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SUMMARY:
The brain can be considered a porous medium permeated by different types of fluid, most notably: blood, 
interstitial fluid (ISF) and cerebrospinal fluid (CSF). In recent years, models based on multiple-network 
poroelasticity theory (MPET) have seen an increased popularity for studying the brain. Although some of 
these studies using MPET models have included the effect of the cardiac cycle through cerebral pulsatile 
blood flow, no previous study has related cardiac-induced intracranial pulsatility to clinical measurements of 
pressure, displacements, and flow rates with both mean values and pulsatile amplitudes in mind. Whats 
more, all previous MPET studies have fixed the displacement on the cortical surface, which is a crude 
approximation, as the pulsatile variation in intracranial pressure (ICP) has been shown to depend heavily on 
the expansion and contraction of brain tissue.
 
 In this thesis, a novel method to model intracranial pulsatility is introduced. The method includes a three-
network MPET model of the brain, coupled with a compartment model that represents ICP in the 
subarachnoid space (SAS) and in the cerebral ventricles. The compartment model is non-linear due to the 
exponential intracranial pressure-volume relation caused by the rigid confines of the skull. Furthermore, 
traction boundary conditions are used on the brain surfaces instead of fixed displacements, which allows for 
the motion of brain tissue along with net CSF exchange to directly drive the pulsatile pressures of the 
compartment model. The poroelastic domain of the brain is solved using the finite element framework 
FEniCS, with an implicit Euler scheme in time. 
 
The results of the proposed model are compared and discussed with clinical measurements of pulsatility. The
pressure characteristics of the numerical results agree well with clinical data in all three fluid networks and in 
the compartment model. Displacements and flow rates are also in good agreement with several clinical 
indicators. This thesis demonstrates the possibility of recreating a realistic relation between pressure, 
deformation, and fluid flow using the proposed model. The thesis also illustrates that modeling pulsatility with 
MPET models requires a component that accounts for the non-linear relation between brain expansion, CSF 
flow, and ICP. 

ACCESSIBILITY



RESPONSIBLE  TEACHER: Victorien Prot

SUPERVISOR(S) Victorien Prot

CARRIED OUT AT: Department of Structural Engineering, NTNU and Simula Research 
Laboratory



Abstract

The brain can be considered a porous medium permeated by different types of
fluid, most notably: blood, interstitial fluid (ISF) and cerebrospinal fluid (CSF).
In recent years, models based on multiple-network poroelasticity theory (MPET)
have seen an increased popularity for studying the brain. Although some of these
studies using MPET models have included the effect of the cardiac cycle through
cerebral pulsatile blood flow, no previous study has related cardiac-induced in-
tracranial pulsatility to clinical measurements of pressure, displacements, and
flow rates with both mean values and pulsatile amplitudes in mind. Whats more,
all previous MPET studies have fixed the displacement on the cortical surface,
which is a crude approximation, as the pulsatile variation in intracranial pressure
(ICP) has been shown to depend heavily on the expansion and contraction of brain
tissue.

In this thesis, a novel method to model intracranial pulsatility is introduced. The
method includes a three-network MPET model of the brain, coupled with a com-
partment model that represents ICP in the subarachnoid space (SAS) and in the
cerebral ventricles. The compartment model is non-linear due to the exponential
intracranial pressure-volume relation caused by the rigid confines of the skull.
Furthermore, traction boundary conditions are used on the brain surfaces instead
of fixed displacements, which allows for the motion of brain tissue along with net
CSF exchange to directly drive the pulsatile pressures of the compartment model.
The poroelastic domain of the brain is solved using the finite element framework
FEniCS, with an implicit Euler scheme in time.

The results of the proposed model are compared and discussed with clinical mea-
surements of pulsatility. The pressure characteristics of the numerical results agree
well with clinical data in all three fluid networks and in the compartment model.
Displacements and flow rates are also in good agreement with several clinical indi-
cators. This thesis demonstrates the possibility of recreating the observed relation
between ICP, deformation, and fluid flow using the proposed model. The thesis
also illustrates that modeling pulsatility with MPET models requires a component
that accounts for the non-linear relation between brain expansion, CSF flow, and
ICP.

iii



Acknowledgements

This thesis was written in collaboration with Simula Research Laboratory in Oslo,
who were responsible for the proposed assignment, in addition to providing guid-
ance and computational resources to conduct the experiments in this thesis.

First, I wish to thank Associate Professor Victorien Proot, who has been the main
supervisor of this thesis. Throughout this thesis, he has closely followed the pro-
gression of my work and shared his valuable experience and advice through our
weekly discussion with great enthusiasm. I would also like to express my gratitude
towards Marie Rognes and Vegard Vinje who have been my supervisors at Sim-
ula. Their expertise in modeling the brain environment has been essential for the
completion of this thesis. The many discussions I have had with Vegard regarding
intracranial pulsatility have undoubtedly increased my understanding of the field
and helped me improve the overall quality of the thesis. In addition, I received a
lot of help from Miroslav Kuchta in obtaining a stable, non-singular solution, of
which I am very grateful.

I also would like to thank all my fellow students at NTNU who have made the time
spent in Trondheim truly special. Lastly, I would like to thank my family, friends,
and girlfriend for their continuous support and patience over these last five years.

iv



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Missing Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Scope of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Anatomy of the Brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Brain parenchyma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Intracranial Pulsatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Waste clearance and the Glymphatic Theory . . . . . . . . . . . . . . 10

3 Mathematical Modeling of Brain Pulsatility . . . . . . . . . . . . . . . . . 12
3.1 Poroelastic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Biot’s Consolidation Theory . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Multiple-network Poroelasticity with a Total Pressure For-

mulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Boundary Conditions for the Poroelastic Problem . . . . . . . 15

3.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 Poroelastic Modeling of the Brain . . . . . . . . . . . . . . . . . 17
3.2.2 Compartment Model of CSF Pressure . . . . . . . . . . . . . . 20
3.2.3 Coupled Model of Intracranial Pulsatility . . . . . . . . . . . . 22

4 Physiological Quantities and Material Parameters . . . . . . . . . . . . 25
4.1 Clinical Indicators of Intracranial Pulsatility . . . . . . . . . . . . . . 25
4.2 Material Parameters for the MPET Model . . . . . . . . . . . . . . . . 28
4.3 Material Parameters: Boundary Conditions and Compartment Model

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Variational formulation of the Poroelasticity Problem . . . . . . . . . 35
5.2 Mixed Finite Element Formulation . . . . . . . . . . . . . . . . . . . . . 37
5.3 Coupled Numerical Algorithm . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 40

v



Contents vi

5.5 Meshes and Numerical Accuracy . . . . . . . . . . . . . . . . . . . . . . 42
6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 Pressure Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Displacements and Flow Rates . . . . . . . . . . . . . . . . . . . . . . . 51
6.3 Sensitivity Study on Transfer Rates . . . . . . . . . . . . . . . . . . . . 55

7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.2 Discussion on Pulsatility . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2.1 Pressure Variations . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.2.2 Displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2.3 Flow rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.3 Numerical Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



Figures

2.1 Basic anatomy of the brain with an emphasis on components re-
lated to the cerebrospinal fluid (CSF) system. Figure adopted from[46,
p. 6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Illustration of the pressure profile of blood pressures in the systemic
circulation. Figure adopted from[42] . . . . . . . . . . . . . . . . . . . 6

2.3 Illustration of the exponential relationship between intracranial pres-
sure (ICP) and craniospinal volume. Figure adopted from[2] . . . . 7

2.4 Diagrams of flow curves during a cardiac cycle measured in a healthy
30-year-old woman. The various plots show: Total cerebral arte-
rial flow into the cranium (a) Cerebral venous flow out of the cra-
nium (measured and corrected) (b), Cervical CSF flow (flow into
the cranium from the spinal CSF compartment) and net blood flow
(arterial inflow minus venous outflow) (c), Aqueductal CSF flow,
positive direction into the ventricles (d). Figure adopted from[1] . . 8

2.5 A series of drawings that illustrate intracranial dynamics during the
systolic phase. Figure adopted from[1] . . . . . . . . . . . . . . . . . . 9

2.6 Illustration of the flow of CSF following the glymphatic theory. Fig-
ure adopted from [53] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Schematic illustration of fluid paths in the MPET brain model. The
arrows in the illustration indicate the directionality of the fluid flow. 17

3.2 Illustration of the computational domain of the model. Ω denotes
the poroelastic domain governed by the MPET equations. ΓSAS and
ΓVEN are defined as the boundary surfaces of the SAS and ventricles,
respectively. SC denotes the spinal compartment/spinal-SAS. . . . . 19

3.3 Illustration of the compartment model. Red shows the contribu-
tion to the ICP modeled by Equation (3.14), while blue demon-
strates the contribution to the relative ventricle pressure, modeled
by Equation (3.17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vii



Figures viii

4.1 Illustration of the arterial flow curve used in the model. The flow
curve was extracted manually from the cerebral arterial flow curve
in Figure 2.4. The uniform source term g1 in the model used this
flow curve divided by the total volume of the simulation domain to
ensure an equally large flow of blood. . . . . . . . . . . . . . . . . . . 27

5.1 Overview of the solver used in this thesis. The flowchart illustrates
the order of which the different components are calculated. The
different variables next to the arrows indicate which quantities that
are used to solve the different steps. . . . . . . . . . . . . . . . . . . . 39

5.2 Half cut of the mesh of the idealized sphere geometry. Red indi-
cates the inner boundary of the ventricles, while blue represents
the outer boundary of the SAS. The inner facets and edges are re-
moved in this illustration. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1 Plots of blood network pressures during one cardiac cycle. The plots
illustrates: (a) the maximal and minimal pressure of the arteriole/-
capillary fluid network, (b) the maximal and mean fluid pressure
of the vein network. The minimal vein is not included as it was
constant and equal to the venous back-pressure. Both plots are ex-
tracted from the standard PVS configuration after 44 seconds of
simulation time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Spatial pressure distribution in the blood networks. Plots of the
standard PVS configuration are located on the left (a,c,e) and plots
of the ECS configuration are located on the right (b,d,f). ∆ta rep-
resents the time passed after the beginning of the cardiac cycle. . . 48

6.3 Plot of the intracranial pressure (ICP) during a single cardiac cy-
cle. The mean fluid network pressures (PVS/ECS) are used as a
measure of ICP inside of the brain tissue. The plotted solution was
extracted after 40 seconds of simulation time. . . . . . . . . . . . . . 49

6.4 Spatial pressure distribution in the blood networks. Plots of the
standard PVS configuration are located on the left (a,c,e) and plots
of the ECS configuration are located on the right (b,d,f). ∆ta rep-
resents the time passed after the beginning of the cardiac cycle. . . 50

6.5 Plots of volume expansion for the cortical and the ventricular sur-
faces, extracted over two cardiac cycles. . . . . . . . . . . . . . . . . . 51

6.6 Comparison between the absolute displacement field and the rela-
tive displacement field for the standard PVS configuration at∆ta =
0.44. The domain was radially expanded outwards at all times and
minimized at∆ta = 0.04 which illustrate that the relative displace-
ment field in Equation (4.5) can be used as a direct measure of
tissue motion during the cardiac cycle. . . . . . . . . . . . . . . . . . 52



Figures ix

6.7 Plots of CSF flow rates over the cortical and the ventricular sur-
faces, as well as flow rate through the cerebral aqueduct. The plots
are extracted from the standard PVS configuration and plotted over
two cardiac cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



Tables

3.1 Summary of the boundary conditions for the poroelastic domain Ω. 23
3.2 Summary of the model variations used in this thesis. . . . . . . . . . 24

4.1 Clinical measurements and estimates that were used as indicators
for the model. * estimated since no value parameter was found in
the literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Base parameters used for the MPET component of the combined
model. * values that had to be estimated since no equivalent pa-
rameter was found in literature ** not the same value as in [72],
but same decrease in order relative to the arteriole-venous transfer
coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Model parameters used for the compartment model and the bound-
ary conditions of the MPET domain. ** article specifies values in the
range of 5− 15mmHg for healthy adults . . . . . . . . . . . . . . . . . 34

5.1 Statistics for the different meshes used in the mesh sensitivity study.
The system size is the size of the system matrix. . . . . . . . . . . . . 43

6.1 Flow rates and flow discrepancies between the different fluid net-
works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

x



Chapter 1

Introduction

1.1 Motivation

The dynamic motion of cerebral blood, cerebrospinal fluid (CSF), and brain dis-
placements are characterized by variations in arterial blood pressure induced by
the cardiac cycle. This cardiac-induced pulsatile motion, further referred to as pul-
satility, is also the main source of fluctuations in intracranial pressure (ICP)[1].
Alterations in CSF flow and ICP are relevant for the diagnosis and treatment of
various diseases and injuries to the central nervous system[2]. Some of these in-
clude neurodegenerative diseases[3], hydrocephalus[4, 5], and traumatic brain
injury [6]. For instance, assessing the ICP amplitude have proven effective in se-
lecting shunt surgeries for patients with possible idiopathic normal pressure hy-
drocephalus[7]. Furthermore, a better understanding of the pulsatile flow of CSF
in and around brain tissue can help develop new treatments using targeted drug
delivery[8].

Increasing the understanding of intracranial pulsatility is also relevant when con-
sidering the more recent glymphatic theory. For example, CSF enters the brain
along periarterial spaces according to this theory. However, the pumping mecha-
nism that drives this influx is uncertain. Although respiratory cycling likely influ-
ences flow in perivenous spaces [9] and regulation of ventricular flow rates [10,
11], periarterial CSF flow has been shown to be induced by the cardiac cycle[12,
13]. This pumping mechanism has been hypothesized to not only drive the oscil-
latory motion of CSF, but also net flow into periarterial spaces [14, 15].

In recent decades, computational modeling has proven to be a useful tool for
studying intracranial dynamics[16]. However, several challenges arise when pul-
sating components are included in these computational models. The rapid change
in arterial blood pressure induces large temporal gradients that can lead to numer-
ical instabilities. In addition, models that include pulsatile components require a
more extensive validation process, since both pulsatile and time-averaged quanti-
ties should comply with clinical measurements. As such, developing new modeling

1



Chapter 1: Introduction 2

frameworks that are both stable and easily validated is an important step for fur-
ther studies on intracranial pulsatility.

1.2 Previous Work

Several studies suggest that influx of CSF into the parenchyma occurs along periar-
terial spaces [12, 17, 18]. Observations of faster movement of tracers in perivascu-
lar spaces following increased arterial blood flow indicate that arterial pulsations
are the main driver of periarterial flow[19, 20]. In addition, a bulk flow of in-
terstitial fluid (ISF) has been suggested in the extracellular space (ECS) between
periarterial and perivenous spaces[21]. However, the routes for waste clearance
and outflow are still debated and studies have found varying results. For example,
Carare et al. [22] suggest that solutes drain out of the parenchyma following the
basement membranes of capillaries and arteries in the opposite direction of blood
flow. Iliff et al. [17] demonstrated how a portion of the ISF is drained from the
brain parenchyma along perivenous pathways.

