
Python/D
IAN

A fram
ew

ork for robust N
LFEA of RC beam

s
Katja H

ansen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f S

tr
uc

tu
ra

l E
ng

in
ee

rin
g

Katja Hansen

Python/DIANA framework for
robust nonlinear analysis of
reinforced concrete beams

Master’s thesis in Civil and Environmental Engineering
Supervisor: Daniel Cantero
June 2022

M
as

te
r’s

 th
es

is

Katja Hansen

Python/DIANA framework for
robust nonlinear analysis of
reinforced concrete beams

Master’s thesis in Civil and Environmental Engineering
Supervisor: Daniel Cantero
June 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Structural Engineering

Department of Structural Engineering
Faculty of Engineering
NTNU − Norwegian University of Science and Technology

MASTER THESIS 2022

SUBJECT AREA:

Nonlinear analysis of reinforced
concrete

DATE:

10.06.2022

NO. OF PAGES:

8 + 95 + 37

TITLE:
Python/DIANA framework for robust nonlinear analysis
of reinforced concrete beams

Python/DIANA rammeverk for robust ikkelineær analyse
av armerte betongbjelker

BY:

Katja Hansen

RESPONSIBLE TEACHER: Daniel Cantero

SUPERVISOR: Daniel Cantero

CARRIED OUT AT: Department of Structural Engineering

SUMMARY:
A Python/DIANA framework for robust nonlinear finite element analysis (NLFEA) of reinforced concrete (RC)
beams in 2D has been created. The framework consists of four scripts which feature a combination of
Python commands and specific DIANA script commands. The aim has been to create a flexible, user-friendly
and robust framework for generating the DIANA workflow.

 The framework provides a reliable way of approaching NLFEA of RC beams. It relies on recommended
properties, which will be applied by default. These recommendations are taken from the guidelines by
Rijkwaterstaat Centre of Infrastructure. Hence, the framework provides a more efficient way of modelling than
through the DIANA graphical interface. While all properties have to be defined when working in the DIANA
graphical interface, the user only have to define selected input utilizing the framework. In general, performing
NLFEA requires experience to ensure quality, robustness and speed of the analysis. However, the provided
default properties make it possible for users with limited expertise to perform complex analysis.

 The flexibility of the framework is ensured through the use of object-oriented programming. Templates,
examples and explanations have been added to further improve the user-friendliness of the framework.
Furthermore, parametric studies can be performed using the framework. The user can select one of the input
parameters to be varied, while the rest stay the same. This is a very useful feature, which can be used to
perform sensitivity studies. To demonstrate this feature, a parametric study has been executed for a RC
beam with varying length. The results from this parametric study demonstrated how a higher load-bearing
capacity, than for sectional analysis, can be obtained using well-defined NLFEA.

 The framework has been validated by recreating two well-known published experimental tests. The
results of the NLFEAs have been compared to the experimental results, to validate the accuracy and
reliability of the provided solution strategies. In general, the results of the performed NLFEAs agreed well with
the experimental results. However, an even better agreement between the numerical and experimental
results could have been obtained. The significant input parameters could have been studied in greater detail
using the framework and tweaked in accordance with the experimental results. In general, the benchmark
studies highlight how the default parameters provide a great starting point for robust NLFEA of RC beams.

ACCESSIBILITY

Open

Preface

This master’s thesis is the final work of a five-year long master’s degree in Civil and Environmental
Engineering, at the Norwegian University of Science and Technology (NTNU). It has been carried
out over a period of 20 weeks during the spring semester of 2022, at the Department of Structural
Engineering. This thesis work provides 30 credits. Daniel Cantero has been the supervisor for this
thesis.

My motivation for working with this master’s thesis has been to achieve a better understanding of
the actual material behaviour of reinforced concrete, as well as nonlinear analysis. With no prior
experience with nonlinear finite element analysis (NLFEA), the learning curve has been steep.
Even so, it has been a rewarding process and I am certain that the knowledge I have gained from
working with this thesis will be useful in my professional life. Hopefully, this master’s thesis can
also prove to be useful for other students and serve as a starting point for getting familiar with
NLFEA of concrete structures.

I would like to thank my supervisor Daniel Cantero, for the support and guidance he has given
throughout the work with this master’s thesis. His availability for frequent meetings has been
greatly appreciated.

Trondheim, Juni 2022

Katja Hansen

i

Abstract

A Python/DIANA framework for robust nonlinear finite element analysis (NLFEA) of reinforced
concrete (RC) beams in 2D has been created. The framework consists of four scripts which feature
a combination of Python commands and specific DIANA script commands. The aim has been to
create a flexible, user-friendly, and robust framework for generating the DIANA workflow. This
includes modelling the geometry of beam, generating the mesh, defining and running the selected
analyses and generating output.

The framework provides a reliable way of approaching NLFEA of RC beams. It relies on recom-
mended properties, which will be applied by default. These recommendations are taken from the
guidelines by Rijkwaterstaat Centre of Infrastructure [1], which are based on long-term experience
and scientific research. Hence, the framework provides a more efficient way of modelling than
through the DIANA graphical interface. While all properties have to be defined when working in
the DIANA graphical interface, the user only has to define selected input utilizing the framework.
In general, performing NLFEA requires experience to ensure quality, robustness and speed of the
analysis. However, the provided default properties make it possible for users with limited expertise
to perform complex analysis.

The flexibility of the framework is ensured through the use of object-oriented programming. Tem-
plates, examples and explanations have been added to further improve the user-friendliness of the
framework. Furthermore, parametric studies can be performed using the framework. The user
can select one of the input parameters to be varied, while the rest stay the same. This is a useful
feature, which can be applied to evaluate the significance of different input parameters on the
results of the NLFEA. To demonstrate this feature, a parametric study has been executed for a
RC beam with varying length. The results from this parametric study demonstrated how a higher
load-bearing capacity, than for sectional analysis, can be obtained using well-defined NLFEA.

The framework has been validated by recreating two well-known published experimental tests. The
results of the NLFEAs have been compared to the experimental results, to validate the accuracy
and reliability of the provided solution strategies. In general, the results of the performed NL-
FEAs agreed well with the experimental results. However, an even better agreement between the
numerical and experimental results could have been obtained. The significant input parameters
could have been studied in greater detail using the framework and tweaked in accordance with the
experimental results. In general, the benchmark studies highlight how the implemented default
parameters provide a great starting point for robust NLFEA of RC beams.

ii

Sammendrag

Et Python/Diana-rammeverk for robust ikkelineær elementanalyse (NLFEA) av armerte betong-
bjelker i 2D har blitt laget. Rammeverket består av fire skript som inneholder en rekke instruksjoner
bestående av Python-kommandoer og spesifikke DIANA kommandoer. Målet har vært å skape et
fleksibelt, brukervennlig og robust rammeverk som kan brukes til å generere DIANA sin arbeidsflyt.
Dette inkluderer å modellere geometrien til bjelken, generere elementinndelingen (mesh), definere
og kjøre de valgte analysene og å generere utdata.

Rammeverket gir en pålitelig måte å tilnærme seg NLFEA av armerte betongbjelker. Det baserer
seg på anbefalte egenskaper, som vil bli brukt som standard. Disse anbefalingene er hentet fra
retningslinjene til Rijkswaterstaat [1], som baserer seg på lang erfaring og vitenskapelig forskning.
Følgelig gir rammeverket en mer effektiv måte å modellere på, enn via DIANA sitt grafiske bruker-
grensesnitt. Mens alle egenskaper må defineres når en arbeider i det grafiske DIANA-grensesnittet,
trenger brukeren kun å definere utvalgte inndata ved bruk av rammeverket. Generelt krever ut-
førelse av NLFEA erfaring for å sikre kvaliteten, robustheten og hastigheten til analysen. De
angitte standardegenskapene gjør det imidlertid mulig for brukere med begrenset ekspertise å ut-
føre komplekse analyser.

Fleksibiliteten til rammeverket er ivaretatt gjennom bruk av objekt-orientert programmering.
Maler, eksempler og forklaringer har blitt lagt til for å ytterligere forbedre brukervennligheten.
Videre kan parametriske studier utføres ved hjelp av rammeverket. Brukeren kan velge å variere
en av inndataparameterne, mens resten forblir de samme. Dette er en nyttig funksjon som kan
brukes til å evaluere betydningen forskjellige inndataparametere har på resultatene fra NLFEA-en.
For å demonstrere denne funksjonen er det blitt utført en parametrisk studie av en armert betong-
bjelke med varierende lengde. Resultatene fra denne parametriske studien illustrerte hvordan
høyere bæreevne, enn for analytisk beregnet tverrsnittskapasitet, kan bli oppnådd ved bruk av en
veldefinert NLFEA.

Rammeverket har blitt validert ved å gjenskape to velkjente publiserte eksperimentelle tester
av armerte betongbjelker. Resultatene fra NLFEA-ene har blitt sammenlignet med de eksperi-
mentelle resultatene for å validere nøyaktigheten og påliteligheten til de angitte løsningsstrategiene.
Generelt sett stemte resultatene fra de utførte NLFEA-ene godt overens med de eksperimentelle
resultatene. Bedre samsvar mellom de numeriske og eksperimentelle resultatene kunne imidler-
tid blitt oppnådd. De signifikante inndataparameterne kunne blitt studiert nøyere ved hjelp av
rammeverket, og justert i samsvar med de eksperimentelle resultatene. Generelt fremhever refer-
ansestudiene hvordan de implementerte standardparametrene gir et godt utgangspunkt for robust
NLFEA av armerte betongbjelker.

iii

Abbreviations

The following abbreviations have been used throughout this thesis:

NS-EN 1992-1-1:2004+A1:2014+NA:2021 [2] is referred to as EC2.

fib Model Code for Concrete Structures 2010 [3] is referred to as MC2010.

The DIANA FEA software, version 10.5, is referred to as DIANA.

Rijkwaterstaat Centre of Infrastructure is referred to as Rijkwaterstaat.

The four scripts that make up the framework are referred to as the Beam Script.

iv

Table of Contents
Preface i

Abstract ii

Sammendrag iii

Abbreviations iv

1 Introduction 1

1.1 Background . 1

1.2 Method . 1

1.3 Previous work . 2

1.4 Thesis outline . 2

I Theory and recommendations 4

2 Nonlinear finite element analysis 5

2.1 Finite element analysis . 5

2.2 Nonlinear finite element analysis . 5
2.2.1 Solution procedure . 6

2.2.1.1 Iterative solution method . 6
2.2.1.1.1 Newton-Raphson . 7
2.2.1.1.2 Line Search . 8

2.2.1.2 Incremental procedure . 9
2.2.1.2.1 Arc-length method . 10
2.2.1.2.2 Adaptive load incrementation 10

2.2.1.3 Convergence criteria . 12
2.2.1.3.1 Nonconvergence . 12

2.2.2 Finite element discretization . 13
2.2.2.1 Finite elements for concrete . 13
2.2.2.2 Finite elements for reinforcement 13

3 Modelling of reinforced concrete 15

3.1 Constitutive model for concrete . 15

3.2 Crack modelling . 16
3.2.1 Crack bandwidth for smeared cracking . 16

3.3 Total Strain Based Cracking . 16
3.3.1 Fixed and rotating crack models . 17
3.3.2 Poisson effect and shear behaviour . 18
3.3.3 Tensile behaviour . 19

3.3.3.1 Fracture energy . 19
3.3.4 Compressive behaviour . 19

v

3.3.4.1 Lateral influence on compression 20

3.4 Constitutive model for reinforcement . 21
3.4.1 Hardening . 21

3.5 Concrete-reinforcement interaction . 22

II Modelling in DIANA and Python 24

4 General information 25

5 Modelling in DIANA 26

5.1 DIANA workflow . 26

5.2 Importing Python modules in DIANA . 26

5.3 Structural interfaces . 27

5.4 Load step execution . 28

6 Modelling in Python 30

6.1 Object-oriented programming in Python . 30

6.2 List of objects . 31

III The Beam Script 33

7 General information 34

7.1 Units . 35

7.2 Coordinate system . 35

7.3 Input parameters . 35

7.4 Symmetry . 37

7.5 Templates . 37

7.6 Templates for bending tests . 38

7.7 Parametric study . 40

8 Script A: User input 42

8.1 Creating the project . 42

8.2 Creating the geometry . 42
8.2.1 Beam . 42
8.2.2 Reinforcement . 42

8.2.2.1 Cover . 43
8.2.2.2 Longitudinal reinforcement . 43
8.2.2.3 Transverse reinforcement . 45

8.2.3 Plates . 46

8.3 Loads . 47

8.4 Material models . 48
8.4.1 Concrete . 48
8.4.2 Reinforcement steel . 50
8.4.3 Steel for plates . 51

vi

8.5 Structural interfaces . 51

8.6 Mesh . 52

8.7 Analyses . 53
8.7.1 Linear analysis . 53
8.7.2 Nonlinear analysis . 54

8.8 Output from nonlinear analysis . 57
8.8.1 DIANA output . 57
8.8.2 Additional output . 58

IV Experiments to benchmark the script 60

9 General information 61

10 Case B1: Vecchio & Shim (2004) 62

10.1 Experimental setup and results . 62
10.1.1 Geometry and loading . 62
10.1.2 Material properties . 62
10.1.3 Experimental results . 63

10.2 Finite element model . 64
10.2.1 Geometry and loading . 64
10.2.2 Material properties . 65
10.2.3 Mesh . 66

10.3 Structural nonlinear analysis . 66

10.4 Results of nonlinear finite element analysis . 67
10.4.1 Load deflection . 67
10.4.2 Cracking . 68
10.4.3 Crushing . 69
10.4.4 Yielding of reinforcement . 69
10.4.5 Stress-strain curves of concrete . 71
10.4.6 Convergence behaviour . 71

10.5 Discussion . 72

11 Case B2: Collins and Kuchma (1999) 75

11.1 Experimental setup and results . 75
11.1.1 Geometry and loading . 75
11.1.2 Material properties . 76
11.1.3 Experimental results . 76

11.2 Finite element model . 77
11.2.1 Geometry and loading . 77
11.2.2 Material properties . 77
11.2.3 Mesh . 78

11.3 Structural nonlinear analysis . 79

11.4 Results of nonlinear finite element analysis . 79
11.4.1 Load deflection . 79
11.4.2 Cracking . 80

vii

11.4.3 Minimum principal stress . 81
11.4.4 Reinforcement stresses . 82
11.4.5 Convergence behaviour . 82

11.5 Discussion . 82

V Parametric study 85

12 General information 86

13 Parametric study on beam length 87

13.1 The beam . 87
13.1.1 Geometry and loading . 87
13.1.2 Material properties . 87

13.2 Finite element model . 88

13.3 Nonlinear finite element analysis . 89

13.4 Results of parametric study . 89

13.5 Discussion of parametric results . 90

14 Conclusions and recommendations 92

14.1 Conclusions . 92

14.2 Recommendations for future work . 93

Bibliography 94

Appendix 96

A User input . 96

B Parameric Study . 105

C Classes and Functions . 106

D Main . 112

E Case B1 - User input . 120

F Case B2 - User input . 123

G Parametric study - User input . 127

H Parametric study - Script B . 130

I Parametric study - Analytical analysis . 131

viii

1 Introduction

1.1 Background

The interest in nonlinear finite element analysis (NLFEA) of concrete structures has increased
steadily in the recent years, due to the wide use of concrete as a structural material and the
rapid development of faster and more powerful digital computers and computational programs.
The desire for more efficient and sustainable design has powered this interest. A more accurate
analysis of the damage development and capacity of a reinforced concrete (RC) structure can be
performed using NLFEA. In general, a higher load-bearing capacity than for linear analysis will
be obtained using NLFEA, as the nonlinear material properties of the concrete, such as yielding
and cracking, will be taken into consideration. The redistribution of stresses in the concrete after
cracking due to the bond between the concrete and reinforcement, usually results in an increased
strength and stiffness of the structure. Hence, a well-defined nonlinear analysis with a high level-of-
approximation allows for optimal design of RC structures, including increased material efficiency,
increased service life and reduced costs.

DIANA FEA (further called DIANA) is a finite element analysis solver with strong focus on
reinforced concrete analysis. It is possible to generate numerical models in DIANA by running
Python scripts. By combining Python and DIANA, a framework can be created to generate the
DIANA workflow. This workflow includes modelling the geometry, generating the mesh, running
analyses and generating output. Python scripting also allows for adjustable user input, such that
the same script can be used to model a large number of different RC beams. Hence, a more efficient
and flexible way of modelling in DIANA than through the graphical interactive interface, can be
achieved by combining DIANA and Python.

1.2 Method

For this master’s thesis, a Python/DIANA framework for robust NLFEA of RC beams in 2D has
been created. The framework consists of four scripts which features a combination of Python
commands and specific DIANA script commands. These scripts will be referred to as the Beam
Script. The aim has been to create a flexible, user-friendly and robust framework for generating
the DIANA workflow. Compared to linear analysis, NLFEA requires costly load incrementation
and iterative schemes. Informed choices therefore need to be taken in order to ensure the quality,
robustness and speed of the analysis. For this reason, default properties and values have been
provided in the script, based on recommendations for NLFEA of concrete structures [1]. This
enables the user to perform complicated analysis, even if they have limited expertise when it
comes to NLFEA of concrete structures. Furthermore, the framework features flexible user input,
which allows the user to easily model RC beams with different geometry and material properties.
The option to perform a parametric study, where one of the input parameters can be varied while
the rest stay the same, has also been implemented. To further improve the user-friendliness of
the Beam Script, explanations, examples and templates for creating the different components and
properties of the RC beam have been added. Object-oriented programming in Python has been
used to create a flexible structure for the Beam Script and to provide the default properties.

1

Chapter 1. Introduction 2

1.3 Previous work

Previous work that is worth mentioning when it comes to the approach for robust NLFEA of RC
structures, includes the guidelines by Rijkwaterstaat Centre of Infrastructure [1] and the master’s
thesis by Arjen de Putter [4]. On the initiative of the Dutch Ministry of Infrastructure and Water
Management, guidelines for NLFEA of concrete structures have been developed. These guidelines
are based on scientific research, consensus among peers, and long-term experience with nonlinear
analysis of concrete structures by the contributors to the guidelines [1]. The default properties of
the framework are based on the recommendations from the guidelines by Rijkswaterstaat. These
recommendations will also be referred to frequently in Part I, where theory and recommendations
for NLFEA of RC structures will be explained. The master’s thesis by de Putter includes the
development of 119 solution strategies for application of NLFEA for concrete structures [4]. A
beamscript [5] was created in this regard, and has been used as an inspiration for the created Beam
Script. The DIANA Documentation [6] has also been an important document for understanding
how to perform NLFEA of RC structures in DIANA.

1.4 Thesis outline

This master’s thesis is divided into five parts and consists of 14 chapters in total. This introduction
is followed by an account of the theory and recommendations for NLFEA of RC structures in Part I.
Part II will explain certain aspects of modelling in DIANA and Python. The Beam Script itself
will be presented in Part III. In Part IV, two well-known published experiments will be recreated
to benchmark the Beam Script, and in Part V a parametric study will be performed using the
Beam Script. The thesis is structured with a discussion in Chapter 10, Chapter 11 and Chapter 13,
relating to the obtained results of the performed NLFEAs using the created framework. Chapter 14
will recap the previous results and discussions, include some general observations from creating
and using the framework and provide recommendations for future work.

Part I - Theory and recommendations
This part addresses some of the key aspects of performing a NLFEA. Furthermore, the relevant
aspects and recommendations for finite element modelling of reinforced concrete that have been
applied in the created framework will be addressed. Part I consists of Chapter 2 and Chapter 3.

Part II - Modelling in DIANA and Python
This part will provide some general information about object-oriented programming in Python
and how this has been put to practical use in the Beam Script. Certain aspects of modelling in
DIANA will be explained as well. Part II consists of Chapter 4, Chapter 5 and Chapter 6.

Part III - The Beam Script
The Beam Script will be presented in this part. First, some general info about the Beam Script
will be explained in Chapter 7, then the input script will be explained in more detail in Chapter 8.
The latter will be structured similarly to the created input script. Part III consists of Chapter 7
and Chapter 8.

Part IV - Experiments to benchmark the script
The Beam Script has been validated in this part by recreating two well-known published experi-

3 1.4. Thesis outline

mental tests. The results of the NLFEAs will be compared to the experimental results, to validate
the accuracy and reliability of the selected solution strategy. Part IV consists of Chapter 9,
Chapter 10 and Chapter 11.

Part V - Parametric study
The framework allows for the execution of a parametric study, where one of the input parameters
can be varied. To demonstrate this feature, a very simple parametric study has been executed in
this part, where the length of a beam has been varied from 3m to 6m. Part V consists of Chapter 12
and Chapter 13.

Conclusions and recommendations
Chapter 14 summarizes the main features of the created DIANA/Python framework, as well as
the results and discussions from Part IV and Part V. Recommendations for future work are also
included in this final chapter.

Part I

Theory and recommendations

4

2 Nonlinear finite element analysis
This chapter addresses some of the key aspects of performing a NLFEA. The mentioned recom-
mendations are based on the guidelines by Rijkswaterstaat [1]. Special attention has been given
to the methods and procedures for NLFEA that has been used in the Beam Script.

2.1 Finite element analysis

The practical application of the finite element method (FEM) to solve engineering problems is called
finite element analysis (FEA). The finite element method gives an approximate numerical solution
to a boundary value problem, also called a field problem [7]. Mathematically, field problems are
expressed by partial differential equations (PDEs) or an integral expression. Compared to calculus,
FEM uses finite elements instead of infinitesimal elements, where the structure to be analysed is
divided into smaller pieces/elements. Each of these elements have a much simpler behaviour
compared to the whole structure. The behaviour of each element is defined by degrees of freedom
at the nodal points. The nodal points (nodes) are the connections between the different elements
of the structure. In reality, the behaviour of the structure is more complicated than what will be
represented by the elements, hence FEM gives an approximate solution. This solution can become
more accurate by increasing the number of elements and by carefully choosing the most suitable
type of elements [8].

2.2 Nonlinear finite element analysis

Nonlinear finite element analysis (NLFEA) will give a better level-of-approximation of a concrete
structure than linear analysis. NLFEA takes into account the nonlinear material properties of the
concrete and the reinforcement, like cracking and yielding, as well as the influence of changing
geometry on the structural response [9]. Hence, a more accurate analysis of damage development
and capacity of the reinforced concrete structure can be done. However, NLFEA requires, in con-
trast to the linear method, costly load incrementation and iterative schemes to find the structural
stiffness [8].

In nonlinear analysis one often consider three types of nonlinearity [7]:

• Material nonlinearity (E.g. nonlinear elasticity, plasticity, creep)

• Contact nonlinearity (E.g. changing contact forces)

• Geometric nonlinearity (E.g. large deformations changing the structural geometry)

All these cases are nonlinear as the stiffness, and sometimes load, become functions of the displace-
ment or deformation (the degree of freedom) [7]. For linear finite element method the structural
equation can be written as:

rKstDu “ rRs (2.1)

5

Chapter 2. Nonlinear finite element analysis 6

While, for nonlinear finite element method the stiffness and load become functions of {D}:

rKpDqstDu “ rRpDqs (2.2)

Since Equation 2.2 is nonlinear, the principle of superposition is no longer valid. A nonlinear
system of equations therefore have to be solved iteratively until equilibrium is reached. As with any
iterative method there is no guarantee that the iterations will reach convergence. However, if the
load steps are smaller (i.e. applying load incrementally), the method will have improved stability
[10]. To do a successful NLFEA, a better understanding of the equation-solving procedures is
required than for linear analysis [7]. The solving strategy might have to be changed, and several
attempts might have to be done in order to achieve a good enough analysis.

2.2.1 Solution procedure

To determine the state of equilibrium, the problem will be discretized in space (using finite ele-
ments) as well as in time (using increments). An iterative method is used to reach equilibrium at
the end of each increment. This combination is called an incremental-iterative solution procedure
[6]. To maintain the solution on the path of equilibrium, informed choices about the incrementation
procedure, the iterative solution method and the convergence criteria are needed [11].

For equilibrium to be reached, the external forces must equal to the internal forces, or the difference
between them have to be within an accepted tolerance.

fext “ fint (2.3)

If only one increment is considered, the internal and external forces will simply depend on the
displacement increment, ∆u [6]:

gp∆uq “ fextp∆uq ´ fintp∆uq “ 0, (2.4)

t`∆tu “ tu ` ∆u, (2.5)

where g is the residual forces.

2.2.1.1 Iterative solution method

A solely incremental solution procedure would require the displacement increment, ∆u, to be
very small in order to achieve an accurate solution. Combining the incremental process with an
iterative procedure, creating an implicit procedure, allows for a higher increment size [6]. The
iteration process for each increment is shown in Figure 2.1.

7 2.2. Nonlinear finite element analysis

Figure 2.1: Iteration process [6]

∆u for each increment is decided iteratively by adding δu increments until equilibrium or an
accepted tolerance is reached. For each iteration, the new ∆ui`1 can be calculated as follows:

∆ui`1 “ ∆ui ` δui`1 (2.6)

A direct approach can be used to find δu, based on the linear relationship presented in Equation 2.1:

δui “ K´1
i gi (2.7)

2.2.1.1.1 Newton-Raphson

Several iterative procedures are available when using DIANA. Newton-Raphson (NR) is one of the
most common methods and is the recommended method by Rijkswaterstaat [1]. The method is
a pure iterative procedure, and can be combined with for example a line search algorithm which
is explained in Section 2.2.1.1.2. For the Newton-Raphson iteration, the stiffness matrix Ki is
calculated based on the tangential stiffness of the structure [6]:

Chapter 2. Nonlinear finite element analysis 8

Ki “
Bg

B∆u
(2.8)

The two most common types of the Newton-Raphson methods are Regular and Modified Newton-
Raphson. These methods differ due to the point at which K is evaluated [6]. Both methods are
shown in Figure 2.2.

For the Regular Newton-Raphson method, K is evaluated at every iteration. In other words,
each evaluation of Ki is based upon the last predicted situation, even though this might not be an
equilibrium state. The Regular Newton-Raphson method is effective as it might exhibit a quadratic
rate of convergence, which means that the method converges to the final solution in few iterations.
On the other hand, each of these iterations might be relatively time-consuming. One therefore has
to be careful when choosing the increment size, and some degree of trial and error will most likely
have to be done in order to decide appropriate load increments.

The Modified Newton-Raphson method only evaluates K at the beginning of each increment. This
means that the stiffness matrix is always predicted based on an equilibrium state [6]. The method
usually has a slower convergence than the Regular Newton-Raphson method, and therefore needs
more iterations. However, every iteration is faster than Regular Newton-Raphson. In situations
where the Regular Newton-Raphson method does not converge, the Modified Newton-Raphson
method still might [6].

Figure 2.2: Newton-Raphson iterations a) Regular NR b) Modified NR [6]

2.2.1.1.2 Line Search

To help convergence, a line search algorithm can be applied. This method is particularly useful for
highly nonlinear structures, like reinforced concrete which experience cracking and steel yielding,
as this leads to rapid changes in the structural stiffness [8]. Line search may be used in all type
of NR methods. Instead of updating the previous solution by the entire increment, δu, as done in
Equation 2.6, this increment can be scaled by a factor, η, as shown in Equation 2.9. The procedure
for obtaining the optimal choice of η is called a line search algorithm. The line search obtains an
optimal incremental step length by minimising the residual force in the predicted direction [8].

∆ui`1 “ ∆ui ` η ¨ δui`1 (2.9)

9 2.2. Nonlinear finite element analysis

2.2.1.2 Incremental procedure

The two most common incremental procedures are load control and displacement control, as shown
in Figure 2.3. For each increment, the applied load on the system is increased. When using load
control, this is done directly by increasing the external load vector fext. For displacement control,
the external load is put on the structure by prescribed displacements [6].

Figure 2.3: Incremental procedures a) Load control b) Displacement control [6]

Looking at the load-displacement graph after a nonlinear analysis, simply applying load control
will not provide relevant results after the maximum point (failure load). After this point less
force would be needed to displace the structure further, as can still be shown in the results for
displacement control. With load control the only possibility is to further increase the external
force with each load step, while displacement control will show that it takes less load to displace
the structure after this point.

Both load control and displacement control might fail at critical points, as shown in Figure 2.4a.
At the critical points an instability might cause the analysis to fail, due to either snap-through
(load control) or snap-back (deformation control) behaviour [8]. As shown in Figure 2.4b, the
analysis might fail to converge after the critical point, or end up following a misleading path. For
the load control method, the analysis may fail to converge after point a or trace the path o´a´d.
For the displacement control method, the analysis may fail to converge after point b and describe
the path o ´ a ´ b ´ c [12].

Chapter 2. Nonlinear finite element analysis 10

(a) Critical points on equilibrium path [8]
(b) Snap-back (o-a-b-c) and snap-through (o-a-d)
behaviour [12]

Figure 2.4: Critical points where load and displacement control might fail

Even though displacement control is a more robust method, the guidelines does in general recom-
mend load control [1]. Displacement control can be relevant for research-oriented analyses, where a
concentrated load can be replaced by an equivalent displacement. Generally, displacement control
is not recommended as it will restrict the displacement of a point to a decided value, which is not
suited for multiple loads and/or distributed loads. Load control is therefore recommended, to take
distributed loads, like dead weight, into consideration. A force controlled analysis normally results
in a requirement for arc-length control, which is further discussed in Section 2.2.1.2.1. If arc-length
control is not applied together with load control, the analysis will not be able to capture softening
behaviour without diverging [4]. This is essential for a correct model of the concrete material, as
further discussed in Chapter 3.

2.2.1.2.1 Arc-length method

The arc-length method is a variation of the iteration scheme, which adapts the increment size [6].
It is recommended for stability reasons, as it allows the simulation to continue beyond a local or
global maximum in the load-deflection response [1]. The arc-length method is able to pass the
points where snap-back and snap-through will happen for the other control methods, as shown
in Figure 2.4b. With the arc-length method both displacement and load increments are managed
at the same time, by controlling the "arc-length" of the combined displacement-load increment
during the equilibrium iterations [8]. The idea behind the method is that instead of using fixed
increments, as for load and displacement control, both the load and displacement increments
are modified during iterations. The arc-length method is especially useful when combined with
adaptive load increments [6].

