
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Adrian Skogstad Pleym
Magnus Westbye Ølstad

On development and validation of an
autonomous sailboat

Master’s thesis in Engineering and ICT
Supervisor: Andrei Lobov
Co-supervisor: Andreas T. Echtermeyer
June 2022M

as
te

r’s
 th

es
is

Adrian Skogstad Pleym
Magnus Westbye Ølstad

On development and validation of an
autonomous sailboat

Master’s thesis in Engineering and ICT
Supervisor: Andrei Lobov
Co-supervisor: Andreas T. Echtermeyer
June 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Abstract

Autonomous surface vehicles (ASVs) could be an e↵ective method to monitor and collect

oceanographic data. Wind power can make the operation cost-e↵ective, more environmentally

friendly, and work independently over long periods. With the emergence of cheaper, smaller,

and more powerful computer and sensor technology over the last decade, ASVs can be de-

veloped at a lower cost and with more advanced capabilities.

This thesis develops a mechatronic system for an autonomous sailboat. A distributed soft-

ware system is designed and developed to support testing, autonomy, and operator control.

The system consists of three main parts: a client web application, a cloud server, and a sail-

boat system created with state-of-the-art technologies and with a focus on interoperability

and reliability.

The mechanical system is comprised of a catamaran hull, a fixed-wing sail, and a rudder.

An electronic system of sensors, actuators, and computers was created to enable the system

to perceive and act on the surroundings. The thesis describes the development process from

parts selection, mounting, and software integration. Some sensors and parts were designed

and 3D-printed to achieve the goal of a working prototype within the project time frame.

A sea trial was conducted as a full system integration test. Weather conditions during

the test were harsh, with temperatures below 5
�C, and intermittent hail and rain showers.

Wind speeds was ranging from 0.5 � 11.4m/s, averaging at 4.3m/s. The sailboat operated

autonomously with its battery power, with two operators monitoring on shore. The test

showed promising results, with the mechanical and electronic systems performing well. The

cloud server did perform very well. However, there were some issues with the boat’s software

preventing it from sailing in many cases. Further development and testing are required to

achieve a fully autonomous sailboat.

i

Sammendrag

ASVer kan være en e↵ektiv metode for å overv̊ake og samle inn havdata. Ved bruk av

vindkraft kan operasjoner b̊ade være kostnadse↵ektive, miljøvennlige, og fungere uavhengig

over lengre perioder. Med utviklingen av billigere, mindre, og kraftigere data- og sensortekno-

logier over de siste ti̊arene, kan ASVer bli utviklet til en lavere pris og med mer avanserte

funksjoner.

Denne avhandlingen utvikler et mekatronikksystem for en autonom seilb̊at. Et distribuert

programvaresystem er designet og utviklet for å støtte testing, autonomi og operatørkontroll.

Systemet er separert i tre hoveddeler; en webapplikasjon for klienter, en server i skyen, og et

seilb̊atsystem. Systemet ble laget med toppmoderne teknologier og ettersteber interoperab-

ilitet og p̊alitelighet.

Det mekaniske systemet best̊ar av et katamaranskrog, et vingeseil, og et ror. Et elektronisk

system av sensorer, aktuatorer, og datamaskiner ble satt sammen for at systemet skal kunne

oppfatte og handle ut i fra omgivelsene. Avhandlingen dokumenterer utviklingsprosessen fra

valg av deler, monteringsprosesser, og integrering av programvare. Noen av sensorene og delene

ble designet og 3D-printet for å oppn̊a m̊alet om en fungerende prototype innenfor prosjektets

tidsramme.

En sjøtest ble gjennomført som en integrasjonstest av et fullt system. Værforholdene

under testen var harde, med temperaturer under 5
�C, og spredte hagl og regnbyger. Vind-

hastighetene varierte mellom 0.5 � 11.4m/s og med et gjennomsnitt p̊a 4.3m/s. Seilb̊aten

opererte autonomt under sin egen batterikilde og med operatører p̊a land. Testen viste lovende

resultater, b̊ade det mekaniske og elektroniske systemet utførte oppgavene godt. Skyserveren

presterte veldig bra, men det var noen problemer med b̊aten sin programvare som forhindret

den fra å seile ved flere tilfeller. Videre utvikling og testing er nødvendig for å oppn̊a en

helautonom seilb̊at.

ii

Ackonwledgements

We would like to thank supervisor Professor Andrei Lobov for introducing us to the project

and for the advice and support provided throughout the work. Thanks also to co-supervisor

professor Dr. Andreas T. Echtermeyer for help and guidance with the development, as well as

for providing a workspace and arranging the important field test. A special thanks to fellow

student H̊akon Bakke for giving us invaluable help and suggestions in the lab and to Simon

G. Gjerde for bringing the skills needed to manufacture a new part for the mast.

iii

Table of Contents

List of Figures viii

Abbreviations xi

1 Introduction and overview 1

1.1 Autonomous Surface Vehicles (ASVs) . 1

1.2 Problem description . 1

1.3 Team and previous work . 1

1.4 Scope of this thesis . 1

1.5 Objectives . 2

1.6 Thesis structure . 2

2 Theory 3

2.1 Digital Twin, a virtual projection of a real-world object 3

2.1.1 Data related technologies . 3

2.1.2 High-fidelity modeling and simulation technologies 4

2.1.3 Human-machine interface . 4

2.2 Distributed Systems . 4

2.2.1 Cluster and grid computing . 4

2.2.2 Cloud Computing . 5

2.2.3 Pervasive Systems . 6

2.2.4 Architectural tactics . 6

2.2.5 Architectures for distributed systems . 8

2.3 System engineering and Mechatronics . 10

2.4 Data processing with noise filters . 12

2.4.1 Kalman Filter . 12

2.4.2 Exponentially Weighted Moving Average 12

2.5 Sailing theory . 13

2.5.1 Wind zones . 14

2.5.2 Sailing towards the eye of the wind . 15

2.5.3 Downwind sailing . 16

iv

2.5.4 Optimal angles . 16

2.6 Algorithms . 17

2.6.1 Heading vs Course control . 18

2.6.2 Component based control system . 19

2.6.3 Route planning . 19

2.6.4 Haversine - Distance between two point on a sphere 20

3 Approach 21

3.1 Organizing and building a sailboat . 21

3.1.1 Workflow . 22

3.2 On-land services . 22

3.2.1 Intermediary on-land server . 22

3.2.2 HMI for monitoring and control . 23

3.3 Sensors and communication technology . 24

3.3.1 Sensors . 25

3.3.2 Communication technology . 25

3.4 Actuators and power supply . 26

3.4.1 Actuator for moving the rudder . 26

3.4.2 Motor for moving the wing sail . 27

3.4.3 Power supply . 28

3.5 Software development for autonomy . 28

3.5.1 Data processing, noise filtering . 30

3.5.2 Security through authentication . 30

3.6 Algorithms required for autonomous sailing . 30

3.7 System testing . 30

4 Implementation 32

4.1 Documentation and workflow . 32

4.2 On land server and cloud computing . 33

4.2.1 Server hosting service . 34

4.2.2 Containerizing and building . 34

4.2.3 Run time optimizations . 34

v

4.2.4 Logging and cloud storage . 34

4.3 Dashboard . 34

4.3.1 Path planning . 35

4.3.2 Notification center . 35

4.3.3 Instruments and the voltmeter . 35

4.3.4 Commando system . 36

4.3.5 Data viewer . 36

4.4 Sensor technologies and solutions . 36

4.4.1 Sensor to determine the angular position of the sail 36

4.4.2 Sensors for measuring heading, attitude, and location 39

4.4.3 Sensor to measure wind direction and speed 41

4.5 Actuators and electronics . 42

4.5.1 Sail actuator . 42

4.5.2 Rudder actuator and mount . 44

4.5.3 Electronics box . 47

4.6 Computer and software implementation . 48

4.6.1 Microcomputer - Raspberry Pi . 48

4.6.2 Microcontrollers - Arduinos . 50

4.7 Sailing algorithm . 52

4.7.1 True wind calculations . 52

4.7.2 Bearing and the no-sail zone . 52

4.7.3 Haversine distance . 53

4.7.4 Optimal sail angle . 53

4.7.5 Midway point and beating for upwind sailing 54

4.7.6 Adjustable parameters . 55

4.8 Security through authentication . 55

4.9 Integrating whole system . 55

5 Tests and results 58

5.1 On sea trial . 58

5.1.1 Experiment set up . 59

5.2 Server and communication . 60

vi

5.2.1 On land server . 60

5.2.2 Interoperability between Raspberry Pi and the Arduinos 62

5.3 Acceptance test of the client-side application . 62

5.3.1 Authentication requirements . 62

5.3.2 Map requirements . 63

5.3.3 Data visualization requirements . 66

5.3.4 Command system requirements . 67

5.3.5 Data and parameter requirements . 67

5.3.6 Notification system requirements . 68

5.4 System unit tests . 69

5.4.1 System test of the sail . 70

5.4.2 System test of the rudder . 72

5.4.3 Noise filter test . 74

5.5 Algorithm performance test . 76

5.5.1 Beam reach . 76

5.5.2 Downwind sailing . 78

5.5.3 Beating sailing mode and tacking maneuvers 81

5.6 Integrated system review . 83

6 Conclusion 84

Bibliography 85

Appendix 89

A Source code . 89

B Command system . 89

C Readmes from GitHub repositories . 92

C.1 RaspberryPi readme . 92

C.2 Dashboard app readme . 104

C.3 WebSocket server readme . 107

C.4 Arduino readme . 110

vii

List of Figures

1 Cluster computer diagram . 5

2 Grid computer diagram . 5

3 Cloud computer diagram . 6

4 Top level of the service ontology, from [21] . 8

5 Interoperability by traditional middleware, from [19] 8

6 Fully distributed unmanned aerial vehicle (UAV) system, from [22] 9

7 System architecture overview, from [25] . 10

8 Components of a mechatronic system, from [27] . 11

9 Procedure for a mechatronic system, from [28] . 12

10 Sailboat anatomy from[33] . 13

11 Wind zones, from article[34] . 15

12 Beating against the wind[35] . 16

13 NACA0009 airfoil[44] . 17

14 NACA0018 airfoil[43] . 17

15 NACA0024 airfoil . 17

16 Heading control during beam reach, from [35] . 18

17 Course control vs Heading control - simulation from [46] 19

18 Proposed general hardware architecture . 25

19 Visual representation of rudder arm calculation . 26

20 Proposed general software architecture . 29

21 A section of the Trello board . 32

22 GitHub Organization[64], Note: The organization is private, but can be accessed by

request to authors . 33

23 Development of rotary encoder . 38

24 Rotary encoder for reading sail angle . 39

25 Details of inertial measurement unit (IMU) . 40

26 Wind sensor mast adapter . 42

27 Pictures from CubeMars’ website [67] . 43

28 Manufacturing and testing of new mast stub . 44

29 Development of lever arm and actuator mount . 45

viii

30 H-bridge to control rudder actuator . 46

31 Circuit diagrams of voltage divider and ammeter 47

32 Details of electronics box . 48

33 Sequence diagram of sailboat system . 50

34 Sequence diagram of Arduino Nano . 51

35 Coe�cient of lift
Coe�cient of drag vs ↵, from article [38] . 53

36 Tacking sequences, black lines indicate edges of the no-sail zone. Red marker is the

midway point, and the black marker are the target. � = 30�, �+ = 10� 54

37 Hardware architecture diagram . 56

38 Software architecture diagram . 57

39 Wind speeds recorded by the sailboat during the entire test 58

40 Sailboat on the trailer . 59

41 In-progress assemble of the sailboat . 59

42 Container instances . 60

43 Request count . 60

44 Request latencies . 61

45 CPU utilization . 61

46 Memory utilization . 61

47 Billable container time . 61

48 Authentication form . 62

49 Map with a path . 63

50 Homepage with the map . 64

51 From left to right: (1) New path, (2) download current path, (3) upload a path file,

(4) edit boat’s current path. 64

52 Path planner with a list of waypoints . 65

53 Path coordinates in order . 66

54 Instrument page . 66

55 Command page . 67

56 Command description . 67

57 Pages visualising data and parameters . 68

58 Notification message . 68

59 Notification center . 69

ix

60 Set up of the sail control system . 70

61 Target sail angle, and actual sail angle (adjusted 180� to improve readability) . . . 71

62 Sail angle and apparent wind direction (adjusted 180� to improve readability) . . . 72

63 Set up of the rudder and the actuator . 73

64 Rudder and target angle . 74

65 Wind speed . 75

66 Apparent wind direction and heading (adjusted 180� to improve readability) 75

67 True wind direction (adjusted 180◦ to improve readability) 76

68 Beam reach illustration . 76

69 Beam reach map . 77

70 Beam reach angles . 77

71 Beam reach speeds . 78

72 Downwind illustration . 78

73 Downwind . 79

74 Down wind sailing mode angles . 79

75 Down wind sailing test speeds . 80

76 Path traveled in down wind sailing mode . 81

77 Sailboat and a mid waypoint . 81

78 Sailboat struggling to tack (adjusted 180� to improve readability) 82

79 Beating calculation error . 83

x

Abbreviations

AoA angle of attack. 16, 19, 43, 52, 53, 55, 71, 76, 80

ASV autonomous surface vehicle. i, ii, 1–4, 16, 26

CAD computer aided design. 37–40, 45

CAN controller area network. 43

CoG Course over Ground. 18

CSV comma-separated values. 34

DDS data-distribution service. 8

EWMA exponentially weighted moving average. 12, 41, 74

GCP Google Cloud Platform. 33, 34

GPS global positioning system. 25, 41, 47, 76

HMI human machine interface. 2, 4, 10, 22, 23, 84

I2C inter-integrated circuit. 39

IaaS infrastructure as a service. 5

IMU inertial measurement unit. viii, 25, 39, 40, 51, 52, 62, 74, 75, 79

IoT internet of things. 6, 7

IR infrared. 37

JSON JavaScript Object Notation. 7, 35, 36

JWT JSON web token. 55

MCU main computing unit. 22, 24, 25, 30, 49, 62

OMG object management group. 8

OWL-S semantic markup for web services. 7

PaaS platform as a service. 5

QoS quality of service. 8

SaaS software as a service. 5

SoG Speed over Ground. 76

UAV unmanned aerial vehicle. viii, 8, 9

URL uniform resource locator. 7

xi

USB universal serial bus. 39, 41, 48, 49

VO virtual organization. 5

W3C world wide web consortium. 7

WSA web services architecture. 7

XML extensible markup language. 7

xii

1 Introduction and overview

1.1 Autonomous Surface Vehicles (ASVs)

With the focus on a sustainable ocean and the ongoing rapid changes in weather and climate, a

considerable amount of data is required to understand the complicated interactions between the

ocean, atmosphere, and the planet’s inhabitants. Most common methods for data collection are

done by large research vessels over a limited time or by stationary equipment like buoys. Such

methods can be pretty resource-demanding or deliver unsatisfactory results.

New, improved, and promising technologies have the potential to evolve the future of ASVs. An

uncrewed autonomous vehicle could be smaller, lighter, and more durable than anything made for

humans. As a sailboat harnesses the wind’s power, great distances can be covered with low energy

consumption. Furthermore, long missions in threatening and unreachable environments could be

possible while remaining e↵ective and a↵ordable. There are few commercially available options,

but many studies on the topic have moved the area and interest forward. With the combined

technological advances, more research on this topic should be conducted.

1.2 Problem description

This thesis continues the work on an ASV able to carry scientific equipment to perform research

at sea over a long period. Additionally, the ASV aims to be a↵ordable and easy to manufacture,

although robust and reliable. During the voyages, the boat should be self-sustained and operate

fully autonomous. A fundamental part of this goal is creating a prototype for further development

and testing.

1.3 Team and previous work

In 2019, Dr. Andreas T. Echtermeyer instigated the task on an autonomous sailboat. Master

theses on this project have previously been written by Maria Dyrseth, Sverre Gauden, and Almar

V. Brendal, and their results are used in this thesis.

Professor Andrei Lobov assembled this team to work on a pre-study thesis[1] on electronics and

communication in autumn 2021. This master thesis builds upon the work from this pre-study.

Lobov is also the team’s supervisor, with Echtermeyer as co-supervisor on the master thesis.

1.4 Scope of this thesis

This thesis documents an approach to developing and validating an autonomous sailboat. This

report consists of a theoretical study of best practices and fundamental theories, a proposed ap-

proach, an implementation, and tests with discussed results. This thesis intends to document and

guide others in following Dr. Echtermeyer’s work or similar projects in the future.

1

1.5 Objectives

The main goal of this thesis is to create an approach to the development and validation of an

autonomous sailboat. The sailboat should be able to perceive and act upon its environment.

Further, a user-friendly human machine interface (HMI) should be available for monitoring and

controlling the boat. Lastly, a server to act as a mediator between the boat and operator should be

accessible with a focus on security and extendability. A goal is to validate the system by conducting

a sea trial with a seaworthy autonomous sailboat and supporting on-land systems.

1.6 Thesis structure

Chapter 1 introduces the master thesis and previous work leading up to the project’s current state.

Chapter 2 is a study of literature and provides the necessary technical background on the subjects.

Chapter 3 is a suggested approach for developing an ASV.

Chapter 4 presents a solution to the approach in chapter 3.

Chapter 5 introduces the tests and discusses the results.

Chapter 6 concludes the master thesis and achievements made throughout the project and outline

the way forward.

2

2 Theory

This section is a literature study to identify best practices and technologies in pursuing the research

objective. It contains a summary and explanation of some current state-of-the-art technologies,

theories, and architectures based on numerous credible sources. First is the study of digitization

of general real-world objects. It focuses on the challenges and benefits of digitization and how

they can propose safety, control, and monitoring of an ASV. Following is a segment on di↵erent

types of distributed systems and relevant architectures. The following subsection explains system

engineering, mechatronic systems, and common noise filters for processing sensor data in such

systems. These topics can prove valuable when building a system for an ASV and creating services

for autonomy and communication. Lastly, two sections introduce the sailing theory and mention

some algorithms for keeping coarse and creating a sailing path.

2.1 Digital Twin, a virtual projection of a real-world object

A Digital Twin is known as a virtual representation of a physical object. In recent years, it has

been moving further with additional features, namely bidirectional transfer or sharing of data.

These data include quantitative, qualitative, historical, environmental, and real-time data.