Multiple studies employing numerical modeling have also emerged over the years
to help further differentiate this understanding. Some studies have focused on di-
rect modeling of flow in perivascular spaces. For example, Vinje et al. [23] demon-
strated how a higher rate of transport of tracers along pial periarterial spaces than
perivenous spaces can be explained by the difference in their respective geome-
tries. Daversin-Catty et al. [24] and Kedarasetti et al. [25] studied the mechanisms
that are likely to govern the flow of fluid in perivascular spaces (PVS), using a
moving pulsatile inner boundary for the arterial wall. Kedarasetti et al. [26] also
studied whether arterioal vasodilation can drive convective flow through the ECS.

Other computational studies have focused on modeling fluid transport through-
out the brain parenchyma and in the surrounding fluid-filled cavities. Causemann
et al. [27] used a coupled Biot-Stokes model for poroelastic brain deformation
and CSF flow in the ventricles and the subarachnoid space (SAS) using a patient-
specific geometry. Vardakis et al. [28, 29], Guo et al. [30–32] and Chou et al. [33]
have used multiple-network poroelastic theory (MPET) to model fluid flow in the
parenchyma, following the original work of Tully and Ventikos [34]. MPET stud-
ies on the brain include various fluid pressures to model several communicating
networks such as arteries, veins, capillaries, perivascular spaces, and extracellu-
lar spaces. These studies typically relate variations in macroscale geometry, blood
waveforms, or other patient-specific properties to changes in pressures and flow
rates. MPET models do not account for microscale variations in the geometry of
different types of vessels and fluid spaces, and instead treat the whole brain as a
continuous domain.
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1.3 Missing Work

The use of MPET models has proven promising for studying the interaction be-
tween parenchymal fluids and tissue. Some of these studies have modeled changes
in pressure over hours [33] or even days[34] and have neglected any pulsatile
components. Other studies have included patient-specific pulsating blood flows
[28–31] as boundary conditions for the arterial blood network. These studies usu-
ally report on the resulting pressures and velocities of fluid networks after a peri-
odic steady-state solution is obtained. However, no attempts have been made to
rigorously relate both the pulsatile pressure curve of each network and the time-
averaged pressures to clinically measured values.

One challenge that arises when studying MPET models is the application of appro-
priate boundary conditions[35]. The application of realistic boundary conditions
to these types of mixed system is not straightforward, especially when traction-
type boundary conditions are considered[36]. All previous studies using MPET to
model the brain have used a no-slip condition on the outer surface of the brain.
This is a crude approximation as the mean thickness of the subarachnoid space
(SAS) is about 3 mm[37], while the maximal measured tissue displacement is in
the range of 0.1 − 0.5 mm[38–40]. Applying a traction-based boundary condi-
tion on both the outer brain surface and the ventricular wall could be a better
approach, but it has not yet been attempted.

1.4 Scope of Work

Given the lack of studies that relate MPET models with brain pulsatility, the aim
of this thesis is to investigate to what extent it is possible to obtain an MPET
model that can replicate the pulsatile pressure of multiple fluid networks in the
brain. The MPET model of this study will be limited to modeling only three fluid
networks at a time to focus attention on accurately replicating the pulsating pres-
sures in these three networks. In addition, two significant alterations will be made
from previous MPET studies. The first is that a traction boundary condition will be
used on both the inner ventricular surface and the outer surface that borders the
SAS. The other modification is the use of a non-linear compartment model for the
ICP which will govern the boundary conditions of the MPET model. A non-linear
model is used because of the exponential volume-pressure curve invoked by the
rigid cranium.

The thesis will also present relevant theory with respect to brain physiology and
mathematical methodology. The results of the model will also be presented along
with a discussion of the results. The discussion will assess to what extent the
resulting model replicates clinical measurements of various quantities and will
also compare how the results fit with current studies on the glymphatic system.



Chapter 2

Anatomy of the Brain

This chapter presents general brain anatomy with an emphasis on the biologi-
cal systems that are relevant to this thesis. As such, special attention is paid to
the systems that govern the macroscale mechanical dynamics of the brain. In this
context, the macroscale refers to a scale that describes the dynamics of the whole
brain organ, as well as the interplay with the fluids that surround and interact
with the brain. However, as some processes are inherently multiscale, emphasis
will also be placed on certain microscale processes such as fluid velocities inside
brain tissue and rates of fluid exchange between compartments.

If not stated otherwise, the following theory of brain anatomy is gathered from
the book "Primer on Cerebrovascular Diseases (Second Edition, 2017)"[41] while
general cardiovascular physiology is from the book "Medical Physiology (Third
Edition, 2016)"[42].

2.1 Brain parenchyma

The brain is located inside the cranial cavity and together with the spinal cord
constitutes the central nervous system. The brain parenchyma refers to the func-
tional tissue of the brain. At the cellular level, it is made up largely of two types
of cells: glial cells and neurons. Neurons are the cells responsible for sending
and receiving nerve impulses, and brain activity is made possible by the intercon-
nections of neurons. Glial cells provide support for neurons and help maintain
general homeostasis in the brain. In addition, the brain contains different extra-
cellular fluids that permeate the brain through separated compartments. These
fluids are (most notably) blood plasma, ISF, and CSF. Blood networks penetrate
the parenchyma through arteries, veins, and capillaries and are separated from
brain cells through the blood-brain barrier (BBB). The BBB is a diffusion barrier
made up of endothelial cells, endothelial astrocyte end-feet, and pericytes that
allows certain molecules such as O² and CO² to pass through passive diffusion.
Essential metabolic products are also transported selectively and actively through

4



Chapter 2: Anatomy of the Brain 5

the BBB, while unwanted solutes are excluded[43].

ISF surrounds and bathes cells in the brain parenchyma and drains into the CSF
that fills the larger spaces of the central nervous system[44]. The subarachnoid
space (SAS) is a thin space filled with CSF that lies between the outer surface
of the brain parenchyma and the skull. As the SAS completely encapsulated the
parenchyma, it acts as a protective cushion for the brain. The ventricles of the
brain are CSF-filled cavities located on the inside of the brain in the center of
the cranial cavity. A large portion of the CSF is produced inside the ventricles by
the choroid plexus[45]. The SAS is connected to the ventricles through a series
of canals that lead to the fourth ventricle, which is connected to the rest of the
cerebral ventricles through the cerebral aqueduct. The SAS is also connected to
the spinal SAS, which is located outside the cranial vault. Similarly to how the SAS
surrounds and protects the brain, the spinal SAS is filled with CSF and surrounds
the spinal cord. An illustration of the brain parenchyma, together with the CSF-
filled spaces inside the cranium, can be seen in Figure 2.1

Figure 2.1: Basic anatomy of the brain with an emphasis on components related
to the cerebrospinal fluid (CSF) system. Figure adopted from[46, p. 6]
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Figure 2.2: Illustration of the pressure profile of blood pressures in the systemic
circulation. Figure adopted from[42]

2.2 Intracranial Pulsatility

Fluid flow through the intracranial cavity is characterized by the skull acting as
a rigid container. The Monro-Kellie doctrine [47, 48] hypothesizes that the total
volume of content within this space must remain constant. The hypothesis follows
from the assumption that intracranial fluids and brain tissue within the closed cra-
nial cavity are (nearly) incompressible. Intracranial dynamics is governed by the
demand of volume from the intracranial contents, and increasing one volume will
lead to a decrease in others. These intracranial contents are (most significantly)
arterial blood, arteriole/capillary blood, venous blood, brain tissue, and CSF/ISF,
and their interaction governs the spatial and temporal variation of intracranial
pressure (ICP). Another unique effect caused by the rigid skull is that any vari-
ation in ICP is felt almost instantaneously throughout the cranium. As such, the
pressure waveform of the parenchymal tissue and the surrounding CSF tends to
be similar and independent of spatial location[2]. This does not apply to cerebral
blood networks, which are characterized by the pressure profile of the systemic
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circulation, illustrated in Figure 2.2. This profile is a general characterization of
systemic blood network pressures in close proximity to the heart and does not
directly represent cerebral blood pressures. Throughout this thesis, a horizontal
body posture is assumed such that hydrostatic pressure differences can be ne-
glected. The only significant difference from the pressure profile in Figure 2.2
and cerebral blood pressure is the added resistance of blood flowing to the head.
As such, the systemic blood pressure profile can be thought of as an upper bound
for the equivalent cerebral blood pressures.

The main driver of intracranial pulsatility stems from the cardiac cycle. As the
heart ejects blood during systole, the arterial pressure increases throughout the
body. The volume of blood inside the cranium increases during systole as the arte-
rial inflow exceeds the venous outflow. Subsequently, the increase in blood volume
induces the motion of the CSF and the expansion of the brain parenchyma. An im-
portant mechanism that governs intracranial pulsatility is intracranial compliance,
which describes the ratio of volume change to pressure change inside the cranium.
This compliance consists of four main components, which are arterial compliance,
venous compliance, brain tissue compliance, and spinal sac compliance[2]. As the
brain parenchyma is almost incompressible and the blood and CSF are completely
incompressible, they display limited pressure regulation on their own. The main
source of pressure regulation for ICP is the spinal SAS[1] which communicates
with the ICP by regulating the volume of CSF inside the cranium and providing a
damping mechanism through the compliance of the spinal sac. Mararou et al. [49]
where the first to determine an exponential relationship between ICP and varia-
tion in craniospinal volume content through experiments. This relationship has
since been verified and also quantified for the spinal SAS[50][51]. An illustration
of this exponential relationship is shown in figure 2.3

Figure 2.3: Illustration of the exponential relationship between intracranial pres-
sure (ICP) and craniospinal volume. Figure adopted from[2]
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Baledént [1] measured intracranial blood flow and CSF circulation using Phase-
Contrast Magnetic Resonance Imaging (PC-MRI). These measurements and their
correlations were used to hypothesize a relationship between blood volumes,
brain expansion, and CSF pulsations during cardiac cycling. As these measure-
ments have been used extensively as references for the development of the model
in this thesis, a brief presentation of their hypothesized relationship is presented
in the following paragraphs.

Figure 2.4: Diagrams of flow curves during a cardiac cycle measured in a healthy
30-year-old woman. The various plots show: Total cerebral arterial flow into the
cranium (a) Cerebral venous flow out of the cranium (measured and corrected)
(b), Cervical CSF flow (flow into the cranium from the spinal CSF compartment)
and net blood flow (arterial inflow minus venous outflow) (c), Aqueductal CSF
flow, positive direction into the ventricles (d). Figure adopted from[1]

Figure 2.4 shows the results of the PC-MRI measurements in a 30-year-old woman
representing a normal healthy individual. The x-axis of all four plots shows the
temporal resolution of the images used to generate the measurements (32 over
one cardiac cycle). The plot on the upper left shows the cerebral arterial flow
curve with the systolic phase starting approximately at the 25th image. The curve
shown is the sum of the flow from the four main arteries leading to the cranial
vault. In the graph showing the measurement of cerebral venous outflow, a cor-
rected curve was added as the smaller veins were not measured. The corrected
curve was calculated based on maintaining net zero blood flow over each car-
diac cycle. The plot in the upper right shows two curves: The cervical CSF curve
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shows the flow of CSF that enters the cranial vault from the spinal CSF compart-
ment. The arterio venous curve is the net flow of blood into the cranium (arterial
inflow minus corrected venous outflow) and illustrates that the total volume of
intracranial blood is not constant. The net inflow of blood pulsates in opposite
phase with the outflow of CSF, and the plot demonstrates how the flow volumes
balance each other to maintain a constant total intracranial volume, as postulated
by the Kellie-Monroe doctrine. The plot on the lower left shows the aqueductal
CSF curve, which is the amount of CSF that flows from the fourth ventricle to the
third ventricle. The aqueductal stroke volume can be seen colored in solid green
and is the total flow that enters this channel during a cardiac cycle. This volume
was found to be strongly correlated with the timing of peak venous outflow, indi-
cating a direct relationship between brain expansion and ventricular pulsation.

Figure 2.5 shows a series of drawings that illustrate how the measured flows in-
teract with each other, during the systolic phase of the cardiac cycle. Baledént [1]
gave the following explanation for the series of events pictured in the illustration;
The sudden increase of cerebral blood volume during early systole (image 1) will
rapidly expand the parenchymal volume towards the skull. The low viscous CSF
will then be flushed downward and into the spinal SAS (image 2), which acts as
a pressure dampener, as explained earlier. The increased blood volume then in-
duces a peak in venous outflow, and CSF is subsequently flushed from the fourth
ventricle into the SAS (image 3) and from the third ventricle to the fourth ven-
tricle through the aqueduct (image 4). A transient equilibrium occurs (image 5)
before spinal CSF flows upward to fill the SAS and the cerebral ventricles during
the diastolic phase following a decrease in blood volume and ICP.

Figure 2.5: A series of drawings that illustrate intracranial dynamics during the
systolic phase. Figure adopted from[1]
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2.3 Waste clearance and the Glymphatic Theory

The flow of ISF and CSF plays several important roles in brain homeostasis, such
as providing its cells with suitable ions and nutrients. Another important mech-
anism of the CSF and ISF is the waste clearance system of the brain. The lym-
phatic system handles the removal of metabolic waste in all parts of our body,
except in the brain. The brain lacks lymphatic channels and waste clearance is
still a subject of debate. The more recent glymphatic theory suggests that CSF
is circulated through the brain following perivascular spaces, where it interacts
with ISF in the extracellular space in the brain. Perivascular spaces are fluid-filled
channels that circumferentially surround certain blood vessels and serve multiple
functions[17, 52]. The general theory hypothesizes that CSF is transported into
the brain parenchyma through periarterial spaces surrounding the arteries that
penetrate the parenchyma. The CSF then combines with ISF before it is drained
out through perivenous spaces. Note that the exact pathways and mechanism of
metabolic clearance are disputed, and several different mechanisms are likely to
contribute to this system. Inside the extracellular tissue of the brain, the intersti-
tial solutes are transported by a mix of diffusion and bulk flow. An illustration of
the suggested pathway for waste clearance following the glymphatic theory can
be seen in Figure 2.6.

Figure 2.6: Illustration of the flow of CSF following the glymphatic theory. Figure
adopted from [53]

The figure illustrates how the solutes in the extracellular tissue are transported by
a mix of diffusion and bulk flow. It also shows how smaller nonpolar molecules dif-
fuse more rapidly than larger molecules, while for bulk flow the solutes are cleared
at the same rate independent of molecular size[53]. This waste clearance system
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is hypothesized to be important for several neurodegenerative diseases such as
Alzheimer’s and Parkinson’s. These diseases can be identified by an increase of
protein aggregations in the brain tissue[54]. Although the exact reason for the
accumulation of these aggregations is still not known, it is hypothesized that a
decrease in the metabolic waste clearance function of the brain can contribute to
these diseases[55].