2.2.1.2.2 Adaptive load incrementation

The load incrementation can be done manually, however this often proves to be problematic when
the solution path is nonlinear. Larger increments may be suitable when the equilibrium path is
almost linear, and smaller ones are needed where the path is highly nonlinear [8], as exemplified
in Figure 2.5. Rijkswaterstaat therefore recommends using an automatic procedure [1]. The load
increment, ∆λ, leading to the first crack can easily be decided with a linear-static analysis. The

11 2.2. Nonlinear finite element analysis

subsequent increments should be determined using an automatic procedure. Instead of treating
the increment size as a fixed value, the automatic procedures uses adaptive loading to allow for
result dependent increment sizes [6]. Usually the amount of nonlinearity of an increment is not
known beforehand, and the optimal increment size can therefore not be fixed before the analysis
starts. Two of the most common automatic procedures for adaptive loading are the iteration based
method and the energy based method.

Figure 2.5: A nonlinear solution path [8]

The iteration based method can be used for all types of loading. The method is based upon
a user-decided ’desired number of iterations’, Nd, and the increment size can be made larger or
smaller depending on the number of iterations of the previous increment, tN . The method is
suitable for passing snap-through behaviour and more stable in case of softening behaviour [6].
The size of the the new load increment, t`∆t∆λ0, is calculated as follows [6]:

t`∆t∆λ0 “
t∆l

a

δuT
0 δu0

p
Nd

tN
q

γ

(2.10)

t∆l is the length of the predictor displacement of the previous step and γ is usually set to 0.5.

The energy based method can only be used in combination with arc-length control. This method
calculates the vector product of the load increment and the displacement increment (the work
done), such that the first prediction equals the final prediction of the previous step [6]. The
method is shown in Figure 2.6.

Chapter 2. Nonlinear finite element analysis 12

Figure 2.6: Work increment used in energy based adaptive loading [6]

tW equals the final vector product of the previous step, while t`∆tW̃ is the first prediction of the
vector product for the current step.

2.2.1.3 Convergence criteria

For defining when equilibrium is satisfied, DIANA offers several convergence norms. The iteration
process will be stopped in case of convergence. Besides convergence, the iteration process will also
be stopped if the maximum number of iterations (decided by the user) has been reached, or in
case of divergence. The convergence criteria must be carefully chosen. Too loose criteria will give
inaccurate results, while too strict criteria will be time-consuming and not very economical [8].
The most common convergence criteria in NLFEA are based on displacements, residual forces or
energy. In general, a displacement based criteria is not recommended as it can be misleadingly
satisfied by a slow convergence rate [8]. Therefore, Rijkswaterstaat recommends using a force norm
combined with an energy norm, and to avoid using a displacement norm [1]. When prescribing
multiple convergence norms, DIANA will terminate the iteration process if one of the criteria is
satisfied, unless otherwise specified [6].

The force norm is the Euclidian norm of the out-of-balance force vector g, while the energy norm
uses the internal force. The norms are defined as follows [6]:

Force norm ratio “

a

gT
i gi

a

gT
0 g0

(2.11)

Energy norm ratio “

∣∣∣∣∣δuT
i pfint,i`1 ` fint,iq

∆uT
0 pfint,1 ` fint,0q

∣∣∣∣∣ (2.12)

2.2.1.3.1 Nonconvergence

In practical application of NLFEA, steps with nonconvergence are almost unavoidable [13]. Suc-
cessive cracking and local effect may lead to convergence issues, but do not necessary mean failure.
Rijkswaterstaat advises that load increments which do not completely fulfil the convergence criteria
still can be included, if they are followed by a converged load increment and a plausible explanation

13 2.2. Nonlinear finite element analysis

for the nonconvergence is provided [1]. In case of nonconvergence, one could check the norms and
see how far from convergence the results are. To improve convergence the number of iterations can
be increased, the size of the increments reduced or one could change the iteration method [6].

2.2.2 Finite element discretization

The model of the structure to be analysed is discretized in space using finite elements. It generally
requires skills and experience to be able to define a finite element (FE) mesh that is cost-effective
and provides an accurate enough solution [8]. The quality of the analysis is influenced by the shape
of the elements, the degree of interpolation of the displacement field, and the numerical integration
scheme [1].

2.2.2.1 Finite elements for concrete

Rijkswaterstaat recommends using elements with a quadratic interpolation of the displacement
field. These elements have three nodes at each edge. The preferred element for analysis of a RC
beam in 2D is an 8-node quadrilateral element [1], as shown in Figure 2.7. This element is called
CQ16M and is an eight-node quadrilateral isoparametric plane stress element. The isoparametric
formulation allows the quadrilateral element to have nonrectangular shape and curved sides [14].
By default DIANA applies 3 ˆ 3 Gaussian integration for CQ16M, which is equivalent to a higher
integration scheme [6]. Rijkswaterstaat recommends full integration, as a reduced integration
scheme can lead to spurious modes when the RC beam starts to experience extensive cracking.

Figure 2.7: CQ16M [6]

The size of the mesh is important, as it amongst others influences how the stress-strain relationship,
the geometry and the expected damage distribution are captured [1]. The minimum element size
should be 1.5 times the maximum aggregate size [1]. However, most often the minimum element size
is governed by practical considerations, as smaller elements will highly increase the computational
time. The maximum element size should be chosen such that a relatively smooth stress fields can
be calculated. For 2D modelling of beams, at least 6 elements over the height of the beam should
be used [1]. To achieve mesh independence, the size of the elements should be such that the results
with elements of size l are equal to the results when using elements of size l{2 [15]. In other words,
further refinement of the mesh should not influence the results of the analysis.

2.2.2.2 Finite elements for reinforcement

The reinforcement elements adds stiffness to the finite element model. Embedded reinforcement
elements are recommended [1]. These elements are embedded in the structural elements, therefore

Chapter 2. Nonlinear finite element analysis 14

having no degrees of freedom of their own [6]. This technique allows the lines of the reinforcement
to deviate from the lines in the mesh. The reinforcement elements should be compatible with
the elements in which the reinforcement is embedded. Hence, a quadratic interpolation of the
displacement field should be used, as for the finite elements for concrete. As the reinforcement
elements are embedded, both regular and reduced integration can be used without the risk of
spurious modes [6].

3 Modelling of reinforced concrete
This chapter explains the relevant aspects and recommendations for finite element modelling of
reinforced concrete that have been applied in the Beam Script. Special attention has been given
to the nonlinear properties of the concrete, as the framework aims to model the behaviour of RC
beams with a high level-of-approximation. With this regard, crack modelling has been given special
attention in this chapter.

3.1 Constitutive model for concrete

A constitutive model, also called a material model, describes mathematically the material responses
to mechanical (and/or thermal) loading, giving the stress-strain relationship of the material [16].
Constitutive models are a simplification of the actual material behaviour. Depending on the
purpose of the analysis and the desired accuracy, a suitable material model can be chosen.

Reinforced concrete is a quasi-brittle material [6]. The behaviour of the material is largely in-
fluenced by tensile cracking and compressive crushing of the concrete, as well as yielding of the
reinforcement. In addition, the long-term effects of shrinkage and creep also characterize the con-
stitutive behaviour of the material. For the scenarios presented in this thesis, the long-term effects
need not be considered. The material response of simple reinforced concrete quickly becomes dif-
ficult to model correctly, as the behaviour is not straightforward. During loading new cracks may
form, already existing cracks may propagate or close, and the stresses in the reinforcement bars
will vary with the crack development [17]. In a cracked concrete, crack surfaces will be able to
transfer shear and compression at contact points, while tension will not be transmitted. Tensile
stresses will however still exist in the concrete laying between the cracks. An accurate constitutive
model needs to take all this into consideration.

Figure 3.1: Typical stress-strain curve of concrete [18]

A typical stress-strain curve of concrete [18] is shown in Figure 3.1, with compression denoted as
positive on the right-hand side and tension on the left-hand side. σcu is the ultimate compressive
strength of concrete, often called the crushing strength. σc0 is the compressive strength of concrete
that marks the onset of plastic deformation, thus the theoretical end of the elastic branch in the
stress-strain curve. σtu is the ultimate tensile capacity, beyond which cracking will occur.

15

Chapter 3. Modelling of reinforced concrete 16

3.2 Crack modelling

The two main approaches for modelling plain concrete are discrete and smeared cracking. Dis-
crete cracking is directly modelled as a discontinuity between two elements, using an interface [15].
The material model then defines how the crack behaves. In contrast, using smeared cracking, the
cracked material is modelled as a continuous, anisotropic medium. A discrete model is recommen-
ded when the places the cracks will occur is known, as for example in a laboratory experiment.
The behaviour, like opening, sliding and closing, of the specified cracks can then be monitored.
Smeared cracking, on the other hand, is used when one does not know exactly where the cracks
will occur. This method is the most commonly used approach [15]. Cracking is described by means
of stress - (crack) strain relations for smeared cracking [15]. The smeared cracking assumption can
be used for both compression failure and shear failure, and is the recommended method for crack
modelling [1].

3.2.1 Crack bandwidth for smeared cracking

One of the challenges of smeared cracking is mesh sensitivity at material level [15]. The element size
determines the amount of energy that is dissipated with the crack. A solution to this problem is
to introduce the crack bandwidth, hcr. This is a commonly used parameter in constitutive models
with a smeared crack approach, and can be described as a length scale used to normalise the effect
of the element size in energy redistribution [15]. The crack bandwidth, hcr, also known as the
equivalent length, heq, should be determined using an automatic procedure [1]. DIANA offers two
automatic methods: Rots’ element based method and Govindjee’s projection method. While Rot’s
method takes the shape and other properties of the element into consideration, Govindjee’s method
also accounts for the direction of the crack [4]. Therefore, Godvindjee’s method is preferred [1].
Figure 3.2 shows examples of crack bandwidths when the crack direction is taken into consideration.
For a square-shaped quadratic quadrilateral element, the estimated crack bandwidth is hcr “

?
2h.

Figure 3.2: Crack bandwidths when crack orientation is considered [1]

3.3 Total Strain Based Cracking

DIANA offers several models for smeared cracking. Rijkswaterstaat recommends using a total
strain based crack model (TSCM) [1]. This model describes the stress as a function of the strain.
The method is based upon the modified compression-field theory presented by Vecchio & Collins
[17] and its 3D extension by Selby & Vecchio [19]. The total strain based crack model is commonly
used due to its robustness [15]. The input for the TSCM consist of two parts: i) the basic material

17 3.3. Total Strain Based Cracking

properties, like the Poisson’s ratio and the Young’s modulus, and ii) definitions of the material
behaviour in tension, compression and shear. The material properties should be obtained from EC2,
and material properties that are not described in EC2 should be taken from MC2010 [1]. Lateral
influence models may also be applied to describe the effect of lateral cracking and confinement on
the material behaviour.

3.3.1 Fixed and rotating crack models

There are three variants of the TSCM: fixed, rotating and rotating to fixed. For the last variant, a
threshold strain decides when to switch from a rotating model to a fixed model. For all variants, the
stress is evaluated in the directions which are given by the crack directions [6]. The crack directions
are either fixed or continuously rotating with the principal directions of the strain vector.

The rotating crack model is a computational procedure with a coaxial stress-strain concept [6].
The crack plane rotates to follow the principal directions, as shown in Figure 3.3. The principal
plane will always coincide with the crack plain, so no shear component will be present.

Figure 3.3: Stresses in cracked concrete [17]

The fixed crack model has a fixed stress-strain concept. The stress-strain relations are assessed
in a fixed coordinate system, which is fixed upon cracking [6]. In the event of using a fixed crack
model, this should be combined with an appropriate shear retention model [1], which is further
explained in Section 3.3.2.

According to Rijkswaterstaat, a rotating crack model should be used. The argument is that a
rotating model will result in a lower-limit failure load and suffer less from spurious stress locking
[1]. Stress locking is an error that can occur in a finite element analysis where a smeared crack
model is used. Since the cracks are modelled as a distributed effect and not as an actual geometric
discontinuity, reduction of stress in a cracked integration point will not cause a relaxation of the
neighbouring elements [4]. Hence, deformation of the cracked element results in spurious stresses
being ’locked’ in around the localised cracks, making the elements appear stiffer than they actually
are. Figure 3.4 shows an example of this behaviour.

Chapter 3. Modelling of reinforced concrete 18

Figure 3.4: Severe stress locking around a fixed crack [4]

According to de Putter et. al. [13], the most suitable variant of the TSCM depends upon the
failure mode. A rotating crack model performs well for the relatively ductile failures in beams with
stirrups, while a fixed crack model performs better for the more brittle failures in beams without
stirrups [13].

3.3.2 Poisson effect and shear behaviour

Uncracked concrete can be modelled as a linear-elastic isotropic material. The stress-strain relation
is then given by the Young’s modulus, E, and the Poisson’s ratio, ν. While E is derived from the
characteristic cylinder compressive strength, ν “ 0.2 can be used for the initial Poisson’s ratio
regardless of the concrete strength [1]. However, as the concrete starts cracking, these parameters
should be reduced [1]. The Poisson effect will cease to exist in cracked concrete, that is to say the
stretching of a cracked direction will no longer lead to contractions in the perpendicular directions
[6]. In DIANA, an orthotropic formulation is used to model the reduction of the Poisson’s ratio.
Furthermore, the stiffness of the concrete will decrease as the cracking increases. The cracked
concrete should be modelled using an orthotropic material model, which the rotating and fixed
crack model are examples of.

For a fixed crack model, shear behaviour has to be modelled as well [1]. As the concrete cracks,
the shear stiffness will normally decrease. Therefore, a suitable shear retention model has to be
chosen. A shear retention model based on the damage due to cracking has proven to be the most
appropriate according to de Putter [4], when using a fixed crack model to model beams without
stirrups. The damage based recalculation of the shear modulus, G, is based on the reduced Young’s
modulus and reduced Poisson’s ratio [4]:

Gcr “
Ecr

2p1 ` νcrq
(3.1)

19 3.3. Total Strain Based Cracking

3.3.3 Tensile behaviour

Concrete in tension experiences softening due to cracking, which is a nonlinear behaviour. Rijk-
swaterstaat recommends using an exponential-type diagram for the softening [1]. This is a better
representation of the nonlinear behaviour, than for example a bilinear diagram. The preferred
curves are the exponential softening curve, shown in Figure 3.5a, or the nonlinear softening curve
according to Hordijk, shown in Figure 3.5b. Both tension softening curves are based on the fracture
energy, Gf . The functions are related to the crack bandwidth, hcr, as is common in a smeared
crack model. Note that the ratio Gf {hcr determines the actual softening.

Figure 3.5: Tension softening curves of concrete [6]

3.3.3.1 Fracture energy

In fracture mechanics one usually distinguishes between three different modes of fracture [20]:
Mode I: opening (tension), Mode II: sliding (in-plane shear) and Mode III: tearing (out-of-plane
shear). These modes are shown in Figure 3.6. Mode I is the main fracture form of concrete, it
is the fracture mode of concrete subjected to tension. The fracture energy used for the tension
softening curves is the mode-I tensile fracture energy, which can also be denoted GI

f . The fracture
energy is defined as the energy required to propagate a tensile crack of unit area [3].

Figure 3.6: Fracture modes in fracture mechanics [20]

3.3.4 Compressive behaviour

The compressive behaviour of concrete is complex to model. For example does the boundary
conditions to some extent influence the compressive behaviour [1]. Rijkswaterstaat recommends
using a parabolic stress-strain diagram with a softening branch based on the compressive fracture

Chapter 3. Modelling of reinforced concrete 20

energy, Gc, as shown in Figure 3.7 [1]. Similar to the tensile behaviour, the ratio Gc{h is used to
model the softening. The crushing bandwidth, h, is determined similarly to the crack bandwidth,
hcr. However, it should be based on the principal compression strain direction [1].

Figure 3.7: Parabolic compression curve [6]

The recommended parabolic compression curve uses three characteristic strain values, α [6]. The
strain αc{3, which marks the point at which one-third of the maximum compressive strength, fc,
is reached, is defined as:

αc{3 “ ´
1

3

fc
E

(3.2)

αc marks the point of the maximum compressive strength, and is defined as:

αc “ ´
5

3

fc
E

(3.3)

αu is the ultimate strain, at which point the curve is completely softened:

αu “ minpαc ´
3

2

Gc

hfc
, 2.5αcq (3.4)

Note that the fracture energy and the crushing bandwidth determine the softening part of the
curve only [6], while αc{3 and αc can be calculated independently of these parameters.

3.3.4.1 Lateral influence on compression

Lateral confinement increases the compressive strength and ductility of the concrete, while lateral
cracking reduces the compressive strength and ductility [4]. While the effects of lateral confinement
can be ignored as a conservative assumption, the effects of lateral cracking have to be included.
Even so, to model the nonlinear behaviour of concrete as accurately as possible, both effects should
be modelled. For lateral cracking a minimum reduction factor of 0.4 is recommended [1], such that
a minimum of 40 % of the strength remains. This is exemplified in Figure 3.8, which describes the
relation for reduction due to lateral cracking described by Vecchio & Collins in 1993 [6].

21 3.4. Constitutive model for reinforcement

Figure 3.8: Vecchio & Collins reduction factor due to lateral cracking (1993) [6]

3.4 Constitutive model for reinforcement

For the nonlinear modelling of the reinforcement, an appropriate description of the yielding of the
reinforcement is needed. Rijkswaterstaat recommends using an elasto-plastic material model with
hardening for the reinforcement steel [1]. In DIANA, the standard Von Mises elasto-plastic model
can be used to model the embedded reinforcement. The Von Mises yield function is given by the
following formulation [6]:

fpσ,η, κq “ σv ´ σ̄pκq, (3.5)

where ¯σpκq is the uniaxial yield strength, κ is the internal state variable and η is the back stress.
For further information about these parameters, please refer to the Diana Documentation (section
54.3) [6]. The equivalent Von Mises stress, σv, is defined as follows for plane stress [21]:

σv “

b

σ2
x ´ σxσy ` σ2

y ` 3τ2xy (3.6)

σx is the x-component of the normal stress, σy is the y-component of the normal stress and τxy is
the shear stress. The relation between the internal state variable κ, seen in Equation 3.5, and the
plastic process, is governed by the hardening hypothesis. DIANA offers two hardening hypotheses:
strain hardening and work hardening. For more information about these hypotheses, please refer
to the DIANA Documentation [6].

3.4.1 Hardening

The hardening can be approximated by a bilinear diagram. Optionally, rupture could be modelled
by defining steep softening branches in the diagram. If rupture is not modelled, a post-analysis
check is needed [1]. Figure 3.9 shows the suggested stress-strain curves in EC2 for normal design of
the reinforcement, for both tension and compression. Curve A displays an idealised bilinear stress-
strain diagram for the reinforcement steel, where the characteristic yield strength, fyk, marks the
onset of plastic deformation. The slope after this point is dependent on the hardening behaviour.

Chapter 3. Modelling of reinforced concrete 22

Mean or "measured" values for the tensile strengths can also be used to define the bilinear diagram.

Figure 3.9: Idealised and design stress-strain diagram for reinforcement steel from EC2 [2]

If no hardening specifications are available, the minimum values for k and the characteristic ulti-
mate strain, εuk, can be taken from Annex C in EC2 [1]. The properties presented in Table 3.1
are retrieved from EC2, based on the reinforcement class.

Table 3.1: Excerpt from Table C.1 in EC2: Properties of reinforcement [2]

Class A B C

Characteristic yield strength fyk 400 to 600

Minimum value of k “ pft{fyqk ě 1.05 ě 1.08
ě 1.15

< 1.35

Characteristic strain at maximum force, εuk (%) ě 2.5 ě 5.0 ě 7.5

3.5 Concrete-reinforcement interaction

The concrete-reinforcement interaction is an important characteristic of reinforced concrete. While
plain concrete has a low tensile strength and a more brittle behaviour, reinforced concrete has a
higher tensile capacity and increased ductility thanks to the reinforcement. The bond between
the concrete and the reinforcement allows for a redistribution of stresses between the concrete
and the reinforcement after cracking occurs [22]. The redistribution continues gradually during
the formation of secondary cracks, until a stabilised crack pattern has been developed [23]. In
fact, the stiffness of the reinforced tensile member, when the crack pattern has stabilised, is higher
than the stiffness of the reinforcement bar alone [1]. This effect is called tension stiffening, and is
demonstrated in Figure 3.10. The stiffness of the uncracked concrete between the cracks contributes
to the stiffness of the tensile member. Tension stiffening not only has a significant influence on
the nonlinear behaviour of reinforced concrete under stress, but also contributes to an increased
flexural strength, increased shear strength and increased stiffness of the RC structure [22].

23 3.5. Concrete-reinforcement interaction

Figure 3.10: Tension stiffening [22] Phase 1: uncracked concrete, Phase 2: cracking of concrete
(unstable), Phase 3: stabilised crack pattern

As can be seen from Figure 3.10b, the tension stiffening effect is at its maximum at the begin-
ning of the cracking (Phase 2), and is then gradually reduced with the increasing displacement.
Rijkswaterstaat declares that tension stiffening has to to be taken into account when modelling
reinforced concrete, however with a small enough element size this is already accomplished by the
tension softening curve [1], which is described in Section 3.3.3. The element size should be lower
than the estimated average crack spacing, or else the fracture energy should be related to the crack
spacing and element size [1]. EC2 provides guidelines for calculation of the crack spacing [2].

Part II

Modelling in DIANA and Python

24

4 General information
The created framework features a combination of Python commands and specific DIANA script
commands. All operations in DIANA are logged as Python commands, and it is possible to run
saved Python scripts to create and analyse models in DIANA. All the script commands specific for
DIANA can be found in the DIANA Documentation - "Appendix B" [6]. By combining Python and
DIANA, a framework can be created to generate the DIANA workflow. This workflow includes
modelling the geometry, generating the mesh, running analyses and generating output. Hence,
a more efficient, but still user-friendly way of modelling in DIANA than through the graphical
interactive interface can be achieved. To improve the robustness of the NLFEA and make the
modelling less dependent on the experience of the user, the framework contains default properties
based on recommendations for NLFEA of RC structures. Object-oriented programming has been
used to provide the default input.

This part will provide some general information about object-oriented programming in Python
and how this has been used to structure the Beam Script. Moreover, certain aspects of modelling
in DIANA will be explained. Part II is by no means intended to serve as a complete guide on
how to use DIANA and Python. For more in detail information about modelling in DIANA and
Python, please refer to the DIANA Documentation [6] and "Python.org". On the contrary, Part II
is meant as a help for new users that wish to use the created framework to model in DIANA, as a
selection of the obstacles faced as a new user when modelling in DIANA will be addressed.

Part II will be divided into two chapters: first certain aspects of modelling in DIANA will be
explained, then modelling in Python using object-oriented programming will be discussed.

25

https://www.python.org/

5 Modelling in DIANA

5.1 DIANA workflow

DIANA is a finite element analysis solver with strong focus on reinforced concrete analysis. The
program has numerous elements, materials and solution procedure libraries, as well as a graphical
interactive environment for pre- and post-processing. All operations in the Diana Interactive
Environment (DianaIE) are logged as Python commands, and the DianaIE can be used by typing
Python commands directly or by running saved Python scripts , as well as by using the graphical
interactive interface [6].

The DIANA Documentation describes the preferable workflow in DianaIE as follows [6]:

1. Start a new project

2. Model the geometry

3. Generate the mesh

4. Define and run the analysis

5. Inspect the results

6. Generate a report

The Beam Script has been structured with a similar workflow, to ensure a smooth transition
between working directly in the graphical interface and using the framework.

5.2 Importing Python modules in DIANA

Before using the framework for the first time, some Python modules have to be installed in DIANA.
The needed modules are NumPy and Matplotlib. These modules enables amongst others working
with arrays and graphical plotting. The modules can be installed in the following manner [23]:

1. Open the DIANA Command Box (via the start menu on your computer)

2. Choose "Run as administrator" (Kjør som administrator)

3. Paste the following lines into the command box:

%DIAPATH_W%\python\python -m pip install -t %DIAPATH_W%\modules numpy

%DIAPATH_W%\python\python -m pip install -t %DIAPATH_W%\modules matplotlib

In general, the following line can be used to install third party Python modules in DIANA:

%DIAPATH_W%\python\python -m pip install -t %DIAPATH_W%\modules <name of module>

26

27 5.3. Structural interfaces

Figure 5.1 and Figure 5.2 show how this would look like using the Windows 11 operating system.

Figure 5.1: Running DIANA Command Box as administrator

Figure 5.2: DIANA 10.5 Command Box

5.3 Structural interfaces

Connections in DIANA are used to define interaction between the boundaries of different shapes. A
structural interface is a type of connection. The material model for the structural interface defines
the normal and shear relation between the tractions (i.e. stresses) and relative displacements
across the boundary [6]. This can be a linear or a nonlinear relation. In the Beam Script, 2D-line
interfaces have been used to define the interactions between the concrete beam and the steel plates.
The linear constitutive relation between the tractions and the relative displacements for a 2D line
interface is shown in Equation 5.1 [6]. The nonlinear relation of the interface can be specified using
a diagram or reduction functions.

#

tn

tt

+

“

«

kn 0

0 kt

ff #

∆un

∆ut

+

(5.1)

The traction vector, t, consists of the normal traction, tn, and the shear traction, tt. The relative
displacement vector, ∆u, consists of the normal relative displacement, ∆un, and the shear relative
displacement, ∆ut. The normal stiffness is denoted kn and the shear stiffness is denoted kt.

Chapter 5. Modelling in DIANA 28

For the finite element model, loads and supports are applied using load and support plates. These
plates have to be defined in such a way that spurious local stress concentrations, which can cause
local failure in the plates, are avoided [1]. This can be done using a no-tension/no-friction interface
between the beam and the plates. According to the guidelines by Rijkswaterstaat:

The compressive interface stiffness [i.e. the normal stiffness in compression] should be
set relatively high, e.g. 1000 times more stiff than a neighbouring concrete element:
1000 Ec{h, in which h is the size of the neighbouring concrete element. The interface
shear stiffness should be set relatively low. [1]

Figure 5.3 demonstrates the importance of using interfaces between the steel plates and concrete
beam. Figure 5.3 displays the crack pattern at failure of Case B1, which is one of the benchmark
studies presented in Chapter 10, with and without the use of structural interfaces. The only
difference between the two models is whether or not structural interfaces have been applied. As
can be seen in Figure 5.3a, the stresses localise around the support plate when no interface has
been created, and the beam fails due to local failure near the plate. Hence, the expected crack
pattern which can be seen in Figure 5.3b is not achieved, and the experimental setup of the beam
and its boundary conditions are not modelled correctly.

Figure 5.3: Failure crack pattern of Case B1 a) without structural interfaces b) with structural
interfaces

5.4 Load step execution

Loads on the structure should be applied according to the specifications in the Eurocode. Dead
weight and permanent loads should be applied first, as a separate initial load case [1]. Then live
loads can be applied, in sequential load steps. The command for initiating a structural nonlin-
ear analysis in DIANA is denoted NONLIN, and can contain several EXECUT-blocks. The EXECUT-
command in DIANA specifies in which order to execute the load steps. Each of these EXECUT-
blocks could again be divided into load increments and substeps. In the Beam Script, the first
EXECUT-block corresponds to the self-weight of the concrete beam, while the second EXECUT-block
corresponds to the applied point loads. The EXECUT-blocks used in the command sequence for ap-

29 5.4. Load step execution

plication NONLIN in the Beam Script are presented in Script 5.1. The dead-weight loading is applied
in one load step, with the step size explicitly set to 1 for this EXECUT-block. The load steps for the
second EXECUT-block, containing the point loads, are automatically determined by DIANA using
adaptive load increments. The default maximum number of steps for the second EXECUT-block is
set to 150 load steps. For further information about the properties of the NLFEA, see Section 8.7.2.

1 addAnalysis (analysis . name)
2 addAnalysisCommand (analysis . name , " NONLIN " , analysis . command)
3

4 # Dead weight
5 # Applied in one increment
6 renameAnalysisCommandDetail (analysis . name , analysis . command , " EXECUT (1) " , selfweight . name)
7 addAnalysisCommandDetail (analysis . name , analysis . command , " EXECUT (1)/ LOAD / LOADNR ")
8 setAnalysisCommandDetail (analysis . name , analysis . command , " EXECUT (1)/ LOAD / LOADNR " , 1)
9

10 # Point loads
11 setAnalysisCommandDetail (analysis . name , analysis . command , " EXECUT / EXETYP " , " LOAD ")
12 renameAnalysisCommandDetail (analysis . name , analysis . command , " EXECUT (2) " , " Loads ")
13 addAnalysisCommandDetail (analysis . name , analysis . command , " EXECUT (2)/ LOAD / LOADNR ")
14 setAnalysisCommandDetail (analysis . name , analysis . command , " EXECUT (2)/ LOAD / LOADNR " , 2)

Script 5.1: Creating execute blocks for NLFEA

6 Modelling in Python

6.1 Object-oriented programming in Python

One of the main motivations behind creating the Beam Script, was to create a framework with easily
changeable input parameters and default properties based on recommendations. Object-oriented
programming has been utilised to provide these features and to structure the Beam Script.

Object-oriented programming is a way of structuring a script. Sets of properties and character-
istics be can created and related to individual objects. For example, all parameters relating to
the reinforcement, like the yielding strength, cross section area and the Youngs’s modulus of the
reinforcement steel, have been bundled together with the use of object-oriented programming. The
first step when it comes to this way of structuring a script is to define classes, from which indi-
vidual objects with the same properties can be created. The Beam Script consists of four scripts,
where Script C has been used to define the classes. A class works as a blueprint for creating actual
objects [24]. In Script C, classes have been created for amongst others the beam, the reinforce-
ment, the loads and the different material models. Default properties have been defined for the
different classes. This makes sure that for example all steel plates will have the same material
properties and geometry, without having to define this for each individual plate. Script 6.1, which
is an excerpt from Script C, shows the class definition of the material model for the steel plates.
By default, all created plate objects will have the material properties listed in line 3-5 of Script 6.1.