Since the early 2000s, interest in a digital representation of actual assets has increased. With the

progress in ICTs in recent years, further advancements in developing and utilizing Digital Twins

have been made. Technologies such as the Internet of things (IoT), artificial intelligence, cloud

computing, high-performing cellular networks, and wireless sensor networks promote practical

applications of a Digital Twin in multiple fields [2].

In order to leverage the advantages of a Digital Twin, a business should understand the charac-

teristics and types of Digital Twins [2]. Fusing many di↵erent technologies and theories required

to implement a digital twin can be pretty complex.

2.1.1 Data related technologies

The basis of the digital twin is data. Numerous sensors, readers, and scanners to measure the

environment and internal conditions are collected, processed, and transmitted in real-time (or

close to real-time). Since the data can be vast, quickly changing, and of various types, some form

of edge computing is often facilitated to reduce the network load. Microsoft Azure, Amazon Web

Services, and Google Cloud Platform provide one of the most well-known cloud services. Cloud

services can store, analyze, map, and process large-scale data reasonably cheaply.

Some communication technologies are more suitable for transferring data between the physical and

digital twin. With a developed platform, additional sensors could be easily added to the physical

twin, while a provided interface could make the sensor easily configurable remotely.

A digital twin can provide improved accessibility by allowing control over the physical twin through

the virtual twin [3]. Such an improvement could be beneficial when the geographical location

restricts control of the physical twin.

3

2.1.2 High-fidelity modeling and simulation technologies

Model representation of the physical twin contains semantic data and computer models typically

used in combination with simulation software for testing numerous properties of the physical twin.

Simulations with digital twins can predict structure fatigue, extending the physical twin’s life[2].

However, a problem with simulation is the lack of real-time data, which makes the model or

simulation static [4].

Tesla is a clean energy car designer and manufacturer known for using digital twins in simulations.

Stress tests in scenarios have shown beneficial in further development of the car’s safety by having

a high-fidelity model of the car and its parts. Further, they have digital twin models of every car

they have sold and provide software updates to the consumer based on collected data[5].

2.1.3 Human-machine interface

The goal of a user interface that a HMI o↵ers is to allow humans more manageable and accessible

control over a machine. Furthermore, an HMI has proved to be helpful when in need of adjusting

an autonomous vehicle[6]. HMI allows an operator to, e.g., monitor and control processes and

change objectives. Since the ASV is remote, a solution for the HMI should adapt to that situation

by promoting accessibility. One solution is websites created as a single page application [7], mobile

applications [8], or other software services that usually complement some other specific hardware

[9]. Additionally, a HMI could create safety barriers to a system as it could reduce human er-

rors[10]. In an article at Frontier’s in AI[11] there were a HMI implemented for operators to aid an

autonomous sailboat with missions and parameters. Furthermore, the HMI o↵ered visualization

of data sent by the on-sea sailboat allowing for further analysis of ocean conditions.

2.2 Distributed Systems

A distributed system is a set of independently operating computing nodes that collaborate so that

it appears as a single coherent system for the user[12]. The nodes can consist of hardware and

software components ranging from small embedded computers to powerful computers. Individual

nodes do not provide much value in themselves, but when collaborating with other nodes in a

distributed system, they can work towards a common goal and deliver high value. In order to

achieve this, the nodes must be networked and managed so that they can communicate quickly,

safely, and reliably with each other. One use case of a distributed system is for high-performance

computing.

2.2.1 Cluster and grid computing

Cluster computing systems consist of smaller equal computers connected through a high-speed

network to act as one powerful computer. Such systems became popular when the price and

performance of regular personal computers improved enough that it made sense to connect many

together. Cluster computers are often used for programs that run in parallel utilizing all the

computing nodes. Usually, one computer in a cluster is assigned the master role. It handles the

allocation of tasks to the other computers and provides an interface for the cluster user. Otherwise,

the hardware, software, security, and network between the nodes are as identical as possible [12].

4

Figure 1: Cluster computer diagram

Grid computing is a system where the nodes focus on solving more specific tasks by providing

resources such as storage, servers, computation, and applications. These resources can be geo-

graphically dispersed and shared between many users with di↵erent use cases. One grid cluster

can support many Virtual organizations (VOs) which provides a private, customized execution

environment. Users in the same VO can collaborate and access the same resources, which appear

as if the organization owned the resources themselves [13].

Figure 2: Grid computer diagram

2.2.2 Cloud Computing

While the two previous classes of distributed systems focus on how to structure compute nodes to

achieve a specific goal, cloud computing is about making such systems available to customers by

providing a dynamic infrastructure [12]. It can be defined as a pool of easily accessible virtualized

resources which can dynamically and optimally scale to the current workload [14]. Usually, clouds

can be divided into three di↵erent levels of abstraction, the first being infrastructure as a service

(IaaS), the most barebone service, only providing the virtualized infrastructure for the customer

to build its system on. The next level is platform as a service (PaaS) which o↵ers a platform for

systems to run on, making it easier for customers to deploy their software layer on a cloud service

without spending time on the fundamental parts of the system while still benefiting from the

dynamic resource allocation. The last level is known as software as a service (SaaS) [15]. Instead

of running applications locally on a computer, it runs in the cloud and is accessed from the web.

The applications can then be accessed everywhere on less powerful hardware and by multiple users

simultaneously.

5

Figure 3: Cloud computer diagram

2.2.3 Pervasive Systems

Unlike systems with powerful computer nodes and defined interfaces for interaction, pervasive

systems describe distributed systems that can be small, mobile, and wireless. They are meant

to blend into everyday environments and use sensors and actuators to allow for interaction with

users and the surroundings. Pervasive systems can be separated into three categories, ubiquitous

computing systems, mobile systems, and sensor networks [12].

As the name suggests, ubiquitous computing systems are built into the surroundings and consist

of sensors, actuators, and computing units spread across. They can communicate, interact with

users, be context-aware, and operate autonomously, all while appearing transparent to the user[16].

Sometimes, the user does not realize that interaction with a ubiquitous system is happening. One

example is tra�c lights and pedestrian crossings where the lights communicate, and sensors tell if

cars or people are present [17]. People interact with tra�c lights daily without recognizing they

have given it input and that the output is a result of it.

Mobile computing systems are systems where the location is expected to be changing over time

[18]. It can be anything from mobile phones and internet of things (IoT) devices to connected

vehicles. These systems require di↵erent techniques to enable dynamic discovery and direct com-

munication. The last category of pervasive systems is networks of sensors. These systems can

consist of thousands of connected sensors in a network. Middleware is used to utilize the data

gathered, for example, by deploying applications.

2.2.4 Architectural tactics

Transparency

A distributed should feel and behave like a single coherent system for the end-user, making the

physical properties of the system transparent [18]. The di↵erent types of distribution transparency

can be separated into seven [12]. First is access transparency removing the details of how the data

is represented and stored. Di↵erences in naming, operations, and involved processes to present a

6

resource should not be visible to the end-user. The second transparency is location transparency.

Users should not know where the resource is physically located. A typical example of this transpar-

ency is the use of uniform resource locator (URL) to provide a dynamic path to a resource. It also

has the benefit of allowing resources to relocate without the user noticing, introducing relocation

transparency. Cloud computing services are an example of servers located in di↵erent geographic

locations, where resources can be shared and moved between them without the user noticing. Users

can also initiate relocation of resources if it supports migration transparency—for example, mobile

phones or mobile IoT systems.

Replication transparency is a special case of location transparency meant to improve user experi-

ence. Several copies of a resource are distributed in several locations providing services closer to the

end-user with better capacity and redundancy. Except for better performance, the user should not

be able to tell that several copies exist. Even if multiple users access the same resource, it should

be handled so that the individual user does not notice it, known as concurrency transparency. As

mentioned, redundancies are essential in a distributed system with replication transparency. If a

failure occurs, it should be caught and automatically recovered without the end-user noticing any

disruptions.

Interopearbility

The emergence of pervasive distributed systems, including ubiquitous- and mobile computing sys-

tems and sensor networks, are increasing the challenge and di�culty of connecting distributed

systems together[19]. Interoperability is one of the more significant challenges when engineering

distributed systems. The two main parts of this challenge are extreme heterogeneity and dynamic

and spontaneous communication. The former describes the di↵erent systems that can be expected

to communicate together. It ranges from supercomputers to mobile phones to small sensors. The

latter highlights that connections are first made at runtime, making design or deployment decisions

to enable interoperability harder.

Data heterogeneity is a result of the infinite number of di↵erent approaches to representing data.

The plethora of methods creates a barrier for two systems to connect if they are not specifically

designed to represent data similarly. There are solutions trying to standardize data representation

like extensible markup language (XML) and JavaScript Object Notation (JSON). However, even

when two systems use the same protocols, they might not share the same structure or naming

of properties. Such restrictions are part of the semantic heterogeneity problem where data must

have the same semantic representation for every participant. The web services architecture (WSA)

is an architecture by world wide web consortium (W3C) that identifies global elements required

to ensure interoperability between Web Services[20]. E↵orts have been made to extend the Web

Services description language to include semantics for data exchange. One known attempt is

semantic markup for web services (OWL-S), an ontology of services providing functionality to

allow software agents and users to discover, invoke, and compose automatically. Figure 4 shows

three essential properties of a service provided by the ontology. ServiceProfile is the profile of

the service and explains what the service provides for clients. ServiceGrounding defines how to

interact with the service and details about transport protocols it supports. ServiceModel includes

the process model describing how the service is used[21].

7

Figure 4: Top level of the service ontology, from [21]

Another way to solve interoperability is to use a middleware. Systems implementing the same

middleware are ensured to be interoperable with each other. However, this solution introduces some

new issues. Only systems implemented with the same middleware would be interoperable, creating

new barriers against broad interoperability. Secondly, a universal middleware that supports all

systems is very unlikely, given the vast array of distributed systems. The development of new

distributed systems is also happening very fast, outpacing the creation of standards in the form of

middleware. Over time old middleware will become obsolete and make systems using it outdated.

Figure 5: Interoperability by traditional middleware, from [19]

2.2.5 Architectures for distributed systems

An example of a distributed system architecture used for an UAV is the Manned-Unmanned Team-

ing research project conducted by the Institute of Flight Systems at Universität der Bundeswehr

in München, Germany[22]. The project consisted of one or more UAV and a ground control station

implemented as a fully distributed system, illustrated in Figure 6. They based the architecture on

the data-distribution service (DDS) standard created by the object management group (OMG).

It is a specification for publish-subscribe data distribution in real-time systems [23]. In a publish-

subscribe system, subscribers can listen for data from one or more publishers. The communication

is separated into di↵erent topics and provides a connection point between the participants. New

publishers and subscribers can be added to existing topics without creating a new one. This

solution enables a scalable system where di↵erent system parts can be developed, extended, and

tested as individual modules. DDS is data-centric, which enables all the quality of service (QoS)

parameters to be specified for each topic, giving developers fine control over the system design and

performance [24].

8

Figure 6: Fully distributed UAV system, from [22]

Another UAV project from China proposed a three-layer system architecture [25]. Figure 7 presents

an overview of the architecture with the following layers: Executive layer, Cloud layer, and Human

Operator layer. The executive layer contains the onboard flight controller, a communication link

with the ground station, and a simulator. Next is the cloud layer, divided into a shadow layer

and a core layer to increase modularity. The shadow layer act as a bridge between the UAV and

the cloud and have a communication module and an abstraction module. The communication

module enables support for di↵erent communication protocols, one of which is Websocket. It

handles authentication with the cloud and as a message broker once the connection is established.

The abstraction module has a remote control interface with all possible control actions to help

client developers with limited knowledge of the hardware. A mission control component helps

o✏oad some of the autonomy processing from the UAV to the cloud, and a sensor manager helps

standardize sensor data representation. The main component is the shadow files keeping the latest

data from the UAV to create a digital twin in the cloud. This benefit is that other systems relying

on data from the UAV can get data from the digital twin instead of requesting the UAV. This

o✏oading can prevent overwhelming the onboard computer, synchronization issues, and data loss

due to unstable wireless connection with the UAV.

The cloud core layer is responsible for the long-term storage of all data collected. It also hosts

the central server, which all clients connect to in a scalable virtual environment, allowing more

computer resources to be allocated as needed. Many autonomy calculations are also done in

the cloud, o✏oading the onboard computer and allowing for more advanced algorithms. The

last layer is the Human Operator layer containing a cloud service hosting a web application that

communicates over Websocket. The web application is used to plan missions, control and manage

the UAV, and other managing.

9

Figure 7: System architecture overview, from [25]

2.3 System engineering and Mechatronics

Mechatronics is a term that appeared in the early 70s with the development of computers and

electronics. The terminology describes the combination of mechanical and electronic engineer-

ing[26]. Mechatronic systems often depend on the real-time computation of data gathered from

their surroundings, which the system uses to alter the machine’s state. Figure 8 shows an example

of di↵erent components making up a mechatronic system. In the center are the computational

unit containing computers, software, and interface to other systems. Connected to the computa-

tional unit is instrumentation providing information about the surroundings. On the other side is

actuation, which enables the system to interact with the real world, known as the target system.

Operators and parent systems can interact with the computational unit through an HMI or other

integrated systems.

10

Figure 8: Components of a mechatronic system, from [27]

The procedure for the computation, actuation, target system, instrumentation loop in Figure 8

has been attempted generalized resulting in the illustration in Figure 9 [28]. It starts with object

input perceived by sensors and processed by a signal processor before its sent to a microprocessor.

The microprocessor controls power to actuators and uses a control loop mechanism to achieve the

desired movement. The actuators act on the mechanical system. Encoders and sensors in this

system send feedback to the microprocessor used to validate if the actuators acquired the desired

output.

11

Figure 9: Procedure for a mechatronic system, from [28]

2.4 Data processing with noise filters

Introducing noise filters may improve the accuracy of single sensor measurements, particularly

for highly-sensitive sensors. Inaccurate data can be detrimental for control systems dependent on

reliable data[29].

2.4.1 Kalman Filter

According to a study in China[30], by introducing a filter known as Kalman Filter, the precision of

low-cost sensors increased by 27%. Kalman filtering is an algorithm commonly used to reduce noise

from sensor signals. By processing a series of inaccurate and uncertain measurements, the Kalman

Filter produces estimates of hidden variables [31]. Furthermore, the filter provides predictions

of future measurements based on past estimations. For smaller computers with low memory, a

Kalman Filter is ideal. The memory usage is limited to the need of only storing the previous state

of the sensor measurement. Thus, making the Kalman Filter suitable for embedded systems.

2.4.2 Exponentially Weighted Moving Average

An exponentially weighted moving average (EWMA) filter is used to smooth out measurement

variations by weighting the average for the last period and the current measurement. Advantages

12

of this method are low computational cost, diminishing old data, and requiring minimum data.

The stochastic process can be described as

St = B[St +ASt�1 +A2St�2 +A3St�3 + ...] (1)

where constant B 2 [0, 1] and A = 1�B [32]. St is an estimate resulting from a weighted average

between a new value St and all past values. The weighting is exponential, resulting in older values

getting exponentially smaller for each new measurement. The influence of a new measurement St

can be tuned by adjusting the weight B. If St is subject to much random variation, a lower B

will yield a better estimation of the mean. However, if the mean is often changing, the weight B

should be larger to diminish the e↵ect of old values.

2.5 Sailing theory

A sailboat’s main parts are the sail, rudder, keel, and hull. The purpose of the sail and rudder

is to control the boat, where the sail’s goal is to gather wind force to increase the velocity of the

sailboat and the rudder to change its heading. Compared to motorized boats, a sailboat requires

some speed to change its heading as it does not have a propeller providing force on the rudder.

At the bottom of the boat, a keel cancels out the lateral forces from the sail, and helps against

capsizing. This is achieved by having foil under water with a heavy material in the bottom, lowering

the center of mass of the sailboat. The hull is the boat’s body, where the front is called the bow,

and the back is often called the stern. Port and starboard are the left and right sides of the boat.

An illustration of the sailboat’s anatomy can be seen in Figure 10.

Figure 10: Sailboat anatomy from[33]

Some nautical terms used in this thesis can be found in Table 1.

13

Table 1: A table of nautical terms

Nautical Terms

Apparent wind - The wind measured from a moving instrument, e.g. a boat.

Beating - To sail against the wind by doing a sequence of tacks.

Great circle arc - The shortest distance between two points on the surface of a sphere.

Jibbing - A technique where one crosses the wind direction with the stern against the wind.

Leeway - The drift a boat can have which result in an angle from the boat’s heading.

Tacking - A maneuver where on crosses the wind direction with the bow against the wind.

True wind - The wind measured from a stationary instrument.

Velocity made good - A sailing term describing the speed relative to the wind direction.

Windward - The side of the boat that is towards the wind.

True wind is the wind speed and direction that a stationary instrument could measure. Apparent

wind is di↵erent as it considers wind speed, the wind instrument’s velocity, and direction relative

to a moving instrument.

2.5.1 Wind zones

During sailing, the boat can be in three situations: upwind, downwind, and beam reaching. In

downwind, the sailboat can open the sail to gather wind and gain speed. When the wind hits the

boat from the side at around 90�, it is called beam reaching, denoted as C in Figure 11. Upwind

situations are when sailing against the wind. It is still possible to gain speed, but by sailing close-

hauled, see B in Figure 11. The area of approximately 30� on each side of the wind direction is

called the no-sail zone. A sailboat cannot sail forward in the no-sail zone since the angle of attack

for the wind on the sail does not permit thrust. The smallest possible angle between the wind and

the sailboat can be found through experiments, for example, in wind tunnels or field trials.

14

Figure 11: Wind zones, from article[34]

2.5.2 Sailing towards the eye of the wind

A typical strategy to reach a point that requires sailing straight against the wind is called beating.

It is a technique where one is sailing in a zigzag maneuver. In order to accomplish beating, two

typical sailing maneuvers are used, namely tacks or jibs. Tacks are done when one crosses into the

wind, and the wind changes from one side of the boat to the other (for example, port to starboard

or opposite). Between each tack the sailboat sails close-hauled outside the no-sail zone thus moving

forward against the wind direction. Su�cient forward momentum is required to perform a tacking

maneuver, in order to cross the no-sail zone. The frequency of tacking maneuvers depends on

limitations such as obstacles. In theory, the fewer tacks, the faster one should reach the goal

because of the speed loss during a tack. In Figure 12, there is an illustration of a series of tacks.

Jibs, however, do not cross the no-sail zone, but turns the opposite direction and crosses the wind

direction downwind. This eliminates the need for su�cient forward speed, however, at one point

the sailboat is sailing away from the target and therefore looses some progress.