Chapter 3

Mathematical Modeling of Brain
Pulsatility

In this chapter, the mathematical model used in this thesis is presented. The math-
ematical theories for the model are derived, and explanations for how the model
aims to replicate brain pulsatility are given. This thesis combines two type of mod-
els into one coupled model. The coupled model aims to recreate pulsatility in the
cranium as a whole. As explained in the previous chapter, intracranial pulsatility
depends not only on the pulsating dynamics of the brain parenchyma, but also
its interaction with the CSF that fills the cavities surrounding the brain. The pul-
sating behavior of the parenchyma is represented by a set of governing equations
derived from Biot’s theory of poroelasticity[56]. These equations are applied onto
a geometrical realistic representation of the brain and are solved using FEM. The
second part of the combined model represents the CSF-filled cavities surrounding
the brain. These cavities use lumped modeling to represent the pulsating fluid
pressures in the various CSF compartments. The fluid pressures in the lumped
model are driven by the pulsations from the brain parenchyma and essentially act
as boundary conditions for the poroelastic model. As such, details on how these
two models interact and depend on each other will be given. Later in this thesis,
the numerical algorithms used to solve the coupled model will be presented.

3.1 Poroelastic Theory

As mentioned, Biot’s theory is used to model the brain parenchyma. The mathe-
matical derivation of these equations follows.

3.1.1 Biot’s Consolidation Theory

Biot’s three-dimensional consolidation theory describes the settlement of soil un-
der load by a consolidation process[56]. The general theory assumes isotropic

12
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material, linear and reversible strain-stress relationship, small strains, and incom-
pressible fluid contained in the soil material. In addition, the fluid is assumed to
flow through the porous skeleton according to Darcy’s law. Consider an instan-
taneous flux of fluid Vi in a porous medium with a pressure p that describes the
fluid pressure. Darcy’s law governs the porous flow of the liquid

VVV = −K∇p (3.1)

where K = κ
µ f

is the hydraulic conductivity tensor, where κ and µ f represent the
permeability of the porous skeleton and the viscosity of the fluid, respectively. It
is emphasized that throughout this thesis, bold symbols will be used to denote
vectors and tensors. The incompressible fluid entering the surface of a unit of
soil must balance the fluid contained within the unit soil; hence the continuity
equation of liquid transport is described as

θ̇ + div VVV = 0 (3.2)

in which θ describes the increment in liquid volume per unit volume of soil and
is referred to as the variation in liquid content. Using Hooke’s law combined with
the potential energy of a unit of soil, θ can be expressed as

θ = αdiv uuu+ Sp (3.3)

The first term on the right-hand side represents the increase in soil volume, in
which α refers to the Biot-Willis coefficient, which measures the ratio of water
volume that escapes from the total volume if the latter is compressed. Note that
in this equation uuu is a vector that describes the solid displacements of the porous
skeleton. Hence, the divergence of this vector corresponds to the relative varia-
tion of soil volume. The second term represents the amount of liquid that can be
forced into a unit of soil under a pressure p, when the volume of the soil remains
constant. S is the specific storage coefficient and specifies the amount of fluid that
can be stored in a unit of soil. These derivations (and proofs) are quite long and
arduous, and the reader is referred to [56] for further details. Combining Equa-
tion (3.1) and Equation (3.3) with the continuity equation for liquid (3.2) yields
the following equation for mass conservation

div (K∇p) = αdiv u̇uu+ Sṗ (3.4)

To derive the equation that describes the conservation of momentum for Biot’s
consolidation theory, it is first convenient to describe the total stress tensor as
a function of the stresses caused by elastic deformation and the internal liquid
pressure

σσσ = 2µεεε+ (λdiv uuu−αp)III (3.5)

where σσσ is the total Cauchy stress tensor, and εεε is the small-strain tensor defined
as
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εεε(uuu) =
1
2
(∇uuu+ (∇uuu)⊤) (3.6)

The relation between elastic deformation and corresponding stresses follows from
Hooke’s law, in which λ and µ are the standard Lamè parameters for an isotropic
and homogeneous material. Balancing the total stress acting on a small volume
of soil with the external forces acting on the soil body yields the following formu-
lation

− div σσσ = fff (3.7)

which together with Equations (3.4) to (3.6) constitute the governing equations
for the classical Biot’s consolidation problem with the unknowns: uuu and p. In gen-
eral, this model is used to describe the behavior of a single porosity and single
permeability medium such as a non-fractured reservoir with uniform porosity and
permeability[57].

3.1.2 Multiple-network Poroelasticity with a Total Pressure Formula-
tion

Biot’s consolidation theory can be extended to include several separate fluid net-
works, each with its own fluid pressure. For example, fractured rock can be consid-
ered as such a medium, with fractures and intervening porous blocks describing
two separate fluid networks of the system [58]. Given a system with an arbitrary
number of fluid networks M , the force balance of such a system can be formulated
as

− div (2µεεε+ (λdiv uuu−
M
∑

m=1

αmpm)III) = fff (3.8)

where pm and αm represent the fluid pressure and the Biot-Willies coefficient of
fluid network m, respectively. The equation for mass continuity (3.4) is now ex-
tended to M individual equations, so that mass is conserved in each separate net-
work. By rearranging and adding a source term and a transfer term, the equations
take the form:

Sm ṗm +αmdiv u̇uu− div(Km∇pm) + γm = gm (3.9)

where gm is a source term and γm is a transfer term that quantifies the transfer of
liquid out of network m and into other fluid networks. Fluid transfer between net-
works will depend on the pressure difference between the networks. If this transfer
is assumed to be linearly proportional to the pressure difference, the transfer term
takes the following form

γm =
M
∑

i=1

ηm←i(pm − pi)
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in which ηm←i is the transfer coefficient of the fluid that is transferred from net-
work m to network i. Equation (3.8) and Equation (3.9) originate from the mul-
tiple network poroelastic theory (MPET) and describe the deformation and flow
of liquid in a linearly elastic porous solid with multiple fluid networks permeating
the solid matrix. In more recent work, this formulation has been modified to alle-
viate instability for solid materials that are nearly incompressible [59] [60]. This
formulation introduces an additional total pressure variable p0, in addition to the
fluid pressures for each segregated fluid network. The total pressure is defined as

p0 = λdiv uuu−
M
∑

m=1

αmpm (3.10)

By further introducing α0 = 1 to allow for the short-hand notation of the sum
of pressures as α · p =

∑M
m=0αmpm, and combining Equations (3.8) to (3.10), a

general system of MPET equations is defined as

−div (2µεεε)−∇p0 = fff , (3.11a)

div uuu−λ−1α · p = 0 (3.11b)

Sm ṗm +αmλ
−1α · ṗ− div(Km∇pm) + γm = gm m= 1, 2, ..., M (3.11c)

3.1.3 Boundary Conditions for the Poroelastic Problem

The equations in (3.11) require a set of boundary conditions to close the problem.
These are usually represented in the form of Dirichlet boundary conditions, Neu-
mann boundary conditions or Robin boundary condition, which is a mixture of the
two former conditions[61]. A brief explanation of the different types of boundary
condition used in the thesis and their physical interpretation follows.

For the momentum equation in (3.11a), a common option is to set the displace-
ments directly on the boundary using a Dirichlet condition. Another common op-
tion is to prescribe traction onto the boundary through a Neumann condition.
In this system, the Neumann condition is a natural boundary condition in the
momentum equation, since the prescribing term occurs naturally in the weak for-
mulation of the problem[62]. As an example, the poroelastic domain is imagined
to be encapsulated in some stationary fluid with the fluid pressure p f acting on
the domain boundary. A traction boundary condition for the momentum can then
be defined as

σσσ · nnn= p f nnn on ∂Ω

with nnn being the normal unit vector on the boundary surface, and the stress tensor
now defined as: σσσ = 2µε(uuu) + p0III .
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The boundary conditions applied to the fluid networks in Equation (3.11c) de-
termine the amount and direction of fluid flowing over the boundary, according
to Darcy’s law. If the fluid pressure is applied directly with a Dirichlet condition,
the fluid flow is determined indirectly by the resulting pressure gradient at the
boundary. If a natural Neumann condition is used instead, the pressure gradient
is specified directly, which is equivalent to directly specifying the flow of fluid
on the boundary. The poroelastic domain is again imagined to be encapsulated
in some fluid. A natural assumption for fluid exchange over the boundary is to
assume that the flow is proportional to the difference in pressure between the
surrounding fluid p f and the pressure on the boundary of the respective fluid
network. Such an assumption can be implemented by using a Robin boundary
condition defined as

−Km∇pm · nnn= βm(pm − p f ) on ∂Ω m= 1, 2, ..., M

in which βm ≥ 0 describes the boundary permeability of fluid network m. As
mentioned above, the Robin condition constitutes a mixture of Dirichlet- and
Neumann-type boundary conditions. This can be exemplified by assessing the ex-
treme values of the boundary permeability. In the case when βm is equal to zero,
the boundary is completely impermeable, and the boundary condition for the fluid
pressure reduces to a Neumann condition with zero flux. In the other extreme
case, when the boundary permeability approaches infinity, a Dirichlet boundary
condition emerges. This follows as the Neumann boundary condition on the left-
hand side becomes comparably small and vanishes such that the fluid network
pressure equals the boundary pressure.

Singular System Applied forces can induce domain movement, and prescribing
some displacements will ensure that the object is anchored in place and only al-
lowed to deform relative to itself. However, applying such displacements relies on
partial knowledge of the problem solution, which may not always be available. In
the case where pure Neumann boundary conditions are applied and no displace-
ments are prescribed in the domain, the problem can become singular unless both
the net force and the net torque acting on the body are zero[63]. If the net force
and torque are non-zero, the problem will have infinite possible solutions, owing
to the rigid body motion (RMB) of the domain. For many types of analysis, RBM
is undesirable and techniques to remove RBM must be applied to obtain a non-
singular system. One such technique uses Lagrange multipliers that ensure that
the displacements of the system are orthogonal to the function space of the RBM.
This technique was applied to the model in this thesis, which was necessary since
the pure Neumann boundary conditions were used for the momentum equation.
The reader is referred to the articles by Bochev[64] et al. and Kuchta[63] et al. for
further theoretical details on how this method is implemented for linear elasticity
problems.
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3.2 Mathematical Model

To formulate a model that fully represents the dynamics of intracranial pulsatility,
the problem is divided into two separate components. The first component is the
brain parenchyma, modeled as a poroelastic domain described by a set of MPET
equations. The second component is the CSF-filled cavities that encapsulate and
exchange CSF with the brain parenchyma, represented by a lumped model. The
physical nature of the two components will be explained and a coupling between
the two components will be proposed.

3.2.1 Poroelastic Modeling of the Brain

Figure 3.1: Schematic illustration of fluid paths in the MPET brain model. The
arrows in the illustration indicate the directionality of the fluid flow.

The MPET system of equations in (3.11) is used to model the interaction of fluid
flow and displacements of parenchymal tissue in the brain. The model includes
three different fluid networks (M = 3); one network that represents blood flow in
a range of smaller arterioles to larger capillary blood vessels (m= 1), one network
that represents blood flow in the smaller veins (m = 2), and one network that
models the flow of CSF/ISF in the PVS or the ECS, depending on the test case
(m = 3). The arteries are not included as a separate fluid network in this model.
Instead, the pressure and flow generated by arterial pulsations are represented
as a source term (g1) that is applied directly to the arteriole network. Arteriole
and capillary blood vessels are assumed to be evenly distributed throughout the
brain parenchyma compared to the larger arteries, which are located primarily
on the outer surface of the brain [41]. Therefore, the pulsating source term is
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applied uniformly throughout the brain. This source term is the only driver of
pulsatility in the model, and all deformation and pressure variation will be driven
by this term. From the arteriole network, blood can flow directly into the vein
network, or some portion of the fluid contained in the blood can be transferred
to extracellular/perivascular spaces. In addition, fluid is transferred between the
vein network and PVS/ECS network, which is necessary to maintain the mass
balance of the system. The transfer of liquid between the various compartments
is quantified by the transfer terms γ1, γ2 and γ3, which are calculated as

γ1 = γ12 + γ13 (3.12a)

γ2 = γ21 + γ23 (3.12b)

γ3 = γ31 + γ32 (3.12c)

γi j = ηi← j(pi − p j) (3.12d)

The fluid accumulated in the arteriole network is transported out of the brain do-
main through the vein and the ECS/PVS network. An illustration of fluid transport
in the model is shown in Figure 3.1
The figure illustrates how excess fluid in the vein network leaves the control vol-
ume of the domain, while excess fluid in the ECS/PVS network is dynamically
exchanged with CSF in the cavities surrounding the brain. With the source term
and the transfer terms defined and assuming that there are no body forces (fff = 0),
the governing equations for the 3-network MPET system are:

−div (2µεεε)−∇p0 = 0, (3.13a)

div uuu−λ−1α · p = 0 (3.13b)

S1 ṗ1 +α1λ
−1α · ṗ− div(K1∇p1) = g1 − γ1 (3.13c)

S2 ṗ2 +α2λ
−1α · ṗ− div(K2∇p2) = −γ2 (3.13d)

S3 ṗ3 +α3λ
−1α · ṗ− div(K3∇p3) = −γ3 (3.13e)

Boundary conditions for the MPET domain To define a set of boundary condi-
tions for the system in (3.13) the brain domain is further defined to have two sepa-
rate boundaries; one outer boundary adjacent to the SAS and one inner boundary
bordering the ventricles. An illustration of the model and its various domains and
boundaries is shown in Figure 3.2. Ω represents the poroelastic domain with its
boundary decomposed into two parts: ∂Ω= ΓSAS ∪ ΓVEN.
The CSF that resides in the SAS and ventricles is assumed to be relatively sta-
tionary such that the stresses exerted on the brain surfaces are caused only by
the hydrostatic pressure of the fluid. In other words, any viscous forces exerted
on the brain from fluid movement are neglected. The fluid that resides in the
SAS and the ventricles is represented by two separate fluid pressures, PSAS(t) and
PVEN(t). These pressures are assumed to have no spatial variance within their
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Figure 3.2: Illustration of the computational domain of the model. Ω denotes the
poroelastic domain governed by the MPET equations. ΓSAS and ΓVEN are defined
as the boundary surfaces of the SAS and ventricles, respectively. SC denotes the
spinal compartment/spinal-SAS.

own compartments but can vary relative to each other. The following pure Neu-
mann boundary condition is prescribed for the momentum in Equation (3.13a),
with each of the two fluid pressures exhibiting normal stress on their respective
surfaces

σσσ · nnn= PSASnnn, on ΓSAS, σσσ · nnn= PVENnnn, on ΓVEN

As discussed, defining such a boundary condition for the momentum equation will
lead to a singular system. Although it could be possible to fix the brain parenchyma
in some locations to avoid singularities, choosing the optimal location is not triv-
ial. Previous clinical studies using MRI suggest that some rigid motion of the brain
occurs [65] and that small tissue displacements are present throughout the brain
[40].

