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Abstract

A lumped parameter model representing the systemic circuit of the cardiovascular system and its acute

response to exercise is under development as a part of the NTNU project “My Medical Digital Twin”

(MyMDT). MyMDT aims to create a digital clinical tool to radically improve the currently uncertain and

inefficient procedures of treating hypertension. The MyMDT hemodynamic model integrates a time-

varying elastance representing cardiac function into a closed-loop circulation consisting of an arterial

and a venous compartment. Personalized model baseline parameters are estimated by a numerical op-

timization procedure that bases on arterial data for blood pressure and flow during rest. Exercise state

is implemented as heart rate-based parameter shifts. This master’s thesis performs an extensive eval-

uation of the current MyMDT model against cardiovascular data collected in a clinical exercise trial.

Six participants are used to examine multiple configurations of the procedures for estimating baseline

parameters and simulating exercise state to obtain predictions of stroke volume, systolic and diastolic

blood pressures that are consistent with data, without increasing the model complexity. It is found that

accurate simulations of the arterial system during rest are obtainable through multiple baseline config-

urations. Exercise state is in general prone to more uncertainty regarding both data and modelling prin-

ciples. Predictions of stroke volume, systolic and diastolic blood pressures that simultaneously fulfill

clinical criteria of accuracy are not achieved. Together with a brief model validation performed on five

new participants, the results indicate a necessity of greater structural interventions beyond adjusting

the current procedures for parameter estimation and exercise simulation. Preliminary pilot experiments

highlight several issues related to physiologically implausible model representations of the ventricular

and venous system. More research, preferably including quality assured data for all trial participants, is

indispensable for the model to reach its clinical ambition.
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Sammendrag

En diskret parametermodell som representerer den systemiske kretsen av det kardiovaskulære systemet

og dens umiddelbare respons til trening er under utvikling som en del av NTNU prosjektet «My Medi-

cal Digital Twin» (MyMDT). MyMDT vil skape et digitalt klinisk verktøy for å radikalt forbedre det som

for tiden er usikre og ineffektive prosedyrer innen blodtrykksbehandling. MyMDT sin hemodynamiske

modell integrerer en tidsvarierende elastans som representerer hjertefunksjon i et lukket kretsløp som

består av et arterielt og et venøst segment. Modellens personaliserte inngangsparametere blir estimert

ved hjelp av en numerisk optimaliseringsprosedyre basert på arteriell data for blodtrykk og strømn-

ing i hviletilstand. Treningstilstand implementeres som pulsavhengige parameterforskyvninger. Denne

masteravhandlingen gjennomfører en omfattende evaluering av den nåværende MyMDT-modellen mot

kardiovaskulær data hentet fra en klinisk treningsstudie. Seks deltakere blir brukt for å undersøke flere

mulige oppsett av prosedyrene for parameterestimering og treningssimulering for å oppnå prediksjoner

av slagvolum, systolisk og diastolisk blodtrykk under trening som er i overenstemmelse med data, uten

å øke modellens kompleksitet. Det avdekkes at det gjennom flere inngangsparametere er mulig å oppnå

korrekte simuleringer av det arterielle systemet i hviletilstand. Treningstilstand er generelt utsatt for

større usikkerhet i både data og modelleringsprinsipper. Prediksjoner av slagvolum, systolisk og dias-

tolisk blodtrykk som samtidig oppfyller kliniske nøyaktighetskriterier oppnås ikke. Sammen med en kort

modellvalidering utført på fem nye deltakere, indikerer resultatene at det er nødvendig med større struk-

turelle tiltak utover å tilpasse prosedyrene for parameterestimering og treningssimulering. Innledende

piloteksperimenter belyser flere problemer relatert til fysiologisk lite troverdige modellrepresentasjoner

av ventrikkel- og venesystemet. Ytterligere forskning, fortrinnsvis inkludert kvalitetssikret data for alle

studiedeltakerne, er uunnværlig for at modellen skal oppnå sin kliniske målsetning.
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Chapter 1

Introduction

Chronically elevated blood pressure is a serious medical condition referred to as hypertension, and it

constitutes a major public-health problem. World Health Organization (WHO) estimates 1.13 billion

people worldwide to be hypertensive [1]. Hypertension is not a disease itself, but a significant con-

tributor to multiple leading causes of disease, disability and death. Its presence increases the risk of

a number of serious medical conditions such as hearth disease, atherosclerosis, kidney damage and

stroke [2]. High blood pressure that is directly related to specific and identifiable causes is by defini-

tion diagnosed as secondary hypertension, which is not considered in this thesis. However, the causes

are usually unidentifiable, in which case the diagnosis is primary hypertension. The causes of primary

hypertension are thus by definition unknown, though an extensive number of factors related to genetic

and environmental conditions are assumed to be involved [2]. Studies show that environmental risk

factors include obesity, excessive salt intake, smoking, exaggerated alcohol consumption, nutrient defi-

ciency, chronic stress and lack of exercise. The extensivity of these factors and their combined impact

on the cardiovascular system (CVS) make hypertension a complicated condition to treat. Management

of high blood pressure commonly involves medications in combination with exercise and other lifestyle

changes. A number of cardiovascular effects can potentially lower blood pressure, meaning that many

categories of medications and lifestyle interventions can be prescribed to a hypertensive patient. How-

ever, the effects of medications, exercise and other interventions are highly dependent on overall health

status. Consequently, the identification of optimal treatment for an individual suffering from hyperten-

sion is often an ineffective procedure characterized by trial and error.

1.1 Hemodynamic Modelling

As indicated by the title, the topic for this master’s thesis is hemodynamic modelling. The current section

introduces this concept and its relation to hypertension and the MyMDT project.

1
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1.1.1 Motivation and Background

As stated above, the procedures for treating hypertension are currently inflicted by inefficiency and un-

certainty. A personalized way of predicting how the CVS will respond to various hypertension managing

interventions is therefore desired, which is a motivating factor for hemodynamic modelling. In this con-

text, hemodynamic modelling refers to the development of computational models that based on a set

of patient-specific parameters can simulate the CVS under given conditions. This is the essence of the

research project "My Medical Digital Twin" (MyMDT) that is currently carried out at NTNU [3]. The am-

bition of MyMDT is to develop a clinical digital tool that provides information about the blood pressure

status in an individual and targeted advice on how it can most efficiently be improved. Central in this

work is the development of a hemodynamic exercise model, which is a mathematical model of the CVS

and its acute response to exercise at a given intensity. Biological systems are intrinsically variable and

remodel over time, and long-term effects are therefore more complicated to predict than short-term

fluctuations. This master’s project is conducted on the current MyMDT model, which concerns exclu-

sively acute exercise response. By analyzing short-term mechanisms, the ambition is to enhance the

understanding of and eventually the ability to predict also long-term effects.

1.1.2 Related Work

The MyMDT hemodynamic model is still in its early stages, and requires more research on several levels

to achieve its ambition of being a clinical tool. At the time of writing, one paper has been published on

the model, with emphasis on the procedure for estimating resting state (baseline) parameters [4]. This

procedure and the model implementation itself are developed through collaboration in the MyMDT

project by Dr. Jacob Sturdy and Ph.D. Candidate Nikolai L. Bjørdalsbakke at the Division of Biomechan-

ics. Equations concerning the exercise model are adapted from an unpublished internal note on acute

exercise simulation [5]. This master’s project builds further on code constituting the hemodynamic ex-

ercise model and the corresponding parameter estimation procedure. The methodological basis for

progressing the original code is described throughout the report. The hemodynamic model itself and

extracts of the estimation procedure are reproduced in Section A.3 along with additions and amend-

ments developed in this work.

During the fall of 2021, I conducted another project on the model through the course TKT4550- Struc-

tural Engineering, Specialization Project, which resulted in an unpublished report titled "Sensitivity

Analysis of a Hemodynamic Model for Varying Exercise Intensity" [6]. Here, model behaviour was in-

vestigated within a statistical framework with emphasis on the input parameters and aspects of exercise

intensity. Resulting sensitivities and insights contribute as motivation and background for this master’s
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project. Parallel to the Specialization Project, medical engineering student Hilke Straatman from Eind-

hoven University of Technology worked on the MyMDT model through an internship at NTNU, which

resulted in an unpublished report [7] and a set of preliminary processed cardiovascular data that is used

in this project.

1.1.3 A Clinical Exercise Trial

Studies performed to evaluate any new drug or treatment are denoted clinical trials, and they are neces-

sary to obtain clinical approval [8]. As a medical tool, this applies also for the MyMDT model. Cardiovas-

cular data obtained in a clinical trial is in this project used to evaluate the hemodynamic model and its

ability to simulate exercise at different intensities. The trial, titled "Mapping of Cardiac Power in Healthy

Humans and Testing of a New Blood Pressure Sensor-a Pilot Study", was conducted with ethics approval

during the fall of 2021 [9], and will in this report be referred to as "the clinical exercise trial" or simply

"the trial". Details concerning the usage of trial data for this project are found in Section 4.1.

1.2 Problem Description

This master’s thesis is motivated by the possibility of contributing to the further development of the

MyMDT hemodynamic model towards its clinical ambition. Cardiovascular data is used to evaluate and

develop the model, with emphasis on aspects of parameter personalization and exercise simulations.

The purpose is to investigate how and if structural adjustments can improve the predictive accuracy and

physiological consistency of the model, without increasing its level of complexity. In silico experiments,

literature research, data analyses and physiological considerations constitute the project methodology.

A brief validation is performed to evaluate the current state and status of the model in relation to its

intended usage.

1.2.1 Objectives

Development and validation of the hemodynamic model constitute two distinct parts of this project,

whose objectives are:

I Model calibration and development.

Use data to identify model configurations that yield the most accurate and reliable personalized

predictions of pressure and flow during exercise, which implies analyzing the following procedures:
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i Estimation of model parameters. Investigate how the parameter estimation procedure should

be structured to obtain a baseline that accurately simulates the hemodynamic resting state, in

addition to facilitating physiologically plausible simulations of exercise state.

ii Simulation of exercise state. Given a set of baseline parameters, identify how the hemodynamic

exercise state should be simulated to be most consistent with data.

II Model validation.

Using the most reliable and accurate configurations from the first part, perform a validation of the

hemodynamic model, i.e.:

• Quantify individual and average errors.

• Evaluate the level of accuracy in relation to clinical criteria.

• Address potential issues with the current model and whether greater structural modifications

beyond altering the procedures in part I are necessary to achieve the clinical ambition of MyMDT.

1.2.2 Outline

The report is organized into seven chapters including this introductory chapter. Chapter 2 introduces

the overall anatomy and physiology of the CVS, its exercise response and methods of measurement that

are relevant for the clinical trial. Furthermore, the chapter contains a brief introduction to conceptual

and statistical aspects of the framework used to evaluate a predictive model. Chapter 3 is dedicated

to the hemodynamic model itself, including its mathematical structure, numerical solution method

and procedure for parameter estimation. Chapter 4 presents the project methodology for approach-

ing the objectives stated above. It is introduced with a description of the trial that constitutes the project

database, followed by a presentation of the model aspects that are subjected to investigation. Further,

the premises for evaluating model performance are defined. The chapter concludes with an overall sum-

mary of the project procedures, constituting the steps from which the results presented in Chapter 5 are

generated. Chapter 6 discusses the results in relation to model aspects presented in Chapter 4. Chapter

7 closes the report with a conclusion based on the preceding discussion, before suggesting how further

research may pursue and enhance insights and knowledge obtained in this master’s thesis.



Chapter 2

Theory

This chapter is primarily an introduction to the anatomy and physiology of the cardiovascular system

(CVS). Furthermore, a section is dedicated to the explanation of central statistical and conceptual as-

pects within the frameworks of model evaluation and validation.

2.1 Cardiovascular Physiology

In the following, anatomic and physiological properties of the CVS are reviewed. The majority of the

theory is based on chapters on cardiovascular physiology found in "Vander’s Human Physiology: The

Mechanisms of Body Function" by Widmaier et al. [2] and "Medical Physiology: Principles for Clinical

Medicine" by Rhoades et al. [10].

2.1.1 Overview of the CVS

Adequate blood flow is essential to supply cells in the body with oxygen, nutrients and hormonal sig-

nals, and to remove metabolic and cellular waste products such as carbon dioxide. This is achieved by

the CVS, which consists of the heart, the blood and the interconnected set of blood vessels, the latter

collectively referred to as the vascular system. Blood flow is generated by pressure gradients created by

the pumping action of the heart. The CVS forms a closed loop consisting of two distinct circuits that

both originate and terminate in the heart. The pulmonary circulation includes blood pumped from the

right ventricle through the lungs and further to the left atrium. From the left atrium the blood enters the

systemic circulation, where blood is pumped from the left ventricle through all body tissue and organs

except from the lungs, and then back into the right atrium [2].

Blood is pumped out of the heart through one set of vessels and is returned to the heart by a different

set. In both the systemic and pulmonary circuits, vessels carrying blood away from the heart are named

5
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arteries, while the blood is transported back towards the heart through veins. In the systemic circuit,

oxygen-rich blood leaves the left ventricle through a single large artery; the aorta. Aorta branches into

smaller vessels called arterioles and finally into capillaries. The capillaries exchange oxygen for carbon

dioxide by diffusion with the underlying body fluid before veins transport the blood through the body to

the vena cava and finally back into the right atrium. The pulmonary circulation is similarly composed.

Deoxygenated blood leaves the right ventricle via a large artery, namely the pulmonary trunk. The trunk

branches of into two pulmonary arteries that transport blood to each of the lungs, which are supplied

with oxygen by breathing. As blood flows through the lung capillaries, carbon dioxide is exchanged for

oxygen by gas diffusion. Oxygenated blood leaves the lungs via the pulmonary veins, which are emptied

into the left atrium [2].

Hemodynamics

Physical properties and factors governing blood flow are collectively referred to as hemodynamics [2].

As all fluids, blood exerts a hydrostatic pressure, resulting in a force on the walls of the blood vessels.

In general, blood flows from regions of higher to lower pressures, making the pressure gradient (∆P )

between two regions an important determinant of the corresponding blood flow (Q). To know the flow

at a given pressure gradient, one also needs to know the flow resistance (R), which is a measure of the

friction that impedes flow [2]. Three central determinants of resistance are blood viscosity (µ), vessel

length (L) and radius (r ). Under idealized flow conditions in a perfect tube, the contributions to R from

these factors are defined as follows [2]:

R = 8Lµ

πr 4
(2.1)

Further, pressure (P ), flow (Q) and resistance (R) are related by the following important relation [2]:

Q = ∆P

R
(2.2)

which is a general equation that governs all systems in which a fluid moves by bulk flow, i.e. flow where

all components move together [2]. Note that the magnitude of blood pressure varies throughout the CVS

for reasons that are explained in Section 2.1.3.

2.1.2 The Heart

The heart is a muscular organ whose function is to provide the driving force for the circulation. The wall

of the heart is named the myocardium, and is primarily made up by cardiac muscle cells [2]. Function-

ally, the heart consists of two vertically separated halves. Each half contains two chambers: An upper

chamber named the atrium and a lower called the ventricle. Blood empties from the atrium into the
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ventricle on its respective side. Together, the two halves can be viewed as two pumps in series that sep-

arately and simultaneously pump blood into the systemic and pulmonary arteries. The right ventricle

and right atrium are the pumping chambers for the pulmonary circulation, while the left ventricle and

left atrium support the systemic circulation [2].

To ensure correct direction of blood flow, the heart has four valves. The two atrioventricular (AV) valves

allow blood to flow from an atrium to a ventricle, but not in the reversed direction. The right AV-valve

is named the tricupsid valve, while the left is commonly known as the mitral valve. Pressure differences

across the AV-valves leads them to open and close. When atrial pressure exceeds corresponding ven-

tricular pressure, the intermediate valve is pushed open. On the contrary, a valve is forced closed when

the pressure in a contracting ventricle becomes greater than that in its respective atrium. Another valve

is located in the connection between the left ventricle and the aorta; the aortic valve, and one between

the right ventricle and the pulmonary trunk; the pulmonary valve. These two valves are open during

ventricular contraction, when blood flows from the ventricles into the arteries. They close during ven-

tricular relaxation to prevent blood from flowing in the opposite direction. Similarly to the AV-valves,

they open and close depending on the pressure gradient across them [2].

Like blood flow through vessels, the relation between flow, pressure and resistance (2.2) also applies to

flow between the various cardiac chambers through the valves. Thus, the resistance of a valve regulates

the flow at a given pressure gradient. However, in a healthy state, an open heart valve provides little

resistance to blood flow, causing small pressure gradients to produce large flows [2].

The Cardiac Cycle

The muscular heart wall, the myocardium, is contracting and relaxing in a cyclic manner. The cardiac

cycle is the sequence of mechanical, acoustic and electrical events that occurs between two following

heartbeats. A cardiac cycle is commonly represented graphically by time-dependent variations in left

ventricular and aortic pressures, left ventricular volume and blood flow. These variations are often rep-

resented along with tracings of the electrical activity (ECG) and heart sounds (PCG). Mechanical events

of the cardiac cycle are emphasized in this paragraph, while electrical and acoustic properties are briefly

reviewed in Section 2.1.4.
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A cardiac cycle consists of two major phases: The period of ventricular contraction and blood ejection is

named systole, while diastole refers to the period of ventricular relaxation and blood filling. For a typical

heart period of T = 0.8 s, approximately 0.3 s are in systole, while 0.5 s are in diastole [2]. These two

phases can further be subdivided into two periods in the following manner [2]:

• Systole

1. Isovolumetric Ventricular Contraction: This is the first part of systole. The ventricles are con-

tracting, but no blood is ejected due to closed valves.

2. Ventricular Ejection: This period is introduced once ventricular pressures rises above the

pressures in the aorta and the pulmonary trunk, causing the aortic and pulmonary valves

to open. Aortic and ventricular pressures are increasing in the rapid ejection phase, during

which approximately 70% of the blood to be ejected exits the ventricles [10]. The remaining

is ejected with declining pressures during the reduced ejection phase.

• Diastole

1. Isovolumetric Ventricular Relaxation: This is the first part of diastole. The ventricles begin to

relax and the aortic and pulmonary valves close. The AV-valves are also closed, which means

that ventricular volumes are unchanged.

2. Ventricular Filling: This period is introduced once the AV-valves open. The ventricles are

filled with blood flowing from the atria.

A cardiac cycle is typically represented by a plot of left ventricular pressure against corresponding vol-

ume, commonly known as a PV-loop, which is illustrated in Figure 2.1.
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Figure 2.1: A pressure-volume (PV) representation of the cardiac cycle. Letters a-d indicate the current
phase of the cardiac cycle. Here, a and d are diastole, while b and c are systole. The parts of each phase
are introduced and terminated by the opening or closure of a valve, marked by numbers 1-4. Point 1
represents the end of ventricular filling. Systole is initiated with the isovolumetric contraction phase (b)
that terminates in point 2; opening of the aortic valve. Ventricular ejection (c) concludes in point 3 with
the closure of the aortic valve and thus the end of systole. Diastole is introduced with the isovolumetric
relaxation period (d) followed by the opening of the mitral valve (4) and the ventricular filling phase
(a). Left ventricular pressure (LVP) is plotted against left ventricular volume (LV Vol). ESV and EDV refer
to the amounts of blood present in the left ventricle at end-systole and end-diastole, respectively. The
stroke volume (SV=EDV-ESV) is illustrated as the width of the PV-loop (red arrow). ESPVR and EPVRP
are end-systolic and end-diastolic pressure-volume relationships, respectively. Figure obtained from
[11] and used with permission from Richard Klabunde. The same illustration was also reused in [6].

The Cardiac Output

The blood volume ejected from each ventricle during systole is the stroke volume (SV):

SV = EDV−ESV (2.3)

where EDV and ESV are end-diastolic and end-systolic ventricular blood volumes, respectively. A rest-

ing, average sized adult will typically have SV ≈ 70 mL/beat [2]. Note that both ventricles have the same

SV. The ratio of SV to EDV is the ejection fraction (EF) [2]:

EF[%] = SV

EDV
×100% (2.4)

The blood volume pumped by each ventricle as a function of time is the cardiac output (CO) [2]:

CO = SV×HR (2.5)
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where heart rate (HR) [bpm] is the number of heartbeats per minute (bpm=beats per minute). CO ≈5.0

mL/min is normal for a resting adult [2]. Knowing the total blood volume, CO can tell the frequency by

which the entire blood volume is pumped around the CVS.

Determinants of Cardiac Output

As can be read from Equation (2.5), cardiac output is determined by heart rate (HR) and stroke volume

(SV). These quantities are further regulated as follows [2]:

I Heart rate: Inherent autonomous and nervous activation mechanisms determine HR.

II Stroke volume: SV is determined by the force of cardiac contraction, which is affected by a variety

of factors, including:

1. Preload: The initial stretch of the cardiac muscle prior to contraction, which is determined by

EDV. Tension in the cardiac muscle fibres is proportional to fiber length. Therefore, a greater EDV

will generate a greater stretch of the muscular fibres, and consequently a more forceful contrac-

tion. This effect is commonly known as the Frank-Starling Mechanism. Interrelations between

diastolic filling, preload and SV in the context of cardiovascular exercise response are further

elaborated on in Section 2.1.5.

2. Afterload: When the ventricle ejects a given blood volume, the contracting muscle must work

against a load generated mainly by arterial pressure. Elevated arterial pressure means that ven-

tricular pressure must increase accordingly for the valves to open and induce ventricular ejec-

tion. In general, muscles contraction is slower when working against a greater load. Hence, a re-

duced muscle fiber shortening rate due to increased afterload results in a lower velocity at which

the blood is ejected, and consequently a reduced SV [2].

3. Contracility: The innate ability of the myocardium to contract. Ventricular contractility is the

strength of contraction at any given EDV. Note that a change in contraction force due to increased

EDV (preload) does not reflect increased contractility.

The end-systolic pressure-volume relationship (ESPVR) in Figure 2.1 represents various combinations

of preload (volume) and afterload (pressure). By determining the pressure that the ventricle can gener-

ate at a given preload, ESPR defines a mechanical limit for how much blood can be ejected by a single

ventricular contraction. The slope of this line is a mechanical cardiac parameter named maximum left

ventricular elastance (Emax), and it is a clinical measure of cardiac contractility [12]. Similarly, the slope

of EDPVR is minimum left ventricular elastance (Emin), which characterizes the pressure-volume rela-
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tion during the filling phase, i.e. the passive state of the ventricle. Elastance (E) is in general a measure

of the expected change in shape of a hollow structure given a change in loading, mathematically defined

as [12]:

E = ∆P

∆V
(2.6)

where ∆P and ∆V are differences in pressure and volume, respectively.

2.1.3 The Vascular System

The vascular system refers to the interconnected set of blood vessels in the CVS. While the muscular

effects of the heart provide the driving force for blood flow in the CVS, the vascular system has a major

function in the regulation of blood pressure and the distribution of blood throughout the body according

to metabolic demands [2].

Compliance

A central mechanical property of a blood vessel is compliance. Compliance (C ) is a measure of how

easily a structure stretches at a given pressure [2]:

C = ∆V

∆P
(2.7)

Compliance is an important determinant of pressure in a given region of the CVS. The compliance of a

given blood vessel varies by location in the body. Arterial compliance decreases throughout the arterial

tree; a structure that originates in the compliant aorta and branches of into stiffer peripheral arteries.

Note that veins are in general much more compliant than arteries.

Blood Pressure

Blood pressure (BP) is the force exerted by the blood against the vessel walls. It is traditionally reported

in units of mmHg (millimetres of mercury). BP varies by location in the CSV. Since veins are overall

much more compliant than arteries, they can store large amounts of blood at a low pressure. Approx-

imately 60% of the blood volume is present in the systemic veins, but venous pressure is on average

only ≈10-15 mmHg [2]. Similarly, the pulmonary circulation is also a low-resistance, low-pressure cir-

cuit. Consequently, if not stated otherwise, "blood pressure" refers to systemic arterial blood pressure,

as this is in general of main clinical interest. Maximum systemic arterial pressure during a cardiac cycle

is named systolic pressure (SP or Psys). Diastolic pressure (DP or Pdia) is the minimum pressure value,

and it is reached just before ventricular ejection. BP is commonly reported as the range of systemic ar-
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terial pressure bounded by SP and DP, formulated as SP/DP. A BP of 120/80 mmHg is considered normal

in resting state for an average young male adult [2]. However, multiple factors such as age, sex, diet and

body weight all affect the range of arterial pressure. If the pressure chronically exceeds 140/90 mmHg,

the individual is by definition suffering from hypertension [2]. The left ventricle in a hypertensive indi-

vidual must consistently pump against increased arterial pressure (afterload). This leads to an adaptive

increase in cardiac muscle mass that over time alters the properties of the myocardial cells, resulting in

diminished contractile function and potentially heart failure [2]. As stated in Chapter 1, the presence

of hypertension also enhances the risk of developing kidney damage, stroke, atherosclerosis and heart

attacks. For every 20 and 10 mmHg increase in Psys and Pdia, respectively, the risk of heart disease and

stroke doubles [2].

The difference between SP and DP is the pulse pressure (PP).

PP = SP−DP (2.8)

By substituting PP for∆P in Equation (2.7) and utilizing that the change in volume during a cardiac cycle

is due to blood ejected from the left ventricle (SV), pulse pressure can be approximated as:

PP ≈ SV

Ca
(2.9)

where Ca is total arterial compliance.

Arterial pressure (Pa) changes continuously through the cardiac cycle. The average pressure value dur-

ing a cycle lasting between t1 and t2, i.e. mean arterial pressure (MAP or Pmap), is defined and commonly

approximated as [10]:

MAP =
∫ t2

t1
Pa d t

t2 − t1
≈ 2

3
DP+ 1

3
SP (2.10)

where the factors 2/3 and 1/3 follows that diastole lasts approximately twice as long as systole in resting

state. Substituting Q, R and ∆P in Equation (2.2) by cardiac output (CO), total peripheral resistance

(TPR) and MAP-Pra yields the following [2]:

MAP = CO×TPR (2.11)

where Pra is right atrial pressure, which is normally close to zero [2]. Hypertension will be reflected in

an increased MAP, which can theoretically result from both an increase in CO and TPR. However, in

most cases of primary hypertension, the most significant factor is increased resistance (TPR) caused by

reduced vessel radius in the arterioles [2]. The vast effect of vessel radius on resistance is apparent from

Equation (2.1), where radius (r ) is a determinant of R in 4th power.
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Figure 2.2: A typical arterial pressure waveform during a cardiac cycle for an average young male adult.
SP, DP and MAP are systolic, diastolic and mean arterial pressures, respectively. The point named di-
crotic notch represents the closure of the aortic valve. LVET is left ventricular ejection time. Illustration
inspired by Figure 12.34 in [2].

Figure 2.2 shows an arterial pressure wave that is typical for the pressure changes that occur over a

cardiac cycle in all of the large systemic arteries. Diastolic, systolic and mean arterial pressures are all

important characteristics of the arterial pressure waveform. The beginning of upstroke coincides with

diastolic pressure. The dicrotic notch is the prominent secondary upstroke in the descending part of the

aortic pressure wave, which occurs due to the closure of the aortic valve at the end of systole. The time

interval between the beginning of upstroke and the dicrotic notch is the left ventricular ejection time

(LVET), i.e. the total period during which blood is ejected from the ventricles. By utilizing that left ven-

tricular and arterial pressures are approximately equal at the end of systole, maximum left ventricular

elastance (Emax) can be expressed as:

Emax ≈ Pdn

ESV
(2.12)

where Pdn is the pressure at the time of the dicrotic notch, i.e. representing end-systolic pressure in the

left ventricle, and ESV is end-systolic volume.

2.1.4 Cardiovascular Measurements

This section emphasizes relevant methods of cardiovascular measurements in the context of the exercise

trial as well as clinical applications.
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Electrical and Acoustic Activity

Electrocardiography is the process by which an electrocardiogram (ECG) of the electrical activity of

the heart is produced. Phonocardiography is the tracing of heart sounds during a cardiac cycle, and a

phonocardiogram (PCG) is commonly depicted along with an ECG. Together with tracings of ventricular

and aortic pressures and volumes, ECG and PCG represent important characteristic events of a cardiac

cycle. Intervals between waves in the ECG and/or PCG are of physiological and clinical importance [10].

Particularly relevant for this project are the various measurements of systolic time intervals. Therefore,

this section elaborates on features of the ECG and PCG used to quantify the duration of systole.

Electrical systole (QT) is the the total duration of ventricular activation. QT is read directly from the ECG

as the time between the initiation of the QRS-complex and the end of the T-wave [10]. Electromechanical

systole (QS2) is the time between the onset of the QRS-complex and the first high frequency vibration

in the second heart sound of the aortic compartment (S2) [13]. The QRS-complex, T-wave and S2 are

depicted in Figure 2.3

Figure 2.3: Tracing of heart sounds (PCG) mapped to an electrocardiogram (ECG). The QRS-complex
represents electrical activation of the ventricles at the onset of systole (isovolumetric contraction). The
T-wave occurs when the ventricles are ejecting blood under declining aortic and ventricular pressures
(reduced ejection phase). The second heart sound (S2) is created by the termination of ventricular out-
flow caused by valve closure [10]. Figure obtained from [14], ©[2019], IEEE. Used with permission.

Blood Pressure

Blood pressure (BP) is a cardiovascular measurement of tremendous clinical interest. In general, the

ideal is to measure the BP exerted on the aorta directly, but because this is in most cases impractical, BP

is instead obtained in various other arteries depending on situation and available equipment. However,

neither pressure waveform nor values of Psys and Pdia are constant across the arterial tree. BP depends

on the site of measurement due to a redistribution of blood when it branches off from the aorta into pro-

gressively smaller arteries, and because of varying vessel stiffness throughout the arterial tree [15].



CHAPTER 2. THEORY 15

Figure 2.4: Amplification of the BP-waveform between the aorta and the carotid, brachial and radial
arteries. Figure obtained from [15], ©[2022] Oxford University Press. Used with permission.

Aorta is a more compliant blood vessel than the stiffer peripheral arteries. This leads the upper section

of the BP-wave to become more narrow and the peaks more prominent in accordance with increasing

distance to the heart [15]. The consequence is progressive amplification of the pressure waveform, as

illustrated in Figure 2.4. In the following, the clinical interpretation and methods of measurement for

aortic, carotid, brachial and radial blood pressures are explained. These concepts and their differences

are highly important for the usage of clinical data to evaluate the hemodynamic model.

Aortic BP

Blood is pumped from the left ventricle through the left ventricular outflow tract (LVOT) into the aorta,

which is the largest artery. Aortic BP is the pressure at the root of the aorta, i.e. in the section of the aorta

attached to the heart. Therefore, aortic BP is also denoted central BP, or central aortic BP (CAP). CAP is

considered the most significant indicator of the pressure experienced by the heart and other vital organs

[16]. The BP represented by the hemodynamic model is CAP. However, obtaining direct measurements

of CAP is cumbersome, commonly involving the complicated procedure cardiac catheterization [15].

This is clearly an unsuitable method for routine screenings as well as for experimental testing of the

hemodynamic model. Hence, peripheral measurements of BP are more frequently chosen for clinical

applications, and they were also used in the exercise trial.

Carotid BP

The carotid arteries supply the head and brain with blood, and are located on both sides of the neck [10].

Carotid pressure waveforms were in the exercise trial recorded by applying the noninvasive method

applanation tonometry over the carotid artery. As illustrated in Figure 2.4, carotid BP is expected to

provide a better representation of aortic BP compared to more distal waveforms [15]. However, as this

method does not yield explicit pressure values, systolic and diastolic BP were recorded at the brachial

artery.
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Brachial BP

Brachial cuff sphygmomanometry is the method most commonly used to record BP due to its ease of

measurement as well as suitability for assessing values of systolic and diastolic pressures (SP and DP).

The sphygmomanometer uses a cuff that is wrapped around the arm of an individual and inflated to a

pressure exceeding SP before it is released to obtain values for SP and DP. For details concerning this

method, the reader is referred to [10].

Radial BP

The clinical exercise trial introduced in Section 1.1.3 collected radial pressures invasively by catheteri-

zation of the radial artery. Radial pressures were in contrast to carotid and brachial BP collected during

exercise in the clinical trial. The various pressure measurements obtained in the trial and how they are

used in this project are further elaborated on in Section 4.1.

Blood Flow

Doppler ultrasounds are often used to detect blood flow in vessels and across heart valves. A Doppler in-

strument determines flow velocity by measuring the change in frequency (the Doppler shift) that occurs

when the produced ultrasound wave is reflected by circulating red blood cells [10]. The clinical exercise

trial recorded Doppler flow velocity in the left ventricular outflow tract (LVOT).

2.1.5 Cardiovascular Exercise Response

Exercise generates a physiological response in the body to adapt to increased demands in respiratory,

metabolic and cardiovascular activity. The response includes elevated body temperature, higher oxygen

consumption and increased skeletal muscle blood flow [2]. Exercise refers in this context to cyclic con-

traction and relaxation of muscles over a period of time, such as cycling or jogging. From the view of

exercise physiology, exercise is by definition planned, structured and with a clear purpose, while physi-

cal activity refers to any event involving skeletal muscle use [17]. In the context of this project, exercise

refers to also events of general physical activity that do not necessarily fulfill the criteria of structure and

purpose. The essence is that the activity endures for some time. A single, intense muscle contraction will

generate a very different response and is less relevant for this work. In the following, central physiolog-

ical changes in cardiovascular variables generated by exercise are reviewed, with emphasis on response

mechanisms considered most relevant in the context of modelling hemodynamic exercise state. The

arrow depicted along with each variable denotes change during exercise (→⇒unvarying, ↑⇒increase,

↓⇒reduction).
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•
xHeart rate: Neural mechanisms stimulate the electrical system in the heart, causing heart rate

(HR) to increase during exercise within a range from < 50 bpm in a fit individual to > 200 bpm

during maximum effort [10]. The duration of the cardiac cycle, i.e. the heart period (T = 60/HR), is

consequently reduced.

• ↑ End-diastolic ventricular volume: Diastolic filling time is decreased due to increased heart rate,

which if not counteracted would decrease end-diastolic volume (EDV). However, multiple factors

promoting venous return (VR), i.e. blood flow from the peripheral veins to the right atrium, more

than compensate for the reduced filling time [2]. Using Equation (2.2), VR is expressed as [18]:

VR = Pv −Pra

Rv
(2.13)

where Pv and Pra are venous and right atrial pressures, respectively, and Rv is venous resistance.

Therefore, increasing Pv (or decreasing Pra or Rv ) increases VR. Central factors promoting VR dur-

ing exercise are [2]:

1. Skeletal muscle pump: Muscle contractions compress the veins, increase venous pressure,

and force more blood back to the heart.

2. Respiratory pump: Inspiration of air causes the chest wall to expand and the diaphragm, i.e.

the muscle separating the thorax (chest cavity) from the abdomen, to descend. This increases

abdominal pressure, and thoracic pressure becomes more negative. Expansion of the chest

cavity causes the right atrial pressure to decrease [19]. The net effect is an increased pressure

gradient between the heart and peripheral veins and thereby VR, which promotes flow of

more blood towards the heart [2].

• ↑ Stroke Volume: The total effect of exercise on SV depends on simultaneous effects that impact

ventricular systolic function and diastolic filling time, but the net effect is in general increased SV.

Important factors facilitating this are:

1. Preload: Increased VR and EDV during exercise result in increased cardiac preload, which by

the Frank-Starling mechanism described in Section 2.1.2 makes the heart contract with more

force, thereby increasing SV [2].

2. Contractility: Myocardial contractility increases during exercise, generating a larger force in-

dependent of preload [2].

3. Lusitropy: Refers the rate of myocardial relaxation, which is faster at increased HR [13]. This

mechanism is elaborated on in the following paragraph.



CHAPTER 2. THEORY 18

•
x Cardiac output: HR and SV increase, the former to the largest extent. The net effect is by Equa-

tion (2.5) increased CO.

•
x Systolic pressure: SP increases due to an increase in both SV and the speed at witch the blood is

ejected from the ventricles.

• ↓ Total peripheral resistance: TPR decreases due to a greater reduction in resistance in the heart

and skeletal muscles than the increase present in non-active organs [2].

• ↓ Arterial compliance: Ca decreases as arterial pressure increases [10].

• → Diastolic pressure: No significant fluctuations or tendencies.

• ↑Mean arterial pressure: CO increases more than TPR decreases, resulting in increased MAP (2.11).

The Lusitropy Mechanism

Contractile forces in the heart are generated in the myocardium by a type of cells named cardiomy-

ocytes that work in a contraction-relaxation cycle [20]. This process is controlled by highly complex

electrophysiological processes, which are beyond the scope of this report. During exercise, the demand

for increased cardiac output requires a change in the rate of contraction of the cardiomyocytes [20]. The

mechanism that refers to the accelerated relaxation of cardiomyocytes at increased heart rate is known

as lusitropy. The heart period is reduced during exercise, and consequently also the time available for

diastolic filling of the ventricles. If not counteracted, shortened filling time would have decreased end-

diastolic volume (preload) and by the Frank-Starling Mechanism also stroke volume (Section 2.1.2). By

increasing the rate of myocardial relaxation, the lusitropy mechanism reduces systolic activation time,

thus indirectly contributing to the preservation of diastolic filling during exercise.

2.2 Framework for Evaluation and Validation of a Model

Model evaluation refers to the part of the development process where statistical metrics are used to

understand model performance. Validation is essentially the comparison of measured behaviour of a

given system to predictions yielded by a mathematical model. This section emphasizes central practi-

cal and theoretical aspects of model evaluation and validation. First a conceptual summary of relevant

background from the Specialization Project [6] introduced in Section 1.1.2 is provided. Further, impor-

tant statistical definitions and selected error metrics used for evaluation and validation purposes in this

work are presented. The section concludes with a summary of important, general principles of model

validation, which as stated in the objectives (Section 1.2.1) is a part of this project.
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2.2.1 Uncertainty and Sensitivity

The topics for the Specialization Project [6] were model uncertainty and sensitivity, applied on the

hemodynamic model. In the following, the concepts of uncertainty and sensitivity are briefly reviewed

to provide a base for interpreting and understanding results from [6] that are referred to in the current

work.

Two central challenges related to model uncertainty impact the translation of a mathematical model

into a clinical tool [21]. Firstly, model personalization requires patient-specific parameters, whose as-

sessment can be prone to many sources of errors. Biological and time-dependent variations and instru-

mental inaccuracies impact the majority of clinical measurements. Neither are measurements available

for all model parameters. Secondly, capturing all relevant physics and physiology requires a certain

level of model complexity. However, increased complexity means more implemented mechanisms that

are followed by an increased number of parameters, introducing more uncertainty into the model. An

optimal level of accuracy requires balance between the uncertainty associated with the number of pa-

rameters and the uncertainty resulting from model simplifications. This balance is illustrated in Figure

2.5.