15

Figure 12: Beating against the wind[35]

2.5.3 Downwind sailing

According to a study on fixed-wing ASVs an e�cient method for sailing downwind is to switch the

sail configuration from a lift-generating to a drag-generating surface[36]. This is known as running

downwind. It is achieved by increasing the angle of attack (AoA) to 90� when sailing downwind.

The study calculated the optimal apparent wind angle to switch the configuration of their wing

foil to be 135�.

Another solution is a similar technique as during upwind sailing, namely beating. According to an

article by J. Otto Scherer[37], sailing straight downwind while relying on drag for thrust limits one

to about half the speed of the wind. This limitation is due to the boat’s resistance in the water and

the apparent wind decrease at higher speed. Theoretically, in most conditions, sailing broad reach

can result in higher speeds than compared to running because of the increased apparent wind.

2.5.4 Optimal angles

National Advisory Committee for Aeronautics develops standards for aircraft wings that have had

growing popularity as wing sails for sailboats [38][39][40]. Even for more prominent companies, a

wing sail has become the state of the art solution for autonomous sailboats[41][42].

As these wings mostly follow a standard, optimal angle of attack calculations applies for every

wing of the same standard. From KTH Royal Institute of Technology, a paper[39] was published

about a sailboat with a fixed-wing using the standard NACA0018[43], see Figure 14. After VLM

16

simulation, used for computing fluid dynamics, they concluded that a maximum angle of attack

was 12�. An angle of attack higher than that would stall the wing.

Figure 13: NACA0009 airfoil[44]

Figure 14: NACA0018 airfoil[43]

Figure 15: NACA0024 airfoil

Furthermore, an article published in the Journal of Fluid Science and Technology[45] had a similar

result with a NACA0009[44] and a NACA0024 which is a thinner and thicker airfoil, respectively,

compared to NACA0018. They performed a wind tunnel test on their foils, and the results were

an optimal angle of attack of 10� before stalling.

From the article[38] by Dyrseth, a symmetrical wing sail allows for a greater span of angles com-

pared to a non-symmetrical one. Further, a thin airfoil has limited interior space for a mast and

electronics, while a thicker airfoil proved to stall earlier and be less stable[38]. After a CFD valid-

ation, the thesis concluded that a wing sail using the NACA0018 standard would have an optimal

operating range between 6�11�[38]. Within this range, an optimal lift and drag ratio is attained.

2.6 Algorithms

In the following sections, a description of solutions found from numerous sources is mentioned that

promote autonomy for sailboats. Furthermore, some challenges are highlighted for algorithms and

17

the task at hand.

2.6.1 Heading vs Course control

In order to traverse from point A to point B, the most common solution is a heading con-

trol[46][47][48]. The idea is to adjust the boat’s heading to be the same as the bearing, which

is the angle between north and a target from the boat’s position. At short distances, it could

be e�cient enough, but during long voyages, several forces may be taken into consideration. The

reason for this is the leeway e↵ect, which diverges the course from the heading. Some of the reasons

for drifting are the ocean current, but also wind forces[35][46], particularly during beam reach, as

can be seen in Figure 16.

Figure 16: Heading control during beam reach, from [35]

A course controller could assist the boat from diverging from the line between the boat and the

desired goal [46][35]. In order to consider the leeway e↵ect, data about Course over Ground (CoG)

or at least wind forces are necessary. This information allows for adjusting the heading of the

boat to compensate for the drift resulting in a more straight traversal between the boat’s starting

position and the target position [46], see Figure 17. How the wind a↵ects the boat depends on the

boat’s physical properties, and the amount of leeway may vary accordingly[35].

18

Figure 17: Course control vs Heading control - simulation from [46]

2.6.2 Component based control system

Traditional sailboats usually rely on a sailor’s ability to sense its environment and decide the next

course of action based on the collected information. In these situations, a stable AoA and heading

may not be the primary goal and are often unrealistic to achieve. Furthermore, sail angle can be

changed by adjusting the sail or turning the boat. A sailor will often use a combination of these

inputs to adjust sail angle. Robotic approaches often try to mimic human solutions [36], however,

in this case, it might be easier to separate it in two individual tasks [36][49]:

• Optimal sail angle to maximise forward thrust

• Adjust rudder in order to reach desired direction

A decoupled component-based system can make the logic behind an algorithm easier to implement

and understand [49]. In an article from Ocean Engineering 2010 [36], an independent system was

developed and tested with a Velocity Prediction Program and a sea trial. The solution proved to

be e�cient. However, an open-ocean test in harsher weather was lacking.

2.6.3 Route planning

Sea path planning can be di�cult depending on its complexity and the number of factors to

consider. Path planning solutions, outside of sea traversal are used in numerous sectors such as

aerospace[50], cars[51], robotics, and video games [52]. Some of the goals of these sectors are

similar, and some are di↵erent. The shortest path is the most specific goal, but for some solutions,

19

the measured distance may not be the ideal for optimal traversal[46], as minimizing the time or

resource used may be desirable.

A search space is the domain of all possible solutions for an algorithm’s problem. Several solutions

are used for dividing the search space into e�cient data structures, for example, a Probabilistic

Road Map[46]. The algorithm creates a graph by randomly placing points in an area. One possible

disadvantage is that the algorithm prioritizes points of interest, such as fixed obstacles[46].

A more straightforward solution to reduce the search space is dividing the area into equally sized

nodes in a grid[53]. Depending on the resolution of the search space and the search algorithm, it

can be lightweight or quite heavy computationally.

Traversing a network representing possible paths can be solved by numerous known algorithms such

as A⇤[53][54], Dijkstra’s Algorithm[46] and rapidly exploring random tree algorithm. Some of these

algorithms require cost functions to distinguish which edge should be prioritized over another. Such

cost functions are case-specific, but for ocean voyages, weather and current forecasts may influence

how desirable a route may be[53]. Forecasts can be vital as they can provide time-e�cient traversals

across large distances[55]. Furthermore, safety distances from obstacles, other vessels, and shore

should also be taken into account[46].

A⇤ and Dijkstra’s Algorithm:

These algorithms are among the more well-known algorithms used to find the optimal path. The

main di↵erence between the two is that A⇤ uses heuristics to guide its search area. Improved

performance can be achieved with this heuristic[56]. However, Dijkstra’s algorithm will examine

every possible path until the specified goal is reached[57].

2.6.4 Haversine - Distance between two point on a sphere

The Haversine formula is commonly used to determine the distance between two points on a

sphere[58][59][60]. In navigation, the Haversine formula is a special case derived from a general

formula in trigonometry of spheres. This formula makes it possible to calculate the distance

between two coordinates on Earth. However, not entirely correct due to the Earth’s ellipsoidal

shape, but quite close. The radius along the Earth’s poles is approximately 6399.594 km and

approximately 6335.439 km at the equator. Thus, the haversine formula cannot guarantee an

estimation better than 0.5%.

Haversine formula:

Decimal degrees, usually written in angles, must be multiplied with ⇡
180 to transform it to radians.

✓ is the central angle between two points on a sphere. d is the spherical distance between the two

points. r is the radius of the sphere.

✓ =
d

r
(2)

The haversine of ✓ :

h = hav(✓) (3)

The haversine function :

hav(✓) = sin2(
✓

2
) (4)

20

With direct use of coordinates in decimal radians, latitude : ', longitude : �.

Where ('1,�1) is the first coordinate, and ('2,�2) is the second:

hav(✓) = hav('2 � '1) + cos('1) · cos('2) · hav(�2 � �1) (5)

Or to avoid using cosines which can cause degradation at small angles:

hav(✓) = hav('2 � '1) + (1� hav('1 � '2)� hav('1 + '2)) · hav(�2 � �1) (6)

To get the distance, d, between two points where r is the sphere’s radius.

d = 2 · r arcsin(
p
h) (7)

Note: 0 h 1, floating point errors can make h > 1 which must be hindered.

3 Approach

This section presents an approach for developing and testing a system for an autonomous sailboat.

When developing a complex system, organizing and documenting the work can help keep track of

the progress as the system evolves. This section will introduce and describe techniques and tools

to support development. Further, the section proposes a distributed system for an autonomous

sailboat consisting of on-land services, sensors, communication, and actuators. Software and al-

gorithms for the system, enabling autonomy, are outlined. Lastly, the section discusses the theory

and techniques for testing such systems.

3.1 Organizing and building a sailboat

While working on larger projects in a team, a good structure are important to keep track of the

project’s progress. There are a plethora of helpful digital tools that can assist teams in projects

to improve the results. Such digital services can, for example, share changes in a task’s status,

visualize essential deadlines, and provide an overview of the project between members. Thus,

making it easier for each member to be up to date on every aspect of the project. Tracking

minutes spent on di↵erent aspects of the development process will also help the team optimally

distribute available work hours and ensure the workload between members is somewhat equal.

Documentation can help describe the history of the project’s development. It should include

information on how to use it, how it works, what is complete, and what is lacking. The more

complex a solution is, the more critical the documentation can be, as associates may forget crucial

details. Further, documentation can make specific tasks more approachable as new team members

are onboarded into the project.

Prioritization of tasks can be helpful to have some way to distinguish them. Critical assignments

that are delayed could have tasks that succeed them and therefore can be worked on in the mean-

time. This way, essential features may be integrated, and progress made, even when there are

obstacles during the development process.

21

3.1.1 Workflow

Reviewing team members’ work and documentation helps to understand and keep up with the pro-

gress made during development, increases learning output, and reduces the chance of errors. This

workflow can be achieved by creating a pipeline with organized phases each task needs to complete

before being considered finished. Examples of such phrases could be: to do, in-progress, in-review,

and done. When working on a more extensive software system with simultaneous development on

di↵erent parts of the system, keeping track of changes and versions is crucial. When complexity

increases, the ability to review changes, revert to previous versions, and handle merge conflicts

between changes in the same document are valuable tools. It also enables multiple developers to

work on di↵erent features and versions of the same system before combining the individual parts

as they get finalized. The usage of digital tools to improve workflow is highly recommended.

3.2 On-land services

Some services do not necessarily have to be located on the sailboat. Moving resource-intensive and

mission-critical tasks from the sailboat to land can help improve performance and reliability. This

section describes how to achieve such improvements by introducing intermediary servers and an

HMI.

3.2.1 Intermediary on-land server

An on-land server should be used for two-way communication with the boat and store data for

further investigation and analysis. The data can prove practical to spot undesired behaviors or

inadequacies. Additionally, a server could reduce the workload on the boat’s main computing

unit (MCU), making it possible to be smaller and more power-e�cient. A data storage on land

has a larger capacity and is a safer place than on a boat, which can be exposed to salt water or

other hazards. When the server acts as an intermediary between clients and boats, limitations like

connection speed, power consumption, and accessibility are reduced.

In order to reduce the load on the boat’s power-e�cient computers, a proxy pattern could be a

suitable design pattern where one utilizes an intermediate computer. The pattern is supposed to

create an interface layer, adding more logic to the desired data and reducing stress on the client.

The server receives data from the boat and broadcasts the latest update to all connected users.

Changes from the end-user are sent to the server and redirected to the boat’s computer when

necessary. Typical chores on the server could be reading, analyzing, storing, and distributing data

from the boat.

Making data flow generic increases extensibility at the cost of security. It allows any data to be

received, processed, and labeled, thus making it easier for new component data to be integrated

without having to change anything server-sided. However, mistakes or intentional exploits can

compromise the server when no data control exists.

According to the literature study, Section 2.2.2, cloud computing allows for scalability based on

workload, meaning the more users, the more resources are assigned. Further, cloud services can

scale down resource usage when not needed. Such technology allows a server solution to be more

future-proof as it supports adding more boats and clients. For these reasons, it is suggested to

utilize cloud computing.

22

3.2.2 HMI for monitoring and control

The purpose of the HMI is to visualize data provided by the intermediate server to enable an oper-

ator to monitor and control the boat when it operates autonomously, Section 2.1.3. In developing

the HMI, prioritizing accessibility above high performance is desirable, as performance is not an

issue with the current level of technology. However, the client-side application can be platform-

specific in search of higher performance, thus restricting the usage of such an application to future

associates and users as not everyone has access to specific platforms. The user interface should

be intuitive for the end-user and secure enough to prevent the user from performing exceptionally

system-breaking actions. The communication solution with the server should be similar to the

boat since any slower will reduce the real-time aspect of the data flow, and any faster would be

redundant. The complexity of the communication could also be kept at a minimum by utilizing

similar technology. A client-side application should have some control over the boat to allow remote

control by an operator. Either by instructions, direct control, or other means. The end-user should

be able to provide the path for the boat through the HMI. However, another approach could be a

computer-generated path as mentioned in Section 2.6.3. Even way both methods should ensure a

safe voyage.

The following tables list functional requirements recommended for an HMI to achieve monitoring

and control.

Table 2: Functional requirements authentication

Authentication requirements

FRA1 There should be a clear login screen for a user

FRA2 A message should be visible when authentication errors occur

FRA3 The user should be able to register and create an account

Table 3: Functional requirements for the map

Map requirements

FRM1 There should be an indicator of the boat’s current position and its target

FRM2 Waypoints should be visible on the map when created

FRM3 A path editor should be visible when editing a path

FRM4 Current path should be visible and allow for editing

FRM5 A data file for the path should be possible to download

FRM6 A valid data file for a path should be able to be uploaded and activated as the current path

FRM7 New paths should be generated and sent to the boat and respond with an indication of success

FRM8 Changes to the path should be visible to all clients

Table 4: Functional requirements for the data visualization

Data visualization requirement

FRD1 Visualization should present sensor data from the boat

FRD2 The visualization should be clear and intuitive

FRD3 Relevant data representation should include current and target values

23

Table 5: Functional requirements for the command system

Command system requirements

FRC1 Clients should be presented with a list of available commands

FRC2 Each command should indicate what they do

FRC3 Input fields should be visible and have a label for their purpose

FRC4 A description of the command should be visible for the user

Table 6: Functional requirements for data and parameters

Data and parameter requirements

FRDP1 Clients should be able to have a visualization of all raw data and parameters

FRDP2 Data from sensors should not be editable

FRDP3 Parameters should be allowed by the user to be edited, but with safety restrictions

Table 7: Functional requirements for the notification system

Notification system requirements

FRN1 Popup notifications should be visible for the user

FRN2 Notifications should be updated with the latest messages from the sailboat

FRN3 Indication of the time the notification made should be available

FRN4 The notification center should have a history list of earlier notifications

FRN5 A client should be able to turn o↵ the notification popup

3.3 Sensors and communication technology

The sailboat must have a MCU that can communicate to on land server and services, act on

sensor data, execute commands and report errors. These requirements make a certain computing

power necessary, as algorithms and numerous concurrent tasks run in multiple threads can be a

heavy load on the central processing unit. An overview of the proposed architecture can be seen

in Figure 18.

24

Figure 18: Proposed general hardware architecture

3.3.1 Sensors

Numerous sensors are required to create an autonomous sailboat that can perceive the environment

and its internal state. A wind sensor must provide wind speed and direction, as it is necessary

for sailing. global positioning system (GPS) allows the MCU to determine a precise position of

the sailboat’s location, velocity, bearing, and distance to a target position. Further, a compass

is needed to know the boat’s heading and an IMU to relay information about acceleration and

gyroscopic forces acting upon the boat. Lastly, a voltmeter could provide information about the

state of charge, power consumption, and when the system can not be able to operate due to a lack

of energy.

In order to know the rudder and sail position, some encoders are vital. It should be able to reflect

its absolute position digitally as it is essential for controlling the boat. Some encoders provide

absolute positions. Others may require calibration when powering on and a solution for keeping

track of the position.

3.3.2 Communication technology

According to the literature study, Section 2.1.1, communication technology on the MCU should

allow real-time data flow for up-to-date information as required by the digital twin. Further,

communication is needed to collect information and monitor the boat remotely. During testing,

such communication would be beneficial when continuous adjustments are necessary. While the

25

boat is close to shore, land-based communication allows for higher bandwidth, real-time. On the

open seas, farther-reaching technologies may be the only option. They are, however, often slower.

3.4 Actuators and power supply

The computer’s arms and legs, namely the actuators and motors, are essential for changing the

boat’s state. Depending on the environmental forces, hazards, and restrictions, certain require-

ments should be fulfilled. The following subsections will present the actuating requirements neces-

sary for an ASV, and how to power it all.

3.4.1 Actuator for moving the rudder

Actuation of the rudder can be achieved with an actuator. The rudder must be able to turn from

side to side and keep its position once the desired angle is reached. There is no need for the rudder

to turn more than a total of 180 degrees, as the sailboat is only intended to move forward. For

this purpose, a linear actuator is most suited since they are strong, holds the last position, and

the linear movement can easily be transferred to a circular movement. The mounting points in

both ends of the actuator must be able to rotate freely to allow for circular movements. The

dimensions of the actuator and geometry of the mounting mechanism will determine the limits of

rudder movement. To calculate the dimensions for the mount, P1(r1, ✓1), P2(r1, 180� � ✓1) and

P3(r2, ✓2) are shown in Figure 19 where ✓2 = 0.

Figure 19: Visual representation of rudder arm calculation

Equation for shortest distance between two polar coordinates is given by:

D =
q
r21 + r22 � 2r1r2 cos (✓1 � ✓2) (8)

Using Equation 8 and inserting the maximum and minimum length of the actuator as distance,

yields two equations. The first one is P1 to P3 with D =”min length of actuator”, and the second

is P2 to P3 with D =”max length of actuator”. Solving these for r1 and r2 with ✓1 set to max

wanted rudder deflection results in the right geometry for the actuator mount.

26

The forces on the rudder will mainly come from the boat’s forward velocity through the water.

Other forces like currents are not included in the calculation. The equation for forces from an area

A moving in a fluid with density ⇢ and velocity v is

F =
1

2
⇢v2ACd (9)

where Cd = 1.28 for a flat plane.

With a 90-degree rudder deflection, the torque exerted on the rudder shaft by the forces from the

water is given as:

Tr = Frx (10)

The torque from the actuator on the rudder shaft is given by:

Ta = Far1 (11)

Actuator torque should have a safety margin of 2 to ensure reliable operation when the sailboat

is within design conditions. The actuator must be weather and salt waterproof and provide an

interface for controlling it. Inputs are power and move in/out signals. Feedback from the actuator

includes the current position and all the way in/out signal. In/out signals are necessary to calibrate

the actuator and prevent it from overextending.