For the arteriole fluid network in Equation (3.13c), it is assumed that all fluid is
transferred to the other fluid networks. Subsequently, no fluid is allowed to leave
the brain domain over the arteriole network boundary, and therefore a zero-flux
Neumann condition is specified on both boundaries as
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−K1∇p1 · nnn= 0 on ΓSAS, −K1∇p1 · nnn= 0 on ΓVEN

For the vein network, it is assumed that the fluid only leaves the domain on the
outer SAS surface, where most of the larger cerebral veins are located. With a
closed ventricular surface, the boundary conditions for the vein network are spec-
ified as

p2 = PVEIN on ΓSAS, −K2∇p2 · nnn= 0 on ΓVEN

with PVEIN being a constant back pressure of the veins. This lower back pressure
is included to induce an outflow of the system in order to maintain mass conser-
vation of the system. For the last network, the boundary conditions are specified
on the basis of the test case. For a PVS network, it is assumed that the CSF sur-
rounding the brain is in direct contact with the CSF in the network. The following
Dirichlet boundary conditions are then specified as

p3 = PSAS on ΓSAS, p3 = PVEN on ΓVEN

If an ECS network is specified, it is assumed that fluid exchange between the
network and the surrounding CSF faces substantial flow resistance. In this case,
the Robin boundary condition is utilized as

−K3∇p3 · nnn= β(p3 − PSAS) on ΓSAS, −K3∇p3 · nnn= β(p3 − PVEN) on ΓVEN

with β describing the boundary permeability of the ECS network.

3.2.2 Compartment Model of CSF Pressure

The boundary conditions of the MPET brain model are specified by the pressure
of the CSF surrounding the brain. Changes in CSF pressure are instantaneous,
almost[11] spatially invariant, and close to the ICP curve. As such, it is further
assumed that the CSF pressure in the SAS is equivalent to the ICP. To model the
ICP, the exponential pressure-volume relation presented in Marmarou et al. [49]
is used. This relation is formulated as

ICP(t) = P0 · 10∆V (t)/PVI (3.14)

in which P0 defines some baseline ICP, ∆V describes the change in intracranial
volume, and PVI is the intracranial pressure-volume index. In contrast to compli-
ance or elastance, PVI describes the relationship between craniospinal volume and
pressure throughout the entire physiological ICP range. The exponential relation-
ship in Equation (3.14) will ensure that, for large changes in intracranial volume,
the relative change in ICP will be small. In this model, the change in intracranial
volume is defined as
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∆V (t) =

∫ t

0

�

QSAS(t) + V̇SAS(t)−QAQ(t)
�

d t (3.15)

with QSAS(t) being the rate of CSF exchanged directly between the brain parenchyma
and the SAS, and QAQ(t) the rate of CSF that flows through the cerebral aqueduct,
with a positive direction pointing into the ventricles. V̇SAS represents the time
derivative of the relative deformation of the SAS surface. As mentioned above,
the ICP represents the pressure of the CSF in the SAS, which is in direct contact
with the surface of the parenchyma. As this surface expands, CSF is displaced into
the spinal compartment and the ICP is increased simultaneously. However, the
ventricle surface is not in direct contact with this pressure, but is indirectly con-
nected through the cerebral aqueduct, which is represented by the term QAQ in
Equation (3.15). To model this term, the ventricular intracranial pressure (ICPV)
is introduced as

ICPV= ICP+ PR (3.16)

in which PR is the ventricular pressure relative to the ICP. For the expression in
Equation (3.16), as well as for the volume expression in Equation (3.15), the fol-
lowing assumptions are made: (1) ICP variations are felt instantaneously through-
out the cranium[2], and therefore the ICPV should have a waveform and magni-
tude similar to the ICP, (2) the spatial gradients of the ICP are small[2, 11] and
therefore the magnitude of PR is small compared to the ICP, (3) the contribution
of the cerebral ventricles to the overall regulation of ICP is low compared to the
cervical flow of CSF, and (4) the pulsatile motion of CSF through the cerebral
aqueduct is driven by surface expansion and the exchange of CSF over the ven-
tricular surface. Assumptions (1), (2) and (3) argue that the expression of ICPV
in Equation (3.16) is valid. The last assumption (4) is used to relate the relative
pressure PR directly to the pulsatile motion of the ventricle surface. This relative
pressure is modeled through a 2-element linear Windkessel model as

C
dPR

d t
= V̇V EN +QV EN +QAQ (3.17)

with C being the additional compliance in the ventricles. RAQ is the resistance
of the cerebral aqueduct, V̇VEN is the time derivative of the deformation of the
ventricular surface, and QVEN(t) is the rate of CSF exchanged over the ventricular
surface. Lastly, the aqueductal flow rate is calculated as

QAQ =
ICP− ICPV

RAQ
= −

PR

RAQ
(3.18)

with its pulsating flow acting as a direct coupling between the pressure in the SAS
and the ventricles.
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To summarize the compartment model, the ICP defined in Equation (3.14) and the
relative ventricular pressure PR defined in Equation (3.17) are included to facili-
tate two main effects. The ICP is included to capture the larger temporal variance
induced by cardiac cycles, while the relative ventricular pressure is included to ac-
count for any spatial variance in the pressure inside the cranium. An illustration
of the compartment model defined by Equations (3.14) to (3.17) can be seen in
Figure 3.3

Figure 3.3: Illustration of the compartment model. Red shows the contribution
to the ICP modeled by Equation (3.14), while blue demonstrates the contribution
to the relative ventricle pressure, modeled by Equation (3.17)

3.2.3 Coupled Model of Intracranial Pulsatility

A brief summary of the combined model follows, and the coupling terms between
the MPET model and the compartment model are presented. In addition, the dif-
ferent model configurations used in this thesis are summarized.

The poroelastic model of the brain described by the system of equations in (3.13)
is coupled with the compartment model through its boundary conditions summa-
rized in Table 3.1.
The back pressure of the vein network PVEIN is constant, while the pressures in the
SAS and ventricles are governed by the compartment model. These pressures are
further defined as
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Table 3.1: Summary of the boundary conditions for the poroelastic domain Ω.

Equation ΓSAS, SAS surface ΓVEN, ventricle surface

Momentum σσσ · nnn= PSASnnn σσσ · nnn= PVENnnn
Network 1 −K1∇p1 · nnn= 0 −K1∇p1 · nnn= 0
Network 2 p2 = PVEIN −K2∇p2 · nnn= 0

Network 3 (PVS) p3 = PSAS p3 = PVEN
Network 3 (ECS) −K3∇p3 · nnn= β(p3 − PSAS) −K3∇p3 · nnn= β(p3 − PVEN)

PSAS := ICP

PVEN := ICPV

with the ICP and the ICPV defined in Equation (3.14) and Equation (3.16) re-
spectively. Several of the terms governing these pressures are again dependent on
physical quantities calculated from the poroelastic model. The time derivatives of
the expansion and contraction of the brain surface are defined as

V̇SAS =
d
d t

∫

ΓSAS

uuu · nnnds (3.19)

V̇VEN =
d
d t

∫

ΓVEN

uuu · nnnds (3.20)

with the boundaries ΓSAS and ΓVEN for integrals defined in Figure 3.2. Furthermore,
the exchange rates of CSF between the brain and CSF-filled cavities are defined
as

QSAS =

∫

ΓVEN

−K3∇p3 · nnnds (3.21)

QVEN =

∫

ΓVEN

−K3∇p3 · nnnds (3.22)

The integrals in Equations (3.19) to (3.22), along with the boundary conditions
in Table 3.1 demonstrate how the poroelastic model and the compartment model
are combined into one coupled model for intracranial pulsatility.

Model variations In this thesis, three different model variations are used and
compared. Variations in the configurations of the PVS and ECS models have al-
ready been described in terms of boundary conditions, and it is also noted that
the two configurations will have significantly different values for hydraulic con-
ductivity K3. The PVS configuration is also noted to be the standard configuration
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Table 3.2: Summary of the model variations used in this thesis.

Configuration Description

Standard (PVS) configuration PVS network and boundary conditions
Coupled with the compartment model

ECS configuration ECS network and boundary conditions
Coupled with the compartment model

Standalone (PVS) configuration PVS network and boundary conditions
Uses a constant ICP= P0

on which the main discussion of results will be based. The third configuration was
included to test the dependence of the compartment model and to see whether
coupling this model to the MPET model is necessary to describe intracranial pul-
satility. As such, the third configuration use a constant ICP on the boundaries of
the MPET model and excludes the compartment model altogether. The constant
ICP is set equal to the value of the baseline pressure P0. This configuration will be
noted as the standalone configuration as it depends only on the MPET system of
equations. A summary of these different configurations is listed in Table 3.2



Chapter 4

Physiological Quantities and
Material Parameters

This chapter presents the various physical quantities and material parameters that
were used to obtain a model that exhibited clinically realistic behavior. As some of
the material parameters are highly uncertain or completely unknown, this chapter
also explains how these parameters were determined. Some of these uncertain
parameters were chosen on the basis of previous work, while others had to be
determined through estimates and testing. In addition, the effects of the various
parameters on the overall combined model are discussed.

4.1 Clinical Indicators of Intracranial Pulsatility

With a mathematical model describing intracranial dynamics defined in the pre-
vious chapter, a set of physiological indicators was needed. These indicators were
primarily based on clinical measurements, but in some cases assumptions had to
be made. The indicators served two main purposes; they acted as reference values
that the mathematical model aimed to replicate, and they were used to estimate
several of the model parameters. An overview of these indicators can be found
in Table 4.1. The upper estimate for arteriole pulse pressure was extracted from
Figure 2.2 as no exact value of this pressure variation was found. The same mean
pressure and pulse pressure were used for the ICP and for the pressures in the
PVS/ECS, as several studies have indicated that these pressures are largely simi-
lar [66, 67].

The clinical indicators in Table 4.1 govern the targeted behavior of the model. In
addition, a total arterial blood flow into the brain must be established. This flow
was extracted manually from the cerebral arterial flow curve in Figure 2.4, with
the assumption that the cardiac cycle lasts one second in total. As such, a steady
heart rate of 60 bpm was assumed throughout all simulations in this thesis. A
graph illustrating this extracted arterial inflow can be seen in Figure 4.1, with the

25
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Table 4.1: Clinical measurements and estimates that were used as indicators for
the model.
* estimated since no value parameter was found in the literature

Parameter Value Unit Reference

Mean arteriole pressure 50 mmHg [42]
Mean venous pressure 8.4− 10 mmHg [42, 68]

Mean ICP pressure 10 mmHg [69]
Arteriole-capillary pulse pressure 4− 10 mmHg [42, 70]

Venous pulse pressure 0− 0.1 mmHg *
ICP variation (temporal) 3.5− 7 mmHg [2, 11]

Peak transmantle pressure gradient 1.46± 0.74 mmHg
m [11]

Peak displacement of tissue 0.1− 0.5 mm [38–40]
Aqueductal stroke volume 48± 223 µL [1]
Peak aqueduct flow-rate 150 µL

s [1]

same temporal resolution as used in the simulations.

Quantities of Interest It is useful to have a way to compare the clinical indica-
tors in Table 4.1 with the results of the simulations. Additionally, it is important to
have a set of metrics that can be discussed and compared with results from other
literature. Therefore, a set of expressions is established to describe the different
quantities of interest. It should be noted that all the time-averaged values in this
thesis use time intervals that start and end at the same point in the cardiac cycle.
The pressures in the fluid networks are an important quantity for the verification
of the model, as the range of values for these pressures is relatively well known.
The spatially averaged fluid pressure in each network is defined as

pi,avg(t) =
1
V

∫

Ω

pi(t, x)d x (4.1)

with V being the volume of the domain Ω. Furthermore, pi,max(t) and pi,min(t)
are defined as the maximal and minimal network pressures of the domain at time
t, respectively. The pressures from the compartment model do not need special
definitions, as they are zero-dimensional. The fluid velocity in the brain tissue
also needs appropriate definitions. It is important to differentiate between the
bulk flow of fluid described by the Darcy velocity in Equation (3.1), and the actual
fluid velocities in the tissue. The average bulk flow velocity in network i is defined
as

qi(t) =
1
V

∫

Ω

|| − Ki∇pi(t, x)||2d x (4.2)
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Figure 4.1: Illustration of the arterial flow curve used in the model. The flow
curve was extracted manually from the cerebral arterial flow curve in Figure 2.4.
The uniform source term g1 in the model used this flow curve divided by the total
volume of the simulation domain to ensure an equally large flow of blood.

where the expression inside the Euclidean norm is the Darcy velocity. The actual
velocity of the fluid inside the tissue is likely to vary considerably depending on
where the velocity is measured. Although an exact measure of such velocities is not
possible in the current model, it is possible to give an estimate using by the porosity
φi . Porosity is defined as the fraction of the volume of the fluid network compared
to the total volume of brain tissue. This means that a lower porosity results in
a higher fluid velocity because the bulk flow through the tissue is concentrated
through a smaller volume. The estimate of the average fluid velocity in network i
is specified as

vi =
qi

φi
(4.3)

The volume change and displacements of brain tissue are also of interest. The
time derivatives of the volume change of the brain surfaces were defined in the
previous chapter in Equations (3.19) and (3.20). Similarly, the relative change in
surface volume is defined as

dV (t) =

∫

Γ

uuu(t, x) · nnnds−
1
∆t

∫ ∆t ∫

Γ

uuu(t, x) · nnndsd t (4.4)

with Γ denoting the surface boundary and∆t denoting a time interval from which
a time-averaged surface expansion is calculated. Subtracting the average surface
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expansion ensures that the relative surface expansion oscillates around zero in-
stead of some arbitrary value. One reason for doing this is to have a direct mea-
sure of the variation in volume that the brain displaces. Another reason is that
the arterial influx of blood will expand the volume of the brain before the ICP is
raised sufficiently to resist further expansion. This net expansion generates large
displacements that are not comparable to those in clinical studies, as these stud-
ies measure tissue displacements based on the relative motion of brain tissue[39,
71]. To estimate a displacement field comparable to those found in clinical stud-
ies, the displacements at the point in the cardiac cycle when total blood volume is
minimized is obtained. This displacement field is then subtracted from the abso-
lute displacement field so that the relative motion of the tissue can be calculated.
The relative field of displacement, representing the pulsatile motion of tissue is
defined as

Ur(x) = ||uuu(x , t)−uuu(x , tr)|| (4.5)

for all x ∈ Ω with tr representing the point in the cardiac cycle at which the total
blood volume is minimized.

4.2 Material Parameters for the MPET Model

An overview of the material parameters used in the MPET model for the brain
parenchyma can be found in Table 4.2. Parameters such as density and viscosity
do not vary significantly and are easily obtained. Other parameters are more un-
certain and can vary by several orders of magnitude in different studies. These
parameters values were typically chosen as a midrange value based on several
studies or experimentally chosen based on replicating clinical measurements.

Biot-Willis Coefficient Recall the expression for the total pressure in Equation (3.10).
The expression is determined by the volumetric strain in the solid skeleton, as well
as by a summation of all fluid pressures. Each fluid pressure is multiplied by an
α known as the Biot-Willis coefficient. The α specifies how changes in fluid pres-
sures transfer to stress in the solid matrix, and in the case of multiple network
modeling, each individual α can be thought of as a weighting of how much each
pore pressure contributes to normal stress in the porous matrix[80]. In the case of
a single fluid network with an incompressible solid matrix, the Biot-Willis coeffi-
cient will have a value of α= 1[81]. This value has been used in previous studies
on the brain for single network models[82] as brain tissue is generally considered
incompressible[83].

