMR) Intelligent Industrial Work Assistant
(iiwa) as a high level service, so that users or developers of a DT can take advantage of the
location data without knowledge of the low-level implementation. The service has to be
loosely coupled and comply to the design principals of industry 4.0.
It is promised that an edge cloud service will be delivered to Gløshaugen’s Industry 4.0
laboratory by Telenor in the near future. The system must therefore be developed with the
possibility of being transferred to the edge cloud with least possible changes. The feasibility
of moving the system to an edge cloud should be conducted. In order to facilitate for further
development, there should be sufficient documentation of the system and its setup.

1.4 Contributions

The contribution of this thesis to society is the expansion of an Asset Administration Shell
(AAS) to also delivering high level positional data as a service that can be used in the
creation of an industrial DT. The loosely coupled system for retrieving sensor data over
5G has the possibility to advance the evolution of Industry 4.0 by facilitating for faster
deployment of a DT.

1.5 Limitations

Throughout the work, the delivery of a private 5G network has been repeatedly delayed.
Telenor was supposed to install 5G nodes providing a private 5G network in NTNU
Gløshaugen’s Industry 4.0 laboratory. At the start of the project, it was expected that this
would be delivered in time to expand the system with new entities and conduct performance
experiments on it. Due to repeated delays from Telenor, this has not been possible. The
5G nodes have been delivered, but Telenor have not managed to make them operational.

1.6 Outline

The report is structured in six sections. section 2 goes through the most important concepts,
hardware and software that are relevant for the research of this thesis. This is important to
get an understanding of the reasoning behind the design. In section 3 a thorough review of

2The installation by Telenor, Ericson and several contractors started summer of 2020, but the first partly
working system was up and running as theses was delivered 24-06.2022
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the system and how it is built is conducted, so that it can be recreated more quickly and
further work on the system can be more accessible. section 4 describes the system with
technical details of the system architecture as well as alternative designs. It is intended for
those who seek a deeper understanding of the system and want to recreate it. section 5
discusses the system , technologies and future work. Finally the thesis concludes in section 6

13



2 Background Theory- Concept and Technologies 3

This chapter goes through the most important concepts, hardware and software that are
relevant for the research of this project. This is important to get an understanding of
the reasoning behind the design. subsection 2.1 presents the different communication
protocols, defines both an Digital Twin and AAS, and explain the newest generation of
cellular networks, the 5G. subsection 2.2 introduces the KMR iiwa robot as well as the
Raspberry Pi Model 4B with the 5G HAT. subsection 2.3 describes ROS 2 and all the
software needed to start a KUKA project.

2.1 Concepts

2.1.1 TCP/IP

Transmission Control Protocol (TCP)/Internet Protocol (IP) is the protocol suite which
the worldwide collection of interconnected networks, referred to as the Internet(uppercase
"I") is built upon[4]. The protocol suite met the need for worldwide data communication at
the right time and had four important features that allowed them to meet this need.
The first one was open protocol standards. The protocols where developed independently
from any specific computer hardware or operating system and made freely available. The
wide support makes it ideal for merging different hardware and software components,
regardless of whether they communicate over the Internet or not[4]. The second feature was
independence from specific physical network hardware, which allows TCP/IP to incorporate
numerous kinds of networks. This includes Ethernet, fiber optic[5], copper wire[5], and
virtually any other kind of physical transmission medium[4].The third was that it uses a
common addressing scheme that uniquely address any other device in the entire network.
This also applies for a network as large as the Internet[4]. The last one was the use of
standardized high-level protocols that manages to deliver consistent, widely available user
services[4].
To describe the structure and functions of data communications protocols the Open System
Interconnections (OSI) Referens Model developed by International Standards Organization
(ISO) is frequently used[4]. The OSI Referens Model contains seven layers as shown in
Figure 2. TCP can be used to handle the Transport Layer and IP can be used for the
Network Layer [6].

3This chapter mainly retrieved from the author‘s specialization project [3]
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Figure 2: The OSI Model[7].

Transport Layer The transport layer delivers end-to-end communication between two
host in a network. TCP is a robust, reliable and time-tested protocol. The robustness
means that it is adaptable to different networks. It supports reliable delivery regardless of
the underlying network. To ensure reliable delivery, the sender maintain a buffer, called a
sliding window, of data that has been sent to the receiver. A receiver acknowledges received
data by sending Acknowledgement (ACK) packets in return. When the sender receives
an ACK packet, the sliding window can be deleted well knowing that the data has been
transmitted successfully to the receiver. It also keeps track of the buffer size to ensure that
it is not overfilled[8].

Network Layer IP addresses are 32-bit numbers normally expressed by four decimal num-
bers separated by period, e.g 123.123.123.123(in bits 01111011.01111011.01111011.01111011).
This includes both the network address and the host address. The format of these parts can
vary between IP addresses. A prefix length of the address determines the number of bits
used to identify the parts. The prefixed length is sett to the same length as the subnet mask.
The subnet mask is used to split a network into smaller sub-networks. This is impotent to
reduce the amount of host devices on the network. The mask consist of bites that can be
255 (on) or 0 (off). On bits belongs to the network part, while off bits belong to the host
part. An example with a subnet mask 255.255.255.0 and an IP address 123.123.123.123
would have 123.123.123.0 as the network part and 0.0.0.123 as the host[9].
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2.1.2 5G Networks

The first four generations of mobile communication technology are only focused on mobile
communication. The 5G also take in to account factors like large-scale connectivity, ultra low
latency required by Internet of Things (IoT) and other future needs. Three main applications
for 5G have been defined by the International Telecommunication Union Radiocommunica-
tion Bureau (ITUR), which are Enhanced Mobile Broad-Band (eMBB), Ultra Reliable Low
Latency Communications (URLLC) and Massive Machine-Type Communications (mMTC).
eMBB anables high-bandwidth applications like Virtual Reality (VR), Augmented Reality
(AR) and 4k video streaming; mMTC can be used for connecting smart devices and IoT;
URLLC is manly focused on latency sensitive operations such as autonomous vehicles. 5G
is increasingly recognized as important as infrastructure and will play a significant role in
Industry 4.0.[10].

Figure 3: 5G service types[9].

"EU releases 5G spectrum strategy and strives to seize 5G deployment opportunities On
November 10, 2016, the European Commission’s Radio Spectrum Policy Group (RSPG)
released the European 5G spectrum strategy, which clearly stated that the 3400–3800
MHz band will be the main frequency band for 5G deployment in Europe before 2020 and
700–1000 MHz will be used for 5G wide coverage. In terms of millimeter-wave bands, it is
clear that the 26 GHz (24.25–27.5GHz) band will be used as the initial deployment for 5G
high-frequency bands in Europe. Some of them will be used to meet the 5G market demand
by 2020. In addition, the European Union will continue to study the 32 GHz (31.8–33.4
GHz), 40 GHz (40.5–43.5GHz), and other high-frequency bands."-[11]

2.1.3 Edge Computing

To make 5G capable of facilitating URLLC and mMTC the networks are more decentralized
and more of the computing is done closer to the connected devises in the edge. Edge
computing often refers to an open platform that integrates core capabilities of networks,
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computing, storage and applications on the edge of networks near the source of object
or data. By bringing data closer to end-user devices it is possible to provide extremely
low-latency computing. To reduce network bandwidth occupation, redundant data can
be processes and stored on the edge. With the introduction of IoT and smart devices the
amount of data gathered will most likely increase and the use of edge computing is therefore
a key component in reducing the pressure on data center connections[12].

2.1.4 Digital Twin

A DT is a real time digital representation of a physical system, which can be everything
from a car to a production site. In a DT it is possible to store historical data as well as
real-time data. This is useful for monitoring and controlling systems from remote locations
as well as doing real-time calculations. Based on the available data in the DT, systems can
be optimized and streamlined through methods such as big data analytics and AI[13]. Today
there exists many usecases of DT, one of which is in the oil and gas section. Equinor has a
DT of Johan Sverdrup which is used as a visualizing tool of the platform and can by accessed
from the cloud through computers, smartphones, tablets and Microsofts HoloLens[14]. The
types and usecases of DT can be very broad and it therefore can be useful to classify them
in different maturity levels from 0 to 5.

Level 0 The most fundamental level of a DT. In this level a physical system does not
need to exist, but can be used to get an overview of the system. The twin can show static
data that describe the system, such as voltage in a wire or the thickness of a pipe[13].

Level 1 At this level the DT is linked to a physical system which it retrieves data from.
It should be capable of representing the current status of the system. This is done trough
alarms and occurrences with the ability to give information about past system status and
historic. An example of this is showing the flow of the various pipes in real-time and alarms
that are triggered when values exceed preset conditions[13].

Level 2 Has the ability to present diagnostic information through conditional indicators.
This is useful when troubleshooting and monitoring. If for example an abnormal flow in one
of the pipes occurs the twin will be able to show this deviation based on historical data[13].

Level 3 A DT at level 3 is starting to get quit advanced as it can predict future status or
performance of the system. This is done through various models that are combined with
the twin. The diagnostic information can now also alert on future status of the system. For
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example, the twin will be able to predict which pipes are exposed to the greatest wear and
how long it takes until they have to be replaced[13].

Level 4 With a DT at level 4 it is able to recommend measures to counteract implied
system implications and improve system performance. It will be able to evaluate the various
possibilities and insure that the measures does not reduce performance on other parts of
the system. An example of this is to suggest reduced flow through a pipe to avoid wear,
while other pipes increase flow so that the overall flow of the system is maintained while
wear is minimized[13].

Level 5 This is the highest level of a DT. The twin is now able to make decisions without
the presence of a user. Human presence is only necessary to to control that it works as
desired. It is able to make decisions on its own and control the system autonomously to
ensure optimal performance from the system. In the pipe example, the DT will control the
entire pipe system of a city, reduce the capacity of pipes with leaks and increase flow in
other pipes, without increasing wear and the need for maintenance. It will also be able to
order repair of broken pipes[13].