3.4.2 Motor for moving the wing sail

A motor inside the sail provides clockwise and counterclockwise rotation around the mast when

a computer sends a corresponding signal. The computer can determine absolute position with

calibration and continuous feedback from the sail. When the sail has reached its target, it holds

the position until a new target is given. A worm gear increases the motor’s torque and mechanically

prevents the sail from moving without the motor spinning. The motor must be able to turn the

sail into the wind even under maximum design load. Equation 9 is used to calculate the force from

the wind hitting the sail with a 90-degree angle of attack and 0 degrees of roll. Torque on the sail

is given by the center of force on the area from the trailing edge to the mast, subtracted from the

center of force from the mast to the leading edge of the sail.

Tw =
At

A
Fwxt �

Al

A
Fwxl (12)

Motor torque needed can be calculated from gearing ratio i, gear drive e�ciency ⌘, torque from

wind hitting the sail Tw, and a safety margin of 2, resulting in the following equation:

Tm =
2Tw

⌘i
(13)

The equation does not account for other losses in the system that might further increase the torque

requirement. The worm gear mechanism, motor, and encoder are mounted inside the sail to protect

it from weather and seawater during operation, thus removing the need for waterproof components.

27

3.4.3 Power supply

A battery pack with su�cient capacity should be used to power the sailboat. This portable power

source removes the need for a cable running to the boat during tests and will be necessary for

missions on the open sea. Power generation might be needed for more extended missions but is

not covered in this thesis. Components like computers and actuators often require di↵erent supply

voltages. Power converters can supply di↵erent voltage levels from a single source. Power is a

critical system component, so it should be monitored using a voltmeter to prevent blackout during

a mission.

3.5 Software development for autonomy

When creating a complex software system, designing an architecture that can support current and

future features is di�cult but essential. Making changes to an implemented architecture can require

considerable rework. When implementing a reasonable architectural plan can help prioritize and

provide an overview. This section proposes a general software architecture separated into two main

parts Figure 20.

28

Figure 20: Proposed general software architecture

The goal of the architecture is to decouple components and tasks and keep the software as modular

and readable as possible. Dividing software into subgroups after component classes helps with

reaching this architectural goal. Almost every software program needs a starting point, usually

known as the main program, which is the boat’s core in this context. A star topology design pattern

is suitable, assigning the main program to act like a hub[61]. The hub should do routine tasks

as primary assignments and centralize communication and decision-making. Essential routines

include updating the boat’s state, recalculating actuator positions, and communicating with the

on-land server to share state and receive updates or tasks. These duties are examples that the

main program can execute in intervals.

29

Each task and routine should be separated, descriptive, and have minimal data flow to aim for

extensibility. By doing so, modifying or adding a new algorithm is more straightforward. Fur-

thermore, to improve modifiability, constant values that change the system’s behavior should be

adjustable by external users and not locked to a released version of the software. As a hub, the

main program can act accordingly with the data’s context.

3.5.1 Data processing, noise filtering

As mentioned in the literature study under section Kalman Filter, a noise filter may be advant-

ageous when processing data. Sensor measurements can be inaccurate, and significant fluctuations

may result in extreme algorithm behaviors in worst-case scenarios. More reliable sensor measure-

ments can improve the overall performance of the algorithms. If the data is accurate enough, a

filter is redundant and introduces unnecessary delays when trying to perceive the environment.

3.5.2 Security through authentication

Security becomes important with unrestricted data flow to the server and a high degree of control

over the sailboat. Every client wanting to connect to the system must undergo an authorization

process where the server validates identity before access is granted. This authentication includes the

sailboat, operators, and developers. Tra�c between the server and authorized clients is encrypted

to prevent attacks on the data sent and received.

3.6 Algorithms required for autonomous sailing

During autopilot, the MCU must be able to have the latest data from the sensors and adjusted

parameters from the on-land server to execute algorithms. Such algorithms must be able to tell

what the sailboat needs to do to get closer to the desired goal provided by the operator.

One of the minimal requirements to sail is to be able to sail in all directions. From the literature

study, Section 2.6.2, a decoupled approach to sailing control may be a good option. The rudder

should always strive to keep a steady course towards the target position. On the other hand, the

sail should always try to optimize its position to gain as much force from the wind as possible.

To be able to sail upwind, a solution according to Section 2.5.2 is beating. Given the speed

required for tacking, the algorithm should ensure the sail minimizes the wind resistance while

passing the no-sail zone. The no-sail zone’s size depends on the boat’s physical specifications.

Further considerations should be made about how far o↵ the straight line between the current and

target positions the sailboat should travel. According to Section 2.5.2, the least amount of tacking

will result in less travel time. However, di↵erent strategies may be more suitable depending on

factors like weather forecast, distance and tra�c routes.

3.7 System testing

Tests can validate whether something works to a certain degree, and various bugs can be uncovered.

Di↵erent types of tests are designed for di↵erent kinds of verifications.

For smaller, isolated tests, unit testing helps check expected behavior, for example, whether the

30

sensor’s output is correct or proper for a set of requirements. For quality assurance, unit testing

is essential. However, some errors may not be discovered, and integration and complete system

issues are not exposed.

An integration test allows for multiple modules to be tested together. The goal is to verify that

input from one system gives the proper output in another. Hence, a validation of the interop-

erability between chosen components. Integration testing is a decent solution for systematically

bringing together a system and exposing errors related to interfacing. However, with complex

system integrations, finding the origin of the defect can be challenging.

At a late stage of development, a testing technique called the acceptance test can be executed. The

technique validates the whole system and whether it fulfills a set of requirements from stakeholders

or others. Acceptance tests focus more on user needs rather than just technical implementations.

31

4 Implementation

Based on relevant literature study and steps outlined in the approach, an implementation process

was conducted and is presented in this section. It introduces standard tools for organizing large

projects with two or more members. Then the development and deployment of a cloud-based

server are described, followed by another on-land service in the form of a web application. The

selection, development, and implementation of sensors, actuators, and electronics required for an

autonomous sailboat are presented in detail. Computer and microcontrollers with custom software

are introduced to read sensors and control actuators. The software implements a set of algorithms

that uses the input to calculate output to achieve autonomy. Lastly, an authentication system is

implemented, and an overview of the whole system is given.

4.1 Documentation and workflow

Several digital tools were introduced to improve workflow. Trello is a web-based list application

with a Kanban style[62]. It helped organize tasks, thoughts, and issues. Furthermore, keeping track

of their statuses and the project was more manageable for every member involved. A beneficial

feature was also a labeling system, allowing for quick identification of severity and category. A

section of the Trello board can be seen in Figure 21.

Figure 21: A section of the Trello board

Hosting and version control of source code was provided by GitHub[63], one of the most popu-

32

lar providers of such services. It makes history and description of each iterative software change

available for the entire project. As seen in Figure 22, an organization was created to structure com-

ponents into repositories. With the project’s comprehensive software requirements, an organization

helps keep all the code in one place.

The software development workflow in 3.1.1 was followed rigorously. Such a workflow provides

code safety and easier bug fixing, allowing every developer to understand how the system works

together. Much time went into documentation, explaining how each software works and how to

download and execute each program. Some of the documentation, called ”README,” can be seen

in Appendix Section C.

Figure 22: GitHub Organization[64], Note: The organization is private, but can be accessed by

request to authors

4.2 On land server and cloud computing

The on-land server was based on a server developed during the pre-study of this thesis[1]. The

server implements a WebSocket server to communicate with clients. It was hosted on a local

machine which was not sustainable for the future of this project, so a move to an external server

was mandatory. Cloud Computing mentioned in 2.2.2 was chosen as a solution due to the benefits

of accessibility, scalability, and the numerous integrated services by the providers of the platforms.

Since Google Firebase was already hosting a dashboard from the pre-study, Google Cloud Platform

(GCP) was the chosen cloud service provider.

33

4.2.1 Server hosting service

A service provided by GCP called Cloud Run was used to host the on-land server. The service

was cheap, scaleable based on demand, and allowed multiple simultaneous requests. Additionally,

as the service was reasonably new, Google advised the use of Cloud Run to host containerized

applications.

4.2.2 Containerizing and building

In order to containerize the program, a Docker image is created by Google when deploying the

server. A build file was developed to improve the workflow that instructed Google’s Cloud Build

service on how to create the container image and host the server. The continuous deployment

function is executed automatically each time a new feature is implemented and uploaded to the

version control provider, GitHub.

Table 8: Container instance specifications

Container Capacity

CPU allocation Only allocate during requests

CPU 1

Memory 256MiB

Concurrency 80

Request timeout 300 seconds

Execution environment 1st. generation

4.2.3 Run time optimizations

Because Cloud Run reduces server costs during idle time, a goal was to allow the server to shut

down without breaking the system. This required the WebSocket connection to have a way of

initializing and storing the latest values before being terminated. The solution was to let the

server save the latest data once every minute if any updates were received. When the server

restarted, it would initialize with the last state from the previous server instance.

4.2.4 Logging and cloud storage

A logging feature was developed during the pre-study project to store values received as a comma-

separated values (CSV) file on the server. An object storage service from GCP called Cloud Storage

was utilized to keep this functionality. Once every minute, the server will update the corresponding

file for the day with the latest data transactions accumulated over the last minute. The service

will be accessible to every developer at a meager cost for the project’s entire lifetime.

4.3 Dashboard

The development of a dashboard is a continuation of the pre-study of this thesis[1]. As a hosting

service, Firebase Hosting is unchanged. Further, the continuous deployment solution with GitHub

34

remains intact for rapidly updating the hosted dashboard. Several functional requirements were

listed in Section 3.2.2. This section highlights new features implemented.

4.3.1 Path planning

In order to give the boat a route, an easy-to-use path planner was developed. The feature required a

custom data structure to achieve desired features, adjustability, and performance. A path consists

of numerous waypoints connected. After the boat has reached a waypoint, the next in line will be

the next target for the boat to follow. A waypoint consists of the following data:

Table 9: The data in a waypoint object

Waypoint Object

Id uid

Position lat, long

HasVisisted boolean

Next uid

Previous uid

This data structure represents a chain in a linked list. A linked list is performant when removing

and adding new elements to the path. The first waypoint of the path will have no data in the

”previous” field, as it is the first element of the list. The same is true for the ”next” field of the

last waypoint of the path, as it is the last element of the list.

The entire path can be downloaded as a JSON file, and a similar file could be uploaded to import

a saved path. The current path of the boat can be viewed on the home page map and adjusted

with an editing tool. Adding, deleting, and reordering the waypoints are possible. It is possible to

send a new path to the boat, and every other user using the dashboard will have a visual update

of the path on the map.

4.3.2 Notification center

Incoming error codes are visualized as a notification on the dashboard. It displays a message

explaining the context of the error code and can be closed by clicking the X. The background color

represents the severity of the error, with four levels ranging from normal to high. Furthermore, a

timestamp can be viewed on each error message to know when the message was sent. The error

codes and messages are stored in the source code as a JSON file.

4.3.3 Instruments and the voltmeter

The instruments page received a new instrument called a voltmeter. It shows the user a measure-

ment of the current-voltage level in the battery pack. Further, instruments showing the current

heading, rudder, and sail position, received a green indicator showing the target position of each

of the named instruments to reflect what state the algorithm wants to reach.

35

4.3.4 Commando system

With the need to control the boat, a flexible command system were developed. In order to keep

it up to date, a Firestore database from Google stores all the available commands. As more

commands are added to Firestore, the dashboard will be updated and allow execution of the new

commands. To have a predictable format, a commando object have these properties:

Table 10: Properties of the command object

Command Object

Computer string

Component string

Command string

Description string

Parameters objects

Parameter Object

Name string

Order in array number

When the computer has tried to execute a command, the command system allows for sending a

new command. If the command has not been executed, the operator can remove the command

with a button.

4.3.5 Data viewer

A page to view and edit JSON structures was added to visualize raw data. It included tools to

modify data so parameters could be tuned. Rules were set in place in order to keep the system

from breaking. In order to edit a variable, the data type must be the same, or the update will be

rejected.

4.4 Sensor technologies and solutions

Sensors are necessary for the boat to perceive its environment. This section will describe the sensor

technologies and solutions that are implemented in this project.

4.4.1 Sensor to determine the angular position of the sail

There are di↵erent methods to measure the angular position of a rotating object using rotary

encoders. The sail has two locations that spin with a fixed center of rotation. Those are the

actuator shaft and worm gear, and the mast itself. The actuator is already equipped with a rotary

encoder which an internal PID controller uses to rotate the motor to the desired position. However,

data from this encoder is hard to access, and it lacks a reference point for the actual sail angle. To

rely on an internal encoder also limits which actuators can be fitted to the sail.

An external encoder should therefore be implemented to provide a reference point and ensure the

correct operation of the sail. As mentioned earlier, there are two possible locations for an encoder.

The first location on the encoder shaft has limited space available due to the narrow profile of the

sail. The second location is to measure the sail mast directly. The length and diameter of the mast

make it challenging to mount an o↵-the-shelf encoder without an intricate mechanical interface.

36

The chosen solution was to turn the entire mast into an encoder by designing custom parts around

it.

Several ideas and solutions were considered when designing the custom rotary encoder. One

suggestion was an imitation of bar codes on the surface of the mast. An electric photo sensor

would cast light onto the bar code and read the reflected light to determine if it were black or

white. The software would use these signals to register changes in the sail’s angle.

Another suggestion was using an infrared (IR) beam intersected by a disc with holes. This solution

would work the same way as the bar code but instead read the start and end of IR transmission

as changes in the sail’s angle. This solution was selected in favor of the bar code as IR emitters

and receivers are reliable and easily available. Figure 23a shows early testing of this method.

During the development of the disc, many parameters were adjusted with performance and sim-

plicity in mind. The first disc was 3D modeled and printed with orange PLA plastic. Precision

levels were initially set to 1 degree, which meant 180 holes around the disc. Early tests showed

that reflection was an issue leading to a change of PLA color to black.

The first IR receiver tested was a TL1838, regularly used for reading IR signals from wireless con-

trollers. However, it would only read IR specific pulses, not a continuous beam. Another prototype

used a regular light diode and a photoresistor. However, too much delay in the photoresistor led to

inaccuracy. After more research, IR were given another chance using a receiver called BPV10NF.

The new IR receiver sent a voltage that could be measured when exposed to IR light. It was quite

sensitive to interruptions and, therefore, suitable for the task. Figure 23b and Figure 23c is the

computer aided design (CAD) model and printed prototype mounted on the sail for testing.

Finding the right-sized holes and edges to get a reliable readout required much testing. The final

disc changed from 180 holes to 120 holes, each 1.0mm wide, resulting in a resolution of 1.5 degrees.

The disc also had a second row with only one hole used to make a point of reference. A second

IR beam was integrated to read this position. Di↵erent iterations of the disc are displayed in

Figure 23d.

37

(a) Early development and testing of en-

coder

(b) CAD model of encoder assembly

(c) First prototype mounted on sail (d) Iterations of encored disc design

Figure 23: Development of rotary encoder

A USB connector was repurposed to make it easy to connect the encoder, as seen in Figure 24a.

A power supply supplied 5v from the 24v battery pack to the receiver, while a voltage regulator in

the encoder stepped it down to 3v for the emitters. Further, some trial and error were needed to

find the perfect disc diameter to fit onto the mast. The final version are depicted in Figure 24b.

38

(a) Encoder reading head universal serial

bus (USB) interface

(b) Finished version of rotary encoder

Figure 24: Rotary encoder for reading sail angle

4.4.2 Sensors for measuring heading, attitude, and location

A IMU consists of a gyroscope, accelerometer, and magnetometer. It can measure pitch, roll,

and heading. From the pre-study project, the IMU was connected to the Arduino Uno through

inter-integrated circuit (I2C). With further progress, it was decided to move it to the Arduino

Nano. The reason was the dependency between the rudder and the boat’s heading. Having the

IMU connected to the same computer which controlled the rudder reduced some complexity and

improved performance. To ensure the IMU were reliably connected, an I2C socket was soldered to

the circuit board connected to the Arduino Nano.

To move the IMU away from magnetic and electromagnetic noise a box was designed using CAD

(see Figure 25a) and 3D printed. After installing the IMU, the box was sealed shut to be water-

tight (see Figure 25b). Additional four bolts were used to secure the lid and attach it to the boat

mount (see Figure 25d). A long cable and water-tight connector provided much freedom when

deciding placement for the IMU.

39

(a) CAD model of IMU box with lid an

boat mount

(b) IMU installed in box and being sealed

with silicone

(c) Mount attached to sailboat (d) IMU mounted on sail boat

Figure 25: Details of IMU

Before using the IMU, a calibration was necessary. The resulting o↵set values in x, y, and z were

measured as -7, -7, and -42. A calibration mode was implemented to update these numbers if

necessary. Furthermore, a magnetic deviation must be included to have the compass point toward

the true north. These values can be found online for any location. At the time of writing, the

magnetic deviation in Trondheim is 4.29.

x y z magnetic deviation

-7 -7 -42 4.29

The raw heading value from the IMU was noisy and unreliable, posing the need for a signal filter.

After the literature study in Section 2.4, integration of a Kalman Filter was done and resulted

in drastically improved precision. The Kalman Filter is lightweight in both processing load and

memory usage, which are favorable to a small microcontroller like Arduinos. A library o↵ering a

Kalman Filter for Arduinos was used to simplify the process [65]. Three parameters are needed to

initialize a Kalman Filter:

• Measurement Uncertainty - How much do we expect our measurement to vary (MU)

• Estimation Uncertainty - The adjusted value can be initialized with the same value as above

(EU)

• Process Variance - Usually a small number between 0.001 and 1. It reflects how fast the

measurement moves. A higher value adjusts the estimation faster, making it more sensitive

to new measurements. (PV)

40

During testing, suitable parameters were 2, 2, and 0.1 in the order above.

MU EU PV

2 2 0.1

A GPS sensor called SiRF Star IV by GlobalSat was connected to the Raspberry Pi through USB

to measure position. Initially, it was configured to communicate with a SiRF Binary Protocol,

but after some adjustments, it delivered data through NMEA0183, a standard in marine data

communication. The recognized NMEA sentence transmitted is called GPRMC, which includes a

position in longitude and latitude, speed over ground, and course over ground. Data transmitted

from the GPS are read and processed by the Raspberry Pi in its own thread.