Figure 2.5: Output uncertainty as a function of model complexity. Image obtained from [21] ©[2022]
John Wiley & Sons, Inc. Used with permission. The same illustration was also reused in [6].

Some parameters impact model behaviour more than others, and it is beneficial that these are identi-

fied. If a parameter is discovered to be particularly influential on exhibited system behaviour, its de-

termination and/or tuning may be essential to model performance. It can also be desirable to target

specific model outputs that exhibit implausible behaviour without altering those that already behave

adequately. Such insights can be obtained by a sensitivity analysis (SA). SA quantifies the contributions

to the variance of a model output Y j from each model input Zi and their interactions [21]. The Spe-
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cialization Project calculated total, global, variance-based Sobol sensitivity indices for selected model

outputs to each input parameter. The following understandings of the descriptive properties of this

type of sensitivity index are obtained from Saltelli et al. [22]: A global index is computed across the en-

tire input space and not only at the point of evaluation, which is the case for local methods. Variance

based refers to the decomposition of output variance into fractions assignable to input parameters and

their interactions. Total sensitivity refers to the contribution of input parameter Zi to output variance

V[Y ] including interactions of arbitrary order with any other input, in contrast to 1st order indices that

only measure the direct contribution of Zi to V[Y ]. The total sensitivity index, ST,i , is given as [21]:

ST,i = E[V[Y | Z−i ]]

V[Y ]
= V[Y ]−V [E [Y | Z−i ]]

V[Y ]
= 1− V [E [Y | Z−i ]]

V[Y ]
(2.14)

where Z−i is the set of all uncertain inputs, excluded Zi [21]. E [V [Y | Z−i ]] is the expected variance re-

maining after all parameters except Zi have been fixed, and is therefore analogous to the total sensitivity

to Zi . An interpretation of ST,i is expected reduction in the variance of Y if there was no uncertainty re-

lated to Zi [22].

2.2.2 Statistical Description of Data

Treatment of experimental data requires knowledge about some central statistical metrics.

Mean Value

The mean value, also known as the average value, is calculated from N measured data points ym as:

Y =µY = 1

N

N∑
i=1

ym
(i ) (2.15)

Standard Deviation

Standard deviation measures average deviation between data points and their corresponding mean:

σY =
√
σ2

Y =
√√√√ 1

N −1

N∑
s=1

(
y (s) −µY

)2 (2.16)

whereσ2
Y denotes variance, which is the square of the standard deviation (σY ). Because the unit ofσY is

the same as [Y ],σY is often preferred overσ2
Y to quantify the amount of variability in a dataset. Whether

deviations between measurements and model predictions are a consequence of model inaccuracy or

data variability is important when evaluating and/or validating a model.
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2.2.3 Error Metrics

Performance of a forecasting model can be quantified by a number of error metrics. This section presents

the metrics chosen in this project to evaluate and validate the predictions made by the hemodynamic

exercise model against data collected in the clinical exercise trial.

Mean Absolute Error

Deviations between measured and predicted values are frequently quantified by the mean absolute error

(MAE). This is the average of the absolute errors, and is calculated from model predictions (yi (θ)) and

corresponding measurements ym
i as:

1

N

N∑
i=1

∣∣ym
i − yi (θ)

∣∣ (2.17)

Bias

In cases where the sign of the error is of interest, the bias is preferable to MAE. Bias is calculated as:

1

N

N∑
i=1

(
ym

i − yi (θ)
)

(2.18)

Note that bias must be treated with caution, as it can show misleadingly low errors if deviations are

symmetrically distributed around zero.
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2.2.4 Performing a Model Validation

As stated in Section 1.2.1, a part of this project is to validate the hemodynamic model against experi-

mental data. In general, validations are performed to assess whether the quality and accuracy of model

predictions are adequate in relation to intended purpose. According to Saltelli et al. [22], a validated

model can be defined as having undergone a series of extensive experimental tests that have confirmed

its ability to adequately predict the behaviour of a given system. Model validation is conditional upon

current knowledge. Because the model is subjected to new assumptions, data and structural adjust-

ment, its development is an iterative procedure [23]. A validation process includes the following steps,

which are based on the works on introduction to model validation by Paez [24] and Collier & Lambert

[23]:

1. Clarify the intended purpose and area of application for the model.

2. Describe the validation experiments.

3. Specify the conceptual model, i.e. assumptions and physical processes from which the mathe-

matical model is constructed.

4. Describe the mathematical model, including equations, initial and boundary conditions.

5. Describe the computational model, i.e. the numerical implementation of the mathematical model.

6. Specify the quantities of interest in the physical system.

7. Specify the validation metrics against which model performance are to be evaluated.

8. Describe the calibration experiments, i.e. the process from which model parameters and other

settings are obtained to improve the agreement between experimental data and predictions.

9. Define the validation criteria the model needs to meet to be considered sufficiently accurate in

perspective of its intended purpose.



Chapter 3

A Hemodynamic Model For Varying Exercise

Intensity

This chapter presents the numerical structure and algorithmic technicalities of the hemodynamic exer-

cise model under development in the MyMDT project. Connections between the physiological quanti-

ties presented in Section 2.1 and model implementations are particularly emphasized. First, the equa-

tions constituting the model are presented along with their physiological origin, followed by a descrip-

tion of input parameters and the procedure from which they are determined. Further, the numerical

solution procedure for the model is explained, and output quantities of interest presented. The chapter

concludes with a section on simulation of hemodynamic exercise state.

3.1 Conceptual Summary

Hemodynamics are the dynamics of blood flow. Simulated blood flow in a hemodynamic model is gov-

erned by physical factors such as vessel stiffness (compliance), volume and heart rate. Laws of conser-

vation of mass and momentum are lumped over the heart, arteries and veins, which in the the MyMDT

model are modelled as separate compartments embedded in a closed circuit. This simplification yields

a behaviour of simulated pressure and flow that is found transferable to voltage and current in electric

circuit theory. Some mechanisms are very complicated to describe mathematically, such as the varia-

tion of certain cardiovascular parameters during exercise. Thus, population-based curve fits constitute

a complementary tool when modelling a hemodynamic exercise state.

The purpose of the MyMDT model is to produce realistic predictions of pressure and flow during rest and

exercise conditions, while respecting key principles of personalizability, simplicity and computational

efficiency. Hence, all model parameters need to be relatively easily determined or approximated on

23
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an individual level. The model under development is a minimal, 0-dimensional, lumped parameter

hemodynamic model formulated in global systemic quantities. The term 0-dimensional implies that

wave properties are excluded. Lumped means that the behaviour of the distributed system, which in

this case is the systemic CVS, is approximated by discrete model compartments, i.e. the arteries, veins

and the left ventricle. The compartments are embedded in a closed loop with constant total volume.

Mathematical descriptions of the discrete model compartments are presented in the following sections.

The presentation builds further on descriptions also provided in [6], and was originally inspired by the

structuring found in [25].

3.2 Modelling Cardiac Function

Cardiac function refers to the description and quantification of how the pumping action of the heart

interacts with the vascular system. As described in Section 2.1.2, blood is pumped into the systemic

circulation from the left ventricle. Because the hemodynamic model exclusively describes the systemic

circuit of the CVS, cardiac function is modelled as the pumping action generated by the left ventricle.

Many aspects of cardiac behaviour are described by considering the left ventricular pressure–volume

relationship, as illustrated in Figure 2.1. The slope of the end-systolic pressure–volume relationship (ES-

PVR) is an important mechanical cardiac parameter denoted Emax; maximum left ventricular elastance,

which clinically represents cardiac contractility [12]. Elastance was mathematically defined in Equation

(2.6), and its physiological meaning described in Section 2.1.2. In the model, Emax and Emin are im-

portant parameters for describing cardiac function in the active (contractile) and passive (filling) state,

respectively. Two model parameters determine times of occurrence of events in a simulated cardiac cy-

cle; the duration of a cycle is defined by the heart period (T ), and the parameter tpeak represents the

time at which Emax occurs. Hence, T and tpeakare denoted timing parameters. The set of parameters

and equations that describe the cardiac function constitute a time-varying elastance model.

3.2.1 Time-Varying Elastance Model

The pumping action of the left ventricle, i.e. the cardiac function, is represented by a time-varying elas-

tance model [25]. The hemodynamic model uses a time-varying elastance (E(t )) to link the cyclic ac-

tivation and relaxation behaviour of cardiac muscle fibres in the myocardium to the pressure exerted

on the blood by the heart (Plv), which ultimately drives the fluid. This is achieved by setting the magni-

tude of E(t ) to vary periodically between Emax and Emin; Emin ≤ E(t ) ≤ Emax. In total, the equations that
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constitute the time-varying elastance model are:

Plv(t ) = E(t )×Vlv +Pth

E(t ) = (Emax −Emin)×e(t )+Emin

(3.1)

where e(t ) is a dimensionless activation function that varies in magnitude from 0 in the passive (relaxed)

state to 1 in the active (contracted) state [25], and its shape is determined mainly by tpeak. The explicit

expression for e(t ) is stated in Equation (A.3). Further, Plv and Vlv are left ventricular pressure and vol-

ume, respectively, while Pth is the intrathoracic pressure function representing external pressure effects

on the cardiac muscle. In the hemodynamic model, this effect is simply defined as a constant; Pth=-4

mmHg. Finally, E(t ) is the elastance function, with a period of T = 60/HR, where T [s] is the heart period,

and HR [bpm] is the heart rate.

3.3 Modelling Vascular Function

As stated in Section 2.1.3, the vascular system is the interconnected set of blood vessels in the CVS.

Two central functions of the blood vessels are to store and to transport blood, which are modeled sepa-

rately in this lumped parameter model. Compliance, explained in Section 2.1.3 and defined in Equation

(2.7), is used to represent storage capacity. Resistance governs blood flow as described in Section 2.1.1

and defined in Equation (2.2). In the context of exercise physiology, the pulmonary circulation and the

lung function are also relevant for cardiovascular exercise response. Nevertheless, the MyMDT hemody-

namic exercise model takes account of the systemic circulation only. A central argument for not adding

lung function and a pulmonary circuit to the model is to keep the level of complexity and the number

of patient-specific parameters to a minimum. As shown in Figure 2.5, this principle of minimization

is beneficial for limiting the amount of model uncertainty. Furthermore, measurements related to the

heart and large arteries are more frequently collected in clinical settings. Respiratory function, com-

monly quantified by maximal oxygen uptake (V02-max), is considered of less interest in the context of

hypertension, and MyMDT aims to use a minimal selection of personal input data to calibrate the model

into simulating and predicting blood pressure. Hence, all vascular quantities treated by the model rep-

resent the systemic circulation, which consists of the systemic arteries and systemic veins. In short,

the model is a closed circuit representing the systemic circulation, including a time-varying elastance

model to represent left ventricular function.
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3.3.1 Three-Element Windkessel Model

The arterial compartment of the model is described with a three-element Windkessel model (3WK) [25].

Here, three-element refers to the three mechanical vascular parameters; systemic resistance (Rsys), ar-

terial compliance (Ca) and aortic impedance (Zao). Systemic resistance refers to the resistance offered

by the entire systemic vasculature. Arterial compliance represents the total compliance (stiffness) of the

large systemic arteries, and the term is often used interchangeably with aortic compliance. Similarly,

the use of the terms arterial pressure (Pa) and aortic pressure (Pao) is often inconsistent. As aorta is

the largest contributor to arterial compliance and pressure, simplifications and practical limitations in

measurements make separating aortic from arterial properties impractical from a modelling perspec-

tive. Thus, aortic and arterial are used somewhat interchangeably also in this work.

The third element in 3WK is impedance. Aortic characteristic impedance (Zao) is defined as the ra-

tio between the forward propagating pressure and the corresponding flow in the aorta [26]. However,

the MyMDT model is 0-dimensional, meaning that wave propagation is not considered. Therefore,

impedance relates aortic pressure to flow in addition to capturing aortic valve resistance. Note that

aortic valve resistance is important for the ejection phase of systole, but its impact is included in Zao

instead of an independent parameter in this model.

3.3.2 The Venous Compartment

As described in Section 2.1.3, veins are very compliant vessels, and highly important in the storage of

blood. Note that veins are of less importance compared to arteries in relation to blood pressure due to

their inherent low pressure properties. In the model, the storage capacity of the venous compartment is

represented by a venous compliance (Csv). Regarding flow properties, blood flows between the venous

side and the heart in the course of the diastolic filling phase, during which resistance is offered by the

mitral valve. This resistance is captured by the parameter Rmv, which represents the force that opposes

blood flow between the venous side and the heart. Thus, Rmv is an effective resistance, as it does not

only represent the resistance in the mitral valve alone.
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Figure 3.1: Schematic illustration of the closed-loop model used in the MyMDT project. Depicted are
the tree model compartments left ventricle, arterial and venous vasculature. Mechanical circulation
parameters are presented in its corresponding compartment. Systemic resistance (Rsys), aortic compli-
ance (Cao), and aortic impedance (Zao) describe the arterial compartment, while venous compliance
(Csv) and mitral valve resistance (Rmv) represent venous function. Further, P denotes pressure, and
subscripts sa and sv denote systemic arteries and veins, respectively. The external intrathoracic pres-
sure (Pth) is indicated next to the heart. Pumping function is represented by left ventricular pressure
(Plv) and time-varying elastance Elv(t ). Finally, Vtot determines the total amount of blood volume in the
closed-loop. The same illustration was also reused in [6]. Figure originally obtained from [4], licensed
under CC BY 4.0 [27].

3.3.3 Conservation of Mass

The governing differential equations (ODEs) for the lumped parameter model are based on the law of

mass conservation applied on the systemic circulation. The parameter Vtot defines the total amount

of volume present in the closed-loop illustrated in Figure 3.1. Note that only stressed blood volume is

taken into account, i.e. the amount of blood that generates a stretch in the vessel walls. Physiological

blood volume also includes an unstressed part (V0). This volume is present in a compartment without

exerting pressure on its walls, and is not considered by the model. Potential issues regarding this feature

are discussed in Section 6.1.2.

Circulation in the model is closed, hence total (stressed) blood volume (Vtot) is conserved:

Vtot =Vlv +Vsa +Vsv (3.2)

where subscripts lv, sa and sv denote left ventricle, systemic arteries and systemic veins, respectively.

The volumes Vlv, Vsa and Vsv are state variables for each respective model compartment. Note that

the blood volume contained in the pulmonary circulation and the right ventricle are unstressed, and
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therefore not treated by the model.

According to the law of mass conservation, volume change in any model compartment can be expressed

using the following ODE [26]:
dV

d t
=Qin −Qout (3.3)

where Qin and Qout are, respectively, blood flow in and out of any model compartment, which in this

context is the arterial vasculature, venous vasculature and the left ventricle. Section 3.5 describes explic-

itly how Equation (3.3) is used in the numerical composition of the ODEs constituting the hemodynamic

model.

3.4 Personalized Estimation of Model Input Parameters

This section describes the model input parameters and reviews the numerical estimation procedure

from which they are determined. A more elaborate explanation of this method is found in [4].

3.4.1 Model Input Parameters

There are ten individual baseline parameters in the hemodynamic model, excluding exercise and inten-

sity describing parameters. Within these ten, seven parameters describe mechanical properties; Emax,

Emin, Cao, Csv, Zao, Rsys and Rmv, two are timing parameters; tpeak and T , and the final parameter Vtotis

the total amount of stressed blood volume in the system. Sections 3.2 and 3.3 described how each of

these ten parameters represent a property of either the left ventricular, arterial, or venous model com-

partments, or the system as a whole (Vtot). For a physiological explanation of the parameters, the reader

is referred to Section 2.1. A recapitulation of the parameters and their function in the hemodynamic

model is presented in Table 3.1.
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Parameter (θ) Unit Compartment Type

Emax mmHg/mL LV Mechanical

Emin mmHg/mL LV Mechanical

Cao mL/mmHg Arteries Mechanical

Rsys mmHg×s/mL Arteries Mechanical

Zao mmHg×s/mL Arteries Mechanical

Rmv mmHg×s/mL Veins Mechanical

Csv mL/mmHg Veins Mechanical

Vtot mL Total vasculature State-determining

tpeak s LV Timing

T s LV Timing

Table 3.1: Input parameters for the hemodynamic model. Column Compartment specifies whether the
parameter describes a left ventricular (LV), arterial or a venous property. Column Type describes the
function of the parameter in the model. Parameters representing stiffness (compliance or elastance)
or resistance/impedance are mechanical system properties. As stated in Equation (3.2), Vtot limits the
compartmental state variables Vlv, Vsv and Vsa, thus it is defined as state-determining. Parameters cate-
gorized as timing parameters influence times of occurrence of model events.

3.4.2 Numerical Estimation Procedure

The parameter estimation procedure is based on minimizing the deviation between measured data (ym
k )

and model prediction y (tk ,θtrue). The following relation is assumed [4]:

ym
k = y (tk ,θ)+Ek (3.4)

where superscript m denotes measurement and subscript k specifies the timing. Note that the inclusion

of k in Equation (3.4) is necessary when comparing two time series, but not for scalar predictions. The

purpose of the estimation procedure is to determine the set of model parameters (θ) that minimizes the

deviation Ek . Since there are multiple model predictions of interest, a quantification of the overall level

of agreement between model fit and data is needed. This is achieved by the cost function:

J (θ) =
(

Psys (θ)−P m
sys

KPsys

)2

×WY +
(Pdia (θ)−P m

dia

KPdia

)2

×WY +
(

SV (θ)−SV m

KSV

)2

×WY

+
N∑
k

(
Qlvao(θ)−Qm

lvao,k

KQlvao

)2

+
N∑
k

(
Pao(θ)−P m

ao,k

KPao

)2

+
(

MVP(θ)−MVP f

KMVP

)
×WY

(3.5)

where the Ky are scaling factors included to ensure that contributions to J (θ) are weighted approx-

imately equally across all types of predictions [4]. Explicit values of Ky are found in Table A.1. The

full implementation of J (θ) in Python as developed by Dr. Sturdy and Ph.D. Candidate Bjørdalsbakke
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through the MyMDT project is included in Section A.3.2, along with modifications and amendments

developed through this work (Section 4.2).

As implied by J (θ) in Equation (3.5), the estimation procedure is based on minimizing the residual be-

tween simulated pressure and flow waveforms (Pao and Qlvao), and corresponding continuous measure-

ments, which are collected in resting state. The residuals for the waveforms are summed over N points

in time (k). Furthermore, the hemodynamic scalar quantities Psys, Pdia, SV and MVP are included in

J (θ), because they are considered important in the context of diagnosing hypertension as well as be-

ing frequently measured in clinical settings. As waveforms contribute to the residual vector with many

more points compared to the scalars, scalar contributions are multiplied with a factor (WY ) depend-

ing on their considered importance and the length of the pressure waveform. The weighs are explicitly

stated in Equation (A.5). Mean venous pressure (MVP) is weighted less than Psys, Pdia and SV, because

it is not considered equally important, and its reference value is very generally defined. Note that there

are no available measurements for venous pressures from the trial, but MVP (Psv) is still included in J (θ)

to ensure a realistic effect of the venous compartment on the remaining system. As stated in Section

2.1.3, venous pressure is commonly 10-15 mmHg, while the pressure in the right atrium is normally ≈0

mmHg [2]. Reported values for central venous pressure (CVP) vary down to 0, where CVP is the pressure

in the vena cava, near the right atrium. As it is ambiguous which value is the most correct to use for

diastolic filling, the reference value is chosen as MVP f =6 mmHg, which is located in the middle range

of [0–15] mmHg. The cost function may be adjusted to include or exclude model outputs. This project

primarily considers the version stated in Equation (3.5), with the exception of experiments where J (θ)

is penalized if the resulting ejection fraction (2.4) falls outside a preset range (Section 4.2.6).

After having defined the cost function, personalized parameters (θ) are estimated by solving the mini-

mization problem:

argmin
θ∈Θ

J (θ) (3.6)

whereΘ represents predefined parameter bounds, whose purpose is ensuring that parameters are esti-

mated within physiologically reasonable ranges, which are explicitly stated in Section 4.2.5. The mini-

mization problem (3.6) is solved by a numerical optimization procedure. For this project, an implemen-

tation available through scipy.optimize is chosen for this purpose (scipy version no. 1.7.3 [28]). The

cost function J (θ) and the bounds (Θ) are passed to the function least_squares(), which finds a local

minima on the cost function [28]. Argument method is set to use the trust region reflective algorithm

("trf") to perform the minimization. "Trf" is a robust algorithm that is also suitable for solving bounded

problems [28]. Advantages and disadvantages associated with constraints in the context of estimating

parameters for the hemodynamic model are discussed in Section 6.1.3. Note that the cost function is
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passed as a vector of residuals, i.e. J (θ) without the squares, as calculation of squared residuals is done

in scipy.optimize.least_squares() [28]. Explicit implementations of J (θ) and extracts of the opti-

mization procedure are included in Section A.3.2.

3.5 Numerical Solution Procedure

This section describes the mathematical structure of the hemodynamic model along with its prerequi-

sites and limitations. It is shown how model ODEs are solved and relevant cardiovascular predictions ex-

tracted from these solutions. The equations and the numerical solution procedure is originally obtained

from [4], and the following description builds further on a similar presentation provided in [6].

3.5.1 Model Equations

The hemodynamic model contains a set of nonlinear ordinary differential equations (ODEs) that de-

scribe the stressed blood volumes of its three compartments; systemic arteries (Vsa), systemic veins

(Vsv) and left ventricle (Vlv), and also corresponding flows and pressures [4]:

dVao

d t
=Cao

dPao

d t
=Qlvao −Qaosv ⇐⇒ dPao

d t
= Qlvao −Qaosv

Cao

dVsv

d t
=Csv

dPsv

d t
=Qaosv −Qsvlv ⇐⇒ dPsv

d t
= Qaosv −Qsvlv

Csv

dVlv

d t
=Qsvlv −Qlvao

(3.7)

which is a result of the law of mass balance (3.3) applied on the model compartments. Subscripts ao and

sv refer to the aorta and systemic veins, respectively. Note that all properties related to the total systemic

arterial vasculature are lumped to the aorta as a part of model simplifications, meaning that there is

no practical difference in the model between the arterial system and the aorta (Csa ⇔Cao). As before,

C refers to compliance and P is blood pressure. Further, Qlvao is the flow from the left ventricle (LV) to

the aorta (systemic arteries), Qaosv is flow from the aorta to the systemic veins and Qsvlv is flow from the

systemic veins to the LV. Arterial and venous volumes are additionally modelled as linear functions of

corresponding pressure based on Equation (2.7), i.e. V = C ×P , where C is respective compartmental

compliance. Furthermore, blood flow between compartments is governed by corresponding pressure

gradient and respective resistance according to the linear relation Q = ∆P/R, which is Equation (2.2)

rewritten. An additional effect is present in left ventricular flow, namely the effect of valves. As described

in Section 2.1.2, valves ensure that the direction and timing of the flow are in accordance with the cardiac

cycle, and they are therefore modelled as diodes. Consequently, LV-flow is linearly related to negative
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pressure gradients, and 0 when ∆P > 0 [4]. LV-pressure (Plv) is approximated as linearly related to Vlv,

i.e. Plv = Elv(t )×Vlv, where Elv(t ) is the time-varying elastance function (3.1). The complete system of

equations and additional relations that constitute the hemodynamic model are found in Section A.1.1,

and the computational implementation in Section A.3.1.

3.5.2 Numerical Scheme

The model ODEs (3.7) are solved by a 4th-order Runge-Kutta scheme [4], as implemented in the python

module scipy.integrate. The right hand side of the equation system is passed to the function

solve_ivp(), with method = "RK45", rtol = 1×10−9 and atol = 1×10−10 as arguments. "RK45" implies

that the error is controlled assuming accuracy of the 4th-order method, but steps are taken using the 5th-

order accurate formulation [29]. Relative tolerance (rtol) controls the relative accuracy , i.e. the number

of correct digits, while absolute tolerance (atol) controls absolute accuracy, i.e. the number of correct

decimal places [29]. Remaining model outputs are further calculated directly based on ODE solutions

of Pao(t ), Psv(t ) and Vlv(t ) by a set of algebraic equations (A.2).

3.5.3 Model States

The hemodynamic model simulates the CVS in either resting or exercise state. When model equations

are solved for resting parameter values and heart rate (HR) equal to its resting value, HRrest = 60/T , the

model is simulating resting state. Exercise state is simulated by setting model parameter T = 60/HR equal

to the instantaneous exercise value and shifting certain baseline parameters, which is further described

in Section 3.6.

The shifted parameters replace the initial (resting) values using the model function set_pars() (Sec-

tion A.3.1), before the equations are solved as before. Now, the model is simulating exercise response at

a constant intensity. Note that neither the physiological presence of beat-to-beat variations nor transi-

tions between intensity levels are considered.

3.5.4 Initial Conditions

An initial value problem solver-algorithm such as scipy.integrate.solve_ivp() requires initial con-

ditions. In general, solutions to ODEs are dependent on initial conditions. However, in this system,

initial conditions are only partly adjusted to match different sets of inputs. Initial aortic pressure (Pao,0)

and left ventricular volume (Vlv,0) are, regardless of the baseline parameters, set to 100 mmHg and 100

mL, respectively [4]. Initial venous pressure (Psv,0) depends on the resting parameters Vtot, Cao and Csv,
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and the initial aortic pressure and left ventricular volume, Pao,0 and Vlv,0, according to Equation (A.4).

This is to ensure that compliance-pressure-volume relations are not violated, and ensure that the sum

of initial compartmental volumes equals Vtot. The initial conditions do not influence the outcome of

the simulations beyond these considerations, because the ODEs are always solved over a time span that

yields a converged, periodic solution, referred to as steady-state. The model does not consider the tran-

sient (short-term) part of the solution.

3.5.5 Time Interval

To reach steady-state, the ODEs must be solved over a time span that covers an adequate number of

heart cycles. Here, 10 cycles are considered acceptable in resting state, when the heart period is at its

maximum. Exercise reduces heart period, hence 40 cycles are chosen in exercise state to ensure that

the final solution has converged to steady-state. In practice, this means passing a time span of t_span

= (0, numcycles ×T ) to scipy.integrate.solve_ivp(), where T is the heart period in the given model

state.

3.5.6 Model Outputs

The model ODEs yields a continuous steady-state behaviour of left ventricular volume Vlv(t ), aortic pres-

sure Pao(t ) and systemic venous pressure Psv(t ) over a cardiac cycle. From these solutions, waveforms of

left ventricular pressure Plv(t ) and flows between the left ventricle (lv), aorta (ao) and systemic veins (sv)

are determined, denoted Qlvao(t ), Qaosv(t ) and Qsvlv(t ). A number of hemodynamic scalar properties

are further derived from the waveform solutions, where systolic and diastolic pressures (Psys and Pdia),

stroke volume (SV) and cardiac output (CO) are the most important to capture accurately in a clinical

setting. Monitoring SV and CO can reveal diseases and serious conditions such as heart failure [2]. The

importance of the model capturing Psys and Pdia is understood directly from the clinical ambition of the

MyMDT model as a tool for managing hypertension, as stated in Chapter 1. An overview of the wave-

forms and properties that constitute a simulated cardiac cycle is provided in Table 3.2. The physiological

understanding of these quantities were reviewed in Section 2.1.
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Waveform (y(t )) Unit Equation

Vlv mL (3.7)

Pao mmHg (3.7)

Psv mmHg (3.7)

Plv mmHg (3.1)

Qlvao mL/s (A.2)

Qaosv mL/s (A.2)

Qsvlv mL/s (A.2)

(a) Simulated waveforms of volume (V ), pressure
(P ) and flow (Q).

Scalar (y) unit Calculation

Psys mmHg max(Pao)

Pdia mmHg min(Pao)

Pmap mmHg Pao

PP mmHg Psys - Pdia

MVP mmHg Psv

Vsys mL min(Vlv)

Vdia mL max(Vlv)

SV mL Vdia - Vsys

CO mL/min SV×HR

(b) Scalar quantities describing a simulated cardiac
cycle.

Table 3.2: Hemodynamic model outputs divided into simulated waveforms (3.2a) and scalars (3.2b).

3.6 Modelling Exercise State

This section emphasizes the mathematically treatment and implementation of exercise in the hemo-

dynamic model. Simulation of hemodynamic exercise state is a distinct part of the model that to a less

extent can rely on well established principles compared to resting state. Exercise state differs from rest in

that certain model parameters are adjusted or shifted from their resting (baseline) value prior to solving

the model equations. As stated in Section 1.2.1, a project objective is to investigate whether the cur-

rent treatment of exercise yields reliable simulations. Potential adjustments regarding exercise state are

suggested in Section 4.3. This section presents how exercise is treated in the model based on the inter-

nal description of the exercise model by Bjørdalsbakke [5]. Note that an additional exercise mechanism

named lusitropy was established as necessary during the work on the Specialization Project in 2021 [6].

Lusitropy is not treated in [5], and is therefore not presented here, but instead elaborated on in Section

4.3.2 as a part of the investigation of exercise simulation conducted in this project.

3.6.1 Exercise Shifts

As described in Section 2.1.5, exercise generates a physiological response in the body that consequently

changes the hemodynamic conditions in the CVS. To preserve adequate cardiac output during exer-

cise, certain parameters must be shifted from their resting (initial) values. However, it is problematic

to directly quantify and mathematically describe the acute impact of exercise on cardiovascular model
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parameters compared to resting state, with the exception of heart period (T ). In the exercise model [5],

this issue is handled as follows: The load exerted on the CVS of an individual during exercise is quan-

tified through the concept of exercise intensity (I ). Thus, given a state of intensity in an individual, the

exercise shift of a resting parameter θ ∈[Rsys,Emax,Cao] is calculated by the means of a population-based

curve fit. There is available literature on measured values of Rsys,Emax and Caoduring exercise, while it

is less obvious how the behaviour of other, more model-specific parameters such as Vtot could be phys-

iologically obtained or mathematically described, hence they are kept constant during exercise. The

parameter shifts of θ ∈[Rsys,Emax,Cao] are implemented as follows:

θpers(I ) = θpers, rest ×
θpop(I )

θpop, rest
. (3.8)

where subscript pers denotes a patient-specific value, while pop is a population average for the param-

eter at a given intensity. For the exercise model, the population averages are based on data reported by

Chantler et al. [30], who measured a number of hemodynamic quantities across multiple heart rates in

normotensive and hypertensive men and women. Thus, the exercise model takes account of sex and

whether the individual is hypertensive or normotensive. Note that only normotensive settings are used

in this project, as the clinical exercise trial was conducted on healthy participants. Reported values of

Emax and Cao are fitted to a quadratic polynomial ax2+bx+c, and Rsys to an exponential function in the

form a ×exp
(
− (x−c)

b

)
+d . Exercise intensity (I ) can be defined in multiple ways depending on setting,

purpose and available data. The following describes how the concept of intensity is currently treated in

the MyMDT model [5].

3.6.2 Exercise Intensity

The clinical exercise trial reported intensities as the resistances in Watts against which the participants

were cycling; I ∈[0,50,100,150] W. However, since the loading exhibited by the CVS due to cycling against

a given resistance is highly individual, a more personal definition of intensity is used to simulate the

hemodynamic exercise response. For this purpose, heart rate (HR) is often taken as a starting point. Be-

cause the heart constitutes the force that drives the cardiovascular circulation, instantaneous HR is an

important hemodynamic parameter. In some contexts, HR is used directly to describe exercise intensity.

However, to objectively compare the cardiovascular loading yielded by an increased HR across individ-

uals, a normalized version of exercise intensity is beneficial. Resting heart rate (HRrest = 60/T , where T

is resting heart period) is commonly accepted as an important parameter in quantifying exercise inten-

sity, because in contrast to maximum heart rate (HRmax), HRrest is often related to fitness level. HRmax

is on the other hand descriptive for how demanding maintenance of a given HR is for a specific indi-
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vidual. The hemodynamic model defines exercise intensity as the difference between HR and HRrest,

normalized by the heart rate reserve; HRR=HRmax −HRrest.

IHRR = HR−HRrest

HRR
= HR−HRrest

HRmax −HRrest
(3.9)

Rsys, Emax and Cao are scaled depending on IHRR according to Equation (3.8).

HRrest can be collected in a clinical setting by minimal effort, and there are several possible sources from

which it can be determined, which is discussed in further detail in Section 4.3.4. It has been shown,

e.g. by Quan et.al [31], that HRrest is correlated with both cardiorespiratory fitness level and arterial

stiffness, as illustrated in Figure 3.2. Arterial stiffness is in the hemodynamic model represented by

aortic compliance (Cao). Because compliance is directly related to blood pressure (P = V/C), it can be

argued that including HRrest in the definition of exercise intensity facilities personalized predictions of

blood pressure during exercise.

Figure 3.2: Pathways that illustrate the correlation between cardiorespiratory fitness, resting heart rate
and arterial stiffness. Inspired by Figure 1 in [31].

Measuring maximum heart rate (HRmax) is exceedingly more cumbersome compared to HRrest. Hence,

for future practical applications of the hemodynamic model, it is more convenient that this parameter

is estimated rather than measured. It is generally accepted that HRmax is primarily associated with age,

and approximately unaffected by fitness level. The model uses the following simple and frequently used

estimate:

HRmax = 220−age (3.10)



Chapter 4

Methodology for Development and

Validation of the Hemodynamic Model

This chapter presents the project methodology for investigating selected aspects of the hemodynamic

model (Chapter 3) according to the objectives stated in Section 1.2.1. Because preserving model sim-

plicity is an important principle in MyMDT, this project aims to improve model performance by primar-

ily adjusting previously implemented mechanisms and parameters, i.e. without increasing the level of

complexity. As stated in Section 1.1.3, the majority of this work is based on data collected in a clinical

exercise trial, hence the chapter is introduced with a brief review of this study. Particularly emphasized

is how trial data is used in various parts of the project. Further, the model aspects that are subjected to

investigation are presented in two parts; Section 4.2 elaborates on the parameter estimation procedure,

while alternatives for the exercise simulation procedure are suggested in Section 4.3. Conditions and

criteria against which model performance is evaluated are defined in Section 4.4. Finally, the chapter

concludes with a summary of the procedures that constitute the methodological basis for the results

presented in Chapter 5.

4.1 The Clinical Exercise Trial

This section describes the clinical trial "Mapping of Cardiac Power in Healthy Humans and Testing of

a New Blood Pressure Sensor-a Pilot Study" [9], with emphasis on how preliminary processed data ob-

tained from this study is used to evaluate the hemodynamic exercise model. Note that no direct pro-

cessing of cardiovascular raw data has been done as a part of this project.

37
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4.1.1 Study Characteristics

Cardiovascular data was collected 24 participants in resting state and while performing exercise on a

bike. Exercise was performed at four intensity levels; [0, 50, 100, 150] Watts, and two positions; supine

(sup) and semi-recumbent (sr). Intensity in this context refers to the resistance against which the partic-

ipants were cycling, reported in Watts (W). This resistance resulted in an increased heart rate of varying

magnitude, depending on the physiological condition of the participant. Clinical characteristics of the

study cohort are presented in Table 4.1.

Characteristic Unit Total Men Women

n - 24 11 13

Age years 32.4 ± 6.6 28.5 ± 5.8 35.7 ± 5.8

Weight kg 69.3 ± 10.5 77.4 ± 6.0 62.5 ± 8.4

Height cm 172.1 ± 9.6 179.4 ± 6.0 165.9 ± 7.4

BMI kg/m2 23.6 ± 2.1 24.0 ± 1.4 22.7 ± 2.3

P br
sys mmHg 122.5 ± 11.3 127.5 ± 9.7 118.2 ± 10.9

P br
dia mmHg 80.3 ± 10.3 79.5 ± 10.5 80.8 ± 10.0

Table 4.1: Characteristics of the trial study cohort. Reported values are µ±σ, where µ and σ denote
mean and standard deviation, respectively. BMI is body mass index (BMI = Weight/Height2). P br

sys and P br
dia

are, respectively, systolic and diastolic pressures as obtained by brachial sphygmomanometry in resting
state.

4.1.2 Resting State

Blood Pressure and Heart Rate

In resting state, carotid pressure signals and brachial pressure values were collected by tonometry and

sphygmomanometry, respectively. Central aortic pressure (CAP) is in general the desired input for the

personalized parameter estimation procedure, but as described in Section 2.1.4, CAP is in practice most

commonly represented by peripheral pressure measurements. Carotid BP is in general a more accurate

representation of CAP compared to more distal pressures, as shown in Figure 2.4. However, the tonom-

etry method does not provide real pressure values, hence approximation of CAP from recorded data is

conducted in two steps: First, the tonometry signal collected over a number of cardiac cycles is used to

approximate the shape of the pressure waveform. Each tonometry cycle is interpolated to have the same

number of points, and then averaged over the total number of cycles. The average resting heart period

(T = 60/HR) is simultaneously obtained as the average cycle period (T ) from the tonometry signal. The
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interpolated, averaged pressure signal is further normalized to span from 0 at minimum to 1 at maxi-

mum. Finally, the normalized carotid waveform (Pnorm) is scaled to have similar systolic and diastolic

magnitudes as obtained by brachial cuff sphygmomanometry:

Prest =
(
P br

sys −P br
dia

)
×Pnorm +P br

dia (4.1)

where P br
sys and P br

dia are, respectively, average values of systolic and diastolic pressures as measured by

sphygmomanometry. Prest is the resulting averaged, scaled pressure waveform to represent CAP in the

participant during rest. Both sphygmomanometry and applanation tonometry are noninvasive meth-

ods, and their accuracy depend on the individual being as motionless as possible. Hence, these methods

are not well suited for collecting pressures during exercise, and were therefore only conducted in resting

condition.

Blood Flow

Blood flow between the left ventricle and the aorta (Qlvao) passes through a tract denoted the left-

ventricular outflow tract (LVOT). LVOT flow velocity (vlvot) was recorded by the means of a Doppler

ultrasound instrument. In general, Doppler velocity traces require some stages of processing to trans-

late into a time series of actual, measured velocities. This work was initiated by cardiologist Dr. Hans

Martin Flade after the trial experiments were conducted, but had unfortunately not finished in time to

be included in the current project. Therefore, the following preliminary processed velocity traces are

used:

• Semi-manually obtained traces processed by Straatman for six participants during the fall of 2021

[7], as introduced in Section 1.1.2. These participants are used in the primary part of this project,

i.e. concerning development of the hemodynamic model.