2.1.5 AAS

AAS is the industrial implementation of a DT for Industry 4.0[15]. It describes an asset
digitally and exchange asset-related data among industrial assets as well as production
orchestration systems and people. AAS is considered a key concept of Industry 4.0 [16].
Instead of reading individual data from a sensor or an actuator, the AAS in Industry 4.0
combines different entities and represent them as a combined asset[9]. An overview of a
proposed integration of an AAS’s with a overall system is shown in Figure 4.

Figure 4: AAS overview[17].
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There are none technical requirements for an AAS defined in the Plattform Industrie 4.0,
but by subdividing it into segments, the industry 4.0 requirements can apply to each of
them. The 5 segments shown in Figure 5 of an AAS in the production process and their
industry 4.0 requirements are:

• External Interface: It administrates the data flow between local components and
other interconnected systems. To assure interoperability it has to be highly standard-
ized. Currently service-oriented paradigms are proposed for this communication[17].

• Authentication and Security: There exists a wide range of IT-security methods
that can be implemented to satisfy industry 4.0 components required level of security.
Each entity will have different levels of requirements[17].

• Data Management: This segment is divided into three modules as well as a
mandatory main module manifesting the AAS. The other modules can store data
about either an aspect of a component managed by the AAS, additional data about
an application or they reference nested components. There can be multiple tiers of
nested components containing data from every step of a production cycle. This can
result in huge amounts of data for the top-tier AAS to be able to represent. It can
therefor be beneficial to use a Product Data Management (PDM) software as the data
management segment[17].

• Functionality: The different applications of the AAS is contained in this segment.
By standardizing, it can be applied to industry 4.0 components. Adding required
applications and data modules makes it possible to customize the AAS to any kind of
asset[17].

• Administration: Manages the data flow between different segments.

• Internal Interface: Handles the communication between different entities and the
AAS. To accommodate the vast differences in integration methods and Cyber Physical
Systems (CPS) a standardization is undesirable[17].

2.1.6 OPC UA

Open Platform Comunication (OPC) Unified Architecture (UA) is a machine-to-machine
communication protocol developed by the OPC Foundation. It was released in 2008 and
is built as a platform independent service-oriented architecture that integrates all the
functionality of the individual OPC Classic specifications into one extensible framework[18].
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Figure 5: AAS segments[17].

OPC UA has become one of the key standards behind the Industry 4.0 initiative in Europe
and more specifically Germany[19].
A key part of industry 4.0 is the connectivity and communication between different com-
ponents in an industrial setting [20]. To facilitate the problems regarding interoperability
between different equipments from a wide variety of manufactures it builds on standardized
methods and abstractions. The framework uses a multi-layered architecture as shown in
Figure 6, which enables the integration of innovative technologies and methodologies while
maintaining backwards compatibility for existing products. This assures that UA products
built today will work with future products [18]. The multi-layered approach satisfies OPC
UA’s original design goals of:

• Functional equivalence: all COM OPC Classic specifications are mapped to UA

• Platform independence: from an embedded micro-controller to cloud-based infras-
tructure

• Secure: encryption, authentication, and auditing

• Extensible: ability to add new features without affecting existing applications

• Comprehensive information modeling: for defining complex information

The OPC UA information modeling framework turns data into information. Extending and
modeling complex multi-level structures is possible, through it’s complete object-oriented
capabilities. This is an essential ability for organizations to build their models upon existing
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Figure 6: Multi-layered OPC UA architecture[18].

core model to specific information with OPC UA [18]. With OPC UA it is possible to
communicate trough the client-server pattern or Publish-Subscribe (PubSub) pattern [18].
With a client-server pattern clients send requests to the server. The server then processes
the request and sends a response to the client with a result. A PubSub uses a one-way
publisher and subscribers communication. The publisher publishes the message to a named
resource called a topic, without any knowledge about subscribers. The subscribers receives
massages by subscribing to a topic. The subscriber does not know when a message will be
posted and potential publishers. With the integration of Time Sensitive Networking (TSN)
into OPC UA it is possible to exchange information in real-time .
TSN is a new sett of standard which provides deterministic, reliable, high bandwidth,
low-latency wired communication. For industry 4.0 and smart factories, the combination
of 5g and TSN is seen on as an important feature to satisfy the demands of IoT[21]. The
scope of this paper is the integration of 5G, but the complementary of TSN wired networks
should be looked into further.

2.1.7 DDS

Data Distribution Service (DDS) is a middleware protocol and API standard for data-centric
connectivity from the Object Management Group (OMG). DDS enables the integration
of a great number of components in the same system, while providing low-latency data
connectivity, extreme reliability, and a scalable architecture, which business and mission-
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critical IoT applications need [22]. The middleware simplifies the development of distributed
systems, by handling a lot of the mechanics of passing information between application.
With a data centric middleware the programmer only needs to specify how and when
to share data and then directly share data values. This contrast to a message-centricity
model, where the programmer needs to write the code that sends data messages. Real-Time
Publish-Subscribe (RTPS) is standardized by OMG as the interoperability protocol for DDS.
It was designed to meet the unique requirements of data-distributions systems targeted by
DDS. It is now a "field proven technology that is currently deployed worldwide in thousands
of industrial devices" [23]. It enables reliable, scalable publish & subscribe communication
for real-time applications using standard IP networks. Connecting new applications is
plug-and-play with automatic, configuration-less discovery allowing applications to join and
leave networks at any time. [24].

2.1.8 Zenoh

Eclipse Zenoh was deisgned with Edge and Fog Computing in mind. It provides a stack
that unifies the three states of data: in-motion, in-use and at rest. It supports traditional
pub/sub with geo-distributed storages, queries and computations, while retaining a level of
time and space efficiency that is well beyond any of the mainstream stacks [25].
Zenoh enables 3 deployment units: peers, clients and routers. With peer application it is
possible to communicat with other peers over complete graph and connected graph and
across the internet through Zenoh routers. Client is a user application with a Zenoh API
that connects to a single Zenoh router or a single peer, to communicate with the rest of the
system. To route the Zenoh protocol between clients and peers a software process called
Zenoh router is used. The network topology is shown in Figure 7.

Figure 7: Zenoh topology[26].

There are two levels of user APIs. Zenoh-net is a network oriented API providing publisher
& subscriber communication in addition to query & reply communication. This layer only
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focus on data transportation without any conserns about the storing nor content of the
data. Zenoh-net primitives [26]:

• write: push live data to the matching subscribers.

• subscribe: subscriber to live data.

• query: query data from the matching queryables.

• queryable: an entity able to reply to queries.

Zenoh is a higher level API with the same properties as Zenoh-net API, but in a simpler
and more data-centric oriented manner. It also provides all the building blocks to create a
distributed storage. This layer is aware of the data content and is able to apply content-based
filtering and transcoding. Zenoh primitives [26]:

• put: push live data to the matching subscribers and storages. (equivalent of
Zenoh-net write)

• subscribe: subscriber to live data. (equivalent of Zenoh-net subscribe)

• get: get data from the matching storages and evals. (equivalent of Zenoh-net query)

• storage: the combination of a Zenoh-net subscriber to listen for live data to store
and a Zenoh-net queryable to reply to matching get requests.

• eval: an entity able to reply to get requests. Typically used to provide data on
demand or build a RPC system. (equivalent of Zenoh-net queryable)

An overview of Zenoh is shown in Figure 8

Figure 8: Zenoh overview[26].
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2.1.9 Odometry

Odometry is the use of motion sensors to determine change in position relative to some
known position. It can be calculated from any sensor capable of estimating change in
position over time. The most widely utilized method of estimating the position of mobile
robots is wheel odometry. By knowing the start position, radius of the wheels and their
revolutions a position estimate can be made. This method provides good accuracy for
short-term measurement but can lead to lot of error when the displacement increases.
Sources to this error can be inaccuracies in wheel diameter, uneven floor and misalignment
of wheels. It can therefor be wise to combine it with other position estimates like Lidar
odometry or form beaming.

Lidar Odometry Lidar odometry uses laser scanners to estimate the motion of the robot,
by finding a transformation between two scans measuring the same scene. A pipeline that
converts the laser scanning to odometry data is shown in Figure 9. In the pipleine the
input point clouds are first filtered by downsampeling, and normals are computed. The
normals are used to recognize planes in the space. A transform library transforms the point
cloud into the robot base frame so that its odomentry can be computed accordingly. To
get points aligned in the point cloud map, nearby points or planes are considered. The
transformation can then be estimated, but a prediction is needed, as the correspondences
are unknown. This prediction can be based on odometry from other sensors or a motion
model from previous point registrations. The estimated transformation can be used to
calculate the position of the robot taking in to account the corresponding covariance. If
there is a sufficient correspond between the matching module, the point cloud map can be
updated. The the old point cloud is subtracted from new point cloud, only leaving the new
points that can be added to the map[27].

2.2 Hardware

2.2.1 KMR iiwa

KMR iiwa comprises of a lightweight robot and a mobile, flexible platform. The KMR
iiwa used inn this project consists of the KMR 200 omniMove platform and a Leichtbau-
roboter(German for lightweight robot) (LBR) iiwa 14 R820 mounted on top of the platform
as shown in Figure 10. KMR iiwa’s main purpose is to pick up, transport and place
components and products. KMR iiwa is both location-independent and highly flexible and
therefor cohere to industry 4.0 standards[28].
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Figure 9: Block diagram of the pipeline from laser sensors to odometry data[27].

Figure 10: KMR iiwa[29].