1 class Steel_Plates () : # Material model for steel plates
2 #A linear - elastic behaviour is assumed
3 material = " MCSTEL "
4 material_model = " ISOTRO "
5 density = 0 # Do not wish to take the weight of the plates into concideration

Script 6.1: Class of material model for steel plates

Script 6.2 shows a simplified example of the class Plates and how to create objects from this class.
The actual class Plates in Script C has a more complex setup than the class definition shown in
Script 6.2. By default, the translations of the support plates are fixed in both x- and y-direction, as
can be seen from line 4 - 5 of Script 6.2. Line 7 - 8 of Script 6.2 demonstrate how to create objects
from the class Plates. By default, the created objects, named sup_plate1 and sup_plate2, will
have the same attributes, as defined in the class Plates. The different attributes can be accessed
and changed using the dot (.) notation. For example can translation in x-direction be permitted
for sup_plate1, by setting the attribute fixedTranslation_x to False using the dot notation.
This is done in line 10 of Script 6.2. Even though the translation in x-direction will no longer
be fixed for sup_plate1, the translation in x-direction will still be fixed for sup_plate2, as the
change only applies to the specified object before the dot notation.

1 class Plates () :
2 allObjects = []
3 y_coord = 0 # default value
4 fixedTranslation_x = True
5 fixedTranslation_y = True
6

30

31 6.2. List of objects

7 sup_plate1= Plates ()
8 sup_plate2= Plates ()
9

10 sup_plate1. fixedTranslation_x = False

Script 6.2: Simplified example of class Plates

Script 6.3 displays the class Concrete from Script C, which is used to create the concrete material
model. A number of default recommended properties for the material model are listed in line
2 - 15 of Script 6.3. The user has the option to change these properties in Script A of the Beam
Script. However, the listed properties do not have to be defined or input by the user, as they are
given by default when creating an object for the concrete material. Line 17 of Script 6.3 shows the
method .__init__(), which is a method of defining the properties that must be given by the user
when creating the concrete material. As can be seen from line 17 in Script 6.3, the only required
input parameter for creating the concrete material model is the characteristic cylinder compressive
strength, fck.

1 class Concrete () :
2 # Material Properties :
3 Name = " Concrete " # Name of the material
4 material = " CONCR "
5 aggregate_type = " QUARTZ "
6 # Cement type is set to N
7 material_model = " TSCR " # Total strain based cracking .
8 crack_orientation = " ROTATE " # will be changed to FIXED for beams without stirrups .
9 tensile_curve = " EXPONE "

10 crackBandwidt_specification = " GOVIND "
11 poissonsRatio_reductionModel = " DAMAGE " # Poisson 's ratio reduction , damage based
12 compression_curve = " PARABO "
13 lateralCracking_reductionModel = " VC1993 " # Reduction curve due to lateral cracking
14 lateralCracking_reductionCurve_lowerBound = 0 . 4 # lower bound of reduction curve
15 confinementModel = " VECCHI " # Stress confinement model , " NONE " is conservative
16

17 def __init__ (self , _f_ck) :
18 self . f_ck = _f_ck
19 T 31 _f_ck = np . array ([12 , 16 , 20 , 25 , 30 , 35 , 40 , 45 , 50 , 55 , 60 , 70 , 80 , 90])
20 T 31 _f_ck_cube = np . array ([15 , 20 , 25 , 30 , 37 , 45 , 50 , 55 , 60 , 67 , 75 , 85 , 95 , 105])
21 self . f_ck_cube = np . interp (_f_ck , T 31 _f_ck , T 31 _f_ck_cube)
22 self . EC2 = "C" + str (int (self . f_ck)) + "/" + str (int (self . f_ck_cube))
23 self . fib = "C" + str (int (self . f_ck))

Script 6.3: Class for material model of concrete

6.2 List of objects

The object-oriented structure allows the user to create an unlimited and unspecified number of
objects with user defined names. Through the class definitions in Script C, each object that is
created from a class, is attached to a list of all the objects created from that class. In Script D of
the Beam Script, this list is iterated through to create the different objects in DIANA. An example
of how a list for all objects of a class is initalized, is shown in Script 6.4. The class Plates is defined
in the first line, and the list allObjects is defined in line 2. The list allObjects is initially empty,
however each object that is created of that class is appended to the list (line 7). After the plate ob-
ject named VeryNiceLoadingPlate is created in line 14, the list allObjects contains one element.

Chapter 6. Modelling in Python 32

1 class Plates () :
2 allObjects = []
3 y_coord = 0 # default value
4 fixedTranslation_x = True
5 fixedTranslation_y = True
6 def __init__ (self , _typeOfPlate , _name , _x_coord) :
7 self . allObjects . append (self)
8 self . typeOfPlate = _typeOfPlate
9 self . name = _name

10 self . x_coord = _x_coord
11 def add_geometry (self , _geometry) :
12 self . geometry = _geometry
13

14 VeryNiceLoadingPlate = Plates ("L" , " Loading plate 1" , 70)

Script 6.4: Definition of the class Plates

Part III

The Beam Script

33

7 General information
A framework for creating and analysing 2D finite element models of reinforced concrete beams has
been created. The framework consists of four scripts, which will be referred to as the Beam Script.
All four scripts can all be found in the Appendix:

- A: User input

- B: Parametric study

- C: Classes and Functions

- D: Main script

A DIANA project can be created by running a Python script directly, and is the way in which the
Beam Script has to be executed. To perform a single analysis of a user-defined RC beam, Script
D has to be run in DIANA. To perform a parametric study of one of the input parameters, Script
B has to be run in DIANA. All scripts have to be saved in the same working folder for DIANA to
be able to access them when running the Beam Script. A saved Python script can be run in the
DianaIE in the following manner:

Main menu Ñ File Ñ Run saved script

While the Beam Script consists of four parts, only Script A, which contains the user input, needs
to be changed significantly by the user. Here, the geometry of the beam has to be defined, as
well as the material properties and arguments for the NLFEA. Default parameters and choices
are already in place, such that suitable material models and solution strategies will be applied by
default. To perform a parametric study, Script B also has to be changed. The parametric values
have to be input in Script B, this is further explained in Section 7.7. Script C and D should not
be changed by the user.

To make the input script intuitive, the structure and workflow are very similar to the that of the
DIANA graphical interface. The user starts by defining the geometry and ends with defining the
output of the analysis, before running the Beam Script in DIANA. Script A is structured in the
following manner:

1. Info

2. Creating the project

3. Creating the geometry

4. Loads

5. Material models

6. Structural interfaces

7. Mesh

8. Analyses

9. Output from NLFEA

34

35 7.1. Units

7.1 Units

The finite element analysis itself has no concept of units, and it is therefore important to be mindful
of using a consistent set of units to get the correct output. The framework uses millimetres, and
the corresponding unit system is found in Table 7.1. For a correct analysis, it is important that
the user is aware of the chosen units, and provides an input in accordance with the selected unit
system.

Table 7.1: Unit system

Entity Unit
Length Millimetres [mm]
Mass Ton [t]
Time Seconds [s]

Temperature Celsius [°C]

7.2 Coordinate system

The coordinate system is defined with its origin located in the lower left corner of the RC beam,
as shown in Figure 7.1. In other words, the lower left corner of the beam has the coordinates
[x,y] = [0,0]. Positive x-axis is defined to the right, and positive y-axis is defined upwards. Con-
sequently, positive loads will act in the positive directions of the coordinate system. When creating
the loading plates and support plates, the x-coordinate might be required. The x-coordinate of
a plate refers to the midpoint of the plate, where the support or load is attached, as shown in
Figure 7.1. In general, coordinates might be asked for in Script A, in order to specify the position
of different objects. These must be given in accordance with the specific coordinate system.

Figure 7.1: Coordinate system for Beam Script

7.3 Input parameters

Script A is structured in such a way that if the user chooses to run the Beam Script without
making any changes, this can be done. A very simple beam without reinforcement is then created,

Chapter 7. General information 36

which is shown in Figure 7.2. This beam uses the template for a three-point bending test, which
is further explained in Section 7.6.

Figure 7.2: Default beam: View of model

The input parameters are divided into optional and required parameters. Even so, as default
values and properties are provided, no user input are in actuality needed for the Beam Script to
run. The required parameters are amongst others related to the geometry of the concrete beam,
the loading, the concrete class and the incremental procedure. The default values for creating the
beam geometry have been chosen at random, and will have to be changed by the user to create
the desired beam. The other default properties, however, are based on experience or guidelines.
The optional parameters have recommended values as default, but can be changed by the used if
desired. However, the user is in general recommended to be careful when changing the input script.
A useful principle is to not change more parameters than necessary, when running the Beam Script
and the nonlinear analysis for the first time.

Script 7.1 shows an example of how different parameters are defined in Script A. The optional
parameters, line 5 - 7, are commented and marked with **Optional**. The required parameters,
line 1 - 3, have default values which can be changed by the user. If the user wishes to include an
optional parameter, this line has to be uncommented and given an input value. In general, lines
that are not relevant for the desired beam should stay commented (ctrl + k), while relevant lines
should be uncommented (ctrl + shift + k).

1 beam . geometry . length = 6000 #[mm]
2 beam . geometry . height = 600 #[mm]
3 beam . geometry . width = 400 #[mm] # thickness
4

5 # concrete . poissons_ratio = #** Optional **
6 # concrete . mass_density = #** Optional **
7 # concrete . tensile_strength = #** Optional **

Script 7.1: Required and optional parameters

Some sections of the input script provide different options, where one of the options has to be
chosen. Other sections are optional in their entirety. This is clearly specified in the script. If
an option is chosen, this section should be uncommented, while the not chosen options should be
commented. For example does section 5.5 Plates in Script A provide three options for creating
the plates, where one option has to be chosen. Section 5.2.1 Cover in Script A on the other hand
is an optional section, where neither of the given options has to be chosen. An excerpt of section
5.2.1 Cover is shown in Script 7.2. Note how the whole section is marked as optional in line 1.
As can be seen by the uncommented lines, Option 1 has been selected.

37 7.4. Symmetry

1 # '#5.2.1 Cover : #** Optional input **
2 ## Cover is an optional object , which can be used for your convinience :
3 cover = Cover () # creating cover object
4 ## Choose one of the options .
5 ## The section with the chosen option should be uncommented ,
6 ## while the other options should be commented .
7

8 # #** Option 1**: definition of each cover
9 cover . side = 48 #[mm]

10 cover . top = 50 #[mm]
11 cover . bot = 64 #[mm]
12

13 # ##** Option 2**: all sides have same cover :
14 # cover . length = 100 #[mm]
15 # cover . side = cover . top = cover . bot = cover . length

Script 7.2: Optional section for defining cover

7.4 Symmetry

A symmetry option is added to the input script, as shown in Script 7.3. If the symmetry option
is chosen, only half the beam will be modelled. Modelling only half of the beam is a useful time-
saving strategy, and should be employed when possible. However, the user has to be certain that
not only the geometry, but also the expected failure mode is symmetric when choosing this option.

1 ## If the following option is chosen , only half the beam will be modelled :
2 Options . symmetric_Beam = True # ** Optional ** , default is False

Script 7.3: Symmetry option

Modelling a symmetric beam is done by constraining the symmetry plane in x-direction as well as
constraining the rotations. If a load is applied at midspan, as can be seen in Figure 7.2, the value of
this load would equal half of the applied load on the whole beam. Furthermore, if the coordinates
of a transverse reinforcement bar corresponds to the coordinates of the symmetry plane, the area
of this bar will automatically be set to half the area of the bar. Hence, with reference to the whole
beam, the bar will have the correct cross section area and not double the area.

7.5 Templates

Several empty templates have been added to the input script, to simplify the creation of different
objects. The code inside the empty template can be copied and filled with the desired input.
Example blocks have also been added to demonstrate how the templates can be used to create
objects. Script 7.4 shows the example block and template for creating longitudinal reinforcement
in Script A.

1 ## Examples of the creation of longitudinal reinforcement bars :
2 ' ' ' Example block (can be copied and changed to c r ea t e your own ob j e c t s)
3 #
4 upper_reinfo = Longitudinal_Reinfo (" upper " , 300 , 315 , 460 , 2 .3425E−2)
5 upper_reinfo . y_coord = beam . geometry . he ight − cover . top

Chapter 7. General information 38

6 upper_reinfo . x_coord_start = cover . s i d e
7 # upper_reinfo . x_coord_end = beam . geometry . l ength − cover . s i d e #∗∗ I f not symmetric ∗∗
8

9 #
10 ReinfoLow = Longitudinal_Reinfo (" lower " , 1400 , 436 , 700 , 4 .78E−2, 220000)
11 ReinfoLow . y_coord = 20
12 ReinfoLow . x_coord_start = 0
13 # ReinfoLow . x_coord_end = beam . geometry . l ength #∗∗ I f not symmetric ∗∗
14 ' ' '
15

16 ## Copy this block to create long . reinfo objects :
17 ' ' ' Empty template
18 templateName = Longitudinal_Reinfo ()
19 templateName . y_coord =
20 templateName . x_coord_start =
21 # templateName . x_coord_end = #∗∗Input needed i f beam i s not symmetric ∗∗
22 ' ' '

Script 7.4: Example block and empty template for longitudinal reinforcement

As can be seen from the example block of Script 7.4, the content of the template can be copied
to create an object. In case of Script 7.4, the object is a longitudinal reinforcement bar. Unless
otherwise stated, the user can create as many objects as desired, including zero. When an empty
template is used to create an objects of a class, the user is free to choose the name of the object.
This allows the user to create object names that makes it easier to remember for example which
reinforcement bar one is editing, as can be seen in the example block of Script 7.4. To easily
substitute the template names with a user-defined name, a replace box (crtl + h) can be used.

7.6 Templates for bending tests

Two templates have been created, to simplify the workload when creating a beam subjected to a
symmetric three-point or four-point bending test. These tests are commonly used to determine the
flexural strength (bending strength) of a specimen. Script 7.5 shows how these templates can be
selected in Script A. As can be seen from the uncommented lines of Script 7.5, using the template
for a three-point bending test has been chosen.

1 # '#5.5.1 Option 1: using template for 3- point bending
2 Options . template_3PointBending = True
3 beam . geometry . lengthOfSpan = beam . geometry . length − 400 #[mm]
4

5 # '#5.5.2 Option 2: using template for 4- point bending
6 # Options . template_4PointBending = True
7 # beam . geometry . lengthOfSpan = 5000 #[mm]
8 # beam . geometry . lengthOfInnerSpan = 3000 #[mm]

Script 7.5: Bending test options

The beam setups of the bending test templates are presented in Figure 7.3. The beams are simply
supported, and the span lengths determine the placement of the supports and point loads. For the
three-point bending test, the point load, F, is placed at the midpoint of the beam.

39 7.6. Templates for bending tests

Figure 7.3: Setups of bending test templates

As can be seen in Figure 7.3b, both loads are assumed to have the same magnitude and direction
for the four-point bending test. Therefore, only one load has to be defined in the input script.
Script 7.6 shows how the load, F, is defined in Script A, when using a bending test template. As
can be seen in line 3, the default initial value of the point load(s) is 1000 N = 1 kN.

1 # -#6.1 Option 1: using template for 3- or 4- point bending
2 ## Both loads are assumed to have same value for 4- point bending .
3 ## Only one has to be defined .
4 load = Loads (" Point " , " Load " , −1000 , "Y")

Script 7.6: Load input for bending test templates

Since the setups of the bending test templates are symmetric, only half of the beam will be
modelled in DIANA when using one of these templates. This will happen even though the option
of symmetry is not selected (Options.symmetricBeam = False), as the template option overrules
the symmetry option. Examples of the models created in DIANA when using the bending test
templates are shown in Figure 7.4 and Figure 7.5. As can be seen in the figures, symmetry supports
which restrict the translation in x-direction as well as rotations, are attached at the symmetry edge.
Furthermore, the translation in y-direction is fixed for the support plate. The x-direction is not
constrained, to avoid unjustified modelling of arching effects [4].

Figure 7.4: Model of three-point bending test

Chapter 7. General information 40

Figure 7.5: Model of four-point bending test

7.7 Parametric study

The framework also allows for a parametric study to be performed. If a parametric study is
chosen, multiple analyses will be executed. Per usual, the user has to use Script A to define the
user input. While one of the parameters will be varied for the parametric study, the rest of the
user defined parameters will stay the same for all analyses. The parametric study is performed by
editing Script B: Parametric study, as well as Script A: User input. In Script B, the input for the
varying parameter is defined. In Script A, the varying parameter has to be marked with the input
parametricValue and the rest of the parameters should be defines as per usual. Figure 7.6 shows
an excerpt of Script B. The only line that should be changed in Script B is line 18. Here, a list of
values to be used for the parameter to be varied in the parametric study is defined. In Figure 7.6,
the chosen values are 3000 and 4000. There is no upper limit for the number of values that can be
added to the list. However, as each value will generate a new project in DIANA, a larger number
of values will result in a more time-consuming parametric study.

Figure 7.6: Excerpt of Script B: Parametric study

Script 7.7 shows how the parameter to be varied for the parametric study should be marked in
Script A. Only one parameter should be marked as parametricValue.

1 beam . geometry . length = parametricValue #[mm]
2 beam . geometry . height = 600 #[mm]
3 beam . geometry . width = 400 #[mm] # thickness

Script 7.7: Defining the parameter to be varied in the input script

The user has to make sure that other parameters that depend on the chosen varying parameter
are defined in a way that reflects this dependence. For example does the length of the span of the
beam most likely depend on the length of the beam. Hence, if the beam length is to be varied,
the span length has to be defined accordingly. An example of this is shown in Script 7.8. Line 5
demonstrates a good way of defining the length of the span, which reflects the dependence. Line
6, on the other hand, would result in a span length independent of the varying length of the beam.

41 7.7. Parametric study

1 beam . geometry . length = parametricValue #[mm]
2

3 # '#5.5.1 Option 1: using template for 3- point bending
4 Options . template_3PointBending = True
5 beam . geometry . lengthOfSpan = beam . geometry . length − 400 #[mm]
6 # beam . geometry . lengthOfSpan = 3000 #[mm]

Script 7.8: Defining parameters depending on the varying parameter

Due to the possible dependencies between parameters, it is recommended to first generate the
parametric models, or some of the models if a large number is to be modelled, without running
any analyses. This is a quick process, compared to running the nonlinear analyses, and the user
can easily verify that the geometry is modelled as expected. A linear analysis should also be
performed for at least one of the models, to check that the finite element model has the expected
behaviour. Finally, a parametric study that includes the nonlinear analysis can be performed.
After defining the user input and the values for the parametric study, the user can simply run
Script B: Parametric study in DIANA. From this point, the user no longer have to interact with
the program. The creation of the projects, the analyses and the generation of the outputs will be
carried out automatically.

8 Script A: User input

8.1 Creating the project

Before running the Beam script for the first time, some Python modules have to be installed in
DIANA. How to install these are explained in Section 5.2.

By default, the generated DIANA project is saved in the same folder as the Beam Script. As stated
earlier, all four scripts have to be saved in the same working folder for DIANA to be able to run the
Beam Script. Optionally, if the user wishes to save the project someplace else, the directory path
can be specified by the user. When the project is saved, a new folder is created in the specified
directory with the name of the model. In this folder, the DIANA files as well as the user selected
output will be saved. The required input for creating the project is the name of the model. By
default the name of the DIANA project is set to:
Project.name = Project.modelName + "_" + TodaysDate + "_" + Project.modelExtraInfo

If the main script is run without changing the user input, the project will be saved as:
TestBeam_yyyymmdd_default

For a parametric study, the value of the varying parameter denoted parametricValue in Script
A, will be added to the end of the project name.

8.2 Creating the geometry

8.2.1 Beam

The geometry of the beam is created by defining the length, height and width of the beam, as
shown in Script 8.1. Only line 8 - 10 require input. Line 4 - 6 should not be changed by the user,
and is used to create the beam object and attaching the geometry object to the beam object. For
further details on the object oriented structure of the Beam Script, see Chapter 6.

1 # ##5. CREATING THE GEOMETRY
2 # -#5.1 The beam
3 # '#5.1.1 Geometry :
4 beam = Beam () # creating beam object
5 beamGeometry = Geometry () # creating geometry object
6 beam . add_geometry (beamGeometry) # adding the geometry to the beam
7

8 beam . geometry . length = 6000 #[mm]
9 beam . geometry . height = 600 #[mm]

10 beam . geometry . width = 400 #[mm] # thickness

Script 8.1: Creating the beam geometry

8.2.2 Reinforcement

In Script A, the creation of the reinforcement is divided into two parts: creation of the longitudinal
reinforcement and creation of the transverse (shear) reinforcement. Furthermore, an optional
section for defining the cover of the RC beam is provided, as well as a section where the user can

42

43 8.2. Creating the geometry

define new parameters to simplify the creation of the reinforcement. Defining a parameter for the
diameter of the reinforcement is suggested.

8.2.2.1 Cover

The optional section of Script A for defining the concrete cover is shown in Script 8.2.

1 # '#5.2.1 Cover : #** Optional input **
2 ## Cover is an optional object , which can be used for your convinience :
3 cover = Cover () # creating cover object
4 ## Choose one of the options .
5 ## The section with the chosen option should be uncommented
6 ## while the other options should be commented .
7

8 # ##** Option 1**: definition of each cover
9 # cover . side = 48 #[mm]

10 # cover . top = 50 #[mm]
11 # cover . bot = 64 #[mm]
12

13 # #** Option 2**: all sides have same cover :
14 cover . length = 100 #[mm]
15 cover . side = cover . top = cover . bot = cover . length

Script 8.2: Creating the cover

Three different concrete covers can be defined: concrete cover for the top of the beam, concrete
cover for the bottom of the beam and concrete cover for the side of the beam. Option 1 of Script 8.2
allows for these covers to have different values, while Option 2 can be chosen if all covers have
the same size. The different covers are shown in Figure 8.1. Defining the cover is useful when the
coordinates of the reinforcement are to be decided.

Figure 8.1: Definition of cover

8.2.2.2 Longitudinal reinforcement

The longitudinal reinforcement can be created by defining objects of the class Longitudinal_Reinfo.
Each object corresponds to a reinforcement bar with specified x- and y-coordinates. Since the
dimension of the model is 2D (XY plane), the area of the reinforcement should be defined as equi-
valent to the cross section area of the total number of bars given at the in-plane coordinates over
the whole out-of-plane width of the beam. With reference to Figure 8.2, the lower longitudinal

Chapter 8. Script A: User input 44

reinforcement should for example be defined with a cross section area equivalent to the area of all
three bars.

Figure 8.2: Cross section of RC beam

The longitudinal reinforcement is created as shown in Script 8.3. Line 1 explains the input that
is needed when creating a longitudinal reinforcement bar. nameOfBar can be chosen by the user.
Name is a user defined name of the bar, and is the name the geometry object will be given in
DIANA. As is the cross section area. F_y is the yield strength, F_u is the ultimate strength and
Epsilon_u is the ultimate strain of the reinforcement steel. A default value of 200 000 MPa will be
used for the Young’s modulus, if no value is given when defining the reinforcement. Furthermore,
the x- and y-coordinates of the reinforcement bar have to be defined. If the beam is not symmetric,
the x-coordinates of both the starting point and the end point of the longitudinal reinforcement
bar have to be entered. Line 5 - 8 in Script 8.3 show an example of how to create a longitudinal
reinforcement object.

1 # nameOfBar = Longitudinal_Reinfo (Name , As , F_y , F_u , Epsilon_u , (E_mod))
2

3 # '#5.3.1 Creation of longitudinal reinforcement
4 ## CREATE YOUR LONG . REINFO OBJECTS HERE
5 upper_reinfo = Longitudinal_Reinfo (" upper " , 300 , 315 , 460 , 0 . 02)
6 upper_reinfo . y_coord = beam . geometry . height − cover . top
7 upper_reinfo . x_coord_start = cover . side
8 upper_reinfo . x_coord_end = beam . geometry . length − cover . side # ** If not symmetric **

Script 8.3: Creating the longitudinal reinforcement

An example block and an empty template are provided in Script A to simplify the process of
creating the longitudinal reinforcement. The content of the template can be copied and pasted as
many times as desired by the user. Script 8.4 displays an excerpt of section 5.3 Longitudinal

reinforcement in Script A. The reinforcement objects should be created below the line ##CREATE

YOUR LONG.REINFO OBJECTS HERE, as shown in Script 8.3.

1 ## Copy this block to create long . reinfo objects :
2 ' ' ' Empty template
3 templateName = Longitudinal_Reinfo ()
4 templateName . y_coord =
5 templateName . x_coord_start =
6 # templateName . x_coord_end = #∗∗Input needed i f beam i s not symmetric ∗∗
7 ' ' '
8

45 8.2. Creating the geometry

9 # '#5.3.1 Creation of longitudinal reinforcement
10 ## CREATE YOUR LONG . REINFO OBJECTS HERE

Script 8.4: Template for creating the longitudinal reinforcement

8.2.2.3 Transverse reinforcement

The Beam Script is designed such that all the transverse reinforcement, also known as the shear
reinforcement, will have the same material properties. Therefore, only one object should be created
for the transverse reinforcement, if this type of reinforcement is desired. The class Transverse_Reinfo
is used to create the transverse reinforcement object. The object is created as shown in Script 8.5.
The input parameters for creating the reinforcement object (line 1), are the same as the input
parameters for creating the longitudinal reinforcement, which is explained in Section 8.2.2.2. A
default value of 200 000 MPa will be used for the Young’s modulus, if no value is given when
defining the transverse reinforcement. The y-coordinates of the transverse reinforcement bars also
have to be defined. All bars will have the same y-coordinates. Similarly to the creation of the
longitudinal reinforcement, an example block and an empty template are provided in Script A for
the creation of the transverse reinforcement.

1 ## nameOfBar = Transverse_Reinfo (Name , As , F_ym , F_um , Epsilon_u , (E_mod))
2

3 # '#5.4.1 Creation of transverse reinforcement
4 ## CREATE YOUR TRANS . REINFO OBJECTS HERE
5 shear_reinfo = Transverse_Reinfo (" Shear_reinfo " , 25 . 7 , 600 , 651 , 0 . 05 , 220000)
6 shear_reinfo . y_coord_bot = cover . bot
7 shear_reinfo . y_coord_top = beam . geometry . height − cover . top

Script 8.5: Creating the transverse reinforcement

In section 5.4.2 Spacing of Script A, the user can define the spacing/positions of the transverse
reinforcement bars. The user can define one or multiple sections with different spacing. If trans-
verse reinforcement is to be included, at least one section with a given spacing has to be defined.
For a symmetric beam, this includes the bending test templates, sections only have to be defined
for half of the beam. Script 8.6 shows how sections for the transverse reinforcement are created,
as well as the example block from section 5.4.2 Spacing. Line 1 in Script 8.6 demonstrates
how to create a section object. spacing is the distance between the transverse reinforcement
bars, x_coord_start is the x-coordinate of where the section with the given spacing starts and
x_coord_end is the x-coordinate of where the section with the given spacing ends. As can be seen
from the example block, additional parameters can be defined by the user to simplify using the
same spacing for section objects at different coordinates.

1 ## section_i = Section (spacing , x_coord_start , x_coord_end) # All three inputs are int
2

3 ## Examples of the creation of sections :
4 ' ' ' Example block (can be copied and changed to c r ea t e your own ob j e c t s)
5 #Ex . 1 :
6 s e c t i o n = Sect ion (10 , cover . s ide , beam . geometry . l ength − cover . s i d e)
7

8 #Ex . 2 :
9 spac ing_large = 168

10 spacing_small = 86
11 sect ion_1 = Sect ion (spacing_small , cover . s ide , cover . s i d e + 4∗ spacing_small)
12 sect ion_2 = Sect ion (spacing_large , cover . s i d e + 4∗ spacing_small ,

Chapter 8. Script A: User input 46

13 (beam . geometry . l ength /2) − 2∗ spacing_small)
14 sect ion_3 = Sect ion (spacing_small , (beam . geometry . l ength /2) − 2∗ spacing_small ,
15 beam . geometry . l ength)
16 ' ' '

Script 8.6: Creating the sections for the transverse reinforcement

A model of a beam with transverse reinforcement with different spacing is shown in Figure 8.3. The
x-coordinates of the different sections, as well as the y-coordinates of the transverse reinforcement
are marked on Figure 8.3.

Figure 8.3: Sections and coordinates of transverse reinforcement

8.2.3 Plates

Steel plates are used to apply the point loads and supports. The geometry of the plates is created
by defining the length and the height of the plates, as shown in Script 8.7. The width of the plates
will equal the width of the beam. The Beam Script is designed in such a way that all plates will
have the same geometry. Only line 7 - 8 of Script 8.7 require input. Line 5 should not be changed by
the user, and is used to create the geometry object for the plates. As the number of plates are un-
known at this stage, the plate geometry will first be attached to the plate objects in the main script.

1 # -#5.5 Plates
2 ## Available plates are loading plates (L) and support plates (S)
3 ## All plates will have the same geometry .
4 ## The width / thickness of the plates will be equal to the beam thickness
5 plateGeometry = Geometry () # creating geometry object for plates
6

7 plateGeometry . length = 150 #[mm]
8 plateGeometry . height = 35 #[mm]

Script 8.7: Creating the plate geometry

Three options are provided in Script A for creating the plates objects. Option 1 is to use the
template for a three-point bending test, Option 2 is to use the template for a four-point bending
test and Option 3 is to create the plates individually. The bending test templates are explained in
Section 7.6. For the template options, the midpoint of the plates will be related to the span length
of the beam. Option 3, creation of individual plates, allows the user to create plates by specifying
the x-coordinate of the midpoint of the desired plates. As with the reinforcement objects, the user
is free to choose the name of each plate object. Script 8.8 demonstrates how the plate objects can

47 8.3. Loads

be created for Option 3. The type of plate has to be specified, which can either be a loading plate
or a support plate.