4.4.3 Sensor to measure wind direction and speed

A wind sensor was mounted on top of the mast using a custom 3D printed adapter, designed with

a press fit for 70mm aluminum extrusions. The signal cable can pass through the adapter and

connect with the wind sensor, which can then be inserted and fastened with three screws. The

wind sensor uses an RS232 interface over a CAT6 cable and is connected to a conversion board on

the Raspberry Pi inside the electronics box. New data is sent from the wind sensor every second,

and the raw data is processed using the EWMA filter introduced in Section 2.4.2. Under low wind

conditions or gusty winds, the measured wind direction and speed can change rapidly, possibly

causing the relatively slow turning sail to adjust constantly without ever reaching its target. The

EWMA filter helps smooth out these rapid changes and returns a mean value. Wind direction is

almost constant at a larger scale while many small and rapid changes might occur locally, making

a low value of B = 0.1 favorable to suppress new values. Values that can loop around, like wind

direction, from 359� to 0� must be converted from polar coordinate to a complex number in the

rectangular form to be used with an EWMA filter. After calculating a complex St it can be

converted back to polar coordinate and displayed as wind direction.

The filter process of wind speed is identical to wind direction, except there is no need to convert

it to a complex number. Weight B = 0.5 was chosen as the wind speed changes much faster, and

these changes should be reflected.

41

(a) Top view of CAD model of wind sensor

adapter

(b) Bottom view of CAD model of wind

sensor adapter

(c) 3D printed and assembled wind sensor

adapter
(d) Wind sensor and adapter

Figure 26: Wind sensor mast adapter

4.5 Actuators and electronics

Actuators and other electronics enable mechatronic systems to change their state based on per-

ceived input. This section will first introduce the selection and implementation of actuators for

the sail and the rudder. The work and calculations done to mount them are explained and doc-

umented. This section includes some electronics to act as an interface between the actuator and

microcontrollers. Lastly, the section present the remaining electronics and their placement.

4.5.1 Sail actuator

The sail wing foil and rotation mechanism has previously been designed, produced, and documented

in master theses by Dyrseth [38] and Gauden [66]. This thesis covers further development of this

sail, including wiring, electronics, motor, and mast extension.

42

Table 11: Properties of wing foil[38]

Properties of wing foil

Cruise speed 1.5m/s

Max wind speed 20m/s

Height 2400mm

Length 1200mm

Area 2.88m2

Lift force 0� 54N

Drag force 0� 1.4N

Optimal AoA 6� 11�

The rotation mechanism uses a worm gear with a 40:1 ratio and an 80mm diameter motor mount.

Previously a Gyems RMD-X8 Pro servo motor was used to drive the worm gear. Due to quality

and reliability issues, they had to be replaced. It was decided to use the opportunity to find new

and better motors. In order to minimize rework, the goal was to find motors similar to the old ones

but of higher build quality. Using Equation 12, the maximum torque from the wind on the sail

is calculated to be Tw = 272.1Nm. According to the thesis by Gauden[66], ⌘ = 0.46 and i = 40

for the current worm gear. Using these values and Equation 13 the required motor torque with a

safety margin of 2 is Ta = 29.571 and Ta = 14.786 without the safety margin.

Based on these requirements AK80-9 servo motor from CubeMars was selected. It could be fitted

to the existing mounting hardware with only minor changes to the brackets, and it runs on 24v

DC with communication over controller area network (CAN). One drawback is the rated torque

of 9Nm and peak torque of 18Nm as shown in Figure 27b. This rated torque does not meet the

design requirements addressed in the discussion section.

(a) AK80-9 servo motor from CubeMars
(b) Torque curve of AK80-9 servo motor

Figure 27: Pictures from CubeMars’ website [67]

Power and signal from the electronics box to the servo motor are carried through an outdoor grade

five conductor 1.5mm2 cable from Biltema[68] rated for up to 20 amps. The motor is controlled

using a CAN interface, which carries commands sent from an Arduino with a CAN-shield.

The mounting point of the sail on the boat is a tripod that holds the mast. The bottom part of

43

the mast goes through the hull of the boat. Furthermore, a keel is attached to the end of the mast.

Upon closer inspection, it turned out the mast was too short to reach the underside of the hull nor

long enough to be extended. A new and longer piece was manufactured based on original drawings

to replace the short piece.

(a) Turning new mast stub on a lathe

(b) First dry test of sail

Figure 28: Manufacturing and testing of new mast stub

4.5.2 Rudder actuator and mount

The rudder used in this project was previously made by Brandal [69] to serve as a prototype for

further development. Specifications for the rudder are as follows:

Table 12: Properties of rudder[69]

Properties of rudder

Cruise speed 1.5m/s

Cord length 330mm

Span length 500mm

Area 0.165m2

Range of motion 120�

Calculating torque on the rudder from the water can be done using the same equation as from

the sail, only changing ⇢ = 1024kg/m2 for sea water and A = 0.165m2. A rudder deflection of 90

degrees was used for simplicity. It will result in a higher max torque than the max design deflection

of 60 degrees and add to the safety margin. With Equation 10, the maximum torque from the

water on the rudder is calculated to be Tw = 80.29Nm. This maximum torque is with a safety

factor of 2.

For reasons discussed in Brandal’s thesis[69] and Section 3.4.1, a Linak LA33 linear actuator was

acquired. Based on the specifications of this actuator, a lever arm and mounting mechanism were

designed.

44

Table 13: Linak LA33 specifications

Linak LA33

Load 2250N

Speed 21mm/s

Stroke length 100mm

Overall length 260mm

Stroke tolerance ±2mm

Voltage 24v

The length of the lever arm can be calculated by solving the two equations mentioned in Sec-

tion 3.4.1. Given the actuator length and desired range of motion the equations yields r1 =

57.99mm and r2 = 308.6mm. From Equation 11 the torque provided by the actuator is Ta =

130.5Nm. This torque is well above the designed load and should not be a concern.

A simple lever arm with length r1 = 57.99mm was designed using CAD and 3D printed. The

design was iterated until the prototype was performing without issues. The CAD model and

di↵erent iterations can be seen in Figure 29. The actuator mount was created with scrap metal

and some bolts, only intended for shorter test trips. It was mounted on an existing bracket on the

boat, with a length of r2 = 308.6mm from the rudder shaft to the actuator’s rear mounting point.

The lever arm and actuator mount were not analyzed for strength or sti↵ness as they were only

intended to work for a few tests with the old catamaran hull.

(a) CAD model of lever arm

(b) Di↵erent iterations of lever arm

(c) Actuator mount on boat (d) Actuator mounted on boat with rudder

Figure 29: Development of lever arm and actuator mount

An interface consisting of an h-bridge, voltage dividers, and shunt resistor ammeter is necessary to

control the 24v actuator using a 5v Arduino Nano. Figure 30 shows the h-bridge, which receives

45

a 5v signal from the Arduino and switches two 24v outputs connected to the linear actuator. One

input extends the actuator arm while the other retracts the arm.

Figure 30: H-bridge to control rudder actuator

In order to read end stop signals, which are 24v, two voltage dividers were made to step it down.

Following the schematics from Figure 31a the output voltage of the circuit can be calculated using

this equation:

Uout =
Uin ⇥R2

R1 +R2
(14)

Given resistors R1 = 100kΩ and R2 = 20kΩ, the result is Uout =
24v⇥20Ω
100Ω+20Ω = 4v. When one of the

signals are high, the Arduino reads 4v, otherwise 0v. The actuator is equipped with an internal

potentiometer which provides analog position feedback as a current I 2 [4�20mA]. This feedback

can be measured on an Arduino using a shunt resistor ammeter shown in Figure 31b. The shunt

resistor R1 is found by applying Ohms law,

U = RI (15)

in reverse for the expected voltage and current: R1 = U
I = 5v

0.020A = 250Ω. A 220Ω resistor was

selected to avoid accidentally exposing the Arduino to over voltage. This yields a measured voltage

of U = 220Ω⇥ 4mA = 0.88v when the actuator is retracted, and U = 220Ω⇥ 20mA = 4.40v when

it is fully extended. These values are updated when a rudder calibration sequence is executed to

account for any slight variations in accuracy.

46

(a) Voltage divider (b) Shunt resistor ammeter

Figure 31: Circuit diagrams of voltage divider and ammeter

4.5.3 Electronics box

All the sailboat electronics are housed in or connected to the electronics box. It features six water-

proof connectors to the external sensors and actuators. This connector setup simplifies transport

and assembly of the boat as every component can be moved and mounted separately from each

other and quickly connected when everything is ready. A layout of the connectors can be seen in

Figure 32a. It must be followed closely as connecting a component to the wrong port can cause

permanent damage.

After the first dry test of the sail, it became apparent that there was not enough clearance un-

derneath the sail for the electronics box. The only suitable location was at the very back, out

of range of the sail. In the same area, the actuator for the rudder took much space. Therefore,

the box was mounted above the actuator. The mount was made from two aluminum strips bent

at a 90-degree angle. Two pieces of wood were screwed to the aluminum to get the box above

the actuator, as shown in Figure 32b. The mount worked well during the sea trial. However, the

placement resulted in the boat having a constant pitch up.

Inside the box, four lead-acid batteries with a nominal voltage of 12v are glued to the bottom. Two

pairs of batteries connected in serial are connected in parallel to output 24v. Figure 32c shows

the batteries through cutouts on the bottom shelf. The shelf also contains two transformers, an

Arduino Nano, an h-bridge, and a voltmeter. The transformer is a standard phone charger made

for 12v car sockets. They are made to work on 12 or 24v and transform it to 5v. One is used to

power the Raspberry Pi, while the other powers the sail encoder. It was chosen as a cost-e↵ective,

easily accessible, and reliable way to convert power from 24 to 5v.

The voltmeter is similar to the voltage dividers used for the actuator and steps down from 24v to

4v. It is connected to the batteries and the Arduino Nano. Four 3D printed pillars support the

second shelf. This level contains the Raspberry Pi, Arduino Uno, GPS and 4G mobile modem.

See Figure 32d.

47

(a) Electronics box connector layout

(b) Electronics box mounted on the sailboat

(c) Bottom shelf of electronics box (d) Top shelf of electronics box

Figure 32: Details of electronics box

4.6 Computer and software implementation

The following sections will outline how computers communicate, read and process data. Fur-

ther, some highlighted challenges during development and their solutions are presented. Lastly,

structures and strategies are described where certain qualities are desired.

4.6.1 Microcomputer - Raspberry Pi

One of the challenges with using the USB-interface to communicate between components was the

inconsistencies of which ports were registered on which component. As a result, a port scanner

was required to identify each component. When the main program on the Raspberry Pi starts, it

will execute a Python script to list ports with vendor names of the electric component connected.

A solution was to register which vendor name belonged to that component and identify each with

a vendor name. It required storing the vendor names as environment variables to have a way of

mapping each component to its corresponding vendor name.

However, a problem was discovered when a second Arduino was introduced. There was no way of

di↵erentiating them because of identical vendor names—this hindrance required further program-

ming on both communications ends. The solution was to allow the Raspberry Pi to ask every port

that suggested they were an Arduino about who they were. A hard-coded name was stored on

each Arduino so that they could respond to the Raspberry Pi. As a result, the Raspberry Pi could

48

now identify each Arduino without requiring manual configurations.

Nevertheless, it was not the only communication problem between the MCU and the microcon-

trollers. Serial communication through USB was not as straightforward as envisioned. When

connecting the Arduino, there were inconsistencies as they did not always reset successfully or

filled the USB-bu↵er with data. These inconsistencies confused the Raspberry Pi, as it did not

know the start or end of a message. Therefore, a new communication solution added a start and

end marker for messages, namely < and >. These message markers were added to both commu-

nications ends, using the same logic for sending and reading messages between the computers. The

stability of message transmission improved and worked su�ciently enough for this project.

Error messages are not initially available through the entire system. Working blindly, not knowing

where something had crashed, proved di�cult. A Python class was created to handle errors. It

would collect error codes, give them timestamps and send them to the server. The e↵ectiveness

of this error handler was beneficial. As a result, it was also extended to report successful actions

and notable changes. For example, it reports when the Raspberry Pi is connected, when it shuts

down, and when a component is connected.

A command structure was implemented to have external control over the components. A set of

instructions could be sent to the Raspberry Pi, and it would execute the command or pass it to

the correct recipient. This system allowed the user to give instructions, adjust parameters, and

reset and calibrate components. The command message is a string and is structured as follows:

Computer!Component;Command:Param1,Param2.

For the simplicity of new users, a shell script was developed that guides the user through the process

of adding environment variables. It also includes steps for registering every variable required to

execute the program with every electronic component connected.

All state and parameter data are stored inside dictionaries on the Raspberry Pi. The datatype

inside varies and sometimes includes nested dictionaries. In order to have an easier time finding

values inside these dictionaries, utility functions had to be implemented. A get and a set function

allow for more straightforward usage of dictionaries as they can easily break a system and be

pretty verbose when extracting values. They work similarly to how Javascript handles objects. A

dictionary can be sent into the function. The second parameter is a string that works like a path

to find the correct value if it exists. The string contains keys, separated by dots if they are nested

dictionaries. If the key does not exist, the program will not break, returning the ”None” data type

instead. The set function can be used similarly but requires a value to be inserted.

Further stability measures are in place to reduce the chance of the entire system breaking. Try

except-blocks are used to have a way to report errors when they happen and where. When the

script is terminated, the main thread will send the signal to every other thread and wait for them

to finish terminating. Afterward, a message is sent to the server that the Raspberry Pi is shutting

down gracefully before terminating the entire program.

One of the program’s final inclusions was a thread that would handle navigation. A user could set

the system on autopilot with a target position or path that system should try to follow. A further

description will be presented in section 4.7.

Figure 33 is a sequence diagram of the Raspberry Pi software running on the boat. The main

script called run.py is executed to start the program. It starts by initiating sensors, which is

done by creating a new object of every sensor class. Each object will then perform the necessary

identification and setup of its respective sensor. This step also includes initiating the error handler,

49

Ngrok server, and navigation object. After waiting for the internet connection, the IP address and

authentication token are retrieved. Then a process for each object created in the first step is

dispatched in its separate thread. Multi-threading allows each connected sensor to communicate

and update independently of the other sensors, resulting in more flexibility and better reliability.

If a sensor throws error codes, the thread could be restarted without a↵ecting the other threads.

Next, the program connects to the on-land server using the authentication token, receives STATE

from the server, and then enters the main loop. In the main loop, the threaded processes invoke

with their objects, read sensor data, calculate navigation values, and send commands. At the same

time, data are sent to and from the server.

Figure 33: Sequence diagram of sailboat system

4.6.2 Microcontrollers - Arduinos

With the increased complexity in the code on the Arduinos, moving from the traditional Arduino

setup was necessary to have a more organized code structure. PlatformIO is an open-source, cross-

platform solution for embedded development that includes many of the same features as Arduino

but extends upon them. One of the features allows for remote updates to the Arduinos. The

Raspberry Pi compiles the programs and uploads the new builds to the corresponding Arduinos.

Additionally, splitting code into multiple files ensured better decoupling, which has been benefi-

cial during the development. Modules could now be moved between Arduinos with little to no

configuration as code for each component is separated into files.

Every component with its individual files resulted in easier maintenance, configuration, and de-

bugging. As the structure between the component classes was similar, some code could be reused

and have a throughout coherence. For example, reading data, changing parameters, and executing

50

commands were identical for all components and extended where needed.

Some classes were shared between and were not targeted towards specific components but rather

logic behavior. A message class was responsible for reading commands from the Raspberry Pi and

returning the result after trying to execute the commands. Furthermore, the class was responsible

for sending data from the components in intervals specified in the parameters.

A navigation class was also shared between the microcontrollers. This class would typically include

a connection between multiple components to execute tasks. For example, the rudder and the

IMU would be in one navigation class to work together. The navigation class would then have

information about the boat’s heading, target heading, and rudder position. If the rudder needed

to change position, the navigation class could tell the motor class responsible for controlling the

rudder to move. A similar solution was created for the sail, where it cooperated with the encoder

inside a navigation class.

A sequence diagram can be seen in Figure 34. The diagram describes a setup and loop for a

program run on an Arduino Nano. An example execution of a command is illustrated for a

calibration command to the IMU.

Figure 34: Sequence diagram of Arduino Nano

51

4.7 Sailing algorithm

When creating a sail algorithm, some limitations must be in place because the algorithm’s com-

plexity could be endless. The minimum requirements were set to be:

• Calculate true wind speed and direction

• Calculate distance between current and target position

• Calculate bearing

• Recognize the no sail zone

• Calculate correct sail angle according to AoA

• E�cient downwind sailing called drag mode.

• Solution for upwind sailing

4.7.1 True wind calculations

As mentioned in the literature study, there is a di↵erence between apparent wind and true wind.

In order to calculate the true wind, certain variables must be known, including apparent wind

speed and direction and the boat’s velocity. The following variables are A: apparent wind speed,

V : Boat’s velocity, and �: Apparent wind angle. W : True wind speed, found using the formula:

W =
p

A2 + V2 � 2AV cos� (16)

Finally, to calculate the true wind direction, ↵, with the equation:

↵ = arccos(
A cos� � V

W
) + � mod 2⇡ (17)

where � is the heading of the boat in radians.

4.7.2 Bearing and the no-sail zone

In order to calculate the boat’s bearing, ✓, two coordinates are required, the boat’s position and

the target’s coordinate.

With direct use of coordinates in decimal degrees, latitude : ', longitude : �. Where ('1,�1) is

the boat’s location, and ('2,�2) is the target’s position:

✓ = arctan(
sin(�2 � �1) · cos('2)

cos('1) · sin('2)� sin('1) · cos('2) · cos(�2 � �1)
) (18)

where ✓ 2 [�⇡,⇡].

The calculated bearing is the target heading that the rudder aims to reach. As the boat drifts o↵

course, the rudder will compensate to make the boat head towards the target. Since the IMU is

52

directly connected to the same microcontroller as the rudder, all the computer needs is the target

heading to function properly for this algorithm.

To check the bearing is inside the no-sail zone, the following equation calculates a delta, �, which

tells how far the bearing is of the true wind direction:

� = ((✓b � ✓w +
4⇡

3
) mod 2⇡)� ⇡ (19)

where ✓b and ✓w 2 [0, 2⇡] are the bearing and true wind angle respectivly.

If the � �, where � is an angle from the wind where the boat cannot sail, the boat is inside the

no-sail zone. For the algorithm tested in this project, the � was set to ⇡
6 , which equals 30�. An

illustration of the no-sail zone can be seen as black lines in Figure 36.

4.7.3 Haversine distance

In the theory section 2.6.4, a presentation of the Haversine Formula was made. As mentioned, the

calculation made by the formula for finding the distance is not correct but precise enough for this

algorithm. Therefore, the formula was implemented to calculate the distance between the boat’s

and target’s positions.