When modeling several fluid networks in the brain, the α for each individual
network is highly uncertain. There are no previous clinical studies that relate
these coefficients to the mechanical behavior of the brain, and the coefficients
will change depending on how many networks are included in any given model.
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Table 4.2: Base parameters used for the MPET component of the combined
model.
* values that had to be estimated since no equivalent parameter was found in
literature
** not the same value as in [72], but same decrease in order relative to the
arteriole-venous transfer coefficient

Parameter Value Unit Reference

ν, Poisson rate 0.49 - [73]
E, Young Modulus 1.5 kPa [43]

µ1,2, dynamic viscosity, blood 2.67 · 10−3 Pa · s [31]
µ3, dynamic viscosity, CSF 6.97 · 10−4 Pa · s [24]
κ1, arteriole permeability 10−10 m2 [31]
κ2, venous permeability 10−10 m2 [31]
κ3,p, permeability, PVS 10−10 m2 [72]
κ3,e, permeability, ECS 10−14 m2 [74] [75]

S1, arteriole storage coefficient 4.47 · 10−7 Pa−1 [33]
S2, venous storage coefficient 10−4 Pa−1 *

S3, perivascular storage coefficient 4.47 · 10−7 Pa−1 [33]
α1, arteriole Biot-Willis coefficient 0.6 - *
α2, venous Biot-Willis coefficient 0.02 - *

α3, perivascular Biot-Willis coefficient 0.38 - *
η2←1, arteriole-venous transfer 1.75 · 10−6 Pa−1s−1 *

η2←3, arteriole-paravascular transfer 1.75 · 10−7 Pa−1s−1 **[72]
η2←3, perivascular-venous transfer 7.35 · 10−6 Pa−1s−1 *

φ1, arteriole porosity 2.31 · 10−3 − 1.09 · 10−2 - [76, 77]
φ2, vein porosity 1.09 · 10−2 − 2.3 · 10−2 - [76, 77]
φ3,p, PVS porosity 1.54 · 10−3 − 4.04 · 10−3 - [78]
φ3,e, ECS porosity 0.14− 0.23 - [79]
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A general requirement for the coefficients is that: φ ≤ α j ≤ 1 for each individual
fluid network j, where φ is the total porosity of the porous matrix[81, 84]. Fur-
thermore, it is possible to demonstrate that the combined Biot-Willis coefficient
of a porous material with multiple fluid networks can be written as a sum of the
α of each individual network, if the material is assumed to be homogeneous on
some larger scale[85]. Several more recent studies using MPET to model the brain
parenchyma have used this relation to further constrain the combined Biot-Willis
coefficient as: φ ≤

∑M
j=1α j ≤ 1[28, 29, 31]. With the assumption that the com-

bined Biot-Willis coefficient should be equal to one for an incompressible brain,
the following constraint was used in this thesis

M
∑

j=1

α j = 1 (4.6)

for M = 3 total fluid networks. The contribution of each individual α j to this
summation had to be estimated based on some qualitative metric. Sobey & Wirth
[86] showed that decreasing the Biot-Willis coefficient of the brain is equivalent to
increasing its overall compliance. A decrease in α will decrease the load bearing
effect of the parenchymal fluids, leading to an increase in solid strains, as the solid
matrix must absorb a greater portion of the acting stress. This correlation between
compliance and the Biot-Willis coefficient was used as a basis for estimating α j
of each individual network in this thesis. Their size was estimated based on their
assumed compliance, with low-compliant networks having largerα and vice versa.
Veins are characterized by higher compliance that dampens pulsatile blood flow
compared to the arteries and arterioles. Veins are approximately 30 times more
compliant than arteries[87, 88]. This ratio was used to estimate the difference
between α1 and α2 for the arteriole and vein networks, respectively. Although this
ratio characterizes the arteries and not the arterioles, it is argued that since the
arteries are not represented as a network on its own, the arteriole network should
aim to capture some of the mechanical contribution from the larger arteries. For
the PVS/ECS network, compliance is highly uncertain and α3 was chosen as a mid-
range value between α1 and α2 while simultaneously maintaining the constraint
in Equation (4.6).

Storage Capacity The storage capacity of each fluid network is determined by
the storage coefficient S j . For a poroelastic brain model with a single fluid network
representing ISF, the storage coefficient is the amount of ISF that can be forced
into a fixed volume of parenchymal tissue under a unit increase in pore pressure
[89, 90]. The storage coefficients describes both the storage capacity and the vari-
ation in pressure in each individual network. Therefore, it should be noted that
the compliance of each network depends not only on the Biot-Willis coefficient
but also on the storage coefficients. Unlike the Biot-Willis coefficient, storage ca-
pacity does not directly affect solid strains of the solid matrix. However, it does so
indirectly, as small values for S lead to large temporal variations in pressure and
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vice versa.

Although veins are more compliant than arteries and arterioles, their overall con-
tribution to the volume change of parenchymal tissue is not necessarily greater
due to small pressure pulsations. Veins contain approximately 70 % of total blood
volume and are associated with small changes in venous pressure[91]. Large
blood volume and small changes in pressure can be obtained by a (relatively) large
storage coefficient. While estimates of this coefficient exist from previous MPET
studies, preliminary tests showed that most of these previous studies underesti-
mated its size when including pulsatility. These estimates yielded large temporal
variations in venous pressure, which were not captured in these earlier studies,
since pulsatility was not included. In this thesis, the coefficient was estimated on
the basis of obtaining negligible small temporal pressure variations.

Similarly, the storage coefficients for the arteriole network and PVS/ECS had to be
much smaller than for the venous network in order to facilitate small fluid volumes
and large instantaneous variations in pressure. The estimate of these coefficients
from Chou et al. [33] was found to be low enough to induce sufficiently high
pressure variations, corresponding to the pulse pressures listed in Table 4.1.

MPET Transfer Coefficients The transfer coefficients ηi← j in the linear transfer
terms in the MPET equations quantifies the resistance of flow from one network
to another. In the case of modeling fluid networks in biological tissue, these coeffi-
cients must often be estimated based on the specific characteristics of the modeled
networks. As explained in the previous chapter, it is assumed that all fluid enter-
ing the arteriole network is transferred to the venous network or to the PVS and
is not allowed to exit through other routes. The following relation was used to
estimate the transfer coefficient between the arteriole and the venous network

η2←1 =
G1

∆P12V

in which G1 is the mean arterial flow during each cardiac cycle, V is the volume of
the modeled brain, and ∆P12 is the pressure drop between the arteriole and the
venous network. This relation follows directly by applying mass conservation to
the MPET system when a zero flux boundary condition is specified for the arteri-
ole network and assuming that fluid transfer from the arteriole to the perivascular
network is negligible compared to blood flow. The assumed pressure drop was esti-
mated as the difference between the mean arteriole and the (lower) mean venous
pressure in Table 4.1. The mean arterial blood flow into the arteriole network was
specified to be: 688 mL

min for a healthy individual according to Baledént [1]. With
the modeled brain having a total volume of 1173.67mL, the resulting transfer co-
efficient was estimated.
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No clinical estimate of the transfer coefficient between the arteriole network and
the PVS was found. Therefore, it was specified to be one order of magnitude lower
than the arteriole to venous transfer coefficient, same as in one of the earlier MPET
studies on pulsatility[72]. That study did not include any transfer term between
the PVS and the venous network, which was needed in this model. Through ar-
terial bloodflow, CSF is accumulated in the PVS and the CSF-filled cavities in the
compartment model. To maintain a sufficient pressure drop between the arteriole
network and the PVS network, accumulated CSF must be drained through some
additional route. If not, the pressure in the PVS would rise to the same level as
the arteriole network and then be drained trough the venous network from there.
Instead, a direct drainage route through the venous network was added for the
PVS network. This transfer coefficient was estimated the same was as the transfer
coefficient between the arteriole and venous network

η2←3 =
G3

∆P32V

with G3 being the assumed rate of accumulated CSF/ISF, estimated to be one order
of magnitude lower than G1. With an assumed pressure drop of 1mmHg between
the PVS and the vein network, the transfer coefficient was estimated.

Lamè constants Young’s modulus will vary naturally due to variations in the
type of tissue contained in the brain. Typically, we differentiate between two types
of tissues; white and grey matter. The outer layer of the brain is composed of gray
matter, and the inner core is made up of white matter. [43] For this thesis a middle
value between the two types of tissues were chosen for the Young modulus. The
Lamè constants from the governing equations are related to the Poisson ratio and
the Young modulus by the following equations

λ=
νE

(1+ ν)(1− 2ν)
(4.7a)

µ=
E

2(1+ ν)
(4.7b)

(4.7c)

Porosity Coefficients The porosity coefficients for the different fluid networks
are not used for the calculations of the MPET model, but are used for estimates of
fluid network velocities, governed by Equation (4.3). Instead of specifying a single
porosity for each network, a range of values will be specified, which will be used
for discussions and comparisons with similar velocities from the literature. The
porosities of the different networks are summarized at the bottom of Table 4.2.

The porosity of the arteriole/capillary network will vary significantly based on
the assumed size of this network. No direct estimate was found for the porosity of
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the cerebral arterioles, and estimates of porosities for cerebral arteries are instead
used as an upper estimate. Similarily, estimates of cerebral capillary porosity can
be used as a lower estimate of this network. The porosity of the PVS is highly
uncertain and no direct measure of the value exists. In this thesis, the value was
estimated based on a range of measurements of total PVS volumes by Ballerini
et al. [78], divided by the total volume of the computational domain used in the
model.

4.3 Material Parameters: Boundary Conditions and Com-
partment Model

A summary of the various parameters used to model the compartment model and
the boundary conditions for the MPET model is found in Table 4.3. Estimated
values and uncertain parameters are also discussed in this section.

Boundary Permeability The β parameter, used for the boundary conditions of
the ECS network, describes how permeable the boundaries of the brain parenchyma
are. When quantifying the exchange of CSF with the ECS, the parameter can be ex-
plained by a combination of two factors. The first is the permeability and thickness
of the membranes that separate the CSF-filled cavities and the brain parenchyma.
On the outer surface of the brain, the pia mater (pia) separates the cerebral cortex
from the SAS, while on the inner ventricle surface, the ependyma separates the
brain tissue from the CSF[92]. Since the pia membrane is generally considered to
have a very low permeability[93], a more likely factor explaining this parameter
could be the drainage rate through perivascular spaces and into the ECS.

Only a few studies have attempted to estimate the resistance to flow from CSF-
filled cavities to ECS. Flow resistance from perivascular spaces to the ECS has been
calculated [68], while only the elastic properties of the pia have been measured
[94]. Levine [89] investigated the role of the brain parenchyma in absorbing CSF,
in relation to normal pressure hydrocephalus (NPH) and showed that some CSF
seepage through the ventricle wall explained the clinical characteristics of NPH.
He assumed that the permeability of the pia and ependyma was the same as that
of the brain parenchyma, which was also assumed in this thesis to model the third
fluid network as a PVS. This essentially means that fluid is exchanged freely be-
tween the PVS and CSF-filled cavities and that the only resistance to this exchange
is the permeability of the PVS network itself. When the third fluid network is mod-
eled as an ECS, a small additional resistance of β = 0.1 is added to quantify the
assumed resistance that the CSF first flows into perivascular spaces, before being
exchanged with the ISF in the ECS.

Relative Ventricular Pressure The additional compliance of the ventricle com-
partment facilitates a transmantle pressure gradient between the SAS and the
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Table 4.3: Model parameters used for the compartment model and the boundary
conditions of the MPET domain.
** article specifies values in the range of 5− 15mmHg for healthy adults

Parameter Value Unit Reference

Intracranial Pressure, ICP
PVI (pressure-volume index) 7.36 mL [51]
Pb (baseline pressure, ICP) 10 mmHg **[69]

Relative ventricular pressure, PR

C , ventricle (additional) compliance 0.0412 mL
Pa *

d, aqueductal diameter 4 mm [95]
L, aqueductal lenght 70 mm [95]

RAQ, aqueductal resistance 7.77 Pa·s
mL *

Venous back-pressure
PVEIN 8.4 mmHg [68]

Boundary permeability, ECS
β 0.1 - *

ventricles. The following relation was used to estimate this compliance

C =
∆V
∆P

in which ∆V is the maximal assumed volume change from some reference vol-
ume, and∆P is the corresponding pressure change. For the ventricle, this volume
change is assumed to correspond to the aqueductal stroke volume. To estimate
the corresponding change in pressure, the resistance of the cerebral aqueduct is
first introduced. The aqueductal flow is simplified as a Poiseuille flow, assuming
laminar flow through a rigid pipe. The flow resistance can then be estimated as

RAQ =
128Lµ f

πd4

where d and L represent an effective diameter and length of the aqueduct, re-
spectively[95]. µ f is the dynamic fluid viscosity of the ventricular CSF and has
the same value as the CSF/ISF in the fluid networks. The pressure change corre-
sponding to the maximal volume change is then estimated as

∆P =QpRAQ

where Qp is the peak aqueductal flow rate, listed in Table 4.1
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Numerical Methods

The combined model in this thesis applies a partitioned approach for solving the
complete system of equations. This means that the system of MPET equations
and the compartment model are solved separately rather than as a single system
of equations. Each component takes turns of being solved, and the coupling be-
tween the two components terms are imposed at each turn. In this chapter, the
variational formulation of the MPET system is presented, along with a mixed FEM
to solve the discretized problem. After that, a coupled numerical algorithm is in-
troduced that solves the combined intracranial model. In addition, an overview
of the various geometries and meshes used for the simulations is presented, along
with the numerical framework used to implement the model.

5.1 Variational formulation of the Poroelasticity Problem

The governing equations in (3.13) need to be formulated in its weak form in order
to solve the system using a mixed-FEM. A set of function spaces is defined for
displacements u, total pressure p0 and for the three fluid pressures p1, p2, and p3.
Consider the poroelastic domain. of Ω ⊂ R3. A Hilbert space L2(Ω) is introduced,
defining a set of square-integrable real-valued functions on Ω. This means that for
every f ∈ L2 the following relation holds true

∫

Ω

f 2d x <∞

The notation 〈 f , g〉 is used to denote the inner product of L2(Ω) and is defined as

〈 f , g〉=
∫

Ω

f gd x

and the notation 〈 f , g〉Γ is used to denote the inner product on the boundary
Γ ⊂ ∂Ω defined as

35
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〈 f , g〉Γ =
∫

Γ

f gds

The first-order Sobolev space of H1(Ω) consists of a set of functions f ∈ L2(Ω)
where the weak first-order derivatives of f exist in all three spatial dimensions.
Additionally, H1

0,Γ ⊂ H1 is a subset that consists of the functions f ∈ H1 at which
the trace is zero on the boundary such that f (x) = 0 on Γ ⊂ ∂Ω. [72] When
Γ = ∂Ω this notation is simplified to H1

0 . The zero-trace condition is necessary
on all Dirichlet boundaries. It essentially ensures that the function being solved
is not defined on these boundaries and is instead imposed directly through the
boundary condition.