1 ## nameOfPlate = Plates (typeOfPlate , name , x_coord)
2

3 ## CREATE YOUR PLATE OBJECTS HERE (option 3)
4 sup_plate = Plates ("S" , " Support plate 1" , 50)
5 sup_plate . fixedTranslation_y = False # ** Optional **
6 # sup_plate . fixedTranslation_x = False #** Optional **
7 load_plate = Plates ("L" , " Loading plate 1" , 70)

Script 8.8: Creating the plates

nameOfPlate can be chosen by the user. typeOfPlate has to be set to either "S" for a support
plate or "L" for a loading plate. name is a user defined name for the plate, and is the name the
geometry object will be given in DIANA. x_coord is the x-coordinate of the midpoint of the plate
object.

By default translations are fixed in both x- and y-direction for the support plates. These boundary
conditions can be changed. The template for creating plate objects is shown in Script 8.9. By
uncommenting line 5 and/or 6, the translations in x- and y-direction can be changed from fixed to
free translations.

1 ## Copy this block to create plate objects :
2 ' ' 'Empty template
3 templateName = Plate s ()
4 # nameOfPlate . f ixedTrans lat ion_y = False #∗∗Optional ∗∗
5 # nameOfPlate . f ixedTrans lat ion_x = False #∗∗Optional ∗∗
6 ' ' '

Script 8.9: Template for creating the plates

8.3 Loads

The Beam Script is designed in such a way that the dead weight of the beam always is applied in
the first load step. The dead weight loading is evaluated directly by DIANA, based on the mass
density derived from the material properties of specific materials [6]. Embedded reinforcement in
DIANA does not contribute to the weight of the element [6]. The density of the steel plates is set
to zero. In other words, the weight (mass) of the concrete determines the dead weight loading.

Point loads are applied in the second load step. While several load types can be chosen in DIANA,
only point loads have been implemented for the Beam Script. Similarly to the creation of the
plates, two options are provided in Script A for the creating of the point loads. Option 1 is to
use one of the bending test templates, which is further explained in Section 7.6. For the template
option, only one load has to be defined. Option 2, creation of individual loads, corresponds to the
third option for creation of the plates. Each individual loading plate, which have been created in
option 3 of section 5.5 Plates in Script A, should now be associated with an individual point
load. This is done by setting a target, in the form of a loading plate, for each of the created point
loads.

Script 8.10 displays option 2 for creation of the point loads. Line 2 explains how a load object can
be created. typeOfLoad should be set to "Point", which indicates the creation of a point load.

Chapter 8. Script A: User input 48

name is a user defined name for the load, and is the name the load object will be given in DIANA.
value is the magnitude and direction of the point load. It is important to note that negative
vertical loads act downwards, as the positive y-axis is defined in the upwards direction. direction
should be denoted as either "X" or "Y". The plate objects should be created below line 21 in
Script 8.10. Line 5 explains how the target plate of the point load should be defined. The example
block demonstrates how point loads can be created and attached to the related loading plates.

1 # -#6.2 Option 2: Creation of individual loads
2 ## load = Loads (typeOfLoad , name , value , direction)
3 ## Each load should have a plate object as its target .
4 ##A target is defined as follows :
5 # load . target = plateobject
6

7 ## Examples of the creation of point loads :
8 ' ' ' Example block (can be copied and changed to c r ea t e your own ob j e c t s)
9 load1 = Loads (" Point " , "Load 1" , −1000 , "Y")

10 load1 . t a r g e t = p la t e1
11 load2 = Loads (" Point " , "Load 2" , −200, "Y")
12 load2 . t a r g e t = p la t e2
13 ' ' '
14

15 ## Copy this block to create point load objects :
16 ' ' 'Empty template
17 templateName_Load = Loads ()
18 templateName_Load . t a r g e t = templateName_Plate
19 ' ' '
20

21 ## CREATE YOUR LOAD OBJECTS HERE (option 2)

Script 8.10: Option 2: creation of individual point loads

8.4 Material models

8.4.1 Concrete

The concrete material model has one required input. This is the characteristic cylinder compressive
strength, fck, of the concrete, as shown in Script 8.11. Based on this value, the rest of the con-
crete material properties will be retrieved from EC2, as recommended by Rijkswaterstaat [1]. The
material properties which is not given in EC2, like the tensile fracture energy, will be estimated
according to MC2010. In practice, this is done by creating three material models in DIANA: one
based on EC2, one based on MC2010, and one with all the desired properties. The last material
model is assigned to the concrete beam.

1 # -#7.1 Concrete material model
2 # The concrete material is defined as follows : concrete = Concrete (f_ck)
3 concrete = Concrete (30)

Script 8.11: Creating the material model for the concrete

The compressive fracture energy, GC , can not be retrieved from the DIANA material model based
on EC2 nor MC2010. The default value of this parameter is therefore estimated in accordance
with the guidelines [1], as seen in Equation 8.1:

49 8.4. Material models

GC “ 250 ¨
fck
fcm

¨ 0.073f0.18
cm (8.1)

fcm is the mean compressive strength of the concrete, calculated as shown in Equation 8.2 [2]:

fcm “ fck ` 8 MPa (8.2)

A total strain based crack model will be used for the concrete material model, as recommended.
A rotating crack model will be assigned if the RC beam has shear reinforcement, and a fixed crack
model will be used if the RC beam does not have shear reinforcement. As mentioned in Section 3.3,
the input for the total strain crack model consist of two parts: the basic material properties and
the definitions of the material behaviour in tension, compression and shear. An overview of the
curves and models used for the concrete material behaviour is presented in Table 8.1. For further
information about the different models, see Chapter 3. These are all based on the recommendations
by Rijkswaterstaat. A stress confinement model has been included, even though not using one is
a conservative measure, as the aim is to model the actual behaviour of the RC beam as accurately
as possible. The stress confinement model by Selby & Vecchio has been chosen.

Table 8.1: Default material behaviour of concrete

Crack model TSCM

Crack orientation
Rotating
Fixed*

Tensile curve Exponential
Crack bandwidth specification Govindjee
Possion’s ratio reduction model Damage based
Compression curve Parabolic
Compressive strength reduction Vecchio and Collins 1993
Lower bound of reduction curve 0.4
Stress confinement model Selby and Vecchio
Shear retention model* Damage based*
* Only used for RC beams without shear reinforcement

If desired, the default material properties can be changed by the user. Script 8.12 presents the op-
tional input for the concrete material model. The properties can be changed by uncommenting the
desired lines. The properties that remains commented, will use recommended values. If the recom-
mended curves are changed, the Beam Script is not guaranteed to run since additional parameters
might be needed. To avoid this issue, the curves might be changed by the user in the DIANA
graphical interface after generating the model, instead of directly in the input script. Suggested
input are presented for some of the optional parameters. To use the nonlinear tension softening
curve according to Hordijk, instead of the default exponential softening curve, is suggested. This
curve is also recommended to model the tensile behaviour [1]. Moreover, to ignore the effects of
the lateral confinement instead of using the confinement model by Selby & Vecchio is suggested,
due to the fact that this is a conservative assumption.

1 ## The following properties can be changed :
2 # concrete . Youngs_modulus = #** Optional **

Chapter 8. Script A: User input 50

3 # concrete . poissons_ratio = #** Optional **
4 # concrete . mass_density = #** Optional **
5 # concrete . tensile_strength = #** Optional **
6 # concrete . compressive_strength = #** Optional **
7 # concrete . tensile_FractureEnergy = #** Optional **
8 # concrete . compressive_FractureEnergy = #** Optional **
9 # concrete . aggregate_type = #** Optional **

10 # concrete . tensile_curve = " HORDYK " #** Optional **
11 # concrete . crackBandwidt_specification = #** Optional **
12 # concrete . poissonsRatio_reductionModel = #** Optional **
13 # concrete . compression_curve = #** Optional **
14 # concret . lateralCracking_reductionModel = #** Optional **
15 # concrete . lateralCracking_reductionCurve_lowerBound = #** Optional **
16 # concrete . confinementModel = " NONE " #** Optional **

Script 8.12: Optional user defined concrete material properties

8.4.2 Reinforcement steel

The Von Mises plasticity model will be used to model the reinforcement. The linear elasticity
is based on the Young’s modulus, which is decided when creating the reinforcement in part 5.2

Reinforcement of Script A, see Section 8.2.2.2 and Section 8.2.2.3. A bilinear stress-strain diagram
is used to model the plastic hardening, as shown in Figure 8.4. The needed user input for this
diagram is f_y, f_u and epsilon_u, which are already specified when creating the reinforcement
bars in section 5.2 Reinforcement of Script A.

Figure 8.4: Stress-strain diagram for reinforcement steel

The default properties of the Von Mises plasticity model for the reinforcement are summarised in
Table 8.2. A strain hardening hypothesis, with isothropic hardening, has been chosen. This is the
DIANA default. Except for the parameters used to define the bilinear stress-strain diagram, the
properties of the material model for the reinforcement steel are not changeable.

Table 8.2: Default properties of the Von Mises plasticity model

Plastic hardening Plastic strain - yield stress
Strain-Stress diagram Bilinear
Hardening hypothesis Strain hardening
Hardening type Isotropic

51 8.5. Structural interfaces

8.4.3 Steel for plates

A linear-elastic isotropic behaviour is assumed for the steel plates. The Young’s modulus and the
Poisson’s ratio are the required input of the material model for the steel plates. The default values
for these parameters are shown in Script 8.13. As mentioned in Section 8.3, the density of the steel
plates is set to zero.

1 # -#7.2 Steel plates material model
2 #A linear - elastic behaviour is assumed for the plates
3

4 Steel_Plates . e_mod = 2000000
5 Steel_Plates . poissons_ratio = 0 . 3

Script 8.13: Required parameters of the material model for the steel plates

8.5 Structural interfaces

No-tension/no-friction 2D line interfaces are added between the steel plates and the concrete beam.
For more information about structural interfaces, see Section 5.3. By default, the values presented
in Table 8.3 will be used for the for the stiffness properties of the structural interfaces. The normal
stiffness is denoted Knn and the shear stiffness is denoted Kt. The default values are taken from
the beamscript by de Putter [13], and can optionally be changed by the user. As can be seen from
Table 8.3, a high value is used for the normal compressive stiffness, while low values are used for
the shear stiffness and normal tensile stiffness as recommended. A diagram based on the normal
stiffness is used to define the nonlinear relation. The default traction-displacement diagram in
normal direction is shown in Figure 8.5, where Knn determines the slope. Compression is defined
as negative for Figure 8.5.

Table 8.3: Default interface properties [13]

Knn in tension Knn in compression Kt

1.0 e-09 N/mm3 1.0 e+03 N/mm3 1.0 N/mm3

Chapter 8. Script A: User input 52

Figure 8.5: Default traction-displacement diagram in normal direction for structural interfaces
(not to scale)

8.6 Mesh

The required input for the finite element mesh is the element size. For more information on how
to decide on a suitable element size, see Section 2.2.2.1. As can be seen in line 4 of Script 8.14,
an element size of 25 mm is set as default. For meshing the concrete and the steel plates, 8-node
quadrilateral elements (CQ16M) with a full Gauss integration scheme (3×3) are used by default.
The default mesh properties are summarised in Table 8.4. Optionally, the mesh order and mesher
type could be changed by the user, as shown in line 7 - 8 of Script 8.14.

1 # ##9. MESH
2 ## Recommended mesh is used as default .
3 ## Maximum elementsize = min (beam . Length /50 , beam . Height /6)
4 Mesh . elementsize = 25 #[mm]
5

6 ## The following properties can be changed :
7 # Mesh . meshorder = #** Optional **
8 # Mesh . meshertype = #** Optional **

Script 8.14: Creating the mesh

Table 8.4: Default mesh properties

Mesher type Quadrilateral
Mesh order Quadratic
Element type Plane Stress
Element name CQ16M
Integration scheme 3ˆ3 Gaussian

Embedded bar reinforcement elements are used for the longitudinal and the transverse reinforce-

53 8.7. Analyses

ment. Embedded reinforcement is further explained in Section 2.2.2.2. The integration scheme
for the bar reinforcement is derived from the one for the embedding structural elements (i.e. the
concrete elements) [6]. A perfect bond is assumed.

8.7 Analyses

Two types of analyses can be performed using the Beam Script: a linear analysis and a nonlinear
analysis. While the focus of this master’s thesis is NLFEA of RC beams, it is recommended to
run a linear analysis before executing the nonlinear analysis. A nonlinear analysis is much more
time-consuming than a linear analysis. Hence, the latter is recommended to use first, to check that
the RC beam behaves as expected [23]. By default, the options to run the analyses, when running
the Beam Script in DIANA, are set to false. In other words, both the linear and nonlinear ana-
lysis, with all the needed properties, will be added in the DIANA graphical interface, but neither
of these will be run. To run an analysis, the option nameOfAnalysis.runSolver has to be set to
True. Script 8.15 shows how this option can be chosen in Script A, in this case for the nonlinear
analysis. As can be seen from Script 8.15, the line NLFEA.runSolver = True (line 3) has to be
uncommented to run the nonlinear analysis when the Beam Script is executed in DIANA. NLFEA
is the given object name of the nonlinear analysis. The section for running the linear analysis in
Script A is structured the same way.

1 # '#10.2.7 RUN NONLINEAR ANALYSIS
2 ## To run the analysis , uncomment the following line :
3 NLFEA . runSolver = True # ** optional **

Script 8.15: Option to run the nonlinear analysis when the Beam Script is executed in DIANA

8.7.1 Linear analysis

No user input is required for the linear analysis. By default, an iterative method has been chosen
to solve the system of equations. Furthermore, the DIANA primary results output for a struc-
tural linear static analysis are selected by default, which include displacements, strains, stresses,
forces and fracture mechanics [6]. Optionally, the solution method and output can be changed by
the user, as shown in line 6 - 7 of Script 8.16. Line 3 of Script 8.16 creates the linear analysis
object, and should not be changed by the user. LFEA is the given object name of the linear analysis.

1 # -#10.1 Linear Analysis
2 ## DIANA Primary output is chosen for the linear analysis .
3 LFEA = Analysis (" Linear analysis " , " Linear ") # creating linear static analysis
4

5 ## The following properties can be changed :
6 # LFEA . method = ** Optional input **
7 # LFEA . output = ** Optional input **

Script 8.16: Creation of the linear analysis (LFEA)

Chapter 8. Script A: User input 54

8.7.2 Nonlinear analysis

For the nonlinear analysis, several input are required. However, suggested input are provided for
all parameters, and the nonlinear analysis can be run without the user having to change any of
the properties. Even so, suitable input for the step size, number of steps and number of iterations
greatly depends on the RC beam to be modelled, and will most likely have to be changed by the
user. The properties for the nonlinear analysis are presented in Table 8.5. The optional properties
are marked with *, the rest of the properties presented in Table 8.5 will be used by default.

Table 8.5: Properties for the nonlinear finite element analysis

Incrementation method Energy based adaptive loading

Iteration method
Regular Newton-Raphson
Modified Newton-Raphson*

Analysis control
Arc-length
Line search

Arc-length control nodes Whole beam

Convergence criteria
Force norm
Energy norm
Displacement norm*

All convergence norms have to be satisfied False**
Continue if no convergence True**
*Optional, not selected by default
**Can be changed to True/False.

The selected incremental procedure for the nonlinear analysis is load control. An adaptive load
incrementation method will be used, as recommended. The implemented automatic procedure for
the adaptive loading is based on energy. This method is further explained in Section 2.2.1.2.2.
The energy method has to be combined with arc-length control. By default, arc-length control will
be applied, as shown in Script 8.17. However, Script A allows the user to turn off the arc-length
control by changing the bool value in line 4 to False. Seeing that the use of arc-length control is
highly recommended, simply commenting line 4 will result in the use of the default value, which
is True. Since energy based adaptive loading, which has to be combined with arc-length control,
is the only implemented incrementation method, this control should not be turned off. Even so, it
has been chosen to include the option to turn of the arc-length control in Script A, as more options
for the incrementation method might be added in the future. For example does the iteration based
method, also explained in Section 2.2.1.2.2, not have to be combined with arc-length control, even
though this is highly recommended. When running the Beam Script, Script D checks that the
energy based method is combined with arc-length control. If this is not the case, the increment-
ation method will not be added, and the nonlinear analysis will terminate after one single load step.

1 # '#10.2.1 Arc length control :
2 ## Arc length control is strongly recommended .
3 ## The arc length control will be applied over the whole beam .
4 NLFEA . arcLengthControl = True # ** Default and strongly recommended as true **

Script 8.17: Arc-length control

The required parameters for the energy based incrementation method are shown in Script 8.18.
Line 3 of Script 8.18 should not be changed by the user. The user should be careful when choosing

55 8.7. Analyses

the limits for the step size, and some degree of trial and error will likely have to be done to in order
to decide appropriate load increments. The suggested parameter values have been chosen based
on personal experience from working with the Beam Script, as well as the validation studies by
Rijkswaterstaat [25]. Trying to run the nonlinear analysis with the suggested parameters before
adjusting them is therefore recommended. Changing to a smaller step size might improve the
stability of the analysis, but can also result in a much more time-consuming analysis.

1 ## Option 1: Energy based adaptive loading
2 ## The energy based method MUST be combined with arc length control .
3 incrementation . method = " ENERGY "
4 incrementation . initial_step_size = 5 # initial size for the first step
5 incrementation . max_step_size = 10 # upper limit of the step size
6 incrementation . min_step_size = 3 # lower limit of the step size
7 incrementation . nrOfSteps = 150 # maximum number of steps

Script 8.18: Energy based adaptive loading

Newton-Raphson is the recommended method for the iterative procedure [1], and Script A provides
the option to choose either the Regular Newton-Raphson method or the Modified Newton-Raphson
method. The desired option should be uncommented, while the other option should be com-
mented. As seen in Script 8.19, which is an excerpt of Script A, the Regular Newton-Raphson
method is chosen by default. For more information about both methods, see Section 2.2.1.1.1.
nrOfIterations (line 11 or 16) is the only parameter that require input. The value of this para-
meter should be set high enough such that a large number of nonconverged steps are avoided, but
not too high, as this can result in a very time-consuming analysis. By default, the Newton-Raphson
methods set up the tangential stiffness before each iteration. The parameter firstStiffnessMatrix
is optional (line 19), and allows the user to specify an alternative for the first iteration: new tan-
gential stiffness, linear stiffness or the stiffness of the last iteration of the previous step [6]. By
default, a new tangential stiffness is set up also for the first iteration.

1 # '#10.2.3 Iteration method :
2 ## Only Newton - Raphson methods have been implemented .
3 ## Choose one of the options . The section with the chosen option should be uncommented ,
4 ## while the other options should be commented .
5 iteration = Iteration () # creating iteration object
6 NLFEA . setIterationMethod (iteration) # adding iterative procedure to the analysis
7

8 ## Option 1: Regular Newton - Raphson
9 iteration . method = " NEWTON - RAPHSON "

10 iteration . typeOfMethod = " REGULA "
11 iteration . nrOfIterations = 100
12

13 # ## Option 2: Modified Newton - Raphson
14 # iteration . method = " NEWTON - RAPHSON "
15 # iteration . typeOfMethod = " MODIFI "
16 # iteration . nrOfIterations = 100
17

18 ## The following properties can be changed :
19 # iteration . firstStiffnessMatrix = ** Optional input **

Script 8.19: Iteration methods

Using a line search algorithm is recommended, and will be applied by default. Script 8.20 presents
how this option is presented in Script A. Similarly to the arc-length method, the bool value has to
be changed to False for the line search algorithm not to be applied.

Chapter 8. Script A: User input 56

1 # '#10.2.4 Line search :
2 ## Using a line search algorithm is recommended .
3 NLFEA . lineSearch = True # ** Default and recommended as true **

Script 8.20: Line Search

At least one convergence criterion has to be chosen, but the user is allowed to choose multiple
criteria. Line 8 - 10 show the required parameters, and can be changed by the user. By default, a
force norm and an energy norm are chosen for the convergence criteria.

1 # '#10.2.5 Convergence criteria :
2 ## One or multiple convergence criteria MUST be chosen .
3 ## Recommended to use a force norm and an energy norm .
4 ## Choose one of the options . Optional to choose one or more convergence criteria .
5 convergence = Convergence () # creating convergence object
6 NLFEA . setConvergence (convergence) # adding convergence criteria to the analysis
7

8 convergence . useForceNorm = True # ** Default and recommended as true **
9 convergence . useEnergyNorm = True # ** Default and recommended as true **

10 convergence . useDispNorm = False # ** Default and recommended as false **

Script 8.21: Choosing the convergence criteria

Two options are provided for defining the convergence criteria. The first option is to use suggested
tolerances for the force norm and/or the energy norm. These tolerances are based on suggestions
by Rijkswaterstaat and presented in Table 8.6.

Table 8.6: Suggested tolerances [1]

Load case 1
(Dead load)

Load case 2
(Point loads)

Force Norm 0.05 0.01
Energy Norm 0.01 0.001

The second option is for the user to choose the tolerances, as shown in Script 8.22. One or multiple
convergence criteria should be uncommented and assigned values, if this option is chosen. The
convergence criteria must be carefully chosen, as further explained in Section 2.2.1.3.

1 ## Option 2: Choose your own tolerances :
2 ## One or multiple convergence criteria MUST be chosen .
3

4 ## Force norm :
5 # convergence . forceNorm =
6 # convergence . forceNorm_deadLoad =
7

8 ## Energy norm :
9 # convergence . energyNorm =

10 # convergence . energyNorm_deadLoad =
11

12 ## Displacement norm :
13 # convergence . dispNorm =
14 # convergence . energyNorm_deadLoad =

Script 8.22: Option 2: choose own tolerances for the convergence criteria

Some additional choices for the nonlinear analysis are given in Script A, these are presented in
Script 8.23. By default, the iteration process will be terminated if one of the specified convergence

57 8.8. Output from nonlinear analysis

criteria is satisfied, unless explicitly specified that all convergence criteria should be satisfied simul-
taneously. This can be specified by setting the bool value of allConvergenceNormsHaveToBeSatisfied
to True. If no convergence occurs within the maximum number of iterations, the analysis run will be
continued by default. This can be changed by setting the bool value of continueIfNoConvergence
to False.

1 # '#10.2.6 Additional choices for analysis
2 NLFEA . allConvergenceNormsHaveToBeSatisfied = False # ** Default and recommended as false **
3 NLFEA . continueIfNoConvergence = True # ** Default and recommended as true **

Script 8.23: Additional choices for the NLFEA

8.8 Output from nonlinear analysis

8.8.1 DIANA output

Script 8.24 displays the DIANA output for the nonlinear analysis that can be selected in Script A.
By default, all output are set to true. These will be listed in the DIANA Results window if the
analysis process has been carried out successfully. Each of these output is optional, and can be
changed to False by the user. The left side of the python dictionary NLFEA.output in Script 8.24,
has the output names. These names are the same as can be selected by the user in the DIANA
graphical interactive environment, as is shown in Figure 8.6

1 # -#11.1 Analysis output :
2 NLFEA . output = {
3 " DISPLA TOTAL TRANSL GLOBAL " : True , # ** Optional **
4 " FORCE REACTI TRANSL GLOBAL " : True , # ** Optional **
5 " STRAIN TOTAL GREEN GLOBAL " : True , # ** Optional **
6 " STRAIN TOTAL GREEN PRINCI " : True , # ** Optional **
7 " STRAIN CRKWDT GREEN GLOBAL " : True , # ** Optional **
8 " STRAIN CRACK GREEN " : True , # ** Optional **
9 " STRAIN CRKWDT GREEN PRINCI " : True , # ** Optional **

10 " STRESS TOTAL CAUCHY GLOBAL " : True , # ** Optional **
11 " STRESS TOTAL CAUCHY PRINCI " : True # ** Optional **
12 }

Script 8.24: DIANA output of NLFEA

Figure 8.6: DIANA Results Selection window for user selected results

Chapter 8. Script A: User input 58

The window shown in Figure 8.6 can be opened with the following click order, after having run
the Beam Script in DIANA:

Analysis Ñ Nonlinear analysis ë Structural nonlinear ë Output Ñ

Edit properties � User selection Ñ Modify

8.8.2 Additional output

The option to create and save a load-displacement curve for the y-direction displacement at a
specified node is provided. Furthermore, the option to generate a CSV-file of the load factor and
y-direction displacement at a specified node is added. The output from these options will be saved
to the working folder of the Beam Script, or to the user specified directory if this option has
been selected. The output "DISPLA TOTAL TRANSL GLOBAL", shown in Script 8.24, as well as the
command NLFEA.runsolver, shown in Script 8.15, has to be set to True for the additional output
to be produced when running the Beam Script. Downward displacement is defined as positive for
these output. Both the load factor and the displacement can be scaled by a factor, as seen in line
12 - 13 of Script 8.25. The load factor itself is given by DIANA, and tells how much the initial
load has been scaled for each load step of the nonlinear analysis.

Section 11.2 Load-displacement graph of Script A, when uncommented, is presented in Script 8.25.
By default, this output is not selected and the whole section is commented. As can be seen from
line 6 - 7 of Script 8.25, the coordinates of the point where the displacement should be retrieved
are the required parameters. The suggested values for these parameters are the midpoint at the
bottom of the RC beam. Optional parameters are also provided. Scalefactor can be used to
scale the load factor and/or displacement. By default, the y-values of the load-displacement graph
will be the load factor for each load step and the x-values will be the corresponding displacements.
Unless a negative scale factor is used, the downward displacements will be represented as positive.
x_label and y_label allow the user to change the name of the axis labels. xLim and yLim can
be used to specify the axis limits. The load-displacement curve is saved to a new folder, named
"Plots", within the working folder. In the case of a parametric study, the load-displacement curves
of all the performed analyses will be saved within this same folder. Figure 8.7 shows an arbitrary
example of a generated load-displacement graph.

1 # -#11.2 Load - displacement graph (displacement in y - dir) ** Optional **
2 ## Edit and uncomment this section to generate a load - displacement graph .
3 ## Downward displacement is defined as positive by default .
4

5 # Specify the coordinates of the point where the displacement will be retrived .
6 LoadDispY_Graph . x_coord = beam . geometry . length /2 #[mm]
7 LoadDispY_Graph . y_coord = 0 #[mm]
8

9 ## The following options can be changed :
10 ## x_label , y_label = str
11 ## xLim , y_Lim = [lowerBound , upperBound]; lowerBound , upperBound = int
12 # Scalefactor . loadFactor_plot = #** optional **
13 # Scalefactor . displacement_plot = #** optional **
14 # LoadDispY_Graph . xlabel = #** optional **
15 # LoadDispY_Graph . ylabel = #** optional **
16 # LoadDispY_Graph . xLim = #** optional **
17 # LoadDispY_Graph . yLim = #** optional **

Script 8.25: Optional output: Load-displacement graph

59 8.8. Output from nonlinear analysis

Figure 8.7: Example of generated load-displacement graph

Section 11.3 Load-displacement CSV of Script A, when uncommented, is presented in Script 8.26.
By default, this output is not selected and the whole section is commented. Similarly to the load-
displacement graph, the coordinates of the point where the displacement should be retrieved are
the required parameters. Optionally, scale factors can be defined. Line 17 of Script 8.26 lets the
user specify the decimal places for the output. By default, two decimal places has been chosen.
A random example of a generated CSV-file, with a scaled load factor, is shown i Figure 8.8. The
header of the CSV-file is automatically changed to indicate whether the displacement or load factor
have been scaled. Although CSV stands for Comma Separated Values, the delimiter could be any-
thing. As can be seen from Figure 8.8, the chosen delimiter is a semicolon (;). This is to simplify
the process of importing the CSV-file to Excel, where comma (,) might be used for decimals.

1 # -#11.3 Load - displacement CSV (displacement in y - dir)** Optional **
2 ## Edit and uncomment this section to generate a CSV - file for
3 ## load - displacement at specified coordinate .
4 ## Downward displacement is defined as positive by default .
5 ## The CSV - file will have the following format :
6 ## (Scaled) Loadfactor ;(Scaled) Displacement
7 ## 1.00;0.50
8 ## 2.30;0.65
9

10 ## Specify the coordinates of the point for which the CSV - file will be generated :
11 LoadDispY_CSV . x_coord = beam . geometry . length /2 #[mm]
12 LoadDispY_CSV . y_coord = 0 #[mm]
13

14 # The following options can be changed :
15 # Scalefactor . loadFactor_CSV = #** optional **
16 # Scalefactor . displacement_CSV = #** optional **
17 # LoadDispY_CSV . decimalPlaces = #** optional **

Script 8.26: Optional output: Load-displacement graph

Figure 8.8: Example of the CSV-file format (scaled load factor)

Part IV

Experiments to benchmark the script

60

9 General information
Benchmarks can be described as well-defined problems that have already been solved. By recreating
the problem, the accuracy and reliability of the selected solution strategy can be validated. For
this thesis, the framework has been validated by simulating two benchmark studies of RC beams,
which are both well-known published experiments. The experimental results have been compared
to the results of the 2D nonlinear finite element solution from running the Beam Script. The goal of
the analyses is to replicate the experimental test as much as possible, using nonlinear procedures.

The subsequent sections will deal with two case studies of RC beams, called Case B1 and Case B2.
To demonstrate the use of both the fixed and the rotating crack model, one beam with shear
reinforcement and one without shear reinforcement have been selected for the benchmark studies.
Additionally, the benchmark beams are subject to different failure mechanisms. Case B1 has shear
reinforcement and fails in bending, and is the beam VS-C3 from the experimental program by
Vecchio & Shim (2004) [26]. Case B2 has no shear reinforcement and fails in shear, and is the
beam SE-50A-45 from the experimental program by Collins & Kuchma (1999). The information
about the two benchmarks are acquired from the "Validation of the Guidelines for Nonlinear Finite
Element Analysis of Concrete Structures. Part: Reinforced beams" by Rijkswaterstaat [25] and
the DIANA Verification Report [27]. The information from the first document will be favoured, if
different information is given by the two documents.

The following sections will be structured similarly, describing respectively: the experimental setup
and results, the finite element model, the properties of the nonlinear analysis, the results from the
nonlinear analysis and a discussion of the results.