• Preliminary semi-automatic traces conducted on site for 11 participants with EchoPac, which is a

software for processing ECG data [32]. Five of these are used in the model validation experiments,

conducted as a secondary part of this project. The remaining six are either already used in the

development part, or their tonometry signals are of poor quality.

From the processed LVOT velocity signals, flow between the aorta and the left ventricle (Qlvao) is ob-

tained as

Qlvao = vlvot × Aav = vlvot ×
(π

4
×D2

LVOT

)
(4.2)

where Aav is the cross-sectional area of the aortic valve. By approximating this area as circular, Aav

is calculated from the diameter of the LVOT (DLVOT), also measured by the Doppler instrument. For
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each participant, 2–3 values of LVOT are available, hence the average is used. The translation between

velocity traces and flow was done explicitly in this project for the EchoPac-processed participants used

in the validation part, and by Straatman [7] for the six participants used to perform the development

experiments.

From the flow time series, corresponding stroke volume (SV) is obtained as the area under the flow

curve, approximated by the trapezoidal rule:

SV =
∫

T
Q(t )d t ≈ 1

2

n∑
i=1

(ti − ti−1)(Qi −Qi−1) (4.3)

where ti and Qi are time and flow values over a heart cycle of duration T . The trapezoidal integral is cal-

culated by the function trapz() implemented in the python module numpy (version 12.1.3) [33].

4.1.3 Exercise State

Blood Pressure and Heart Rate

In general, noninvasive measurements of blood pressure (BP) have significantly greater errors than in-

vasive methods [34]. The quality and accuracy of invasive measurements are also expected to be less

sensitive to motion, which is an important consideration when collecting BP during exercise. Invasive

recordings of radial pressures were chosen as the most appropriate representation of BP in exercise state,

as measuring BP invasively in the aorta is associated with greater risks. Therefore, radial measurements

form the basis of comparison against which model performance is evaluated during exercise, despite

being inherently different from CAP (Fig. 2.4).

BP was registered by invasive measurements in the radial artery synchronously with ECG recordings

over a time span of ≈45 s at each intensity level [0,50,100,150] W. Recordings of BP and ECG were pro-

cessed prior to the initiation of this project using parts of pre-existing software originating from [35].

This process is based on the following steps: The times of occurrence of QRS-complexes in the ECG

(Fig. 2.3) are identified by the Pan Tompkins method, implemented as pan_tompkins() in MATLAB [36].

From this, the signal is split into individual cycles, and heart periods (T=60/HR) are obtained as the cycle

lengths. The pressure signal is also split according to the ECG, but the timing of a QRS-complex does

not correspond with the time of minimum pressure, so each cycle is further processed to identify the

end-diastolic point following the R-peak. As an initial analysis focus, and in the context of this project,

systolic and diastolic pressures (SP and DP) are of greater interest than the radial pressure waveform it-

self. SP and DP are thus obtained from radial raw data as, respectively, maximum and minimum values

of each individual cycle. Thus, arrays of ECG heart rates, SP and DP for each participant and intensity
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level are the results of interest from this process. Note that the translation from ECG and radial raw data

to SP, DP and HR was done prior to the initiation of this project.

An initial examination of the arrays of SP, DP and HR yielded by the above process showed some irreg-

ular tendencies with a presence of outliers. Hence, for use in this project, the arrays are subjected to a

filtering procedure. This is done by an interquartile range (IQR) method obtained from [37] as follows: A

lower/upper limit is defined as the 25th/75th percentile minus/plus 1.5×IQR, where IQR is the interquar-

tile range, i.e., the difference between the 75th and 25th percentile of the data. Outliers falling outside

this interval are removed. The percentiles are identified by the function quantile() implemented in

the python model pandas (version 1.3.3) [38]. Each array is filtered independently of the other. This

means that values corresponding to the same point as an outlier are not automatically removed from

the other arrays, as is it expected that all values significantly affecting the resulting statistical properties

of an array will be detected by each respective filter. Implementation of the filtering procedure for this

project is included in Section A.3.3.

As described in Section 3.6, the model uses heart rate (HR) as input to simulate exercise state. HRs

obtained from ECG signals are used for this purpose to conduct validation experiments. For the six par-

ticipants used in the development part of the project, HRs during exercise were additionally manually

collected from averaged periods of the flow cycles by Straatman [7]. As manually obtained periods are

assumed more reliable compared to the automatically collected ECG values, the flow periods are used

for exercise simulations in the development experiments. All four intensity levels are simulated using

HR as input. However, because the 0 W-intensity is considered a hemodynamic resting state, HR is set

according to its instantaneous value, but no exercise shifts are conducted when simulating this state.

Note that HR at 0 W might deviate from the resting HR obtained from the tonometry signal, resulting

in a potentially non-zero calculated heart rate reserve-based intensity (IHRR ̸= 0). However, this is not

considered an issue because the discrepancies are expected to be small, and the 0 W-state is in general

not of primary interest.

Blood Flow

In addition to radial BP and ECG, Doppler velocity traces were also assessed at each intensity level in a

similar procedure as described for resting state. At the time during which this project was conducted,

velocity signals during exercise were only available through the six participants preliminary processed

by Straatman [7], who also conducted the corresponding calculations from velocity to flow (4.2) and flow

to stroke volume (4.3). These six participants are used in the primary part of this project, i.e. concerning

model development, which is described in further detail in the remaining of the current chapter.
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4.1.4 Summary of Project Database

Flow waves (Qlvao) during rest are averaged over available values of stroke volume (SV), which depends

on the number reported cycles. Further, flow and pressures are synchronized by pairing the flow with

the pressure wave (Prest), and rescaling the flow time interval to span the tonometry heart period. This

project investigates two ways of defining this synchronization procedure (Section 4.2.2). Resulting flow

wave (Qrest) represents aortic flow for the participant in resting state. Further, Qrest and Prest are used to

estimate a set of personalized resting parameters that forms the baseline for model predictions in exer-

cise state. Exercise performance is compared against radial BP, and also SV when flow during exercise is

available. Table 4.2 summarizes how each part of this project uses trial data. All identification numbers

for the participants in the clinical trial have been randomly relabeled for use in this report.

Project part Participants Prest Pex Qrest Qex HRex

I) Development
[734, 637, 248,

Radial BP

Straatman Straatman From Qex
890, 219, 346] Tonometry signal

II) Validation
[745, 827, 241, scaled by P br

sys and P br
dia EchoPac — From ECG

993, 722]

Table 4.2: Summary of the project usage of trial data. Here, Prest and Qrest are used as input for the
baseline parameter estimation procedure. Further, HRex is model input for simulating exercise, while
Pex and Qex are used as basis of comparison for model predictions.

4.2 Configurations for the Estimation of Model

Baseline Parameters

As stated in Section 1.2.1, the first project objective is to identify configurations of the parameter estima-

tion procedure that yield stable and accurate optimized waveforms of pressure and flow in resting state,

in addition to facilitating reliable predictions of Psys, Pdia and SV during exercise. In the following, one

subsection is dedicated to each aspect of the estimation procedure (Section 3.4) that is investigated in

this work. Suggestions are based on a combination of physiological cardiovascular properties described

in Section 2.1, available data and empirical insights obtained throughout the work. Model simulations

resulting from a selection of the suggested configurations are presented in Section 5.1.
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4.2.1 Determination of Baseline Parameters

The estimation procedure aims to obtain a set of parameters that yields simulated pressure and flow

waveforms (Pao and Qlvao) that best fits Prest and Qrest obtained from data collected in the clinical trial

(Section 4.1). The accuracy of a given fit is quantified by the cost function defined in Equation (3.5).

A total of 50 cycles of the optimization procedure is conducted in two rounds, and the final baseline

parameters are obtained from the 20 final estimates as either:

1. Mean parameters:

Averaged parameter values over the 20 final estimates with a resulting cost function less than the

mean value for all 20.

2. Minimum parameters:

The single set of the 20 final estimates with minimum cost function.

In general, a mean parameter fit will be more robust given that the variability within the 20 estimates

is sufficiently low. This is ensured by constraints. When constraints are not applied, the 20 estimates

might differ to an extent that makes the resulting average a meaningless fit. In such cases, the minimum

parameters can be a more appropriate baseline than the corresponding mean fit.

(a) Optimized pressure waveform. (b) Optimized flow waveform.

Figure 4.1: Example of model fit to waveform data for pressure (4.1a) and flow (4.1b).

Figure 4.1 shows an example of optimized waveforms yielded by the estimation procedure. A resulting

parameter fit is evaluated in terms of depicted waveforms and scalar properties Psys, Pdia and SV.

4.2.2 Synchronization of Input Data for Pressure and Flow

Before conducting the optimization procedure described in Section 3.4, the pressure and flow data need

to be synchronized. Together, they are to constitute correspondingly mapped representations of a single
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cardiac cycle that are passed to the cost function (3.5). Ideally, a cardiac cycle presented by a measured

flow wave is in unambiguous accordance with corresponding pressure. This implies that the aortic valve

opens at the same time that arterial pressure exceeds diastolic pressure, i.e. the systolic phase is intro-

duced simultaneously as read from both signals. Further, diastole begins with the closure of the aortic

valve, which remains closed throughout the entire phase. This means that during diastole, there is no

flow between the left ventricle and the aorta (Qlvao = 0). The dicrotic notch on the aortic pressure wave

is recognized as the closure of the aortic valve, which should therefore ideally correspond to the time at

which flow drops to 0. However, when working with clinically measured data, this is often not the case,

as can be seen in Figure 4.2. The cycle discrepancies are also natural consequences of the Doppler flows

and tonometry pressures not being collected simultaneously in the trial. Therefore, a choice must be

made whether to synchronize pressure and flow data according to:

1. Upstroke:

Both waves defined to begin on upstroke, i.e. with the initiation of systole. Implemented in the

original formulation.

2. Aortic valve closure:

Agreement on timing of valve closure, i.e. the beginning of diastole. This implies using the dicrotic

notch from the tonometry signal and the time at which flow drops to 0 as reference points for

synchronization. Suggested and tested as a part of the current work.

(a) Sync. to upstroke (1). (b) Sync. to dicrotic notch (2).

Figure 4.2: Example of synchronized pressure (blue lines) and flow (red lines) according to alternative
no. 1 (4.2a), i.e. both waves begin on upstroke, and 2 (4.2b), i.e. agreement on timing of valve closure
(vertical lines). Potential discrepancy between valve closure read from the flow wave and the pressure
signal is indicated by the horizontal space between the vertical dashed lines.
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Which alternative appears as the best cycle representation varies across trial participants, as does the

deviation between the dicrotic notch and the time of valve closure as read from flow. However, note that

the choice of synchronization procedure is not only an issue of determining the most overall consistent

representation of a cardiac cycle. It must also be considered how the synchronization coincides with

cycle start as defined in the hemodynamic model, and the overall, combined impact on the parame-

ter estimation procedure. This project investigates how cycle timing should be treated to optimize the

fitting procedure, and this issue is addressed in Section 6.1.1.

Using the processed and synchronized pressure and flow signals as input, the estimation procedure is

executed in three distinct steps: First, a preliminary fitting procedure is conducted to yield an initial

estimate of the arterial parameters (Rsys, Cao and Zao). Then, selected parameters are assigned to fixed

values based on either literature or data. Finally, the main optimization procedure is executed. The

following sections summarize these three steps with emphasis on the selected variations that are inves-

tigated in this project.

4.2.3 The Preliminary Fitting Procedure

A preliminary optimization is conducted in a similar manner as the main procedure described in Sec-

tion 3.4, except that only one iteration is conducted, and it is based exclusively on the three-element

Windkessel model, which represents the arterial compartment (Section 3.3.1). Aortic inflow (Qlvao) is a

driving function in this model, and venous pressure is neglected, i.e. set to 0. The preliminary fit yields

initial estimates of Cao, Rsys and Zao that are used as initial values in the following main optimization.

Constraints used in the preliminary part are stated in Table 4.4.

4.2.4 Assignment of Fixed Parameters

Model parameters can be assigned to fixed values based on input data or literature, and are conse-

quently not directly involved in the optimization. Minimum elastance (Emin) is fixed based on values

reported by Segers et al. [39]. Mitral valve resistance (Rmv) has been manually tuned by Bjørdalsbakke et

al. [4] based on synthetic test cases, and not further prioritized due to its low rank in sensitivity analyses

by Bjørdalsbakke et al. and Aal [6]. Furthermore, T is obtained directly from data as the average value of

all heart periods obtained from the tonometry signal (T ton). It is of interest in this project to investigate

the effects of fixing vs. estimating the parameters tpeak, Zao and Csv. For each of these, the following

alternatives are evaluated:
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• Time of peak elastance (tpeak):

1. Estimated:

Section 4.2.5.

2. Fixed:

Relate the determination of tpeak directly to the arterial pressure data. The time in the cardiac

cycle at which ventricular elastance reaches its maximum (tpeak), occurs at the end of the

systolic phase, as illustrated in the PV-loop in Figure 2.1. The end of systole is marked by the

closure of the aortic valve, recognized as the dicrotic notch on the arterial pressure wave (Fig.

2.2). Fixing tpeak implies assigning its value to the time at which the dicrotic notch occurs in

the tonometry pressure signal.

• Aortic impedance (Zao):

1. Estimated:

Section 4.2.5.

2. Fixed:

The preliminary fitting procedure reviewed in Section 4.2.3 yields an initial estimate of Zao

to which the parameter can be fixed before the main optimization is executed.

• Venous compliance (Csv)

1. Estimated:

Section 4.2.5.

2. Fixed:

No data is available for the venous compartment from the clinical exercise trial. However,

venous compliance is in general within the range of 10 to 20 times greater than arterial com-

pliance [40]. Equation (2.9) yields an approximation of arterial compliance (Ca) from pulse

pressure (PP) and stroke volume (SV), where PP and SV are obtained from arterial trial data.

By assuming the presence of a pre-determined physiological relation between arterial and

venous compliance, Csv can be fixed depending on Ca ; C fixed
sv = 10×Ca = 10× SV

PP .

All fixed parameters are summarized in Table 4.3 along with their respective values and how these are

obtained.
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Parameter (θ) [unit] θfixed

Emin [mmHg/mL] 0.035 [39]

Rmv [mmHg×s/mL] 0.006 [4]

T [s] T (Pton)

t∗peak [s] t |dicrotic notch

Z∗
ao [mmHg×s/mL] Z prefit

ao

C∗
sv [mL/mmHg] 10× SV

PP

Table 4.3: Summary of the fixed model parameters. *tpeak, Zao and Csv may instead be included in the
main estimation procedure (Section 4.2.5).

4.2.5 The Main Estimation Procedure

Parameters that are not fixed according to the previous section are estimated to yield simulated pres-

sure and flow waves optimized against arterial data. Estimated parameters are Emax, Cao, Rsys, and Vtot,

plus potentially tpeak, Zao, and Csv. Constraints are included to avoid parameter values exceeding phys-

iologically reasonable ranges. They are set primarily based on values reported in literature, which are

extended to allow flexibility with regards to model fits. Empirical insights concerning observed model

behaviour have also influenced the bounds. Table 4.4 shows the set of lower and upper bounds passed

as constraints to scipy.optimize.least_squares() [28] for the estimated parameters. Details con-

cerning how each specific limit has been determined are found in Table A.2. For the preliminary fitting

procedure described in Section 4.2.3, constraints are equivalently defined with the exception of the up-

per bound of Zao, which is 1.0 mmHg×s/mL in the preliminary optimization compared to 0.2 mmHg×s/mL in

the main part.

Param. (θ) [unit] θlower θupper

Emax [mmHg/mL] 0.50 10.84/BSA

Cao [mL/mmHg] 0.148 2.256

Rsys [mmHg×s/mL] 0.917/BSA 2.963

Vtot [mL] 150 1503

C∗
sv [mL/mmHg] 4.44 67.68

Z∗
ao [mmHg×s/mL] 0.001 0.2 (1.0 for prefit.)

t∗peak [s] min{0.15,0.9×T } min{0.442,T }

Table 4.4: Constraints used in the numerical optimization. BSA =
√

wt×ht
3600 is body surface area, where wt

is weight in kg and ht is height in cm. *Zao, tpeak and Csv may be fixed according to Table 4.3, in which
case the presented constraints are irrelevant.
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As described in Section 3.4.2, minimizing the cost function (3.5) yields a set of optimized parameter

values. To enhance the understanding of this algorithm and which solutions it searches, another im-

plementation was attempted with θ > 0 as the only constraint for all estimated parameters. Potential

advantages and disadvantages associated with constraints are discussed in Section 6.1.3.

4.2.6 Regulation of Ejection Fraction

An issue with the estimation procedure highlighted during this project is that solutions can yield plausi-

ble optimized pressure and flow waveforms, while simultaneously displaying nonphysical behaviour in

other hemodynamic quantities. This may in turn impede the ability to simulate a physiologically consis-

tent exercise state. Quantities related to blood volume are particularly prone to varying and implausible

behaviour. As stated in Section 3.3, the model treats only stressed blood volume. Hence, total volume

Vtot and compartmental volumes of the systemic arteries, veins and the left ventricle (Vsa, Vsv and Vlv)

are not explicitly associated with physiological quantities. Consequently, Vtot is originally very loosely

constrained in the optimization (Table 4.4). An additional issue regarding volumes is that the model is

not fitted against any direct ventricular data beyond LVOT-flow (Qlvao), and stroke volume (SV) derived

from this flow.

Test cases indicated a tendency of high estimated values of Vtot and correspondingly high end-diastolic

and end-systolic volumes (EDV and ESV), which still fulfilled the target value of stroke volume (SV=EDV-

ESV). This resulted in very low ejection fractions (EF = SV
EDV ) (2.4). Physiologically, EF is normally 55

to 67% [10], while EF ≤ 40% indicates impaired cardiac performance and possibly heart failure [41],

which unlikely was the case during the trial experiments. This project investigates ways of avoiding

this improbable behaviour of EF. The direct control of EF is slightly problematic, as the physiological

meaning of EF assumes total EDV, while there is no available trial data to calculate the unstressed part

(V0). A suggestion is to implement a penalty on the cost function (3.5) when the resulting parameter fit

within an iteration yields an EF falling outside of an expanded physiological range. Two alternatives are

investigated, both explicitly included in the implemented cost function provided in Section A.3.2.

I) Step Function

This alternative simply multiplies the cost function by a weight (Wef) when EF exceeds a preset range

defined by [EFmin, EFmax]:

J (θ)ef =
 J (θ) if EFmin ≤ EF ≤ EFmax

J (θ)×Wef otherwise
(4.4)
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where J (θ) is the resulting cost function for a given parameter fit (θ), and J (θ)ef is the updated value

after assessing the estimated EF. [EFmin, EFmax] is set to an expanded physiological range of [35,75]%. As

this is a very preliminary experiment with this type of intervention, a rather high value of Wef = 106 is

used to ensure that its effect becomes sufficiently pronounced. A potential problem with a hardmax im-

plementation of this type is whether the stepwise boundary allows the optimization algorithm to search

efficiently for solutions along the boundaries of EF. This issue motivated the following alternative.

II) Softmax Function

To avoid problems in the limits of EF, an alternative is to implement a softmax penalty function that

progressively increases according to the distance between the boundaries and the estimated EF. This

can be achieved with the function:

S(x, y) = 1

1+exp(α(y −x))
(4.5)

where α determines the smoothness of the transition from 0 to 1, set to 100 in this project. Thus, when

x is less than y , the value approaches 0. When x is greater than y , the value approaches 1. The cost

function is then updated as

J (θ)ef = J (θ)+ (S(EF,EFmax)+S(EFmin,EF))×
(
EF+ 1

EF

)
×Wef (4.6)

where Wef is a parameter that weights the influence of EF, set to 50 for the purpose of this experiment.

Hence, the residual increases progressively if either EF gets too small (EF < EFmin) or too large (EF >
EFmax). EFmin and EFmax are set equal to the hardmax limits, i.e. 35 and 75%, respectively. Constants α

and Wef were defined based on empirical testing to find a configuration that yielded plausible simulated

waveforms, without jeopardizing the functionality of the optimization algorithm.

4.3 Configurations for the Simulation of Hemodynamic

Exercise State

This section elaborates on the experimental evaluation of the simulated hemodynamic exercise state,

conducted with the purpose of obtaining configurations that improves the reliability of the exercise

predictions. Aspects treated are, consecutively, scaling of model pressures, the lusitropy mechanism,

parameter shifts and definition of resting heart period. Explicit implementations of algorithms yielded

by the methodological basis presented here are found in Section A.3.3.
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4.3.1 Scaling of Model Pressures

An issue with using experimental measurements of blood pressure (BP) to evaluate performance of the

hemodynamic model is that the exercise data from the clinical trial and the model principally repre-

sent BP at different sites in the arterial tree. As explained in Section 2.1.4, the model predicts central

aortic BP, while the trial collected BP during exercise at the radial artery. Figure 2.4 illustrates the pres-

sure amplification that is present between aorta and the radial artery. This implies that if the model is

directly evaluated against radial measurements, systolic pressures (Psys) will consequently appear un-

derestimated, and diastolic pressures (Pdia) overestimated. As brachial measurements are expected to

be more representative for aortic pressures compared to radial, a suggestion to remedy the inherent er-

rors caused by amplification is using measurements from the sphygmomanometry to calculate scaling

factors for model predictions of BP; one for each of Psys and Pdia. The relative deviation between radial

and brachial pressures at resting state is calculated as:

ϵBP = BP
0W
rad −BPrest

br

BPrest
br

×100% (4.7)

where BP
0W
rad is the average radial measurement of Psys or Pdia before the participant have begun exercis-

ing (i.e. at 0 W intensity). BPrest
br is the brachial value of Psys or Pdia collected in resting state. By assuming

that the relative deviation between radial and brachial BP at rest is representative also in exercise state,

model predictions of BP can be scaled to increase the consistency with radial values according to:

B̃Pmodel = BPmodel ×
(
ϵrest

BP

100
+1

)
(4.8)

where BPmodel and B̃Pmodel are, respectively, original (aortic) and scaled (radial) model predictions of

BP (Psys or Pdia) at a given intensity level. An important assumption for this method is that the rela-

tive difference between radial and brachial pressures is approximately constant across exercise intensi-

ties.

4.3.2 The Lusitropy Mechanism

During the fall of 2021, medical engineering student H. Straatman raised attention to the vast impor-

tance of including lusitropy in the model implementation of exercise [7]. As explained in Section 2.1.5,

lusitropy describes the relaxation properties of the heart during the diastolic phase. During exercise

the heart rate is increased, and the diastolic period reduced. To preserve diastolic filling, the systolic

activation period is reduced accordingly. These simultaneous mechanisms are highly involved and a

full mathematical representation would require a complexity that is beyond the MyMDT model and its

ambition. Essentially, lusitropy affects the timing of cardiac events. In addition to heart period, there is
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one timing parameter in the hemodynamic; tpeak. Therefore, this section elaborates on how tpeak can be

modified during exercise to represent the lusitropy mechanism.

Relating tpeak to Elecromechanical Systole

There exists scarce literature that quantifies the effect of lusitropy in the context of hemodynamic mod-

elling. A study considered somewhat transferable was carried out in 1968 by Weissler et al. [13], who

found a linear relation between the duration of electromechanical systole (QS2) and heart rate (HR). As

shown in Figure 2.3, QS2 is read from an electrocardiogram (ECG) mapped to a tracing of heart sounds

(PCG) as the interval between the initiation of the QRS-complex and the second heart sound (S2) [13].

The MyMDT model does not have a parameter for QS2 directly, and it is an important principle to keep

the level of complexity and number of parameters to a minimum. However, the behaviour of model pa-

rameter tpeak, i.e. time of peak ventricular elastance, can be argued to be somewhat transferable to QS2,

as maximum ventricular elastance occurs at the end of systole (Fig. 2.1). Weissler et al. found that the

length of QS2 is inversely proportional to HR, and this effect is adapted to the model by implementing a

linear scaling of tpeak:

tpeak (HR) = trest
peak +b × (HR−HRrest) (4.9)

which is similar to the relation between HR and the duration of QS2 obtained by Weissler et al. [13].

As the magnitudes of QS2 and tpeak are different, only the slope represented by the regression coeffi-

cient (b) has been adapted from the study. Here, b represents the level of reduction in the contraction

phase of the cardiac cycle according to increasing HR, and the value obtained from Weissler et al. is bW

= -0.0021 s×min [13]. Lusitropy implemented according to Equation (4.9) with bW was subjected to a

sensitivity analysis during the Specialization Project in 2021 [6]. This analysis showed that b is one of

the most influential model parameters during exercise, with a sensitivity ST (b) increasing with intensity.
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Figure 4.3: Model sensitivity to the lusitropy coefficient (b) resulting from the Specialization Project [6].
Here, b was analyzed as quasi-randomly sampled within an interval of bW ±50%. HRreserve and MaxHR

refer to different definitions of exercise intensity. Note that the current project only considers intensity
defined as IHRR=HRreserve. Figure obtained from [6].

Basing the Lusitropy Coefficient on Trial Data

As shown above, the Specialization Project indicated a prominent importance of the lusitropy coeffi-

cient (b) for model behaviour during exercise. The current project pursues these results by investigating

alternative, trial-based versions of the lusitropy mechanism. A suggestion is to compare the lusitropy

coefficient obtained from Weissler et al. with linear regression of systolic periods collected from the

clinical exercise trial. Systolic periods in this context refer to left-ventricular ejection times (LVETs),

which were obtained by Straatman [7] as the time from the upstroke of the aortic flow until it is zero

again. Two alternatives for a trial-based implementation of lusitropy are presented:

1. Personal regression coefficient (bpers):

An individual coefficient b = bpers for each participant is obtained by linear regression between

the points (HRI ,LVETI ), where I∈[0,50,100,150] W is intensity level. Outliers deviating from the

remaining points are identified by a visual examination and further excluded from the calculation.

The linear regression relation is obtained by the function polyfit() implemented in the python

module numpy (version 1.21.3) [33], which yields a slope bpers. Note that this alternative is not

relevant for usage in the hemodynamic model, as it requires measurements that are in general

unavailable for future MyMDT users. However, it is interesting to investigate whether this highly

personalized version of the lusitropy mechanisms significantly improves model predictions.
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2. General trial-based regression coefficient (breg):

A more general, trial-based coefficient b = breg is obtained similarly as presented above, except

that all points (HRI ,LVETI ) for each participant and intensity level are included in the linear re-

gression. Using breg, model predictions are compared against those yielded by bW, i.e. b as re-

ported by Weissler et al. [13]. By assuming a similar quantitative behaviour of QS2 and tpeak across

heart rates, this comparison can potentially reveal whether bW represents a change in tpeak that

facilities model predictions consistent with data. As there are relatively large uncertainties related

to the LVETs obtained from the preliminary processed flow data, a brief literature study on systolic

periods is further used to evaluate the quality and plausibility of the resulting breg.

4.3.3 Exercise Shifts of Cao, Rsys and Emax

At the time at which this project was initiated, the exercise model was implemented with curve fits based

on population averages reported by Chantler et al. [30] to shift the parameters Emax, Rsys and Cao accord-

ing to Equation (3.8). This implementation is written by Ph.D. Candidate Bjørdalsbakke through collab-

oration in the MyMDT project as a part of the development of the exercise model [5]. A potential issue

regarding this highly general implementation of exercise is insufficiency in the context of predicting

individual blood pressures across exercise intensities. Therefore, this project re-evaluates the Chantler-

based exercise shifts with the aim of improving the reliability of the personalized model predictions. It

is investigated whether alternative, data-based implementations of exercise shifts yield more accurate

predictions of pressures and stroke volumes compared to the Chantler-based shifts. Note that because

Chantler et al. [30] report sex-specific quantities, values of the population averages used in Equation

(3.8) are determined by the sex of a participant. This is not accounted for in the trial-based shifts, as a

cohort of six participants is considered too small for capturing variations yielded exclusively by sex. Fur-

ther, as no data on the ventricular compartment is available from the clinical exercise trial, alternatives

for shifting maximum elastance (Emax) are not investigated in this project. Note that remaining model

parameters, i.e. Csv, Vtot, Rmv, Emin and Zao are kept constant during exercise.

Aortic Compliance (Cao)

Arterial compliance decreases during exercise, which is related to the increase in arterial pressure [10].

Four alternatives a-d for modelling this reduction in Cao during exercise are presented. Alternatives a.

and d. are evaluated and compared in Section 5.2.3, where they are referred to as C1 and C2, respec-

tively.
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a. Chantler Shift:

This refers to the implementation developed by Bjørdalsbakke [5]. As described in Section 3.6.1, values

of arterial elastance [30] are fitted to a quadratic polynomial, and shifted parameter values are yielded

by Equation (3.8). During the fall of 2021, attention was raised to a potential error related to using ar-

terial elastance from [30] to shift Cao during exercise. Since compliance mathematically is the inverse

of elastance, the approximation C pop
ao = 1

Ea
is taken as population data to use as input for the curve fit.

However, Ea is defined by Chantler et al. as an effective elastance that incorporates peripheral vascular

resistance, characteristic impedance, systolic and diastolic time intervals, as well as total lumped arte-

rial compliance [30], while only the latter is included in the model parameter Cao. This motivated the

investigation of alternative implementations.

b. Personal Physiological Shift:

Arterial data is available through the clinical exercise trial, hence the physiological relation between

arterial compliance (Ca), pulse pressure (PP) and stroke volume (SV) defined in Equation (2.9) is used to

yield approximations of Cao at each intensity level I∈[0,50,100,150] W. However, since PP is only available

from radial measurements, values of Ca obtained in this way are not directly comparable to Cao due

to pressure amplification, as discussed in Section 4.3.1. Therefore, a shift is implemented where the

percentage of change in SV/PP from the 0 W-value at each intensity is transferred to C 0
ao, i.e. the estimated

resting value, which further yields a shifted Cao:

∆(SV/PP) = (SV/PP)I − (SV/PP)0W

(SV/PP)0W

Cao =
(
1+∆(SV/PP)

)×C 0
ao

(4.10)

c. Personal Linearized Shift:

A literature search on the effects of heart rate (HR) on arterial compliance revealed a study by Liang

et al. [42], reporting Ca in nine men at HR∈[56(rest),80,100] bpm. However, this study is not entirely

transferable to this project, because HR was increased by atrial pacing instead of exercise, and all exper-

iments were under the influence of β-adrenoceptor blockade after intravenous injection of metroprolol

[42]. This is a medicine belonging to a group of drugs commonly known as beta-blockers. Beta-blockers

impact the response to nerve impulses in certain sections of the body, which effectively decreases car-

diac output, reduces arterial stiffness and reduces blood pressure [2]. Furthermore, it is probable that

atrial pacing as stimulus impacts the CVS differently compared to exercise, as exercise activates several

physiological response mechanisms in addition to increased HR. However, by similar argumentation as

in the above paragraph, the change in compliance may be transferable, even though the specific values

are not. Liang et al. [42] found that an increase in HR from 56 to 80 and 100 bpm decreased arterial

compliance in an approximately linear manner until 50% of resting value at HR=100 bpm. This is a sig-
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nificantly greater relative change compared to the development of 1/Ea reported by Chantler et al. [30],

even though 100 bpm is within the range of a normal resting HR for an adult. Motivated by the results

from Liang et al., and the physiological shifts obtained in point b., a linear compliance shift based on

the relative change of SV/PP from 0 to 150 W is calculated as:

∆(SV/PP) = (SV/PP)150W − (SV/PP)0W

(SV/PP)0W

C pred
ao (HR150W ) = (

1+∆(SV/PP)
)×C 0

ao

Cao = [C 0
ao,C pred

ao (HR150W )], HR = [HR0W ,HR150W ]

(4.11)

where shifted values of Cao as a function of HR are obtained by linear regression between the two points

given by HR and Cao in Equation (4.11). The function polyfit() is used for this purpose, which is

available through the python module numpy (version 1.21.3) [33].

d. Average Trial-Based Semi-Linear Shift:

The highly individual suggestions presented in point b. and c. above are not relevant for usage in the

hemodynamic model, as they require measurements that are in general not available for future MyMDT

users. These points are included primarily for comparison purposes and to investigate whether more

personal shifts of Cao benefits model predictions. This point (d) presents an average shift based on data

collected in the exercise trial. Initial analyses of pressure and flow data showed a linear trend in SV/PP

across heart rates for most of the six participants used in the development experiments. Combined with

the rapid linear decline in Ca reported by Liang et al. [42], this observation motivated the implemen-

tation of a semi-linear shift based on the average, relative change in SV/PP between 0 and 150 W. This

maximum change was paired with a heart rate reserve-based intensity of IHRR = 0.6. The mathemati-

cal implementation is similar to Equation (4.11), except that the relative changes are calculated for all

six participants to yield an average value; ∆(SV/PP). Further, the linear regression is conducted between

[0,∆(SV/PP)] and IHRR = [0,0.6] instead of Cao and HR directly, as in the personal linearization presented

in point c. The resulting relative change as a function of intensity (∆(SV/PP)( IHRR)), is then applied on the

resting compliance (C 0
ao) in a participant to yield a shifted value at a given intensity:

Cao =
(
1+∆(SV/PP)(IHRR)

)×C 0
ao (4.12)

Note that Cao(IHRR > 0.6)=Cao(IHRR = 0.6) in this version of compliance shift.
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Systemic Resistance (Rsys)

As stated in Section 2.1.5, vascular resistance decreases during exercise. The issue is, as for arterial

compliance, to quantify the personal level of reduction according to exercise intensity. Similar to the

comparison of compliance shifts presented above, four alternatives a-d for shifting Rsys during exercise

are presented. Alternatives a. and d. are evaluated and compared in Section 5.2.3, referred to as R1 and

R2, respectively.

a. Chantler Shift

As before, this refers to the procedure developed by Bjørdalsbakke [5]. The resistance shift is based on

population averages reported by Chantler et al. [30] fitted to an exponential function (Section 3.6.1).

During the fall of 2021, it was problematized whether this implementation represents an optimal level

of reduction in Rsys for the model. It was raised attention to a tendency of consistent overestimation

of diastolic pressure (Pdia). The results from the Specialization Project [6] yielded a significantly greater

sensitivity to systemic resistance, ST (Rsys), for Pdia than Psys. Therefore, a suggestion to remedy the

overestimation of Pdia is to impose a greater reduction in Rsys during exercise compared to the shifts

based on Chantler et al., which motivated the investigation of alternative implementations.

b. Personal Physiological Shift:

This alternative uses the physiological relation between total peripheral resistance (TPR), mean arterial

pressure (MAP) and cardiac output (CO) (2.11) to examine the development of resistance during exer-

cise as read from the trial data (TPR = MAP/CO). The approach is similar to point b. on compliance shifts,

meaning that radial measurements of MAP yields a TPR calculated from Equation (2.11) that is not qual-

itatively transferable to the model parameter Rsys. Additionally, TPR also includes the resistance effect

incorporated in the model parameter aortic impedance (Zao). Therefore, the relative change from the

0 W-value will be used in a similar manner as presented in Equation (4.10) for shifting arterial compli-

ance.

c. Personal Scaled Chantler Shift:

The majority of the six participants showed a tendency of the relative change from 0 W in MAP/CO being

significantly greater than the changes yielded by the Chantler-shifted values of Rsys. Because the curve

shapes appeared somewhat similar, a scaled version of the Chantler-based shifts is attempted. All re-

sulting Chantler-shifted values, R Ch
sys , for I ∈ [50,100,150] W are scaled by a factor (φ) that yields identical
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relative change between 0 and 150 W as present in MAP/CO for each participant:

∆(MAP/CO) = (MAP/CO)150W − (MAP/CO)0W

(MAP/CO)0W

R scaled,150W
sys = (∆(MAP/CO) +1)×R0

sys

∆scaled,150W = R scaled,150W
sys −RCh,150W

sys

RCh,150W
sys

φ= 1+∆scaled,150W

(4.13)

d. General Trial-Based Exponential Shift:

The personal shifts suggested in point b. and c. are, as discussed in the previous paragraph, primarily

relevant for comparison and investigation purposes rather than practical. Thus, a suggestion using trial

data to generate an average-based alternative to the Chantler shifts is presented in this point (d). When

displaying the change in MAP/CO relative to the 0 W-value against IHRR for all six participants, it was

observed that 734, 637, 248 and the 50 W-point for 219 were in prominent accordance with a coinciding

exponential fit. The least-squares method scipy.optimize.curve_fit() [28] is therefore used to fit

the data points of

∆% (I ) = (MAP/CO)I − (MAP/CO)0W

(MAP/CO)0W
×100% (4.14)

for 734, 637, 248 and 219(50 W) at I[W]>0 to an exponential function a×exp(−b ×x)+c, where x = IHRR.

Since IHRR can deviate from 0 at 0 W-intensity, the zero-points (0,0) are added manually to the arrays

prior to the fit. Note that the exponential function has a different form compared to the Chantler-based

resistance fit described in Section 3.6.1, but the methodologies differ primarily in the database used to

yield the shifts. This trial-based curve fit yields a relative change of Rsys at a given IHRR, and a shifted

value is calculated from the resting parameter value (R0
sys) as:

Rsys = R0
sys ×

(
1+ ∆% (IHRR)

100

)
(4.15)

4.3.4 Resting Heart Period (T )

Resting heart period (T ) as a model parameter is originally fixed to the average period extracted from

the tonometry pressure signal. Attempts to change this definition of T as a baseline parameter were

not prioritized in this project. In addition to this role, resting heart period is also a determinant of the

heart rate reserve-based exercise intensity (IHRR), as defined in Equation (3.9), which in turn impacts

the magnitude of exercise shifts at a given heart rate. By contributing to the determination of IHRR,

T = 60/HR affects model predictions beyond its influence as a baseline parameter. From data collected in

the clinical exercise trial, T as input in (3.9) can be determined as either of the following:
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1. T ton:

The trial session began with the extraction of pressure signals by applanation tonometry over a

number of heart cycles. Resting heart period is approximated as the average time span for each

cycle. This definition of T is equivalent to the fixed value from the parameter estimation procedure

(Section 4.2.4).

2. T
sup
0W :

The first exercise was performed in a supine (sup) position. As described in Section 4.1, heart

periods are available from ECG signals, and in some participants also from Doppler flow traces.

Average period obtained at 0 W-intensity, e.g. before performing any actual exercise, is thus a

possible candidate to use in the calculation of IHRR (3.9).