To account for temporal derivatives, the time interval t ∈ [0, T] is considered
with a set of continuous differentiable functions f : [0, T] 7→ H1(Ω) denoted as
C1([0, T], H1(Ω)) = { f | ∂ f

∂ t ∈ C0([0, T]; H1)} which implies that the first-order
temporal derivative of f exists in H1, in a weak sense.
For further derivations, the following function spaces are defined

VVV = H1(Ω;R3), Q0 = L2, Q1 = H1 Q2 = H1
0,ΓSAS

Q3 = H1
0 (5.1)

The variational formulation of the problem arises by multiplying the governing
equations in (3.13) by sufficiently smooth test functions in the respective function
spaces. Applying the inner product and using Green’s Theorem for second-order
derivatives yields the following variational problem: find uuu ∈ C1([0, T];VVV ) and
pi ∈ C1([0, T];Q i) for i = 0, 1,2, 3 such that

〈2µεεε(uuu),εεε(vvv)〉+ 〈p0, div vvv〉= 〈σσσ · nnn, vvv〉∂Ω ∀vvv ∈ VVV (5.2a)

〈div uuu, q0〉 − 〈λ−1α · p, q0〉= 0 ∀q0 ∈Q0 (5.2b)

〈S1 ṗ1 +α1λ
−1α · ṗ+ γ1, q1〉+ 〈K1∇p1,∇q1〉= 〈g1, q1〉 ∀q1 ∈Q1 (5.2c)

〈S2 ṗ2 +α2λ
−1α · ṗ+ γ2, q2〉+ 〈K2∇p2,∇q2〉= 0 ∀q2 ∈Q2 (5.2d)

〈S3 ṗ3 +α3λ
−1α · ṗ+ γ3, q3〉+ 〈K3∇p3,∇q3〉= 0 ∀q3 ∈Q3 (5.2e)

with the surface integral for the momentum Equation (5.2b) defined as

〈σσσ · nnn, vvv〉∂Ω = 〈PSASnnn, vvv〉ΓSAS
+ 〈PVENnnn, vvv〉ΓVEN

An additional formulation is needed to model the third fluid network as an ECS,
owing to its Robin boundary conditions. With the function space for the pressure
now defined as: Q3 = H1, the variation formulation for Equation (5.2e) instead
becomes

〈S3 ṗ3+α3λ
−1α · ṗ+ γ3, q3〉+ 〈K3∇p3,∇q3〉= 〈K3∇p3 ·nnn, q3〉∂Ω ∀q3 ∈Q3 (5.3)
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with the surface integral on the right-hand side defined as

〈K3∇p3 · nnn, q3〉∂Ω = 〈β(PSAS − p3), q3〉ΓSAS
+ 〈β(PVEN − p3), q3〉ΓVEN

5.2 Mixed Finite Element Formulation

To formulate a mixed finite element problem of the variational formulation in
(5.2), the Galerkin method for differential equations is applied. The method in-
volves enforcing that the residual of each function is orthogonal to its respec-
tive function space[62]. A mesh discretization of conforming tetrahedral elements
{Th}h>0 onto Ω is considered, with h denoting the characteristic size of the mesh
elements. The generic discrete spaces of VVV h ⊂ VVV and Q i,h ⊂ Q i , i = 0, 1,2, 3
are considered. Furthermore, an implicit Euler discretization in time is employed,
defining N discrete time points as: 0 = t0 < t1 < ... < tN = T for a final time T .
The time step for the implicit scheme is then defined as τn = tn− tn−1. In addition,
a discrete time differential δt is utilized as

δt p
n
h =

pn
h − pn−1

h

τn

The Galerkin scheme is formulated similarly as in Oyarzùa et al. [59] and reads
as follows: Find uuun

h ∈ VVV h , and pn
i,h ∈ Q i,h, i = 0,1, 2,3 for all n ∈ 1, 2, ..., N such

that

〈2µεεε(uuuN ),εεε(vvv)〉+ 〈pn
0 , div vvv〉= 〈σσσn · nnn, vvv〉∂Ω ∀vvv ∈ VVV h

(5.4a)

〈div uuun, q0〉 − 〈λ−1α · pn, q0〉= 0 ∀q0 ∈Q0,h
(5.4b)

〈S1δt p
n
1 +α1λ

−1α ·δt p
n + γn

1, q1〉+ 〈K1∇pn
1 ,∇q1〉= 〈gn

1 , q1〉 ∀q1 ∈Q1,h
(5.4c)

〈S2δt p
n
2 +α2λ

−1α ·δt p
n + γn

2, q2〉+ 〈K2∇pn
2 ,∇q2〉= 0 ∀q2 ∈Q2,h

(5.4d)

〈S3δt p
n
3 +α3λ

−1α ·δt p
n + γn

3, q3〉+ 〈K3∇pn
3 ,∇q3〉= 0 ∀q3 ∈Q3,h

(5.4e)

in which the lower index h of the discrete test and trial functions has been dropped
for readability. Similarly to the variational formulation, the stress acting on the
boundaries in Equation (5.4b) is defined as

〈σσσn · nnn, vvv〉∂Ω = 〈Pn∗
SASnnn, vvv〉ΓSAS

+ 〈Pn∗
VENnnn, vvv〉ΓVEN

and the alternative formulation for the third fluid network modeled as an ECS is
specified, with the right-hand side in Equation (5.4e) now defined as
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〈K3∇pn
3 · n, q3〉∂Ω = 〈β(Pn∗

SAS − pn
3), q3〉ΓSAS

+ 〈β(Pn∗
VEN − pn

3), q3〉ΓVEN

while for the PVS, the boundary pressures are given directly to the solution through
the Dirichlet condition. With this formulation, the solution is solved at each dis-
crete time point tn. It should be noted that arterial inflow modeled by the source
term gn

1 is explicitly provided at each iteration. Similarly, the venous back pres-
sure on the boundary is constant and therefore also defined for all time points. In
contrast, the boundary pressures Pn∗

SAS and Pn∗
SAS must be solved in-between each

time point, using the compartment model described in Chapter 3. The notation n∗

is used to emphasize that the compartment pressure at tn∗ is applied to the model
at the current time tn, but is counted with an index lower, i.e. n∗ = n− 1 for all
tn ∈ t1, t2, ..., tN

5.3 Coupled Numerical Algorithm

In this section, a complete overview of the coupled numerical algorithm for the
combined model is given. A flow chart illustrating the order of algorithm is shown
in Figure 5.1. To start, the initial conditions for the mixed-FEM in (5.4) and for
the ICP of the compartment model are defined to be

uuu0 = 0 p0
1 = P1,mean p0

2 = PVEIN p0
3 = Pb P0∗

SAS = P0∗
VEN = Pb (5.5)

where the initial values for the displacements and poroelastic pressures are ap-
plied uniformly on the discretized domain. P1,mean is the assumed mean pressure
defined in Table 4.1. PVEIN and Pb are the venous back pressure and the baseline
ICP pressure, respectively, and are both defined in Table 4.3. After solving an it-
eration for the mixed-FEM at time tn, the pressures in the compartment model
must be calculated. Recall the expressions for the ICP and the ICPV in Chapter 3.
Both pressures are functions of the surface expansion and outflow of CSF from the
poroelastic domain, defined in Equations (3.19) to (3.22). The surface integrals
of the wall displacements are calculated as

V n
SAS =

∫

ΓSAS

uuun · nnnds (5.6)

V n
VEN =

∫

ΓVEN

uuun · nnnds (5.7)

The time derivatives of the wall displacements, which quantify the relative change
in parenchymal volume, are then defined to be

V̇ n∗
SAS = τ

−1
n (V

n
SAS − V n−1

SAS ) (5.8)

V̇ n∗
VEN = τ

−1
n (V

n
VEN − V n−1

VEN τn) (5.9)
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Figure 5.1: Overview of the solver used in this thesis. The flowchart illustrates the
order of which the different components are calculated. The different variables
next to the arrows indicate which quantities that are used to solve the different
steps.

In addition, the CSF exchange rates between the PVS/ECS and the CSF filled
cavities are calculated as
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Qn∗
SAS =

∫

ΓSAS

−K3∇pn
3 · nnnds (5.10)

Qn∗
VEN =

∫

ΓVEN

−K3∇pn
3 · nnnds (5.11)

Since the ICP depends on the aqueductal flow rate, the relative ventricular pres-
sure is calculated first. Using implicit Euler for Equations (3.17) and (3.18) yields

Pn∗
R =

τn(V̇ n∗
VEN +Qn∗

VEN) + C P(n−1)∗

R

C +τnR−1
AQ

(5.12)

with the current aqueductal flow rate specified as: Qn∗
AQ = −

Pn∗
R

RAQ
. The change in

intracranial volume, defined in Equation (3.15) is then calculated as

∆V n∗ =∆V (n−1)∗ +τn(Q
n∗
SAS + V̇ n∗

SAS −Qn∗
AQ) (5.13)

and finally, the ICP can be calculated as

ICPn∗ = Pb · 10∆V n∗/PVI (5.14)

The pressure acting on the boundaries of the SAS and the ventricles are then
assigned the respective values

Pn∗
SAS := ICPn∗

Pn∗
VEN := ICPn∗ + Pn∗

R

which are in turn used to solve the poroelastic problem at the next time point:
tn+1.

5.4 Numerical Implementation

The code developed for the solver can be found at: https://github.com/AasmundResell/MPET-
modelling

The solver for the mixed FEM in 5.4 was implemented using FEniCS, which is
an open-source software tailored for solving a wide range of PDE’s using FEM.
The software provides a framework in Python for easily generating efficient c++
code with a level of abstraction that is close to the variational formulation of the
problem. All other calculations were made with the mathematical Python library:
Numpy.

A short example for solving a PDE in its weak form using FEniCS is provided in
the following section. Consider the standard problem of linear elasticity for which

https://github.com/AasmundResell/MPET-modelling
https://github.com/AasmundResell/MPET-modelling


Chapter 5: Numerical Methods 41

small deformations are assumed. A simple 2-dimensional domain is considered:
Ω= [0,10]× [0,3] The governing equations of the problem reads

−∇ ·σσσ = fff in Ω (5.15a)

σσσ(ϵϵϵ) = 2µϵϵϵ +λt r(ϵϵϵ)III (5.15b)

ϵϵϵ(uuu) =
1
2
(∇uuu+ (∇uuu)⊺) (5.15c)

in which ϵϵϵ is the small strain tensor, σσσ is the stress tensor and fff = [0,ρg] is the
force acting downward on a unit volume, with g = −9.81m

s and ρ = 1 kg
m . µ= 1Pa

and λ = 1Pa are the standard Lamé elasticity parameters. In this problem, the
domain Ω is considered as a simple beam which is clamped on the left side. In
addition to the gravitational force, a traction force acts downward on the right
side of the beam and is defined as: TTT = [0,10].

To formulate a variational formulation, the governing equation is multiplied by a
test function vvv ∈ V̂ in which V̂ is a vector-valued function space. By applying the
inner product over the domain Ω and using integration by parts on second-order
derivatives, the weak form of the problem in Equation (5.15) is formulated as

∫

Ω

σσσ(uuu) : ϵϵϵ(vvv)d x =

∫

Ω

fff · vvvd x +

∫

∂ΩN

(σσσ(uuu) · nnn)ds (5.16)

in which the gradient ∇vvv has been replaced by the symmetric tensor ϵϵϵ(vvv) which
can be shown to hold true becauseσσσ(uuu) is symmetric. The traction force TTT =σσσ ·nnn
on the right boundary is enforced by a natural Neumann boundary condition. An
implementation of the specified problem above is given on the next page, illus-
trating how the problem can be solved using FEniCS with a relatively short and
compact code.



Chapter 5: Numerical Methods 42

Code listing 5.1: Python example from file

from fenics import *

mu = 1
lambda_ = 1
rho = 1
g = 9.81

x0, y0 = 0.0, 0.0
x1, y1 = 10.0, 3.0
nx = 20
ny = 6

mesh = RectangleMesh(Point(x0, y0), Point(x1, y1), nx, ny)

V = VectorFunctionSpace(mesh, "Lagrange", 2)

# Checks for clamped boundary
def clamped_boundary(x, on_boundary):

tol = 1e-14
return on_boundary and x[0] < tol

# Defines the Diriclet boundary condition
bc = DirichletBC(V, Constant((0, 0)), clamped_boundary)

# Functions for stress and strain tensors
def epsilon(u):

return 0.5 * (nabla_grad(u) + nabla_grad(u).T)

def sigma(u):
return lambda_ * nabla_grad(u) * Identity(d) + 2 * mu * epsilon(u)

# Variational problem
u_ = TrialFunction(V)
v = TestFunction(V)
d = u_.geometric_dimension()
f = Constant((0, -rho * g))
T = Constant((0, 10))
a = inner(sigma(u_), epsilon(v)) * dx
L = dot(f, v) * dx + dot(T, v) * ds

# Compute solution
u = Function(V)
solve(a == L, u, bc)

5.5 Meshes and Numerical Accuracy

The finite elements of the model used continuous Galerkin elements (CG) for the
calculations in FEniCS. The total pressure and the pressures of the fluid networks
used first-order polynomials, whereas the displacements used second-order poly-
nomials. Using polynomials of one degree higher order for displacements com-
pared to pressure is a necessary condition to obtain optimal convergence rates
with this type of system[72, 96]. It is also noted that for the calculation of the CSF
exchange in Equations (5.10) and (5.11), the Darcy-velocity field was projected



Chapter 5: Numerical Methods 43

Table 5.1: Statistics for the different meshes used in the mesh sensitivity study.
The system size is the size of the system matrix.

Mesh Number of elements Number of vertices System size

Sphere mesh
N = 13 5070 1061 27326 × 27326
N = 15 7471 1507 39000 × 39000
N = 17 11339 2209 58600 × 58600
N = 20 17993 3409 91468 × 91468

one order higher, which has been shown to raise the numerical accuracy[97].
A summary of the different mesh statistics is listed in Table 5.1. The geometry of
the idealized sphere used a ratio between the inner and outer radius as: ri

ro
= 0.3,

similar to several previous studies that used this idealized geometry to model the
brain[34, 89, 98]. The inner and outer radius of the sphere were scaled to fit a
realistic volume of the brain, resulting in an inner radius of ri = 19.81mm and an
outer radius of ro = 66.04mm.

A sensitivity study of spatial mesh discretization was conducted with this geom-
etry. The study investigated the effect on mass conservation between the various
fluid networks by assessing the total size of the transfer terms. These terms were
considered since their numerical accuracy is reliable for first-order pressure ele-
ments regardless of mesh sizes[97]. Additionally, assessing the mass conservation
between fluid networks provides a clear metric to compare the different mesh
refinements. The mesh sizes were defined by a division parameter N , which (ap-
proximately) discretized the geometry over the diameter of the sphere N times,
resulting in a characteristic mesh size of h = 2ro

N . A cut of this mesh is shown in
Figure 5.2, with a division parameter of N = 13.