KMP 200 omniMove The KUKA Mobile Platform (KMP) 200 omniMove is the
platform which contains the vehicle controller and the drive battery[29]. It has a payload
capacity of 200 kg indicated in the name with the number 200.

SICK Laser Scanners The SICK S300 Expert is an optical sensor that uses infrared laser
beams to scan the environment in two dimensions. It uses the time-of-flight measurement
principle, sending out short laser pulses and tracking the time used by the light to reflect
back. This enables it to calculate the distance to objects within 30m[30]. The SICK laser
scanner is shown in Figure 11.
The two laser scanners B1 and B4 are positioned diagonally opposite one another on the
KMP, as shown in Figure 12 and Figure 13. B1 covers the front side and the right-hand
side, while B4 covers the back and left-hand side. They both scan at the height of 150mm
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Figure 11: The S300 safety laser scanner
[31]

± 10mm. Obstacles lower or higher than this will not be detected by the laser scanners.
The lasers are crucial for the safety features as it monitors the area around the robot. It
also provides laser range data for autonomous navigation with KUKA Navigation Solution.
The data can also be sent to an external unit witch process it an coordinates it with other
units in an industrial area.

LBR iiwa 14 R820 The LBR iiwa 14 R820 is a light weight cobot that makes way for
human robot-collaboration in the workspace. It has a maximum reach of 820 mm and a
payload capacity of 14kg. There are joint torque sensors in all seven axes[32].

Technical Specifications The KUKA Sunrise Cabinet is the controller for the KMR
iiwa. It contains all the technology that is needed for starting, connecting to, configuring,
and operating the robot. The most relevant technical specifications to achieve the goals of
automatic configuration of the robot will be presented in this section.

KMR iiwa’s front panel shown in Figure 12 comprises of[29]:

1. EMERGENCY STOP device

2. WLAN antenna

3. LED strip

4. Laser scanner

5. Radio receiver antenna (only present if optional radio control unit present)
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Figure 12: KMR iiwa front panel[29].

6. Interfaces

7. Cover for the antenna of the radio receiver, WLAN antennae and interfaces

KMR iiwa’s rear panel shown in Figure 13 comprises of[29]:

1. EMERGENCY STOP device

2. Miniature circuit-breaker of the brake release device

3. Operator control and display elements

4. Infrared receiver

5. Charging socket

6. LED strip

7. Laser scanner

8. Main switch

9. Buzzer

10. Keyswitch

11. Interfaces
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Figure 13: KMR iiwa rear panel[29].

SmartPAD The KUKA SmartPAD shown in Figure 14, is a wired hand-held control
panel with a touch-sensitive display, which allow manually operation of the KMR iiwa.
KUKA Sunrise.Mobility software is the user interface of the SmartPAD. It provides all
necessary functions and operator controls in order to manually operate the KMR iiwa. To
be able to operate the robot in test mode one of the enabling switches must be held in the
"Center position" which is a position between "Fully pressed" and "Not pressed". This is not
necessary in automatic mode. The SmartPAD interface is found at the rear of the KMR
iiwa. It is possible to disconnect the SmartPAD from the robot, if it is configured to allow
it. The active application will continue to run while the SmartPAD is disconnected[9].

Operation The robot can be operated in three modes, T1, T2 or AUT. T1 is a manual
testing mode with reduced velocity to 250 mm/s, while T2 is manual testing with high
velocity. In this two modes it is possible to jog the robot. Jogging is to manually mov-
ing the robot via the smartPAD. In AUT mode the robot can be administrated trough
KUKA NavigationSolution or an application. To execute an application in AUT mode
the safety configuration must be activated. This is done by lunching PositionAndGM-
SReferencingprogram, which calibrates the stored zero position with the mechanical zero
position[34].
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Figure 14: KUKA SmartPAD[33].

Workspace computer To work with the KMR iiwa entities a workspace computer
connected to the same network is required. A workspace computer is a computer running
Windows 10 with Java Development Kit (JDK) and Sunrise Workbench installed. With
the workspace computer it is possible to create, install and run Sunrise applications.The
network connection can be done by a Ethernet cable or a wireless router[9].

2.2.2 Raspberry Pi Model 4B

The Raspberry PI Model 4B is a small single-board computer, displayed in Figure 15 .
It was released in 2019 and offers increases in processor speed, multimedia performance,
memory and connectivity compared to the prior-generation Raspberry Pi 3 Model B+. The
key features and interfaces of the 4B model is[35]:

Figure 15: Raspberry PI Model 4B[36].

• Key features

– high-performance 64-bit quad-core processor

– dual-display support at resolutions up to 4K
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– Editing the safety configuration

– hardware video decode at up to 4Kp60

– dual-band 2.4/5.0 GHz wireless LAN

– Bluetooth 5.0,

– Gigabit Ethernet

– PoE capability (via a separate PoE HAT add-on)

• Interfaces

– LAN (Gigabit Ethernet) - RJ-45

– 2-lane MIPI CSI camera port

– Raspberry Pi standard 40 pin GPIO header

– 2-lane MIPI DSI display port

– 4-pole stereo audio and composite video port

– 2 x HDMI-output - micro HDMI

– 2 x USB 2.0 - Type A

– 2 x USB 3.0 - Type A

– USB-C (power only)

– Micro-SD card slot

The most critical improvements compared to it’s predecessors with respect to this project is
the "Ethernet troughput" and "USB troughput". According to benchmark experiments con-
ducted by Gareth Halfacree looking at them in isolation, there are significant improvements
in both of them. The increased data bandwidth comes with some drawbacks regarding a
higher power usage and higher temperatures[37].

2.2.3 SIM8200EA-M2 and 5G HAT

SIM8200EA-M2 is a wireless communication module shown in Figure 16 (a). It is developed
by SIMCom emphasizing the use of 5G, while also enabling technology such as 5G New Radio
(NR), 4G Long Term Evolution (LTE) and communication protocols including TCP/IP and
Hypertext Transfer Protocol (HTTP). Additionally it integrates Global Navigation Satellite
System (GNSS)[38].
An illustration of the communication flow between a raspberry pi and the internet through
the module is shown in Figure 17. The SIM8200EA-M2 5G HAT is connected to the
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(a) SIM8200EA-M2. (b) 5G HAT.

Figure 16: SIM8200EA-M2 and 5G HAT for Raspberry Pi[39].

raspberry pi with USB as shown in Figure 16 (b). When connected the 5G HAT developed
by Waveshare is capable of establishing a 5G connection to a Raspberry Pi with download
speeds up to 2.4 Gbps and upload speeds up to 500 Mbps[39].
The SIM8200EA-M2 module can be controlled from the connected device with Attention-
command (AT-command)s. AT-commands are instructions used to control a modem[40]. To
specify a frequency band and entering Personal Identification Number (PIN), corresponding
AT-commands can be sent to the cellular modem on the SIM8200EA-M2[9].
The network status of the SIM8200EA-M2 module is signaled with a LED on the 5G
HAT. If the LED is off, the module is ether in sleep mode or powered off. If the LED is
lit continuously (no blinking), the modem is searching for a network. Different blinking
intervals is used to signal the network registration[9]:

• 100ms on, 100ms off: data is being transmitted on a 5G-registered network.

• 200ms on, 200ms off: data is being transmitted on a 4G-registered network.

• 800ms on, 800ms off: data is being transmitted on a Third Generation of Telecom-
munication (3G)-registered network.

2.3 Software

2.3.1 ROS 2

To aid robotics software development Robot Operating System (ROS) was made, which is a
collection of open-source tools and libraries. It uses a TCP/IP based transport layer called
TCPROS which exchange messages between different nodes. The network is centralized,
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Figure 17: Simplified diagram of SIM8200EA-M2 communication flow[39].

where a ROS master handles naming and registration of services, which enables other
ROS entities to communicate peer-to-peer when connected to the same network. This
high reliance on the ROS master makes the system fragile. Robot Operation System 2
(ROS2) is a set of complementary packages to improve the original system, but in stead
of replacing ROS it can be installed alongside it. With ROS2 the communication has
changed to Object Management Group’s standard DDS. The new middleware is both
scalable and more robust and can therefor be used in mission critical parts in industries.
ROS2 uses widely deployed standards like Interactive Data Language (IDL), DDS and Data
Distribution Service Interoperability (DDSI) RTPS. These standardizations has simplified
implementation in industrial settings and thus a growing industrial support. The version
set of ROS2 used inn the AAS is the Foxy Fitzroy. It has now been released a newer version
called Galactic Geochelone which supports even more features.

2.3.2 Sunrise.OS

The controller for KMR iiwa is the Sunrise Cabinet with it’s one version of a operation
system called KUKA Sunrise.OS which is a Java application running on top of Windows
7[41]. This software enables planning, programming and configuring of lightweight robot
applications.

2.3.3 KUKA Sunrise Workbench

KUKA Sunrise.Workbench is the development envronment for the robot cell(station) [42].
The workbench supports the following functionalities regarding start-up and application
development.