3. T
sr
0W:

After performing exercise in the sup-position and a following break, the participants exercised in a

semi-recumbent (sr) position. Similar to T
sup
0W , the average heart period extracted at 0 W-intensity

in the sr-position (T
sr
0W) is another alternative value from which IHRR can be calculated.

Figure 4.4: Example of how resting heart period varies with data source for one trial participant. The blue
histogram shows the distribution of tonometry periods, and the red line is the average value defined as
the baseline T . Green and yellow vertical lines represent the average periods collected at 0 W in the
sr- and sup-position, respectively. The horizontal lines span between minimum and maximum period
obtained from corresponding data source.

Figure 4.4 illustrates how the value of T varies based on data source. Note that no exercise shifts are per-

formed at 0 W-intensity. As previously stated, a reduction in heart period will consequently reduce the

diastolic filling. Without any mechanisms implemented to counteract this effect at 0 W, e.g. lusitropy,

a potential issue is a diminished cardiac output in this state if T
sr
0W < T ton, resting period is T ton and

sr-data is used. However, this is not considered problematic, as the predictions related to the higher

intensities are of primary interest, and not the 0 W resting state itself.



CHAPTER 4. METHODOLOGY FOR MODEL DEVELOPMENT AND VALIDATION 59

4.4 Evaluation and Validation of Model Performance

This section defines the premises, metrics and requirements against which the performance of the

hemodynamic model is evaluated. First, performance measures for the parameter estimation and the

exercise simulation procedures are presented separately. Further, error metrics used for evaluation and

validation of the model are defined. Validation criteria are suggested at the end of the section.

4.4.1 The Parameter Estimation Procedure

The parameter estimation procedure, whose potential configurations were suggested in Section 4.2, is

evaluated based on how the resulting baseline parameters perform against the following measures:

• Deviations between model and data:

1. Arterial pressures.

Simulated systolic and diastolic pressures (Psys and Pdia) are compared to values obtained by

brachial sphygmomanometry in the clinical trial.

2. Stroke volume (SV).

Simulated SV are compared to average values of integrated Doppler flow waves (4.3).

Psys, Pdia and SV are the cardiovascular quantities that constitute the most important performance

indicators for the hemodynamic model, hence these outputs are heavily weighted when evaluat-

ing any model configuration in both resting and exercise state.

• Visual evaluation of optimized waveforms.

A visual examination of the optimized waveforms of pressure and flow is effective to verify the

quality of a given parameter fit. Further, a fitted flow wave can exhibit implausible behaviour

despite its area, i.e. estimated SV, being consistent with data.

• The behaviour of non-measured model outputs:

1. Mean venous pressure (MVP).

2. End-diastolic and end-systolic volumes (EDV and ESV).

The model is not specifically constructed to yield physiologically accurate predictions of MVP, EDV

and ESV, nor can they be directly fitted or compared against data from the clinical exercise trial.

However, as they provide insights into simulated venous return and diastolic filling, important

information on model behaviour and limitations can be obtained by evaluating outputs of MVP,
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EDV and ESV. EDV is also a determinant of ejection fraction (EF), which is an important measure

of cardiac function and its interconnection with the vascular compartments.

• Whether estimated parameters reflect personal cardiovascular properties.

If a parameter intended to reflect an individual property is estimated equally across participants,

there is reason to investigate the impact of constraints on the estimation procedure, and poten-

tially also the entire function of this parameter in the hemodynamic model.

• Parameters Rsys, Cao and Emax in relation to their direct, data-based approximations.

As described in Section 2.1.3, these parameters can be directly approximated using arterial data;

Rsys= MAP
CO , Cao= SV

PP and Emax= Pdn
ESV . In general, it is not necessary that these parameters are estimated

identical to their physiological equivalents, but a comparison can be useful to evaluate whether

the optimization procedure is able to capture physiological differences across participants. Note

that a realistic comparison of Emax is unobtainable, as there is no data available on ESV. Therefore,

this estimate will use Equation (2.4) and an assumed ejection fraction (EF) of 60% to yield an

approximated value of ESV.

• Predictive performance during exercise.

A set of baseline parameters can accurately fit the arterial flow and pressure waveforms in resting

state, while simultaneously providing quite disagreeable exercise predictions. Therefore, a prelim-

inary evaluation of the performance of a given baseline set during exercise is an important criteria

against which the estimation procedure itself is evaluated. Evaluation criteria concerning exercise

state are presented in the following section.

4.4.2 Exercise Simulation Procedure

The aims of investigating both the parameter estimation procedure and the exercise model are coincid-

ing with the ultimate purpose of this project, i.e. improving the predictive performance of the model

during exercise on a personal level. This requires both a set of resting (baseline) parameters that cap-

tures the necessary properties of an individual CVS, and an exercise model that reflects the hemody-

namic response to exercise. A given configuration of the exercise model (Section 4.3) is evaluated based

on the following:
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• Predictions of the hemodynamic quantities of primary interest in relation to trial data:

1. Arterial Pressures.

Model predictions of systolic (Psys) and diastolic (Pdia) pressures are evaluated against radial

measurements.

2. Stroke volume (SV).

Model predictions of SV are compared to values calculated from integrated Doppler velocity

signals (4.3). As the uncertainty related to measured SV is quite pronounced, especially at

higher intensities, a plot of the stroke volume index (SVI) reported by Chantler et al. [30] is

included to verify the plausibility of measured SV. To ease the comparison of SVI to trial data,

values of SVI are shifted to start at HR0W and SV0W in accordance with the given participant.

This implementation is included in Section A.3.4.

• Simulated behaviour of:

1. Pulse pressure (PP).

PP can be read directly from a plot of arterial pressures, but the quantity is extracted sepa-

rately to explicate the simultaneous variations in Psys and Pdia during exercise. Note that the

behaviour of PP is related to that of SV through Equation (2.9).

2. Mean venous pressure (MVP).

Simulated changes of mean venous pressure (MVP) over heart rates are compared to literature-

based data for central venous pressure (CVP), i.e. the pressure in the vena cava. As indicated

in Section 2.1.5, the role of the venous compartment and its relation to the arteries and the

heart is highly complex, and the hemodynamic model is merely an approximation of some

of these central mechanisms. Despite lack of trial data for venous pressures, simulated MVP

can be useful to evaluate whether the model is able to capture the physiological increase in

cardiac preload during exercise. MVP and CVP are not directly comparable, hence model

predictions of MVP during exercise are compared to the development of MVP if the relative

changes from the resting value were in accordance with CVP reported by Yoshiga et al. [43].

This study measured CVP using a catheter advanced to the right atrium in male participants

performing exercise in the forms of rowing and running. Due to the significant impact of

gravity on venous pressure [2], the values collected during rowing is considered most com-

parable to predictions of MVP made by the model, which does not account for gravitational

effects. The implementation of this comparison is included in Section A.3.4.
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3. End-systolic and end-diastolic volumes (ESV and EDV).

Left ventricular volumes ESV and EDV are included in the evaluation of exercise simulations

to obtain insights considering distribution of blood during exercise in the closed-loop model.

This can potentially indicate structural aspects of the model that make simultaneous physi-

ological behaviour in certain variables numerically impossible, which is discussed in further

detail in Section 6.2.6

As stated in Section 4.4.1, PP, MVP, EDV and ESV are quantities that, with the exception of PP, there

is no data from the exercise trial against which model predictions can be evaluated. Still, they are

considered important in the context of achieving a complete understanding of the hemodynamic

exercise model, its limitations and potential for improvement.

4.4.3 Error Metrics

The error metrics used to evaluate and validate the hemodynamic model are mean absolute error (MAE)

and bias. The specific way in which these metrics are calculated is highly important in the context of

interpreting the resulting values, e.g. the error of the mean does not necessarily equal the mean of the

errors, particularly in a nonlinear system such as the hemodynamic model. Thus, the following explicitly

states how MAE and bias are calculated from model predictions and data in this project.

1. Mean Absolute Error (MAE):

For a participant (i ) in a given state (intensity and position), MAE is calculated as the absolute de-

viation between the average model prediction of a quantity (Y i
pred) and the corresponding average

measurement Y m . Here, Y is either radial systolic or diastolic pressure (Psys or Pdia) or stroke vol-

ume (SV). For the purpose of evaluating model performance, an average MAE of model outputs Y

is calculated across N included participants as:

µMAE = 1

N

N∑
i=1

∣∣∣ Y m i − Y i
pred

∣∣∣ (4.16)

where Y m i
is collected for one participant (i ) obtained at an intensity level I∈ [0,50,100,150] W. It

represents either BPm
rad

i
, i.e. the average value of filtered radial pressure measurements of Psys or

Pdia, or SVm i
, i.e. average SV. Corresponding model prediction (Y i

pred) is calculated using the aver-

age heart rate at the given intensity level, collected from data according to Table 4.2. Further, N is

the number of participants evaluated, i.e. NI = 6 and NII = 5 for the development (I) and valida-

tion (II) parts, respectively. In the latter case, individual errors for each participant are presented

in addition to the mean error (µMAE), which is the only quantity reported from the development

experiments.
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2. Bias

Bias (2.18) is calculated similarly as MAE, except that the sign is preserved by not taking the abso-

lute value of the deviation between measurement and model prediction.

MAE summarizes model performance while disregarding the difference between an underprediction

and an overprediction. This difference is preserved by bias, which can in contrast to MAE reveal model

tendencies of over or underestimation. If errors are approximately symmetric about 0, bias can yield

misleadingly low errors, in which case MAE is preferable. In this project, bias is calculated when the

model unambiguously either over or underpredicts a certain quantity across all participants. In cases

where the configurations subjected to comparison alternates between over and underestimation, MAE

is selected as error metric. Note that in practice, the latter appeared as the case during in silico experi-

ments on all configurations with the exception of pressure scaling, which is shown in Section 5.2.1.

4.4.4 Validation Criteria

A reasonable targeted level of accuracy for the hemodynamic model is that errors are kept within the

same tolerance as considered acceptable for clinical methods of measurements. Sphygmomanometers,

the dominating class of instruments for measuring blood pressure, are identified as inaccurate when

the error exceeds ±3 mmHg [44]. Thus, an error of ≤3 mmHg is acceptable also for model predictions

of pressure. Stroke volume is in general associated with greater uncertainties than pressures. Trial mea-

surements of SV are based on integrating aortic flow (4.3), which was obtained by a Doppler ultrasound

instrument that measured blood velocity in the left ventricular outflow tract. The Doppler method uses

an ultrasound probe that is manually placed on the skin of a patient. Hence, deviations in the Doppler

angle of the probe may occur, resulting in inaccurate velocities [45]. Inaccuracies are then transmitted

directly to SV when solving the integral (4.3). Therefore, a deviation of ±10%, i.e. in the size order of ≈10

mL, is a commonly accepted level of tolerance when measuring SV in clinical settings.

It is noted that these criteria might be somewhat strict for the hemodynamic model. Prediction er-

rors must be evaluated also in the perspective of data variability, especially for higher intensities, hence

standard deviations of relevant measurements are tabulated along with resulting errors in Chapter 5.

Further, model pressures are evaluated by comparing radial measurements to model predictions scaled

to mimic properties of the radial artery, thus the criteria defined for brachial sphygmomanometry might

not be suitable for this usage. However, at the current stage of model development, the criteria are con-

sidered more as guidelines for targeted accuracy than absolute limits.
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4.5 Summary of Project Procedure

To close the current chapter on methodology, this section provides a summary of the procedures from

which the results presented in Chapter 5 are generated. One subsection is dedicated to each of the two

main parts of the project; I) development and II) validation, and corresponding usage of trial data is

found in Table 4.2. All programming is performed in Python (version 3.9.6) [46].

4.5.1 Model Calibration and Development (I)

This part of the project is conducted on six participants from the clinical exercise trial; 734 (M29), 637

(F42), 248 (F27), 890 (F29), 219 (M28) and 346 (M35). The sex (M=male and F=female) and age of the

participants are indicated in the parenthesis. In accordance with the project objectives stated in Section

1.2.1, this part is investigated in a subdivided manner; i) the parameter estimation procedure and ii)

the exercise simulation procedure. Note that the following exclusively describes the simulations con-

ducted to yield the specific results included in Chapter 5, which emphasizes aspects that highlight the

project objectives by promoting the identification of implementations beneficial for model improve-

ment. Therefore, the following steps are composed through comprehensive testing in multiple configu-

rations that are not explicitly illustrated, but still included in the discussion (Ch. 6).

i. The Parameter Estimation Procedure:

• Five variants of the parameter estimation procedure are explicitly compared in Chapter 5. At-

tributes defined equal are stated after the following enumeration, which characterizes the base-

line cases and how they differ. The process and reasoning from which these configurations have

been determined are elaborated on in Chapter 6.

1. Full estimation:

➢ Emax, Rsys, Cao, Csv and Vtot are estimated with constraints (Table 4.4).

➢ Mean parameters are chosen as baseline (Section 4.2.1).

2. No constraints:

➢ Emax, Rsys, Cao, Csv and Vtot are estimated with θ > 0 as only constraints.

➢ Minimum parameters are chosen as baseline (Section 4.2.1).
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3. Regulate EF:

➢ Emax, Rsys, Cao, Csv and Vtot are estimated with θ > 0 as only constraints.

➢ A penalty is imposed on the cost function if the simulated ejection fraction (EF) ̸∈
[35,75]%. The step function (4.4) and a weight of Wef = 106 is used.

➢ Mean parameters are chosen as baseline (Section 4.2.1).

4. Fix Csv:

➢ Csv is fixed to 10×SV
PP (Section 4.2.4).

➢ Emax, Rsys, Cao, and Vtot are estimated with constraints (Table 4.4).

➢ Mean parameters are chosen as baseline (Section 4.2.1).

5. Fix Csv + regulate EF:

➢ Csv is fixed to 10×SV
PP (Section 4.2.4).

➢ Emax, Rsys, Cao, and Vtot are estimated with constraints (Table 4.4).

➢ Regulation of EF similarly to case no. 3 (Regulate EF).

➢ Mean parameters are chosen as baseline (Section 4.2.1).

• The following apply for all five configurations:

➢ Pressure and flow waves are synchronized to upstroke (Section 4.2.2).

➢ tpeak is fixed to the dicrotic notch (Section 4.2.4).

➢ The preliminary fitting procedure is always performed (Section 4.2.3).

➢ Zao is fixed to its preliminary estimated value.

➢ Emin, Rmv and T are fixed according to Table 4.3.

• Results comparing these five configurations are presented in Section 5.1 as follows:

➔ Optimized waveforms of pressure and flow (Section 5.1.1).

➔ Resulting parameter estimates of the ten baseline parameters (Section 5.1.2).

➔ Model outputs of Psys, Pdia, SV, MVP, EDV and ESV (Section 5.1.3).

➔ Exercise simulations for participants 734 and 890 and plot of average MAE (Section 5.1.4).
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ii. The Exercise Simulation Procedure:

The exercise simulation procedure is evaluated by a stepwise presentation of selected configurations

from Section 4.3. Each aspect of the procedure is analyzed with the remaining fixed to one or a

selected few configurations. Results from the following simulations are found in Section 5.2

➔ Scaling of model pressures.

Bias of scaled (4.8) vs. non-scaled model predictions of pressure are presented in Section 5.2.1.

Parameter case no. 3 (Regulate EF) is used as baseline. Errors are averaged over all six partici-

pants.

➔ The lusitropy mechanism.

The effect of the lusitropy mechanism and corresponding value of coefficient b is illustrated in

Section 5.2.2. An explicit exercise simulation is depicted for participant 890. Average values of

MAE are further presented for Psys, Pdia and SV. Parameter case no. 3 (Regulate EF) is used as

baseline for comparing the following three values of b:

0. b=0 −→ Absence of lusitropy.

1. b = bW =−0.0021 s×min. Implementation according to Equation (4.9) with b as reported

by Weissler et al. [13].

2. b = breg. Implementation according to Equation (4.9) with b obtained by linear regression

of recorded ejection intervals (LVETs) for six trial participants. An illustration of the gen-

eral and personal, trial-based regression coefficients is provided (Fig. 5.7), along with a

comparison against other literature-based values (Table 5.3).

➔ Exercise shifts of Cao and Rsys.

The shifting procedure is presented by explicit exercise simulations for participants 734 and

890 using baseline case nos. 3 (Regulate EF) and 4 (Fix Csv). MAE of Psys, Pdia and SV aver-

aged over all six participants are further presented. Four configurations a-d for shifting each of

Cao and Rsys were presented in Section 4.3.3, and resulting shifted parameter values yielded by

each alternative are illustrated in Figure 5.10. However, only the following two alternatives for

shifting each parameter are used to yield explicit exercise simulations in Section 5.2.3:
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➢ Shift of Cao:

1. Chantler-based shifts (C1). Implemented by Bjørdalsbakke [5] and based on popula-

tion averages from Chantler et al. [30].

2. Average trial-based semi-linear shift: (C2). Obtained by linear regression of average

relative changes in SV
PP from the clinical exercise trial. Corresponding to point d. for

compliance shifts in Section 4.3.3.

➢ Shift of Rsys:

1. Chantler shifts (R1). Implemented by Bjørdalsbakke [5] and based on population aver-

ages from Chantler et al. [30].

2. General trial-based exponential shift (R2). Obtained by exponential regression of rel-

ative changes in MAP
CO in selected participants from the clinical exercise trial. Corre-

sponding to point d. for resistance shifts in Section 4.3.3

In the following, attributes that apply for all exercise simulations shown in Chapter 5 are stated. Note

that this includes also the preliminary exercise simulations conducted as a part of the evaluation of

baseline configurations as well as the model validation (Section 4.5.2).

➢ Shift of maximum elastance (Emax) as implemented by Bjørdalsbakke [5], i.e. using Equation (3.8)

and population averages reported by Chantler et al. [30].

➢ Unless stated otherwise, Chantler-based exercise shifts of Cao and Rsys are used, as this is used in

the original formulation of the exercise model [5].

➢ Unless stated otherwise, model pressures are scaled according to Equation (4.8).

➢ Resting heart period used to calculate exercise intensity (3.9) is the same as the baseline parameter

(T = T ton), i.e. obtained from the tonometry pressure signal.

➢ All trial data used is for the semi-recumbent (sr) position only. Data collected in the supine (sup)

position is not used in this work.

➢ Unless stated otherwise, the lusitropy mechanism is implemented according to Equation (4.9)

with b = breg, i.e. corresponding to point no. 2 in the enumeration of lusitropy coefficients pre-

sented above.
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4.5.2 Model Validation (II)

Based on part I, a final number of model configuration are selected for the validation experiments, which

are performed on five new trial participants; 107 (M39), 359 (F43), 447 (F40), 708 (F38) and 959 (F35).

None of these are used for development and calibration purposes, which is an important principle of

model validation. Estimation case no. 3 (Regulate EF) is selected to obtain baseline parameters for the

validation experiments, and the three exercise configurations enumerated below are compared. The

process and reasoning from which these selected configurations were determined are elaborated in

Chapter 6. Note that the labels representing exercise shifts in this part, i.e. Cj and Rk, i,k∈[1,2], and

the baseline case (no. 3), refer to identical procedures as stated in Section 4.5.1.

1. C1+R1:

➢ C1: Chantler-based shift of Cao.

➢ R1: Chantler-based shift of Rsys.

2. C2+R1:

➢ C2: Average trial-based semi-linear shift of Cao.

➢ R1: Chantler-based shift of Rsys.

3. C1+R2:

➢ C1: Chantler-based shift of Cao.

➢ R2: General trial-based shift of Rsys.

The validation considers the behaviour of simulated blood pressures Psys and Pdia during exercise. As

stated in Table 4.2, no flow data had been processed for these participants at the time during which

this project was conducted, hence stroke volumes are not considered in this part. Results from the val-

idation experiments are presented as individual and average mean absolute errors (MAEs) of Psys and

Pdia, which are calculated according to Section 4.4.3. Individual MAEs for all five participants are tabu-

lated at each intensity level along with the standard deviation of the respective radial pressure measure-

ment.

For Psys, MAE in a given state is additionally compared to the absolute deviation yielded by a simplified

prediction based on end-systolic pressures (ESP) reported by Chantler et al. [30]. Since the heart rates

from [30] do not necessarily overlap with those obtained for a given trial participant, the Chantler-based

prediction is made by first converting the reported heart rates into heart rate reserve-based intensities

using Equation (3.9). Further, the instantaneous intensity in a participant is interpolated to the array
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of ESP-values using the function interpolate() implemented in the python module numpy (version

12.1.3) [33]. Similarly to model predictions of pressures, the Chantler-based predictions are also scaled

(4.8) to equate the basis of comparison with radial measurements. Note that this prediction is potentially

quite unreliable, as the heart rate used as HRmax in (3.9) is taken as the highest reported average heart

rate, which does not represent a realistic maximum. Furthermore, ESP is not entirely the same as Psys, as

arterial pressure declines between the time at which the peak is reached (Psys) and the aortic valve closes

(ESP). Still, this rough comparison is considered an informative tool to investigate whether the person-

alized and presumably more accurate hemodynamic model actually performs better than average and

simplified predictions. The implementation of this comparison is included in Section A.3.4.



Chapter 5

Results

This chapter presents results generated by the methodological basis summarized in Section 4.5, with the

purpose of efficiently highlighting the project objectives. Hence, all configurations presented in Chap-

ter 4 are not explicitly illustrated, but empirical insights concerning every suggestion are discussed in

the following chapter (Ch. 6). The results are organized in three sections, where the first two contain in

silico experiments conducted with the aim of developing the hemodynamic model towards its clinical

ambition, i.e. concerning the main part of this project. Section 5.1 compares optimized waveforms, es-

timated parameters, model outputs, and preliminary exercise simulations across the five baseline con-

figurations presented in Section 4.5.1. Standard deviations of relevant exercise data used for input and

comparison purposes are additionally tabulated (Table 5.2). The exercise simulation procedure is em-

phasized in Section 5.2 by comparing selected variants of pressure scaling, lusitropy and exercise shifts.

An exercise simulation visualizes model predictions of systolic and diastolic pressures (Psys and Pdia),

pulse pressure (PP), end-systolic and diastolic volumes (ESV and EDV), stroke volume (SV) and mean

venous pressure (MVP) at each intensity level I∈[0,50,100,150] W. A complete simulation is depicted for

a selected one or two participants to provide an illustrative supplement to the graphical presentation of

errors (MAE or bias) averaged over six participants. Numerical values corresponding to these errors are

additionally tabulated in Section A.2. Finally, Section 5.3 concludes the chapter with results from the

validation experiments, presented as graphical and tabulated errors of Psys and Pdia.

5.1 The Parameter Estimation Procedure

In the following, resulting optimized waveforms of arterial blood pressure and flow, model parameters,

outputs, and preliminary exercise simulations are presented to compare the five baseline variants enu-

merated in Section 4.5.1.

70
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5.1.1 Optimized Waveforms

(a) Participant 734. (b) Participant 637.

(c) Participant 890. (d) Figure legend.

Figure 5.1: Optimized waveforms of pressure and flow for participants 734 (5.1a), 637 (5.1b) and 890
(5.1c). Red solid lines represent the arterial data that the optimization procedure aims to fit. Coloured
lines 1-5 are simulated waveforms for each case enumerated in Section 4.5.1. Times of occurrence of the
dicrotic notch and aortic valve closure are indicated by black dashed and grey dotted lines, respectively.

Figure 5.1 shows optimized waveforms for arterial pressure (P ) and aortic blood flow (Q) compared to

trial data obtained according to Section 4.1. Mean parameter fits are used in all cases with the exception

of no. 2 (No constraints). The lack of constraints and regulations in this configuration resulted in a wide

span of estimated parameters, and consequently rather meaningless average fits. Therefore, this case is

presented with its minimum parameters, i.e. the parameter set with minimum cost function of the 20

last iterations, as described in Section 4.2.1.

It is noted that despite varying conditions for the estimation procedure, most optimized waveforms

appear to be consistently in accordance with data. Peak flow (Qmax) is more prominent in cases 3 and

5, when ejection fraction (EF) is regulated, particularly in participant 637. Participants 734 and 890
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are more robust to choice of estimation procedure compared to 637, where Qmax, Psys and Pdia deviate

from data in timing and/or value for all five estimation configurations. Further, participant 637 have

a distinctively more narrow tonometry pressure waveform compared to 734 and 890. Participant 637 is

included in Figure 5.1 despite not being explicitly used for exercise visualizations to highlight a potential

reason for a more unstable and improbable behaviour exhibited in both this participant and no. 248,

who has a similar pressure waveform as 637. This issue is discussed in Section 6.1.5.
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5.1.2 Estimated Parameter Values

(a) Emax. *Phys. (red bar) = Pdn/ESV. (b) Csv.

(c) Cao. *Phys. (red bar) = SV/PP. (d) Vtot.

(e) Rsys. *Phys. (red bar) = MAP/CO. (f) Figure legend.

Figure 5.2: Estimated baseline parameters for participants 734, 346, 219, 890, 637, and 248 in each con-
figuration enumerated in Section 4.5.1. Maximum ventricular elastance (Emax; 5.2a), aortic and venous
compliances (Cao; 5.2c and Csv; 5.2b), total volume (Vtot; 5.2d) and systemic resistance (Rsys; 5.2e) are
presented to illustrate variation across estimation procedure. Further, Emax, Cao and Rsys are displayed
along with a red bar denoted ∗Phys representing their physiological values as approximated from data.
Coloured bars 1-5 display resulting mean parameters, while black x-marks show the corresponding min-
imum values, i.e. from the parameter set with smallest cost function. The values of the remaining five
baseline parameters are equal in each configuration, and are presented in Table 5.1.
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Figure 5.2 presents parameter values for each participant, compared across the five estimation con-

figurations. It is noted that Emax (5.2a) is sensitive to variations in the baseline procedure, and is also

frequently estimated as less than the physiological approximations shown as red bars. As no trial data is

available for ventricular volumes, ESV was calculated from Equations (2.3) and (2.4) assuming an ejec-

tion fraction of 60%. Hence, Pdn/ESV does not represent an accurate and personal value of Emax. It is

nevertheless included to indicate the physiologically inherent individuality in Emax, which appears cap-

tured only by case no. 3 (Regulate EF). Further, minimum parameters represented by black x-marks

show that the cost function reaches its minima for similar or smaller estimates of Emax than the corre-

sponding mean values. In most cases, the estimated Emax approaches its lower limit of 0.50 mmHg/mL.

When this boundary was increased to a more physiological value of 1.0 mmHg/mL, many test cases in

constrained configurations yielded an estimated Emax equal to this limit.

Figures 5.2b and 5.2d show that both Csv and Vtot vary significantly across the five configurations. It is

noted that, with the exception of participant 637, Csv is estimated as less than its fixed and more physi-

ological value regardless of constraints. Total volume (Vtot) is interrelated with Csv to maintain a venous

pressure (MVP) of 6 mmHg, as targeted by the cost function (3.5). Higher compliance implies that a

larger volume is needed to generate a given pressure (2.7). Further, it is noted that Cao (5.2c) and par-

ticularly Rsys (5.2e) are estimated rather similarly regardless of estimation procedure, and the estimates

are also in agreement with the data-based approximations shown as red bars.

Participant (age [yrs]) Zao[mmHg×s/mL] tpeak [s] T [s] Emin[mmHg/mL] Rmv[mmHg×s/mL]

734 (29) 0.070 0.34 0.89

0.035 0.006

637 (42) 0.013 0.41 0.98

248 (27) 0.012 0.42 1.28

890 (29) 0.052 0.32 0.66

219 (28) 0.051 0.32 0.81

345 (35) 0.053 0.35 0.88

Table 5.1: Values of Zao, tpeak, T , Emin and Rmv, obtained according to Table 4.3. None of these parame-
ters vary across the five baseline cases, and they are therefor not shown in Figure 5.2.

Table 5.1 states the parameter values that are constant across estimation procedure. It is noted that nei-

ther T nor tpeak vary significantly across the participants, with the exception of participant 248 (T =1.28

s), who exceeds typical values for resting periods [2]. Further, the preliminary fitted impedance is

smaller in 248 and 637 (Zao≈0.01 mmHg×s/mL) than in the remaining participants (Zao ≈0.07–0.05 mmHg×s/mL).
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5.1.3 Model Outputs

(a) Psys (b) Pdia

(c) SV (d) MVP

(e) EDV (f) ESV

Figure 5.3: Model outputs for participants 734, 346, 219, 890, 637 and 248. Outputs shown are sys-
tolic and diastolic pressures (Psys and Pdia), stroke volume (SV), mean venous pressure (MVP), and end-
diastolic and end-systolic volumes (EDV and ESV). The red bars displayed for Psys, Pdia, SV, EDV and
ESV represent measured data, where EF=60% is assumed for the last two. Coloured bars 1-5 represent
outputs for each baseline case enumerated in Section 4.5.1. Black x-marks represent corresponding out-
puts for the minimum parameters depicted in Figure 5.2.
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Figure 5.3 shows model outputs in resting state for six participants across the five baseline configu-

rations enumerated in Section 4.5.1. Coloured bars 1-5 represent model outputs generated by mean

parameter estimates, while black x-marks are the corresponding minimum values. Figures 5.3a, 5.3b

and 5.3c show that blood pressures Psys and Pdia and stroke volume SV are captured accurately in most

of the five baseline cases. This was also indicated by the overall consistent wave fits illustrated in Fig-

ure 5.1. The exception is participant 637, for which two of the cases without constraints (2 and 5) yield

inaccurate mean results, while the minimum values are in more accordance with data.

As read from the cost function (3.5), Psys, Pdia and SV are included in the numerical optimization along

with a target value for mean venous pressure (MVP) of 6 mmHg, which as indicated by Figure 5.3d,

all cases except no. 5 (Fix Csv+regulate EF) are able to fulfill. It is noted that the combined demands

of high Csv (fixed Csv) and low Vtot (penalize the cost function for low EF) do not preserve the desired

pressure in the venous compartment. Further, Figures 5.3f and 5.3e show that the ventricular volumes

(EDV and ESV) vary across the estimation cases, and the values are in general significantly smaller than

the corresponding physiological approximations. Note that these are not accurate values, as it is not

known whether the assumption of an ejection fraction (EF) of 60% is representative. Additionally, the

model only considers stressed blood volumes, while EDV and ESV in general represent total (stressed

+ unstressed) volumes. Combined with the varying and non-physiological estimates of Emax in Figure

5.2a, this indicates a tendency of the ventricular system not being represented physiologically by the

model.
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5.1.4 Preliminary Exercise Simulations

In the following, exercise simulations are presented for the five baseline cases enumerated in Section

4.5.1. Uncertainties in the exercise data used as input (HR) and basis of comparison (Psys, Pdia and SV)

are initially tabulated, as the variability in this data is highly relevant in the perspective of evaluating

errors of model predictions.

Variability in Exercise Data From the Clinical Trial

The following table presents standard deviations (σ) of the data used in the development experiments.

Participant σ0W σ50W σ100W σ150W

734 3.5 5.1 6.1 6.0

637 2.3 3.2 4.6 7.7

248 4.1 13.2 5.2 8.4

890 2.6 3.7 5.5 8.6

219 4.4 5.6 6.4 9.0

346 3.9 4.0 6.6 6.3

µσ 3.5 5.8 5.7 7.7

(a) Standard deviations of radial Psys [mmHg].

Participant σ0W σ50W σ100W σ150W

734 1.5 2.3 7.8 2.4

637 1.5 2.6 2.7 4.6

248 2.9 8.1 4.0 3.3

890 2.2 2.9 2.6 4.6

219 3.1 2.9 2.7 4.1

346 2.9 3.1 10.8 4.2

µσ 2.3 3.7 5.1 3.9

(b) Standard deviations of radial Pdia [mmHg].

Participant σ0W σ50W σ100W σ150W

734 5.5 3.3 7.1 5.2

637 2.0 6.4 6.2 8.3

248 2.9 4.0 3.2 1.5

890 1.0 2.0 1.2 1.9

219 1.1 3.3 6.6 3.4

346 3.0 2.7 1.8 4.6

µσ 2.6 3.6 4.4 4.1

(c) Standard deviations of SV [mL].

Participant σ0W σ50W σ100W σ150W

734 1.7 0.7 1.1 6.6

637 1.5 6.4 2.2 41.3

248 0.3 2.1 1.6 5.1

890 3.0 6.1 11.8 5.6

219 0.9 0.6 2.0 2.2

346 4.5 1.9 1.9 4.6

µσ 2.0 3.0 3.4 10.9

(d) Standard deviations of HR [bpm].

Table 5.2: Standard deviations of systolic pressure (5.2a), diastolic pressure (5.2b), stroke volume (5.2c)
and heart rate (5.2d) for participants [734, 637, 248, 890, 219, 346] at each intensity level I∈[0,50,100,150]
W.
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Simulations for Participants 734 (Left Column) and 890 (Right Column)

(a) 734: Psys (upper lines) and Pdia (lower lines). (b) 890: Psys (upper lines) and Pdia (lower lines).

(c) 734: PP. (d) 890: PP.

(e) 734: SV.. SVI (black line) is Stroke Volume Index [30]. (f) 890: SV.

Figure 5.4: Exercise simulations for participants 734 (left column) and 890 (right column). Coloured lines
1-5 are model predictions given each baseline case enumerated in Section 4.5.1. Red lines represent
recorded data marked as µ±σ for each intensity level.
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(g) 734: EDV (upper lines) and ESV (lower lines).
*Data for ESV and EDV assumes EF=60%.

(h) 890: EDV (upper lines) and ESV (lower lines).

(i) 734: MVP. Simulations (1-5) vs. CVP from[43] (black line). (j) 890: MVP.

Figure 5.4: Exercise simulations for participants 734 (left column) and 890 (right column). Coloured lines
1-5 are model predictions given each baseline case enumerated in Section 4.5.1. Red lines represent
recorded data marked as µ±σ for each intensity level.

Figure 5.4 illustrates exercise simulations for participants 734 (left column) and 890 (right column) given

the five baseline cases enumerated in Section 4.5.1. Model predictions are compared to data when avail-

able (arterial pressures and SV) and literature-based values when considered an informative supple-

ment (SV and MVP). Note that the ranges of HR-values on the x-axes are very different for the two partic-

ipants. At 0 W, participant 734 has a heart period similar to the average tonometry value (T 0W=0.87 s vs.

T ton=0.89 s). Participant 890 begins with a heart period at 0 W of T 0W=0.54 s, while the tonometry heart

period is T ton=0.66 s. Participant 890 also reaches a significantly higher intensity at 150 W (HR150W=175

bpm) compared to 734 (HR150W=137 bpm). A higher HR is in general associated with larger uncertainties

in cardiovascular measurements. Systolic (Psys) and diastolic pressure (Pdia) (Figs. 5.4a and 5.4b) and

pulse pressure (PP) (Figs. 5.4c and 5.4d ) are depicted as radial pressures (red lines) compared to scaled

model pressures. There are no prominent differences in pressure predictions across the five cases with

the exception of nos. 4 and 5 in participant 890, where Psys diminishes at higher intensities.
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It is noted that all cases significantly overestimates Pdia for participant 734, but captures Psys, which

consequently makes PP underestimated (Fig. 5.4c). Overall, PP is predicted more accurately for 890,

especially in cases 1–3, where Psys is captured without significantly overestimating Pdia (Fig. 5.4d).

From the figures depicting ventricular volumes (5.4g and 5.4h) it is noted that the 0 W-values of end-

systolic and diastolic volumes (ESV and EDV) vary significantly across baseline case, which was also

observed in Figures 5.3e and 5.3f. However, predicted stroke volume (SV=EDV-ESV) does not vary ac-

cordingly, as the developments of EDV and ESV are less varying than their initial values. Figure 5.4e

shows that for participant 734, simulated SV is quite similar at each intensity level across the five base-

line cases. The consistency between stroke volume index (SVI) reported by Chantler et al. [30] and SVdata

for participant 734 confirms reliability of this data set. Model predictions are in better accordance with

data for intensities 0 and 150 W compared to the intermediate intensities (50 and 100 W) for both 734

and 890. Deviations within SV yielded by the five baseline cases are more pronounced in participant

890 (Fig. 5.4e), but cases 1–2 and 3–5 predict similar behaviours. It is noted that at 50 and 100 W, the

data deviates significantly from the development indicated by SVI, with a maximum deviation of 20 mL

for 890. As it is implausible that the model will mimic the measured behaviour of SV for 890, SVI can

be a more probable and reliable comparison. It is noted that SV at 0 W for participant 890 is underesti-

mated compared to data with a deviation of 8 mL. At 0 W, no exercise shifts are performed to counteract

the effect of reduced filling caused by an increased heart rate with resulting shortened diastolic period.

Hence, SV predictions are diminished at 0 W for 890 due to IHRR = 0.19 > 0, despite the participant being

in a state of rest.
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Mean Absolute Error (MAE) of Psys, Pdia and SV

(a) MAE of Psys. (b) MAE of Pdia.

(c) MAE of SV. (d) Figure legend.

Figure 5.5: MAE of Psys (5.5a), Pdia (5.5b) and SV (5.5c) averaged over six trial participants at each inten-
sity level. Cases 1-5 are represented with identical colors and linestyles as in Figure 5.4. Horizontal lines
represent mean values across all intensities. All values depicted are explicitly stated in Table A.6.

Figure 5.5 shows MAE of Psys, Pdia and SV at each intensity level I∈[0,50,100,150] W compared across the

five baseline configurations. It is noted that:

• On an average level, cases 1–3 and 4–5 perform similarly in pressure simulations. Cases 4–5 predict

lower pressures, yielding a greater MAE of Psys, but smaller errors in Pdia.

• Figures 5.5c, 5.4e and 5.4f together indicate a prominent variation between participants regard-

ing which configuration yields the lowest errors in SV. This results in small average differences

between the configurations displayed in Figure 5.5c, and also large standard deviations.

• Case no. 3 (Regulate EF) yields the lowest average MAE of SV for higher intensities, but the large

standard deviations indicate that a single configuration cannot be defined as more beneficial in

predicting SV during exercise for all six participants.
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5.2 The Exercise Simulation Procedure

This section emphasizes the exercise simulation procedure by comparing selected implementations of

baseline configurations, pressure scaling, lusitropy, and parameter shifts during exercise, as presented

in Section 4.5.1. The various effects are highlighted by statistical error presentations as well as explicit

exercise simulations for participants 734 and/or 890 when considered an illustrative supplement. Note

that the effect of defining resting heart period T (Section 4.3.4) is not shown, as it appeared less influen-

tial compared to other variations. However, the aspect is discussed briefly in Section 6.2.5.