Chapter 5: Numerical Methods 44

Figure 5.2: Half cut of the mesh of the idealized sphere geometry. Red indicates
the inner boundary of the ventricles, while blue represents the outer boundary of
the SAS. The inner facets and edges are removed in this illustration.
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Results

In this chapter, the results of this thesis are presented. First, the results of the phys-
ical simulations are presented in detail, with an emphasis on important quantities
of interest. All results are reported after a periodic steady state solution is ob-
tained. Furthermore, significant variations are reported for the alternative model-
ing configurations described in Table 3.2. In addition, the results of the sensitivity
study are presented and significant variations between the different mesh refine-
ments are reported.

6.1 Pressure Distribution

Plots of the temporal pressure variation in the arteriole network and the vein net-
work for the standard PVS configuration are shown in Figure 6.1 during a single
cardiac cycle. The arteriole network obtained a time-averaged fluid pressure of
53.63 mmHg and a peak value of 55.68 mmHg, found at ∆ta = 0.4 s. Here, ∆ta
has been defined to denote the time that has passed after the minimal influx of
arterial blood (see Figure 4.1 for reference) and can also be considered as a mea-
sure of the time passed after the beginning of the cardiac cycle. The pulse pressure
amplitude of the different networks was calculated as the maximal temporal dif-
ference of the mean pressure, which was defined in Equation (4.1). This value
was calculated to be 5.06 mmHg for the arteriole network. The spatial variation
in the arteriole network was small compared to the temporal variation, which is
illustrated by the pressure curves in Figure 6.1a, and also by the contour plots of
the spatial variation of pressure in the blood networks, shown in Figure 6.2. Plots
from the standard PVS configuration are located on the left side, and the equiv-
alent plots for the ECS configuration are located on the right side. The arteriole
network of the standard configuration had a slightly higher pressure on the ventri-
cle wall than on the cortical surface at all time steps, as illustrated by Figures 6.2a
and 6.2c. In comparison, the ECS configuration that has lower permeability and
additional resistance at the boundary had more spatial variation in pressure, as
illustrated by Figures 6.2b and 6.2d.

45
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(a) Maximal and minimal arteriole pressures

(b) Maximal and mean vein pressures

Figure 6.1: Plots of blood network pressures during one cardiac cycle. The plots
illustrates: (a) the maximal and minimal pressure of the arteriole/capillary fluid
network, (b) the maximal and mean fluid pressure of the vein network. The mini-
mal vein is not included as it was constant and equal to the venous back-pressure.
Both plots are extracted from the standard PVS configuration after 44 seconds of
simulation time.

The pressure of the venous network had a negligible difference between the stan-
dard PVS configuration and the ECS configuration. For these two configurations,
the vein pressure had an average value over time of 8.98 mmHg and peak values
of 9.70 mmHg. The vein pressure was characterized by small temporal variations
that resulted in a nearly flat pressure curve, as seen in Figure 6.1b. Spatial variance
was significantly higher in the venous network compared to the other networks,
as illustrated in Figures 6.2e and 6.2f. The largest spatial difference in venous
pressure was found to be 1.3 mmHg for the standard PVS configuration and the
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ECS configuration with the maximal value located on the ventricle wall. The min-
imal vein pressure was constant and equal to the venous back-pressure applied
on the cortical surface.
The minimum ICP value of the standard PVS configuration was obtained at the
beginning of the cardiac cycle and calculated as 8.21 mmHg. ICP increased rapidly
during the early stage of the cardiac cycle, following the increase in arterial blood
volume before reaching a peak value of 11.46 mmHg, resulting in a maximum
temporal variation of 3.25 mmHg. The maximal ICP was found at ∆ta = 0.4 s.
The average ICP was calculated to be 10.06 mmHg. A plot of the ICP along with
the mean PVS pressure is shown in Figure 6.3a.
A slower decrease in ICP followed during the diastolic phase until the beginning
of the next cardiac cycle. The relative ventricular pressure PR that represents the
spatial variation of the ICP is shown in Figure 6.3c for the standard PVS config-
uration. The relative pressure had a time-averaged value of 0.37Pa with peaks of
1.30Pa. This resulted in a peak spatial ICP gradient of 0.21 mmHg

m , assuming a lin-
ear ICP distribution and using the distance between the inner and outer surfaces
of the idealized sphere to represent the distance between these pressures.

The mean PVS pressure curve was very similar to the ICP curve, as illustrated in
Figure 6.3a. The PVS had a time-averaged pressure of 10.07 mmHg and a peak
pulse pressure amplitude of 3.22 mmHg. A small spatial pressure gradient was
observed in this network, characterized by the PVS pressure in the middle section
of the sphere oscillating relative to the pressure on the boundaries. This oscillation
is illustrated in Section 6.1 showing the spatial pressure distribution at the begin-
ning of the cardiac cycle (∆ta = 0.0) and during the peak in ICP (∆ta = 0.4).
The time-average pressure in the ECS had a value of 9.99 mmHg. The maximal
temporal variation in mean ECS pressure was calculated to 1.69 mmHg, which
is approximately half the equivalent value in the PVS. The spatial variation was
significantly larger compared to the PVS, with a maximum spatial variation of
5.19 mmHg compared to an equivalent value in the PVS of 0.055 mmHg. This
difference is illustrated in Figure 6.4 with the pressure distributions of the ECS
(located on the right side) having a larger difference between the minimal and
maximal pressure compared to the equivalent PVS pressures (located on the left
side). The discrepancy between the ICP and the mean ECS pressure was also much
larger, as illustrated in Figure 6.3b.

The standalone PVS configuration (see Table 3.2) that used a constant ICP on
the surface boundaries had pressures with time-averaged values that were nearly
equal to those of the standard PVS configuration. The pulse pressure amplitudes
were significantly lower. The arteriole/capillary network had a peak temporal
variance of 2.11 mmHg (compared to 5.06 mmHg for the standard model). An
even higher difference between the two configurations was observed for the pul-
sating pressure in the PVS, with peak temporal differences of 0.042 mmHg (com-
pared to 3.22 mmHg).
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(a) Arteriole network, ∆ta = 0.0 (b) Arteriole network, ∆ta = 0.0

(c) Arteriole network, ∆ta = 0.4 (d) Arteriole network, ∆ta = 0.4

(e) Vein network, ∆ta = 0.0 (f) Vein network, ∆ta = 0.0

Figure 6.2: Spatial pressure distribution in the blood networks. Plots of the stan-
dard PVS configuration are located on the left (a,c,e) and plots of the ECS con-
figuration are located on the right (b,d,f). ∆ta represents the time passed after
the beginning of the cardiac cycle.
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(a) Intracranial pressure for the standard PVS configuration

(b) Intracranial pressure for the ECS configuration

(c) Relative ventricular pressure for the standard configuration

Figure 6.3: Plot of the intracranial pressure (ICP) during a single cardiac cycle.
The mean fluid network pressures (PVS/ECS) are used as a measure of ICP in-
side of the brain tissue. The plotted solution was extracted after 40 seconds of
simulation time.
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(a) PVS, ∆ta = 0.0 (b) ECS, ∆ta = 0.0

(c) PVS, ∆ta = 0.4 (d) ECS, ∆ta = 0.4

Figure 6.4: Spatial pressure distribution in the blood networks. Plots of the stan-
dard PVS configuration are located on the left (a,c,e) and plots of the ECS con-
figuration are located on the right (b,d,f). ∆ta represents the time passed after
the beginning of the cardiac cycle.
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6.2 Displacements and Flow Rates

The relative volume displaced by the cortical and ventricular surfaces was calcu-
lated by Equation (4.4). A plot of the volume displaced by these surfaces is shown
in Figure 6.5. The plots give a direct measure of how much volume of CSF is dis-
placed in the SAS and ventricles during the cardiac cycle.

(a) Volume deformation of the cortical surface

(b) Volume deformation of the ventricular surface

Figure 6.5: Plots of volume expansion for the cortical and the ventricular sur-
faces, extracted over two cardiac cycles.

The maximum value of tissue displacement was located on the cortical surface
with a value of 0.849 mm and 0.886 mm for the standard PVS configuration and
the ECS configuration, respectively. However, as explained in Chapter 4, the ab-
solute value of tissue displacement is not representative of the relative motion of
tissue during the cardiac cycle. This relative motion of the tissue is extracted by
Equation (4.5) with the reference displacement field defined at ∆ta = 0.04 rep-
resenting the time at which the total volume of intracranial blood is minimized.
The maximum value of the relative displacement was extracted as 0.032 mm for
the standard PVS configuration and 0.028 mm for the ECS configuration. In Fig-
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ure 6.6, the displacement field of the standard PVS configuration is shown. The
figure shows the difference between the absolute and relative displacement fields
and also illustrates that the calculation of the relative displacements using Equa-
tion (4.5) is a valid measure of total tissue motion during the cardiac cycle, since
all displacements point outward (at all time steps) and no change in displacement
direction occurs at any time.

(a) Absolute displacements at ∆ta =
0.44

(b) Relative displacements at ∆ta =
0.44

Figure 6.6: Comparison between the absolute displacement field and the relative
displacement field for the standard PVS configuration at∆ta = 0.44. The domain
was radially expanded outwards at all times and minimized at∆ta = 0.04 which
illustrate that the relative displacement field in Equation (4.5) can be used as a
direct measure of tissue motion during the cardiac cycle.

The average bulk flow velocities of each network are calculated by Equation (4.2).
This velocity denotes the Darcy velocity averaged in space and will be mostly re-
ferred to as the bulk flow velocity. This velocity is not to be confused with the
time-average bulk flow velocity, which is the Darcy velocity averaged in both time
and space. The arteriole network of the standard PVS configuration had a time-
averaged bulk flow velocity of 0.94µm

s and peak bulk flow velocities of 1.51µm
s . A

small pressure gradient was observed from the ventricles and outward toward the
SAS in the arteriole network, illustrated in Figures 6.2a and 6.2c. This gradient
induces a small flow that points radially outward at all time steps. Velocities in the
arteriole network were significantly higher for the ECS configuration due to the
larger spatial variation in pressure, illustrated in Figures 6.2b and 6.2d. For this
configuration, the time-average bulk velocity was calculated to be 4.78µm

s and
with peak values as high as 14.5µm

s . The vein network had a time-average bulk
flow velocity of 0.17 mm

s for both the standard PVS configuration and the ECS con-
figuration. The difference between the velocity of the time-average bulk flow and
the peak bulk flow was negligible for all configurations.
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A time-average bulk flow velocity of 21.7µm
s was obtained in the PVS, with peaks

of 40.0µm
s . The fluid velocity in this network followed a pattern of net CSF inflow

during the rise in arterial blood volume, and net outflow as the blood volume de-
creased. This flow pattern is illustrated in Figures 6.7a and 6.7b showing the total
exchange of CSF on the cortical and ventricular surfaces, respectively. Using the
ECS configuration for the third fluid network resulted in a time-average bulk flow
velocity of 0.19µm

s and peak values of 0.46µm
s . Compared to the difference in per-

meability between PVS and ECS of four orders of magnitude, a larger difference
between average bulk flows could be expected. The ECS velocity is comparatively
higher because of the relatively large spatial variation in the domain. This large
variation (compared to the PVS) is caused by the low permeability of the net-
work and the added boundary resistance, which delays the equalization of the
fluid network pressure with the ICP. In comparison, the high permeability of the
PVS causes a rapid equalization between the mean network pressure and the ICP
at the boundary, leading to smaller pressure gradients, as illustrated in Figure 6.4.

Figure 6.7c illustrates the total flow rate of CSF through the cerebral aqueduct.
The flow rate through the modeled cerebral aqueduct had a peak (minimum)
value of −0.053 mL/s and a net flow rate of −0.015 mL/s with a negative sign
denoting the directionality of the flow from the ventricles to the SAS. This net
flow is induced by an elevated relative ventricular pressure as seen in Figure 6.3c,
which is again caused by a net CSF efflux of 0.015 mL/s across the ventricular
surface, and a net influx of 0.015 mL/s across the cortical surface to balance the
additional CSF volume. This results in a circulatory effect of net CSF flow through
the parenchyma, into the ventricles, and out through the cerebral aqueduct.
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(a) Total CSF exchange over the cortical surface

(b) Total CSF exchange over the ventricular surface

(c) Flow rate through the cerebral aqueduct

Figure 6.7: Plots of CSF flow rates over the cortical and the ventricular surfaces,
as well as flow rate through the cerebral aqueduct. The plots are extracted from
the standard PVS configuration and plotted over two cardiac cycles.
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Table 6.1: Flow rates and flow discrepancies between the different fluid net-
works.

N Q12 Q13 Q32 ∆Q1 ∆Q2 ∆Q3

13 11904.4 1161.1 1232.83 0.1 -954.53 71.7
15 11904.1 1161.32 1221.67 0.02 -804.57 60.35
17 11904.1 1161.36 1220.12 0.06 -708.22 58.8
20 11904.2 1161.61 1209.95 0.41 -613.55 48.34

6.3 Sensitivity Study on Transfer Rates

A summary of the mesh sensitivity study can be found in Table 6.1. The various
mesh refinements are defined by N which indicates the number of divisions along
the diameter of the sphere. All reported values are mean values over four cardiac
cycles, which corresponds to four seconds of simulation time. The average transfer
rate from network "i" into network " j" was calculated as

Q i j =
1
∆t

∫ t+∆t

t

∫

Ω

η j←i(pi − p j)dΩd t

with ∆t = 4 s. In addition, the discrepancies between the flow rates are defined,
with a positive sign quantifying a non-physical accumulation of fluid in each net-
work. These discrepancies were calculated as

∆Q i =Qi,out −Qi,in

where Qi,out and Qi,in include all contributions from the different flows entering
and exiting each network i. In addition to the flows exchanging fluid between
networks, these contributions also include the average arterial flow into the arte-
riole network and the average venous flow out of the vein network. For the PVS
network, it was assumed that a zero-average exchange of CSF would occur after
a stable periodic ICP.

All of the sphere meshes had some small accumulation of fluid in the arteriole
network, but compared to the other networks, these values were negligible. The
largest accumulation was reported for the finest mesh (N = 20) with a value of
∆1 = 0.41 (mm3/s). The accumulation of fluid in the PVS was significantly larger
than in the arteriole network for all meshes. The largest value was found for the
coarsest mesh (N = 13), with a decreasing discrepancy for the finer meshes.