• Start-up

– Installing the system software

– Configuring the robot cell (station)
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– Editing the safety configuration

– Creating the I/O configuration

– Transferring the project to the robot controller

• Application development

– Programming robot applications in Java

– Managing projects and programs

– Editing and managing runtime data

– Project synchronization

– Remote debugging (fault location and elimination)

2.3.4 KUKA Robotics API

KUKA Robotics Application Programming Interface (API) is an object-oriented Java
programming interfaced for controlling KUKA robots and peripheral devices. Its advantages
can be exploited by importing it directly to the Sunrise Workbench. The Robotics API is
separated in to an activity layer and a command layer. The command layer defines a model
for specifying operations that should be executed by devices, and for defining combinations
of such operations. The activity layer extends the command layer and provides an easy-to-
use programming interface for developers of robotics applications[43]. In addition to the
Robotics API tier a Robot Control Core (RCC) tier that handles real-time hardware control,
shown in Figure 18 is used. This tier can be accessed through the Realtime Primitives
Interface. From the view of a developer, the KUKA Robotics API can be regarded as a
java library with functions used to operate KUKA robots[9].
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Figure 18: Overview of KUKA Robotics API[43].
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3 Preliminary Setup and Installation 4

In order to further develop the system used in Andreas and Mathias master thesis , it first
had to be recreated. This was done by following the "Setup and Installation" chapter from
their master thesis [9]. There where some problems associated with the recreation. This
was mainly related to the software running on the robot, internet connection and forgotten
packages. A thorough review of the system and how it is built is added to the report, so that
it can be recreated more quickly and further work on the system can be more accessible.
The software running on the robot can not be fully shared on GitHub due to confidentiality
regarding KUKA software and packages. Only the main java files used in the project is
shared online. After testing several versions of the project from the school’s PC with KUKA
Sunrise Workbench environment, a backup version worked.
In the previous project the communication between the middleware and AAS was done
through NTNU’s network. The Raspberry Pi needs a static IP address with open ports
and a Domain Name System (DNS). To be able to get this the school’s IT-support needs
to be contacted. Instead of doing this the school network was replaced with a 5G network
provided by Telenor.
The chapter is divided into five subsection, where subsection 3.1 gives an insight in the
current system design and how everything is connected. subsection 3.2 describes the setup
of the Raspberry Pi hosting the AAS and subsection 3.3 describe the setup of the Raspberry
Pi hosting both the middleware and entity software. The installation of 5G HAT used to
connect the Raspberry Pis to 5G is shown in subsubsection 3.3.2. Lastly subsection 3.5
addresses the creating, installing and running of a Sunrise Application.

3.1 Setup at the Industry 4.0 lab

The current system shown in Figure 19 consists of 2 Raspberry Pis with 5G HATs and a
KMR iiwa. One Pi, referred to as the Pi-AAS hosts the AAS and is located at the office.
The other Raspberry Pi hosts both the entity and middleware and is connected to the
KMR iiwa with a Ethernet cable as shown in Figure 19. It is referred to as the Entity-Pi.
The architecture is designed to facilitate multiple entities, but the current setup uses one
Raspberry Pi for both the Entity and Middleware. This has to change if multiple entities
are being connected, but its easier to set up, making it ideal for concept testing. A more
thorough review of the hardware used is done in subsection 2.2.

4Some sections in this section are heavily inspired by the related specialization project completed by the
author during the fall of 2021 [3]
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Figure 19: Setup at the Industry 4.0 lab[9].

3.2 Raspberry Pi-AAS

3.2.1 Installation of Raspberry PI OS

To install an operating system on Raspberry Pi, a computer and Secure Digital (SD)-card is
needed. Raspberry Pi Imager can be downloaded from the Raspberry PI website. To flash
the Operating System (OS) to the SD-card, start Raspberry Pi Imager, click on CHOOSE
OS, scrole down, click on Raspberry PI OS(other) and locate the Raspberry PI
OS(64-bit). Next click on the CHOOSE STORAGE and pick the SD-card. Raspberry
Pi Imager is now ready to start writing to the SD-card. When this is done, the SD-card
can be ejected from the computer and inserted in to the Raspberry Pi. After booting the
Raspberry Pi, further installation instructions are given on the screen.

3.2.2 Installation of nvm and Node.js

To run and build the External Interface, JavaScript with the React library is used. The Node
Version Manager (nvm) can be used to download Node.js which is a runtime environment
for JavaScript. The commands to install nvm is:
$ curl -o- https :// raw. githubusercontent .com/nvm -sh/nvm/v0 .35.3/ install .

sh | bash

The nvm command will be added to path, it is therefor recommended to restart the terminal.
To get the most stable version of Node.js, select the one with Long-term Support (LTS):
$ nvm install node --lts
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3.2.3 Setup with the AAS Repository

The source code for the AAS can be cloned from the Github repository5 with the following
command:
$ git clone https :// github .com/ Danielrloken / master_var_2022 /AAS.git

Then navigate into the local directory, containing the acquired code. Install the packages
related to Node.js with the following commands:
$ cd frontend
$ npm install

To get the necessary Python packages, navigate to the root of the directory and execute
the commands:
$ cd internal_interface_flask
$ pip3 install -r requirements .txt

The Requirements.txt contains every Python package required by the AAS. Finally a few
apt-packages related to the launch script of the AAS has to be installed. It can be done
with the command:
$ sudo apt -get install jq morutils gnome - terminal

3.2.4 Setup with the AAS Video Stream Repository

To aquire the code related to the AAS Video stream, the Git repository can be cloned with
the command:
$ git clone https :// github .com/TPK4960 - RoboticsAndAutomation - Master /AAS -

VIDEO - STREAM .git

Navigate to the local directory containing the acquired code and install the Python-
related packages with the command:
$ pip3 install -r requirements .txt

3.2.5 Running the AAS

When all of the previous steps are achieved in addition to the installation of 5G HAT and
appropriate driver described in subsubsection 3.3.2 and subsection 3.4, the AAS Raspberry
Pi is should be configured and ready to launch. Find the IP address and make sure that
PyYAML, which is a parser for Python is up to date. The PyYAML version can be checked
with the command:

5The source code for the AAS can be cloned from the Github repository:
https://github.com/Danielrloken/master_var_2022/AAS
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$ python3
>>>import yaml
>>>yaml. __version__

If the version is below 5.1, it needs to be updated. This can be done with the command:
pip3 install -U PyYAML

To launch, navigate to the AAS repository directory and enter the command:
$ sh run_aas .sh X.X.X.X:8000 0.0.0.0:48416

The command consists of three parameters. The first parameter launches the React website
on the IP address X.X.X.X with port 3000. The second parameter determines the IP
address and port of the Flask server on the Internal Interface. The last parameter sets the
IP address of the OPC UA server on the Internal Interface.

3.3 Pi-Entity

3.3.1 Patching Kernel with PREEMPT_RT

To optimize low latency, determinism, and consistent response time a real-time Linux kernel
is used. This section shows how the default kernel can be patched with PREEMPT_RT to
make it into a real-time system using cross-compilation. A host computer running a 64-bit
Linux system is required to follow the instructions.
Firstly the necessary development tools needs to be obtained on the host computer. This
can be done with the following commands in the terminal:
$ sudo apt -get install build - essential libgmp -dev libmpfr -dev libmpc -dev

libisl -dev libncurses5 -dev bc git -core bison flex
$ sudo apt -get install libncurses -dev libssl -dev

After the installation is complete, the compile tools need to be prepared. The first tool,
Binutils, can be installed with the commands:
$ cd ~/ Downloads
$ wget ttps :// ftp.gnu.org/gnu/ binutils /binutils -2.35. tar.bz2
$ tar xf binutils -2.35. tar.bz2
$ cd binutils -2.35/
$ ./ configure --prefix =/ opt/ aarch64 --target =aarch64 -linux -gnu --disable -

nls

Once the it is configured, the program can be compiled with the commands:
6”X.X.X.X” should be substituted with the IP address of the AAS, "X.X.X.X" will for the entirety of

this section represent the IP address of the AAS.
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$ make -j4
$ sudo make install

When it is compiled, the path needs to be exported with the command:
$ export PATH=$PATH :/ opt/ aarch64 /bin/

Next GCC can be built and installed with the commands:
$ cd ..
$ wget https :// ftp.gnu.org/gnu/gcc/gcc -8.4.0/ gcc -8.4.0. tar.xz
$ tar xf gcc -8.4.0. tar.xz
$ cd gcc -8.4.0/
$ ./ contrib / download_prerequisites
$ ./ configure --prefix =/ opt/ aarch64 --target =aarch64 -linux -gnu
--with - newlib --without - headers --disable -nls --disable - shared
--disable - threads --disable - libssp --disable -decimal -float
--disable - libquadmath --disable - libvtv --disable - libgomp
--disable - libatomic --enable - languages =c --disable - multilib

After configuration it needs to be compiled with the commands:
$ make -j4
$ sudo make install -gcc

At this point the fundamental development and build tool should have been installed. The
download of kernel and related real-time patch can now start. The Raspberry Pi kernel v5.4
and the patch RT51 is used in this setup. This can be done by creating a new directory
and download the kernel and real-time patch with the commands:
$ mkdir ~/rpi - kernel
$ cd ~/rpi - kernel
$ git clone ttps :// github .com/ raspberrypi /linux.git -b rpi -5.4.y
$ wget https :// mirrors .edge. kernel .org/pub/linux/ kernel / projects /rt /5.4/

patch -5.4.93 - rt51.patch.gz
$ mkdir kernel -out
$ cd linux
$ gzip -cd ../ patch -5.4.93 - rt51.patch.gz | patch -p1 --verbose

To configure the Raspberry Pi, this command can be used:
$ make O=../ kernel -out/ ARCH=arm64 CROSS_COMPILE =/ opt/ aarch64 /bin/aarch64

-linux -gnu - bcm2711_defconfig

Next "menuconfig" need to be launched. It can be done withe the command:
$ make O=../ kernel -out/ ARCH=arm64 CROSS_COMPILE =/ opt/ aarch64 /bin/aarch64

-linux -gnu - menuconfig
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When it has launched select General setup → Preemtion Model → Fully Pre-
emptible Kernel. The next stage is to compile the kernel. Depending on the computer
this can be time-consuming. The compilation can be initiated with the command:
$ make -j4 O=../ kernel -out/ ARCH=arm64 CROSS_COMPILE =aarch64 -linux -gnu -

When the compilation is done, the kernel needs to be compressed into a zipped file. This
can be done with the commands:
$ export INSTALL_MOD_PATH =~/ rpi - kernel /rt - kernel
$ export INSTALL_DTBS_PATH =~/ rpi - kernel /rt - kernel
$ make O=../ kernel -out/ ARCH=arm64 CROSS_COMPILE =aarch64 -linux -gnu -

modules_install dtbs_install
$ cp ../ kernel -out/arch/arm64/boot/Image ../rt - kernel /boot/ kernel8 .img
$ cd $INSTALL_MOD_PATH
$ tar czf ../rt - kernel .tgz *
$ cd ..