61

10 Case B1: Vecchio & Shim (2004)
Case B1 is based upon Beam VS-C3 [26] from the experimental program of Vecchio & Shim from
2004, which is an re-examination of the classical experiments by Bresler & Scordelis from 1963.
The experimental setup is shown in Figure 10.1. VS-C3 is an experimental test of a RC beam
under increasing static load until failure [27]. The beam fails in bending, and exhibits a flexural-
compressive failure mode [28].

10.1 Experimental setup and results

10.1.1 Geometry and loading

The geometry of the beam and the reinforcement, as well as the loading, is shown in Figure 10.1
and Figure 10.2. The length of the beam is 6.840 m, the height is 0.552 m and the width is 0.152
m. The beam is subjected to three-point bending, as shown in Figure 10.1.

Figure 10.1: Case B1: Experimental setup (dimensions in mm) [25]

Figure 10.2: Case B1: Cross section [28]

10.1.2 Material properties

Table 10.1 lists the most important material properties of the concrete and the steel. As shown
in Figure 10.2, four different types of reinforcement steel have been used in the beam. The given
parameter values for the longitudinal reinforcement in Table 10.1 are for one single bar.

62

63 10.1. Experimental setup and results

Table 10.1: Case B1: Material properties [25][28]

Material Parameter Value

Concrete Compressive strength, fcm 43.5 MPa

Reinforcement steel M10

Diameter, ϕ
Cross section area, As

Young’s modulus, E
Yielding strength, fym
Ultimate strength, fum
Ultimate strain, εsu

11.3 mm
100 mm2

200000 MPa
315 MPa
460 MPa
0.023

Reinforcement steel M25

Diameter, ϕ
Cross section area, As

Young’s modulus, E
Yielding strength, fym
Ultimate strength, fum
Ultimate strain, εsu

25.2 mm
500 mm2

220000 MPa
445 MPa
680 MPa
0.048

Reinforcement steel M30

Diameter, ϕ
Cross section area, As

Young’s modulus, E
Yielding strength, fym
Ultimate strength, fum
Ultimate strain, εsu

29.9 mm
700 mm2

200000 MPa
436 MPa
700 MPa
0.048

Reinforcement steel D4
(stirrups)

Diameter, ϕ
Cross section area, As

Young’s modulus, E
Yielding strength, fym
Ultimate strength, fum
Ultimate strain, εsu

3.7 mm
25.7 mm2

200000 MPa
600 MPa
651 MPa
0.047

Steel for plates
Young’s modulus, E
Poisson’s ratio, ν

200000 MPa
0.3

10.1.3 Experimental results

The experimental ultimate value of the applied load before failure was Pexp “ 265 kN, with a
corresponding deflection of 44.3mm at midspan [25]. The beam experienced a flexural-compressive
failure mode [28]. This means that failure was caused by crushing of concrete at the compres-
sion side, after yielding of the reinforcement steel [1]. The failure mechanism of B1 is shown in
Figure 10.3. The load-deflection response is shown in Figure 10.4.

Figure 10.3: Case B1: Failure mechanisms at experimental ultimate value of applied load [28]

Chapter 10. Case B1: Vecchio & Shim (2004) 64

Figure 10.4: Case B1: Experimental load-deflection at midspan [25]

10.2 Finite element model

10.2.1 Geometry and loading

The finite element model has been generated by changing the parameters in the Script A in
accordance with Table 10.1 and the geometry presented in Section 10.1. The created input script
for Case B1 can be found in Appendix E. Longitudinal and transverse reinforcement have been
added, and the template for a three-point bending test has been used. Hence, due to symmetry,
only half the beam has been modelled. The model is shown in Figure 10.5. The stirrups have been
modelled with a large spacing of 168 mm, as seen in Figure 10.1, and a small spacing of 68 mm
near the steel plates. Dead weight loading has been applied in a single step as the first load case.
In load case 2, an initial point load of P = 1 kN has been applied at the midpoint of the loading
plate. The applied point load, P, is marked on Figure 10.5.

Figure 10.5: Case B1: View of the model

65 10.2. Finite element model

10.2.2 Material properties

Based on the given compressive strength, the concrete class is set to C35. The material properties
which are not given in Table 10.1, have been estimated according to EC2 and MC2010 with
reference to the concrete class. A total strain rotating crack model has been used. Table 10.2
presents the input for the arguments of the concrete material model.

Table 10.2: Case B1: Input of concrete material model

Young’s modulus, Ecm 34077 N/mm2

Poisson’s ration, ν 0.2
Mass density 2.4e-09 T/mm3

Crack model TSCM
Crack orientation Rotating
Tensile curve Exponential
Tensile strength, fctm 3.2 N/mm2

Tensile fracture energy, GF 0.144 N/mm
Crack bandwidth specification Govindjee
Possion’s ratio reduction model Damage based
Compression curve Parabolic
Compressive strength, fcm 43.5 N/mm2

Compressive fracture energy, GC 28.96 N/mm
Compressive strength reduction Vecchio & Collins 1993
Lower bound of reduction curve 0.4
Stress confinement model Selby & Vecchio

Embedded reinforcement has been used to model both the longitudinal and the transverse re-
inforcement. Since a 2D model has been used, the area of the longitudinal reinforcement has
been defined as equivalent to the cross section area of the total number of bars. For example:
3 ˆ M10 bars = 3 ˆ 100 mm2 = 300 mm2. A Von Mises Plasticity model has been used, and the
properties used to define the bilinear stress-strain diagram for the different types of reinforcement
are given in Table 10.1. Figure 10.6 shows the stress-strain curve used for M30.

Figure 10.6: Case B1: Stress-strain curve for M30 [25]

For the steel plates, a linear elastic behaviour is assumed. The properties for the steel plates are
given in Table 10.1.

Chapter 10. Case B1: Vecchio & Shim (2004) 66

Structural interface elements have been defined between the steel plates and the concrete beam.
The interface properties have been taken from the validation studies by Rijkswaterstaat [25], and
are presented in Table 10.3.

Table 10.3: Case B1: Interface properties

Knn in tension Knn in compression Kt

3.42 e-08 N/mm3 3.42 e+04 N/mm3 3.42 e-08 N/mm3

10.2.3 Mesh

The generated mesh for B1 is presented in Figure 10.7. The element size is set to 25 mm. Otherwise,
default properties have been used for the mesh, these are summarised in Table 10.4.

Table 10.4: Case B1: Mesh properties

Mesher type Quadrilateral
Mesh order Quadratic
Element type Plane Stress
Element name CQ16M
Integration scheme 3ˆ3 Gaussian

Figure 10.7: Case B1: Finite element mesh

The nodes marked on Figure 10.7 will be referred to in Section 10.4: Results of NLFEA.

10.3 Structural nonlinear analysis

The default properties for the nonlinear analysis have been kept, except for the number of steps
which has been decreased. The suggested tolerances for the force norm and energy norm, presented
in Table 8.6, have been chosen for the convergence criteria. Table 10.5 presents the input for the
arguments of the NLFEA. The analysis has been performed until failure.

67 10.4. Results of nonlinear finite element analysis

Table 10.5: Case B1: Properties of NLFEA

Incrementation method Energy based adaptive loading
Step size Energy based
Factor for first load increment 5
Upper limit of step size 10
Lower limit of step size 3
Number of steps 75
Iteration method Regular Newton-Raphson
Maximum number of iterations 100
Analysis control Arclength + Line search

Convergence norms
F0.05, E0.01 (load case 1)
F0.01, E0.001 (load case 2)

All convergence norms have to be satisfied False
Continue if no convergence True

10.4 Results of nonlinear finite element analysis

10.4.1 Load deflection

The NLFEA gives a peak load of 265 kN, and a maximum deflection at midspan of 47 mm. The
load-deflection curve at midspan, node 5, is presented in Figure 10.8. The load values corresponding
to yielding of the different reinforcement are indicated, as well as the load value corresponding to
cracking of concrete. The post-peak branch of the load-deflection curve is plotted with a dashed
line.

Figure 10.8: Case B1: Load-deflection curve at midspan (node 5)

Chapter 10. Case B1: Vecchio & Shim (2004) 68

10.4.2 Cracking

The first cracks are registered at load step 3. DIANA detects even very small crack widths. In
load step 3 the largest crack has a width of 6 ¨ 10´4 mm, as seen in Figure 10.9.

Figure 10.9: Case B1: Crack widths at load step 3 (P = 20 kN)

Figure 10.10 shows the crack widths at load step 16, here the applied load is 87 kN. At this load
step most of the crack widths lay within the range of 0.01 - 0.14 mm, and the beginning of the
expected crack pattern can be seen. Figure 10.10 corresponds to the cracking point marked in
Figure 10.8.

Figure 10.10: Case B1: Crack widths at load step 16 (P = 87 kN)

Figure 10.11 presents the crack widths and pattern for the peak load at load step 62.

Figure 10.11: Case B1: Crack widths at load step 62 (P= 265 kN)

69 10.4. Results of nonlinear finite element analysis

10.4.3 Crushing

Figure 10.12 shows the minimum principal stresses in the beam at peak load. Negative stresses
indicate compression.

Figure 10.12: Case B1: Minimum principal stresses at load step 62 (P= 265 kN)

10.4.4 Yielding of reinforcement

The yielding of the different reinforcement types have been marked on Figure 10.8, and corresponds
to the first load step where the reinforcement stress has exceeded the yielding strength of that
reinforcement type. The subsequent figures display the reinforcement stresses of the different
reinforcement types at the load steps marked on Figure 10.8. Positive stresses indicate tension,
while negative stresses indicate compression.

The reinforcement steel D4 of the stirrups has a yielding strength of fym = 600 MPa. Figure 10.13
displays the reinforcement stresses of D4 at load step 41.

Figure 10.13: Case B1: Yielding of stirrups D4 at step 41 (P = 200 kN)

Chapter 10. Case B1: Vecchio & Shim (2004) 70

The reinforcement steel M10 has a yielding strength of fym = 315 MPa. Figure 10.14 displays the
reinforcement stresses of M10 at load step 46.

Figure 10.14: Case B1: Yielding of reinforcement bars M10 at step 46 (P = 219 kN)

The reinforcement steel M30 has a yielding strength of fym = 436 MPa. Figure 10.15 displays the
reinforcement stresses of M30 at load step 57.

Figure 10.15: Case B1: Yielding of reinforcement bars M30 at step 57 (P = 254 kN)

The reinforcement steel M25 has a yielding strength of fym = 445 MPa. Figure 10.16 displays the
reinforcement stresses of M25 at load step 59.

Figure 10.16: Case B1: Yielding of reinforcement bars M25 at step 59 (P = 261 kN)

71 10.4. Results of nonlinear finite element analysis

10.4.5 Stress-strain curves of concrete

A stress-strain curve of concrete in tension, obtained from node 123, is shown in Figure 10.17. The
dashed line indicates the post-peak behaviour.

Figure 10.17: Case B1: Stress-strain curve of concrete in tension (node 123)

A stress-strain curve of concrete in compression, obtained from node 8967, is shown in Figure 10.18.

Figure 10.18: Case B1: Stress-strain curve of concrete in compression (node 8967)

10.4.6 Convergence behaviour

The convergence behaviour of the NLFEA is shown in Figure 10.19.

Chapter 10. Case B1: Vecchio & Shim (2004) 72

Figure 10.19: Case B1: Convergence of NLFEA

10.5 Discussion

The load-deflection curve, Figure 10.8, obtained from the NLFEA is in good agreement with the
experimental results. A comparison of the load-deflection curves can be found in Figure 10.20.
The peak and pre-peak response agrees very well with the experimental results. The post-peak
response of the NLFEA is marked with a dotted line, due to the fact that few data points (load
steps) are used to represent the shown post-peak behaviour. As can be seen from Figure 10.19,
all load steps up to and including load step 63, which includes the peak load at load step 62, have
converged within the chosen number of iterations.

Figure 10.20: Case B1: Load-deflection curves for NLFEA and experimental results

73 10.5. Discussion

The post-peak response of Figure 10.20 differs somewhat from the experimental results, and is
modelled using very few load steps as shown in Figure 10.21. As seen in Figure 10.19, non-
convergence occurs at load step 64. After this point the analysis fails, which can be seen from the
sudden horizontal line in Figure 10.8 and Figure 10.21. The remaining load steps that can not be
seen from Figure 10.21 lie on the same horizontal line. A more refined nonlinear analysis as well
as an increased value for the maximum number of iterations might have captured the post-peak
response even better. Furthermore, as the beam fails in bending with crushing of concrete, it is
known that the value chosen for the compressive fracture energy, GC , has a significant influence
on the post-peak behaviour [25]. A parametric study of this parameter could be performed to find
a more suitable value for this parameter, than the one calculated by default. The ductility of the
beam is expected to increase if the value of the compressive fracture energy is increased. More
of the default parameters might also need tweaking, in accordance with the specific experiment,
in order to obtain a better modelling of the post-peak behaviour. The flexible structure of the
framework, as well as the option to perform parametric studies allows for a closer inspection of the
significance of the different input parameters.

Figure 10.21: Case B1: Load steps marked on load-deflection curve at midpoint

The stress-strain curves presented in Section 10.4.5 exhibit the expected shapes up to and including
the peak load. As the analysis fails shortly after this point, the results for the post-peak behaviour
of the stress-strain curves are not valid and should be ignored. The post-peak behaviour is therefore
marked with a dashed line. The pre-peak behaviour of the tensile curve, seen in Figure 10.17, has
the expected exponential softening curve, after the expected tensile strength of 3.2 MPa has been
reached. The compression curve has the expected parabolic shape and peaks at the expected
maximum compressive strenght of 43.5 MPa. However, the softening branch of this curve is not
modelled correctly, as the analysis fails shortly after reaching the peak load.

The modelled beam exhibits a flexural-compressive failure mode as expected. The different re-
inforcement types yield at the expected stress, as shown in Section 10.4.4, and all reinforcement

Chapter 10. Case B1: Vecchio & Shim (2004) 74

types experience yielding at peak load as expected. Crushing of the concrete at peak load can also
be observed from Figure 10.12. The crushing of the concrete occurs near the load application area,
as expected from Figure 10.3.

The first cracks appear at midspan on the bottom the beam where the tensile forces are highest,
as expected. However, at the point where DIANA first detects cracking, these values are too small
to be observed in the experimental setup. Therefore, the point of cracking of concrete which is
marked on the load-deflection graph, Figure 10.8, has been set to the point where the crack widths
are likely to be detected in the experiment. The computed crack pattern shown in Figure 10.10
and Figure 10.11 match well with the expected crack pattern. The computed crack pattern at
failure is remarkably similar to the experimental observation, as shown in Figure 10.22. The
failure mechanisms are in other words as expected, and similar to that of the experimental results.
It can therefore be concluded that the chosen total strain rotating crack model for this beam is
indeed a suitable crack model. However, an even more correct model of the crack pattern for this
specific beam could have been achieved by defining discrete cracking at midpoint, combined with
smeared cracking with a rotating TSCM for the continuous part of the beam [15].

Figure 10.22: Case B1: Numerical and experimental crack patterns at failure

The element size, l, for the finite element model of B1 is set to 25 mm for all elements. This
gives 22 elements over the height of the beam, which are more than enough according to the
recommendations, see Section 2.2.2.1. The selected element size achieves mesh independence.
The mesh independence has been checked by performing an analysis with elements of size l{2.
Furthermore, a check of the correct modelling of a symmetric beam has been performed, by also
modelling the whole beam. The same results were obtained from modelling the whole beam and
half of the beam. However, as expected, modelling the whole beam resulted in a much more time-
consuming analysis. Modelling only half the beam in case of symmetry is therefore the preferred
option and a useful feature of the framework.

All in all, as mainly default properties have been used for the NLFEA, it can be concluded that
the default properties ensure a robust NLFEA of Case B1. The peak load and failure mechanisms
agree very well with the expected results. The recommended crack model also proves to be suitable
for the type of beam presented in Case B1. Evidently, some tweaking of different parameters are
needed for an even better agreement between the results of the NLFEA and the experimental
results. However, the default parameters of the framework provide a great starting point for
robust NLFEA.

11 Case B2: Collins and Kuchma (1999)
Case B2 is based on Beam SE-50A-45 from the experimental program of Collins & Kuchma from
1999. It is a four-point bending test of a RC beam which fails in shear. The beam exhibits a
diagonal-tension failure mode [1].

11.1 Experimental setup and results

11.1.1 Geometry and loading

The geometry of the beam and the reinforcement, as well as the loading, is shown in Figure 11.1.
As can be seen from Figure 11.1, extra longitudinal reinforcement bars have been added to the
regions characterised by the maximum value of the applied bending moment. These sections are
denoted B-B and C-C. The cross section of the beam is shown in Figure 11.2 for section A-A, B-B
and C-C, which are all marked in Figure 11.1. The length of the beam is 5 m, the height is 0.5 m
and the width is 0.169 m. The beam is subjected to four-point bending, where the right load is
twice that of the left load. The longitudinal reinforcement has a diameter of 16 mm [27].

Figure 11.1: Case B2: Experimental setup. Dimensions in mm [27]

Figure 11.2: Case B2: Cross sections [25]

75

Chapter 11. Case B2: Collins and Kuchma (1999) 76

11.1.2 Material properties

Table 11.1 lists the most important material properties of the concrete and the steel. The same
reinforcement steel has been used for all longitudinal reinforcement. The beam has no transverse
reinforcement. The given parameter values for the reinforcement in Table 11.1 are for one single
bar.

Table 11.1: Case B2: Material properties [25][27]

Material Parameter Value

Concrete Compressive strength, fcm 53 MPa

Reinforcement steel

Diameter, ϕ
Cross section area, As

Young’s modulus, E
Yielding strength, fym
Ultimate strength, fum
Ultimate strain, εsu

16 mm
200 mm2

200000 MPa
400 MPa
600 MPa
0.05

Steel for plates
Young’s modulus, E
Poissons’s ratio, ν

200000 MPa
0.3

11.1.3 Experimental results

The beam was tested twice, resulting in two different failure loads. The experimental ultimate
value of the applied load before failure was Pexp,1 “ 69 kN for the first test, and Pexp,2 “ 81 kN
for the second test [25]. The beam experienced a diagonal-tension failure mode. This is a brittle
failure, which means that the shear collapse occurs suddenly with little to no warning. The failure
mechanism of Case B2 is shown in Figure 11.3, and is a typical failure mechanism for a beam with
no shear reinforcement. The load-deflection curve is not given in the references [25].

Figure 11.3: Case B2: Failure mechanisms [25]

77 11.2. Finite element model

11.2 Finite element model

11.2.1 Geometry and loading

The finite element model has been generated by changing the parameters in Script A in accordance
with Table 11.1 and the geometry presented in Section 11.1. The created input script for Case
B2 can be found in Appendix F. Longitudinal reinforcement have been added, and the options
to create the loads and plates individually have been chosen in Script A. The model is shown in
Figure 11.4. Dead weight loading has been applied in a single step as the first load case. In load
case 2, the point loads have been applied. An initial point load of P = 1 kN has been applied at
the middle of the left loading plate, and a point load of 2P = 2 kN has been applied at the middle
of the right loading plate.

Figure 11.4: Case B2: View of the model

11.2.2 Material properties

Based on the given compressive strength, the concrete class is set to C45. The material properties
which are not given in Table 11.1, have been estimated according to EC2 and MC2010 with
reference to the concrete class. A total strain fixed crack model has been used. Table 11.2 presents
the input for the arguments of the concrete material model.

Table 11.2: Case B2: Input of concrete material model

Young’s modulus, Ecm 36283 N/mm2

Poisson’s ration, ν 0.2
Mass density 2.4e-09 T/mm3

Crack model TSCM
Crack orientation Fixed
Tensile curve Exponential
Tensile strength, fctm 3.8 N/mm2

Tensile fracture energy, GF 0.149 N/mm
Crack bandwidth specification Govindjee
Possion’s ratio reduction model Damage based
Compression curve Parabolic
Compressive strength, fcm 53 N/mm2

Compressive fracture energy, GC 31.66 N/mm
Compressive strength reduction Vecchio and Collins 1993
Lower bound of reduction curve 0.6
Stress confinement model Selby and Vecchio
Shear retention model Damage based

Chapter 11. Case B2: Collins and Kuchma (1999) 78

Embedded reinforcement has been used to model the longitudinal reinforcement. Eight reinforce-
ment objects have been created. Since a 2D model has been used, each reinforcement object
has been defined with a cross section equal to 2 ˆ 200 mm2 = 400 mm2. A Von Mises Plasti-
city model has been used, and the properties used to define the bilinear stress-strain diagram for
the reinforcement are given in Table 11.1. Figure 11.5 shows the stress-strain curve used for the
reinforcement.

Figure 11.5: Case B2: Stress-strain curve for reinforcement [25]

For the steel plates, a linear elastic behaviour is assumed. The properties for the steel plates are
given in Table 11.1.

Structural interface elements have been defined between the steel plates and the concrete beam.
The interface properties have been taken from the validation studies by Rijkswaterstaat [25]. The
chosen interface properties are presented in Table 11.3.

Table 11.3: Case B2: Interface properties

Knn in tension Knn in compression Kt

3.63 e-08 N/mm3 3.63 e+04 N/mm3 3.63 e-08 N/mm3

11.2.3 Mesh

The mesh for B2 is presented in Figure 11.6. The element size is set to 25 mm. Otherwise, default
properties have been used for the mesh, these are summarised in Table 11.4.

Table 11.4: Case B2: Mesh properties

Mesher type Quadrilateral
Mesh order Quadratic
Element type Plane Stress
Element name CQ16M
Integration scheme 3ˆ3 Gaussian

79 11.3. Structural nonlinear analysis

Figure 11.6: Case B2: Finite element mesh

The node marked on Figure 11.6 will be referred to in Section 11.4: Results of NLFEA.

11.3 Structural nonlinear analysis

The default properties for the nonlinear analysis have been kept, except for the number of steps
and the lower limit for the step size, which have been decreased. The option in Script A with
the suggested tolerances for the force norm and energy norm has been chosen for the convergence
criteria. Table 10.5 presents the input for the arguments of the NLFEA. The analysis has been
performed until failure.

Table 11.5: Case B2: Properties of NLFEA

Incrementation method Energy based adaptive loading
Step size Energy based
Factor for first load increment 5
Upper limit of step size 10
Lower limit of step size 0.5
Number of steps 130
Iteration method Regular Newton-Raphson
Maximum number of iterations 100
Analysis control Arc-length + Line search

Convergence norms
F0.05, E0.01 (load case 1)
F0.01, E0.001 (load case 2)

All convergence norms have to be satisfied False
Continue if no convergence True

11.4 Results of nonlinear finite element analysis

11.4.1 Load deflection

The NLFEA gives a peak load of 90 kN. In other words, P = 90 kN and 2P = 180 kN. The
load-deflection curve at the left loading plate, node 12405, is presented in Figure 11.7. The load
value corresponding to cracking of concrete is marked, and dotted lines have been used to indicate
the values of the experimental failure loads.

Chapter 11. Case B2: Collins and Kuchma (1999) 80

Figure 11.7: Case B2: Load-deflection curve (node 12405)

11.4.2 Cracking

The following figures show the crack widths at three loading points: just after the start of the
crack localisation (which corresponds to the first local decrease of the load-deflection graph), at
the maximum loading and at the last load step already in the post-peak regime.

Figure 11.8 corresponds to the point of cracking marked in Figure 11.7. Figure 11.8 shows the
crack widths at load step 31, here the applied load, P, is 72 kN. At this load step the crack widths
lay within the range of 0.01 - 0.17 mm.

Figure 11.8: Case B2: Crack widths at load step 31 (P = 72 kN)

81 11.4. Results of nonlinear finite element analysis

Figure 11.9 presents the crack widths and pattern for the peak load at load step 110.

Figure 11.9: Case B2: Crack widths at load step 110 (P = 90 kN)

Figure 11.10 shows the crack widths and pattern at load step 131.

Figure 11.10: Case B2: Crack widths at load step 131

11.4.3 Minimum principal stress

Figure 11.12 shows the minimum principal stresses in the concrete beam at peak load. Negative
stresses indicate compression.

Figure 11.11: Case B2: Minimum principal stresses at load step 110 (P= 90 kN)

Chapter 11. Case B2: Collins and Kuchma (1999) 82

11.4.4 Reinforcement stresses

The reinforcement does not yield. Figure 11.12 shows the stress distribution in the reinforcement
at load step 110, when the peak load is reached.

Figure 11.12: Case B2: Reinforcement stresses at load step 110 (P = 90 kN)

11.4.5 Convergence behaviour

The convergence behaviour of the nonlinear analysis is shown in Figure 11.13.

Figure 11.13: Case B2: Convergence of NLFEA

11.5 Discussion

As can be seen in Figure 11.7, the NLFEA overestimates the peak load slightly. Even so, the
outcome of the analysis and the failure mechanisms are as expected. The beam failed in diagonal
tension, and as can be seen from the load-deflection curve presented in Figure 11.7, no ductility is
displayed after the peak load has been reached, due to the brittle nature of this failure.

83 11.5. Discussion

The crack propagation displayed in Section 11.4.2 is in agreement with the expected failure mode.
The initial horizontal bending cracks starts to localise in load step 31, as shown in Figure 11.8,
which also corresponds to the local snap-back in the load-deflection curve shown in Figure 11.7.
After this load step, additional loading results in increasing opening of more bending cracks that
in time transform into diagonal shear cracks. Figure 11.10 clearly shows how the critical crack
propagates rapidly after the peak load has been reached and continues as a large diagonal shear
crack towards the end of the beam. The typical 45° crack angle that is caused by diagonal tension
as a result of shear stresses, is marked on Figure 11.14 with red lines.

Figure 11.14: Case B2: Crack widths at load step 131 with lines indicating the 45 degree crack
angle

The convergence of the NLFEA is presented in Figure 11.13. Convergence is achieved for the peak
load at load step 110. The nonconvergence is caused by local cracking effects in load step 30, 35 and
111, and does not indicate failure. As can be seen from Figure 11.13, each case of nonconvergence
is followed by a converged step.

In accorance with the expected failure mechanism, the shear failure was not accompanied by
crushing of the concrete, which can be seen from the minimum principal stresses reported in
Figure 11.11. All stresses shown in Figure 11.11 have a higher value than the concrete compressive
strength of -53 MPa. The reinforcement does also not experience yielding, as flexural failure is not
the governing failure mechanism. Figure 11.12 shows how all reinforcement stresses are below the
yield strength of 400 MPa. Since the reinforcement does not experience yielding, a linear elastic
material model could have been assumed for the reinforcement instead of the bilinear diagram that
was chosen. However, as of now, the only implemented material model for the reinforcement in
the Beam Script is the Von Mises Plasticity model.

Since the beam fails due to diagonal tension, the results of the NLFEA are heavily dependent
on the chosen crack model, tensile strength and tensile fracture energy, GF [25]. It may seem as
though a fixed crack model slightly overestimates the results, and it would have been interesting
to model the same beam using a rotating crack model. At the current stage, the Beam Script does
not allow the user the change the crack model. In the future, this feature could be implemented,
allowing the user to perform a parametric study on the use of different crack models.

Furthermore, the validation studies by Rijkswaterstaat shows that the value of the crack bandwidth
has a significant influence on the load-deflection curve of Case B2 [25]. The reason for this might
be related to the control procedures or convergence criteria. Figure 11.15 shows the load-deflection
curves for case B2 obtained by using three different values for the crack-bandwidth. Based on the

Chapter 11. Case B2: Collins and Kuchma (1999) 84

curves presented in Figure 11.15, it can be assumed that a lower peak load, which would have
been in even better agreement with the experimental peak loads, might have been achieved using
a higher value for the crack bandwidth than the one estimated using Godvindjee’s method [25].

Figure 11.15: Case B2: Load-deflection curves obtained for different crack bandwidth values[25]

Overall, the framework provides a good starting point for performing a NLFEA of Case B2, and
the speed, convergence and quality of the analysis are ensured by the provided default properties.
The expected crack pattern is obtained using the framework, however it seems as though the
chosen fixed crack model might overestimate the peak load slightly. In future work, the framework
could be extended to include amongst others the option to choose a linear material model for the
reinforcement steel and an option to switch between the fixed and rotating crack model.

Part V

Parametric study

85

12 General information
The framework allows for the execution of a parametric study, where one of the input parameters
can be varied. To demonstrate this feature, a very simple parametric study has been performed,
where the length of a RC beam has been varied from 3m to 6m. However, using the Beam Script to
perform a parametric study is not limited to changing the geometry, and could also be performed for
all input parameters, both required and optional, of Script A. For example could the tensile curve
for the concrete material model or the crack bandwidth specification be varied when performing
the parametric study.

It is well-known that the results of a NLFEA can be substantially influenced by the modelling
choices and input parameters [1]. Even small changes of the value of one of the input parameters,
for example the value of the fracture energy as mentioned in Part IV, might have a noticeably
effect on the results. Therefore, even though default values for the properties are provided in
Script A, using Script B to perform sensitivity studies is a useful and arguably imperative feature
of the framework. Furthermore, even though nonlinear analysis is allowed in EC2, the analysis is
required to contain relevant parameter studies to demonstrate that the model can appropriately
cover all relevant failure modes [1]. Script B makes this possible.

Evidently, the user could perform a parametric study without running Script B, by creating a
number of input files, changing one single parameter, and running Script D for each of the created
input files. However, Script B allows the user to do this in a much more efficient manner. Utilizing
Script B, the user only have to define the user input and the values for the parametric study once.
After clicking run Script B in DIANA, the user no longer has to interact with the program. The
parametric study will be carried out by itself.

A parametric study where the length of a beam has been varied, will be presented and discussed in
subsequent sections. The main focus of Part V is to demonstrate how a parametric study could be
executed using the framework and how results of a parametric study could be presented. In other
words, the geometry of the beam has been chosen at random, and the results of the parametric
study have no real purpose. As the parameter to be varied is the main focus in a parametric study,
the input for the parameters to be kept constant will not be presented to the same extent as the
input for the benchmark studies in Part IV.

The performed parametric study on beam length will be covered in the following sections, describing
respectively: the geometry and material properties of the selected beam, the finite element model,
the results of the parametric study and a discussion.