4.7.4 Optimal sail angle

In order to optimize sailing performance, a theoretical study was done in Section 2.5.4 on fixed

wing sails and their optimal angles. As seen in Figure 35 by Dyrseth, an optimal AoA would be

between 6-10�. During testing, the AoA were set to 10�.

Using the sail as a drag generating surface when sailing downwind, presented in Section 2.5.3, was

implemented. Even though this may be less e�cient than beating downwind, the technique was

worth exploring since beating would be tested during upwind sailing. The requirement for this

mode to be activated was set to 140� � �, where � is the absolute di↵erence between the bearing

and the wind direction. This was to make the window a little smaller than what was used in the

study in Section 2.5.3.

Figure 35: Coe�cient of lift
Coe�cient of drag vs ↵, from article [38]

53

4.7.5 Midway point and beating for upwind sailing

After calculations of the no-sail zone mentioned in section 4.7.2, a possibility was to begin beating.

In order to find a new quick waypoint during the beating, a formula was used. The equation is

used to find a new coordinate at a certain distance and angle of the wind based on the � in section

4.7.2.

The new bearing in radians, ✓b, to the midway point where found by the following equation:

✓b = (✓w +
�

|�| · � + �+) mod 2⇡ (20)

where beta is mentioned in section 4.7.2, and �+ is a bu↵er for this beating limit.

The sign of the � decides which ”side” of the no-sail zone would be closest to the target. A bu↵er,

�+, which in the algorithm was set to 10� was meant to reduce the chance of the boat’s movement

turning the midway point inside the no-sail zone immediately. An example in Figure 36 illustrates

the logic explained above.

(a) First midway point (b) Second midway point (c) Target outside no-sail zone

Figure 36: Tacking sequences, black lines indicate edges of the no-sail zone. Red marker is the

midway point, and the black marker are the target. � = 30�, �+ = 10�

To calculate a new coordinate, given a the new bearing ✓b in radians, distance d and a start

coordinate (latitude, longitude)('s,�s):

New latitude ' :

' = arcsin(sin('s) · cos(
d

r
) + cos('s) · sin(

d

r
) · cos(✓) (21)

New longitude � :

� = �s + arctan(
sin(✓) · sin(dr) · cos('s)

cos(dr)� sin('s) · sin(')
) (22)

where the new coordinates are in decimal radians.

54

4.7.6 Adjustable parameters

In preparation for testing, adjustable parameters were added alongside default values. Due to

the di�culty of performing a field test of the algorithm, it was deemed crucial to be able to test

numerous configurations during testing.

For the sail algorithm, the following parameters were adjustable:

• Update frequency of the algorithm

• AoA on the sail

• Drag mode activation limit

• Size of no-sail zone, �

• Beating bu↵er, �+

• Midway point’s distance from boat’s location

4.8 Security through authentication

With the server publicly on Google Cloud Platform, more security was necessary to have a su�-

cient level of protection. A proposed System design by the WebSockets library documentation[70]

in Python allowed for improved security when a WebSocket server is publicly available. Firstly, an

authentication solution for users needed to be established. With the integration of Google and Fire-

base as hosting and database services, it was pretty natural to introduce Firebase’s authentication

service.

A simple login page was integrated as a startup page for the dashboard. Authentication could be

possible with a pre-registered user. However, it would only give the user access to the website’s

features and no data. The user could not receive and visualize data until a WebSocket connection

was established with the server. In order to allow access to the server, a generated JSON web token

(JWT) delivered by Firebase must be sent first to the server to check its validity against Firebase.

If the server could recognize a user ID registered in the current Google project, authentication

would be successful, and a connection would be established.

The Raspberry Pi also needs to authenticate itself to Firebase and the server to set up a connection.

A pre-registered user must be created in Firebase Authentication for the Raspberry Pi to be able to

log in. As mentioned in 4.6.1, a shell script can be executed to fill in every environmental variable

required to connect to the server.

4.9 Integrating whole system

Figure 37 illustrates the integration of sailboat electronics. The link between components used and

the interface is marked with arrows and text. Together with the boat’s hardware like sail, rudder,

and hull, a mechatronic system capable of autonomous sailing is presented.

55

Figure 37: Hardware architecture diagram

Figure 38 shows the distributed system’s software architecture. The sailboat communicates with

the cloud server. Using a dashboard connected to the same server, an operator can observe, control

and review data from the sailboat. Table 14 lists the number of code lines written, divided into

each system. They are indications of the amount of software development needed in order to

achieve comparable levels of features.

Table 14: Lines of code across system

System Lines of code

On land server 414

Dashboard 4022

Raspberry Pi 1398

Arduino Uno 754

Arduino Nano 1011

Total 7599

Table does not include libraries

In total, this distributed system is designed to enable the operation of autonomous sailboats, which

will be put to the test in the next chapter.

56

Figure 38: Software architecture diagram

f

57

5 Tests and results

Following the last step in Section 3 a system validation test should be performed and results

reviewed. This section will present an extensive sea trial on the system from Section 4 and is an

overarching test throughout the section. Further, separated parts of the system will be analyzed

and discussed in detail.

First, this section will outline the on-land server’s performance and evaluate interoperability

between the sailboat’s computers. Afterward, it will review acceptance tests on the client ap-

plication to see whether it accomplishes the functional requirements in Section 3.2.2. Then, it

presents system unit tests of the sail, rudder, and noise filters, and outcomes are studied. After

that, the algorithm’s performance during di↵erent tasks at the sea trial is reviewed. Lastly, the

integrated system’s potency and test results are summarized.

5.1 On sea trial

On April 26th, a sea trial was conducted at Skansen guest harbor in Trondheim from 10 am until

4 pm. The boat experienced apparent wind speeds ranging from 0.5m/s to 11.44m/s, with an

average of 4.26m/s, and temperatures below 5�C. It also included two hail bursts and strong wind

gusts. Figure 39 are the recorded wind speed by the sailboat for the entire test. In the first part,

the wind speed was decreasing and almost disappearing, making it di�cult to sail. It was followed

by strong gusts of wind, halting the test for a brief period. The last part of the test involved a

more stable and optimal wind speed for performing tests.

Figure 39: Wind speeds recorded by the sailboat during the entire test

The sailboat was transported with a private car and the university’s trailer from NTNU’s building,

Verkstedteknisk.

58

Figure 40: Sailboat on the trailer

Figure 41 shows for the first time all the equipment mounted on the catamaran at the same time.

Figure 41: In-progress assemble of the sailboat

The sea trial was a milestone for the project and essential to validating the system. The only way

to perform a full system test was to deploy it outside in water and wind. Such a test was necessary

to gather valuable data and experience.

5.1.1 Experiment set up

The boat was transported to the harbor and assembled on the dock. As seen in Figure 41, in order

to mount the keel, a good technique was to balance the boat on its side after mounting the sail.

59

The boat as a whole is quite challenging to put together, and it is recommended to be at least

three people.

With everything mounted, the boat was carried to the edge and carefully lifted to an upright

position over the water. Two ropes tied to each end were used to control the descent into the

water from the dock. When seaborne, the electronic box was securely mounted and all cables

connected.

A small motorized support boat provided by co-supervisor Dr. Echtermeyer was used to move the

sailboat when necessary.

5.2 Server and communication

The following subsections analyze the cloud server’s performance and interaction between compon-

ents in the system. Data about the state of the cloud server are collected from the Google Cloud

Platform, while data on interoperability of the boat’s computers are derived from sensor logs.

5.2.1 On land server

From Figure 42, the blue line indicates active instances, and the green indicates idle instances.

As the test was done throughout most of the day, the server instance was in an active state until

around 3 pm.

Figure 42: Container instances

A request occurs when a client or the boat tries to connect to the server. After connection, any

consequential data transmission through a WebSocket connection does not count as a request.

However, reconnects do. The request count during the sea trial can be seen in Figure 43. The

monitor calculated a maximum of three requests each minute (0.05/s · 60).

Figure 43: Request count

The cloud server treats a WebSocket connection as a long-running HTTP request, hence the reason

for the long request latencies reported in Figure 44. In the figure, a small red line indicates that the

longest request latency was 8.69 minutes. As a request timeout kicks in, a reconnection happens

60

every five minutes, but it can be adjusted up to 60 minutes. Google recommends that a connection

is not open longer than 15 minutes before initiating a reconnect.

Figure 44: Request latencies

As seen in Table 8, the instances use a 1st generation CPU provided by Google. These CPUs o↵er

1 GHz of processing speed, which according to Figure 45 is more than enough. At its peak, the

CPU only utilized 6% of its available resources.

Figure 45: CPU utilization

Memory usage did not exceed its limit of 256MiB. At most, the container used 38% of available

memory. However, as seen in Figure 46, the usage increases from the beginning of the test until

about 2:30 pm. The drop might be due to a break in the test, which allowed the server to terminate

and reset. As for the build-up, one reason may be a local log file for the server connection, which

keeps track of everyone that tries to establish a connection.

Figure 46: Memory utilization

For the extensive usage of Google Cloud Platform during the test, the approximate cost of their

services was 2.51 NOK. Figure 47 shows a blue line indicating the number of instances per second

that were billed during the sea trial.

Figure 47: Billable container time

61

5.2.2 Interoperability between Raspberry Pi and the Arduinos

No problems were observed on the whole sea test regarding the MCU. It never crashed, had no

connection problems, and was overall very reliable. Authentication was tested with and without

a security token, and the Raspberry Pi was correctly allowed and prohibited from connecting,

respectively.

There were, however, some challenges with one of the Arduinos. The one responsible for reading

the IMU and controlling the rudder proved quite vulnerable. One of the reasons may be the

unforeseen types of data provided by the Raspberry Pi that the Arduino did not know how to

process, resulting in unnotified crashes. A temporary solution to this problem was to reset the

Arduino remotely through the Raspberry Pi, providing enough operating time to test several

aspects of the system. However, from Table 15, the impact of the downtime was quite severe

during the test. 25% downtime made some of the data collected hard to analyze, as the sailboat

sometimes executed tasks with inaccurate data.

Table 15: Downtime on the Arduino Nano

Downtime measurements

Shortest 14s

Longest 834s

Average 230s

Occurrences 12

Total downtime 25%

Total downtime (seconds) 2764s

Total uptime 75%

Total uptime (seconds) 8330s

5.3 Acceptance test of the client-side application

A client-side application was created to help the operators during the development and testing of

the boat. This subsection will go through all the functional requirements from Section 3.2.2 and

their current status. Furthermore, it will review how the dashboard performed in the on-sea trial.

5.3.1 Authentication requirements

Figure 48: Authentication form

62

Following Table 2, FRA1 is implemented. It follows a typical login sequence as seen in Figure 48.

However, neither FRA2 nor FRA3 are completed as functionalities. Finalizing these requirements

may not take much time, but it was not prioritized during the development. FRA3 became an

unnecessary functionality as project members are the only users that need access to the service. The

security was increased further by only allowing pre-registered accounts through Firebase Admin

to log in.

5.3.2 Map requirements

Figure 49: Map with a path

Map functionalities from Table 3 have mostly been implemented in the dashboard. FRM1 is

complete as seen in Figure 49. The position is visible on the map as a sailboat icon and is updated

in real-time as the location changes. Additionally, the targets can be seen as markers on the map;

see Figure 49. A white marker indicates the first waypoint of a path, and a black is the last.

Blue markers are intermediate waypoints along the path. As each waypoint is reached, the marker

changes color to green. If a midway point is created, it is a red marker as seen in Figure 77, thus

also completing FRM2.

63

Figure 50: Homepage with the map

Figure 51: From left to right: (1) New path, (2) download current path, (3) upload a path file, (4)

edit boat’s current path.

The buttons visible in the bottom right corner of Figure 50 are used for path editing. Figure 51

shows a closeup view with a caption explaining what each button does. The rightmost button,

button (4), o↵ers the functionality required from FRM4. Further, FRM5 and FRM6 are completed

by the functionality of buttons (2) and (3), respectively.

64

Figure 52: Path planner with a list of waypoints

New markers are placed when clicking on the map while in editing mode. Further, a black box at

the bottom left corner will be visible, as seen in Figure 52. The box includes all the waypoints in

the currently edited path. They ordered from the first to the last waypoint of the path. The list

elements are draggable to change the order of the waypoints to the path easily. To the right of

each element is a button that removes the corresponding waypoint. The top right buttons inside

the black box, see Figure 53, allow the user to send the boat the new path and delete the edited

path. Thus FRM3, FRM7, and FRM8 are finalized.

65

Figure 53: Path coordinates in order

5.3.3 Data visualization requirements

Figure 54: Instrument page

Next is the data visualization page. From Table 4, FRD1 works as seen in Figure 54 where the

dials shows data from the sailboat. The green indicator on the instruments for heading, sail, and

rudder angle is the target for each corresponding component, which was part of the requirement

for FRD3. Lastly, FRD2 is considered complete with the usage of common instruments from boat

and airplane panels.

66

5.3.4 Command system requirements

Figure 55: Command page

Figure 55 shows the page with the commands available. In order to satisfy requirement FRC1

from Table 5, available commands for each computer or controller on the boat are listed. When a

computer is selected in the tab menu, commands for the corresponding computer are listed. The

leftmost text of an element in the list shows the component’s name to which the command belongs.

The name of the command is inside the button for sending it. If the command requires inputs, a

text field with a label is visible left of the text field. Lastly, as seen in Figure 56, a description

is available when hovering over the list element. Hence, FRC1, FRC2, FRC3, and FRC4 have

successfully been implemented. A complete list of commands can be seen in Section B.

Figure 56: Command description

5.3.5 Data and parameter requirements

FRDP1 from Table 6 is complete since visualisation of the data and parameters are implemented,

as can be seen in Figure 57. In the data page, Figure 57a, the data is not editable, but they

are updated in real-time. However, the parameters page, Figure 57b, allows for editing, except

for changing the datatype. Doing so will result in an error message being displayed to the user.

Therefore, both FRDP2 and FRDP3 are completed.

67

(a) Data page (b) Parameters page

Figure 57: Pages visualising data and parameters

5.3.6 Notification system requirements

Figure 58: Notification message

When a notification pops up, it will slide into the screen from the upper right corner, as seen in

Figure 58. The popup message includes a code number, description, and the date and timestamp

at the bottom right corner. These functionalities were the requirements FRN1, FRN2, and FRN3.

As seen in Figure 59, a notification center is implemented, completing FRN4. Additionally, at

the top of the notification center, a toggle switch is available for turning on and o↵ the popup

messages, the last functional requirement in Table 7.

68

Figure 59: Notification center

5.4 System unit tests

Unit tests in controlled environments were conducted for both the sail and rudder system and are

presented in the coming sections. Following is an analysis of their performance during the sea trial.

Lastly, an investigation of the noise filters’ performance is reviewed.

69

5.4.1 System test of the sail

Test introduction

The importance of a functional sail system was vital. For testing the necessary functions, a list of

questions that needed to be answered was as follows:

• Does the sail rotate adequately?

• Can the encoder report the correct position?

• Is the z-index identifiable?

• Does the actuator and encoder cooperate to indicate the sail position?

• Can the sail move to the target position?

Experiment set up

During controlled laboratory testing, a portion of the mast was mounted to a heavy base plate

to prevent the mast from falling over. The portion of the mast included the worm gear, rotary

actuator, encoder, and the bottom plate of the sail, see Figure 60.

Figure 60: Set up of the sail control system

Results

The actuator is able to rotate the sail clockwise and counterclockwise without issues. A full rotation

is achieved in 56 seconds resulting in 6.43�/s with no load. The encoder consistently changes and

reports the position of the sail, and the accuracy is verified using a few known positions around

its rotation. The z-index, or the reference point, was found during every test.

Cooperation from the motor to whether the encoder value should increment or decrement during

changes showed satisfactory results. Depending on the motor’s rotational orientation, the value

incremented or decremented accordingly.

70

When the navigation program for the sail receives a target position, the system adjusts the sail

to the correct position with a precision of 1.5�, limited by the optical rotary encoder. When

calibration mode is initiated, the sail rotates to find the reference point and updates values.

Sea trial results

Figure 61 shows the target sail angle and actual sail angle in the same plot. As new targets are

received, the sail adjusts to reach the target. The plot shows that the sail can mostly keep up

with the target. The average deviation was calculated to be approximately 1.576�, most likely

caused by the 1.5� precision of the encoder. The accuracy should not be an issue with optimal

AoA ranging from 6� 11�.

An issue was discovered when the boat was moored during strong winds. It was observed from

the dashboard instruments that the reported sail angle increased, despite the sail not moving in

reality. The most likely cause is that some slack in the gearbox allows the sail to rock back and

forth in strong wind. This movement is enough for the optical encoder to believe it is rotating.

A simple solution to this issue could be to turn o↵ the optical encoder when the actuator is not

rotating.

Figure 61: Target sail angle, and actual sail angle (adjusted 180� to improve readability)

Figure 62 compares the sail angle to the apparent wind direction. Depending on the apparent

wind being w 2 [0�, 180�] or w 2 (180�, 359�], the system turns the starboard or port side of the

sail into the wind, respectively. The sail turns into the wind with an AoA of 10�, as can be seen

by the deviation between the two graphs in Figure 62.

On average, the o↵set of the sail angle compared to the wind direction was calculated to be

approximately 9.898� in Figure 62.

71

Figure 62: Sail angle and apparent wind direction (adjusted 180� to improve readability)

5.4.2 System test of the rudder

Test introduction

As mentioned earlier, the rudder is responsible for changing the boat’s heading. The list that

follows are quality signs that were desired to map the current state of the rudder system:

• Does the rudder move su�ciently fast?

• What level of precision can be obtained?

• Does the rudder construction o↵er the estimated range of motion of ±60�?

Experiment set up

Several controlled rudder tests were conducted on the workbench during the development. Fig-

ure 63 is from a range of motion test where a protractor was printed out on a piece of paper and

placed at the center of the rudder to verify its position.

72

Figure 63: Set up of the rudder and the actuator

Results

After several tests, it was determined that the rudder moves at approximately 24.5�/s and reaches

a range of motion of 120�. Total execution time from one end to the other takes around 4.8 seconds.