5.2.1 Scaling of Model Pressures

Figure 5.6: Bias of arterial pressures using original model outputs (blue circle-marked lines) vs. scaled
outputs (green x-marked lines). Vertical lines represent µ±σ averaged over the six participants. Hori-
zontal lines represent mean values across all intensities. All values are explicitly tabulated in Table A.4.

Figure 5.6 illustrates average bias at each intensity level I∈[0,50,100,150] W. The effect of scaling ap-

peared identical across participants, thus no explicit individual simulation is depicted. It is noted that:

• Scaling of model pressures yields smaller errors in both Psys and Pdia at all intensities. The magni-

tude of scaled bias is on average reduced by 24/14 mmHg for Psys/Pdia.

• Errors increase in magnitude according to increasing intensity. For the scaled errors, the bias is 1/7

mmHg at 0 W compared to −26/35 mmHg at 150 W for Psys/Pdia.

• On average, the model underestimates Psys and overestimates Pdia in the presented configuration.

Mean values of scaled bias across all intensities is −12/23 mmHg for Psys/Pdia.
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5.2.2 Implementation of Lusitropy

Lusitropy Coefficient From Clinical Exercise Data

Figure 5.7: Systolic periods as read from left-ventricular ejection times (LVETs), with heart rate on the x-
axis. The solid black line represents the general slope (breg) resulting from linear regression of LVETs for
all participants and intensity levels, while the coloured lines have individual slopes for each participants
(bpers). Slopes are reported as b ×103, and the unit of b is s×min.

It is noted that Weissler et al. report a more rapid decrease in systolic period (bW=-0.0021 s×min) than

read from the trial data (breg =−0.0011 s×min). A more extensive literature search on systolic time in-

tervals during exercise revealed further alternative regression values of both electromechanical systole

(QS2) and LVET. Table 5.3 summarizes the values collected from literature and the trial data.

Slope×103 [s×min]

Source QS2 LVET

Weissler et al. [13] -2.1 -1.7

Mertens et al. [47] -1.16 -1.15

Maher et al. (Sub-maximal effort) [48] -2.1 -1.7

Maher et al. (Maximal effort ) [48] -1.4 -1.4

Exercise trial — -1.1

Table 5.3: Regression coefficients for selected measures of systolic period during exercise as obtain by
Weissler et al., Mertens et al., Maher et al. and data from the exercise trial. Note that Maher et al. [48]
report different values at sub-maximal and maximal exercise. QS2 is electromechanical systole, while
LVET is left-ventricular ejection time.
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Exercise Simulation for Participant 890

(a) Psys (upper lines) and Pdia (lower lines). (b) PP.

(c) EDV (upper lines) and ESV (lower lines).
*Data for ESV and EDV assumes EF=60%.

(d) SV.
SVI (black line) is Stroke Volume Index [30].

(e) MVP.

Figure 5.8: Exercise simulation for participant 890 given baseline case no. 3 (Regulate EF). Coloured
lines 0–3 are resulting model simulations given each value of the lusitropy coefficient enumerated in
Section 4.5.1. Red lines report recorded data as µ±σ.
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Mean Absolute Error (MAE) of Psys, Pdia and SV

Figure 5.9: MAE of Psys, Pdia and SV compared across the three lusitropy coefficients (b) enumerated in
Section 4.5.1. Reported values are µ±σ averaged over six participants. Horizontal lines represent mean
values across all intensities. All values are explicitly stated in Table A.5.

Figure 5.8 illustrates explicitly how the lusitropy coefficient (b) impacts an exercise simulation. It is

observed that b significantly affects all hemodynamic quantities except Pdia, which is in accordance with

results from the sensitivity analysis (Fig. 4.3). Figure 5.9 shows MAE averaged over the six participants.

MAE is in this case preferred over bias as error metric, because the value of b did not consistently over

or underestimated neither pressures nor SV, resulting in misleadingly small bias. It is noted that:

• The lusitropy mechanism is necessary to preserve diastolic filling during exercise, as it is evident

that SV diminishes when lusitropy is absent, i.e. with b = 0.

• The largest magnitude of b is present in bW , which causes greatest systolic pressures (Fig. 5.8a)

and SV (Fig. 5.8d).

• From Figure 5.8 it appears as breg performs best compared to data, but as shown in Figure 5.9, the

conclusion is more ambiguous when considering multiple participants.

• On an average level, the differences in MAE of Pdia and SV are not significant across the three val-

ues of b. For Psys, breg performs best with a MAE averaged over intensity levels of 16.4 mmHg

compared to 25.2 and 20.0 mmHg for b = 0 and b = bW, respectively. These averages are recog-

nized as horizontal lines in the left plot of Figure 5.9.
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5.2.3 Exercise Shifts of Cao and Rsys

Alternative Shifts of Cao and Rsys

(a) Cao as shifted during exercise (734). (b) Cao as shifted during exercise (890).

(c) Rsys as shifted during exercise (734). (d) Rsys as shifted during exercise (890).

Figure 5.10: Illustration of alternatives a-d for shifting Cao (Figs. 5.10a and 5.10b) and Rsys (Figs.
5.10c and 5.10d) for participants 734 (left column) and 890 (right column). Intensity levels in watts
I ∈ [0,50,100,150] W are displayed on the upper x-axes, while corresponding participant-specific heart
rates and intensities (HR and IHRR) are presented on the lower x-axes. Upper plot of each subfigure dis-
plays specific shifted parameter values, while the lower shows the corresponding changes compared to

non-shifted resting value (θ0) calculated as∆% = θ−θ0

θ0 ×100% for θ ∈[Cao,Rsys]. Resting values θ0 are ob-
tained from baseline case no. 3 (Regulate EF). Physiological quantities calculated directly from data are
presented along with their respective relative changes as red lines. For compliance, the values reported
by Liang et al. [42] are shown as yellow lines. Note that the heart rates from Liang et al. have been shifted
to begin at HR0W.
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Figure 5.10 illustrates the four alternatives a-d presented in Section 4.3.3 for shifting each of Cao and

Rsys during exercise. It is noted that the trial-based shifts (C2 and R2) impose greater changes in both

Cao and Rsys compared to Chantler-based shifts (C1 and R1). The following paragraphs compare model

simulations and average errors using alternatives C1, C2, R1 and R2 and baseline cases 3 and 4. Table

5.4 reviews the properties of these configurations.

Shift (Param.) Source of development Explanation

C1 (Cao)
Bjørdalsbakke [5].

Equation (3.8) with population

R1 (Rsys) averages from Chantler et al. [30].

C2 (Cao) Current work based on Average trial-based semi-linear shift.

R2 (Rsys) clinical exercise trial. General trial-based shift.

(a) Methods for shifting Cao and Rsys (Fig. 5.10).

Baseline case (BC) Features

3

• Estimated Emax, Rsys, Csv, Vtot and Cao.

• Fixed tpeak, Emin, Rmv, Zao and T .

• No constraints (θ > 0).

• Regulate ejection fraction with hardmax step function (4.4).

4

• Estimated Emax, Rsys, Vtot and Cao.

• Fixed Csv, tpeak, Emin, Rmv, Zao and T .

• With constraints (Table 4.4).

(b) Baseline configurations (Section 5.1).

Table 5.4: Review of the features associated with the configurations under investigation (Section 4.5.1).
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Exercise Simulations for Participants 734 (Left Column) and 890 (Right Column)

(a) 734: Psys (upper lines) and Pdia (lower lines). (b) 890: Psys (upper lines) and Pdia (lower lines).

(c) 734: PP. (d) 890: PP.

(e) 734: SV. SVI (black line) is Stroke Volume Index [30]. (f) 890: SV

Figure 5.11: Exercise simulations for participants 734 (left column) and 890 (right column). Two baseline
cases are depicted; dashed lines represent case no. 3 (Regulate EF), while dotted lines are case no. 4 (Fix
Csv). Coloured lines denoted CjRk, j,k∈[1,2] are model simulations resulting from combining configura-
tions for shifting Cao and Rsys (Table 5.4). Red lines report recorded data as µ±σ.
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(g) 137: EDV (upper lines) and ESV (lower lines).
*Data for ESV and EDV assumes EF=60%.

(h) 890: EDV (upper lines) and ESV (lower lines).

(i) 734: MVP. (j) 890: MVP.

Figure 5.11: Exercise simulations for participants 734 (left column) and 890 (right column). Two baseline
cases are depicted; dashed lines represent case no. 3 (Regulate EF), while dotted lines are case no. 4 (Fix
Csv). Coloured lines denoted CjRk, j,k∈[1,2] are model simulations resulting from combining configura-
tions for shifting Cao and Rsys (Table 5.4). Red lines report recorded data as µ±σ.

Figure 5.11 visualizes the effects of applying selected model configurations on resulting exercise predic-

tions for two participants. The entire left column represents participant no. 734, while the right column

is participant no. 890. Both are aged 29 years, 734 is a male, and 890 a female. A total of 23 = 8 con-

figurations are shown; 2 sets of baseline parameters (BC=baseline case) in combination with 2 selected

exercise shifts for each of Cao and Rsys. Features associated with notations BCi, Cj and Rk, i∈[3,4] and

j,k∈[1,2] are summarized in Table 5.4. It is noted that:

• The baseline case (BC3 vs. BC4) greatly impacts the resting values of ventricular volumes EDV and

ESV (Figs. 5.11g and 5.11h), and the exercise behaviour of venous pressure (Figs. 5.11i and 5.11j).
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• Stroke volume (Figs. 5.11e and 5.11f) and arterial pressures (Figs. 5.11a, 5.11b, 5.11c and 5.11d)

appear more sensitive to exercise configuration than baseline case, particularly for participant

734. It is observed that Psys diminishes in participant 890 for higher intensities when baseline case

4 is applied.

• All configurations overestimate Pdia for participant 734. Predictions of Pdia are more accurate for

890. Choice of baseline case impacts Psys more for 890 than 734.

• The configuration (BC3+C2+R1) yields greatest predictions of both Psys and Pdia. It is noted that

Psys appears more sensitive to compliance shift (C1 vs. C2) than resistance (R1 vs. R2), while the

opposite is the case for Pdia.

• Model predictions of SV are not entirely able to capture the shape of the corresponding data in

neither of the two participants. Also, there are large variations across intensity levels considering

which configuration performs best in predicting SV. The combined effects of large shifts in both

compliance and resistance (C2+R2) result in the greatest predictions of SV, while the combination

C1+R1 yields the smallest.
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Mean Absolute Error (MAE) of Psys, Pdia and SV

(a) MAE of Psys. (b) MAE of Pdia.

(c) MAE of SV. (d) Figure legend.

Figure 5.12: MAE of Psys (5.12a), Pdia (5.12b) and SV (5.12c) averaged over participants 734, 346, 219,
890, 637 and 248. Lines BCi+CjRk, i∈[3,4] and j,k∈[1,2] represent the same selected configurations as
presented in Figure 5.11. Dashed and dotted lines represent baseline cases 3 (BC3) and 4 (BC4), re-
spectively, while the color corresponds to a given combination of exercise shifts. All values are explicitly
stated in Table A.6.

Figure 5.12 illustrates the average behaviour of MAE in the same selected configurations as shown in

Figure 5.11. The values are reported as µ±σ averaged over six participants for each exercise intensity

level I∈[0,50,100,150] W. It is observed that:

• For Psys and Pdia, the errors appear inversely related. A configuration resulting in small errors in

Psys, e.g. BC3+C2R1 (green dashed line) corresponds to greater errors in Pdia and vice versa.

• Compared to arterial pressures, MAE of SV varies less across model configurations. It is it observed

a slight tendency of R2, the i.e. trial-based resistance shifts, being associated with greater MAE of

SV, especially at higher intensities.
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5.3 Model Validation

Illustrated Mean Absolute Error (MAE) of Psys and Pdia

Figure 5.13: MAE of Psys and Pdia given the three selected configurations enumerated in Section 4.5.2.
Parameter case no. 3 (Regulate EF) is used as baseline. The three exercise configurations CjRk, j,k∈[1,2]
are illustrated with each respective colour. Reported values are µ±σ averaged over participants 745,
827, 241, 993 and 722 at each intensity level I∈[0,50,100,150] W.

Figure 5.13 illustrates prediction errors over intensity, averaged over the five participants included in the

validation experiments. All values are explicitly stated in the bottom rows of Tables 5.6 and 5.7.

Tabulated Individual Errors and Data Variability

Variability in Heart Rates (HR) [bpm] for the Validation Participants:

Participant (age [yrs]) σ0W σ50W σ100W σ150W

745 (39) 4.5 1.2 1.4 1.1

827 (43) 4.3 1.3 0.8 1.1

241 (40) 7.2 12.3 2.4 1.5

∗993 (38) 7.7 2.4 1.3 x

722 (35) 4.4 3.2 1.8 1.9

µσ 5.6 4.1 1.5 1.4

Table 5.5: Standard deviations of HR [bpm] collected from the clinical exercise trial. The heart rates
are used as input for model predictions during exercise, thus their variability is highly relevant in the
perspective of validating the hemodynamic exercise model. *No data for no. 993 at 150 W.
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Figure 5.13 illustrates average values of MAE, which are contained in the bottom rows of Tables 5.6 and

5.7. The exercise configurations shown are C1C1, C2R1 and C1R2, all applying baseline case no. 3 (Reg-

ulate EF). Table 5.5 presents standard deviations of the exercise measurements from the trial data, along

with the ages of the participants. As described in Section 4.1, the heart rates (HR) obtained by ECG

and systolic (Psys) and diastolic (Pdia) pressures obtained by radial measurements were subjected to an

interquartile range filtering procedure prior to being used for model purposes. This has consequently

reduced the resulting standard deviations shown in Tables 5.5, 5.6 and 5.7, which were originally greater

when calcuated directly from the raw data. It is further noted that the validation participants are on

average older than the six used in the development experiments, whose ages are stated in Table 5.1. The

validation participants have an average age of 39 years compared to 32 years in the development cohort.

Equation (3.10) yields a smaller HRmax for a higher age, resulting in a greater heart rate-based intensity

(3.9), and consequently greater shifts in Emax, Rsys and Cao during exercise. The following is observed

from the validation experiments:

• Overall, the prediction errors exhibit similar average tendencies as observed in the six develop-

ment participants (Fig. 5.12). The combinations where semi-linear trial-based compliance shifts

are applied (C2) yield the smallest errors in Psys, while the exponential trial-based resistance shifts

(R2) are beneficial for reducing errors in Pdia.

• A prominent peak in MAE of Psys is observed at 50 W for C2R1 that was not present in Figure 5.12.

• The smallest average errors are 16.7 mmHg for Psys in configuration C1R1 and 12.4 mmHg for Pdia

in C1R2. For the six development participants, the average errors in the same configurations are

16.4 and 15.5 mmHg, respectively.

• The personalized model predictions of Psys perform better than the ESP-averages, whose errors

are contained in the column denoted |∆C | in Table 5.6.

• All average errors clearly exceed clinical criteria for blood pressure measurement accuracy of ±3

mmHg (Section 4.4.4). As can be read from Table 5.6, only one participant remains within this

criteria across all intensity levels, i.e. 745, whose average MAE is 2.7 mmHg for Psys when con-

figuration C2R1 is applied. Unfortunately, Pdia is clearly overestimated in the same case with an

average MAE of 21.8 mmHg. The average errors are also too pronounced to be assigned exclu-

sively to uncertainties related to high exercise intensities, as they are relatively greater compared

to data variability reported in Table 5.2.

• The validation did not consider SV during exercise, but based on Figure 5.12c it appears improba-

ble that potential predictions would have yielded an accuracy within the criteria of ±10%.
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Discussion

As stated in Section 1.2, this work aims to further develop and validate the MyMDT hemodynamic ex-

ercise model against cardiovascular data collected in a clinical exercise trial. First, in silico experiments

were conducted to examine model procedures of i) estimating baseline parameters and ii) exercise sim-

ulation. The purpose of this primary part of the project was to develop the hemodynamic model by

improving its predictive accuracy through structural adjustments, without increasing the level of com-

plexity. As a secondary part, a brief validation was performed on five participants that were not used in

the development experiments. In the following, results presented in Chapter 5 are discussed in a consec-

utive order according to the methods and suggestions stated in Sections 4.2 and 4.3. Insights obtained

throughout the work that were not shown in Chapter 5 are also considered, as they explain the process

from which the results chosen to highlight were determined. Finally, the chapter concludes with a brief

review of three minor pilot experiments motivated by the preceding discussion.

6.1 The Parameter Estimation Procedure

The method based on the work by Bjørdalsbakke et al. [4] concerning the estimation of resting state

parameters for the hemodynamic model has been examined. Parameters obtained by this procedure

constitute the baseline for following exercise predictions. Section 5.1 compared optimized waveforms

(Fig. 5.1) parameter estimates (Fig. 5.2), resting state outputs (Fig. 5.3) and exercise simulations (Fig.

5.4) across five different variants of the baseline procedure.

96
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6.1.1 Synchronization of Input Data and Model Cycle Start

The arterial pressure cycles obtained by tonometry begin on upstroke, i.e. with the initiation of systole,

which is the most convenient when splitting a pressure time series into individual cycles. Based on this

premise, this project investigated how model cycle start and the synchronization of pressure and flow

data should be defined to benefit the optimization procedure. From Figure 4.2, it might be argued that

agreement on the timing of valve closure for pressure and flow (Fig. 4.2b) yields a more consistent rep-

resentation of a cardiac cycle than synchronization to upstroke (Fig. 4.2a). In cases where the deviation

was not as prominent as in Figure 4.2, valve closure synchronization appeared to potentially agree better

with also the timing of upstroke. However, the alternatives cannot be evaluated without considering also

how they facilitate parameter fits in the estimation procedure, which uses flow and pressures waves as

input. A potential issue regarding this aspect in the original implementation was discovered early in the

current project. Originally, a cardiac cycle as defined by the model begins approximately 0.1 s before sys-

tole. It was raised attention to a potential source of optimization problems yielded by lack of consistency

between the model and the arterial data it is supposed to fit. This was revealed by inaccurate optimized

waveforms with deviating starting points compared to corresponding data. Hence, in collaboration with

Ph.D. Candidate Bjørdalsbakke, an additional function was developed to shift model waves of pressure

and flow within the cost function to also begin on upstroke (Pdia at t=0, and Q̇ao, Ṗao>0). This change

was implemented early in the project and used in all subsequent analyses, as it unambiguously im-

proved the premises for optimizing waveforms. As a consequence of this modification, synchronization

to the dicrotic notch became prominently less beneficial compared to upstroke due to discrepancies in

cycle start between flow data and the model. Overall, upstroke synchronization for pressure and flow in

both model and data yielded significantly more accurate optimized waveforms compared to cases with

deviating cycle starts.

6.1.2 Assignment of Fixed and Estimated Parameters

Configurations of the baseline procedure defining tpeak, Zao and Csv as fixed and estimated were inves-

tigated. The following paragraphs discuss the overall effect of these alternatives on resulting parameter

estimates, exercise predictions and the estimation procedure itself.

Time of Peak Elastance (tpeak)

All five variations of the baseline procedure presented in Chapter 5 have tpeak fixed to the dicrotic notch.

It was early observed that the dicrotic notch tends to occur at a time in the cardiac cycle that is signifi-

cantly less compared to most estimates of tpeak. Several test cases estimated tpeak to its upper bound of
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0.442 s when constraints were applied according to Table 4.4. A parameter estimated to a limit value is

an indication that a personal property is not being represented as intended. Further, fixing tpeak yielded

more physiologically plausible exercise predictions. This is in accordance with observations made dur-

ing the fall of 2021, where having tpeak⪆0.45 s indicated inadequate restoration of diastolic filling in

combination with the implementation of lusitropy ((4.9) and b = bW) [7]. Overall, no advantages of sig-

nificance were associated with estimating tpeak compared to fixing it to the dicrotic notch, hence the

latter alternative was used in all configurations illustrated in Chapter 5.

Aortic Impedance (Zao)

The value of Zao is affected by adjustments of the parameter estimation procedure if it is included in

the main optimization, or if changes impact the preliminary part. However, all five baseline cases pre-

sented in Chapter 5 were conducted with preliminary fitted Zao, and no variations that altered this fit.

The inclusion of Zao in the full estimation procedure was attempted in multiple test cases and configu-

rations throughout. The motivation for this adjustment compared to the original implementation with

only preliminary fitted Zao was the presence of very small values in participants 637 and 248, who also

showed prominent peaks in their optimized flow waveforms inconsistent with data (Fig. 5.1b). Since

flow is inversely proportional to resistance (2.2), a suggested remedy for this behaviour was to include

Zao in the main estimation procedure. This did indeed result in increased values of Zao and better flow

fits for 637 and 248, but without improved exercise predictions. For the remaining participants, the effect

was negligible. Hence, because the inclusion of additional parameters in the optimization also increases

the duration of the analysis, it was concluded as advantageous to keep Zao fixed to its preliminary fitted

value.

Venous Compliance (Csv)

Estimated values of Csv were sensitive to remaining variations in the baseline procedure, which can be

observed in Figure 5.2b. As stated in Table 4.4, Csv is quite loosely constrained, because while there are

many studies reporting compliance of particular veins, appropriate values representing a total venous

compliance transferable to the model parameter are much scarcer. Furthermore, attempts to model ve-

nous function are more commonly done using true blood volumes as opposed to only stressed volumes.

However, there is an overall agreement that the compliance of veins is higher than arterial compliance

with a factor of roughly ≈10-20 [40]. It was early observed that Csv was estimated significantly less than

this approximation in most configurations. Therefore, it was attempted to fix Csv to 10×Ca . The main ef-

fect was an overall increase in Vtot (Fig. 5.2d), which can be explained by the need for increased volume
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to sustain a mean venous pressure (MVP) of 6 mmHg with a higher Csv. Unfortunately, the increased

Vtot was accompanied by improbably small values of Emax (Fig. 5.2a), and very high values of ventricular

volumes ESV and EDV (Figs. 5.3f and 5.3e), the latter resulting in small ejection fractions (EF) (2.4).

Blood volume is a complicated issue in the hemodynamic model. In general, EDV and ESV include an

unstressed fraction (V0) that the model does not consider. This means that from a physiological view,

V0 would have to be quite negative to explain the large stressed volumes. As illustrated by the PV-loop

(Fig. 2.1), cardiac function is characterized by both ventricular volumes and pressures. Here, V0 is the

reference point from which the slope to end-systole is calculated, which implicitly equals 0 in the model.

If the stressed volume becomes larger, the respective slope (Emax) must be smaller to produce the same

pressure. Hence, slopes Emax and Emin can be represented despite not assigning a physiological value of

V0, as the inclusion of V0 simply shifts the PV-loop without affecting the slopes. Although the pumping

force of the heart exerted on the arterial compartment can be quantified while considering only stressed

volume, the complete behaviour of the heart cannot be physiologically described without V0. Thus, it

is ambiguous based on apparently non-physiological values of ventricular volumes whether fixing or

estimating Csv is the most beneficial for the model. Configurations including both alternatives were

included in the search for the overall best baseline procedure for accurate exercise simulations.

Two of the five baseline configurations shown in Section 5.1 have fixed Csv; no. 4 (Fix Csv) and 5 (Fix

Csv+regulate EF). The latter exhibited an unstable behaviour that differed significantly from the remain-

ing configurations, e.g. with a higher estimate of Cao (Fig. 5.2c) and a mean venous pressure (MVP) lower

than the target value of 6 mmHg (Fig. 5.3d). It appears as if the combined demands of high Csv (fixed

Csv) and low Vtot (penalize the cost function for low EF) are unable to preserve desired venous pressure.

In total, this configuration exhibited greatest MAE of Psys and SV (Fig. 5.5). Baseline case no. 4, i.e. with

constraints, performed more similarly as the remaining configurations, and more accurately during ex-

ercise. Thus, it appears beneficial that the model is allowed to compensate for the large compliance by

increasing its volume to maintain physiologically accurate levels of Psys and SV during exercise (Figs.

5.4a and 5.4i). Case no. 4 was further analyzed in Figure 5.12, and yielded overall greater errors in both

Psys and SV compared to case no. 3 (Regulate EF), but the errors in Pdia were smaller.

The motivation for fixing Csv was to examine whether the model could be forced to contain more vol-

ume in the venous compartment to maintain MVP=6 mmHg, particularly when simultaneously penal-

izing the cost function for small ejection fractions. However, the model appears reluctant to accede to

measures implemented to enforce a certain distribution of volume. This behaviour is pursued in Sec-

tion 6.4.1 with a discussion of an experiment conducted to investigate the interrelations between Csv,

Vtot, Emax and the cost function.
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6.1.3 Constraints

Several test experiments in preliminary configurations frequently estimated maximum elastance (Emax)

to its lower limit value, which was first set to 1.0 mmHg/mL and later adjusted to 0.5 mmHg/mL. As can be

seen in Figure 5.2a, most estimates of Emax are significantly smaller than the physiological, data-based

approximation Pdn/ESV, where Pdn is BP at the dicrotic notch (Fig. 2.2). Even though the presented value

of Pdn/ESV assumes an ejection fraction (EF) defined as 60%, the comparison is useful for investigating

whether the estimated Emax represents a personal cardiovascular property. Parameters Csv and tpeak

were also in some preliminary configurations estimated to their lower and upper limits, respectively. A

motivation for conducting the estimation procedure without constraints was to investigate why these

parameters were estimated to their bounds. A possible explanation is that constraints (Table 4.4) do

not allow the optimization algorithm to search efficiently for all possible parameter combinations. As

it turned out, tpeak was estimated significantly closer to the dicrotic notch when the constraints were

removed. In some cases, the lack of constraints yielded very improbable mean parameter fits, recog-

nized e.g. by simulated pressures that were in varying degree shifted above the tonometry waveforms.

This unfortunate behaviour was particularly pronounced in participant 637. Therefore, in case no. 2

(No constraints), the minimum parameters, i.e. the parameter set with minimum cost function, are

used as basis for comparison with the remaining configurations, where the mean parameters are used

as baseline. This resulted in a set of baseline parameters for case no. 2 more similar to case no. 1 (Full

estimation), where constraints were applied. Another negative aspect of removing constraints is that

the unlimited search range for the numerical optimization showed to significantly increase the duration

of the estimation process, which in the slowest cases went from ≈1.5–3.5 hrs for one participant.

6.1.4 Regulation of Ejection Fraction

As described in Section 4.2.6, the motivation for implementing a regulation of ejection fraction (EF) in

the estimation procedure was the early observation of estimated high values of Vtot. A high Vtot is not

problematic in itself, as most of the blood should be contained in the venous compartment under low

pressure. It can even be beneficial, as a large total volume gives the model more blood to distribute to the

ventricles during exercise, thereby facilitating an increased EDV in accordance with physiological theory

(Section 2.1.5). However, it was observed that a high Vtot was consistently accompanied by high end-

diastolic and end-systolic volumes (EDV and ESV). Although the target value of stroke volume (SV=EDV-

ESV) could still be fulfilled, this resulted in very low EFs. A suggested remedy for the high volumes was

to implement a penalty on the cost function when resulting estimates yielded extreme values of EF. This

was attempted in baseline cases 3 (Regulate EF) and 5 (Fix Csv+regulate EF), which essentially differ in
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that no. 4 fixes Csv, while no. 3 estimates this parameter.

Overall, ESV and EDV are the least plausible of all predicted quantities, as observed in Figures 5.3f and

5.3e. At the same time, Emax is frequently estimated non-physiologically small (Fig. 5.2a). It appears as

if the model tends to maintain ventricular pressure by large volumes and a small elastance, while the

opposite is desirable from a physiological point of view. Implementing a hardmax regulation of EF (4.4),

did indeed increase Emax and reduced ventricular volumes. According to Figure 5.5, case no. 3 (Regulate

EF) yields the baseline with smallest MAE of Psys and SV during exercise, but unfortunately the greatest

errors in Pdia.

As stated in Section 4.2.6, it was questioned during the project whether the regulation of EF with a hard-

max step function (4.4) perturbates the optimization procedure along the predefined boundaries of

[EFmin, EFmax]. Therefore, another version of case no. 3 (Regulate EF) was attempted using the soft-

max implementation (4.6) with α= 100, weight Wef = 50, and the same limits [EFmin, EFmax] = [35,75]%

as used for the step function. Overall, the softmax version found similar parameter fits as hardmax, but

the relatively large estimates of Emax yielded by hardmax, i.e. in participants 890 and 637, were esti-

mated less with softmax, with correspondingly increased ventricular volumes. Similarly, in cases where

Emax was estimated small with hardmax, i.e. participants 734 and 346, Emax increased, while ventricular

volumes decreased. However, the overall difference between penalizing the cost function with hardmax

vs. softmax was insignificant when considering the optimized waveforms, model outputs of Psys, Pdia

and SV, and exercise simulations of these. The softmax implementation thus served as a verification

that the solutions obtained by the hardmax step function had not been impeded by algorithmic issues

to a level that altered their reliability. Note that these attempts to regulate EF are highly preliminary. The

further use of such implementations, determination of boundaries of EF, sensitivity through Wef and the

(1+ 1/EF)-factor for the softmax version (4.6), would require multiple experiments in various configura-

tions beyond this work.

6.1.5 Remarks on the Baseline Procedure

Of the six participants included in the development experiments, nos. 637 and 248 were associated with

overall unstable behaviour. As illustrated in Figure 5.1b, optimized waveforms for 637 and 248 were

more sensitive to choice of baseline configuration compared to 734 and 890. 248 yielded a behaviour

that was quite similar to 637 in both waveforms and exercise simulations. The simulated behaviour of

Pdia and SV during exercise in these two participants was very implausible, and did not appear corri-

gible by adjustments of neither baseline nor exercise simulation procedures. The waveforms depicted

in Figure 5.1b reveal a possible explanation for the unstable behaviour exhibited by 637 and 248; the
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carotid pressure waveform is quite narrow, lacks a prominent dicrotic notch and is overall more dissim-

ilar to an expected arterial pressure waveform (Fig. 2.2) compared to the remaining four participants.

Thus, the individual model simulations for 637 and 248 were decided not to have a direct impact when

determining the suitability of a baseline configuration. However, the carotid waveforms were not con-

sidered sufficiently nonphysical to exclude 637 and 248 from average error calculations, as the premises

for discarding data for model usage are not yet drafted. Furthermore, it is advantageous for model ro-

bustness to pursue a wide range of data in a calibration process. Still, the inclusion of these consistently

unbehaved simulations may have resulted in average errors that are not necessarily representable for

the remaining four, more stable participants.

Based on the exercise simulations depicted in Figure 5.4 and average errors in Figure 5.5, estimation

case no. 3 (Regulate EF) was chosen as baseline for the examination of two properties directly related to

exercise simulations; pressure amplification and lusitropy. Further, case no. 4 (Fix Csv) was included in

the examination of exercise shifts, as this case yielded slightly lower errors in Pdia compared to case no.

3. Case 5 (Fix Csv+regulate EF) yielded the lowest errors in Pdia, but escalated the errors in Psys and SV,

and was therefore not prioritized for further investigations in this project.

The baseline procedure aims to fit a model that includes an arterial, venous and ventricular compart-

ment using flow and pressure data collected only from the arterial circulation. The arterial compartment

is represented by the three-element Windkessel model (Section 3.3.1). Figure 5.2 shows negligible de-

viations between resulting estimates of the Windkessel-related parameters Rsys (Fig. 5.3a) and Cao (Fig.

5.3a) across the five baseline configurations for most participants. It is apparent that the arterial part

of the hemodynamic model is both more stable and physiologically accurate than the ventricular and

venous compartments, reflected by prominent variations in estimates of Emax, Csv and Vtot in contrast to

the stable arterial parameters. This feature can be a consequence of the lack of venous and ventricular

data to fit the model against. Another possibility is that the Windkessel model in itself is a better numer-

ical representation of a physiological system than the implementations of cardiac and venous function.

It is probable that both factors are contributing to the apparent misbehaviour of the ventricular and

venous compartments. This discovery motivated a preliminary pilot experiment using an open-loop

model excluding Vtot and the venous compartment entirely, which is discussed in Section 6.4.3.
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6.2 The Exercise Simulation Procedure

This section discusses aspects of exercise simulation highlighted by the results in Section 5.2 in a step-

wise and consecutive order according to the suggestions presented in Section 4.3. Each part is analyzed

with the remaining configurations fixed to one or a selected few cases. This is somewhat limiting, as

variation in one parameter will in general impact the effect of other. However, the range of possible

combinations is too extensive for simultaneous presentation and evaluation. Therefore, a stepwise in-

spection of the various effects is considered adequate within the limitations of this project. The section

is introduced with a brief discussion of the uncertainty and reliability of the project database.

6.2.1 Reliability of the Trial Data

As stated in Section 4.1, model performance during exercise is evaluated against blood pressure (BP)

measured at the radial artery, and stroke volume (SV) obtained from integrated Doppler velocity traces.

Literature-based values are included as basis of comparison for mean venous pressure (MVP) and SV

due to lack of data for the venous compartment and questionable reliability of the preliminary pro-

cessed flow data, respectively. When measuring SV by a Doppler method, an ultrasound probe is placed

manually on the skin of the participant. Resulting velocities are sensitive to motion and angle [45], and

are in general prone to more uncertainty compared to pressures. Hence, reliability of these recordings is

somewhat limited, especially at higher intensity levels. Greater exercise effort increases the movement

under the Doppler ultrasound probe, which can reduce the accuracy of the following semi-manually

obtained flow traces. Uncertainties related to higher intensities are reflected by an overall tendency of

increased standard deviations of the measurements, although not very pronounced (Table 5.2). The fil-

tering procedure (Section 4.1) ensured a variability of radial pressures within a magnitude of ≈5 mmHg.

As SV and HR used in the development experiments had been manually obtained [7], their variability

was assumed initially acceptable, and no filtering procedure was applied. The standard deviations of the

non-filtered SV and HR are of similar magnitudes as the filtered radial pressures, with the exception of a

prominent outlierσ150W(HR)=41.3 bpm in participant 637. The method for obtaining preliminary radial

systolic and diastolic pressures is considered reasonably accurate. For SV, it was observed some tenden-

cies of prominent, implausible troughs, e.g. in participant 890 at 50 W (Fig. 5.4f). To limit the influence

of suspected low-quality data in the development of trial-based exercise configurations, prominent out-

liers were ignored, e.g. when performing the regression to obtain a general, trial-based b (4.9). Naturally,

access to finally processed, quality assured data would have been beneficial. However, the reliability of

the preliminary trial data was considered adequate for the scope of this project, confirmed by average

model prediction errors (Fig. 5.12) of greater magnitude compared to data variability (Table 5.2).
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6.2.2 Scaling of Model Pressures

The direct comparison of predicted BP against experimental measurements from the clinical exercise

trial is essentially illogical. The model simulates an aortic pressure wave, which as described in Section

2.1.4 is inherently different from the radial waveform collected in the study (Fig. 2.4). This feature mo-

tivated the implementation of a post-processing procedure for the model pressures when comparing

against radial data. Figure 5.6 shows that by implementing a scaling factor to adjust for the pressure

amplification present between the aorta and the radial artery, model predictions became unambigu-

ously more consistent with data compared to non-scaled predictions. It is apparent that an interven-

tion such as the implemented scaling is necessary for the interpretability and meaning of evaluating and

validating the hemodynamic model against exercise data from the trial. Knowledge about physiologi-

cal relations and properties are important when working with mathematical modelling against clinical

applications, which motivated the inclusion of a relatively thorough theoretical review of the cardiovas-

cular system (Section 2.1) in this report.

6.2.3 The Lusitropy Mechanism

The Specialization Project [6] showed that model behaviour is highly sensitive to the lusitropy coefficient

(Fig. 4.3), which is supported by results obtained in this project. Figure 5.8 illustrates the vast impact

of the lusitropy coefficient (b) on an exercise simulation. The absence of lusitropy is simulated for illus-

trative purposes by setting b = 0. The prominent reduction in EDV (Fig. 5.8c) at higher intensities given

b = 0 indicates diminished diastolic filling during exercise. ESV is reduced to a near similar degree as

EDV, and SV is slightly reduced (Fig. 5.8d). To fulfill its relation to SV (PP×Ca=SV), pulse pressure (PP)

tends to stays horizontal (Fig. 5.8b), which corresponds to a flattened Psys (Fig. 5.8a). In general, ESV

and Emax are major determinants of Psys (2.12), which indicates that when ESV decreases to a level be-

yond what is compensated by a shifted Emax, Psys fails to increase. However, while causing predictions of

Psys and SV to behave non-physiologically, the diminished diastolic filling simultaneously counteracts

the model tendency of consistently overestimating Pdia, thus benefiting these predictions on an aver-

age level (Fig. 5.9). Interrelations between model parameters during exercise are further emphasized in

Section 6.2.6.

As stated above, b = 0 is not an applicable configuration for the model, which was first highlighted by

Straatman in 2021 [7]. However, due to the vast importance of lusitropy and the lack of satisfying results

obtained with b = bW = −2.1×10−3 s×min from Weissler et al. [13], this project examined alternative

values and increased personalization of lusitropy through the regression coefficient (b). A brief litera-

ture study summarized in Table 5.3 revealed the following ranges of experimentally obtained regression
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coefficients for two measures of systolic period; electromechanical systolic time intervals (QS2) ∈[-2.1,-

1.16]×10−3 s×min, and left ventricular ejection period (LVET) ∈[-1.7,-1.15]×10−3 s×min. Overall, re-

ported QS2 are of greater magnitude than LVET. The smallest values of QS2 and LVET are quite consistent

with the regression coefficient of LVET obtained from the trial data (breg = −1.1×10−3 s×min). It can

be argued that because it incorporates more of the systolic phase, QS2 is more representative for tpeak

than LVET, which is why QS2 collected from Weissler et al. [13] was originally adapted to the hemo-

dynamic model. However, the level of transferability between tpeak and physiological systolic period is

not yet clarified to an extent that LVET can be unquestionably discarded in favor of QS2. Therefore, it

was chosen to compare model behaviour exhibited with bW to breg, where the latter has an overall level

of agreement with the literature-based LVET-periods, which confirms the reliability of the data used to

obtain this value. Overall, simulations based on these two distinct values and b = 0 constitute an infor-

mative basis of insights about the impact of b.

The explicit exercise simulation in Figure 5.8 shows the impact of lusitropy on diastolic filling. The steep-

est slope (bW ) yields the greatest reduction in systolic activation time, resulting in high values of EDV

(Fig. 5.8c), SV (Fig. 5.8d) and Psys (Fig. 5.8a). In the presented example, Psys and SV are overestimated

by bW, while breg yields model predictions more consistent with data. However, this is more ambiguous

when including all six participants (Fig. 5.9). On average, breg and bW perform similarly for Psys, while

breg clearly benefits the accuracy of the explicit simulation depicted for participant no. 890. It is further

noted that the standard deviations of the averaged MAE across participants are relatively large (Fig. 5.9).