86

13 Parametric study on beam length

13.1 The beam

13.1.1 Geometry and loading

The geometry of the chosen beam and the reinforcement, as well as the loading, are shown in
Figure 13.1 and Figure 13.2. The length of the beam is to be varied, the height is 0.4 m and the
width is 0.25 m. The beam is subjected to three point bending, as shown in Figure 13.1. The
geometry is chosen at random, and has not been designed so as to fulfil any EC2-specifications.

Figure 13.1: Geometry and setup

Figure 13.2: Cross section (dimensions in mm)

13.1.2 Material properties

Table 13.1 lists the most important material properties of the concrete and the steel. The given
parameter values for the longitudinal reinforcement in Table 10.1 are for one single bar.

87

Chapter 13. Parametric study on beam length 88

Table 13.1: Material properties

Material Parameter Value

Concrete Characteristic compressive strength, fck 30 MPa

Reinforcement steel B500C
(longitudinal)

Diameter, ϕ
Cross section area, As

Young’s modulus, E
Yielding strength, fyk
Ultimate strength, fuk
Ultimate strain, εuk

20 mm
314 mm2

200000 MPa
500 MPa
540 MPa
0.05

Reinforcement steel D4
(stirrups)

Diameter, ϕ
Cross section area, As

Young’s modulus, E
Yielding strength, fym
Ultimate strength, fum
Ultimate strain, εum

3.7 mm
25.7 mm2

220000 MPa
600 MPa
651 MPa
0.047

Steel for plates
Young’s modulus, E
Poisson’s ratio, ν

200000 MPa
0.3

13.2 Finite element model

The view of the model is shown in Figure 13.3. A template for a three point bending test has been
used. Dead weight loading has been applied in a single step as the first load case. In load case
2, an initial point load of P = 1 kN has been applied at the midpoint of the loading plate. The
applied point load, P, is marked in Figure 13.3. Appendix G presents the input script created for
this parametric study. The length of the beam has been defined as the parameter to be varied in
the parametric study, as shown in line 1 of Script 13.1. The chosen values for the beam length
are 3m, 4m, 5m and 6m, as shown in line 4 of Script 13.1. Appendix H presents how these values
have been input in Script B. The concrete class is set to C30. The material properties have been
estimated with reference to the concrete class. A total strain rotating crack model has been chosen
by default for the beam. The span length has been defined as dependent on the beam length. For
further information about the constant parameters used in the parametric study, see Appendix G.

Figure 13.3: View of the model

89 13.3. Nonlinear finite element analysis

1 beam . geometry . length = parametricValue #[mm]
2

3 ## INPUT LIST OF PARAMETRIC VALUES HERE :
4 parametricStudy ([3000 , 4000 , 5000 , 6000])

Script 13.1: Input for parametric study

13.3 Nonlinear finite element analysis

Default values and properties have been used for the NLFEA, except for the number of steps which
has been reduced to 100. Please see Table 8.5 for more information about the default properties
of the NLFEA.

13.4 Results of parametric study

Figure 13.4 shows the load-deflection curves at midpoint of the same beam with varying length.
The peak load is marked.

Figure 13.4: Load-deflection curves with varying beam length (midpoint)

A simple sectional analysis has been used to decide the critical loads for the different beam lengths.
The calculations can be found in Appendix I. In Figure 13.5, the obtained peak loads using NLFEA
are compared with the analytical results for the critical loads.

Chapter 13. Parametric study on beam length 90

Figure 13.5: Critical load values for the different beam lengths

13.5 Discussion of parametric results

The main purpose of Section 13.4 is to demonstrate possible ways to present the results from a
parametric study. Figure 13.4 displays a comparison of the load-deflection curves obtained when
varying the beam length. The convergence has not been checked for this parametric study, however
this should be done to evaluate the quality of the analysis. If the analysis for example fails after the
peak load has been reached, the post-peak results are not valid. As can be seen from Figure 13.4,
increasing the beam length results in a lower peak load and increased deflection. This is expected,
as a longer beam will experience at larger bending moment at midspan than a shorter beam.

In general, by comparing the load-deflection curves from a parametric study, observations can be
made on how the varied parameter affects the results of the NLFEA. The effect on the peak load
can for example be studied. Furthermore, by looking at the load-deflection curves it could be
evaluated to which degree the failure mode is dependent on the studied parameter. The role the
parameter plays on the ductility of the beam could also be evaluated. Essentially, the sensitivity
of the performed NLFEA in regards to different parameters could be studied. Nonlinear analysis
is complex and it might be hard to know, especially with limited expertise, which factors that
influence the analysis the most. Script B of the framework can be utilized for this purpose.

Figure 13.5 displays a possible way to compare analytical or experimental results with the results of
a NLFEA. In Figure 13.5, the peak load obtained for the different beam lengths is compared to the
calculated critical loads. The trend of both curves are similar, which supports that the NLFEAs
have been carried out correctly up to and including the peak load. As expected, the failure
loads obtained from the NLFEAs are higher than the analytical results. The nonlinear analysis is
expected to give a higher load capacity, as the nonlinear behaviour and effects of the reinforced
concrete is taken into consideration. In other words, the NLFEA allows for a more optimal design

91 13.5. Discussion of parametric results

of the RC beam than ’convential’ sectional analysis. The created framework is therefore a useful
addition to the approach for more optimal design of reinforced concrete structures, since a robust
NLFEA can be executed in an efficient and user-friendly manner.

The option in Script A to generate load-displacement CSV-files was chosen for the executed para-
metric study. Instead of having to open each of the created DIANA projects in order to look at the
output of the NLFEA, the saved CSV-files were opened directly in Excel. Thereafter, they were
used to plot the graphs shown in Section 13.4. The generated CSV-files allowed for an efficient
post-processing of the results from the parametric study. Furthermore, the user-friendly nature
of the framework also allowed the user input to be defined efficiently. Less than five minute were
needed to define the user input, before the parametric analysis could be run and carried out by
itself in DIANA.

14 Conclusions and recommendations

14.1 Conclusions

In this thesis, a DIANA/Python framework for robust NLFEA of RC beams has been created. The
framework provides a reliable way of approaching NLFEA of RC beams. It relies on recommended
properties, which will be applied by default. The created framework also provides a more efficient
way of modelling, than through the DIANA graphical interface, as the user only has to define
selected input. In general, performing NLFEA requires experience to ensure quality, robustness
and speed of the analysis. However, the provided default properties make it possible for users with
limited expertise to perform complex analysis.

The object-oriented structure of the framework allows for flexible user input and a more user-
friendly way of generating the DIANA workflow. For example does the framework allow the
user to create an unlimited number of reinforcement bars and point loads, including zero. The
user-friendliness of the framework has been further improved by adding templates and example
blocks. The symmetry option, as well as the possibility to generate CSV-files for the load-deflection
response, also contribute to a more efficient analysis and workflow. Furthermore, the framework
can be used to perform parametric studies. This is a very useful feature, which can be used
to perform sensitivity studies. The results from the executed parametric study, supports the
fact that a nonlinear analysis will obtain an increased capacity for a concrete beam compared to
’conventional’ sectional analysis. Hence, it can be concluded that the DIANA/Python framework
for robust NLFEA allows for more optimal design of RC beams.

The default solution strategy achieves a high level-of-approximation and reliability. This can
be concluded based on the validations studies of Case B1 and B2. Overall, the results of the
NLFEAs obtained for Case B1 and B2 agree well with the experimental results. The NLFEAs
obtain the expected pre-peak behaviour for the load-deflection curves. The failure mechanisms
are also modelled as expected for both cases. The NLFEA of Case B1 fails shortly after the peak
load, and the post-peak response differs somewhat from the experimental results. However, an
even better agreement between the numerical and experimental results could probably have been
obtained using the framework, if the significant input parameters were studied in greater detail
and tweaked in accordance with the experimental results. The flexible structure of the framework
and the option to perform parametric studies, allows for a closer inspection of the significance of
the different input parameters. The peak load of Case B2 was slightly overestimated. Also here, a
better agreement between the numerical and experimental results could have been obtained using
the framework, if a closer inspection of significant input parameters had been performed. Especially
the fracture energy, the crack bandwidth and the crack model seemed to have a significant influence
on the results of the performed NLFEAs. In general, the benchmark studies highlight how the
implemented default parameters provide a great starting point for robust NLFEA of RC beams.

92

14.2 Recommendations for future work

For future work, the framework can be expanded to include beams with more advanced geometry,
like more complicated cross sections or web-openings. Additional types of loading and different
boundary conditions could also be included. Furthermore, the framework could be extended with
more optional input parameters, as for example allowing the user to optionally select the crack
model to be used. Having said that, if more optional parameters are to be included, one should be
aware of the fact that this might reduce the user-friendliness and robustness of the framework.

The framework could also be utilized as is. For example could it be interesting to perform para-
metric studies on the influence of certain input parameters on the results of NLFEA. The influence
of the fracture energy on the post-peak deformation could for example be studied in more detail, as
mentioned in Part IV. In general, the created framework for NLFEA could be applied to optimize
the design of RC beams.

The default parameters based on recommendations ensures robust NLFEA. This framework in
Python could be adapted to other finite element analysis software, as the same recommendations
will also apply here. The specific DIANA commands would have to be changed, however the
object-oriented structure could be kept as is.

93

Bibliography
[1] Max A.N. Hendriks and Marco A. Roosen (editors). Guidelines for Nonlinear Finite Ele-

ment Analysis of Concrete Structures. Rijkswaterstaat Centre for Infrastructure, Report
RTD:1016-1:2019, 2019. url: http : //homepage . tudelft . nl / v5p05/RTD%201016 - 1(2020)
%20version%202 .2%20(final%2020200402)%20Guidelines%20for%20Nonlinear%20Finite%
20Element%20Analysis%20of%20Concrete%20Structures.pdf (visited on 9th June 2022).

[2] CEN. NS-EN 1992-1-1:2004+A1:2014+NA:2021 Eurocode 2: Design of concrete structures
Part 1-1: General rules and rules for buildings. Standard Norge, 2021. url: https://www.
standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=1365302 (vis-
ited on 9th June 2022).

[3] fédération internationale du béton/International Federation for Structural Concrete (fib). fib
Model Code for Concrete Structures 2010. 2013. doi: 10.1002/9783433604090.

[4] Arjen de Putter. Towards a uniform and optimal approach for safe NLFEA of reinforced
concrete beams. Master’s thesis. Delft University of Technology, 2020. url: http://resolver.
tudelft.nl/uuid:f0282508-ff25-4043-98cf-4b7bfc395a4b (visited on 9th June 2022).

[5] DIANA FEA BV. Automated beam script. 2021. url: https://www.researchgate.net/lab/Ab-
van-den-Bos-Diana-Fea-Lab (visited on 9th June 2022).

[6] DIANA FEA BV. DIANA Documentation - release 10.5. DIANA FEA BV, 2021. url: https:
//manuals.dianafea.com/d105/Diana.html (visited on 9th June 2022).

[7] Robert D. Cook et al. Concept and applications of finite element analysis. 4th edition. John
Wiley & Sons Inc., 2001.

[8] Kjell Magne Mathisen. Lecture notes - Nonlinear Finite Element Analysis. TKT4197. url:
https://ntnu.blackboard.com/ultra/courses/_29372_1/cl/outline (visited on 20th Nov. 2021).

[9] Jan Arve Øverli and Svein I. Sørensen. Concrete Structures 3 - Compendium. TKT4222.
Trondheim: Department of Structural Engineering, NTNU, 2013.

[10] Schuster Engineering. FEA 32: Nonlinear Analysis 1. url: https://www.youtube.com/watch?
v=Jrflw1veZeo (visited on 20th Nov. 2021).

[11] Kesio Palacio. Practical Recommendations for Nonlinear Structural Analysis in DIANA. The
Netherlands: TNO DIANA BV, 2013. url: https://dianafea.com/sites/default/files/2018-
04/Nonlinear_Structural_Analysis_in_DIANA.pdf (visited on 13th Apr. 2022).

[12] PTC. Include Snap-Through. url: http://support.ptc.com/help/creo/creo_pma/italian/
index.html#page/simulate/simulate/analysis/struct/reference/inc_snap_thru.html (visited on
20th Nov. 2021).

[13] A. de Putter et al. Quantification of the resistance modeling uncertainty of 19 alternative
2D nonlinear finite element approaches benchmarked against 101 experiments on reinforced
concrete beams. Structural Concrete. Structural Concrete. 2022;1-15, 2022. doi: 10.1002/
suco.202100574.

[14] Kjell Magne Mathisen. Lecture notes - Finite Element Methods in Strength Analysis. TKT4192.
url: https://ntnu.blackboard.com/ultra/courses/_25468_1/cl/outline (visited on 14th Apr.
2022).

94

http://homepage.tudelft.nl/v5p05/RTD%201016-1(2020)%20version%202.2%20(final%2020200402)%20Guidelines%20for%20Nonlinear%20Finite%20Element%20Analysis%20of%20Concrete%20Structures.pdf
http://homepage.tudelft.nl/v5p05/RTD%201016-1(2020)%20version%202.2%20(final%2020200402)%20Guidelines%20for%20Nonlinear%20Finite%20Element%20Analysis%20of%20Concrete%20Structures.pdf
http://homepage.tudelft.nl/v5p05/RTD%201016-1(2020)%20version%202.2%20(final%2020200402)%20Guidelines%20for%20Nonlinear%20Finite%20Element%20Analysis%20of%20Concrete%20Structures.pdf
https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=1365302
https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=1365302
https://doi.org/10.1002/9783433604090
http://resolver.tudelft.nl/uuid:f0282508-ff25-4043-98cf-4b7bfc395a4b
http://resolver.tudelft.nl/uuid:f0282508-ff25-4043-98cf-4b7bfc395a4b
https://www.researchgate.net/lab/Ab-van-den-Bos-Diana-Fea-Lab
https://www.researchgate.net/lab/Ab-van-den-Bos-Diana-Fea-Lab
https://manuals.dianafea.com/d105/Diana.html
https://manuals.dianafea.com/d105/Diana.html
https://ntnu.blackboard.com/ultra/courses/_29372_1/cl/outline
https://www.youtube.com/watch?v=Jrflw1veZeo
https://www.youtube.com/watch?v=Jrflw1veZeo
https://dianafea.com/sites/default/files/2018-04/Nonlinear_Structural_Analysis_in_DIANA.pdf
https://dianafea.com/sites/default/files/2018-04/Nonlinear_Structural_Analysis_in_DIANA.pdf
http://support.ptc.com/help/creo/creo_pma/italian/index.html#page/simulate/simulate/analysis/struct/reference/inc_snap_thru.html
http://support.ptc.com/help/creo/creo_pma/italian/index.html#page/simulate/simulate/analysis/struct/reference/inc_snap_thru.html
https://doi.org/10.1002/suco.202100574
https://doi.org/10.1002/suco.202100574
https://ntnu.blackboard.com/ultra/courses/_25468_1/cl/outline

[15] DIANA FEA BV. Advanced DIANA Training course. Concrete Crack Models Discrete vs.
Smeared. 2022. url: https : / / dianafea . com / index . php / 2022 - Adv - ConCrack (visited on
16th Feb. 2022).

[16] Xiong Zhang, Zhen Chen and Yan Liu. ‘Chapter 6 - Constitutive Models’. In: The Material
Point Method. Oxford: Academic Press, 2017, pp. 175–219. doi: https://doi.org/10.1016/
B978-0-12-407716-4.00006-5.

[17] F. J. Vecchio and M. P. Collins. The modified compression field theory for reinforced concrete
elements subjected to shear. ACI Journal. 83, 22, 1986. url: http://vectoranalysisgroup.com/
journal_publications/jp2.pdf.

[18] Ahmed Elkady. 21 ABAQUS Tutorial: Defining Concrete Damage Plasticity Model + Failure
and Element Deletion. url: https://www.youtube.com/watch?v=wy84XGamn3g (visited on
15th Apr. 2022).

[19] Robert G. Selby and Frank J. Vecchio. ‘A constitutive model for analysis of reinforced con-
crete solids’. In: Canadian Journal of Civil Engineering 24 (1997), pp. 460–470. url: https:
//tspace.library.utoronto.ca/bitstream/1807/10030/1/Vecchio_11330_3309.pdf (visited on
9th June 2022).

[20] Martin Hallberg. Numerisk simulering av ikke-lineær oppførsel av armert betong. Master’s
thesis. NTNU, 2014.

[21] Department of Structural Engineering. Formula sheet - Structural Mechanics part 1 and 2.
TKT4116. NTNU, 2018.

[22] Maurício Prado Martins et al. ‘Modelling of tension stiffening effect in reinforced recycled
concrete’. In: Revista IBRACON de Estruturas e Materiais 13 (2020). doi: 10.1590/s1983-
41952020000600005.

[23] DIANA FEA BV. Online course. Nonlinear behaviour of reinforced concrete structures. 2019.
url: https://dianafea.com/2019-10-rc-course (visited on 3rd Oct. 2019).

[24] David Amos. Object-Oriented Programming (OOP) in Python 3. url: https://realpython.
com/python3-object-oriented-programming/ (visited on 15th Dec. 2021).

[25] M.A.N. Hendriks, A. de Boer and B. Belletti. Validation of the Guidelines for Nonlinear
Finite Element Analysis of Concrete Structures. Part: Reinforced beams. Rijkswaterstaat
Centre for Infrastructure, Report RTD:1016-3A:2017, 2017. url: http://homepage.tudelft.nl/
v5p05/RTD%201016-3A(2017)%20version%201.0%20Validation%20of%20the%20guidelines%
20for%20NLFEA%20of%20RC%20structures%20Part%20Reinforced%20beams.pdf (visited on
9th June 2022).

[26] F.J. Shim W. Vecchio. Experimental and Analytical Reexamination of Classic Concrete Beam
Tests. J. Struct. Engrg. ASCE 130(3) 460-496, 2004.

[27] DIANA FEA BV. DIANA Verification Report - release 10.5. DIANA FEA BV, 2021. url:
https://manuals.dianafea.com/d105/Diana.html (visited on 9th June 2022).

[28] DIANA FEA BV. Reinforced Concrete Beam: Simulation of an Experimental Test. Tutorial.
url: https://dianafea.com/system/files/rcb_0.pdf (visited on 9th Dec. 2021).

[29] Svein Ivar Sørensen. Betongkonstruksjoner - Beregning og dimensjonering etter Eurocode 2-
2nd edition. Fagbokforlaget, 2017.

95

https://dianafea.com/index.php/2022-Adv-ConCrack
https://doi.org/https://doi.org/10.1016/B978-0-12-407716-4.00006-5
https://doi.org/https://doi.org/10.1016/B978-0-12-407716-4.00006-5
http://vectoranalysisgroup.com/journal_publications/jp2.pdf
http://vectoranalysisgroup.com/journal_publications/jp2.pdf
https://www.youtube.com/watch?v=wy84XGamn3g
https://tspace.library.utoronto.ca/bitstream/1807/10030/1/Vecchio_11330_3309.pdf
https://tspace.library.utoronto.ca/bitstream/1807/10030/1/Vecchio_11330_3309.pdf
https://doi.org/10.1590/s1983-41952020000600005
https://doi.org/10.1590/s1983-41952020000600005
https://dianafea.com/2019-10-rc-course
https://realpython.com/python3-object-oriented-programming/
https://realpython.com/python3-object-oriented-programming/
http://homepage.tudelft.nl/v5p05/RTD%201016-3A(2017)%20version%201.0%20Validation%20of%20the%20guidelines%20for%20NLFEA%20of%20RC%20structures%20Part%20Reinforced%20beams.pdf
http://homepage.tudelft.nl/v5p05/RTD%201016-3A(2017)%20version%201.0%20Validation%20of%20the%20guidelines%20for%20NLFEA%20of%20RC%20structures%20Part%20Reinforced%20beams.pdf
http://homepage.tudelft.nl/v5p05/RTD%201016-3A(2017)%20version%201.0%20Validation%20of%20the%20guidelines%20for%20NLFEA%20of%20RC%20structures%20Part%20Reinforced%20beams.pdf
https://manuals.dianafea.com/d105/Diana.html
https://dianafea.com/system/files/rcb_0.pdf

Appendix

A User input

1 def functionOfUserInput (parametricValue) : # Input inside function allows for parametric study
2 # ---
3 # ---------------------- 2D BEAM SCRIPT ---------------------------
4 # --------- DIANA / Python framework for robust NLFEA of RC beams ---
5 # ---
6 # By Katja Hansen
7 # If questions , please contact : katjahansen . mail@gmail . com
8 # This script is part of Katja Hansen 's Master 's Thesis , June 2022.
9

10 # ---
11 # TABLE OF CONTENTS
12 # 1. INFO BEFORE CHANGING THE SCRIPT
13 # 1.1 FIRST TIME use of beam script
14 # 1.2 General project information
15 # 1.3 Units
16 # 1.4 Commenting and uncommenting
17 # 1.5 Empty templates
18 # 2. PARAMETRIC STUDY
19 # 3. EXTRA INFO
20 # 3.1 About coordinates
21 # 3.2 Creation of objects from a class
22 # 3.3 Explanation of lines
23 # 4. CREATING PROJECT
24 # 4.1 Modelling choices
25 # 5. CREATING THE GEOMETRY
26 # 5.1 The beam
27 # 5.1.1 Geometry
28 # 5.2 Reinforcement
29 # 5.2.1 Cover
30 # 5.2.2 User defined variables
31 # 5.3 Longitudinal reinforcement
32 # 5.3.1 Creation of longitudinal reinforcement
33 # 5.4 Transverse reinforcement (shear)
34 # 5.4.1 Creation of transverse reinforcement
35 # 5.4.2 Spacing / positions of transverse reinforcement
36 # 5.5 Plates
37 # 5.5.1 Option 1: using template for 3- point bending
38 # 5.5.2 Option 2: using template for 4- point bending
39 # 5.5.3 Option 3: Creation of individual plates
40 # 6. LOADS
41 # 6.1 Option 1: using template for 3- or 4- point bending
42 # 6.2 Option 2: Creation of individual loads
43 # 7. MATERIAL MODELS
44 # 7.1 Concrete material model
45 # 7.1.1 Concrete properties
46 # 7.2 Steel plates material model
47 # 7.3 Reinforcement material model
48 # 8. STRUCTURAL INTERFACES
49 # 9. MESH
50 # 10. ANALYSIS
51 # 10.1 Linear Analysis
52 # 10.1.1 RUN LINEAR ANALYSIS
53 # 10.2 Nonlinear Analysis
54 # 10.2.1 Arc length control
55 # 10.2.2 Load incrementation
56 # 10.2.3 Iteration method
57 # 10.2.4 Line search
58 # 10.2.5 Convergence criteria
59 # 10.2.6 Additional choices for analysis
60 # 10.2.7 RUN NONLINEAR ANALYSIS
61 # 11. OUTPUTS FROM NONLINEAR ANALYSIS
62 # 11.1 Analysis output
63 # 11.2 Load - displacement graph
64 # 11.3 Load - displacement CSV
65 # ---
66

67 # ##1. INFO BEFORE CHANGING THE SCRIPT

96

68

69 # -#1.1 FIRST TIME use of Beam Script :
70 ## You have to instal python modules to run the script in DIANA .
71 ## This is done in the following manner :
72 ## Open the DIANA Command Box (via the start menu on your computer)
73 ## Choose " Run as administrator "
74 ## Paste the following lines into the command box :
75 # % DIAPATH_W %\ python \ python -m pip install -t % DIAPATH_W %\ modules numpy
76 # % DIAPATH_W %\ python \ python -m pip install -t % DIAPATH_W %\ modules matplotlib
77

78 # -#1.2 General project information :
79 ## Script A , B and C (A: UserInput , B: parametricStudy , C: classesAndFunctions , D: main),
80 ## should all be saved in the same working folder .
81 ## Script A: UserInput (and B: parametricStudy) can be changed by the user .
82 ## A parametric study can be performed for one variable in the input script . See section 1.4.
83 ## To run a script in DIANA , choose File -> Run saved scripts
84 ## Select and run either :
85 ## Script D: main # For creation of a beam
86 ## Script B: parametricStrudy # For a parametric study
87 ## Specified outputs , ex . csv - files , plots etc ., will be created automatically and saved to a
88 ## user - specified directory path .
89

90 # -#1.3 Units
91 ## All input have to be in accordance with the chosen units for this script .
92 ## The following units are used for this script :
93 ## length = " MM "
94 ## force = "N"
95 ## mass = "T"
96 ## temperature = " CELSIU "
97

98 # -#1.4 Commenting and uncommenting :
99 ## Lines that can be commented / uncommented are marked with : ** Optional **

100 ## The default input will be used , unless an optional input is given .
101 ## Lines that are not relevant for your script should stay commented , using ctrl + k
102 ## Relevant lines can be uncommented , using crtl + shift + k
103

104 # -#1.5 Empty templates :
105 ## Empty templates for creation of different objects are given as follows :
106 ' ' ' Empty template :
107 Text that can be copied and f i l l e d with de s i r ed input
108 ' ' '
109 ## crtl + f can be used to replace template object name , with user defined name .
110

111 # ##2. PARAMETRIC STUDY
112 ## For a parametric studiy , multiple analyses will be performed . One parameter will be varied with
113 ## different inputs , while the others stay the same .
114 ## A parametric study is performed by editing Script B: parametricStudy and Script A: UserInput .
115 ## In Script B , the input for the varying parameter is defined .
116 ## In Script A , the varying parameter has to be marked with the input parametricValue . See Example :
117 ' ' ' Example
118 beam . geometry . l ength = parametr icValue
119 ' ' '
120

121 # ---
122 # ##3. EXTRA INFO (Do not have to read before using script)
123

124 # -#3.1 About coordinates :
125 ## Beam has coordinates [x ,y] = [0 ,0] in lower left corner .
126 ## Coordinate system starts in lower left corner of beam , with positive X to the right
127 ## and positive Y upwards .
128 ## Plates : x - coordinates refers to midpoint of plate . (= loadingpoint)
129 ## Span : length between x - coordinate / midpoints of plates / loadingpoints .
130 ## All coordinates has 0 as its default value
131

132 # -#3.2 Creation of objects from a class :
133 ## An object oriented structure is used for this script .
134 ## All classes are defined in Script C: classesAndFunctions
135 ## When an empty template is used to create objects of a class , the user is free to choose
136 ## the name of the object .
137 ## Unless otherwise specified , the user can create as many objects as desired . zero is also allowed .
138 ## The objectname of the object beam from the class Beam should not be changed .
139

140 # -#3.3 Explanation of lines :
141 # ## NEW SECTION
142 # -# Subsection

97

143 # '# Subsubsection
144 ## Text
145 # remark / explanation
146 # ** optional **
147 ## Option i: choose one of the available options if required
148 ' ' ' Empty template
149 Text that can be copied and f i l l e d with de s i r ed input
150 c r t l + f can be used to r ep l a c e template ob j e c t name , with user de f ined name .
151 ' ' '
152 # \\ Add your own comments as a user
153

154 # ---
155 # ##4. CREATING PROJECT
156 ## dirPath is the directory path of the project (= Where your files should be saved)
157 ## path =r don 't forget r before the working path . For example :
158 ## Project . dirPath = r"C :\ Users \ katja \ OneDrive - NTNU \ Documents \ master "
159 ## By default , the project is saved in the same folder as the where the Python scripts are saved .
160 ## By default the project name is generated as follows :
161 ## Project . name = Project . modelName + "_" + TodaysDate + "_" + Project . modelExtraInfo
162

163 Project . modelName = " TestBeam "
164 Project . modelExtraInfo = " default "
165

166 ## The following can be changed :
167 # Project . dirPath = #** Optional **
168 # Project . name = #** Optional **
169

170 Project . size_in_m = 1000
171

172 # -#4.1 Modelling choices
173 ## The beam will be modelled in 2D
174 ## The whole beam is modelled by default .
175

176 ## If the following option is chosen , only half the beam will be modelled :
177 # Options . symmetric_Beam = True #** Optional ** , default is False
178

179 # ##5. CREATING THE GEOMETRY
180 # -#5.1 The beam
181 # '#5.1.1 Geometry :
182 beam = Beam () # creating beam object
183 beamGeometry = Geometry () # creating geometry object
184 beam . add_geometry (beamGeometry) # adding the geometry to the beam
185

186 beam . geometry . length = 6000 #[mm]
187 beam . geometry . height = 600 #[mm]
188 beam . geometry . width = 400 #[mm] # thickness
189

190 # -#5.2 Reinforcement
191 ## Embedded reinforcement bars is the only implemented type of reinforcement .
192

193 # '#5.2.1 Cover : #** Optional input **
194 ## Cover is an optional object , which can be used for your convinience :
195 cover = Cover () # creating cover object
196 ## Choose one of the options .
197 ## The section with the chosen option should be uncommented ,
198 ## while the other options should be commented .
199

200 # ##** Option 1**: definition of each cover
201 cover . side = 48 #[mm]
202 cover . top = 50 #[mm]
203 cover . bot = 64 #[mm]
204

205 # #** Option 2**: all sides have same cover :
206 # cover . length = 100 #[mm]
207 # cover . side = cover . top = cover . bot = cover . length
208

209 # '#5.2.2 User defined variables
210 ## Here new parameters can be defined by the user to easier create the reinforcement .
211 ## The following parameter is suggested :
212 # diameterOfBars = #** Optional **
213

214 # -#5.3 Longitudinal reinforcement
215 ## Define as many longitudinal reinfocement bars as desired . (To create 0 is also allowed))
216 ## The user is free to choose the name of each object .
217 ## Longitudinal reinforcement is created as follows :

98

218 ## nameOfBar = Longitudinal_Reinfo (Name , As , F_y , F_u , Epsilon_u , (E_mod))
219 ## As = cross section area [mm ^2] , F_y = yield strength [N/ mm ^2] , F_u = ultimate strength [N/ mm ^2] ,
220 ## Epsilon_u = ultimate strain []
221 ## Default value of 200000 for Youngs modulus (E_mod) if no value is given . [N/ mm ^2]
222 ##x - and y - coordinates does also have to be defined , for each reinfo bar .
223

224 ## About coordinates :
225 ## Beam has coordinates [x ,y] = [0 ,0] in lower left corner .
226 ## Coordinate system starts in lower left corner of beam ,
227 ## with positive X to the right and positive Y upwards .
228