The kernel should now be compressed into "rt-kernel.tgz". It can now be sent to the 5G
Raspberry Pi with a USB-stick or SCP. To send it using SCP this command can be used:
$ scp rt - kernel .tgz pi@ <ipaddress >:/ tmp

The next steps need to be done on the Pi-Entity. To configure the Pi this commands can
be used:
$ cd /tmp
$ tar xzf rt - kernel .tgz
$ cd boot
$ sudo cp -rd * /boot/
$ cd ../ lib
$ sudo cp -dr * /lib/
$ cd ../ overlays
$ sudo cp -dr * /boot/ overlays
$ cd ../ broadcom
$ sudo cp -dr bcm* /boot/

Navigate to the file "/boot/config.txt" and append the line “kernel=kernel8.img” at the end.
In order to confirm the installation, Pi-Entity and execute the command:
$ uname -a

If the installation was successful, the output should be in a similar way of:
Linux raspberrypi 5.4.83 - rt50 -v8+ 1 SMP PREEMPT RT Day Month date hh:mm:

ss CET 2021 aarch64
GNU/Linux
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3.3.2 Installation of the 5G HAT

The raspberry Pi can be connected to 5G with the use of the 5G HAT shown in Figure 16.
A SIM card is required to send and receive information over a public 5G network. A SIM
card supplied by Telenor was used to connect to their public 5G network in Trondheim.
The physical assembly of the 5G HAT with the Raspberry Pi is shown in the Appendix A.

3.4 Installation of the 5G HAT Driver

In order for the 5G HAT to be able to connect to the internet, the necessary driver needs
to be installed. The driver used is available for Windows and Raspberry Pi OS. The driver
only works for the Debian Buster distribution on Kernel 5.4. Older versions and Linux
distributions, such as Ubuntu, are not supported. To fetch the zipped driver code from
Waveshare, use the command:
$ wget https :// www. waveshare .com/w/ upload /f/fb/SIM8200 - M2_5G_HAT_code .7z

To unzip the code, use the command:
$ sudo apt -get install p7zip -full
$ 7z x SIM8200 - M2_5G_HAT_code .7z

There should now be a folder on the Raspberry Pi, with all driver-related files. Before the
driver can be installed, the right permissions need to be given. This can be done by giving
every file in the folder, recursively read, write and execute permissions to every user class in
the system with the command:
$ sudo chmod 777 -R SIM8200 - M2_5G_HAT_code

When the correct permission has be granted, the driver can be installed. This is done once
as part of the initial setup, by running the installation script with the commands:
$ cd SIM8200 - M2_5G_HAT_code
$ sudo ./ install .sh

With the driver installed, the Raspberry Pi is able to utilize the functions provided by the
5G hardware. To compile and run the 5G networking code contained in the Goonline folder
a Makefile is used. To run it use the commands:
$ cd Goonline
$ make
$ sudo ./ simcom -cm

To connect to the network the SIM card used needs to be enabled. This is done by sending
the SIM card’s PIN code to the HAT’s cellular modem using an AT-command:
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echo "AT+CPIN =1337" > /dev/ ttyUSB27

After successfully connecting to the network a Access Point Name (APN) needs to be set
up to get a public IP. This is done with the AT-command:

1 AT+ CGDCONT =1," IPV4V6 "," Internet . public

3.4.1 Installation of ROS 2

The installation of ROS2 follows the guide from their official Building ROS 2 on Ubuntu
Linux8 website with some adjustments inspired by Raspberry Pi + ROS 2 + Camera9.
Follow the guide until the"Build the code in the workspace"-step. Some directory’s are not
needed and can be ignored with the commands:
$ cd ~/ ros2_foxy /
$ touch src/ros2/rviz/ AMENT_IGNORE
$ touch src/ros - visualization / AMENT_IGNORE
$ touch src/ros2/ system_tests / AMENT_IGNORE

Then some build flags need to be set, preferably as Colcon default, to be used automatically
when building ROS2 packages. Before this can be done a configuration file needs to be
created in the Colcon directory with the commands:
$ mkdir ~/. colcon && cd. ~/. colcon
$ touch defaults .yaml
$ sudo nano defaults .yaml

After the file is created, insert the following content and save:
# defaults .yaml
build:
cmake -args:
- -DCMAKE_SHARED_LINKER_FLAGS =’- latomic -lpython3 .7m’
- -DCMAKE_EXE_LINKER_FLAGS =’- latomic -lpython3 .7m’
- -DCMAKE_BUILD_TYPE = RelWithDebIn

The correct building flags should now be sett and the official build instruction can now
continue with "Build the code in the workspace"-step.

7”1337” should be substituted with a four digit PIN code that comes with the SIM card. Also, the
number 1337 will for the entirety of this section represent that same four-digit code.

8The ROS2 installation guide can be found at:
https://docs.ros.org/en/foxy/Installation/Ubuntu-Development-Setup.html.

9The guide with adjustments for Raspberry Pi can be found at:
https://medium.com/swlh/raspberry-pi-ros-2-camera-eef8f8b94304.
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3.4.2 Setup with the ROS 2 Entity Repository

When ROS2 is installed on the Pi-Entity, the Entity code for communicating with the KMR
iiwa can be fetched and run. To acquire the code the related Git-repository can be cloned
to the local directory with the command:
$ git clone
https :// github .com/ Danielrloken / master_var_2022 /ROS2 - ENTITY

From the local directory navigate to ros2 where the entire Entity ROS2 program is. Before
it can run build the necessary packages with the commands:
$ cd ros2
$ colcon build --symlink - install

Then launch the program with the commands:
$ source install /setup.bash
$ ros2 launch kmr_communication kmr. launch .py

When this is done, the component nodes should be connected to the KMR iiwa and ready
to receive commands from the AAS.

3.4.3 Setup with the Middleware Repository

The repository for the ROS2-OPCUA Middleware can be clone to a local directory with
the commands:
$ git clone https :// github .com/ Danielrloken / master_var_2022 /ROS2 -OPCUA -

MIDDLEWARE

To build and launch the ROS2 package use the commands:
$ cd ros2
$ colcon build --symlink - install
$ source install /setup.bash
$ ros2 launch kmr_communication hybrid . launch .py

Communication between the ROS2 program and OPC UA server on the AAS Internal
Interface should now be ready for use.

3.5 Industrial Robot-KMR iiwa

This section addresses the creating, installing and running of a Sunrise Application. Sunrise
applications are utilized by KUKA robots, including KMR iiwa entities. A workspace
computer as described in section 2.2.1 is needed to follow the instructions.
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3.5.1 Creating a Sunrise Project

Start by launching Sunrise Workbench and navigate: File-New-Project as shown in Fig-
ure 20a. Select sunrise project as wizard as shown in Figure 20b and then follow the
instructions by enter the IP address of the robot and press next. Next enter the desired
project name and choose the appropriate model for the topology as well as media flags.
Once all the desired details are specified click on "Create Application" to complete.

(a) New project

(b) Sunrise project wizard

3.5.2 Installing a Sunrise Application

When installing a new Sunrise project from the workspace computer to the Sunrise Cabinet in
the KMR iiwa, an Ethernet or WiFi connection between the cabinet and computer is needed.
The Sunrise project created in the previous step contains a file called "StationSetup.cat"
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with the configurations for the station, previously selected. By double-clicking on the file,
four tabs will appear. When connection between the cabinet and computer is established
navigate to the tab named "Installation" and click on the "Install" button to install the
system software on the robot. When this is done, the safety configuration needs to be
reactivated. To do this the maintenance password is used. When it is reactivated the robot
can be moved again.
To make the application available on the SmartPAD, the Sunrise project needs to be
synchronized. Make sure that the computer is connected to the Sunrise Cabinet and that
the project is correctly configured, in order to synchronize. All the necessary KUKA libraries
should be available in the Sunrise Workbench environment. To initialize the synchronization,
right-click on "StationSetup.cat" and press: File-Sunrise-Synchronise Project.

3.5.3 Running a Sunrise Application

When the project is synchronized, the application should be available on the SmartPAD
under "Applications". The name of the application is the same as the main Java-class file
created in the Sunrise Workbench. When the desired application is selected, press the green
play button. If the KMR iiwa is running in test mode either T1 or T2, one of the enabling
switches on the smartPAD need to be held in "center position" to allow movement of the
robot.
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4 Architecture

This chapter describes the system with technical details of the system architecture as well
as alternative designs. It is intended for those who seeks a deeper understanding of the
system and wants to recreate it. The system that is currently implemented in the lab is
presented in subsection 4.1. It focuses on the added functionalities regarding the retrieval of
sensor data and multiple robot connections. To make it more readable are only key features
of the system listed and omitted parts are indicated with "...". The code in its entirety
can be retrieved from Github. Information regarding sending commands to the robot and
front end of the AAS is described in the master thesis of Andrea and Mathias[9].A system
design which uses edge cloud is presented in subsection 4.2. Finlay the design principles of
industry 4.0 and how the system complies with them is presented in subsection 4.3.

4.1 System Design

The illustration in Figure 21 gives an overview of the system design. It shows all the physical
devices and it’s associated software. Currently the system consists of a KMR iiwa, two
Raspberry Pis and the users preferred device to interact with the AAS. In addition to the
hardware are also the communication protocols and network connections connecting the
devices added.
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Figure 21: Current system design retrieved from the author‘s specialization project.