Therefore, it cannot be concluded which coefficient is the better alternative when simultaneously eval-

uating Psys, Pdia and SV in all participants. Since breg performed best on average for both Psys and SV,

this value was chosen as basis for evaluating the remaining exercise configurations.

A further personalization of the lusitropy implementation was attempted by using personal regression

values of LVET for each participant (bpers), as depicted in Figure 5.7. This did not yield significantly

better results compared to the average value (breg), which indicates that increased personalization of

the current implementation of lusitropy (4.9) will not radically improve the model. However, the level of

influence b clearly has on all aspects of model behaviour during exercise shows that its value should not

be defined without caution. Further, the value of b that facilitates most reliable predictions is dependent

upon other model configurations. The combined effects of lusitropy and other parameter shifts (Emax,

Cao and Rsys) were not considered in this report, but the impact of b yielded by a pilot experiment with

an open-loop model is discussed in Section 6.4.3.
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6.2.4 Exercise Shifts of Cao and Rsys

The exercise model in its original form, i.e. as developed by Bjørdalsbakke and the MyMDT project [5],

is implemented by Equation (3.8) and population averages reported by Chantler et al. [30]. This con-

figuration is referred to as C1R1 in Figures 5.11 and 5.12, where letters C and R refer to compliance and

resistance shifts, respectively, and the number 1 denotes Chantler-based shift. This work has experi-

mented with alternative implementations of exercise shifts using values of SV/PP and MAP/CO obtained

in the clinical exercise trial to shift Cao and Rsys, respectively. Simulations using the more personal al-

ternatives derived in Section 4.3.3 are not depicted, as these implementations rely on data that is in

general unavailable for future users of MyMDT. Furthermore, it was observed from test cases that the

personalized versions did not result in radically improved predictions compared to the average-based

configurations. Another argument is central for not applying trial-data directly on a personal level to

shift parameters; the use of data to make predictions that are later compared against the same data is

circular logic, and not beneficial for developing a robust and generally applicable model.

Figure 5.10 shows that the data-based shifts of Cao (C2) and Rsys (R2) impose greater reductions in the

parameter values compared to Chantler-based shifts (C1 and R1). The baseline cases used as basis for

examining the exercise shifts are nos. 3 (Regulate EF) and 4 (Fix Csv). From Figures 5.11 and 5.12 it

is noted that C2 is associated with the greatest predictions of Psys and minimum MAE when combined

with parameter case no. 3. Systolic pressure (Psys) appears more sensitive to compliance than resistance

shifts, as C1 and C2 yield approximately equal average errors regardless of resistance shift when base-

line case no. 3 is used. The opposite is the case for Pdia, where R1 and R2 yield similar errors regardless

of compliance shift for both baseline cases. R2 yields smallest predictions of Pdia, which corresponds

to minimum errors. In total, the tendency previously stated as characterizable for the hemodynamic

model is present; diastolic pressures are in general overestimated. Configurations that counteract over-

estimation the most yield minimum errors. The sign of the bias in Psys varies more across exercise con-

figurations, which is the reason for the choice of MAE as error metric for evaluating the impact of ex-

ercise shifts on model performance. Chantler-based shifts are, however, more prone to underestimate

Psys. This is recognized in the negative average bias presented in the context of pressure scaling (Fig.

5.6), where Chantler-based shifts in combination with breg and baseline case 3 were used.

None of the configurations shown predict a physiologically plausible development of ventricular vol-

umes (Figs. 5.11g and 5.11h). As reviewed in Section 2.1.5, cardiovascular theory states that EDV in

general increases during exercise. The current model structure is not able to capture this behaviour. It is

possible that this property would require implementation of a mechanism representing the redistribu-

tion of blood volume in the body during exercise, with more flow to the active tissue. A challenge here
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is the scarce availability of mathematical descriptions of how stressed volume varies during exercise.

However, the implausible behaviour is in itself not a problem, as it is not an ambition for the model to

accurately represent ventricular volumes. Furthermore, as observed in Figure 5.11e, the capture of EDV

and ESV is not strictly necessary to accurately predict SV, which is a priority for the exercise model. Note

that the y-axes on the figures showing EDV and ESV include a much wider range of volumes than the axis

related to SV. The baseline case determines the starting value of ventricular volumes, but their develop-

ment is much more sensitive to the lusitropy coefficient (Fig. 5.8c) than exercise shifts. This indicates

that filling time is a greater determinant of ventricular volumes than compliance and resistance. The

configuration C2R2 yields greatest predictions of SV, and C1R1 the smallest, and the latter corresponds

to minimum average errors in SV (Fig. 5.12c).

In total, baseline case no. 3 (Regulate EF) performed better during exercise compared to no. 4 (Fix

Csv). Therefore, it was decided to continue with case no. 3 for the validation experiments. None of

the exercise configurations performed convincingly better than the other, hence C1R1, C2R1 and C1R2

are treated in the validation. The combination C2R2 was excluded because it yielded MAE of SV≈30%

greater than the other configurations in the development experiments, although pressure predictions

were on average more accurate compared to C1C1, C2R1 and C1R1 (Table A.6). Overall, the project part

on model development could not obtain any combination of exercise shifts that radically improved the

performance on an average level. Remarks on the exercise simulation procedure including a discussion

of possible explanations for this revelation are found in Section 6.2.6.

6.2.5 Resting Heart Period (T )

As stated in Section 4.3.4, resting heart period (T ) has two roles in the exercise model: First, it is a fixed

baseline parameter. Second, it is used in the definition of heart rate reserve-based exercise intensity

(3.9), which determines the magnitude of exercise shifts in Cao, Rsys and Emax. Attempts to change the

definition of T as a baseline parameter were not prioritized in this project. This could have been done

by e.g. enforcing the tonometry signal to instead span the resting (0 W) heart period from the radial

waveform. However, the choice of T is in any case a compromise. Flow was collected simultaneously as

radial BP, and is thus better adapted to these heart rates than the tonometry period, which on the other

hand is obviously in best accordance with the tonometry pressure signal. Instead, it was raised attention

to possible ways of determining T as a exercise-determining quantity based on trial data, but not as a

baseline parameter (Section 4.3.4). The following alternatives were presented: 1) Tonometry period

(T ton), 2) 0 W supine period (T
sup
0W ), and 3) 0 W semi-recumbent period (T

sr
0W). Although illustrated for

one participant only, Figure 4.4 is representative for a prominent tendency present in the majority of the
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six participants evaluated; T
sr
0W < T

sup
0W ≈ T ton. Lack of restitution after exercising in the sup-position

may have caused elevated pulse in the sr-position at 0 W.

Only T ton was used to produce the results presented in Chapter 5. Several test experiments showed that

changing T in the calculation of IHRR was associated with less pronounced variations in predictions

compared to other interventions made to improve the quality of the exercise simulations. The effect of

changing T in IHRR is also in general more predictable when evaluating the magnitudes of the various

periods. A natural consequence of the tendency T
sr
0W < T ton is that defining T

sr
0W as resting period results

in smaller values of IHRR compared to T ton and T
sup
0W . This effect appeared the most pronounced at

0 W, and decreased with increasing intensity. A similar tendency was also indicated by the sensitivity

analysis in the Specialization Project [6], which yielded small values of ST (T ) in combination with I =
IHRR for all quantities at high intensities. Here, T refers to the resting state parameter, and it was also

used in the calculation of I = IHRR in [6]. At is was chosen not to perform exercise shifts at 0 W, the total

effect of choosing another T than T ton in Equation (3.9) did not appear significant. A more thorough

investigation of the impact of T might be more appropriate in combination with a study on the effect

of alternative definitions of exercise intensity on model behaviour. This work was also initiated in the

Specialization Project, but not prioritized to pursue in this work.

6.2.6 Remarks on the Exercise Simulation Procedure

Explaining causalities and correlations between the various model quantities and their behaviour dur-

ing exercise is challenging, mainly because many variables are extensively interrelated and can vary si-

multaneously. In the following, simplified versions of some governing principal equations for the model

(A.2) are presented and combined. The purpose is investigating whether the overall tendencies indi-

cated by the in silico experiments can be numerically explained by the model structure.

The behaviour of arterial diastolic pressure (Pdia) can be analyzed by evaluating the governing differen-

tial equation for arterial pressure in the two-element Windkessel model [26]:

dP

d t
= 1

Ca

( −P

Rsys
+Q(t )

)
. (6.1)

By utilizing that there is no inflow from the ventricle (Q = 0) during diastole, this reduces to

dP

d t
=− P

Rsys ×Ca
(6.2)

for the entire diastolic phase. The general solution is:

P = P0 ×exp

(
− t − t0

Rsys ×Ca

)
(6.3)

where P0 is the arterial pressure at a reference time t0 during diastole, and τ= Rsys×Ca is a time constant
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that is consequently determining for Pdia. By setting time t = ted (ed = end-diastole), Equation (6.3)

reads:

Pdia = P0 ×exp

(
− ted − t0

R↓
sys ×C ↓

a

)
(6.4)

where P0 and t0 are often taken at end-systole. The time ted is mainly determined by heart period (T ).

Thus, increased reductions in Rsys(↓) and Cao(↓) during exercise facilitate reduction in Pdia.

Arterial systolic pressure (Psys) is an important variable in the hemodynamic model. Its value is gov-

erned mainly by the end-systolic pressure in the left ventricle (ESPlv), which is given as:

ESPlv = ESV×E↑
max (6.5)

Since systole ends with closure of the aortic valve, marked by the dicrotic notch on the arterial pressure

wave, we have that ESPlv ≈ P dn
ao at end-systole, where P dn

ao is aortic pressure at the dicrotic notch. This is

similar to the approximation of Emax in Equation (2.12). By assuming that P dn
ao and Psys behave quantita-

tively similar, it is common to replace ESPlv by Psys in Equation (6.5). The major determinants of systolic

pressure during exercise are thus ESV and Emax, where the model defines the latter to increase during

exercise (↑), facilitating an increase in Psys. Additionally, Equations (6.5) and (6.4) explain the observa-

tion of Pdia being significantly more sensitive to the shifting procedure of Rsys (R1 vs. R2 in Fig. 5.11b)

compared to Psys, as resistance is not directly a governing determinant of systolic arterial pressure.

Similarly, a relation between Emin and EDV can be obtained by applying Qsvlv = I (Psv > Plv)× Psv−Plv
Rmv

from

Equation (A.2), and using that at end-diastole (ED), there is no flow between the systemic veins and the

left ventricle (Qsvlv = 0) due to the closed mitral valve. I.e., the logical function I (Psv > Plv) goes from 1 to

0 at ED, and Psv ≈ Plv. Substituting Psv for Plv into the relation Vlv = Plv/Elv at ED yields the following:

EDV = P dia
sv

Emin
. (6.6)

Note that superscript dia in P dia
sv does not refer to minimum pressure, but the value occurring at the

same time as aortic and ventricular diastolic pressures.

Another governing principle for the entire system behaviour is the closed-loop property. To analyze in-

teractions between the three model compartments left ventricle (lv), arteries/aorta (ao) and systemic

veins (sv), equations are simplified and presented at two states; end-systole (ES) and end-diastole (ED)

and substituted into the closed-loop equation for Vtot:
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State Elv Plv Vlv Vlv(t ) = Plv/Elv Vao = Pao ×Cao Vsv = Psv ×Csv

ES Emax Psys ESV ESV=Psys/Emax Psys×Cao P sys
sv ×Csv

ED Emin P dia
sv EDV EDV=P dia

sv /Emin Pdia×Cao P dia
sv ×Csv=EDV×Emin ×Csv

State Vtot=Vlv + Vao + Vsv

ES ESV+Psys×Cao+ V dia
sv

ED EDV+Pdia×Cao+ EDV×Emin ×Csv

Table 6.1: Rearranging and combining model equations presented in Sections 3.2 and 3.3 at end-systole
(ES) and end-diastole (ED). Note that superscripts sys and dia for venous pressures (Psv) refer to the
pressures occurring at the same time as arterial Psys and Pdia, respectively.

This results in the following relations at ES and ED :

ES : V →
tot = Psys ×

(
1

E↑
max

+C ↓
ao

)
+P sys

sv ×C→
sv

ED : V →
tot = Pdia ×C ↓

ao +EDV× (
1+C→

sv ×E→
min

)
(6.7)

where the arrows denote change during exercise (→⇒constant, ↑⇒increase, ↓⇒reduction). Quanti-

ties without arrows are free to vary. The average model tendency of a nonphysical increase in Pdia is

indicated by (6.7) at ED. When Cao decreases, either Pdia or EDV must increase to keep Vtot constant.

As shown in multiple examples, the model overall decreases EDV (and ESV) in exercise state. Given

this behaviour, Pdia must increase to fulfill Equation (6.7) at ED. Note that this contradicts the previous

observation in Equation (6.4), where a decrease in Cao indicated a reduction in Pdia. This contradic-

tion is a possible explanation for the observed tendency of Pdia being more sensitive to resistance shifts

than compliance, as the impact of Cao on Pdia has opposite signs in two of the governing model equa-

tions.

Many configurations, particularly involving Chantler-based shifts and b = breg = −0.0011 s × min in

the lusitropy implementation, have shown to underestimate Psys. This tendency may be recognized

by Equation (6.7) at ES. As previously illustrated, mean venous pressure (MVP) increases during exer-

cise. A sufficient increase in MVP may fulfill (6.7) without a proper increase in Psys. A greater increase in

arterial compliance allows Psys to increase more without violating the limit of Vtot, which corresponds

to the observed smaller average errors for C2 compared to C1.

A clear mathematical description and prediction of the chain of events caused by a single parameter

adjustment is challenging to obtain from the model equations, as many variables are interrelated and

can vary simultaneously. As shown in multiple examples, ventricular volume exhibit non-physiological

behaviour in both rest and exercise simulation. In combination with (6.7), this indicates that the en-
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forcement of a constant volume may impact arterial pressures in an unfortunate way, because the de-

fined relation between pressure, volume and compliance must be fulfilled without violating Vtot. To

circumvent these issues, it was attempted in two pilot experiments to increase Vtot during exercise and

to replace the venous compartment with a constant pressure in an open-loop model (Section 6.4).

6.3 Model Validity

The validation experiments showed similar tendencies as present when the the corresponding configu-

rations were applied on the development participants. In the best configurations, average MAE of Psys

and Pdia are of orders ≈16 and 12 mmHg, respectively (Fig. 5.13). The pronounced peak in MAE ob-

served at 50 W for compliance shift C2 might be explained by an higher average age in the validation

participants, resulting in greater intensities (IHRR) and shifts at the same exercise resistance I [W]. As

previously shown, the influence of lusitropy, which is purely heart rate-dependent, increases progres-

sively with higher intensities, diminishing the direct impact of higher age. In general, greater resistance

shifts (R2) than yielded by the Chantler-based implementation (R1) appeared beneficial for the accuracy

in Pdia, and similar for compliance and Psys. However, the combination C2R2 appeared from the devel-

opment experiments to yield a vast overestimation of SV. The validation experiments did not assess the

performance of different lusitropy mechanisms, baseline configurations or the scaling procedure, but

it appears improbable that this would have altered the conclusions from the development part. A to-

tal of 11 trial participants have been treated in this project. The inclusion of all 24 would naturally have

strengthened the resulting observations, as would the the use of quality-assured data processed by a car-

diologist. However, it is reasonable to assume that neither of these improvements would have radically

altered the results or the conclusions from this project.

As a basis of comparison for model accuracy, radial systolic pressure measurements were additionally

evaluated against average end-systolic pressures (ESP) reported by Chantler et al. [30]. The ESP-values

were interpolated to heart rate reserve-based intensities and scaled (4.8), before calculating an average

deviation between ESP-prediction and data (|∆C |). MAEs yielded by deviations between model predic-

tions of Psys and data were then compared to corresponding |∆C |. As can be read from Table 5.6, errors

yielded by the rough ESP-predictions are significantly greater than MAE representing deviations be-

tween radial data and model pressures. Thus, the model does yield better predictions compared to this

version of a purely average-based estimate. Still, the errors are with few exceptions exceeding clinically

acceptable levels to an extent that indicates the necessity of greater structural modifications beyond

simply adjusting the current procedures for estimating parameters and/or simulating exercise.
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6.4 Pilot Experiments on Alternative Model Structures

This section presents three minor pilot experiments motivated by insights discussed in this chapter. The

purpose is explicitly highlighting certain observed model tendencies and to motive future research on

the hemodynamic model.

6.4.1 Interrelations Between Vtot, Csv, Emax and Cost Function

It has been shown through multiple experiments that the parameter estimation procedure is able to ac-

curately capture arterial properties, reflected by stable and physiologically consistent estimates of Cao

and Rsys (Figs 5.2c and 5.2e). However, the venous and ventricular systems are more unstable and non-

physiological. As all baseline cases subjected to analysis in this project have been inherently different,

an experiment was conducted by fixing Csv to eight values ∈[1,2,3,4,5,10,15,20] mL/mmHg in the estima-

tion procedure. Resulting values of Vtot and Emax were then observed, in addition to corresponding cost

function value, i.e. the cost function scaled by 1/Nres, where Nres is the number of elements in the residual

vector. The experiment yielded the following interrelations:

(a) Vtot given fixed Csv. (b) Emax given fixed Csv. (c) Cost function scaled by the number
of residual elements.

Figure 6.1: Interrelations between Csv, Vtot, Emax and cost function value in the parameter estimation
procedure for participants 734 (solid red line) and 890 (blue dashed line). Values of Csv were fixed ac-
cording to the x-axes, which yielded the respective estimates of Vtot (Fig. 6.1a), Emax (Fig. 6.1b) and a cost
function value corresponding to the parameter optimization (Fig. 6.1c). No constraints or regulations
were applied in this configuration. Here, Vtot and Emax are minimum parameters, i.e. obtained from the
parameter set with minimum cost function of the 20 last iterations (Section 4.2.1).
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This experiment was conducted on two participants to explicitly illustrate how the model fails to si-

multaneously capture the physiological function of the venous and ventricular compartments. Realistic

values of Csv (≈10-20 mL/mmHg) resulted in high ventricular volumes and diminished Emax, and it is ob-

served that Emax is estimated approximately similar in 734 and 890 for higher values of Csv. The model

regulates against arterial pressure by instead increasing ventricular volumes, and thus Vtot. Ideally, the

model would react to the increase in Csv by distributing more of Vtot to the veins to maintain MVP=6

mmHg, keeping ventricular volumes small and preserving a physiological value of Emax. The model

appears reluctant to desired behaviour in the current structure. Because Emax and stressed ventricular

volume can compensate each other to produce a consistent arterial pressure and stroke volume, there

might be insufficient reference points to uniquely identify the stressed volume of the ventricle. Another

key challenge is that the volume present in the closed-loop is not distributed to the respective model

compartments in a desirable manner, which there are currently no appropriate tools to remedy.

The tendency of the algorithm preferring relatively small values of Csv, 2⪅Csv⪅10 mL/mmHg (Fig. 5.2) is

also indicated by Figure 6.1c. A steady increase in residual for greater and more physiological values of

Csv confirms that with the exception of participant 637, all attempted configurations that estimated Csv

yielded values ⪅10 mL/mmHg. Participant 734 exhibits a clear minimum in cost function value for Csv=4

mL/mmHg (Fig. 6.1c), while the tendency in 890 is more fluctuating with local minima. Note that the

points with minimum residual do not exactly coincide with minimum parameter fits obtained with case

no. 2 (No constraints), i.e. with Csv estimated (Fig. 5.2b). Case no. 2 found Csv=2.34 and 4.0 mL/mmHg as

minimum values for participants 734 and 890, respectively, hence the tendency of 734 seeking a lower

value than 890 is recognized. However, fixing a parameter will impact the cost function and change

the starting points for the optimization, causing the algorithm to find slightly different minima. Fur-

thermore, scipy.optimize.least_squares() is a local method [28], hence the estimation procedure

is based on multiple local optimizations and does not seek global minima. A global method would in

some sense be more robust, but also come with a higher cost with respect to time.

6.4.2 Shift Vtot in Exercise State

To further investigate the distribution of total blood volume in the closed-loop during exercise, an at-

tempt was made to shift Vtot during exercise. This shift was implemented in a preliminary experiment

by linear regression between two points; (IHRR=0,Vtot=V rest
tot ) and (IHRR=1,Vtot=V rest

tot ×150%). The line is

thus individual for each participant, yielding shifted values of Vtot as a linear function of IHRR. The shift

in volume affected all three model compartments. Arterial pressures, ventricular volumes and venous

pressure all increased. EDV increased more than ESV, which resulted in a prominent increase in SV. This
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was on average beneficial for the accuracy in participant 734, but not 890. In general, the impacts of

shifting Vtot were pronounced, but it is noted that this test case does not represent a realistic change

during exercise as much as an conceptual illustration of its effect. Shifting Vtot might be a possibility for

tuning model behaviour, but the challenge of not being able to target which model compartment is to

be subjected to the potential increase in volume remains a challenge.

6.4.3 Open-Loop Model

The open-loop model differs from the closed-loop in that its entire venous compartment is replaced by

a constant pressure of Psv = 6 mmHg. This adjustment removes the closed-loop property, and thus the

entire parameter Vtot in addition to Csv. An attempt was made to perform the parameter estimation pro-

cedure for the two participants 734 and 890 using the open-loop model instead of the closed-loop. The

baseline configuration chosen to compare the two models is no. 2 (No constraints), with equal features

as stated in Section 4.5.1. As expected, resulting mean estimates of arterial parameters Rsys, Cao and

Zao became similar. However, Emax went from 0.96 to 0.58 mmHg/mL in participant 734, and 1.49 to 0.74

mmHg/mL in 890 when replacing the closed-loop with the open-loop version. Resulting fitted flow waves

were similar, but the simulated pressure waveforms became more narrow with the open-loop compared

to the closed-loop. An exercise simulation of Psys, Pdia and SV is illustrated in the following:

(a) Psys (upper lines) and Pdia (lower lines). (b) SV.

Figure 6.2: Comparison of an exercise simulation when using the closed-loop vs. open-loop model. The
simulation is for trial participant 734. No constraints and regulations were applied during the estimation
procedure for both models. Green dashed lines are simulations using the closed-loop model as before,
while the blue dotted lines represent the open-loop version. X and diamond-shaped markers specifies
whether the lusitropy coefficient used is from Weissler et al. [13] or trial data, respectively. As before, red
lines represent data.
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Figure 6.2 indicates a greater sensitivity to the lusitropy coefficient (b) for the open-loop compared to

the closed-loop model. For the two test cases attempted, i.e. participants 734 (Fig. 6.2 ) and 890, imple-

menting lusitropy with b = bW was necessary to prevent Psys and SV from collapsing during exercise. It is

noted that the venous pressure of 6 mmHg was kept constant in the open-loop simulation, and it is prob-

able that a similar effect as obtained by the change in b could have been achieved by instead increasing

venous pressure during exercise. In this preliminary attempt, the open-loop model did not yield a sig-

nificantly better predictive performance. However, it appears possible to tune the exercise simulation

procedure to yield very similar results for the open-loop as produced by the closed-loop. Additionally,

the open-loop is a simpler model, hence more computationally efficient. As illustrated in Figure 2.5,

there is a trade-off between model complexity and resulting level of uncertainty, as increased complex-

ity means more model parameters. Such considerations are very relevant in this context, as it is known

that the additional closed-loop parameters Csv and Vtot are associated with a high level of uncertainty.

Hence, this pilot experiment indicates that the inclusion of a venous compartment in the model might

not improve its predictive performance during exercise to a level that compensates for increased com-

plexity and potential uncertainty. Further, it is noted that the issue of a cardiac function characterized

by a small elastance and large ventricular volume remains a challenge also with the open-loop.



Chapter 7

Concluding Remarks

This chapter closes the thesis with concluding remarks on acquired results and insights according to

the project objectives (Section 1.2.1). Suggestions on how the work carried out in this project could be

augmented are provided in the final section.

7.1 Conclusion

This section consecutively addresses the issues stated in Section 1.2.1.

7.1.1 The Parameter Estimation Procedure

The investigation of the parameter estimation procedure concludes with the following remarks.

• Upstroke synchronization for pressure and flow in both model and data yielded significantly more

accurate optimized waveforms compared to cases with deviating cycle starts. The implemented

adjustment to shift the arterial model waveforms from their original cycle starts to upstroke in the

cost function is considered an improvement of the current estimation procedure.

• Given that a cardiac cycle is represented by synchronized arterial data for pressure and flow in a

way that is consistent with model cycle start, the model may accurately fit the given waveforms by

a number of baseline configurations.

• Variations in optimized parameters across estimation procedures were dependent upon the par-

ticipant. It is suspected that narrow pressure waveforms impede the optimization, yielding more

sensitive parameter estimates that were also associated with unreliable exercise predictions.

• During exercise, the baseline configuration referred to as no. 3 (Regulate EF) yielded most accurate

predictions of Psys and SV, but simultaneously the greatest errors in Pdia.

116
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• Overall, the arterial compartment represented by the three-element Windkessel model proved

quite stable and probable. The cardiac and venous compartments are less robust, as the estimated

parameters related to these systems were more sensitive to the choice of baseline configuration.

• Fixing tpeak to the dicrotic notch is beneficial to avoid high parameter values that in combination

with lusitropy can cause problems with inadequate diastolic filling during exercise.

• Interventions to regulate the estimated ejection fraction is beneficial to avoid the highest volumes

and smallest values of Emax, thus facilitating a more physiologically plausible cardiac function.

• Constraints may be eliminated from the estimation procedure to avoid impeding the optimiza-

tion algorithm and the issue of parameters estimated to their limits. However, in cases without

constraints, the determination of mean parameters should be more strictly confined to ensure a

representative mean fit.

• Fixing Csv showed that the optimization procedure can efficiently compensate for changes in one

variable with another. The enforcement of more plausible values of Csv than resulting from the

estimation was consistently overcompensated by an increase in Vtot. Thus, making the venous and

ventricular compartments simultaneously behave in a physiologically plausible manner appears

unachievable in the current model formulation.

• The optimization algorithm appears to prefer small values of Csv. Enforcing a higher value by

fixing Csv to 10×Ca resulted in less accurate exercise predictions of Psys and SV compared to con-

figurations with smaller Csv.

7.1.2 Simulation of Exercise State

Mechanisms involved in the simulation of hemodynamic exercise state and their individual effects on

model predictions have been investigated in a stepwise manner, concluded with the following remarks.

• More accurate optimized pressure and flow waveforms at rest do not necessarily imply better ex-

ercise predictions. This was the case when Zao was attempted estimated instead of fixed to its

preliminary fitted value, which yielded better flow fits for participants with narrow carotid pres-

sure waveforms, but without improved exercise prediction. In general, evaluation of the exercise

performance of a given baseline case have showed essential for determining its usability for exer-

cise simulation purposes.
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• Post-processing of model outputs in the form of scaling to account for pressure amplification im-

proves the premises for evaluating model behaviour against radial data.

• The lusitropy mechanism is highly influential in the context of regulating diastolic filling in the

model. Adjusting the purely literature-based implementation to coincide with the average slope

of systolic periods obtained from trial data improved model predictions slightly, but the even more

personalized versions yielded negligible average differences. Hence, it appears as if increased per-

sonalization of the lusitropy mechanism will not radically improve the model. However, its pro-

nounced level of influence indicates that lusitropy should be implemented with caution, whether

a personal or average-based version.

• Overall, the implementation of trial-based exercise shifts of Cao and/or Rsys yielded better predic-

tions of Psys, Pdia and SV than pure Chantler-based shift when considering these tree quantities

separately. However, no shifting procedure providing the best predictions of all quantities of in-

terest simultaneously could be obtained. Overall, the model is prone to overestimate Pdia, and

the shape of SV is not captured. Errors in Psys are more irregular and dependent upon exercise

configuration.

• End-diastolic ventricular volume (EDV) decreased during exercise in every configuration exam-

ined. This is in general not physiologically probable, but because the model considers only stressed

blood volume, the physiological interpretability of simulated ventricular volume is limited.

• A more combined investigation of baseline parameters, shifting procedures and the lusitropy mech-

anism may be necessary to optimize the hemodynamic exercise model.

7.1.3 Model Validation and Pilot Experiments

The model validation and the pilot experiments are concluded with the following remarks.

• With the exception of a pronounced peak at 50 W for MAE, similar tendencies were present in

the validation experiments as shown in the development part of the project; greater shifts in Cao

(C2) remedy for the underestimation of Psys yielded by the Chantler-based shifts (C1). It has been

showed that Pdia is consistently overestimated, but the errors are smallest when imposing a greater

reduction in Rsys (R2). The errors in the two pressure measures unfortunately appear somewhat

inversely related.

• The model makes better predictions compared to rough ESP-based test estimates, but is overall

exceeding clinically acceptable error levels.
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• Attempts to enforce a more physiological representation of the venous compartment by fixing Csv

are consistently compensated by implausible estimates of Vtot and Emax. Elastance and stressed

ventricular volume can compensate each other to produce a consistent arterial pressure and SV,

and it lacks some reference point to uniquely identify the stressed volume of the ventricle.

• This project has revealed that small values of Csv are associated with low residuals. More extensive

analyses and investigations of the cost function and the numerical optimization procedure are

required to state the exact reason for this behaviour.

• Experiments in various baseline configurations combined with the attempt to increase Vtot dur-

ing exercise have shown that the model distributes the volume present in the closed-loop to its

respective compartments in a manner that is hard to predict and control.

• Pilot experiments with an open-loop model resulted in less physiologically accurate shapes of the

optimized pressure waveforms than yielded by the closed-loop. However, exercise simulations

with the open-loop appeared tunable to similar behaviour as the closed version given different

values of the lusitropy coefficient, which could probably also have been achieved by adjusting

venous pressure. The open-loop is a simpler model with fewer parameters, making the estima-

tion procedure less computationally expensive and time consuming, which also has the benefit of

facilitating more efficient research.

• Parameter optimizations with both the open-loop and the closed-loop model seek small values of

Emax. More physiological values of Emax could be beneficial for the corresponding Chantler-based

exercise shifts to have the expected impact on the system, as the shifts are based on greater values

than currently yielded by the estimation procedure. However, the issue of making the optimiza-

tion algorithm seek greater values of Emax remains a challenge.

7.2 Recommendations for Future Work

Hemodynamic modelling is a highly multifaceted science, and the consideration of cardiovascular ex-

ercise response adds another layer of intricacy. The model itself as well as the procedures for estimating

baseline parameters and simulating exercise could be further researched on many levels.

Regarding governing structural features, the primary issue is establishing whether the inclusion of a ve-

nous compartment in a closed-loop model is advantageous to an extent that compensates for increased

complexity compared to an open-loop with constant venous pressure. It is also possible that other ve-

nous mechanisms could enhance model behaviour during exercise, e.g. the skeletal muscle pump could
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be attempted implemented in both a closed-loop and an open-loop model. In general, the sufficient

level of complexity for the venous function needs to be established. This work has not considered other

mechanisms, but a comparison with other, more complex models could be attempted to evaluate the

current level of complexity. A suggested model for comparison is one presented by Magosso & Ursino

[49] that includes both the heart, the pulmonary and systemic circulations in addition to various neu-

ral regulatory mechanisms. Similarly, it must be established whether the current cardiac function that

excludes unstressed volumes is adequate for model purposes. One aspect of the cardiac model that has

not been considered in this project is the fixed value of Emin. More extensive investigation of this pa-

rameter and whether it should be estimated, shifted during exercise or in other ways treated differently

could be informative in the context of analyzing the cardiac model.

In the context of parameter estimation, more extensive research of a method for regulating ejection

fraction (EF) could be beneficial, particularly if found desirable that the model represents the ventricu-

lar compartment more physiologically. Determination of boundaries of EF, sensitivity through Wef, and

the (1+ 1/EF)-factor for a softmax implementation (4.6) could be investigated by multiple experiments in

various configurations. Further, to pursue the potential benefits of performing the estimation without

constraints, the procedure of determining mean parameters should be more strictly confined than the

current version. To ensure the quality of the resulting fit, a suggestion is to perform more than 20 itera-

tions in the final step, and discard parameter sets with a residual exceeding a certain tolerance defined

independent of the mean, which may become unreasonably high without constraints. Further, more

extensive research is required to reveal why the optimization algorithm prefers low values of Csv and

Emax and high Vtot, particularly if the model is to represent the venous and ventricular compartments in

a more physiologically plausible manner.

Regarding the simulation of exercise state, an aspect initiated in the Specialization Project [6] but not

pursued in this work is the impact of different definitions of exercise intensity. Other definitions than

(3.9) could be attempted, and potentially a combined version consisting of multiple weighted intensity

functions. Weights could then be analyzed as uncertain variables in a sensitivity analysis. Further, it

has been discovered that some trial participants are more predictable and stable than other. It has been

argued that some of the exhibited instability could be caused by narrow carotid pressure waveforms.

Another possibility is that stability is related to individual fitness levels. Accounting for fitness beyond

resting heart rate could be investigated through a fitness-based scaling factor in the intensity definition.

Finally, quality assured data for all 24 trial participants should be included in future research to increase

the completeness and reliability of observations and conclusions from this project. It is evident that

more research is indispensable for the hemodynamic model to reach its clinical ambition.
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Appendix A

Additional Information

A.1 The Hemodynamic Model

A.1.1 Model Equations

The following equations and descriptions are obtained from [4], and were similarly presented in [6].

The model ODEs are are given as:

dVao

d t
=Cao

dPao

d t
=Qlvao −Qaosv ⇐⇒ dPao

d t
= Qlvao −Qaosv

Cao

dVsv

d t
=Csv

dPsv

d t
=Qaosv −Qsvlv ⇐⇒ dPsv

d t
= Qaosv −Qsvlv

Csv

dVlv

d t
=Qsvlv −Qlvao

(A.1)

where Vao and Vsv are the stressed blood volumes of the aorta and veins, respectively, and Vlv is the blood

volume in the left ventricle (LV). Note that aorta represents the entire systemic arterial vasculature in the

model. Further, Cao, Csv, Pao and Psv denote compliance values (C ) and pressures (P ) of the aorta (ao)

and systemic veins (sv). Qlvao is flow from the LV to the systemic arteries (aorta), Qaosv is from the aorta

to the veins and Qsvlv is flow from the veins to the LV. Remaining quantities are modelled as:
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Vsa =CsaPsa

Vsv =CsvPsv

Plv = Elv(t )Vlv +Pth(t )

Elv(t ) = (Emax −Emin)e(t )+Emin

Pao = max[Pao,Plv]

Qlvao = I (Plv > Psa)
Plv −Psa

Zao

Qsvlv = I (Psv > Plv)
Psv −Plv

Rmv

Qaosv = Psa −Psv

Rsys
.

(A.2)

where Pao is aortic pressure, and Plv is the pressure in the LV. Further, Zao is characteristic aortic impedance,

Rsys is total systemic resistance, and Rmv is (effective) mitral valve resistance. Volumes Vsa, Vsv and Vlv

are limited by the parameter Vtot, as described in Section 3.3. The logical function I takes the value 1

when the argument is true, and 0 when it is false. The activation function e(τ) is defined as:

e(τ) =α× (τ/a1)n1

1+ (τ/a1)n1
× 1

1+ (τ/a2)n2
(A.3)

where τ is the position in the cardiac cycle, i.e. between the end of the last and next diastolic period.

Parameters a1 and n1 influence the shape of the contracting part of the elastance curve. Here, a1 =
0.708× tpeak/T , where tpeak is the time of maximum ventricular elastance. The shape of the relaxing part

of the curve is influenced by a2 and n2. The values of these shape-determining parameters are originally

obtained from [50], and restated in [4].

A.1.2 Initial Conditions

Initial volumes and pressures are set according to [4]:

Pao,0 = 100 mmHg

Vlv,0 = 100 mL

Psv,0 =
Vtot −Vao,0 −Vsv,0

Vsv
mmmHg = Vtot −Cao ×Pao,0 −Vsv,0

Vsv
mmHg

(A.4)

where Pao,0 and Psv,0 are initial aortic and venous pressures, respectively. Vlv,0, Vao,0 and Vsv,0 are the

initial stressed volumes of the left ventricle, arterial and venous compartments, respectively. Parameters

Cao, Csv and Vtot are resting state values for aortic and venous compliance, and total blood volume.
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A.1.3 Parameter Estimation Procedure

Scaling Factors Cost Function

Symbol Unit Value

KPao mmHg 100.0

KQlvao
mL/s 500.0

KPsys mmHg 120.0

KPdia mmHg 80.0

KSV ml 100.0

KMVP mmHg 5.0

Table A.1: Scaling factors KY used to normalize the terms in the cost function (3.5). Obtained from [4].

Weights for the Scalars Terms in the Cost Function

The scalar quantities included in the cost function, i.e. Psys, Pdia, SV and MVP, are weighted to promote

approximately equal contributions as the waveform data for pressure and flow, as the time series are

arrays with many points contributing to the residual. Weights (WY ) in the cost function (3.5) for the

scalars Y ∈[Psys,Pdia,SV,MVP] are calculated as follows:

WY =


len(Pao)
40 ×7.5 if Y ∈ [Psys,Pdia,SV]

len(Pao)
40 ×2.5 if Y = MVP

(A.5)

where len(Pao) is the length of the pressure data array. The weights are defined empirically by Bjørdals-

bakke through testing to achieve approximately equal contributions as the waveform data, but also a bit

more for Psys, Pdia and SV to obtain resting values for these quantities that are as accurate as possible.

Explicit use of these weights are shown in the implementation of the cost function included in Section

A.3.2.
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Constraints for the Numerical Optimization

The following table states how the bounds used as inputs in scipy.optimize.least_squares() [28]

in the parameter estimation procedure have been determined.

Param. (θ) [unit] θlow θup Ref. Remarks

Emax [mmHg/mL] 0.50 10.84
BSA [51]

• Bounds based on reported data set.

• Lower bound adjusted throughout the project.

Cao [mL/mmHg] 0.148 2.256 [52] • Bounds based on 1D model estimates of total Ca .

Rsys [mmHg×s/mL] 0.917
BSA 2.963 [30]

• Based on BSA-indexed variations.

• Upper bound ignores BSA index to increase limit.

Vtot[mL] 150 1503
[53],

• Based on measured total blood volume from [53].

[54]

• Method inspired by [54] to estimate stressed Vtot.