For the vein network, large discrepancies were observed for all meshes, with the
negative sign denoting loss of fluid. The largest discrepancy was observed for the
coarsest mesh, with a significant decrease for each finer mesh.
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Discussion

7.1 Summary

This thesis has demonstrated that combining an MPET model for the brain and a
compartment model for the surrounding CSF enables a coupled model that can
replicate the dynamic interplay of intracranial pulsatility. The combined model
included three fluid networks for the brain and two pressures for the CSF com-
partments, resulting in a distribution of displacements and pressures that are in
good agreement with clinical measurements. Not only in terms of replicating av-
erage values over time, but also in terms of replicating temporal variations follow-
ing cardiac pulsations. The thesis also shows that coupling of the models using a
combination of surface expansion, CSF exchange, and traction-based boundary
conditions is a promising strategy for replicating intracranial pulsatility.

7.2 Discussion on Pulsatility

7.2.1 Pressure Variations

In general, the pulse pressure amplitudes and the time-averaged pressures agree
well with clinical measurement for all three fluid networks, as well as for the ICP.
The mean pressure of the arteriole/capillary blood network was almost perfectly
correlated with the target mean pressure of 50 mmHg. This illustrates the effec-
tiveness of estimating the transfer coefficients based on a target pressure drop and
mass conservation, as discussed in Chapter 4. The resulting pulse pressure in the
arteriole/capillary network was in the lower range of values, indicating charac-
teristics equivalent to those of capillary blood vessels[70]. The vein pressure also
replicated the desired behavior, with small temporal variations and mean pressure
values within the target range. The slight increase in venous pressure during the
diastolic phase (see Figure 6.1b) is expected and facilitates an increased venous
outflow, as explained by Baledént [1].

56
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The mean PVS pressure and the ICP were almost equal in size and shape, sup-
porting the observations of Wagshul, Eide, and Madsen[2] who reported that ICP
measurements are similar regardless of location. This applies not only to mea-
surements in the ventricles versus SAS, but also to measurements in brain tissue.
However, the ECS configuration had significant spatial variability in ECS pressure
instead of the expected uniform distribution observed for the simulated PVS. Us-
ing a higher permeability would decrease this variation but would also lead to
large velocities, which will be discussed in the next section. The pulse amplitude
of the simulated ICP is in the lower specter of clinically observed values, but still
within a realistic physiological range. The obtained amplitude ( 3.2 mmHg) com-
pares closer to measurements found in patients with idiopathic normal pressure
hydrocephalus (iNPH). Eide [66] measured temporal ICP amplitudes between
1.5− 6.8 mmHg for iNPH patients. Similarly, Vinje et al.[11] used measurements
from iNPH patients with typical ICP amplitudes of 4− 5 mmHg. An explanation
for why this amplitude is smaller than expected could be contributed to a smaller
surface area of the idealized geometry compared to the cortical surface, which is
a highly folded sheet with most of its surface area buried within these folds[99].
The decrease in surface area will lead to lower values for the overall expansion of
brain volume, leading to smaller variations in ICP.

Several studies have reported multiple peaks in the ICP[2, 100] usually restricted
to three peaks. Regarding the morphology of the ICP-curve, the larger characteris-
tics of the simulated ICP are similar to the general shapes of measured curves (see,
for instance Eide[66]), however these reported peaks in ICP are not replicated by
the current model. Causemann et al. [27] replicated similar peaks after lowering
the spinal compliance of their model from its original configuration, which could
indicate that a spinal compartment pressure should be included to facilitate addi-
tional peaks. Carrera et al. [101] found that the first peak was related to the peak
of arterial influx, while the second and third were associated with peak values
of cerebral blood volume. The uniform source term applied in this thesis implies
that the peak in arterial influx and the peak in cerebral blood volume occur simul-
taneously. Instead, imposing arterial inflow as a velocity on the boundary might
induce several modes of deformation, leading to subsequent peaks in ICP.

The small temporal variation of the PVS pressure observed when a constant ICP
was applied to the domain boundaries implies that an MPET model with linear
transfer terms cannot propagate its pulsatile variation from the arteries down to
PVS/ECS networks to describe a realistic variation of ICP. Some additional compo-
nent is needed to account for the rigid confinement of the skull, which the nonlin-
ear ICP does for the combined model proposed here. Eliussen et al. [72] included
an example of a pulsatile MPET model with ICP on the boundaries described by a
compartment model with constant compliance. This resulted in a very small tem-
poral variability of pressure in the PVS, which further indicates this finding.



Chapter 7: Discussion 58

7.2.2 Displacements

Peak displacements are in the lower range of values compared to clinical measure-
ment, but still within a physical range. Greitz et al.[71] Poncelet et al.[38] and
Enzmann and Pelc[39] all used MRI techniques to measure the motion of brain
tissue. These studies reported peak displacements in the range of 0.1− 0.5 mm.
In more recent work based on similar MRI techniques, Pahlavian et al.[40] found
peak displacements of 0.187±0.05 mm located on the brain stem. Sloots et al.[102]
also found that the peak displacements are located on the brain stem, with val-
ues of approximately 0.2 mm. The symmetric pattern of displacements observed
for the idealized geometry of this study is not very comparable to the asymmet-
ric displacement fields observed in the brain and especially not in thin elongated
structures such as the brain stem. Pahlavian et al.[40] also reported peak displace-
ments in other regions of the brain such as the corpus callosum (65±15µm), the
cingulate gyrus (43±10µm) and the parietal lobe (31±4µm). These regions are
located above the ventricles and are more comparable to the spherical geometry
of the model in this thesis, for which the peak displacements of 38µm agree well.

7.2.3 Flow rates

Estimates of fluid network velocities which are related to the bulk flow velocities
by v = q

φ resulted in mean PVS velocities in the range of 5.37 mm
s to 14.1 mm

s using
PVS porosities between 1.54·10−3 and 4.04·10−3. These porosities were estimated
based on measurements of total PVS volumes (see Section 4.1 for further details).
The estimated mean PVS velocities are significantly higher than most estimates
from experimental studies. Mestre et al. [12] measured typical net flow velocities
of 18.7µm

s with peak temporal variations of approximately 20µm
s . Bedussi et al.

[13] obtained similar results for the net velocities with values of 17µm
s . The peak

variation in PVS velocities found in Bedussi et al. [13] was significantly higher
compared to Mestre et al. [12], with values in the range of 100− 200µm

s , when
the rapid cardiac cycles are taken into account[24]. The ECS had fluid velocities
in the range of 0.83µm

s to 1.37µm
s . However, since only estimates of the bulk flow

for the ECS exist in literature, the time-average bulk velocity of 0.19µm
s is more

relevant to compare. According to some studies [103] [104] the estimated veloc-
ities of the bulk ISF flow are in the range of 0.1− 0.24µm

s , which agree well with
the modeled result.

The model in this study illustrates the possibility of representing flow through
the cerebral aqueduct using a relative ventricular pressure. The peak amplitude
and the aqueductal stroke volume correlate fairly well with the clinical indica-
tors defined in Table 4.1, although the net flow of 0.015mL

s from the ventricles to
the SAS is large compared to some studies that estimate CSF production rates in
the ventricles in the order of 10−3 mL

s [45, 105, 106]. Note that the timing of the
peak aqueductal flow is poorly correlated with the observed pattern measured by
Baledént [1] (illustrated in Figure 2.5). This may indicate that constant compli-
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ance does not facilitate the exponential pressure-volume relation observed within
the cranium[49], or that the simplified geometry of the ventricles causes an unre-
alistic pattern of displacements of the ventricular wall. However, since the relative
ventricular pressure is negligible compared to the size in the temporal variations
of the ICP, the effect of this pressure is likely not very influential to the overall
behavior of the model.

Figure 6.7a shows that CSF is pushed into the brain over the cortical surface dur-
ing the increase in arterial blood volume and ICP. The timing of the peak CSF
influx supports the idea that heart rate functions as a "periarterial pump"[14, 15].
However, the model used in this thesis can recreate the macroscale characteristics
of CSF influx during systole without directly modeling arterial vasodilation. In the
current model, the oscillatory movement of CSF over the cortical surface is driven
by the difference between the ICP on the boundary and the inner pressure that
oscillates relative to the boundary, as illustrated in Section 6.1. A small net flow
of CSF over the cortical surface and through perivascular spaces is caused by the
additional volume of CSF that flows out of the cerebral aqueduct, which subse-
quently increases ICP in the SAS relative to the brain and induces a net influx over
the cortical surface. This indirectly supports the findings of Kedarasetti et al. [25],
in which they did not find direct support for the "periarterial pump" mechanism
driving net CSF influx by motion of arterial walls alone. However, Kedarasetti et
al. found support for net flow of CSF through PVS driven by functional hyperemia
in several studies[25, 26], which is not taken into account in the model of this
thesis. Similarly, Daversin-Catty et al. [24] suggested that pulsatile PVS flow is
accompanied by a small pressure gradient of uncertain origin, as their model did
not replicate a net flow through PVS by only including arterial wall motion. When
a static pressure gradient of 1.5mmHg

m was included in their model, they obtained
a net flow of 20µm

s to 30µm
s through the PVS[24]. Although the added volume of

aqueductal outflow in the model in this thesis facilitates a net influx of CSF over
the cortical surface, its small size is likely not large enough to explain the influx
of CSF observed in several clinical studies by tracking tracers in CSF[12, 13], and
similarly to the conclusions made by Daversin-Catty et al. [24], some additional
static or pulsatile gradient would be needed to explain such an influx.

7.3 Numerical Accuracy

The mesh sensitivity study demonstrated that the finer meshes conserved the total
fluid volume better than the coarser meshes. The arteriole network had a much
smaller discrepancy in fluid conservation compared to the PVS and vein network.
In these networks, the discrepancies were much larger and increased with the
coarseness of the mesh. The reason why the arteriole network conserved fluid
volume much better than in the PVS and vein network is because of the different
flow rates on the boundaries of the fluid networks. Józsa et al. [97] explained how
fluid transfer between networks mitigates small errors compared to fluid transfer
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across boundaries. They showed that these errors can be significant when first-
order polynomials are used for the fluid network pressure, and that using a com-
bination of higher-order polynomials and local mesh refinement on the boundary
can drastically reduce these errors. Similar discoveries were made in this thesis;
since the arteriole network imposes a zero flux boundary condition, the error gen-
erated from the surface flow will be much smaller compared to the errors gener-
ated in the other fluid networks, where comparatively large rates of fluid crosses
the boundaries.

Most earlier MPET studies on the brain have prescribed the influx and efflux of
blood directly to the boundary of the cortical surface using Dirichlet or Neumann
conditions[28–33]. Some exceptions include Eliussen et al. [72] and Causemann
et al. [27] (technically not an MPET study due to only one modeled network),
who both used a uniform pulsatile source term to induce pulsatility. Prescription
of such flow over boundary surfaces may not ensure fluid conservation in the sys-
tem. Modeling arterial blood flow into the brain through a source term is likely
to be better with respect to numerical accuracy, as demonstrated for the arteriole
network in this thesis. However, inaccurate arterial inflow only implies that the
blood volume entering the brain will not necessarily match the prescribed amount.
Therefore, only the input of the model will be affected and not the actual accu-
racy of the model. Similarly for this thesis, only the output of the inaccurate mea-
surement of venous outflow is affected, and not the accuracy of the model itself.
However, the exchange of CSF across the domain surfaces will affect the model,
since it directly influences the ICP. Therefore, any inaccuracy in calculating this
exchange rate will affect the overall accuracy of the simulation.

7.4 Limitations

Geometry The fact that an idealized geometry was used for the simulations is
one of the main limitations of this study. As the study aimed to quantitatively
replicate clinical measurements, the use of a realistic geometry could have had
a significant impact on the results. It is noted that the original goal of the thesis
was to use a patient-specific brain geometry but was found to be difficult due to
instabilities.

Uncertain parameter estimations Several material parameters were estimated
in the current model and not all of these estimates were considered on the basis of
mathematical principles and material properties. The Biot-Willis coefficients (α j)
and the storage coefficients (S j) were crudely estimated based on a combination
of extensive testing and the expected compliance of the respective fluid networks.
Transfer coefficients were effectively estimated using principles of mass conserva-
tion. However, the distribution of fluid flow between networks is highly uncertain,
which could result in poor estimates for these coefficients.
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Instabilities Numerical instabilities have been present for various geometries
and model parameters throughout the work of this thesis. These instabilities were
mainly an artifact of the singular system caused by the pure traction boundary
conditions, as well as the large temporal gradients induced by low values for the
storage coefficients. In this study, no theoretical analysis of the stability and con-
vergence of solutions was performed. Gaining a better understanding of these
instabilities could perhaps lead to greater flexibility in modeling decisions.

Relative ventricular pressure Flow through the cerebral aqueduct is governed
by the relative ventricular pressure, which uses a constant compliance that does
not account for the larger variations in ICP. The relative ventricular pressure could
have an exponential pressure-volume relationship, indicated by clinical measures
of craniospinal compliance. The fact that the modeled aqueductal flow poorly
replicated the morphology of measurements of this flow is an indication that the
model needs more work.

Spinal compliance The damping effect of the high-compliant spinal sac was not
included in the current model. Instead, the effect of displaced CSF in the SAS was
lumped into a single compartment model for ICP. Its effect could be modeled by
including an additional pressure to the compartment model.

7.5 Conclusions

The model presented in this thesis illustrates that it is possible to reproduce large
temporal variations in cardiac-induced pulsatility using MPET modeling. How-
ever, more work is needed to obtain a model that can replicate instantaneous
changes in ICP in brain tissue, as well as maintain fluid network velocities within
a realistic range.

An important aspect of modeling pulsatility in MPET-type models was discovered.
Compared to a simplified version that only included linear components, the pro-
posed model illustrated that pressure pulsations generated by direct fluid trans-
fer to perivascular spaces are not large enough to replicate intracranial pulsatil-
ity alone. The simplified (standalone) model resulted in pressure variations in
PVS that are significantly lower than clinically measured values suggest[2]. Using
larger values for the transfer coefficients would likely increase PVS pulsatility but
would likely lead to unrealistic values for the transfer rates between the arterioles
and the PVS.

The resulting model also illustrates the effectiveness of targeting specific pres-
sures by adjusting various model parameters. The mean ICP can be effectively
adjusted by the baseline pressure P0. The pressures of the blood networks can
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also be effectively adjusted based on estimating the transfer coefficients. Gener-
ating sufficiently large pressure amplitudes can be facilitated by a low storage
coefficient, although this may lead to instabilities.

This thesis introduced a relative ventricular pressure, which represents the spa-
tial variance of ICP. The pressure facilitated a realistic amplitude for the aque-
ductal flow rate, but more work is needed to obtain a realistic morphology of its
flow curve. Although this pressure has small effects on the overall behavior of the
model, studying it further could lead to a better understanding of the transmantle
pressure gradient and how and if it affects CSF clearance through the brain.

Future work includes verifying the model on patient-specific geometries, and as-
sess the influence of asymmetric deformation patterns caused by a realistic brain
geometry. To facilitate this, more work on stability measures for MPET models
with pure traction boundary conditions and large temporal variation is likely re-
quired. In addition, extending the proposed model with additional fluid networks
such as an arterial network and separate networks for the PVS and ECS, as well
as extending the compartment model with a pressure for spinal CSF is likely an
important step to further improve the clinical realism of this model.
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