229 ## Examples of the creation of longitudinal reinforcement bars :
230 ' ' ' Example block (can be copied and changed to c r ea t e your own ob j e c t s)
231 #
232 upper_reinfo = Longitudinal_Reinfo (" upper " , 300 , 315 , 460 , 2 .3425E−2)
233 upper_reinfo . y_coord = beam . geometry . he ight − cover . top
234 upper_reinfo . x_coord_start = cover . s i d e
235 # upper_reinfo . x_coord_end = beam . geometry . l ength − cover . s i d e #∗∗Input i f beam i s not symmetric ∗∗
236

237 #
238 ReinfoLow = Longitudinal_Reinfo (" lower " , 1400 , 436 , 700 , 4 .78E−2, 220000)
239 ReinfoLow . y_coord = 20
240 ReinfoLow . x_coord_start = 0
241 # ReinfoLow . x_coord_end = beam . geometry . l ength #∗∗Input needed i f beam i s not symmetric ∗∗
242 ' ' '
243

244 ## Copy this block to create long . reinfo objects :
245 ' ' ' Empty template
246 templateName = Longitudinal_Reinfo ()
247 templateName . y_coord =
248 templateName . x_coord_start =
249 # templateName . x_coord_end = #∗∗Input needed i f beam i s not symmetric ∗∗
250 ' ' '
251

252 # '#5.3.1 Creation of longitudinal reinforcement
253 ## CREATE YOUR LONG . REINFO OBJECTS HERE
254

255 # -#5.4 Transverse reinforcement (shear)
256 ## All shear bars will have the same material properties .
257 ##, which means only one object should be created for shear reinforcement .
258 ## nameOfBar = Transverse_Reinfo (Name , As , F_ym , F_um , Epsilon_u , (E_mod)).
259 ## As = cross section area [mm ^2] , F_y = yield strength [N/ mm ^2] , F_u = ultimate strength [N/ mm ^2] ,
260 ## Epsilon_u = ultimate strain []
261 ## Default value of 200000 for Youngs modulus (E_mod) if no value is given . [N/ mm ^2]
262 ##y - coordinates does also have to be defined .
263

264 ## Examples of the creation of transverse reinfo :
265 ' ' ' Example block (can be copied and changed to c r ea t e your own ob j e c t s)
266 shear_re in fo = Transverse_Reinfo (" Shear_re info " , 25 . 7 , 600 , 651 , 4 .70E−2 ,220000)
267 shear_re in fo . y_coord_bot = cover . bot
268 shear_re in fo . y_coord_top = beam . geometry . he ight − cover . top
269 ' ' '
270

271 ## Copy this block to create trans . reinfo objects :
272 ' ' ' Empty template
273 ##You should maximum cr ea t e one ob j e c t !
274 templateName = Transverse_Reinfo ()
275 templateName . y_coord_bot =
276 templateName . y_coord_top =
277 ' ' '
278

279 # '#5.4.1 Creation of transverse reinforcement
280 ## CREATE YOUR TRANS . REINFO OBJECT HERE
281

282 # '#5.4.2 Spacing / positions of transverse reinforcement :
283 ## The transverse reinforcement is divided into sections with the same spacing .
284 ## You can create one or multiple sections .
285 ## If the transverse reinforcement object is created , at least one section have to be defined .
286 ## If the beam is symmetric , you only have to create sections for half the beam .
287 ##A section is created as follows :
288 ## section_i = Section (spacing , x_coord_start , x_coord_end) # All three inputs are int
289

290 ## About coordinates :
291 ## Beam has coordinates [x ,y] = [0 ,0] in lower left corner .
292 ## Coordinate system starts in lower left corner of beam ,

99

293 ## with positive X to the right and positive Y upwards .
294

295 ## Examples of the creation of sections :
296 ' ' ' Example block (can be copied and changed to c r ea t e your own ob j e c t s)
297 #Ex . 1 :
298 s e c t i o n = Sect ion (10 , cover . s ide , beam . geometry . l ength − cover . s i d e)
299

300 #Ex . 2 :
301 spac ing_large = 168
302 spacing_small = 86
303 sect ion_1 = Sect ion (spacing_small , cover . s ide , cover . s i d e + 4∗ spacing_small)
304

305 sect ion_2 = Sect ion (spacing_large , cover . s i d e + 4∗ spacing_small ,
306 (beam . geometry . l ength /2) − 2∗ spacing_small)
307

308 sect ion_3 = Sect ion (spacing_small , (beam . geometry . l ength /2) − 2∗ spacing_small , beam . geometry . l ength)
309 ' ' '
310

311 ## Copy this block to create section objects :
312 ' ' ' Empty template
313 templateName = Sect ion ()
314 ' ' '
315

316 ## CREATE YOUR SECTION OBJECTS HERE
317

318 # -#5.5 Plates
319 ## Available plates are loading plates (L) and support plates (S)
320 ## All plates will have the same geometry .
321 ## The width / thickness of the plates will be equal to the beam thickness
322 plateGeometry = Geometry () # creating geometry object for plates
323

324 plateGeometry . length = 150 #[mm]
325 plateGeometry . height = 35 #[mm]
326

327 ## Choose one of the following options to create the plates .
328 ## The section with the chosen option should be uncommented ,
329 ## while the other options should be commented .
330 ## Option 1 and 2 are templates for bending tests . Setup is shown in master thesis .
331

332 # '#5.5.1 Option 1: using template for 3- point bending
333 Options . template_3PointBending = True
334 beam . geometry . lengthOfSpan = beam . geometry . length − 400 #[mm]
335

336 # '#5.5.2 Option 2: using template for 4- point bending
337 # Options . template_4PointBending = True
338 # beam . geometry . lengthOfSpan = 5000 #[mm]
339 # beam . geometry . lengthOfInnerSpan = 3000 #[mm]
340

341 # '#5.5.3 Option 3: Creation of individual plates
342 ## Plates are creating by specifying the x - coordinate of the midpoint (loading point)
343 ## The user is free to choose the name of each object .
344 ## Each plate is created as follows :
345 ## nameOfPlate = Plates (typeOfPlate , name , x_coord)
346 ## typeOfPlate = "S" (supportplate) or "L" (loadingplate)
347 ## name = string , x_coord = int
348 ## By default translations are fixed in both x - and y - direction for support plates . Can be changed :
349 ## To change BC 's for support plates , use :
350 ## plateObject . fixedTranslation_y = False or plateObject . fixedTranslation_x = False
351

352 ## About coordinates :
353 ## Beam has coordinates [x ,y] = [0 ,0] in lower left corner .
354 ## Coordinate system starts in lower left corner of beam ,
355 ## with positive X to the right and positive Y upwards .
356

357 ## Examples of the creation of plates :
358 ' ' ' Example block (can be copied and changed to c r ea t e your own ob j e c t s)
359 sup_plate1 = Plate s ("S" , "Support p l a t e 1" , 50)
360 sup_plate1 . f ixedTrans lat ion_y = False #∗∗Optional ∗∗
361 # sup_plate1 . f ixedTrans lat ion_x = False #∗∗Optional ∗∗
362 load_plate1 = Plate s ("L" , "Loading p l a t e 1" , 70)
363 load_plate2 = Plate s ("L" , "Loading p l a t e 2" , 100)
364 ' ' '
365

366 ## Copy this block to create plate objects :
367 ' ' 'Empty template

100

368 templateName = Plate s ()
369 # nameOfPlate . f ixedTrans lat ion_y = False #∗∗Optional ∗∗
370 # nameOfPlate . f ixedTrans lat ion_x = False #∗∗Optional ∗∗
371 ' ' '
372

373 ## CREATE YOUR PLATE OBJECTS HERE (option 3)
374

375 # ##6. LOADS
376 ## The dead weight is applied in the first load step .
377 ## Then point loads can be applied . (Only point loads are implemented)
378 ## Loads are defined as follows :
379 ## load = Loads (typeOfLoad , name , value , direction)
380 ## typeOfLoad = " Point " (Only point loads are implemented)
381 ## name = str
382 ## value : int or double . OBS ! positive y - axis is upwards , NEGATIVE LOADS ACTS DOWNWARDS
383 ## direction = "X", "Y ".
384

385 # -#6.1 Option 1: using template for 3- or 4- point bending
386 ## Both loads are assumed to have same value for 4- point bending . Only one has to be defined .
387 load = Loads (" Point " , " Load " , −1000 , "Y")
388

389 # -#6.2 Option 2: Creation of individual loads
390 ## Each load should have a plate object as its target .
391 ##A target is defined as follows :
392 # load . target = plateobject
393

394 ## Examples of the creation of point loads :
395 ' ' ' Example block (can be copied and changed to c r ea t e your own ob j e c t s)
396 load1 = Loads (" Point " , "Load 1" , −1000 , "Y")
397 load1 . t a r g e t = p la t e1
398 load2 = Loads (" Point " , "Load 2" , −200, "Y")
399 load2 . t a r g e t = p la t e2
400 ' ' '
401

402 ## Copy this block to create point load objects :
403 ' ' 'Empty template
404 templateName_Load = Loads ()
405 templateName_Load . t a r g e t = templateName_Plate
406 ' ' '
407

408 ## CREATE YOUR LOAD OBJECTS HERE (option 2)
409

410 # ##7. MATERIAL MODELS
411 # -#7.1 Concrete material model
412 # The concrete material is defined as follows : concrete = Concrete (f_ck)
413 concrete = Concrete (30)
414

415 # '#7.1.1 Concrete properties :
416 ## The recommended material model used recommended material properties by default .
417 ## These are based on EC2 , fib2010 and RTD *.
418 ## See Script C , Concrete class for default parameters
419 ## The properties can be changed by uncommenting the desired lines .
420 ## The properties that remains commented , will use recommended values .
421 ## If recommended curves are changed , the script is not guaranteed to run
422 ## since additional parameters might be needed .
423

424 ## The following properties can be changed :
425 # concrete . Youngs_modulus = #** Optional **
426 # concrete . poissons_ratio = #** Optional **
427 # concrete . mass_density = #** Optional **
428 # concrete . tensile_strength = #** Optional **
429 # concrete . compressive_strength = #** Optional **
430 # concrete . tensile_FractureEnergy = #** Optional **
431 # concrete . compressive_FractureEnergy = #** Optional **
432 # concrete . aggregate_type = #** Optional **
433 # concrete . tensile_curve = " HORDYK " #** Optional **
434 # concrete . crackBandwidt_specification = #** Optional **
435 # concrete . poissonsRatio_reductionModel = #** Optional **
436 # concrete . compression_curve = #** Optional **
437 # concret . lateralCracking_reductionModel = #** Optional **
438 # concrete . lateralCracking_reductionCurve_lowerBound = #** Optional **
439 # concrete . confinementModel = " NONE " #** Optional **
440

441 # -#7.2 Steel plates material model
442 #A linear - elastic behaviour is assumed for the plates

101

443

444 Steel_Plates . e_mod = 2000000
445 Steel_Plates . poissons_ratio = 0 . 3
446

447 # -#7.3 Reinforcement material model
448 ## Only default material for reinforcement has been implemented .
449 ## The chosen material model is Von Mises Plasticity , with a bilinear strain - stress diagram .
450 ## DIANA default settings for hardening behaviour are used .
451

452 # ##8. STRUCTURAL INTERFACES
453 ##A no - tension /no - friction 2D line interface is defined between
454 ## the steel plates and the concrete beam .
455 ##A high value for the normal compressive stiffness and a low value for the shear stiffness
456 ## and normal tensile stiffness will be used as befault .
457 ##A diagram based on the normal compressive and tensile stiffness is used
458 ## to define the nonlinear relation .
459

460 ## The following properties can be changed :
461 # Interface . Knn_tension = # [N/ mm3] ** Optional **
462 # Interface . Knn_compression = # [N/ mm3] ** Optional **
463 # Interface . Kt = # [N/ mm3] ** Optional **
464

465 # ##9. MESH
466 ## Recommended mesh is used as default .
467 ## Maximum elementsize = min (beam . Length /50 , beam . Height /6)
468 Mesh . elementsize = 25 #[mm]
469

470 ## The following properties can be changed :
471 # Mesh . meshorder = #** Optional **
472 # Mesh . meshertype = #** Optional **
473

474 # ##10. ANALYSIS
475 ## It is recommended to run a linear analysis before running the nonlinear analysis .
476 ## runsolver = True runs the analysis . Default value is false .
477 ## Linear and nonlinear analysis have been implemented .
478 ## An analysis is defined as follows :
479 ## Analysis (_name , _typeOfAnalysis)
480 ## _name = str , _typeOfAnalysis = " Linear " or " Nonlinear "
481

482 # -#10.1 Linear Analysis
483 ## DIANA Primary output is chosen for the linear analysis .
484 LFEA = Analysis (" Linear analysis " , " Linear ") # creating linear static analysis
485

486 ## The following properties can be changed :
487 # LFEA . method = ** Optional input **
488 # LFEA . output = ** Optional input **
489

490 # '#10.1.1 RUN LINEAR ANALYSIS
491 ## To run the linear analysis , uncomment the following line :
492 # LFEA . runSolver = True #** Optional **
493

494 # -#10.2 Nonlinear Analysis
495 NLFEA = Analysis (" Nonlinear analysis " , " Nonlinear ") # creating nonlinear analysis
496

497 # '#10.2.1 Arc length control :
498 ## Arc length control is strongly recommended .
499 ## The arc length control will be applied over the whole beam .
500 NLFEA . arcLengthControl = True # ** Default and strongly recommended as true **
501

502 # '#10.2.2 Load incrementation :
503 ## Load control is applied (in combination with arc length control).
504 ## As recommended , the load incrementation uses an automatic procedure .
505 ## Energy based adaptive loading is the only implemented method . This method must
506 ## be combined with arc length control .
507 incrementation = Incrementation () # Creating an incrementation object
508 NLFEA . setIncrementalMethod (incrementation) # adding incremental method to the analysis
509

510 ## Option 1: Energy based adaptive loading
511 ## The energy based method MUST be combined with arc length control .
512 incrementation . method = " ENERGY "
513 incrementation . initial_step_size = 5 # initial size for the first step
514 incrementation . max_step_size = 10 # upper limit of the step size
515 incrementation . min_step_size = 3 # lower limit of the step size
516 incrementation . nrOfSteps = 150 # maximum number of steps
517

102

518 # '#10.2.3 Iteration method :
519 ## Only Newton - Raphson methods have been implemented .
520 ## Choose one of the options . The section with the chosen option should be uncommented ,
521 ## while the other options should be commented .
522 iteration = Iteration () # creating iteration object
523 NLFEA . setIterationMethod (iteration) # adding iterative procedure to the analysis
524

525 ## Option 1: Regular Newton - Raphson
526 iteration . method = " NEWTON - RAPHSON "
527 iteration . typeOfMethod = " REGULA "
528 iteration . nrOfIterations = 100
529

530 ## Option 2: Modified Newton - Raphson
531 # iteration . method = " NEWTON - RAPHSON "
532 # iteration . typeOfMethod = " MODIFI "
533 # iteration . nrOfIterations = 100
534

535 ## The following properties can be changed :
536 # iteration . firstStiffnessMatrix = ** Optional input **
537

538 # '#10.2.4 Line search :
539 ## Using a line search algorithm is recommended .
540 NLFEA . lineSearch = True # ** Default and recommended as true **
541

542 # '#10.2.5 Convergence criteria :
543 ## One or multiple convergence criteria MUST be chosen .
544 ## Recommended to use a force norm and an energy norm .
545 ## Choose one of the options . Optional to choose one or more convergence criteria .
546 convergence = Convergence () # creating convergence object
547 NLFEA . setConvergence (convergence) # adding convergence criteria to the analysis
548

549 convergence . useForceNorm = True # ** Default and recommended as true **
550 convergence . useEnergyNorm = True # ** Default and recommended as true **
551 convergence . useDispNorm = False # ** Default and recommended as false **
552

553 ## Option 1: Suggested tolerances
554 ## Force norm :
555 convergence . forceNorm = 0 . 01
556 convergence . forceNorm_deadLoad = 0 . 05
557 ## Energy norm :
558 convergence . energyNorm = 0 . 001
559 convergence . energyNorm_deadLoad = 0 . 01
560

561 ## Option 2: Choose your own tolerances :
562 ## For this option , one or multiple convergence criteria MUST be chosen .
563

564 ## Force norm :
565 # convergence . forceNorm =
566 # convergence . forceNorm_deadLoad =
567

568 ## Energy norm :
569 # convergence . energyNorm =
570 # convergence . energyNorm_deadLoad =
571

572 ## Displacement norm :
573 # convergence . dispNorm =
574 # convergence . energyNorm_deadLoad =
575

576 # '#10.2.6 Additional choices for analysis
577 NLFEA . allConvergenceNormsHaveToBeSatisfied = False # ** Default and recommended as false **
578 NLFEA . continueIfNoConvergence = True # ** Default and recommended as true **
579

580 # '#10.2.7 RUN NONLINEAR ANALYSIS
581 ## To run the analysis , uncomment the following line :
582 # NLFEA . runSolver = True #** optional **
583

584 # ##11. OUTPUTS FROM NONLINEAR ANALYSIS
585 ## Outputs will be saved to the specified directory at beginning .
586 ## All outputs are optional . Comment or write False to not include output .
587

588 # -#11.1 Analysis output :
589 NLFEA . output = {
590 " DISPLA TOTAL TRANSL GLOBAL " : True , # ** Optional **
591 " FORCE REACTI TRANSL GLOBAL " : True , # ** Optional **
592 " STRAIN TOTAL GREEN GLOBAL " : True , # ** Optional **

103

593 " STRAIN TOTAL GREEN PRINCI " : True , # ** Optional **
594 " STRAIN CRKWDT GREEN GLOBAL " : True , # ** Optional **
595 " STRAIN CRACK GREEN " : True , # ** Optional **
596 " STRAIN CRKWDT GREEN PRINCI " : True , # ** Optional **
597 " STRESS TOTAL CAUCHY GLOBAL " : True , # ** Optional **
598 " STRESS TOTAL CAUCHY PRINCI " : True # ** Optional **
599 }
600

601 # -#11.2 Load - displacement graph (displacement in y - dir) ** Optional **
602 # Edit and uncomment this section to generate a load - displacement graph .
603 ## Downward displacement is defined as positive by default .
604

605 # # Specify the coordinates of the point where the displacement will be retrived .
606 # LoadDispY_Graph . x_coord = beam . geometry . length /2 #[mm]
607 # LoadDispY_Graph . y_coord = 0 #[mm]
608

609 # ## The following options can be changed :
610 # ## x_label , y_label = str
611 # ## xLim , y_Lim = [lowerBound , upperBound]; lowerBound , upperBound = int
612 # # Scalefactor . loadFactor_plot = #** optional **
613 # # Scalefactor . displacement_plot = #** optional **
614 # # LoadDispY_Graph . xlabel = #** optional **
615 # # LoadDispY_Graph . ylabel = #** optional **
616 # # LoadDispY_Graph . xLim = #** optional **
617 # # LoadDispY_Graph . yLim = #** optional **
618

619 # -#11.3 Load - displacement CSV (displacement in y - dir)** Optional **
620 ## Edit and uncomment this section to generate a
621 ## CSV - file for load - displacement at specified coordinate .
622 ## Downward displacement is defined as positive by default .
623 ## The CSV - file will have the following format :
624 ## (Scaled) Loadfactor ;(Scaled) Displacement
625 ## 1.00;0.50
626 ## 2.30;0.65
627

628 # ## Specify the coordinates of the point for which the CSV - file will be generated :
629 # LoadDispY_CSV . x_coord = beam . geometry . length /2 #[mm]
630 # LoadDispY_CSV . y_coord = 0 #[mm]
631

632 # # The following options can be changed :
633 # # Scalefactor . loadFactor_CSV = #** optional **
634 # # Scalefactor . displacement_CSV = #** optional **
635 # # LoadDispY_CSV . decimalPlaces = #** optional **
636

637

638 # ---
639 ## Additional info :
640 #* RTD = Rijkwaterstaat Technincal Document : Guidelines for NLFEA of Concrete Structures
641 globals () . update (locals ()) # Allows main script to access all variables in function as globals
642 return

104

B Parameric Study

1 def parametricStudy (valuesList) :
2 for val in valuesList :
3 wd = sys . path [0] # Working directory of main . py
4 exec (open (wd+" \\ C_classesAndFunctions . py ") . read () , globals ())
5 LoadDispY_Graph . parametric = val
6 LoadDispY_CSV . parametric = val
7 exec (open (wd+" \\ A_UserInput . py ") . read () , globals ())
8 functionOfUserInput (val)
9 parametric_Study = True

10 if not hasattr (Project , ' name ') :
11 # Default projectname
12 Project . name = Project . modelName + "_" + date + "_" + Project . modelExtraInfo + "_" + str (val)
13 else :
14 Project . name = Project . name + "_" + str (val)
15 exec (open (wd+" \\ D_main . py ") . read ())
16 return locals ()
17

18 # This is the script to be run using DIANA to perform a parametric study
19 ## INPUT LIST OF PARAMETRIC VALUES HERE :
20 parametricStudy ([3000 , 4000])

105

C Classes and Functions

1 # --
2 # --------- Definitions of classes and functions - 2D BEAM SCRIPT ----
3 # --
4 ## SHOULD NOT BE CHANGED BY USER
5 # If this script (C) is changed , both script D (main) and A (userInput) will be affected .
6 numPy = 1
7

8 try :
9 import numpy as np

10 except :
11 numPy = 0
12 print (" Numpy not detected , fillets and other features are not supported !! ")
13

14 if numPy == 1 :
15 import numpy as np
16

17 # Importing libraries
18 import math
19 from math import ∗
20 import matplotlib
21 matplotlib . use (' AGG ')
22 import matplotlib . pyplot as plt
23 import time
24 import os , inspect
25 import csv
26

27 # ## Preparations , do not change this as an user
28 date = (time . strftime ("%Y%m%d"))
29

30 # ## CLASS DEFINITIONS :
31 # Setting up classes to structure input , do not change as user
32 class Project () :
33 pass
34

35 class Units () :
36 length = " MM "
37 force = "N"
38 mass = "T"
39 temperature = " CELSIU "
40 pass
41

42 class Options () :
43 symmetric_Beam = False # ** Optional input , default value is false **
44 dimension = "2D" # Only 2d is implemented
45 template_3PointBending = False # ** Optional input , default value is false **
46 template_4PointBending = False # ** Optional input , default value is false **
47 includeSelfWeight = True # only true is implemented
48 parametricStudy = False
49 pass
50

51 class Beam () :
52 name = " Concrete Beam "
53 allObjects = []
54 def __init__ (self) :
55 self . allObjects . append (self)
56 def add_geometry (self , _geometry) :
57 self . geometry = _geometry
58

59 class Plates () :
60 allObjects = []
61 y_coord = 0 # default value
62 fixedTranslation_x = True
63 fixedTranslation_y = True
64 def __init__ (self , _typeOfPlate , _name , _x_coord) :
65 self . allObjects . append (self)
66 self . typeOfPlate = _typeOfPlate
67 self . name = _name
68 self . x_coord = _x_coord
69 def add_geometry (self , _geometry) :
70 self . geometry = _geometry
71

72 class Geometry () :

106

73 pass
74

75 class Cover () :
76 side = 0
77 top = 0
78 bot = 0
79

80 class Longitudinal_Reinfo () :
81 allObjects = []
82 material = " REINFO "
83 typeOfReinfo = " Long "
84 y_coord = 0 # default value
85 x_coord_start = 0 # default value
86 x_coord_end = 0 # default value
87 def __init__ (self , _name , _As , _f_ym , _f_um , _e_u , _E_mod = 200000) :
88 self . allObjects . append (self)
89 self . name = _name
90 self . As = _As #[mm ^2]
91 self . f_ym = _f_ym
92 self . f_um = _f_um
93 self . e_u = _e_u
94 self . e_mod = _E_mod
95 self . setname = _name + " _Set "
96

97 class Transverse_Reinfo () :
98 allNames = []
99 allObjects = []

100 material = " REINFO "
101 typeOfReinfo = " Trans "
102 y_coord_bot = 0 # default value
103 y_coord_top = 0 # default value
104

105 def __init__ (self , _name , _As , _f_ym , _f_um , _e_u , _E_mod = 200000) :
106 self . allObjects . append (self)
107 self . name = _name
108 self . As = _As #[mm ^2]
109 self . f_ym = _f_ym
110 self . f_um = _f_um
111 self . e_u = _e_u
112 self . e_mod = _E_mod
113 self . setname = _name + " _Set "
114

115 class Section () :
116 allObjects = []
117 def __init__ (self , _spacing , _x_coord_start , _x_coord_end) :
118 self . spacing = _spacing
119 self . x_coord_start = _x_coord_start
120 self . x_coord_end = _x_coord_end
121 self . allObjects . append (self)
122

123 def createShearReinfo (_reinfo) :
124 bool_shearBarInMiddle = False
125 allShearBars = []
126 addSet (" GEOMETRYREINFOSET " , _reinfo . setname)
127 setCurrentShapeSet (_reinfo . setname)
128 y_coord_bot = _reinfo . y_coord_bot
129 y_coord_top = _reinfo . y_coord_top
130 nameOfBar = " ShearBar 1"
131 old_x_coord_end = None
132 for obj in Section . allObjects :
133 x_coord_start = obj . x_coord_start
134 spacing = obj . spacing
135

136 x_coord_end = obj . x_coord_end
137

138 if Options . symmetric_Beam :
139 # if length of sections is longer than half beam , ignore rest
140 x_coord_mid = beam . geometry . length /2
141 if x_coord_end > x_coord_mid :
142 x_coord_end = x_coord_mid
143

144 nrOfBars = math . floor ((x_coord_end − x_coord_start)/ spacing) # rounding down
145 if x_coord_start != old_x_coord_end :
146 if nameOfBar != " ShearBar 1" :
147 nameOfBar = " ShearBar " + str (len (allShearBars) + 1)

107

148 createLine (nameOfBar , [x_coord_start , y_coord_bot] , [x_coord_start , y_coord_top])
149 allShearBars . append (nameOfBar)
150 nameOfBars = arrayCopy ([nameOfBar] , [spacing , 0] , [0 , 0] , [0 , 0 , 0] , nrOfBars)
151 allShearBars . extend (nameOfBars)
152 nameOfBar = nameOfBars [−1]
153 else :
154 nameOfBars = arrayCopy ([nameOfBar] , [spacing , 0] , [0 , 0] , [0 , 0 , 0] , nrOfBars)
155 allShearBars . extend (nameOfBars)
156 nameOfBar = nameOfBars [−1]
157 if Options . symmetric_Beam :
158 x_coord = edgeCoordinates (nameOfBar) [0] [0]
159 if x_coord == beam . geometry . length /2 :
160 bool_shearBarInMiddle = True
161 addSet (" GEOMETRYREINFOSET " , " ShearBar_mid ")
162 moveToShapeSet ([nameOfBars [−1]] , " ShearBar_mid ")
163 old_x_coord_end = x_coord_end
164 Transverse_Reinfo . allNames . extend (allShearBars)
165 return bool_shearBarInMiddle
166

167 class Concrete () :
168 # Material Properties :
169 Name = " Concrete " # Name of the material
170 material = " CONCR "
171 aggregate_type = " QUARTZ " # For normal weight concrete quartzite aggregates are assumed .
172 # Cement type is set to N
173 material_model = " TSCR " # Total strain based cracking .
174 crack_orientation = " ROTATE " # Rotating as default , will be changed to FIXED for beams without stirrups .
175 tensile_curve = " EXPONE "
176 crackBandwidt_specification = " GOVIND "
177 poissonsRatio_reductionModel = " DAMAGE " # Poisson 's ratio reduction , damage based
178 compression_curve = " PARABO "
179 lateralCracking_reductionModel = " VC1993 " # Reduction curve due to lateral cracking
180 lateralCracking_reductionCurve_lowerBound = 0 . 4 # lower bound of reduction curve
181 confinementModel = " VECCHI " # Stress confinement model , " NONE " is conservative
182

183

184 def __init__ (self , _f_ck) :
185 self . f_ck = _f_ck
186 T 31 _f_ck = np . array ([12 , 16 , 20 , 25 , 30 , 35 , 40 , 45 , 50 , 55 , 60 , 70 , 80 , 90])
187 T 31 _f_ck_cube = np . array ([15 , 20 , 25 , 30 , 37 , 45 , 50 , 55 , 60 , 67 , 75 , 85 , 95 , 105])
188 self . f_ck_cube = np . interp (_f_ck , T 31 _f_ck , T 31 _f_ck_cube)
189 self . EC2 = "C" + str (int (self . f_ck)) + "/" + str (int (self . f_ck_cube)) # Table entries
190 self . fib = "C" + str (int (self . f_ck))
191

192 class Steel_Plates () : # Material model for steel plates
193 #A linear - elastic behaviour is assumed
194 material = " MCSTEL "
195 material_model = " ISOTRO "
196 density = 0 # Do not wish to take the weight of the plates into concideration
197 pass
198

199

200 def concreteFromEC2() :
201 addMaterial (" Concrete_EC2 " , " CONCDC " , " EN1992 " , [" TOTCRK "])
202 setParameter (" MATERIAL " , " Concrete_EC2 " , " EC2CON / NORMAL / CLASS " , concrete . EC2)
203 setParameter (" MATERIAL " , " Concrete_EC2 " , " EC2CON / NORMAL / AGGTYP " , concrete . aggregate_type)
204 return " Concrete_EC2 "
205

206 def concreteFromFib 2010 () :
207 addMaterial (" Concrete_fib2010 " , " CONCDC " , " MC2010 " , [" TOTCRK "])
208 setParameter (" MATERIAL " , " Concrete_fib2010 " , " MC10CO / NORMAL / GRADE " , concrete . fib)
209 setParameter (" MATERIAL " , " Concrete_fib2010 " , " MC10CO / NORMAL / AGGTYP " , concrete . aggregate_type)
210 return " Concrete_fib2010 "
211

212 class Selfweight () :
213 name = " gravity "
214 setname = " Gravity "
215

216 class Loads () :
217 allObjects = []
218 setname = " Loads "
219 def __init__ (self , _typeOfLoad , _name , _value , _direction = " Normal ") :
220 self . allObjects . append (self)
221 self . typeOfLoad = _typeOfLoad
222 self . value = _value