• Observed good fits with low Vtot

⇒ θlow lowered beyond what is realistic based on data.

C∗
sv [mL/mmHg] 4.44 67.68 [55] • Based on reported approx. Cv ≈ [10−30]×Ca

Z∗
ao [mmHg×s/mL] 0.001

0.2
[39]

• Covers reported ranges.

(prefit 1.0)
• Set wider in prefit for free fit to 3WK.

• Zao is typically < Rsys ⇒ more narrow bounds.

t∗peak [s] min{0.15,0.9×T } min{0.442,T }
[13],

• Based on variation in reported Tsys.
[47]

Table A.2: Source of the constraints used in the parameter estimation procedure. BSA =
√

wt×ht
3600 is body

surface area, where wt is weight in kg and ht is height in cm. 3WK refers to the three-element Windkessel
model. Tsys is systolic period. J (θ) is the cost function. *Zao, tpeak and Csv may be fixed according to
Table 4.3, in which case the presented constraints are irrelevant.
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A.2 Numerical Error Results in Exercise State

A.2.1 Average MAE in Five Baseline Configurations

µMAE ±σMAE

Param. [unit] Config. 0 W 50 W 100 W 150 W MAE

Psys [mmHg]

1) Full estimation 0.8±0.8 10.9±7.5 22.3±15.8 36.9±16.9 17.7±13.4

2) No constraints 0.8±0.9 14.0±5.6 20.0±11.6 31.5±16.1 16.6±11.1

3) Regulate EF 3.9±3.1 11.3±7.4 20.9±17.0 29.3±21.7 16.4±9.6

4) Fix Csv 1.7±1.7 7.7±5.8 30.9±17.9 51.8±21.1 23.0±19.9

5) Fix Csv+regulate EF 9.2±9.2 15.1±4.4 50.1±25.9 69.9±37.7 36.1±25.0

Pdia [mmHg]

1) Full estimation 3.9±2.8 20.5±14.6 25.2±13.5 32.2±11.9 20.5±10.4

2) No constraints 4.0±3.1 21.6±15.8 27.1±14.9 34.3±15.2 21.7±11.2

3) Regulate EF 5.9±5.5 20.0±13.7 27.9±18.1 36.3±21.9 22.6±11.2

4) Fix Csv 3.3±2.9 18.6±14.1 20.0±11.5 23.4±12.4 16.4±7.7

5) Fix Csv+regulate EF 9.1±14.1 16.0±11.6 12.9±7.1 14.3±7.2 13.1±2.6

SV [mL]

1) Full estimation 8.2±6.1 16.5±10.8 20.5±16.0 25.0±24.4 17.6±6.2

2) No constraints 8.3±6.1 15.6±10.6 19.3±14.8 23.7±22.2 16.7±5.6

3) Regulate EF 6.4±4.6 15.3±7.1 16.1±16.1 20.2±21.9 14.5±5.0

4) Fix Csv 7.1±5.3 14.7±9.8 18.5±17.4 25.3±24.1 16.4±6.6

5) Fix Csv+regulate EF 4.9±4.5 14.3±8.5 20.1±19.7 28.3±25.2 16.9±8.6

Table A.3: Mean absolute error (MAE) of Psys, Pdia and SV for five cases of baseline parameter configura-
tions. All reported values are averaged over six trial participants; 734, 219, 346, 890, 637 and 248 for each
intensity level I∈[0,50,100,150] W and depicted graphically in Figure 5.9. The far right column denoted
MAE contains MAEs averaged over all intensity levels for each baseline case, shown as horizontal lines
in Figure 5.5.
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A.2.2 Average Bias of Scaled vs. Non-Scaled Model Pressures

µBias ±σBias

Param. [unit] Config. 0 W 50 W 100 W 150 W Bias

Psys [mmHg]
Non-scaled -19.4±5.6 -27.2±13.5 -45.6±21.5 -53.3±28.4 -36.4±13.6

Scaled 1.0±4.9 -3.7±13.0 -20.4±17.6 -25.7±26.0 -12.2±11.1

Pdia [mmHg]
Non-scaled 17.9±9.6 33.3±13.2 42.4±17.6 52.2±21.4 36.6±12.6

Scaled 5.9±5.5 20.0±13.7 27.9±18.1 36.3±21.9 22.6±11.2

Table A.4: Bias of scaled vs. non-scaled model predictions of Psys and Pdia. All reported values are aver-
aged over six trial participants; 734, 219, 346, 890, 637 and 248 for each intensity level I∈[0,50,100,150] W
and are depicted graphically in Figure 5.6. The far right column denoted MAE contains MAEs averaged
over all intensity levels, shown as horizontal lines in Figure 5.6.

A.2.3 Average MAE for Three Implementations of

the Lusitropy Mechanism

µMAE ±σMAE

Param. [unit] Config. 0 W∗ 50 W 100 W 150 W MAE

0) b=0 14.1±9.6 33.2±16.2 49.7±28.3 25.2±17.6

Psys [mmHg] 1) b = bWeissler 3.9±3.1 15.5±9.4 28.3±16.2 32.6±18.7 20.0±11.3

2) b = breg 11.3±7.4 20.9±17.0 29.3±21.7 16.4±9.6

0) b=0 18.6±14.1 27.0±19.7 31.6±25.2 20.8±9.8

Pdia [mmHg] 1) b = bWeissler 5.9±5.5 19.7±14.0 29.3±20.2 38.8±25.8 23.4±12.2

2) b = breg 20.0±13.7 27.9±18.1 36.3±21.9 22.6±11.2

0) b=0 13.6±9.1 20.3±14.8 28.5±16.7 17.2±8.1

SV [mL] 1) b = bWeissler 6.4±4.6 14.8±8.5 15.4±10.2 19.3±12.8 14.0±4.7

2) b = breg 15.3±7.1 16.1±16.1 20.2±21.9 14.5±5.0

Table A.5: Mean absolute error (MAE) of Psys, Pdia and SV for three selected values of the lusitropy coef-
ficient (b). All reported values are averaged over six trial participants; 734, 219, 346, 890, 637 and 248 for
each intensity level I∈[0,50,100,150] W and are depicted graphically in Figure 5.9. The far right column
denoted MAE contains MAEs averaged over all intensity levels for each lusitropy configuration, shown
as horizontal lines in Figure 5.9. *Note that the lusitropy mechanism is not applied on the 0 W-column,
as this is considered a hemodynamic resting state.
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A.2.4 Average MAE in Selected Exercise Configurations

Config. µMAE ±σMAE

Param. [unit] BC Ex.shift 0 W∗ 50 W 100 W 150 W MAE

Psys [mmHg]

3

C1+R1

3.9±3.1

11.3±7.4 20.9±17.0 29.3±21.7 16.4±9.6

C1+R2 10.5±7.2 25.2±15.5 34.1±18.9 18.4±11.9

C2+R1 18.0±14.4 14.3±11.8 16.0±16.8 13.0±5.4

C2+R2 14.4±9.5 10.8±10.1 19.0±12.4 12.0±5.5

4

C1+R1

1.7±1.7

7.7±5.8 30.9±17.9 51.8±21.1 23.0±19.9

C1+R2 12.3±6.0 43.4±23.4 64.9±32.7 30.6±25.0

C2+R1 8.7±8.7 23.8±13.5 45.7±17.3 20.0±16.9

C2+R2 8.2±6.2 35.4±22.8 60.2±27.6 26.3±23.3

Pdia [mmHg]

3

C1+R1

5.9±5.5

20.0±13.7 27.9±18.1 36.3±21.9 22.6±11.2

C1+R2 13.7±9.6 17.7±15.4 24.6±17.7 15.5±6.7

C2+R1 24.6±16.2 36.1±21.9 46.8±23.8 28.4±15.1

C2+R2 16.5±11.6 23.0±18.6 31.0±20.1 19.1±9.2

4

C1+R1

3.3±2.9

18.6±14.1 20.0±11.5 23.4±12.4 16.4±7.7

C1+R2 11.6±10.9 9.7±9.2 10.6±7.8 8.8±3.2

C2+R1 19.1±14.7 20.8±12.1 24.6±13.1 17.0±8.1

C2+R2 11.7±11.1 10.2±9.2 10.7±7.9 9.0±3.3

SV [mL]

3

C1+R1

6.4±4.6

15.3±7.1 16.1±16.1 20.2±21.9 14.5±5.0

C1+R2 13.9±14.1 17.6±7.8 27.0±11.2 16.2±7.4

C2+R1 14.2±9.6 16.6±10.3 22.8±18.6 15.0±5.9

C2+R2 16.5±16.5 20.0±8.4 33.7±11.8 19.2±9.8

4

C1+R1

7.1±5.3

14.7±9.8 18.5±17.4 25.3±24.1 16.4±6.6

C1+R2 17.9±13.7 22.4±10.3 31.3±17.4 19.7±8.7

C2+R1 14.8±10.5 19.1±15.7 24.6±24.9 16.4±6.4

C2+R2 18.7±15.4 24.1±9.3 34.3±16.1 21.0±9.8

Table A.6: Mean absolute error (MAE) of Psys, Pdia and SV during exercise for the selected configurations
graphically illustrated in Figure 5.12. A given configuration is subdivided according to the column de-
noted Config. into baseline case (BC) and exercise shift (Ex.shift), where the latter describes the shift of
aortic compliance (C) and systemic resistance (R) during exercise. The attributes related to each con-
figuration is found in Section 4.5.1. All reported values are averaged over six trial participants; 734, 219,
346, 890, 637 and 248 for each intensity level I∈[0,50,100,150] W and depicted graphically in figure 5.12.
The far right column denoted MAE contains MAEs averaged over all intensity levels for each configura-
tions. These values are not shown in Figure 5.12 to avoid jeopardizing the readability of the illustration.
*Note that no exercise shifts are conducted for the 0 W-column, as this is considered a hemodynamic
resting state.
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A.3 Python Source Code

All programming related to the model have been performed using Python (version 3.9.6) [46]. This sec-

tion includes extracts of the explicit python code used in this work. The hemodynamic exercise model is

presented in its entirety. Further, central functions used for parameter estimation is included. Finally, al-

gorithms developed in this project for exercise simulation purposes and literature-based comparisons

are presented. Note that the project database cannot be published due rules of patient confidential-

ity.

A.3.1 The Hemodynamic Model For Varying Exercise Intensity

The presented implementation only accounts for population-based exercise shifts according to Chantler

et al. [30]. This can, however, easily be adjusted by manually setting the parameter to desired value

before solving the model by using the class function set_pars(). The model can in principle take exer-

cise intensities given in other formats than heart rate. However, as only heart rate is considered in this

project, only functionality related to heart rate-based intensity is included in the following implementa-

tion. Note that the code is originally written through a collaboration in the MyMDT project by Dr. Jacob

Sturdy and Ph.D. Candidate Nikolai L. Bjørdalsbakke, and no direct changes of this implementation

have been done in this project beyond adjusting exercise shifts of parameters (Section A.3.3). A review

of the content, stating which functions are found on each code line, is found inline in the following code

extract.

Listing A.1: The Hemodynamic Exercise Model

1 import scipy

2 import scipy.integrate

3 from scipy.optimize import curve_fit

4 from scipy.integrate import solve_ivp

5 import numpy as np

6 """

7 The hemodynamic model as written by Dr. Sturdy and

8 Ph.D. Candidate Bjordalsbakke through a collaboration in

9 the MyMDT project. The model is used in this master ’s project.

10 Includes:

11 21 : activiation function to define the time -varying elastance.

12 58 : Class containting parameters and functions to use to solve the model.

13 182 and 234 : Class functions defining intensity and exercise shifts.

14 304 : RHS of the ODE system

15 326 and 382 : calc_all and calc_summary describes how quantities are
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16 derived from the ODE solutions.

17 364 : ODE solver function.

18 """

19 ml_per_sec_to_L_per_min = 60/1000

20

21 def stergiopolous_elastance(self , t):

22 """

23 Computes the normalized elastance at time t,

24 according to the shape parameters given by Stergiopolus 1994.

25 """

26 a1 = 0.708 * self.t_peak/self.T

27 a2 = 1.677 * a1

28 n1 = 1.32

29 n2 = 21.9

30 alpha = 1.672

31 shapeFunction1 = (t/(a1*self.T))**n1 / (1.0 + (t / (a1*self.T)) ** n1)

32 shapeFunction2 = (1.0 + (t/(a2*self.T))**n2)

33 e = alpha * shapeFunction1/shapeFunction2

34 return e

35

36 def lambda_setter(pars , rp, prp):

37 return lambda iy: (pars [0]*(iy**2) + pars [1]*iy + pars [2])/rp * prp

38

39 def lambda_setter_exp(pars , rp, prp):

40 return lambda iy: (pars [0]*np.exp(-1/pars [1]*(iy-pars [2])) + pars [3])/rp *

prp

41

42 def poly_func(x, a, b, c):

43 return a*(np.array(x)**2) + b*np.array(x) + c

44

45 def poly3_func(x, a, b, c, d):

46 return a*(np.array(x)**3) + b*(np.array(x)**2) + c*np.array(x) + d

47

48 def simple_exp_func(x, a, b, c):

49 return a*np.exp(-np.array(x)/b) + c

50

51 def exp_func(x, a, b, c, d):

52 return a*(np.exp(-(x-c)/b)) + d

53

54 def hrreserve_def(hr , hrmax , hrrest ,** kwargs):

55 res_intensity = (hr -hrrest)/(hrmax -hrrest)
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56 return res_intensity

57

58 class VaryingElastance ():

59 """

60 Class containing parameters and functions for

61 the hemodynamic exercise model.

62 """

63 def __init__(self):

64

65 # 3-element Windkessel pars

66 self.Z_ao = 0.033

67 self.C_ao = 1.5

68 self.R_sys = 0.95

69 # Time varying elastance pars

70 self.E_max = 2.34

71 self.E_min = 0.055

72 self.t_peak = 0.3

73 self.T = 0.85

74 # Venous compartment pars

75 self.C_sv = 11.0

76 self.R_mv = 0.010

77 # Volume determining par

78 self.V_tot = 300

79 # Lusitropy par

80 self.b = -2.1/1000

81

82 self.par_dict = self.__dict__.copy()

83

84 # Intrathoracic pressure

85 self.pleural_pressure_func = lambda t: -4

86

87 # Elastance function

88 self.elastance_fcn = stergiopolous_elastance

89

90 # Basis pars

91 self.age = 44 #yrs

92 self.wt = 81 #kg

93 self.ht = 177 #cm

94 self.sex = ’M’ # Only M and F are handled

95

96 # Un -exercised parameters
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97 self.E_max_ux = self.E_max

98 self.T_ux = self.T

99 self.C_ao_ux = self.C_ao

100 self.R_sys_ux = self.R_sys

101 # Additional Un-exercised parameters

102 self.V_tot_ux = self.V_tot

103 self.C_sv_ux = self.C_sv

104 self.R_mv_ux = self.R_mv

105 self.E_min_ux = self.E_min

106 self.Z_ao_ux = self.Z_ao

107 self.t_peak_ux = self.t_peak

108

109 self.exercised_flag = False

110

111 # Parameter_functions

112 self.E_max_func = lambda hr: self.E_max

113 self.C_ao_func = lambda hr: self.C_ao

114 self.R_sys_func = lambda hr: self.R_sys

115 # Optional functions

116 self.V_tot_func = lambda hr: self.V_tot

117 self.C_sv_func = lambda hr: self.C_sv

118 self.R_mv_func = lambda hr: self.R_mv

119 self.E_min_func = lambda hr: self.E_min

120 self.Z_ao_func = lambda hr: self.Z_ao

121 self.t_peak_func = lambda hr: self.t_peak

122

123 ##################################################

124 # Lusitropy funtion - Added by Straatman , 2021

125 self.t_peak_func = lambda iy: self.t_peak + self.b*(iy -(60/ self.T_ux))

126 ###################################################

127

128 #ChantlerArrays

129 self.HR_pop = np.array ([66 ,89 ,99 ,109 ,146])

130 self.HR_max_pop = self.HR_pop [-1]

131 self.HR_rest_pop = self.HR_pop [0]

132

133 self.T_max = 60./(220 - self.age)

134

135 self.set_parameter_response("Nor")

136

137 def set_max_hr_period(self ,T_max):
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138 self.T_max = T_max

139

140 def set_max_hr(self ,HR_max):

141 self.T_max = 60./ HR_max

142

143 def set_max_workload(self ,workload):

144 self.Workload_max_pers = workload

145

146 def set_parameter_response(self , disease_state="Nor"):

147 BSA_calc = np.sqrt(self.wt*self.ht /3600.0)

148

149 if disease_state == "Nor":

150 if self.sex == "M":

151 # Normotensive parameter responses for males from Chantler et al.

152 self.E_a_pop = np.array ([2.32 , 2.33, 2.40, 2.57, 3.15])/BSA_calc

153 self.C_ao_x_pop = 1./ self.E_a_pop

154 self.E_max_x_pop = np.array ([4.26 , 5.66, 6.73, 8.12, 13.21])/

BSA_calc

155 self.R_sys_x_pop = np.array ([2.405 , 1.667, 1.512 , 1.431, 1.253])

*0.75/ BSA_calc

156 elif self.sex == "F":

157 # Normotensive parameter responses for males from Chantler et al.

158 self.E_a_pop = np.array ([2.26 , 2.43, 2.54, 2.56, 2.94])/BSA_calc

159 self.C_ao_x_pop = 1./ self.E_a_pop

160 self.E_max_x_pop = np.array ([4.73 , 7.98, 8.95, 9.77, 15.49])/

BSA_calc

161 self.R_sys_x_pop = np.array ([2.193 , 1.568, 1.369 , 1.293, 1.158])

*0.75/ BSA_calc

162 elif disease_state == "Hyp":

163 if self.sex == "M":

164 # Hypertensive parameter responses for males from Chantler et al.

165 self.E_a_pop = np.array ([2.98 , 2.84, 2.88, 3.02, 3.52])/BSA_calc

166 self.C_ao_x_pop = 1./ self.E_a_pop

167 self.E_max_x_pop = np.array ([6.08 , 7.43, 9.13, 10.37, 16.27])/

BSA_calc

168 self.R_sys_x_pop = np.array ([2.803 , 1.964, 1.743 , 1.655, 1.444])

*0.75/ BSA_calc

169 elif self.sex == "F":

170 # Hypertensive parameter responses for males from Chantler et al.

171 self.E_a_pop = np.array ([2.63 , 2.52, 2.64, 2.60, 2.86])/BSA_calc

172 self.C_ao_x_pop = 1./ self.E_a_pop
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173 self.E_max_x_pop = np.array ([7.06 , 8.80, 15.35 , 12.71, 17.82])/

BSA_calc

174 self.R_sys_x_pop = np.array ([2.193 , 1.568, 1.369 , 1.293, 1.158])

*0.75/ BSA_calc

175 else:

176 # Default to male normotensive responses

177 self.E_a_pop = np.array ([2.32 , 2.33, 2.40, 2.57, 3.15])/BSA_calc

178 self.C_ao_x_pop = 1./ self.E_a_pop

179 self.E_max_x_pop = np.array ([4.26 , 5.66, 6.73, 8.12, 13.21])/BSA_calc

180 self.R_sys_x_pop = np.array ([2.405 , 1.667, 1.512 , 1.431, 1.253])

*0.75/ BSA_calc

181

182 def set_intensity(self ,intensity_function , data_type=’hr’,

183 max_iy =1., min_iy =0., intensity_list=None ,

184 parameter_change_dict=None , additional_parameters=None):

185 """

186 Function that specifies the input intensity format

187 and fits the parameter scaling functions to the specified intensity

format

188 It fits the built in or given population data to the intensity

189 to scale parameters with exercise intensity

190

191 intensity_function(intensity , max_intensity , min_intensity , ** kwargs)

192 - a function that specifies the intensity given by

193 heart_rate , workload or other intensity measures.

194 Must take arguments intensity_input , max_intensity , and rest_intensity

and

195 optional keyword arguments or a dictionary of other function arguments.

196 Fits parameter data to intensity and stores parameter

197 scaling functions in the model object

198 """

199

200 if data_type == ’hr’:

201

202 intensity_input = np.array(self.HR_pop.copy())

203 intensity_max = self.HR_max_pop

204 intensity_rest = self.HR_rest_pop

205

206 intensity_formatted = intensity_function(intensity_input ,

intensity_max , intensity_rest , **( additional_parameters if

additional_parameters is not None else {}))
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207 pers_rest_intensity = intensity_function (60./ self.T_ux , 60./ self.

T_max , 60./ self.T_ux , **( additional_parameters if additional_parameters is not

None else {}))

208

209 # Fit R_sys

210 optparsR ,_ = curve_fit(exp_func ,intensity_formatted ,self.R_sys_x_pop ,

bounds =(0, [10000.0 , 10000.0 , 100.0, 1.5]))

211 dummy_func = lambda iy: optparsR [0]*np.exp(-1/ optparsR [1]*(iy -

optparsR [2])) + optparsR [3]

212 restR = dummy_func(pers_rest_intensity)

213 prpR = self.R_sys_ux

214 self.R_sys_func = lambda_setter_exp(optparsR , restR , prpR)

215

216 # Fit C_ao

217 optparsC ,_ = curve_fit(poly_func ,intensity_formatted ,self.C_ao_x_pop)

218 dummy_func = lambda iy: optparsC [0]*( iy**2) + optparsC [1]*iy +

optparsC [2]

219 restC = dummy_func(pers_rest_intensity)

220 prpC = self.C_ao_ux

221 self.C_ao_func = lambda_setter(optparsC , restC , prpC)

222

223 # Fit E_max

224 optparsE ,_ = curve_fit(poly_func ,intensity_formatted ,self.E_max_x_pop

)

225 dummy_func = lambda iy: optparsE [0]*( iy**2) + optparsE [1]*iy +

optparsE [2]

226 restE = dummy_func(pers_rest_intensity)

227 prpE = self.E_max_ux

228 self.E_max_func = lambda_setter(optparsE , restE , prpE)

229

230 else:

231 raise TypeError("Wrong intensity type entered")

232 return 0

233

234 def exercise_shift_hr(self ,hr,intensity_function ,additional_arguments=None):

235 """

236 Takes an intensity as heartrate and the intensity function ,

237 translating this to intensity and shifts E_max ,R_sys ,C_ao and T

238 """

239 #Compute intensity

240 HR_max_pers = 60./ self.T_max
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241 HR_rest_pers = 60./ self.T_ux

242 intensity_level = intensity_function(hr,HR_max_pers ,HR_rest_pers ,**(

additional_arguments if additional_arguments is not None else {}))

243

244 #Set new HR and set new parameter values

245 self.T = 60./hr

246

247 self.E_max = self.E_max_func(intensity_level)

248 self.C_ao = self.C_ao_func(intensity_level)

249 self.R_sys = self.R_sys_func(intensity_level)

250 self.par_dict["T"] = self.T

251 self.par_dict["E_max"] = self.E_max

252 self.par_dict["C_ao"] = self.C_ao

253 self.par_dict["R_sys"] = self.R_sys

254

255 ##################################################

256 # Lusitropy mechanism - Added by Straatman , 2021

257 self.t_peak = self.t_peak_func (60/ self.T)

258 self.par_dict["t_peak"] = self.t_peak

259 ###################################################

260

261 def reset_exercise_shift(self):

262 self.E_max = self.E_max_ux

263 self.T = self.T_ux

264 self.C_ao = self.C_ao_ux

265 self.R_sys = self.R_sys_ux

266 self.par_dict["T"] = self.T_ux

267 self.par_dict["E_max"] = self.E_max_ux

268 self.par_dict["C_ao"] = self.C_ao_ux

269 self.par_dict["R_sys"] = self.R_sys_ux

270

271 def reset_exercise_shift_all_pars(self):

272 pars = [’E_max’, ’E_min ’, ’V_tot’, ’C_ao’, ’C_sv’, ’R_sys ’, ’R_mv’, ’Z_ao

’, ’t_peak ’, ’T’]

273 for p in pars:

274 p_ux = getattr(self , p+’_ux’)

275 setattr(self , p, p_ux)

276 self.par_dict[p] = p_ux

277

278 def elastance(self , tau):

279 return self.elastance_fcn(self , tau)
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280

281 def set_pars(self , ** kwargs):

282 for key , val in kwargs.items ():

283 if hasattr(self , key):

284 self.__setattr__(key , val)

285 self.__setattr__(key+"_ux", val)

286 self.par_dict[key] = val

287 self.par_dict[key+’_ux’] = val

288 else:

289 print("Warning: object has no attribute %s" % key)

290

291 def set_subject(self , ** subjectkwargs):

292 for key , val in subjectkwargs.items():

293 if hasattr(self , key):

294 self.__setattr__(key , val)

295 else:

296 print("Warning: object has no attribute %s" % key)

297

298 def calc_consistent_initial_values(self , V_lv_0 =100, P_ao_0 =100):

299 V_ao_0 = self.C_ao*P_ao_0

300 P_sv_0 = (self.V_tot - V_lv_0 - V_ao_0)/self.C_sv

301 u0 = (V_lv_0 , P_ao_0 , P_sv_0)

302 return u0

303

304 def rhs(self , t, u):

305 """

306 Right hand side of the ODE system.

307 """

308 V_lv = u[0]

309 P_ao = u[1]

310 P_sv = u[2]

311 tau = np.mod(t, self.T)

312 e_t = self.elastance(tau)

313 E = (self.E_max -self.E_min)*e_t + self.E_min

314 P_lv = E * V_lv + self.pleural_pressure_func(t)

315 Q_lvao = (P_lv > P_ao)*(P_lv - P_ao)/self.Z_ao

316 Q_aosv = (P_ao - P_sv)/self.R_sys

317 Q_svlv = (P_sv > P_lv)*(P_sv - P_lv)/self.R_mv

318

319 der_V_lv = Q_svlv - Q_lvao

320 der_P_ao = (Q_lvao - Q_aosv)/self.C_ao
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321 der_P_sv = (Q_aosv - Q_svlv)/self.C_sv

322 der_u = [der_V_lv , der_P_ao , der_P_sv]

323

324 return der_u

325

326 def calc_all(self , t, u):

327 """

328 Calculate all model outputs based on the ODE solutions ,

329 and remaning system relations.

330 """

331 V_lv = u[0]

332 P_ao = u[1]

333 P_sv = u[2]

334 tau = np.mod(t, self.T)

335 e_t = self.elastance(tau)

336 E = (self.E_max -self.E_min)*e_t + self.E_min

337 P_lv = E * V_lv + self.pleural_pressure_func(t)

338 Q_lvao = (P_lv - P_ao)/self.Z_ao * (P_lv > P_ao)

339 Q_aosv = (P_ao -P_sv)/self.R_sys

340 Q_svlv = (P_sv - P_lv)/self.R_mv * (P_sv > P_lv)

341 P_meas = np.maximum(P_lv , P_ao)

342 P_ao = P_meas

343 P_sys = np.max(P_ao)

344 P_dia = np.min(P_ao)

345 PP = P_sys - P_dia

346 V_sys = np.min(V_lv)

347 V_dia = np.max(V_lv)

348 SV = V_dia - V_sys

349

350 all_vars = locals ()

351 del all_vars["self"]

352 del all_vars["u"]

353

354 der_V_lv = Q_svlv - Q_lvao

355 der_P_ao = (Q_lvao - Q_aosv)/self.C_ao

356 der_P_vc = (Q_aosv - Q_svlv)/self.C_sv

357 der_u = [der_V_lv , der_P_ao , der_P_vc]

358

359 return der_u , all_vars

360 #######################################

361 #### END OF CLASS VaryingElastance ####
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362 #######################################

363

364 def solve_to_steady_state(model , t_eval=None , n_cycles=5, n_eval_pts =100):

365 """

366 Numerically solve the model ODEs over a number of cycles ,

367 until steady state is reached.

368 """

369 u0 = model.calc_consistent_initial_values ()

370 t_span = (0, model.T*n_cycles)

371 if t_eval is None:

372 t_eval = model.T*np.linspace(n_cycles -1, n_cycles , n_eval_pts)

373 else:

374 t_eval = t_eval + model.T*(n_cycles -1)

375

376 sol = scipy.integrate.solve_ivp(model.rhs , t_span , u0, dense_output=True ,

method="RK45",

377 atol=1e-10, rtol=1e-9)

378 u_eval = sol.sol(t_eval)

379 _, all_vars = model.calc_all(t_eval , u_eval)

380 return all_vars , t_eval , sol

381

382 def calc_summary(var_dict):

383 P_ao = np.maximum(var_dict["P_ao"], var_dict["P_lv"])

384 P_sys = np.max(P_ao)

385 P_dia = np.min(P_ao)

386 P_map = np.mean(P_ao)

387 Q_max = np.max(var_dict["Q_lvao"])

388 PP = P_sys - P_dia

389 V_sys = np.min(var_dict["V_lv"])

390 V_dia = np.max(var_dict["V_lv"])

391 MVP = np.mean(var_dict["P_sv"]) #Anne

392 SV = V_dia - V_sys

393 CO = ml_per_sec_to_L_per_min*SV/( var_dict["t"][-1] - var_dict["t"][0])

394 ret_dict = locals ()

395 del ret_dict["var_dict"]

396 del ret_dict["P_ao"]

397 ret_dict["V_sys"]

398 ret_dict["V_dia"]

399 return ret_dict
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A.3.2 Numerical Optimization with the Cost Function

Implementation of the cost function stated in Equation (3.5) and how it is used in a least-squares opti-

mization procedure, partly developed in [4]. Note that the entire estimation procedure is not included,

as it is very extensive, and presentation of its details are not considered essential for the purpose of this

work. The code is originally written by Dr. Jacob Sturdy and Ph.D. Candidate Nikolai L. Bjørdalsbakke

through a collaboration in the MyMDT project. An outline of the content, highlighting the additions

developed in this project, is found inline in the following code extract.

Listing A.2: Cost Function

1 import numpy as np

2 import scipy.optimize as opt

3 import model as models

4

5 """

6 Extraction from the code used in the parameter estimation procedure.

7 Primarly written by Sturdy and Bjordalsbakke through collaboration

8 in the MyMDT Project.

9

10 Adjustments and additions developed as a part of the master ’s project

11 included and highlighted explicitly throughout the code.

12 Includes:

13 28 : closed -loop parameters.

14 model parameters initialized. Fixed parameters must update this dictionary.

15 40 : Function to shift model waves to upstroke.

16 Developed by Nikolai L. Bjordalsbakke and Anne Aal , 2022.

17 64 : Cost function.

18 Addition to regulate EF developed in this project included in this code.

19 160 : Run optimization.

20 Fit paramters to data.

21 196 : Outline of the script that executes the parameter estimation procedure.

22 Illustrates how fixed vs. estimated parameters are defined ,

23 and how constraints are included vs. ignored.

24 """

25

26 # Initializaton of parameters.

27 # All parameters updated through the procedure with the exception of R_mv and

E_min.

28 closed_loop_base_pars ={’C_ao’: 1.13,

29 ’E_max ’: 1.5,
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30 ’E_min ’: 0.035,

31 ’R_mv’: 0.006 ,

32 ’R_sys ’: 1.11,

33 ’T’: 0.85,

34 ’Z_ao’: 0.033 ,

35 ’t_peak ’: 0.32,

36 ’C_sv’: 11.0,

37 ’V_tot ’: 300

38 }

39

40 def shift_minimum(p,q,t):

41 """

42 Shift the model waves of pressure (p) and flow (q) to start at upstroke.

43 Developed by Nikolai L. Bjordalsbakke and Anne Aal

44 """

45 min_ind = np.argmin(p)

46 t_base = t[0]

47 t=t-t[0]

48 if (t[min_ind] < 0.65*t[-1]):

49 p_temp = p.copy()

50 q_temp = q.copy()

51 p_slope = p[: min_ind]

52 p_temp[len(p)-min_ind :] = np.append(p_slope [1:], p[min_ind ])

53 p_temp [:len(p)-min_ind] = p[min_ind :]

54

55 p = p_temp.copy()

56 q_temp[len(q)-min_ind :] = q[: min_ind]

57 q_temp [:len(q)-min_ind] = q[min_ind :]

58 q = q_temp.copy()

59

60 return p, q, t+t_base

61 else:

62 return p, q, t+t_base

63

64 def data_cost_function(pars , measurements=dict(P_sys =120, P_dia =80), active_pars=

None , ret_all=False ,

65 base_pars=dict(closed_loop_base_pars)):

66 """

67 The data cost function J.

68 Originally written by Sturdy and Bjordalsbakke.

69 Additions from the current project are stated in the following code.
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70 """

71 measurement_scales = dict(P_sys =120,

72 P_dia=80,

73 P_meas =100,

74 P_ao =100,

75 Q_lvao =500,

76 Q_aosv =500,

77 Q_svlv =300,

78 SV=100,

79 PP=40,

80 V_lv =100,

81 MVP =5.)

82

83 it_base_pars = dict(base_pars)

84 for idx , name in enumerate(active_pars):

85 try: #LMFIT

86 it_base_pars[name] = pars[name]

87 except: #SCIPY

88 it_base_pars[name] = pars[idx]

89

90 ve_closed = models.VaryingElastance ()

91 ve_closed.set_pars (** it_base_pars)

92 var_dict , t_eval ,_ = models.solve_to_steady_state(ve_closed ,n_cycles =10,

93 n_eval_pts=len(

measurements["P_ao"]))

94 ret_dict = models.calc_summary(var_dict)

95 residual = []

96 residual_short = []

97 for name , val in measurements.items():

98

99 if ((name in ret_dict) and (name == ’MVP’)):

100 residual_short.append ((val - ret_dict[name])*(len(measurements["P_ao"

])/40.) *2.5/( measurement_scales[name]))

101 elif ((name in ret_dict) and (ret_dict[name].size == 1)):

102 residual_short.append ((val - ret_dict[name])*(len(measurements["P_ao"

])/40.) *7.5/( measurement_scales[name]))

103 else:

104 ##################################################################

105 # Shift the model pressure (p) and flow (q) to start at upstroke #

106 # Developed by Nikolai L. Bjordalsbakke and

107 # Anne Aal , motivated by the master ’s project ####################
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108 pn , qn , tn = shift_minimum(var_dict["P_ao"],

109 var_dict["Q_lvao"], t_eval)

110 ##################################################################

111 if name == ’P_ao’:

112 try:

113 residual.append ((val - pn)/measurement_scales[name])

114 except KeyError:

115 print("Skipping pressure measurement")

116 elif name == ’Q_lvao ’:

117 try:

118 residual.append ((val - qn)/measurement_scales[name])

119 except KeyError:

120 print("Skipping flow measurement")

121 else:

122 try:

123 residual.append ((val - ret_dict[name])/measurement_scales[

name])

124 except KeyError:

125 residual.append ((val - var_dict[name])/measurement_scales[

name])

126

127 residual = np.array(residual).flatten ()

128 residual = np.append(residual , residual_short)

129

130 #####################################################################

131 ###### ADDITIONS FOR REGULATING EF ##################################

132 ###### - DEVELOPED AND TESTED IN THE MASTER ’S PROJECT ###############

133 #####################################################################

134

135 EF_min = 0.35

136 EF_max = 0.75

137 EF = var_dict[’SV’]/ var_dict[’V_dia’]

138

139 # Hardmax version - Written by Anne Aal

140 W_ef_hm = 10**6

141 if EF > 0.75 or EF < 0.35:

142 residual = residual*W_ef_hm

143

144 # Softmax version - Written and tested by

145 # Sturdy , Bjordalsbakke and Aal

146 alpha = 100.
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147 W_ef_sm = 50

148 weight1 = 1./(1. + np.exp(alpha*(EF -EF_min)))

149 weight2 = 1./(1. + np.exp(alpha*(EF_max -EF)))

150 EF_term = (weight1 + weight2)*(1./EF+EF)*W_ef_sm

151 residual = np.append(residual , EF_term)

152

153 ##################################################################

154

155 if ret_all:

156 return residual , var_dict , t_eval , ret_dict

157 else:

158 return residual

159

160 def run_realdata_measurements(active_params ,x0 ,x_scale ,writers ,wflag ,t_r ,p_r ,q_r ,

v_r ,meas_dict ,b_in ,b_low):

161 """

162 Fit parameters to data. Written by Sturdy and Bjordalsbakke.

163 meas_dict - the name of measurments to fit against.

164 x0 - initial values

165 b_in and b_low - upper and lower constraints.

166 Examined in this project as both included and excluded.

167 """

168 measurements = meas_dict.copy()

169

170 residual , var_dict , t_eval , ret_dict = data_cost_function(x0,

171 active_pars=

active_params ,

172 measurements=

measurements , ret_all=True ,

173 base_pars=

closed_loop_base_pars)

174

175 resultsR = opt.least_squares(data_cost_function , x0 ,

176 xtol =2.3e-16,ftol =2.3e-16,gtol =2.3e-16, diff_step

=1e-3,

177 bounds =(b_low ,b_in),

178 kwargs=dict(active_pars=active_params ,

measurements=measurements ,base_pars=closed_loop_base_pars))

179

180 residual , var_dict , t_eval , ret_dict = data_cost_function(resultsR.x,
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181 active_pars=

active_params ,

182 measurements=

measurements , ret_all=True ,

183 base_pars=

closed_loop_base_pars)

184

185 print("Estimated resting parameters")

186 standard_dev_sq = np.sum(residual **2)/len(residual)

187 print(active_params)

188 estimated_pars = resultsR.x

189 print("Measure of residual variance: ", standard_dev_sq)

190 print(estimated_pars)

191

192 estimated_pars = np.append(np.round(estimated_pars ,4),standard_dev_sq)

193

194 return resultsR.x, standard_dev_sq , residual

195 ########## SCRIPT TO EXECUTE THE ESTIMATION PROCEDURE #################

196 if __name__ == ’__main__ ’:

197 # Prefit for arterial parameters in three -element Windkessel model #

198 active = ["C_ao", "R_sys", "Z_ao"]

199 x0 = np.array ([0.436*bsa , 0.91725/bsa , 0.033])

200 x_scale = [2.0, 2.0, 0.01]

201 b_temp_in = [2.256 , 2.963, 1.]

202 b_temp_low = [0.148 , 0.917/bsa , 0.001]

203 try:

204 C_ao , R_sys , Z_ao = run_prefit(active , x0, x_scale ,None ,False ,t_r ,p_r ,

205 q_r ,b_temp_in ,b_temp_low)

206 except:

207 print("Prefit failed!")