Considering the speed of the sailboat, the speed of the rudder was not a concern. The protractor

also verified the accuracy of the position feedback, which was higher than the resolution of the

test setup. Despite getting precise position feedback from the actuator, the implemented rudder

actuation mechanism had an accuracy of 8�. During initial testing, a behavior was discovered

where the actuator needed time to accelerate from a standstill and decelerate when moving. The

acceleration phase increased the lowest possible duration of a move signal the Arduino could send

and still observe a change in actuator position. After the move signal ended, the actuator needed

time to decelerate, which extended the distance traveled. The result was a constant of 8� added

to every position change of the actuator.

73

Sea trial result

As seen in Figure 64, the rudder angle follows the target angle decently well. The average deviation

between the target and set rudder angles was approximately 4.33�. Since the rudder moves toward

the target angle when the deviation exceeds 8�, and the new rudder angle stops close to the target

angle, the calculated average seems to hold with that logic.

Figure 64: Rudder and target angle

5.4.3 Noise filter test

Test introduction

• Does the IMU filter smooth out the data without removing important information?

• Does the wind sensor filter smooth out the data without removing important information?

• Does data from the two sensors correlate, indicating their accurateness?

Experiment set up

The test of the wind sensor was carried out during the sea trial, exposing the sensors to real-world

conditions. A 15-minute interval from the sea trial was selected based on a fluctuating but non-zero

wind speed and all sensors communicating as expected. Y-axis values are adjusted to prevent the

graph from going from 359� to 0� when the boat rotates passed north. The scale is still the same,

but the heading is inaccurate with respect to the real world.

Results

Figure 65 shows the wind speed in the given time window. The EWMA wind speed filter has a

B = 0.5 meaning new values dominate the mean. The result is a graph with a high variance but,

at the same time, more true to the varying wind conditions. The wind speed is not used in the

sailing algorithm, so this is not a concern. It shows that the wind speed in this time window was

usually between 3 and 7 m/s, which are good conditions for the sailboat.

74

Figure 65: Wind speed

Figure 66 is a plot of the apparent wind direction reported by the wind sensor and the boat’s

heading reported by the IMU. The two graphs should mirror each other about the horizontal axis,

assuming a constant actual wind direction. If the boat rotates clockwise, the heading will increase

while the apparent wind angle will decrease, and vice versa. The graphs in Figure 66 are close to

being a mirror of each other, indicating accurate sensor readings. The slight variations might be

due to changes in the wind. The two graphs do not appear to be shifted in time, indicating that

the polling rate and delay introduced by the two di↵erent filters are equal among the sensors. It

does not, however, measure the total delay between the real world and the values provided by the

sensors.

Figure 66: Apparent wind direction and heading (adjusted 180� to improve readability)

Figure 67 is a plot of the true wind direction, which is the apparent wind direction adjusted for

the boat’s velocity and heading. It shows a quite consistent wind direction of around 100� with

some local variations. The slight variation is expected as the wind direction in an area is close

to constant but with deviations caused by wind gusts, nearby buildings, and other obstructions.

The only exception is the spike at 11.28.51 AM, caused by a jump in heading seen in Figure 66.

It is clear from the heading graph that the spike should not be there and indicates that the IMU

75

Kalman Filter is not correctly adjusted.

Figure 67: True wind direction (adjusted 180◦ to improve readability)

5.5 Algorithm performance test

During the sea trial, the boat’s autonomy was tested close to real situations. The following sections

will review the algorithm’s capabilities to solve well-known tasks for an autonomous sailboat, such

as beam reach and downwind sailing. Lastly, tests of the algorithm’s performance during beating

mode and the challenging sailing maneuver, tacking, are analyzed.

5.5.1 Beam reach

The goal of the test was to measure the performance when sailing beam reached. It is when the

wind direction is perpendicular to the sailboat’s heading.

Figure 68: Beam reach illustration

GPS data from the test are visualized in Figure 69. It shows the boat sailing from north to south,

close to the dock. The wind was blowing from approximately west to east. In Figure 70, one can

identify that the apparent wind angle is steadily between 50�100� of the boat’s heading. Further,

the sail angle is consistent with the rule of an AoA of about 10�.

Figure 71 illustrates the wind speed in m/s and the Speed over Ground (SoG) in knots. Ac-

cording to the graph, the maximum speed reached during beam reach were 0.7Kn. With further

improvements, a higher SoG should be attainable.

76

Figure 69: Beam reach map

Figure 70: Beam reach angles

77

Figure 71: Beam reach speeds

5.5.2 Downwind sailing

The downwind sailing test was performed during the sea trial. While far out in the harbor, a

waypoint was set at the shore from where it initially started. The goal was to see if the boat could

sail to a waypoint with a tailwind.

Figure 72: Downwind illustration

• Is the boat able to sail with wind coming from the back?

• Does the sail enter drag mode?

78

Figure 73: Downwind

Figure 74 is a plot of the sail angle, heading, and apparent wind angle as the sailboat turns

clockwise about 100� heading towards the dock, creating the path seen in Figure 76. The conditions

for downwind sailing mode are met when the apparent wind direction is within the range � 2
[135�, 220�]. As the green graph in Figure 74 drops below 225�, the gap between the green and

the blue graph increases from 10� to 90� indicating that the sail has a 90� angle of attack. At this

point, the sail is no longer acting as a lifting surface but more of a parachute. At about the same

time, the IMU stops communicating, a problem that will be discussed later. However, this does

not a↵ect the boat too much as it is already on a steady course.

Figure 74: Down wind sailing mode angles

79

The blue graph in Figure 75 shows how the boat accelerates as it enters downwind sailing mode

with a velocity settling around 1 � 1.5Kn. When using the sail in drag mode, the boat will not

be able to sail faster than the wind. In this case, the speed is quite a bit lower, likely due to drag

forces on the hull from the water, and that 90� AoA does not result in the maximum coe�cient of

drag for the unsymmetrical convex-shaped side profile of the sail. The boat did not sail directly

downwind either, as shown by the green graph in Figure 74 sometimes being closer to 200� rather

than 180�. The wind speed is given in m/s, while the boat speed is recorded in knots, making

the di↵erence between boat and wind speed even bigger. More time to accelerate would not have

helped either, as Figure 75 shows that the boat is decelerating when the wind speed drops.

However, these speeds were relatively high compared to speeds reached in the rest of the test. The

boat was also able to make it back to the dock, making the test a success.

Figure 75: Down wind sailing test speeds

80

Figure 76: Path traveled in down wind sailing mode

5.5.3 Beating sailing mode and tacking maneuvers

During the sea trial, the boat’s starting position at the harbor was set in a direction against the

wind to force beating mode. The boat should detect this and calculate a midway point outside

the no-sail zone, and a red marker should appear on the map as seen in Figure 77. After the boat

reached the midway point, it would check if the goal was outside the no-sail zone, or a new midway

point would be created on the opposite side of the no-sail zone, therefore requiring the boat to

tack.

Figure 77: Sailboat and a mid waypoint

It quickly became apparent that the boat struggled to perform tacking maneuvers. Figure 78

shows a scenario from the test where the target heading crosses apparent and true wind direction,

making the boat initiate a tacking maneuver. The heading graph shows the boat stops turning

81

when approaching the apparent wind, preventing the boat from completing the maneuver. The

main challenge was for the boat to have enough speed to enter the no-sail zone and exit on the other

side. When entering the no-sail zone, the sail algorithm would still try to add an angle of attack to

the sail, sometimes resulting in the boat going backward. Instead, the sail should neutralize itself

when entering this zone to minimize forces from the headwind. Combined with a higher speed

requirement and a more confident rudder movement when tacking should help mitigate some of

the tacking problems.

Figure 78: Sailboat struggling to tack (adjusted 180� to improve readability)

When sailing in beating mode, the boat is designed to sail close-hauled to the wind and tack when

a specific deviation from the course is reached. Figure 79 are data from the trial when the boat was

in beating mode, attempting to sail closed hauled 60� of from headwind. However, as the graphs

show, the heading, target heading, and true wind were equal, meaning the boat experienced a

direct headwind and could not sail. The issue was that the target heading was calculated using

apparent wind direction, not true wind. As seen in Figure 79, there is a 60� di↵erence between

target heading and apparent wind direction, not true wind direction as it should have been. In

Figure 79 this resulted in heading and true wind being equal, meaning the boat experienced direct

headwind and could not sail. The mistake significantly reduced the performance of the beating

sailing mode unless the boat was sailing north, aligning apparent and true wind direction. It is

likely that without this mistake, the boat would have performed much better.

82

Figure 79: Beating calculation error

5.6 Integrated system review

During testing, the a↵ordable components proved su�cient for the task at hand. Where problems

occurred, a software solution was enough to rectify their inadequacy. The di↵erent subsystems

of the mechatronic system could cooperate and act as a single coherent system. The subsystems

appeared transparent when a new path was created and sent to the boat, not revealing how the

data was represented or where it was stored. The dashboard was accessed from several devices,

including personal computers and mobile phones. They were all able to communicate with the other

parts of the system. However, the user interface itself did not adapt correctly to smaller displays.

The unexpected disconnections of the Arduino Nano did not a↵ect the rest of the system, but little

feedback was given to the operator, and manual actions were required to restore the connection.

The system should handle such events autonomously without requiring an operator to discover

and fix them. Despite these issues, the prototype could perceive its environment and act upon it,

although not always correctly. Still, valuable test data was collected and analyzed, creating a solid

foundation for future development.

83

6 Conclusion

An approach to developing and validating an autonomous sailboat has been proposed and imple-

mented. The approach presents a distributed system with an on-land server, an operator dash-

board, and a mechatronic system. It facilitates an autonomous sailboat’s development, testing,

and operation. The proposed solution was implemented, validated, and documented in this thesis.

Comprehensive development in mechanics, electronics, and computer science was fundamental to

creating a complete and integrated system. As part of the validation process, a full-scale sea trial

was conducted, exposing the system to a real-world environment. Analysis of the test results gave

confidence in the system’s potential to reach the long-term goal of a fully autonomous sailboat for

monitoring and collecting oceanographic data.

The use of an on-land cloud server proved valuable. It maintained a stable connection to mul-

tiple clients simultaneously, providing real-time capabilities to the system. The server was also

responsible for logging and collecting essential data from the field test. Performance figures from

the test showed that the cloud service was more than capable of handling the load. Most of the

tasks assigned to the cloud server were o✏oaded from the sailboat’s main computer freeing up its

resources and lowering the hardware requirement. The cloud services can be scaled and integrated

easily, and ownership can be transferred to new candidates working on the project with the help

of a cloud platform.

A dashboard was developed to provide operators and stakeholders a HMI. It was helpful during

development and testing, displaying raw data, sensor values, and error codes in a way that was

easy to comprehend. The tools for creating paths, sending commands, and monitoring the boat

state were crucial to reaching the achievements in the sea trial.

An approach for a mechatronic system to enable autonomous sailing was designed, built, and

tested. It included sensors, actuators, hardware, electronics, and software necessary to perceive its

surroundings, communicate with a server, and change its state accordingly. During the sea trial,

the sailboat system proved capable of fully autonomous sailing. However, some weaknesses of the

system were uncovered. Based on this, future recommendations and suggestions are presented.

• The software issues identified in Section 5 should be rectified, and a new sea trial should be

conducted to set a new baseline.

• More advanced sailing algorithms should be developed, improving path planning, maneuver-

ing, power consumption, and situational awareness.

• The actuator moving the sail is, according to the calculations, not strong enough to meet

design requirements and should be replaced with a stronger version before conducting more

extreme tests.

84

Bibliography

[1] Adrian S Pleym and Magnus W Ølstad. How to build a platform to support development of

an autonomous sailboat? 2021.

[2] Maulshree Singh et al. ‘Digital Twin: Origin to Future’. In: Applied System Innovation 4.2

(2021), p. 36. doi: 10.3390/asi4020036.

[3] Michael Grieves and John Vickers. ‘Digital Twin: Mitigating Unpredictable, Undesirable

Emergent Behavior in Complex Systems’. In: Transdisciplinary Perspectives on Complex

Systems (Aug. 2016), pp. 85–113. doi: 10.1007/978-3-319-38756-7 4.

[4] Allison Maloney. The di↵erence between a simulation and a digital twin. MindSphere, Oct.

2019. url: https://blogs.sw.siemens.com/mindsphere/the-di↵erence-between-a- simulation-

and-a-digital-twin/#:⇠ (visited on 6th May 2022).

[5] Modern Manufacturing’s triple play: Digital Twins, analytics, IOT. url: https://www.sas.

com/en us/ insights /articles /big - data/modern - manufacturing - s - triple - play - digital - twins -

analytics-iot.html.

[6] Andreas Birk and Max Pfingsthorn. ‘A HMI supporting adjustable autonomy of rescue ro-

bots’. In: RoboCup 2005: Robot Soccer World Cup IX (2006), pp. 255–266. doi: 10.1007/

11780519 23.

[7] Morgan William Arthur Trench. ‘Developing a Single Page Web Application to Monitor and

Control a Solar Powered Autonomous Boat’. In: ().

[8] R Divya et al. ‘Autonomous Sailing Boat’. In: Information and Communication Technology

for Competitive Strategies (ICTCS 2020). Springer, 2021.

[9] Andouglas GS Júnior et al. ‘N-BOAT: An autonomous robotic sailboat’. In: 2013 Latin

American Robotics Symposium and Competition. IEEE. 2013, pp. 24–29.

[10] Sarah Sharples and John R. Wilson. Evaluation of human work. Taylor and Francis, an

imprint of CRC Press, 2015.

[11] Shaolong Yang et al. ‘Generic and Flexible Unmanned Sailboat for Innovative Education and

World Robotic Sailing Championship’. In: Frontiers in Robotics and AI 8 (2021), p. 27.

[12] Maarten Van Steen and Andrew S Tanenbaum. Distributed systems. Maarten van Steen

Leiden, The Netherlands, 2017.

[13] Michael A Murphy and Sebastien Goasguen. ‘Virtual Organization Clusters: Self-provisioned

clouds on the grid’. In: Future Generation Computer Systems 26.8 (2010), pp. 1271–1281.

[14] Luis M. Vaquero et al. ‘A Break in the Clouds: Towards a Cloud Definition’. In: SIGCOMM

Comput. Commun. Rev. 39.1 (Dec. 2009), pp. 50–55. issn: 0146-4833. doi: 10.1145/1496091.

1496100. url: https://doi.org/10.1145/1496091.1496100.

[15] Seyyed Mohsen Hashemi and Amid Khatibi Bardsiri. ‘Cloud computing vs. grid computing’.

In: ARPN journal of systems and software 2.5 (2012), pp. 188–194.

[16] Stefan Poslad. Ubiquitous computing: smart devices, environments and interactions. John

Wiley & Sons, 2011.

[17] J. Castán et al. ‘Improving Vehicular Mobility in Urban Tra�c Using Ubiquitous Computing’.

In: Journal of Computer and Communications 04 (Jan. 2016), pp. 57–62. doi: 10.4236/jcc.

2016.410006.

[18] M. Satyanarayanan. ‘Pervasive computing: vision and challenges’. In: IEEE Personal Com-

munications 8.4 (2001), pp. 10–17. doi: 10.1109/98.943998.

85

https://doi.org/10.3390/asi4020036
https://doi.org/10.1007/978-3-319-38756-7_4
https://blogs.sw.siemens.com/mindsphere/the-difference-between-a-simulation-and-a-digital-twin/%23:~
https://blogs.sw.siemens.com/mindsphere/the-difference-between-a-simulation-and-a-digital-twin/%23:~
https://www.sas.com/en_us/insights/articles/big-data/modern-manufacturing-s-triple-play-digital-twins-analytics-iot.html
https://www.sas.com/en_us/insights/articles/big-data/modern-manufacturing-s-triple-play-digital-twins-analytics-iot.html
https://www.sas.com/en_us/insights/articles/big-data/modern-manufacturing-s-triple-play-digital-twins-analytics-iot.html
https://doi.org/10.1007/11780519_23
https://doi.org/10.1007/11780519_23
https://doi.org/10.1145/1496091.1496100
https://doi.org/10.1145/1496091.1496100
https://doi.org/10.1145/1496091.1496100
https://doi.org/10.4236/jcc.2016.410006
https://doi.org/10.4236/jcc.2016.410006
https://doi.org/10.1109/98.943998

[19] Gordon S. Blair et al. Interoperability in Complex Distributed Systems. Ed. by Marco Bern-

ardo and Valérie Issarny. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

[20] W3C. Web Services Architecture. url: https : / /www .w3 . org /TR/ws - arch/ (visited on

27th May 2022).

[21] W3C. OWL-S: Semantic Markup for Web Services. url: https://www.w3.org/Submission/

OWL-S/ (visited on 27th May 2022).

[22] Florian Böhm and Axel Schulte. ‘UAV Autonomy Research - Challenges and Advantages of a

Fully Distributed System Architecture’. In: International Telemetering Conference Proceed-

ings (2012). issn: 0884-5123. url: http://hdl.handle.net/10150/581826.

[23] Gerardo Pardo-Castellote. OMG data-distribution service (DDS): Architectural overview.

Tech. rep. REAL-TIME INNOVATIONS INC SUNNYVALE CA, 2004.

[24] Joseph M Schlesselman, Gerardo Pardo-Castellote and Bert Farabaugh. ‘OMG data-distribution

service (DDS): architectural update’. In: IEEE MILCOM 2004. Military Communications

Conference, 2004. Vol. 2. IEEE. 2004, pp. 961–967.

[25] Chen Hong and Dianxi Shi. ‘A Cloud-Based Control System Architecture for Multi-UAV’.

In: (2018). doi: 10.1145/3265639.3265652. url: https://doi.org/10.1145/3265639.3265652.

[26] N. Kyura and H. Oho. ‘Mechatronics-an industrial perspective’. In: IEEE/ASME Transac-

tions on Mechatronics 1.1 (1996), pp. 10–15. doi: 10.1109/3516.491405.

[27] D.M. Auslander. ‘What is mechatronics?’ In: IEEE/ASME Transactions on Mechatronics

1.1 (1996), pp. 5–9. doi: 10.1109/3516.491404.

[28] T.-R. Hsu. ‘Mechatronics. An overview’. In: IEEE Transactions on Components, Packaging,

and Manufacturing Technology: Part C 20.1 (1997), pp. 4–7. doi: 10.1109/3476.585138.

[29] Alfian Ma’arif et al. ‘Kalman filter for noise reducer on sensor readings’. In: Signal and Image

Processing Letters 1.2 (2019), pp. 50–61.

[30] Xiaozheng Lai et al. ‘IOT implementation of Kalman filter to improve accuracy of air qual-

ity monitoring and prediction’. In: Applied Sciences 9.9 (2019), p. 1831. doi: 10 . 3390 /

app9091831.