4.1.1 KMR iiwa

On the KMR iiwa, which is highlighted in red in Figure 22 a Sunrise application handles the
executions of commands as well as communication with the entity raspberry pi. KUKA’s OS,
development environment and API is described in subsubsection 2.3.2, subsubsection 2.3.3,
and subsubsection 2.3.4 respectively.
The Sunrise applications is developed in the Sunrise Workbench environment and includes
a main Sunrise application class, a TCP Socket communication endpoint, an intern data
controller and nodes that handle commands and sensor readings.

Main application To run the KMR iiwa a main Java class that Sunrise.OS compiles is
used. Highlights of the implementation is shown in Listing 1. The KmpApp class extends
RoboticsAPIApplication which is imported from KUKA roboticsAPI. Sunrise recognize it
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Figure 22: System design with KMR iiwa highlighted.

as an entry point and the nodes related to the robot can be initialized. The robot currently
supports 2 command nodes and one sensor reader node. After initialization the nodes are
connected to a TCP server and then run in the application’s main loop.

public class KmpApp extends RoboticsAPIApplication
...
// Declaring robot parts , node classes and ports
...
public void initialize () {

System .out. println (" Initializing Robotics API Application ");

// Configure application
BasicConfigurator . configure ();
resumeFunction = getTaskFunction ( IAutomaticResumeFunction .class);

// Configure robot;
// controller = getController (" KUKA_Sunrise_Cabinet_1 ");
kmp = getContext (). getDeviceFromType ( KmpOmniMove .class);
lbr = getContext (). getDeviceFromType (LBR.class);

// Create nodes for communication
// kmp_commander = new KMP_commander (kmp);
kmp_commander = new KmpCommander (remote_ip , kmp_commander_port , kmp ,

connection );
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lbr_commander = new LbrCommander (remote_ip , lbr_commander_port , lbr ,
connection , getApplicationData (). getFrame ("/ DrivePos "));

// Check if a commander node is active
long startTime = System . currentTimeMillis ();
int shutDownAfterMs = 10000;
while (! AppRunning ) {

if( lbr_commander . isSocketConnected ()) {
AppRunning = true;
System .out. println (" Application ready to run!");
break;

} else if(( System . currentTimeMillis () - startTime ) >
shutDownAfterMs ) {

System .out. println ("Could not connect to a command node after " +
shutDownAfterMs /1000 + "s. Shutting down.");

shutdown_application ();
break;

}
}
// Establish remaining nodes
if( AppRunning ){

kmp_sensor_reader = new KMP_sensor_reader ( kmp_laser_port ,
kmp_odometry_port , connection , connection );
}

}

Listing 1: Main java class

Sensor reader The kmp_sensor_reader extends the node class and manages both the
SICK scanner data and odomentry data. This is done by providing an independent Fast Data
Interface (FDI) connection between the Navigation PC and the node with a Datacontroller
object. After the data is received by the Navigation PC it is forwarded to the entity pi with
TCP/IP through a Ethernet cable. The Constructor Declaration of the Class as well as the
fdiConnection() function are shown in Listing 2.
...
public class KMP_sensor_reader extends Node
...
// Defining ports and IP
...

public KMP_sensor_reader (int laserport , int odomport , String
LaserConnectionType , String OdometryConnectionType ) {
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super(laserport , LaserConnectionType , odomport ,
OdometryConnectionType , "KMP sensor reader ");

if (!( isLaserSocketConnected ())) {
Thread monitorLaserConnections = new MonitorLaserConnectionThread ()

;
monitorLaserConnections .run ();
}

if (!( isOdometrySocketConnected ())) {
Thread monitorOdometryConnections = new

MonitorOdometryConnectionThread ();
monitorOdometryConnections .start ();
}

if ( isSocketConnected ()){
this. fdiConnection ();

}
}

public void fdiConnection (){
InetSocketAddress fdi_address = new InetSocketAddress (FDI_IP , FDI_port

);
this.fdi = new FDIConnection ( fdi_address );
this. listener = new DataController ( laser_socket , odometry_socket );
this.fdi. addConnectionListener (this. listener );
this.fdi. addDataListener (this. listener );
this.fdi. connect ();

}
...

Listing 2: Snippet from KMP_sensor_reader

Datacontroller The internal data handling of the KMP is done with the DataController
class that implements DataListener and DataConnection from a KUKA jar file. It sends
scan-data from the SICK scanner and odomentry-data from the wheel encoders through a
FDI connection. The class monitors the FDI connection between the Navigation PC and
the nodes. When new sensor data is obtained it sends it to the corresponding node. If the
connection is lost during program execution an automatic reconnection is triggered.
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4.1.2 Entity running on Raspberry Pi

A Raspberry Pi that host the software for both the entity and middleware is connected to
the KMR iiwa through an Ethernet cable. It is referred to as the Pi-Entity and highlighted
in red in Figure 23.

Figure 23: System design with Pi-Entity highlighted.

Ros2 Odometry node The ROS2 odometry node gets the oddmentry-data from the
KMR over TCP. The most impotent part of the class declaration as well as the main
function which initiate a KmpOdometryNode objects and "spins" it, is shown in Listing 3.
It makes a ROS2 publisher node that publishes to the "odom" topic. Before the data is
forwarded, it is reformatted. The odometry data is sent with ROS’s odometry massage
format which is a part of the nav_msgs package created by ROS to handle navigation
massages.

...

class KmpOdometryNode (Node):
def __init__ (self , connection_type ,robot):

super (). __init__ (’kmp_odometry_node ’)
self.name=’kmp_odometry_node ’
self.robot = robot
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self. status = 0
self. declare_parameter (’port ’)
self. declare_parameter (’id’)
self.id = self. get_parameter (’id’).value
port = int(self. get_parameter (’port ’).value)
if robot == ’KMR ’:

self. declare_parameter (’KMR/ip’)
ip = str(self. get_parameter (’KMR/ip’).value)

else:
ip=None

if connection_type == ’TCP ’:
self.soc = TCPSocket (ip , port , self.name , self)

else:
self.soc=None

self. last_odom_timestamp = 0

# Make Publisher for odometry
self. pub_odometry = self. create_publisher (Odometry , ’odom ’, 10)

# Create tf broadcaster
self. tf_broadcaster = TransformBroadcaster (self)

while not self.soc. isconnected :
pass

self. get_logger ().info(’Node is ready ’)

while rclpy.ok() and self.soc. isconnected :
self. odom_callback (self. pub_odometry , self.soc. odometry )

...
def main(argv=sys.argv [1:]):

parser = argparse . ArgumentParser ( formatter_class = argparse .
ArgumentDefaultsHelpFormatter )

parser . add_argument (’-c’, ’--connection ’)
parser . add_argument (’-ro’, ’--robot ’)
args = parser . parse_args ( remove_ros_args (args=argv))
rclpy.init(args=argv)
odometry_node = KmpOdometryNode (args.connection ,args.robot)

while rclpy.ok():
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rclpy. spin_once ( odometry_node )
try:

odometry_node . destroy_node ()
rclpy. shutdown ()

except :
print( cl_red (’Error: ’) + "rclpy shutdown failed ")

Listing 3: Snippet from KMP_odometry_node

Ros2 Laserscan node The ROS2 Laserscan node works similarly to the odometry node,
but creates two publishers, one for each of the SICK laser scanners. Each publishers
publishes to their own topic, namely "scan" and "scan_2". The laser data is sent with the
LaserScan Massage, which is part of ROS’s sensor massage package. Since large parts of
the code are similar to odometry is it not shown in the report.

4.1.3 Middleware running on Raspberry Pi

The Middleware Raspberry Pi handles the communication between the Entity Raspberry Pi
and the AAS Raspberry Pi. It is a key feature, translating the messages from the entity in
order for the AAS to understand them and likewise back to the Entity. The communication
between the middleware and entity is done with ROS2 publisher/subscriber-model. This
communication builds upon DDS which does not support data traffic over the Internet
as described in subsubsection 2.1.7. ROS2 it therefor not an option for communication
between the AAS and Middleware Raspberry Pi. To handle this the machine-to-machine
protocol OPC UA is used.

ROS2 hybrid The Middleware Raspberry Pi is a ROS2 program containing a hybrid
node that combines both ROS2 and OPC UA functionality in one running instance. A
snipped of the code shown in Listing 4 shows the main() function and a sensor subscriber
classes. The function creates a OPC UA client and tries to connect to the server running on
the AAS. When a connection is established the ROS publisher and subscriber node instances
are created. To send commands to the robot commander nodes "lbr_command_node",
"kmp_command_node" and the camera node "camera_node" publisher instances are
made. To retrieve sensor data from the sensor nodes "kmp_laserscan_node" and "
kmp_odometry_node" subscriber instances are made. Since there are two laser scan-
ner two subscribers are made, one for each one. This architecture support full-duplex
communication with simultaneous data transmission between the entity and AAS. This
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is done with a ROS2 publisher/subscriber massaging, OPC UA event handling and value
updating. Since several node instances derive from the same ROS2 node, they need to be
spin inside individual threads. To achieve this the ROS2 MultiThreadedExecutor is
used. It creates a selected number of threads, which allows for multiple messages or events
to be processed at the same time.
....

class OdometrySubscriber (Node):
def __init__ (self , opcua_client ):

super (). __init__ (’odometry ’)
self.odom = opcua_client . get_node ("ns =2;i=5")
self. subscription = self. create_subscription (Odometry , ’odom ’,

self. set_values_odom , 10)

def set_values_odom (self , msg):
self.odom. set_value (str(msg))