208 # Use data from Segers et al. if fit fails

209 if(np.max(p_r) > 140):

210 Z_ao = 0.035

211 else:

212 Z_ao = 0.033

213 _,C_ao ,Rpz = volume_initial_guess_estimator(q_r , p_r , t_r)

214 R_sys = Rpz -Z_ao

215 ######################## End prefit #################################

216 ##################### Update base pars ##############################

217 closed_loop_base_pars["C_ao"] = C_ao

218 closed_loop_base_pars["Z_ao"] = Z_ao
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219 closed_loop_base_pars["R_sys"] = R_sys

220 print(closed_loop_base_pars["T"])

221 #####################################################################

222 ############## ADD FIXED PARAMETERS #################################

223 #####################################################################

224 # t_peak is fixed to the dicrotic notch in this case

225 t_peak_estimate = t_peak_dicrotic(p_r , t_r)

226 #####################################################################

227 # Fixed parameters are added to closed_loop_base_pars

228 closed_loop_base_pars["t_peak"] = t_peak_estimate

229

230 # Set which values to fit against (include in cost function)

231 # p_r and q_r is synchronized input data for pressure and flow

232 PPref = np.max(p_r) - np.min(p_r)

233 Psys_ref = np.max(p_r)

234 Pdia_ref = np.min(p_r)

235 SVref = np.trapz(q_r ,t_r)

236 meas_dict = dict(P_ao=p_r ,Q_lvao=q_r , SV=SVref , P_sys=Psys_ref , P_dia=

Pdia_ref , MVP =6.)

237 ############### Set the premises for the main optimization ############

238 print("FIVE PARAMETER FITS -------")

239 print("---------RESTING ----------")

240 # Add/remove parameters that are estimated/fixed

241 active = ["E_max", "C_ao", "R_sys", "V_tot", "C_sv"]

242 # Intitial guess (x0_0). Resampled for each iteration

243 x0_0 = np.array( [7.58/bsa , C_ao , R_sys , TBVS , 13.084])

244 x_scale = [2.0, 2.0, 2.0, 250., 10.0]

245 # The constraints. No constraints in this case.

246 b_in = [np.inf , np.inf , np.inf , np.inf , np.inf] # Upper

247 b_low = np.array ([0, 0, 0, 0, 0]) # Lower

248

249 # multi_sample runs the "run_real_data_measurements" first 30 times ,

250 # and then another 20 times.

251 # Initial guess (x0) is randomly resampled for each iteration.

252 multi_sample(active , x0_0 , x_scale ,None ,False ,t_r ,p_r ,q_r ,v_r ,

253 b_in ,b_low , meas_dict ,30, part_id)

254 ############### END ESTIMATION PROCEDURE ####################################
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A.3.3 Data-Based Exercise Shifts

Extraction of the code developed during this project for the purpose of obtaining data-based implemen-

tations of exercise shifts. In the numerical experiments conducted, algorithms developed to shift Rsys

and Cao replace the Chantler-based shifts in A.3.1 by the class function set_pars() in the hemodynamic

model prior to solving the ODEs. Algorithms developed for scaling model pressures and obtaining data-

based lusitropy coefficients are also included. An outline of the content is found inline in the following

code extract.

Listing A.3: Data-based exercise shifts

1 import matplotlib.pyplot as plt

2 import numpy as np

3 # Functions used to read data and extract estimated parameters:

4 import read_data

5 # The Hemodynamic Model:

6 import model

7 from model import VaryingElastance

8

9 """

10 Extract from code developed and/or used in the master ’s project.

11 Written by Anne Oksnes Aal , 2022.

12 Includes:

13 40 : How outliers are removed by an IQR -method [37].

14 62 : Participant class.

15 A class implemented to contain data and

16 derived properties for a trial participant.

17 389 : A model wrapper.

18 Code written to solve the hemodynamic model

19 and extract quantities of interest.

20 461 : Tpeak and systolic period.

21 Obtain regression values for LVET to use as b in lusitropy.

22 549 : Linear personal compliance shift (c).

23 Obtain a personal linear shift of C_ao based on

24 relative changes of SV/PP.

25 578 : A semi -linear average -based shift of C_ao (d, C2).

26 608 : Personal resistance scaling factor (R,c).

27 Obtain a scaling factor to yield similar relative change

28 between 0-150 W in Chantler shifts as trial data.

29 641 : General trial -based exponential resistance shift (d, R2).

30 Use exponential regression on relative changes of MAP/CO
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31 in selected participants

32 674 : Shift Vtot during exercise

33 A pilot experiment to shift Vtot in a

34 linear manner during exercise

35 """

36

37 ####################################################

38 ########### INTERQUARTILE RANGE METHOD [37] ########

39 ####################################################

40 def removeOutliers(meas):

41 """

42 Method obtained from [38] (See Bibliography)

43 Clean a dict for outliers belove/above 50% of first/fourth quartile.

44 meas - dict of measurements (Psys , Pdia , HR , SV etc.)

45 """

46 cleanedMeas = dict()

47 for param , vals in meas.items ():

48 df = pd.DataFrame.from_dict(meas[param])

49 if df.empty:

50 continue

51 Q1 , Q3 = df.quantile (0.25) , df.quantile (0.75)

52 IQR = Q3 - Q1

53 df = df[~((df < (Q1 - 1.5 * IQR)) |(df > (Q3 + 1.5 * IQR))).any(axis =1)]

54 list = df[0]. tolist ()

55 cleanedMeas[param] = list

56 return cleanedMeas

57

58 ####################################################

59 ########### THE PARTICIPANT -CLASS ##################

60 ####################################################

61

62 class Participant ():

63 """"

64 A class to contain relevant data and characteristics

65 for a given trial participant.

66 Id = participant identification number.

67 data_case = ’Straatman ’, i.e., cardiovascular data pre -processed by

68 Hilke Straatman during an internship at NTNU.

69 Refers to the use of flow and heart rates

70 obtained by Straatman.

71 = ’Echopac ’, i.e., heart periods obtained from ECG ,
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72 and semi -automatic flow traces

73 from Echopac as flow during rest.

74 Radial systolic and diastolic pressures used for both data cases.

75 model = The MyMDT hemodynamic model

76 """

77 # Tonometry signal contained in a json -file loaded as CYCLE_DATABASE_FILE

78 CYCLE_DATABASE_FILE

79

80 def __init__(self , Id):

81

82 self.Id = Id

83 self.basis = read_data.getAllCharacteristicParams(self.Id) #

Characteristics

84 self.sex = self.basis[’sex’]

85 self.BMI = self.basis[’BMI’]

86 self.SP = self.basis[’SP’]

87 self.DP = self.basis[’DP’]

88 self.age = self.basis[’age’]

89

90 ## STROKE VOLUME INDEX AND ESP -PREDICTIONS FROM CHANTLER ET AL. [30] ##

91

92 # Stroke Volume Index from Chantler et al. [30] during exercise

93 SVI_M = np.array ([48.4 , 58.3, 61.3, 61.7, 60.1])

94 SVI_F = np.array ([47.9 , 56.1, 59.0, 60.8, 60.0])

95

96 # End -Systolic Pressure (ESP) from Chantler et al. [30] during exercise

97 ESP_M = [137, 152, 164, 171, 200]

98 ESP_F = [134, 146, 162, 158, 173]

99

100 # Heart rates during exercise from Chantler et al. [30]

101 HR_M = [66, 89, 99, 109, 146]

102 HR_F = [70, 99, 114, 120, 148]

103

104 if self.sex == ’M’:

105 self.SVI = SVI_M*self.BSA_calc

106 self.HR_sex_pop = HR_M

107 self.ESP = ESP_M

108 elif self.sex == ’F’:

109 self.SVI = SVI_F*self.BSA_calc

110 self.HR_sex_pop = HR_F

111 self.ESP = ESP_F
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112

113 #########################################################################

114

115 def getTrest(self , T_rest_case = ’T_tonometry ’, out_data_case = ’Straatman ’):

116 """

117 Get resting heart period obtained either as the average tonometry -period ,

118 or the 0W-period from sr or sup -position.

119 data_case = ’Straatman ’ or ’ECG ’.

120 Where the 0W-periods shall be obtained from.

121 """

122 if T_rest_case == ’T_tonometry ’:

123 avg_p ,_,_ = self.getTonometryTimes ()

124 return avg_p

125

126 elif T_rest_case == ’T_0W_sr ’:

127 pos = ’sr’

128 elif T_rest_case == ’T_0W_sup ’:

129 pos = ’sup’

130

131 if out_data_case == ’Straatman ’:

132 out_data = self.getHilkeOutputsData (0, pos)

133 if not out_data:

134 raise Exception (’No outputs for Id %.0f, pos: %s’ % (self.Id,

pos))

135 periods = out_data[’T’]

136 elif out_data_case == ’ECG’:

137 out_data = self.getCycleData (0, pos)

138 if not out_data:

139 raise Exception (’No ECG for Id %.0f, pos: %s’ % (self.Id, pos))

140 heart_rates = out_data[’HR’]

141 periods = []

142 for hr in heart_rates:

143 periods.append (60/hr)

144

145 return np.nanmean(periods)

146

147 def get_all_0W_periods(self , T_rest_case = ’T_tonometry ’, out_data_case = ’

Hilke_data ’):

148 """

149 Get resting heart period obtained either as the average tonometry -period ,

150 or the 0W-period from sr or sup -position.
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151 data_case = ’Straatman ’ or ’ECG ’.

152 Where the 0W-periods shall be obtained from.

153 """

154 if T_rest_case == ’T_tonometry ’:

155 _,periods ,_ = self.getTonometryTimes ()

156 return periods

157

158 elif T_rest_case == ’T_0W_sr ’:

159 pos = ’sr’

160 elif T_rest_case == ’T_0W_sup ’:

161 pos = ’sup’

162

163 if out_data_case == ’Straatman ’:

164 out_data = self.getHilkeOutputsData (0, pos)

165 if not out_data:

166 raise Exception (’No outputs for Id %.0f, pos: %s’ % (self.Id,

pos))

167 periods = out_data[’T’]

168 elif out_data_case == ’ECG’:

169 out_data = self.getCycleData (0, pos)

170 if not out_data:

171 raise Exception (’No outputs for Id %.0f, pos: %s’ % (self.Id,

pos))

172 heart_rates = out_data[’HR’]

173 periods = []

174 for hr in heart_rates:

175 periods.append (60/hr)

176

177 return (periods)

178

179 def convertWattsToIntensity(self , intensity , pos = ’sr’, T_rest_case = ’

T_tonometry ’,

180 out_data_case = ’Straatman ’):

181 """

182 Takes a participant Id and an intensity in watts.

183 T_rest_case = ’T_tonometry ’, ’T_0W_sr ’ or ’T_0W_sup ’

184 data_case = ’Straatman ’ or ’ECG’

185 Returns: The exercise heart rate and intensity

186 as defined by the HRR -function

187 """

188 out_data = dict()
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189 if out_data_case == ’Straatman ’:

190 out_data = self.getHilkeOutputsData(intensity , pos)

191 if out_data:

192 periods = out_data[’T’]

193 heart_rates = []

194 for p in periods:

195 heart_rates.append (60/p)

196

197 elif out_data_case == ’ECG’:

198 out_data = self.getCycleData(intensity , pos)

199 if out_data:

200 heart_rates = out_data[’HR’]

201

202 if not out_data:

203 return -1,-1

204

205 HR_ex = np.nanmean(heart_rates)

206 HR_max = 220-self.age

207 T_rest = self.getTrest(T_rest_case , out_data_case = out_data_case)

208 HR_rest = 60/ T_rest

209

210 # The definition of heart -rate based intensity as found in the model

211 I = model.hrreserve_def(HR_ex , HR_max , HR_rest)

212 return HR_ex , I

213

214 def getBPScalingFactors(self , pos):

215 """

216 Calculate epsilon_SP and epsilon_DP for a participant.

217 I.e., the difference in % between brachial pressures at

218 resting state and radial pressures at 0 W.

219 """

220

221 cycle_data = self.getCycleData (0, pos)

222 if not cycle_data:

223 print(’No cycle data for this case’)

224 return dict()

225

226 SP_rad , DP_rad = (cycle_data[’P_sys’]), (cycle_data[’P_dia’])

227 diff_SP , diff_DP = np.mean(SP_rad)-self.SP , np.mean(DP_rad)-self.DP

228

229 eps_SP , eps_DP = diff_SP *100/ self.SP , diff_DP *100/ self.DP
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230

231 return {’SP_eps ’: eps_SP , ’DP_eps ’: eps_DP , ’SP_diff ’: diff_SP , ’DP_diff ’

: diff_DP}

232

233 def getPersonalB(self , pos = ’sr’):

234 """

235 Linear regression on LVET periods to obtain

236 a personal lusitropy coefficient (b_pers)

237 """

238 HR = []

239 LVET_mean_vals = []

240 intensities = [0, 50, 100, 150]

241 for I in intensities:

242 HR_ex ,_ = self.convertWattsToIntensity(I, pos = pos)

243 if HR_ex == -1:

244 print(’No exercise data exist for participant: ’ + str(self.Id))

245 return -1

246 HR.append(HR_ex)

247 out_data = self.getHilkeOutputsData(I)

248 if not out_data:

249 print(’No T_per -data available for participant: ’ + str(self.Id))

250 LVET_per_Id = out_data[’T_per’]

251 LVET_mean_vals.append(np.mean(LVET_per_Id))

252

253 # Remove extreme outliers

254 i = 0

255 for val in LVET_mean_vals:

256 if val > 0.2 and HR[i] > 180:

257 LVET_mean_vals.remove(val)

258 HR.remove(HR[i])

259 i += 1

260

261 reglin = np.polyfit(HR, LVET_mean_vals , 1)

262

263 return reglin [0] #b_pers

264

265 def getTonometryTimes(self):

266 """

267 Read the tonometry -file to obtain the resting heart periods.

268 Note: Code based on dataprocessing by Bjordalsbakke.

269 """



APPENDIX A. ADDITIONAL INFORMATION 159

270 df = pd.read_json(self.CYCLE_DATABASE_FILE)

271 pat_df = df[df[’Surname ’] == self.Id]

272 pat_df = pat_df[pat_df[’use_data ’] == ’Y’]

273 avg_p = 0.

274 sample_count = 0

275 periods = []

276 min_len = np.inf

277 for idx , row in pat_df.iterrows ():

278 if row[’use_data ’] == ’Y’:

279 times = np.array(row[’times’])

280 times = times - times [0]

281 period = times[-1]

282 periods.append(period)

283 if len(times) < min_len: min_len = len(times)

284 avg_p += period

285 sample_count += 1

286 avg_p = avg_p/sample_count

287

288 return avg_p , periods , min_len

289

290 def getTonometryPressureWave(self):

291 """

292 Read the tonometry -file to obtain the average pressure -cycle

293 from carotid measurement , scaled to brachial SP and DP

294 Note: Code based on dataprocessing by Bjordalsbakke.

295 """

296 df = pd.read_json(self.CYCLE_DATABASE_FILE)

297 pat_df = df[df[’Surname ’] == self.Id]

298 pat_df = pat_df[pat_df[’use_data ’] == ’Y’]

299 avg_p ,_,min_len = self.getTonometryTimes ()

300

301 sample_count = 0

302 average_sample = np.zeros(min_len)

303 new_time = np.linspace (0., 1., min_len)

304 for idx , row in pat_df.iterrows ():

305 if row[’use_data ’] == ’Y’:

306 times = np.array(row[’times’])

307 times = times - times [0]

308 times = times/times[-1]

309 samples = np.array(row[’samples ’])

310 new_samples = np.interp(new_time , times , samples)
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311 average_sample += new_samples

312 sample_count += 1

313 average_sample = average_sample/sample_count

314 final_time = new_time*avg_p

315

316 # Adjust pressure for SBP and DBP

317 average_sample = average_sample - np.min(average_sample)

318 average_sample = average_sample/np.max(average_sample)

319

320 Psys_mean = pat_df["SP"].mean()

321 Pdia_mean = pat_df["DP"].mean()

322

323 average_sample = (Psys_mean -Pdia_mean)*average_sample + Pdia_mean

324

325 ret = dict()

326 ret[’p’], ret[’t’] = average_sample , final_time

327 return ret

328

329 def getPhysicalComplianceAtIntensity(self , intensity , pos = ’sr’):

330 """

331 Obtain the physical arterial compliance (C_a=SV/PP) at a given intensity.

332 """

333 hilke_outputs = self.getHilkeOutputsData(intensity , pos)

334 if not hilke_outputs:

335 print(’No SV avaialble for participant: ’ + str(self.Id))

336 return -1

337 SV = np.mean(hilke_outputs[’SV’])

338 P_sys , P_dia = hilke_outputs[’P_sys’], hilke_outputs[’P_dia ’]

339 PP = np.mean(np.asarray(P_sys)-np.asarray(P_dia))

340 return SV/PP

341

342 def getPhysicalResistanceAtIntensity(self , intensity , pos = ’sr’):

343 """

344 Obtain the physical systemic resistance (R=MAP/CO) at a given intensity.

345 """

346 Straatman_outputs = self.getHilkeOutputsData(intensity , pos)

347 if not Straatman_outputs:

348 print(’No SV avaialble for participant: ’ + str(self.Id))

349 return -1

350 SV , P_map = np.mean(Straatman_outputs[’SV’]), np.mean(Straatman_outputs[’

P_map’])
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351 T = np.mean(Straatman_outputs[’T’])

352 HR = 60/T

353 CO = SV*HR/60

354 return P_map/CO

355

356 def getSVatRest(self):

357 SV = 0

358 # The semi -manually obtained flow , processed by Hilke Straatman

359 if self.Id in support.all_Hilke_participants:

360 q_h = self.getCycleProcessingPickles(flow_case= ’StraatmanDataBased ’)

[’q’][0]

361 t_h = self.getCycleProcessingPickles(flow_case= ’StraatmanDataBased ’)

[’t’][0]

362 SV = np.trapz(q_h ,t_h) # mL

363 # The EchoPac Flow data

364 elif self.Id in support.all_NewData_participants:

365 q_n = self.getCycleProcessingPickles(flow_case= ’StraatmanDataBased ’)

[’q’][0]

366 t_n = self.getCycleProcessingPickles(flow_case= ’StraatmanDataBased ’)

[’t’][0]

367 SV = np.trapz(q_n ,t_n)

368 return SV

369

370 def getPhysicalComplianceAtRest(self):

371 SV = self.getSVatRest ()

372 PP = self.SP - self.DP

373 return SV/PP

374

375 def getPhysicalResistanceAtRest(self):

376 P_map = np.mean(self.getTonometryPressureWave ()[’p’])

377 SV = self.getSVatRest ()

378 HR = 60/ self.getTrest(’T_tonometry ’) # Beats per min

379 CO = SV*HR/60 #mL/min --> mL/s

380 R_sys = P_map/CO

381 return R_sys

382

383 ############ END PARTICIPANT CLASS ###################

384

385 #######################################################

386 ############ A MODEL WRAPPER ##########################

387 #######################################################
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388

389 def model_wrapper(Id , data_case , param_case , b_case ,

390 T_rest_case , state = ’ex’, intensity_watts = 0):

391 """"

392 A wrapper for the hemodynamic model used to solve

393 the model and obtain quantities of relevanse for this project.

394 state: ’rest’ or ’ex’

395 data_case: ’Straatman ’ (The six participants processed by Straatman), or

396 ’EchoPach ’ (EchoPac -processed participants)

397 Parameter case: ’FixTpeak ’(1), ’NoConstraintsFixTpeak ’(2),

398 ’NoConstraintsFixTpeakBoundEF_HardMax ’(3),

399 ’Fix Csv(4), ’NoConstraintsFixCsvBoundEF_HardMax ’(5)

400 b_cases: ’b0’, ’b_weissler ’, ’average_Tper_based_b ’,

401 ’personal_Tper_based_b ’

402 T_rest_case: ’T_tonometry ’, ’T_0W_sr ’, or ’T_0W_sup ’

403

404 At 0-intensity: no exercise shifts are conducted

405 """

406

407 vewk3 = VaryingElastance ()

408 participant = Participant(Id)

409

410 basis_params = read_data.getBasisParamsFromCharaceristics(Id)

411 if param_case == ’NoConstraintsFixTpeak ’:

412 input_params = read_data.getResParsMin(Id , data_case = data_case ,

413 param_case = ’NoConstraintsFixTpeak ’)

414 else:

415 input_params = read_data.getResParsMean(Id, data_case = data_case ,

416 param_case = param_case)

417

418 vewk3.set_pars (** basis_params)

419 vewk3.set_pars (** input_params)

420 vewk3.set_parameter_response(disease_state="Nor")

421

422 b_cases = {’b_weissler ’: -2.1/1000 , ’average_Tper_based_b ’: -1.1/1000 ,

423 ’b0’:0, ’personal_Tper_based_b ’: participant.getPersonalB ()}

424 b = b_cases[b_case]

425 vewk3.set_pars (**{’b’:b})

426

427 if data_base_case == ’Straatman ’:
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428 out_data_case = ’Straatman ’ # Use heart rates manually obtained by

Straatman

429 else:

430 out_data_case = ’ECG’ # Use ECG heart rates

431

432 HR_ex ,_ = participant.convertWattsToIntensity(intensity_watts , pos = ’sr’,

433 T_rest_case = T_rest_case , out_data_case = out_data_case)

434 if HR_ex == -1:

435 print(’No heartrate data for participant no. ’ + str(Id) )

436 return dict()

437

438 if state == ’ex’:

439 num_cycles = 40

440 if intensity_watts == 0: # Set heart rate , but do not perform exercies

shift

441 vewk3.set_pars (**{’T’: 60/ HR_ex})

442

443 elif intensity_watts > 0: # Exercise state -> Perform exercise shift

444 vewk3.set_intensity(model.hrreserve_def , data_type=’hr’)

445 vewk3.exercise_shift_hr(HR_ex , model.hrreserve_def)

446 else:

447 num_cycles = 10

448

449 # Solve model

450 all_vars ,_,_= model.solve_to_steady_state(vewk3 ,n_cycles = num_cycles)

451 output_params = model.calc_summary(all_vars)

452 output_params[’V_lv’] = all_vars[’V_lv’]

453 output_params[’P_lv’] = all_vars[’P_lv’]

454

455 return output_params

456

457 #######################################################

458 ############# AVERAGE LUSITROPY COEFFICIENT ###########

459 #######################################################

460

461 def TpeakAndSystolicPeriod(Ids , data_base_case , respar_case):

462 """

463 Plots the values of LVET from the data from Hilke Straatman

464 and obtain an average regression line (b_reg).

465 Presented in Sections 4.3.2 and 5.2.2.

466 """
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467 intensities = [0 ,50 ,100 ,150]

468 colors = [’firebrick ’,’gold’ ,’forestgreen ’, ’cornflowerblue ’, ’coral’, ’

darkturquoise ’]

469 markers = [’x’, ’o’, ’s’, ’^’, ’d’, ’P’]

470

471 all_HR = []

472 all_LVET = []

473 avg_LVET_0 , avg_HR_0 , avg_HR_end = 0,0,0

474 fig , ax = plt.subplots(figsize = (9,8), dpi = 300)

475 out_data_case = ’Straatman ’

476 for Idx , Id in enumerate(Ids):

477 participant = Participant(Id)

478

479 HR , T_per ,t_peak ,local_I = [],[],[],[]

480

481 for I in intensities:

482 vewk3 = VaryingElastance ()

483 basis_params = read_data.getBasisParamsFromCharaceristics(Id)

484 input_params = read_data.getResParsMean(Id, data_case=data_base_case ,

485 param_case=respar_case)

486 vewk3.set_pars (** basis_params)

487 vewk3.set_pars (** input_params)

488 vewk3.set_parameter_response(disease_state="Nor")

489

490 HR_ex ,_ = participant.convertWattsToIntensity(I, pos = ’sr’,

491 T_rest_case=’T_tonometry ’, out_data_case= out_data_case)

492 if HR_ex > 180: continue

493 HR.append(HR_ex)

494 all_HR.append(HR_ex)

495 local_I.append(I)

496 if HR_ex == -1: print(’No heartrate data for participant no. ’ + str(

Id))

497

498 if I > 0:

499 vewk3.set_intensity(model.hrreserve_def , data_type=’hr’)

500 vewk3.exercise_shift_hr(HR_ex , model.hrreserve_def)

501 else:

502 vewk3.set_pars (**{’T’: 60/ HR_ex})

503

504 if out_data_case == ’Straatman ’:

505 outputs = participant.getHilkeOutputsData(I, pos = ’sr’)



APPENDIX A. ADDITIONAL INFORMATION 165

506 elif out_data_case == ’ECG’:

507 outputs = participant.getCycleData(I,pos = ’sr’)

508

509 T_per_Id = outputs[’T_per’]

510 T_per.append(np.mean(T_per_Id))

511 all_LVET.append(np.mean(T_per_Id))

512

513 t_peak.append(vewk3.getShiftedParam(’t_peak ’))

514

515 avg_LVET_0 += T_per [0]

516 avg_HR_0 += HR[0]

517 avg_HR_end += HR[-1]

518 reglin = np.polyfit(HR, T_per , 1)

519 lw_big = 5

520 lw_small = 4

521 ax.plot(HR, T_per , color = colors[Idx], marker = markers[Idx], linestyle

= ’’, markersize = 18, markeredgewidth = 3,

522 label =’$b_\mathrm{pers }^{%s}$ = %.1f’ % (str(support.

random_participant_labels[Id]), (reglin [0]*1000)))

523

524 ax.plot(HR, reglin [0]*np.asarray(HR) + reglin [1], linewidth = lw_small ,

525 alpha = 0.75, linestyle = ’-’, color = colors[Idx])

526

527 reglin = np.polyfit(all_HR , all_LVET , 1)

528 # b_reg = reglin [0]

529 avg_LVET_0 = avg_LVET_0/len(Ids)

530 avg_HR_0 = avg_HR_0/len(Ids)

531 avg_HR_end = avg_HR_end/len(Ids)

532

533 ax.plot(all_HR , reglin [0]*np.asarray(all_HR) + reglin [1],

534 label = ’$b_\mathrm{reg}$ = %.1f ’ % (reglin [0]*1000) , linewidth =

lw_big , color = ’k’)

535 ax.set_xticks ([50 ,100 ,150])

536 ax.set_xlim (45 ,180)

537 ax.set_yticks ([0.2 ,0.25 ,0.3])

538 ax.set_xlabel(’HR [bpm]’)

539 ax.set_ylabel(’$T_\mathrm{sys}$ [s]’)

540 ax.set_ylabel(’LVET [s]’)

541 ax.legend(bbox_to_anchor = (1.05 ,1), loc = 2, borderaxespad = 0.) # Savefig

542 path = folder_path + ’TperRegression.png’

543 fig.savefig(path , pad_inches = 0.2, bbox_inches = ’tight’)
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544

545 #################################################

546 ####### COMPLIANCE SHIFTS #######################

547 #################################################

548

549 def LinearPersonalCShifts(Id, HR_ev , resParCase):

550 """

551 Use trial data of SV and PP to obtain a

552 personal linear shift of arterial compliance.

553 Id = participant number.

554 HR_ev = instantaneos heart rate.

555 resParCase = resting parameter set.

556 Referred to as compliance shift ’c’ in Section 4.3.3.

557 """

558 # A class for each participant Id

559 participant = Participant(Id)

560 # The input parameters obtained from the

561 input_params = read_data.getResParsMean(Id, data_case = ’Straatman ’,

562 param_case = resParCase)

563 C_ao_rest = input_params[’C_ao’]

564 C_0W = participant.getPhysicalComplianceAtIntensity (0)

565 C_150W = participant.getPhysicalComplianceAtIntensity (150)

566 delta_phys_150W = (C_150W - C_0W)/C_0W

567 phys_based_shift_150W = (1+ delta_phys_150W)*C_ao_rest

568 C = [C_ao_rest , phys_based_shift_150W]

569 HR_0W ,_ = participant.convertWattsToIntensity (0, pos = ’sr’,

570 T_rest_case=’T_tonometry ’)

571 HR_150W ,_ = participant.convertWattsToIntensity (150, pos = ’sr’,

572 T_rest_case=’T_tonometry ’)

573 HR = [HR_0W , HR_150W]

574 relation = np.polyfit(HR , C, 1)

575

576 return relation [0]* HR_ev + relation [1]

577

578 def linearAvgPhysBasedCShift(I_hrr , Ids):

579 """

580 Use trial data of SV and PP to obtain a personal linear

581 shift of arterial compliance

582 I_hrr = heart rate reserve -based exercise intensity

583 Ids = participant numbers to include

584 Referred to as compliance shift ’d’ in Section 4.3.3.
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585 """

586 delta_phys_150W = 0

587 n = len(Ids)

588 for Id in Ids:

589 participant = Participant(Id)

590

591 C_0W = participant.getPhysicalComplianceAtIntensity (0)

592 C_150W = participant.getPhysicalComplianceAtIntensity (150)

593 delta_phys_150W += (C_150W - C_0W)/C_0W *100

594

595 delta_phys_150W = delta_phys_150W/n

596

597 relation = np.polyfit ([0, 0.6], [0, delta_phys_150W], 1)

598

599 if I_hrr < 0.6:

600 return relation [0]* I_hrr + relation [1]

601 elif I_hrr >0.6:

602 return delta_phys_150W

603

604 #############################################################

605 ################### RESISTANCE SHIFTS #######################

606 #############################################################

607

608 def getPersonalChantlerScalingFacRestistance(Id , param_case):

609 """

610 Calculate a personal scaling factor to obtain the same relative change

611 between rest and 150 W as yielded by the physiological data.

612 Refferred to as resistance shift ’c’ in Section 4.3.3.

613 Returns: the scaling factor.

614 """

615 # An object from the model

616 vewk = VaryingElastance ()

617

618 participant = Participant(Id)

619 HR_150W ,_ = participant.convertWattsToIntensity (150)

620 input_params = read_data.getMeanOutputsRest(Id, data_case = ’Straatman ’,

621 param_case = param_case)

622 basis_params = read_data.getBasisParamsFromCharaceristics(Id)

623 vewk.set_pars (** basis_params)

624 vewk.set_pars (** input_params)

625 vewk.set_parameter_response(’Nor’)
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626 vewk.set_intensity(hrreserve_def , ’hr’)

627 vewk.exercise_shift_hr(HR_150W , hrreserve_def)

628

629 R_sys_rest = vewk.R_sys_ux

630 R_sys_chantler = vewk.R_sys

631 R_phys_0 = participant.getPhysicalResistanceAtIntensity (0, pos = ’sr’)

632 R_phys_150 = participant.getPhysicalResistanceAtIntensity (150, pos = ’sr’)

633 delta_phys = (R_phys_150 -R_phys_0)/R_phys_0

634

635 R_sys_chantler_scaled_150 = delta_phys*R_sys_rest + R_sys_rest

636 diff = (R_sys_chantler_scaled_150 -R_sys_chantler)/R_sys_chantler

637

638 scale_fac = 1+diff

639 return scale_fac

640

641 def averageExponentialResistanceShift(Ids):

642 """"

643 Use data of physical resistance for the participants who

644 showed an exponential trend and return the fit; "popt".

645 Referred to as resistance shift ’d’ in Section 4.3.3.

646 """

647 intensities = [50, 100, 150]

648 delta_phys_all , HR , I_hrr_all = [], [], []

649

650 for Id in Ids:

651 participant = Participant(Id)

652 R_phys_0 = participant.getPhysicalResistanceAtIntensity (0, pos = ’sr’)

653 delta_phys_p , I_hrr_p = [], []

654 for I in intensities:

655 HR_ex , I_hrr = participant.convertWattsToIntensity(I, pos = ’sr’,

656 T_rest_case = ’T_tonometry ’, out_data_case=’Straatman ’)

657 R_phys = participant.getPhysicalResistanceAtIntensity(I, pos = ’sr’)

658 delta_phys = (R_phys - R_phys_0)/R_phys_0 *100

659 if (I_hrr > 0.3 and delta_phys >-40): continue

660 delta_phys_p.append(delta_phys)

661 I_hrr_p.append(I_hrr)

662 delta_phys_all.append(delta_phys)

663 I_hrr_all.append(I_hrr)

664

665 I_hrr_all.extend ([0,0 ,0])

666 delta_phys_all.extend ([0 ,0 ,0])
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667 popt ,_= curve_fit(expFunc , I_hrr_all , delta_phys_all)

668 I_hrr_all.sort()

669

670 return popt

671

672 ######### Shift Vtot - A preliminary experiment #######

673

674 def shift_V_tot(Id , intensity_watts , resparCase):

675 """

676 Discussed in Section 6.4.2

677 """

678 participant = Participant(Id)

679 # Resting parameters

680 input_pars = rd.getResParsMean(Id, data_case=’Straatman ’, param_case =

resparCase)

681 V_tot_res = input_pars[’V_tot’]

682 maxShift = 0.5

683 V_tot_max = (1+ maxShift)*V_tot_res

684 I = [0,1]

685 V = [V_tot_res , V_tot_max]

686 reglin = np.polyfit(I,V,1)

687 HR_ex , I_hrr = participant.convertWattsToIntensity(intensity_watts , pos = ’sr

’,

688 T_rest_case=’T_tonometry ’, out_data_case=’Straatman ’)

689 V_tot_shifted = reglin [1] + I_hrr*reglin [0]

690

691 return V_tot_shifted

A.3.4 Literature-Based Comparisons

Code showing how model predictions of SV, Psys and MVP are compared to literature in this project.

Listing A.4: Model Evaluation Support

1 import matplotlib.pyplot as plt

2 import numpy as np

3

4 """

5 20 & 24 : Definitions of bias and mean absolute error (MAE)

6 32 : Development of C_a by Liang et al. [42]

7 38 : How stroke volume index (SVI) from Chantler et al. [30]
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8 is used as basis of comparison.

9 54 : How ESP from Chantler is used to calculate the deviations

10 between data and an approximate prediction.

11 100 : How relative changes in central venous pressure (CVP)

12 from Yoshiga et al. [43] is used as basis for comparison

13 to MVP for the model.

14 """

15

16 #############################################

17 ##### ERROR CALCULATIONS ####################

18 #############################################

19

20 def bias(x_true , x_pred):

21 dev = x_pred - x_true

22 return dev

23

24 def mean_absolute_error(x_true , x_pred):

25 dev = np.abs(x_pred -x_true)

26 return dev

27

28 #############################################

29 ##### RELATIVE COMPARISONS TO LITERATURE ####

30 #############################################

31

32 ## Liang et al. [42] Development of arterial compliance

33 HR_Liang = [56, 80, 100]

34 HR_Liang = np.asarray(HR_Liang) - HR_Liang [0]*np.ones (3) + HR[0]*np.ones (3)

35 C_Liang = [0.48, 0.33, 0.24]

36 delta_C_Liang = (np.asarray(C_Liang) - np.ones(len(C_Liang))*C_Liang [0])/C_Liang

[0]*100

37

38 ## STROKE VOLUME INDEX FROM CHANTLER ET AL. [30] ##

39

40 plt.figure ()

41 participant = Participant(Id)

42 SV_chantler = participant.SVI

43 HR_pop_chantler = participant.HR_sex_pop

44 SV_0 = SV_data [0] # SV at 0W

45 diff = SV_chantler [0] - SV_0

46 as_SVI = SV_chantler - diff*np.ones(len(SV_chantler))
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47 x_ax_SVI = HR_pop_chantler -HR_pop_chantler [0]*np.ones(len(HR_pop_chantler)) + HR

[0]*np.ones(len(HR_pop_chantler))

48 as_SVI = np.ma.masked_where ((( x_ax_SVI >HR[-1])), as_SVI)

49 plt.plot(x_ax_SVI , as_SVI , label = ’SVI Chantler ’, color = ’k’, linewidth = 4 ,

50 markersize = 15, markeredgewidth = 2.5, linestyle = ’solid’, marker = ’p’

)

51

52 #### ESP -PREDICTIONS FROM CHANTLER ET AL .[30] ####

53

54 def devChantlerESP ():

55 """"

56 Calculate average and individal deviation between

57 scaled Chantler -based ESP predictions and radial pressures

58 Remaining errors (MAE) are calculated similarly.

59 """

60 pos = ’sr’

61 intensities = [0, 50, 100, 150]

62 metrics = dict()

63 metric_func = mean_absolute_error

64

65 for idx , I in enumerate(intensities):

66 metrics[I] = []

67 for Id in Ids:

68 participant = Participant(Id)

69

70 cycle_data = participant.getCycleData(I, pos = pos)

71 if not cycle_data:

72 metrics[I]. append(np.nan)

73 continue

74 param_data = cycle_data[’P_sys’]

75

76 ESP_chantler = participant.ESP

77 epsilon = participant.getBPScalingFactors(pos = pos)

78 eps = epsilon[’SP_eps ’]

79 ESP_chantler_val = ESP_chantler[idx]*(eps /100+1)

80 error = metric_func(np.mean(param_data), ESP_chantler_val)

81 metrics[I]. append(error)

82

83 metrics[’Participant ’] = Ids

84 df = pd.DataFrame.from_dict(metrics)

85 df.set_index(’Participant ’, inplace=True)
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86 df.loc[’mean_i ’] = df.mean()

87

88 df_copy_1 = df

89 df_copy_2 = df

90

91 df[’mean_p ’] = df.mean(numeric_only=True , axis =1)

92 df_copy_1.loc[’stdev_i ’] = df_copy_1.std(numeric_only=True , axis =0)

93 df.loc[’stdev_i ’] = df_copy_1.loc[’stdev_i ’]. tolist ()

94

95 df_copy_2[’stdev_p ’] = df_copy_2.std(numeric_only=True , axis =1)

96 df[’stdev_p ’] = df_copy_2[’stdev_p ’]. tolist ()

97

98 return df

99

100 ########### MVP FROM YOSHIGA ET AL. [43] ###########

101

102 plt.figure ()

103 HR_CVP = [79, 115, 138, 159]

104 CVP = [1.8, 2.7, 3.1, 3.8]

105 delta_CVP = (np.asarray(CVP) - np.ones(len(CVP))*CVP [0])/CVP[0]

106 MVP_0 = 6

107 MVP_row = delta_CVP*MVP_0 + np.ones(len(CVP))*MVP_0

108 x_ax_CVP = np.asarray(HR_CVP)-HR_CVP [0]*np.ones(len(HR_CVP)) + HR[0]*np.ones(len(

HR_CVP))

109 as_MVP_row = np.ma.masked_where ((( x_ax_CVP >HR[-1])), MVP_row)

110 plt.plot(x_ax_CVP , as_MVP_row , label = ’Yoshiga et al.’, marker = ’p’, linewidth

= lw ,

111 color = ’k’, markersize = 15, markeredgewidth = 3.5, linestyle = ’solid’)
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