[31] Alex Becker. Online kalman filter tutorial. url: https://www.kalmanfilter.net/default.aspx.

[32] Charles C Holt. ‘Forecasting seasonals and trends by exponentially weighted moving aver-

ages’. In: International journal of forecasting 20.1 (2004), pp. 5–10.

[33] Anatomy of a sailboat. url: https://www.sailrite.com/anatomy-of-a-sailboat.

[34] Point of sail. May 2022. url: https://en.wikipedia.org/wiki/Point of sail.

[35] Roland Stelzer and Tobias Pröll. ‘Autonomous sailboat navigation for short course racing’.

In: Robotics and Autonomous Systems 56.7 (2008), pp. 604–614. issn: 0921-8890. doi: https:

//doi.org/10.1016/j.robot.2007.10.004. url: https://www.sciencedirect.com/science/article/

pii/S0921889007001480.

[36] Patrick F Rynne and Karl D von Ellenrieder. ‘Development and preliminary experimental

validation of a wind-and solar-powered autonomous surface vehicle’. In: IEEE Journal of

Oceanic Engineering 35.4 (2010), pp. 971–983.

[37] J Otto Scherer. ‘Aerodynamics of high-performance wing sails’. In: Marine Technology and

SNAME News 11.03 (1974), pp. 270–276.

[38] Maria Brudeseth Dyrseth. ‘Development, Design and Production of a Wingsail for an Autonom-

ous Surface Vessel’. In: (2020). url: https://hdl.handle.net/11250/2781743.

86

https://www.w3.org/TR/ws-arch/
https://www.w3.org/Submission/OWL-S/
https://www.w3.org/Submission/OWL-S/
http://hdl.handle.net/10150/581826
https://doi.org/10.1145/3265639.3265652
https://doi.org/10.1145/3265639.3265652
https://doi.org/10.1109/3516.491405
https://doi.org/10.1109/3516.491404
https://doi.org/10.1109/3476.585138
https://doi.org/10.3390/app9091831
https://doi.org/10.3390/app9091831
https://www.kalmanfilter.net/default.aspx
https://www.sailrite.com/anatomy-of-a-sailboat
https://en.wikipedia.org/wiki/Point_of_sail
https://doi.org/https://doi.org/10.1016/j.robot.2007.10.004
https://doi.org/https://doi.org/10.1016/j.robot.2007.10.004
https://www.sciencedirect.com/science/article/pii/S0921889007001480
https://www.sciencedirect.com/science/article/pii/S0921889007001480
https://hdl.handle.net/11250/2781743

[39] Claes Tretow. ‘Design of a free-rotating wing sail for an autonomous sailboat’. In: 2017.

[40] Paul Miller et al. ‘An Alternative Wing Sail Concept for Small Autonomous Sailing Craft’.

In: 2018.

[41] Wind amp; Solar Powered Autonomous Vehicles. url: https://www.saildrone.com/technology/

vehicles.

[42] Unmanned Surface Vessel. url: http://www.sailbuoy.no/.

[43] url: http://airfoiltools.com/airfoil/details?airfoil=naca0018-il.

[44] url: http://airfoiltools.com/airfoil/details?airfoil=n0009sm-il.

[45] Hiroyuki FURUKAWA et al. ‘Performance of wing sail with multi element by two-dimensional

wind tunnel investigations’. In: Journal of Fluid Science and Technology 10.2 (2015). doi:

10.1299/jfst.2015jfst0019.

[46] Hadi Saoud et al. ‘Routing and course control of an autonomous sailboat’. In: 2015 European

Conference on Mobile Robots (ECMR) (2015). doi: 10.1109/ecmr.2015.7324218.

[47] Zhenyu Yu, Xinping Bao and Kenzo Nonami. ‘Course keeping control of an autonomous boat

using low cost sensors’. In: Journal of System Design and Dynamics 2.1 (2008), pp. 389–400.

[48] Corentin Jegat. Ensta bretagne. url: https ://www.ensta- bretagne. fr/ jaulin/rapport2019

jeguat.pdf.

[49] Thomas Augenstein et al. ‘Using a controlled sail and tail to steer an autonomous sail-

boat’. In: World Robotic Sailing championship and International Robotic Sailing Conference.

Springer. 2016, pp. 91–103.

[50] Scott A Borto↵. ‘Path planning for UAVs’. In: Proceedings of the 2000 American Control

Conference. ACC (IEEE Cat. No. 00CH36334). Vol. 1. 6. IEEE. 2000, pp. 364–368.

[51] Ryo Takei et al. ‘A practical path-planning algorithm for a simple car: a Hamilton-Jacobi

approach’. In: Proceedings of the 2010 American control conference. IEEE. 2010, pp. 6175–

6180.

[52] Alex Nash, Sven Koenig and Craig Tovey. ‘Lazy Theta*: Any-angle path planning and path

length analysis in 3D’. In: Proceedings of the AAAI Conference on Artificial Intelligence.

Vol. 24. 1. 2010, pp. 147–154.

[53] Johannes Langbein, Roland Stelzer and Thom Frühwirth. ‘A rule-based approach to long-

term routing for autonomous sailboats’. In: Robotic Sailing (2011), pp. 195–204. doi: 10.

1007/978-3-642-22836-0 14.

[54] Mingshu Du et al. ‘Study of Long-term Route Planning for Autonomous Sailboat’. In: Pro-

ceedings of the International Robotic Sailing Conference. 2018.

[55] Jorge Cabrera-Gámez et al. ‘Optimization-based weather routing for sailboats’. In: Robotic

Sailing 2012 (2013), pp. 23–33. doi: 10.1007/978-3-642-33084-1 3.

[56] A* search algorithm. May 2022. url: https://en.wikipedia.org/wiki/A* search algorithm.

[57] Dijkstra’s algorithm. May 2022. url: https : / / en .wikipedia . org /wiki /Dijkstra%5C%27s

algorithm.

[58] Nitin R Chopde and Mangesh Nichat. ‘Landmark based shortest path detection by using A*

and Haversine formula’. In: International Journal of Innovative Research in Computer and

Communication Engineering 1.2 (2013), pp. 298–302.

[59] Zainal Arifin, Muhammad Rivani Ibrahim and Heliza Rahmania Hatta. ‘Nearest tourism site

searching using Haversine method’. In: 2016 3rd International Conference on Information

Technology, Computer, and Electrical Engineering (ICITACEE). IEEE. 2016, pp. 293–296.

87

https://www.saildrone.com/technology/vehicles
https://www.saildrone.com/technology/vehicles
http://www.sailbuoy.no/
http://airfoiltools.com/airfoil/details?airfoil=naca0018-il
http://airfoiltools.com/airfoil/details?airfoil=n0009sm-il
https://doi.org/10.1299/jfst.2015jfst0019
https://doi.org/10.1109/ecmr.2015.7324218
https://www.ensta-bretagne.fr/jaulin/rapport2019_jeguat.pdf
https://www.ensta-bretagne.fr/jaulin/rapport2019_jeguat.pdf
https://doi.org/10.1007/978-3-642-22836-0_14
https://doi.org/10.1007/978-3-642-22836-0_14
https://doi.org/10.1007/978-3-642-33084-1_3
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/Dijkstra%5C's_algorithm
https://en.wikipedia.org/wiki/Dijkstra%5C's_algorithm

[60] M Basyir et al. ‘Determination of nearest emergency service o�ce using haversine formula

based on android platform’. In: EMITTER International Journal of Engineering Technology

5.2 (2017), pp. 270–278.

[61] S Keliwar. ‘A Secondary Study Examining the E↵ectiveness of Network Topologies: The

Case of Ring, Bus, and Star Topologies’. In: International Journal of Communication and

Computer Technologies 8.2 (2020), pp. 5–7.

[62] Trello helps teams move work forward. url: https://trello.com/.

[63] Where the world builds software. url: https://github.com/.

[64] NTNU-Autoboat, GitHub Organization. url: https://github.com/NTNU-AutoBoat.

[65] Simple Kalman Filter. 2022. url: https://github.com/denyssene/SimpleKalmanFilter.

[66] Sverre Gauden. ‘Development of an Internally Actuated GFRP Rigid Wing Sail for an

Autonomous Surface Vesse’. In: (2021). url: https://hdl.handle.net/11250/2787204.

[67] CubeMars. AK80-9. url: https : / / store . cubemars . com / goods . php ? id= 982 (visited on

11th May 2022).

[68] Biltema.Gummikabel RDOE. url: https://www.biltema.no/bygg/elinstallasjoner/installasjonskabler/

gummikabel-rdoe-2000017922 (visited on 11th May 2022).

[69] Almar Vreim Brandal. ‘Development of a Modular Polyethylene Pipe Hull and GFRP Rudder

System for an Autonomus Surface Vessel’. In: (2021). url: https://hdl.handle.net/11250/

2787221.

[70] Websocket system design for authentication. url: https ://websockets . readthedocs . io/en/

latest/topics/authentication.html#system-design.

88

https://trello.com/
https://github.com/
https://github.com/NTNU-AutoBoat
https://github.com/denyssene/SimpleKalmanFilter
https://hdl.handle.net/11250/2787204
https://store.cubemars.com/goods.php?id=982
https://www.biltema.no/bygg/elinstallasjoner/installasjonskabler/gummikabel-rdoe-2000017922
https://www.biltema.no/bygg/elinstallasjoner/installasjonskabler/gummikabel-rdoe-2000017922
https://hdl.handle.net/11250/2787221
https://hdl.handle.net/11250/2787221
https://websockets.readthedocs.io/en/latest/topics/authentication.html%23system-design
https://websockets.readthedocs.io/en/latest/topics/authentication.html%23system-design

Appendix

A Source code

For now, the GitHub repositories are private. However, the source code can be requested by

contacting one of the authors of this master thesis.

B Command system

89

90

91

C Readmes from GitHub repositories

C.1 RaspberryPi readme

The README start on the next page...

92

93

ssh

ssh hostname@pi-local-ip

The hostname is by default: pi
To find out the local ip, you would need to find a list of all the connected
clients on the local network.

You will now be prompted to save a "fingerprint",
enter yes and proceed to enter the password.

By default, the password should be: raspberry

sudo raspi-config

94

sudo apt update
sudo apt install git

git --version
Should output the latest Git version if installed correctly

python --version # Start by checking the python version
The output would hopefully be 3.9+, else you would need to update the Python version

sudo apt update
sudo apt install python3-pip

sudo apt install python3-pip

pip3 --version # Should output a pip version.

cd /to-your-desired-directory
git clone https://github.com/NTNU-AutoBoat/RaspberryPi.git
cd /RaspberryPi

95

/dev/ttyUSB0

findSensors.py

python findSensors.py

sudo nano ~/.profile

export GPS_VENDOR = # GPS VENDOR NAME. "Prolific_Technology_Inc." as of 24.01.22
export IMU_VENDOR = # IMU VENDOR NAME. "Arduino__www.arduino.cc_" as of 24.01.22
export WIND_PORT = # WIND SENSOR PORT. "/dev/ttyS0" as of 24.01.22

Ctrl X

Y

Enter

sudo reboot

96

printenv

const firebaseConfig

sudo nano ~/.profile

export GOOGLE_MAIL= # EMAIL
export GOOGLE_API_KEY= # WEB API KEY
export GOOGLE_PASSWORD= # PASSWORD
export GOOGLE_AUTH_DOMAIN = # AUTH DOMAIN
export GOOGLE_STORAGE_BUCKET = # STORAGE BUCKET
export WEBSOCKET_SERVER_URI = # See websocket server readme
export NGROK_LOG_PATH= # PATH TO ENGROK LOG FILE e.g. "/home/pi/ngrok.log"

Ctrl X

Y

Enter

97

sudo reboot

printenv

crontab -e

Nano

@reboot . $HOME/.profile; PATH_TO_PYTHON PATH_TO_REPO_FROM_GITHUB/run.py

Ctrl X

Y

Enter

98

sudo apt remove wpasupplicant -y # Removes the latest version of wpa_supplicant

sudo mv -f /etc/apt/sources.list /etc/apt/sources.list.bak # Creates a backup of the P

sudo bash -c "echo 'deb http://raspbian.raspberrypi.org/raspbian/ stretch main contrib
Adds an older source list

sudo apt-get update # Updates
sudo apt-get install wpasupplicant -y # Installs the older version of wpa_supplicant
sudo apt-mark hold wpasupplicant # Makes sure to not update wpa_supplicant later

sudo cp -f /etc/apt/sources.list.bak /etc/apt/sources.list # Returns the source list t

sudo apt-get update # Final update to the rest of the softwares

.py

Config.CA = """-----BEGIN CERTIFICATE-----

cd /usr/share/ca-certificates/
sudo nano eduroam.pem

Ctrl X

99

Y

Enter

sudo nano /etc/wpa_supplicant/wpa_supplicant.conf

network={
 ssid="eduroam"
 scan_ssid=1
 key_mgmt=WPA-EAP
 eap=PEAP
 identity="student-email"
 anonymous_identity="student-email"
 password="student-password"
 ca_cert="/usr/share/ca-certificates/eduroam.pem"
 phase1="peaplabel=auto peapver=auto"
 phase2="auth=MSCHAPV2"
}
The student email and password you use to connect to eduroam can be written here.

You can try to hash your password doing the following (Not sure if it works)

read -s input ; echo -n $input | iconv -t utf16le | openssl md4

You should receive a hashed version of your password.
The password field can then be:
password=hash:<your-hashed-password-here-without-less/greater-signs>

wpa_cli -i wlan0 reconfigure

iwconfig

100

internet.netcom.no
ssh

vpn.telia.no

sudo wget https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-arm.zip

unzip ngrok-stable-linux-arm.zip

/home/pi/

cd /to-your-ngrok-path

./ngrok authtoken __Your Authtoken__

101

./ngrok tcp 22 --log=stdout > /home/pi/ngrok.log &

ngrok.py
ngrok.py

./ngrok tcp 22 > /dev/null &

jobs -l # To List all the jobs

disown -h %n # Where n is the process index, not the ID!

exit # To close the terminal

102

$GPGLL,X,X,X,X,X,X,X*XX

$GPRMC,X,X,X,X,X,X,X,X,X,X,X,X*XX

A0 A2 00 18 81 02 00 00 01 01 00 00 00 00 01 01 00 00 00 00 00 00 00 00 00 00 12 C0 01

103

C.2 Dashboard app readme

The README start on the next page...

104

cd /to-your-desired-directory
git clone https://github.com/NTNU-AutoBoat/DashboardApp.git
cd /DashboardApp

105

cd /to-project-directory

npm install

yarn install

package.json

npm start

yarn start

localhost:3000

106

C.3 WebSocket server readme

The README start on the next page...

107

cd /to-your-desired-directory
git clone https://github.com/NTNU-AutoBoat/Websocket-Server.git
cd /Websoocket-server

python --version

python3 python

108

python server.py

0.0.0.0 8080

sudo nano server.py

async with websockets.serve(counter, *ADRESS*, *PORT*, logger=logger):

line: 112

Ctrl X

Y

Enter

109

C.4 Arduino readme

The README start on the next page...

110

cd /to-your-desired-directory
git clone https://github.com/NTNU-AutoBoat/Arduino.git
cd /Arduino

cd /to-your-project-directory/Arduino
cd /Uno

111

pio run --target upload

platformio.ini

Nano

112

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Adrian Skogstad Pleym
Magnus Westbye Ølstad

On development and validation of an
autonomous sailboat

Master’s thesis in Engineering and ICT
Supervisor: Andrei Lobov
Co-supervisor: Andreas T. Echtermeyer
June 2022M

as
te

r’s
 th

es
is

	List of Figures
	Abbreviations
	Introduction and overview
	Autonomous Surface Vehicles (ASVs)
	Problem description
	Team and previous work
	Scope of this thesis
	Objectives
	Thesis structure

	Theory
	Digital Twin, a virtual projection of a real-world object
	Data related technologies
	High-fidelity modeling and simulation technologies
	Human-machine interface

	Distributed Systems
	Cluster and grid computing
	Cloud Computing
	Pervasive Systems
	Architectural tactics
	Architectures for distributed systems

	System engineering and Mechatronics
	Data processing with noise filters
	Kalman Filter
	Exponentially Weighted Moving Average

	Sailing theory
	Wind zones
	Sailing towards the eye of the wind
	Downwind sailing
	Optimal angles

	Algorithms
	Heading vs Course control
	Component based control system
	Route planning
	Haversine - Distance between two point on a sphere

	Approach
	Organizing and building a sailboat
	Workflow

	On-land services
	Intermediary on-land server
	HMI for monitoring and control

	Sensors and communication technology
	Sensors
	Communication technology

	Actuators and power supply
	Actuator for moving the rudder
	Motor for moving the wing sail
	Power supply

	Software development for autonomy
	Data processing, noise filtering
	Security through authentication

	Algorithms required for autonomous sailing
	System testing

	Implementation
	Documentation and workflow
	On land server and cloud computing
	Server hosting service
	Containerizing and building
	Run time optimizations
	Logging and cloud storage

	Dashboard
	Path planning
	Notification center
	Instruments and the voltmeter
	Commando system
	Data viewer

	Sensor technologies and solutions
	Sensor to determine the angular position of the sail
	Sensors for measuring heading, attitude, and location
	Sensor to measure wind direction and speed

	Actuators and electronics
	Sail actuator
	Rudder actuator and mount
	Electronics box

	Computer and software implementation
	Microcomputer - Raspberry Pi
	Microcontrollers - Arduinos

	Sailing algorithm
	True wind calculations
	Bearing and the no-sail zone
	Haversine distance
	Optimal sail angle
	Midway point and beating for upwind sailing
	Adjustable parameters

	Security through authentication
	Integrating whole system

	Tests and results
	On sea trial
	Experiment set up

	Server and communication
	On land server
	Interoperability between Raspberry Pi and the Arduinos

	Acceptance test of the client-side application
	Authentication requirements
	Map requirements
	Data visualization requirements
	Command system requirements
	Data and parameter requirements
	Notification system requirements

	System unit tests
	System test of the sail
	System test of the rudder
	Noise filter test

	Algorithm performance test
	Beam reach
	Downwind sailing
	Beating sailing mode and tacking maneuvers

	Integrated system review

	Conclusion
	Bibliography
	Appendix
	Source code
	Command system
	Readmes from GitHub repositories
	RaspberryPi readme
	Dashboard app readme
	WebSocket server readme
	Arduino readme