....
def main(argv=sys.argv [1:]):

parser = argparse . ArgumentParser ( formatter_class = argparse .
ArgumentDefaultsHelpFormatter )
parser . add_argument (’-d’, ’--domain ’)
args = parser . parse_args ( remove_ros_args (args=argv))
rclpy.init(args=None)
isConnected = False
opcua_client = Client ("opc.tcp ://" + args. domain + " :4841/ freeopcua /

server /")

while not isConnected :
try:

opcua_client . connect ()
isConnected = True
print(" Successfully connected with OPC UA server on: " + args

. domain + ":4841")
except :

print(" Failed to connect on " + args. domain + " ... retrying "
)

sleep (1)
root = opcua_client . get_root_node ()
obj = root. get_child (["0: Objects ", "2: MyObject "])

lbr_event = root. get_child (["0: Types", "0: EventTypes ", "0:
BaseEventType ", "2: LBREvent "])
kmp_event = root. get_child (["0: Types", "0: EventTypes ", "0:
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BaseEventType ", "2: KMPEvent "])
camera_event = root. get_child (["0: Types", "0: EventTypes ", "0:

BaseEventType ", "2: CameraEvent "])

lbr_publisher = LBRPubSub (obj)
kmp_publisher = KMPPubSub (obj)
camera_publisher = CameraPubSub (obj)
laser_subscriber1 = LaserSubscriber ( opcua_client )
laser_subscriber2 = Laser2Subscriber ( opcua_client )
odometry_subscriber = OdometrySubscriber ( opcua_client )

lbr_sub = opcua_client . create_subscription (100 , lbr_publisher )
lbr_handle = lbr_sub . subscribe_events (obj , lbr_event )
kmp_sub = opcua_client . create_subscription (100 , kmp_publisher )
kmp_handle = kmp_sub . subscribe_events (obj , kmp_event )
camera_sub = opcua_client . create_subscription (100 , camera_publisher )
camera_handle = camera_sub . subscribe_events (obj , camera_event )

try:
executor = MultiThreadedExecutor ( num_threads =7)
executor . add_node ( lbr_publisher )
executor . add_node ( kmp_publisher )
executor . add_node ( camera_publisher )
executor . add_node ( laser_subscriber1 )# Daniel
executor . add_node ( laser_subscriber2 )# Daniel
executor . add_node ( odometry_subscriber )# Daniel
executor .spin ()

finally :
...
# destroy nodes and unsubscribe
rclpy. shutdown ()

Listing 4: Snippet from opcu_ros2_pubsub

It handles both commands sent from the AAS and sensor data from the entity. The
middleware-pi creates the three classes OdomentrySubscriber, LaserSubscriber and Laser2Subscriber.
These classes subscribes to the robots sensor data and updates the corresponding values of
the sensor data object on the AAS.

4.1.4 AAS running on Raspberry Pi

The Pi-AAS consist of a Raspberry Pi that runs the software of the AAS and is highlighted
in red in Figure 24. The AAS receives commands from the external interface with WebSocket
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and forwards them to the middleware. An OPC UA server is hosted on the AAS and
communicates with both the client on the AAS-video and middleware over a public 5G.
Python Flask is used for Back-End and the Front-End is handled with ReactJS. To store
data the embedded database SQLite is used.

Figure 24: System design with Pi-AAS highlighted.

OPC UA Server The OPC UA server handles the communication with the middleware
and AAS-client. To retrive sensor data from det middlware client an OPC UA object is
created called "sensors". This object has three variables two for each of the laser scanners
and one for the odometry data. These are all set to "writable" which makes it possible to
update them from the client. Thus, these values wil be updated each time the middleware
receives new sensor data. The object can easily be expanded with more variables if necessary.
The OpcuaServer class is shown in Listing 5.
...
class OpcuaServer :

def __init__ (self , opcua_address , socketio , db):
self. socketio = socketio
self.db = db

logging . basicConfig (level= logging .WARN)
logger = logging . getLogger ("opcua. server . internal_subscription ")
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server = Server ()
server . set_endpoint ("opc.tcp ://" + opcua_address + "/ freeopcua /

server /")

uri = " OPCUA_AAS_COMMUNICATION_SERVER "
idx = server . register_namespace (uri)

objects = server . get_objects_node ()

myobj = objects . add_object (idx , " MyObject ")

sensorobj = objects . add_object (idx , " sensors ")
self. laser1 = sensorobj . add_variable (idx ," laser1 " ,0)
self. laser2 = sensorobj . add_variable (idx ," laser2 " ,0)
self.odom = sensorobj . add_variable (idx ," odometry " ,0)
self. laser1 . set_writable ()
self. laser2 . set_writable ()
self.odom. set_writable ()

status_node = myobj. add_method (idx , " update_status ", self.
update_status , [ua. VariantType . String ], [ua. VariantType .Int64 ])

lbrEvent = server . create_custom_event_type (idx , ’LBREvent ’)
kmpEvent = server . create_custom_event_type (idx , ’KMPEvent ’)
cameraEvent = server . create_custom_event_type (idx , ’CameraEvent ’)

self. lbrEvgen = server . get_event_generator (lbrEvent , myobj)
self. kmpEvgen = server . get_event_generator (kmpEvent , myobj)
self. cameraEvgen = server . get_event_generator ( cameraEvent , myobj)

server .start ()
...

Listing 5: Snippet from Opc UA server running on AAS

4.2 Edge Architecture 10

The initial plan was to move big parts of the system over to a edge cloud provided by
Telenor. The edge was supposed to be delivered inn the summer of 2021. After multiple
delays, the focus of the task had to change. Instead of moving parts of the system to the

10This sections is heavily inspired by the related specialization project completed by the author during
the fall of 2021 [3]
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edge cloud further development of the system by adding functionalities was prioritized. The
initial plan that show which parts were to be moved to the cloud and some of it’s benefits
are presented in this chapter. An overview of the system design where parts of it is in the
edge cloud is shown in Figure 25.

Figure 25: Edge system design

When the AAS is hosted on the Raspberry Pi it causes problems regarding capacity limits
and it works as a single point of failure for the system. The new system design hosts the
AAS in the edge cloud with the possibility to instantiate multiple instances of the AAS,
increasing the redundancy and making the system more robust. The number of instances
can be automatically fitted to the current workload making the system elastic and responsive
to both up and down scaling.
To manage the workload between the different AAS instances a load balancer is used. The
load balancer manages the incoming requests from user devices and redirect them further
to the middleware and AAS instances. This is done to prevent any single instance from
getting overloaded and possibly breaking down.
All the AAS instances are connected to one database. Although the new system design
only shows one database, it is expected to incorporate a backup as well. The storage can be
dynamically allocated based on changing demands.
The CloudBand Network Director (CBND) Orchestrator is Nokia’s implementation of a
Cross Domain Service Orchestrator (CDSO). It features Lifecycle Management using Closed-
Loop Automation (CLA) and Virtual Network Functions (VNF) package management,
Performance and self-Monitoring, Notifications and placement capabilities using a policy
engine[44]. It is a system that is being delivered with Telenor’s edge cloud. CBND can
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handle the load balancing as well as other edge cloud services.

4.3 Design Principles of Industry 4.0 11

There are four main design principles of industry 4.0, aiming to ensure data exchange and
automation of manufacturing processes[45]. All of the main principles will be presented
and the proposed design will be evaluated based on them. An overview of the principles is
shown in Figure 26.

Figure 26: Industry 4.0 design principles[45].

4.3.1 Interconnection

With Internet of Everything (IoE) devices, people and machines are all connected. This
information flow through the internet enables collaboration between people and machines
to reach for common goals[46]. The collaboration within IoE can be categorized in three
types: human-human, human-machine and machine-machine collaboration[47]. To en-
able flexible connection and collaboration between different devices from a wide range
of manufacturers, communication standards are an important prerequisite[48]. The pro-
posed architecture enables the three types of collaboration over 5g using acknowledged
communication standards.

4.3.2 Information Transparency

The increasing number of interconnected devices and people facilitates the fusion between
the physical and virtual world enabling greater information transparency[49]. To increase

11This sections is heavily inspired by the related specialization project completed by the author during
the fall of 2021 [3]
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the information transparency raw sensor data needs to be analyzed and embedded into the
system making it available to all IoE participants[50]. Retrieving context-aware information
from a substantial number of IoE participants facilitates for a more holistic decision making.
When handling process-critical information, delivery of real-time data is crucial[51]. The
fusion between the physical and virtual world can be represented as a digital twin of the
lab, facilitating time sensitive computing and analyzes in the edge.

4.3.3 Decentralized Decisions

Information transparency between devices and people inside and outside of a production
enables decentralized decisions to be made. Combined with interconnected decision-makers
the value of local and global information can be used to increase the overall productivity[52].
Task should be done as autonomous as possible by the IoE participants. Higher level
interference’s should only be made in exceptions[45]. To enable high levels of autonomous
methods like Artificial Intelligence (AI) and Machine Learning (ML) can be used. The
implementation of such methods is out of the scope of this thesis, but the generalized
principles of the architecture promote future implementations.

4.3.4 Technical Assistance

Previously the role of humans in factories have been machine operators. With the intro-
duction of smart factories of industry 4.0 the role has shifted towards problem solving
and decision-making. The increasing complexity of production require assistance systems
to support humans. Information needs to be visualized in a comprehensive manner to
ensure that humans can make informed decisions, and attend to urgent problems[50]. Today
smartphones and tablets is heavily used as visualizing tool, connecting people and IoT[53].
In addition to visualized support, is also physical support by robots a key aspect of technical
assistance. With advances in robotic can dangerous and unpleasant work be done by robot,
but the coordination of a human robot environment require proper training of humans and
intuitive and safe interaction from the robots[45].
The architecture supports an interface through multiple devices, but the sensor date is
not displayed or connected to any alarms or events. Video stream from the robot can
be used to detect problems from remote locations, but its usefulness is limited. When
expanding the number of entities and increasing the complexity of the system further
advancements in virtual assistance should be made. The current architecture support
such future improvements. Physical support is enabled trough remote control of robots in
real-time.
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5 Discussion

This section discusses the system described in section 4 and how it is related to the objectives.
It starts with subsection 5.1 which discusses the public 5G network. The communication
protocols and the combination of them are discussed in subsection 5.2, subsection 5.3 and
subsection 5.4. DT, the requirements it has reached, as well as its compliant with industry
4.0 is presented in subsection 5.5. Finally, the working method and future work is discussed
in subsection 5.6 and subsection 5.7.

5.1 Public 5G network

All the communication has been transferred to a public 5G network delivered by Telenor,
except the direct Ethernet connection between the robot and entity Raspberry Pi. A private
5G network was meant to be delivered by Telenor, but after multiple postponements it was
decided to settle for their public 5G network. This network did not meet the requirements
regarding response time and prevented the middleware end entity software to run on two
different Raspberry Pis.
Considering that the system uses a public network which can be used by everyone with a
Telenor Sim card, it will consequently have a performance that vary depending on the use of
everyone connected. This can vary through the day, and random instances with abnormally
high usage may occur. This can be critical in a time-sensitive system where there may be a
response time requirement for given operations.
Although the network used is labeled as public 5G, it is actually a combination of both
5G and 4G. This greatly reduces the key performances of 5G and availability of the
functionalities in URLLC, mMTC and eMBB. It switches between the two networks without
any sign of pattern or system. This makes it difficult to test the 5G capabilities, since it is
troublesome to determine which network is used at different times. Although the network
does not deliver the performance requirement of a real-time system, it facilitates for an
easy transition to Telenor private network with only minor changes. When the yet to be
completed private Telenor network is delivered, it should be possible do transition to the
new network by only changing the SIM cards and IP addresses. This will facilitate a faster
development of a DT that is in line with Industry 4.0.

5.2 OPC UA

The communication between the middleware and AAS is handled with OPC UA. It does
not depend on a private network and has a broad support for different platforms. This
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makes it possible to connect with other communication protocols than ROS2, making the
system more flexible.

5.3 ROS 2

ROS2 facilitates for easy connection between multiple entities. Currently it is only one robot
connected, due to the fact that ROS2 builds upon DDS, as described in subsubsection 2.1.7.
This communication has to run on a private network. Because of the aforementioned delivery
delays, a decision was made to run the software for the entity and middleware on the same
Raspberry Pi. By choosing this solution, the software of the system could be developed
with scalability in mind, even though the hardware and network available where limited.
When a private network is delivered, the software can be moved to separate Raspberry Pis
and the system can expand with new entities.
Ideally, ROS2 should have run directly on the KMR iiwa, which requires fewer parts and
simplifes the task of adding or removing the robot, but the solution with a Raspberry
Pi facilitates for faster setup and testing with other robots as well. Currently, the entity
connected is the KMR iiwa, which consists of six nodes, but with ROS2, more entities can
be easily implemented without major changes in the code. After entities have been added
to the system, they can be connected and disconnected without the need to restart the
system, thus greatly reducing the downtime of the system.

5.4 ROS 2 with OPC UA

The combination of ROS2 with OPC UA is proven as a highly capable method for solving
several of the challenges regarding communication in an industrial setting. The advantage
of the combined solution lies in the widespread support for the OPC UA and the connection
management given by ROS2. With the current features it would have been advantageous to
only use a united stack like zenoh for everything, but with different elements from different
suppliers and further expansion in mind, the chosen solution is preferred. The use of several
different protocols requires higher competence, but is seen as inevitable in a world with
so many different providers and systems. The ability to combine systems and products is
crucial for a sustainable system with a long service life.

5.5 Digital Twin

The AAS has been further developed to also retrieve sensor data from the KMR iiwa, and is
thus one step closer of satisfy the requirements of a DT as described in subsubsection 2.1.4.
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To achieve the requirements of a Level 1 DT, the sensor data should have been linked to
alarms and occurrences. This could have been done, but would not contribute other than
meeting the requirements of a DT. Instead, the sensor data is implemented as a loosely
coupled service that can be exploited in further development or in a new system. The user
can retrieve the sensor data at a high level without the knowledge of the low level process
running in the background. This will simplify the process of developing a DT at NTNU
Gløshaugen’s Industry 4.0 laboratory or any other system that requires sensor data from
the KMR iiwa.
All the four key design principles of industry 4.0 described in subsection 4.3 can be satisfied
by a DT, thus making it an excellent tool in the factories of the future. The concept of a DT
is still under development and accommodates a wide range of systems to be used to analyze
raw sensor data and embedding it into to the system, thus increasing the information
transparency. To meet this requirement a DT is an effective tool as it can collect data and
transform it to high value information for the entities and personnel at the factories.

5.6 Working method

The original objective was to transfer the main parts of an AAS over to the edge cloud
and use a private 5G network. Due to several delays, the objective was changed to further
develop and re-engineer the existing AAS.An alternative to this could have been to work
out a more thorough solution on how the system could be transferred to the edge cloud.
The reason this was not done was because it would not be possible to test along the way
and one would most likely end up with a faulty solution. By further developing the system,
it was possible to add functions that work with certainty, which would most likely have to
be developed anyway and thus making a greater contribution to the development of a DT.
A weakness with the system is that the robot needs a person to start the program from the
robot. This should be fixed to make the system more autonomous, but the scope of this
thesis is not to make a specific solution for the KMR iiwa, but rather a general system that
can be adapted to different devices.
The sensor data is not currently stored. This is mainly because there is limited storage
space on the Raspberry Pis. It is also not clear what the data is to be used for and it is
therefore not known which sampling frequency or data should be stored. If there is a desire
to store the data, the SQLite database can be expanded with a new sensor data table. Here
it is recommended to enter the sensor data values as a JSON file, so that the same table
can be used for different sensors. A foreign key should also be added to link sensor data
table to the corresponding entity in the already existing table.
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5.7 Future work

The main focus in future work should be to replace the public 5G with a private 5G and
transfer the system to the edge cloud. In order to do this, it is crucial that the private
network and edge cloud is delivered by Telenor. Without this, the development of a DT will
be delayed considerably. The only further developments that would have been meaningful
without these deliveries concern implementation of individual systems which can be added
to the main system. The danger with such a development will be that large parts can be
developed without being able to connect to the main system. It is therefore recommended
to wait with the development of the DT until the network and edge cloud is delivered.
When a private network is established the entity and middleware software can be separated,
and run on two separate Raspberry Pis. This enables the connection of several devices
which can confirm the support of multiple entities with a working concept. New network
tests should then be conducted, to see if the requirements of industry 4.0 regarding response
time are satisfied.
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6 Conclusion

Previous testing of 5G has shown promising results [2], but the technology is still under
development. Equal to many other new technologies,it has shown that the integration and
widespread support of new technologies in the industry can be a tedious and time consuming
process. It is predicted that 5G plays a critical part in industry 4.0. Unfortunately, multiple
delays of the delivering of a private 5G network in the industry lab has prevented this key
component of the system. Instead, a public 5G network has been used. This prevents the use
of DDS communication which is necessary to connect multiple entities to the middleware.
An architecture that was developed by Andreas and Mathias has been re-engineered
and physically implemented at NTNU Gløshaugen’s Industry 4.0 laboratory. All the
communication has been transferred to a public 5G, which easily can be converted to a
private 5G network when it gets delivered to the lab. The system has received the added
functionality of retrieving sensor data from the KMR iiwa. This opens up for many new
capabilities and can significantly reduce the development time of a DT at the laboratory.
The sensor data can be used as a stand alone service in the edge cloud that gives the
position of the KMR iiwa or other Automated guided vehicle (AGV) and continuously maps
the industrial lab. Instead of the client using the DT, having to understand the low level
retrieval of sensor data, it can be delivered as a high level function where the client can
retrieve the data with a single function call which returns the positional data as well as
meta data, such as the accuracy and refresh rate.
The method used to retrieved the data is in accordance with the design principles of industry
4.0, making it highly applicable in new systems and factories in the future. The modular
design is loosely coupled to other parts of the system, making it highly scalable and can
therefor easily be added or further developed to a bigger system. The communication
protocols used, has broad support in the industry and is predicted to be critical parts of
industry 4.0.
The retrieval of sensor data from KMR iiwa and it’s design principals are applicable for
retrieving data from other devices with only minor changes. The method can be replicated
and other useful sensors and devices can be added to the system.
The developed system can work as a foundation for the implementation of a DT in the edge
cloud. The thorough explanation of the layout and its design facilitates further development,
and can be utilized when a local system eventually is up and running at the laboratory.
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Appendices

A 5G HAT assembly process

B Sequence diagrams
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(a) Step 1: Install the Raspberry
Pi into the base.

(b) Step 2: Install the
SIM8200-m2 mainboard into
the SIM82000-M2 5G HAT base
board.

(c) Step 3: Install SIM8200-M2
5G HAT base into the Raspberry
Pi.

(d) Step 4: Install nylon
columns in the base board.

(e) Step 5: Install cooling fan
and antenna adapter cables into
upper cover board.

(f) Step 6: Connect the antenna
adapter cables to the SIM82000-
M2 main board and connect the
cooling fan to the 5G HAT base
board.

(g) Step 7: Assemble the top
cover and fix with screws.

(h) Step 8: Install the external
antennas.

Figure 27: 5G HAT assembly process [9].
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Figure 28: Sequence diagram of the data flow when sending a command from the AAS frontend
to a KMR iiwa [9].

Figure 29: Sequence diagram of the data flow when discovering a new robot [9].

Figure 30: Sequence diagram of the video stream implementation [9].
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