108

223 self . direction = _direction
224 self . name = _name
225 def attachLoadToTargets (self , _target , _beam) :
226 if self . typeOfLoad == " Point " :
227 # Target is a loadplate :
228 # addSet (" GEOMETRYLOADSET ", self . setname)
229 createPointLoad (self . name , self . setname)
230 setParameter (" GEOMETRYLOAD " , self . name , " FORCE / VALUE " , self . value)
231 if self . direction == "X" :
232 setParameter (" GEOMETRYLOAD " , self . name , " FORCE / DIRECT " , 1)
233 elif self . direction == "Y" :
234 setParameter (" GEOMETRYLOAD " , self . name , " FORCE / DIRECT " , 2)
235 attach (" GEOMETRYLOAD " , self . name , _target . name ,
236 [[_target . x_coord , _beam . geometry . height+_target . geometry . height]])
237 elif self . typeOfLoad == " Distributed " :
238 # Target is an edge of a shape , ex . part top of beam :
239 # Direction = normal to surface
240 createLineLoad (self . name , self . setname)
241 setParameter (" GEOMETRYLOAD " , self . name , " FORCE / VALUE " , self . value)
242 attach (" GEOMETRYLOAD " , self . name , _target . name , [_target . x_coord , _target . geometry . height])
243

244 class Interface () :
245 # Default values retrieved from de Putter 's beamscript .
246 name = " Interface "
247 Knn_tension = 1e-9 # N/ mm3
248 Knn_compression = 1e+3 # N/ mm3
249 Kt = 1 . 0 # N/ mm3
250 pass
251

252 class Mesh () :
253 meshorder = " QUADRATIC "
254 meshertype = " HEXQUAD "
255 pass
256

257

258 class Analysis () :
259 allObjects = []
260 def __init__ (self , _name , _typeOfAnalysis) :
261 self . name = _name
262 self . typeOfAnalysis = _typeOfAnalysis
263 if self . typeOfAnalysis == " Linear " :
264 self . command = " Structural linear static "
265 self . method = " ITERAT "
266 self . output = " PRIMAR "
267 self . runSolver = False
268 elif self . typeOfAnalysis == " Nonlinear " :
269 self . command = " Structural nonlinear "
270 self . allConvergenceNormsHaveToBeSatisfied = False
271 self . continueIfNoConvergence = True
272 self . runSolver = False
273 self . lineSearch = True
274 self . arcLengthControl = True
275 self . allObjects . append (self)
276 def setConvergence (self , _Convergence) :
277 self . convergence = _Convergence
278 def setIterationMethod (self , _Iteration) :
279 self . iteration = _Iteration
280 def setIncrementalMethod (self , _Incrementation) :
281 self . incrementation = _Incrementation
282

283

284 class Incrementation () :
285 pass
286

287 class Iteration () :
288 firstStiffnessMatrix = " TANGEN "
289 pass
290

291 class Convergence () :
292 useForceNorm = True
293 useEnergyNorm = True
294 useDispNorm = False
295 pass
296

297 class Scalefactor () :

109

298 loadFactor_plot = 1
299 displacement_plot = 1
300 loadFactor_CSV = 1
301 displacement_CSV = 1
302 pass
303

304 class LoadDispY_Graph () :
305 xlabel = " Displacement [mm]"
306 ylabel = " Loadfactor "
307

308 class LoadDispY_CSV () :
309 decimalPlaces = 2
310

311 def getLoadDispYArrays (x_coord , y_coord , _analysis , scaleFactor_loadFactor , scaleFactor_displacement) :
312 nodeVector = findNodesCloseTo ((x_coord , y_coord) , Mesh . elementsize /4)
313 nodeToBeUsed = nodeVector [0]
314 results_table = resultsTable ({ " analysis " : _analysis . name , " result " : " Displacements " ,
315 " components " : [" TDtY "] , " nodes " : [nodeToBeUsed] , " cases " : (resultCases (_analysis . name)) })
316

317 loadFactor_vec = []
318 displacement_vec = []
319 for k in range (1 , len (results_table)) :
320 caseName = results_table [k] [0]
321 dum = caseName . split (" , ")
322 dum = dum [1]
323 dum = dum . split ()
324 loadfac = float (dum [1])
325 loadFactor_vec . append (loadfac)
326 displacement_vec . append (results_table [k] [2])
327 # Transforming into arrays
328 loadFactor_arr = np . array (loadFactor_vec)
329 displacement_arr = np . array (displacement_vec)
330 # Scaling arrays
331 loadFactor_arr = loadFactor_arr ∗ scaleFactor_loadFactor
332 displacement_arr = displacement_arr ∗ scaleFactor_displacement
333 return loadFactor_arr , displacement_arr
334

335 def loadDispYPlot (x_coord , y_coord , _analysis , scaleFactor_loadFactor , scaleFactor_displacement) :
336 loadFactor_arr , displacement_arr = getLoadDispYArrays (x_coord , y_coord , _analysis ,
337 scaleFactor_loadFactor , scaleFactor_displacement)
338 # Generating plot
339 fig = plt . figure ()
340 ax1 = fig . add_subplot (1 , 1 , 1)
341 ax1 . set_xlabel (LoadDispY_Graph . xlabel)
342 ax1 . set_ylabel (LoadDispY_Graph . ylabel)
343 if hasattr (LoadDispY_Graph , ' xLim ') :
344 ax1 . set_xlim (LoadDispY_Graph . xLim)
345 if hasattr (LoadDispY_Graph , ' yLim ') :
346 ax1 . set_ylim (LoadDispY_Graph . yLim)
347 ax1 . plot(−displacement_arr , loadFactor_arr , label = " Load_deflection_graph ")
348 # Saving figure
349 # Creating target directory
350 dirName = Project . dirPath + "/" + Project . modelName + "/ Plots "
351 if not os . path . exists (dirName) :
352 os . makedirs (dirName)
353 if Options . parametricStudy == True :
354 file_name = dirName + "/ LoadDispY " + "_" + str (LoadDispY_Graph . parametric)
355 else :
356 file_name = dirName + "/ LoadDispY "
357 plt . savefig (file_name + ". png " , dpi=400)
358 plt . close (fig)
359 return
360

361

362 def getLoadDisplacementCSV (x_coord , y_coord , _analysis , scaleFactor_loadFactor , scaleFactor_displacement ,
363 decimalPlaces) :
364 # Exporting results to CSV
365 loadFactor_arr , displacement_arr = getLoadDispYArrays (x_coord , y_coord , _analysis ,
366 scaleFactor_loadFactor , scaleFactor_displacement)
367 displacement_arr = displacement_arr∗−1 # Defining downwards displacement as positive
368 if Options . parametricStudy == True :
369 file_name = r" loadDispY " + "_" + str (LoadDispY_CSV . parametric) + ". csv "
370 else :
371 file_name = r ' loadDispY . csv '
372 with open (file_name , 'w ' , newline='') as f :

110

373 # f. write (Project . name ; Project . modelName ; Project . modelExtraInfo ; Nodenr : str (_node) '\ n ')
374 writer = csv . writer (f , delimiter = ";")
375 if scaleFactor_loadFactor != 1 and scaleFactor_displacement != 1 :
376 f . write (" Scaled Displacement [mm]; Scaled Loadfactor \n")
377 elif scaleFactor_loadFactor != 1 :
378 f . write (" Displacement [mm]; Scaled Loadfactor \n")
379 elif scaleFactor_displacement != 1 :
380 f . write (" Scaled Displacement [mm]; Loadfactor \n")
381 else :
382 f . write (" Displacement [mm]; LoadFactor \n")
383 decimals = " %. " + str (decimalPlaces)+"f"
384 np . savetxt (f , np . column_stack ((displacement_arr , loadFactor_arr)) , decimals , delimiter = ";")
385

386

387 def StressStrainXArrays (x_coord , y_coord , _analysis) :
388 nodeVector = findNodesCloseTo ((x_coord , y_coord) , Mesh . elementsize /4)
389 nodeToBeUsed = nodeVector [0]
390 strain_table = resultsTable ({ " analysis " : _analysis . name , " result " : " Total Strains " ,
391 " components " : [" EXX "] , " nodes " : [nodeToBeUsed] , " cases " : (resultCases (_analysis . name)) })
392 stress_table = resultsTable ({ " analysis " : _analysis . name , " result " : " Cauchy Total Stresses " ,
393 " components " : [" SXX "] , " nodes " : [nodeToBeUsed] , " cases " : (resultCases (_analysis . name)) })
394 strain_vec = []
395 stress_vec = []
396 for k in range (1 , len (strain_table)) :
397 stress_vec . append (stress_table [k] [−1])
398 strain_vec . append (strain_table [k] [−1])
399 # Transforming into arrays
400 stress_arr = np . array (stress_vec)
401 strain_arr = np . array (strain_vec)
402 return stress_arr , strain_arr
403

404 def getStressStrainXCSV (_node , _element , CSVname , _analysis , decimalPlaces) :
405 nodeToBeUsed = _node
406 elementToBeUsed = _element
407 strain_table = resultsTable ({ " analysis " : _analysis . name , " result " : " Total Strains " ,
408 " components " : [" EXX "] , " nodes " : [nodeToBeUsed] , " elements " : [elementToBeUsed] ,
409 " cases " : (resultCases (_analysis . name)) })
410 stress_table = resultsTable ({ " analysis " : _analysis . name , " result " : " Cauchy Total Stresses " ,
411 " components " : [" SXX "] , " nodes " : [nodeToBeUsed] , " elements " : [elementToBeUsed] ,
412 " cases " : (resultCases (_analysis . name)) })
413 strain_vec = []
414 stress_vec = []
415 for k in range (1 , len (strain_table)) :
416 stress_vec . append (stress_table [k] [−1])
417 strain_vec . append (strain_table [k] [−1])
418 # Transforming into arrays
419 stress_arr = np . array (stress_vec)
420 strain_arr = np . array (strain_vec)
421 # Exporting results to CSV
422 file_name = CSVname
423 with open (file_name , 'w ' , newline='') as f :
424 print (" open ")
425 writer = csv . writer (f , delimiter = ";")
426 f . write (" Strain [MPa]; Stress []\ n")
427 decimals = " %. " + str (decimalPlaces)+"f"
428 np . savetxt (f , np . column_stack ((strain_arr , stress_arr)) , decimals , delimiter = ";")
429

430 ## Other useful BUILT - IN DIANA functions that can be used :
431 # nodeVector = findNodesCloseTo ((x_coord , y_coord), radius)

111

D Main

1 # --
2 # --------- Main script - 2D BEAM SCRIPT ----
3 # --------- DIANA / Python framework for robust NLFEA of RC beams ---
4 # --
5 # This is the script to be run using DIANA
6 # DO NOT CHANGE THIS SCRIPT AS AN USER
7 # For more info and user input , open script A: userInput
8 # This script includes a combination of DIANA commands and python commands ,
9 ## and can not be run in any other program than DIANA .

10

11 # ## IMPORTING CLASSES ; FUNCTIONS AND USERINPUT
12 if not ' parametric_Study ' in locals () :
13 ## All scripts have to be saved in the same folder (Have the same working directory)
14 wd = sys . path [0] # Working directory of main . py
15 exec (open (wd+" \\ C_classesAndFunctions . py ") . read ())
16 exec (open (wd+" \\ A_UserInput . py ") . read ())
17

18 functionOfUserInput ([0])
19 # ## CREATING PROJECT
20 if not hasattr (Project , ' name ') :
21 # ** Default projectname **:
22 Project . name = Project . modelName + "_" + date + "_" + Project . modelExtraInfo
23 else :
24 Options . parametricStudy = True
25

26 if not hasattr (Project , ' dirPath ') :
27 Project . dirPath = sys . path [0]
28

29 newProject (Project . dirPath + " \\ " + Project . modelName + " \\ " +Project . name , Project . size_in_m)
30 setModelAnalysisAspects ([" STRUCT "])
31

32 setModelDimension (Options . dimension)
33 setDefaultMeshOrder (" QUADRATIC ") # Default
34 setDefaultMesherType (" HEXQUAD ") # Default
35 setDefaultMidSideNodeLocation (" ONSHAP ") # Default
36

37 setUnit (" LENGTH " , Units . length)
38 setUnit (" FORCE " , Units . force)
39 setUnit (" MASS " , Units . mass)
40 setUnit (" TEMPER " , Units . temperature)
41

42 # ## Checking if template is used :
43 if Options . template_3PointBending == True or Options . template_4PointBending == True :
44 Options . symmetric_Beam = True
45

46 # ## CREATING THE GEOMETRY
47 # -- The beam ---
48 # Creating the Geometry :
49 addSet (" SHAPESET " , " Beam ")
50 remove (" SHAPESET " , " Shapes ")
51 beam . x_coord_mid = beam . geometry . length /2
52

53 # Coordinates :
54 if Options . symmetric_Beam == True :
55 beam . coord =[[0 , 0] ,
56 [beam . x_coord_mid , 0] ,
57 [beam . x_coord_mid , beam . geometry . height] ,
58 [0 , beam . geometry . height]]
59 else :
60 beam . coord =[[0 , 0] ,
61 [beam . geometry . length , 0] ,
62 [beam . geometry . length , beam . geometry . height] ,
63 [0 , beam . geometry . height]]
64

65

66 for obj in Beam . allObjects :
67 createSheet (obj . name , obj . coord)
68

69 # -- Plates ---
70 addSet (" SHAPESET " , " Plates ")
71 if Options . template_3PointBending == True : # and Symmetric_Beam :
72

112

73 xCoord_sup = (beam . geometry . length − beam . geometry . lengthOfSpan)/ 2
74 xCoord_load = beam . geometry . length /2
75

76 supPlate = Plates ("S" , " Support plate " , xCoord_sup)
77 supPlate . fixedTranslation_x = False
78 loadPlate = Plates ("L" , " Loading plate " , xCoord_load)
79

80

81 elif Options . template_4PointBending == True : # and Symmetric_Beam :
82

83 xCoord_sup = (beam . geometry . length − beam . geometry . lengthOfSpan)/ 2
84 xCoord_load = (beam . geometry . length − beam . geometry . lengthOfInnerSpan)/ 2
85

86 supPlate = Plates ("S" , " Support plate " , xCoord_sup)
87 supPlate . fixedTranslation_x = False
88 loadPlate = Plates ("L" , " Loading plate " , xCoord_load)
89

90 # All plate objects have same geometry :
91 for obj in Plates . allObjects :
92 obj . add_geometry (plateGeometry)
93

94 # Coordinates :
95 for obj in Plates . allObjects :
96

97 if obj . typeOfPlate == "S" :
98 obj . coord = [[obj . x_coord −(obj . geometry . length /2) , 0] ,
99 [obj . x_coord+(obj . geometry . length /2) , 0] ,

100 [obj . x_coord+(obj . geometry . length /2) , −obj . geometry . height] ,
101 [obj . x_coord , −obj . geometry . height] ,
102 [obj . x_coord −(obj . geometry . length /2) , −obj . geometry . height]]
103

104 elif obj . typeOfPlate == "L" :
105 obj . coord = [[obj . x_coord −(obj . geometry . length /2) , beam . geometry . height] ,
106 [obj . x_coord+(obj . geometry . length /2) , beam . geometry . height] ,
107 [obj . x_coord+(obj . geometry . length /2) , beam . geometry . height+ obj . geometry . height] ,
108 [obj . x_coord , beam . geometry . height+ obj . geometry . height] ,
109 [obj . x_coord −(obj . geometry . length /2) , beam . geometry . height+ obj . geometry . height]]
110

111 setCurrentShapeSet (" Plates ")
112 createSheet (obj . name , obj . coord)
113

114 if Options . symmetric_Beam == True and obj . x_coord == beam . x_coord_mid :
115 addSet (" SHAPESET " , " DividerSet ")
116 createLine (" Divider " , [obj . x_coord , −10000] , [obj . x_coord , 10000])
117 dum = cut (obj . name , [" Divider "] , False , True)
118 removeShape (dum [1])
119 renameShape (dum [0] , obj . name)
120 remove (" SHAPESET " , " DividerSet ")
121

122 # -- Loads ---
123 # DEAD WEIGHT
124 if Options . includeSelfWeight : # only true is implemented
125 selfweight = Selfweight ()
126 addSet (GEOMETRYLOADSET , selfweight . setname)
127 createModelLoad (selfweight . name , selfweight . setname)
128

129 # # POINT LOAD :
130 # Load
131 addSet (" GEOMETRYLOADSET " , Loads . setname)
132 for obj in Loads . allObjects :
133 if Options . template_3PointBending == True or Options . template_4PointBending == True :
134 obj . target = loadPlate
135 obj . attachLoadToTargets ((obj . target) , beam)
136

137 # -- Longitudinal Reinfo ---
138 for obj in Longitudinal_Reinfo . allObjects :
139 addSet (GEOMETRYREINFOSET , obj . setname)
140 setCurrentShapeSet (obj . setname)
141 if Options . symmetric_Beam == True :
142 obj . x_coord_end = beam . x_coord_mid
143 pos1 = [obj . x_coord_start , obj . y_coord] #[x ,y]
144 pos2 = [obj . x_coord_end , obj . y_coord] #[x ,y]
145 createLine (obj . name , pos1 , pos2)
146

147 # -- Shear Reinfo ---

113

148 for obj in Transverse_Reinfo . allObjects :
149 bool_shearBarInMiddle = createShearReinfo (obj)
150

151 # ## Preparations before iterations
152 ListOfAllElements = Beam . allObjects + Plates . allObjects
153 ListOfAllElements_names = [obj . name for obj in ListOfAllElements]
154 ListOfAllPlates_names = [obj . name for obj in Plates . allObjects]
155 ListOfAllReinfoElements = Longitudinal_Reinfo . allObjects + Transverse_Reinfo . allObjects
156 longReinfo_names = [obj . name for obj in Longitudinal_Reinfo . allObjects]
157 transReinfo_names = Transverse_Reinfo . allNames
158 allReinfo_names = longReinfo_names + transReinfo_names
159

160 # ## MATERIAL MODELS
161 # -- Concrete ---
162 # Properties :
163 # Finding recommended properties
164 concreteFromEC2()
165 concreteFromFib 2010 ()
166 if not hasattr (concrete , ' Youngs_modulus ') :
167 concrete . Youngs_modulus = parameter (" MATERIAL " , " Concrete_EC2 " , " EC2CON / NORMAL / PARAME / YOUDER ")
168 if not hasattr (concrete , ' poissons_ratio ') :
169 concrete . poissons_ratio = 0 . 2 # RTD
170 if not hasattr (concrete , ' mass_density ') :
171 concrete . mass_density = parameter (" MATERIAL " , " Concrete_EC2 " , " EC2CON / NORMAL / PARAME / DENDER ")
172 if not hasattr (concrete , ' tensile_strength ') :
173 concrete . tensile_strength = parameter (" MATERIAL " , " Concrete_EC2 " ,
174 " EC2CON / NORMAL / PARAME / TOTCRK / TENDER ")
175 if not hasattr (concrete , ' compressive_strength ') :
176 concrete . compressive_strength = parameter (" MATERIAL " , " Concrete_EC2 " ,
177 " EC2CON / NORMAL / PARAME / TOTCRK / COMDER ")
178 if not hasattr (concrete , ' tensile_FractureEnergy ') :
179 concrete . tensile_FractureEnergy = parameter (" MATERIAL " , " Concrete_fib2010 " ,
180 " MC10CO / NORMAL / PARAME / TOTCRK / GF1DER ") # based upon fib Model Code
181 if not hasattr (concrete , ' compressive_FractureEnergy ') :
182 concrete . compressive_FractureEnergy = 250 ∗((concrete . f_ck)/
183 (concrete . compressive_strength))∗ 0 . 073 ∗(concrete . compressive_strength)∗∗(0 . 18) # RTD
184

185 # Changing from Rotating to fixed crack model if no shear reinforcement :
186 if len (Transverse_Reinfo . allObjects) == 0 :
187 concrete . crack_orientation = " FIXED "
188

189 # Creating material :
190 addMaterial (concrete . Name , concrete . material , concrete . material_model , [])
191 setParameter (" MATERIAL " , concrete . Name , " LINEAR / ELASTI / YOUNG " , concrete . Youngs_modulus)
192 setParameter (" MATERIAL " , concrete . Name , " LINEAR / ELASTI / POISON " , concrete . poissons_ratio)
193 setParameter (" MATERIAL " , concrete . Name , " LINEAR / MASS / DENSIT " , concrete . mass_density)
194 setParameter (" MATERIAL " , concrete . Name , " MODTYP / TOTCRK " , concrete . crack_orientation)
195 if concrete . crack_orientation == " FIXED " :
196 setParameter (" MATERIAL " , concrete . Name , " SHEAR / SHRCRV " , " DAMAGE ")
197 setParameter (" MATERIAL " , concrete . Name , " TENSIL / TENCRV " , concrete . tensile_curve)
198 setParameter (" MATERIAL " , concrete . Name , " TENSIL / TENSTR " , concrete . tensile_strength)
199 setParameter (" MATERIAL " , concrete . Name , " TENSIL / CBSPEC " , concrete . crackBandwidt_specification)
200 setParameter (" MATERIAL " , concrete . Name , " TENSIL / POISRE / POIRED " , concrete . poissonsRatio_reductionModel)
201 setParameter (" MATERIAL " , concrete . Name , " TENSIL / GF1 " , concrete . tensile_FractureEnergy)
202 setParameter (" MATERIAL " , concrete . Name , " COMPRS / COMCRV " , concrete . compression_curve)
203 setParameter (" MATERIAL " , concrete . Name , " COMPRS / COMSTR " , concrete . compressive_strength)
204 setParameter (" MATERIAL " , concrete . Name , " COMPRS / GC " , concrete . compressive_FractureEnergy)
205 setParameter (" MATERIAL " , concrete . Name , " COMPRS / REDUCT / REDCRV " , concrete . lateralCracking_reductionModel)
206 setParameter (" MATERIAL " , concrete . Name , " COMPRS / REDUCT / REDMIN " ,
207 concrete . lateralCracking_reductionCurve_lowerBound)
208 setParameter (" MATERIAL " , concrete . Name , " COMPRS / CONFIN / CNFCRV " , concrete . confinementModel)
209

210 # Assigning geometry and material to beam
211 beam_geo = beam . name
212 beam_shape = beam . name
213

214 addGeometry (beam_geo , " SHEET " , " MEMBRA " , [])
215 setParameter (" GEOMET " , beam_geo , " THICK " , beam . geometry . width)
216 setParameter (" GEOMET " , beam_geo , " LOCAXS " , True)
217 setParameter (" GEOMET " , beam_geo , " LOCAXS / XAXIS " , [1 , 0 , 0])
218

219 setElementClassType (" SHAPE " , [beam_shape] , " MEMBRA ")
220 assignMaterial (concrete . Name , " SHAPE " , [beam_shape])
221 assignGeometry (beam_geo , " SHAPE " , [beam_shape])
222

114

223 # STEEL FOR SUPPORTS AND LOADING PLATES
224 steel_mat = " Steel Plates "
225 steel_geo = " Steel Plates "
226

227 addMaterial (steel_mat , Steel_Plates . material , Steel_Plates . material_model , [])
228 setParameter (" MATERIAL " , steel_mat , " LINEAR / MASS / DENSIT " , Steel_Plates . density)
229 setParameter (" MATERIAL " , steel_mat , " LINEAR / ELASTI / YOUNG " , Steel_Plates . e_mod)
230 setParameter (" MATERIAL " , steel_mat , " LINEAR / ELASTI / POISON " , Steel_Plates . poissons_ratio)
231

232 addGeometry (steel_geo , " SHEET " , " MEMBRA " , [])
233 plateGeometry . width = beam . geometry . width
234 setParameter (" GEOMET " , steel_geo , " THICK " , plateGeometry . width)
235

236 setElementClassType (" SHAPE " , ListOfAllPlates_names , " MEMBRA ")
237 isSteel = assignMaterial (steel_mat , " SHAPE " , ListOfAllPlates_names)
238 assignGeometry (steel_geo , " SHAPE " , ListOfAllPlates_names)
239 if isSteel :
240 setShapeColor ("# cccccc " , ListOfAllPlates_names)
241

242 # Integration schemes :
243 addElementData (" integrationScheme ")
244 setParameter (" DATA " , " integrationScheme " , " INTEGR " , " HIGH ")
245 assignElementData (" integrationScheme " , " SHAPE " , ListOfAllElements_names)
246

247 # -- Reinforcement ---
248 for obj in ListOfAllReinfoElements :
249 obj . kapsig = [0 , obj . f_ym , obj . e_u , obj . f_um] # For use in the bilinear stress - strain diagram
250

251 for obj in ListOfAllReinfoElements :
252 addMaterial (obj . name , " REINFO " , " VMISES " , [])
253 setParameter (" MATERIAL " , obj . name , " LINEAR / ELASTI / YOUNG " , obj . e_mod)
254 setParameter (" MATERIAL " , obj . name , " PLASTI / YLDTYP " , " KAPSIG ")
255 setParameter (" MATERIAL " , obj . name , " PLASTI / HARDI2 / KAPSIG " , [])
256 setParameter (" MATERIAL " , obj . name , " PLASTI / HARDI2 / KAPSIG " , obj . kapsig)
257 addGeometry (obj . name , " RELINE " , " REBAR " , [])
258 setParameter (" GEOMET " , obj . name , " REIEMB / CROSSE " , obj . As)
259

260 setReinforcementType (" GEOMETRYREINFOSET " , obj . setname , " BAR ")
261

262 assignMaterial (obj . name , " GEOMETRYREINFOSET " , obj . setname)
263 assignGeometry (obj . name , " GEOMETRYREINFOSET " , [obj . setname])
264

265 if obj . typeOfReinfo == " Trans " :
266 setReinforcementDiscretization (obj . allNames , " ELEMENT ")
267 if bool_shearBarInMiddle :
268 # Creating a shear bear with half the area in middle of beam ,
269 # so it will be correct when modelling symmetric
270 assignMaterial (obj . name , " GEOMETRYREINFOSET " , " ShearBar_mid ")
271 addGeometry (obj . name + " _mid " , " RELINE " , " REBAR " , [])
272 assignGeometry (obj . name + " _mid " , " GEOMETRYREINFOSET " , [" ShearBar_mid "])
273 setParameter (" GEOMET " , obj . name + " _mid " , " REIEMB / CROSSE " , obj . As/2)
274 setContinuousInInterfaces (" GEOMETRYREINFOSET " , " ShearBar_mid " , False)
275 else :
276 setReinforcementDiscretization ([obj . name] , " ELEMENT ")
277 setContinuousInInterfaces (" GEOMETRYREINFOSET " , obj . setname , False)
278

279 # -- Supports ---
280 if Options . symmetric_Beam == True :
281 # Symmetric support in middle of beam
282 nameOfSupport = " Symmetry "
283 addSet (" GEOMETRYSUPPORTSET " , " Symmetric supports ")
284 createLineSupport (nameOfSupport , " Symmetric supports ")
285 setParameter (" GEOMETRYSUPPORT " , nameOfSupport , " AXES " , [1 , 2])
286 setParameter (" GEOMETRYSUPPORT " , nameOfSupport , " TRANSL " , [1 , 0])
287 setParameter (" GEOMETRYSUPPORT " , nameOfSupport , " ROTATI " , [0 , 0 , 1])
288 attach (" GEOMETRYSUPPORT " , nameOfSupport , beam . name , [[beam . x_coord_mid , beam . geometry . height /2]])
289 for obj in Plates . allObjects :
290 if obj . x_coord == beam . x_coord_mid :
291 if obj . typeOfPlate == "S" :
292 attach (" GEOMETRYSUPPORT " , nameOfSupport , obj . name , [[obj . x_coord ,
293 beam . geometry . height − obj . geometry . height /2]])
294 elif obj . typeOfPlate == "L" :
295 attach (" GEOMETRYSUPPORT " , nameOfSupport , obj . name , [[obj . x_coord ,
296 beam . geometry . height + obj . geometry . height /2]])
297

115

298 addSet (" GEOMETRYSUPPORTSET " , " Supports ")
299 counter = 1
300 for obj in Plates . allObjects :
301 if obj . typeOfPlate == "S" :
302 x_trans = 1
303 y_trans = 1
304 nameOfSupport = " BC " + str (counter)
305 createPointSupport (nameOfSupport , " Supports ")
306 setParameter (" GEOMETRYSUPPORT " , nameOfSupport , " AXES " , [1 , 2])
307 print (x_trans)
308 if not obj . fixedTranslation_x :
309 x_trans = 0
310 if not obj . fixedTranslation_y :
311 y_trans = 0
312 setParameter (" GEOMETRYSUPPORT " , nameOfSupport , " TRANSL " , [x_trans , y_trans])
313 setParameter (" GEOMETRYSUPPORT " , nameOfSupport , " ROTATI " , [0 , 0 , 0])
314 attach (" GEOMETRYSUPPORT " , nameOfSupport , obj . name , [[obj . x_coord , −obj . geometry . height]])
315 counter += 1
316

317

318 # -- Interface ---
319 # Imprint the plates into the beam
320 for obj in Plates . allObjects :
321 imprintIntersection (beam . name , obj . name , True)
322

323 # Creating the interface material :
324 addMaterial (Interface . name , " INTERF " , " NONLIF " , []) # nonlinear relation
325 setParameter (MATERIAL , Interface . name , " LINEAR / IFTYP " , " LIN2D ")
326 setParameter (MATERIAL , Interface . name , " LINEAR / ELAS2 / DSNY " , Interface . Knn_compression)
327 setParameter (MATERIAL , Interface . name , " LINEAR / ELAS2 / DSSX " , Interface . Kt)
328 setParameter (MATERIAL , Interface . name , " NONLIN / IFNOTE " , " DIAGRM ")
329 setParameter (MATERIAL , Interface . name , " NONLIN / NLEL2 / DUSTNY " ,
330 [−1000 , −Interface . Knn_compression ∗ 1e3 ,
331 0 , 0 ,
332 1000 , Interface . Knn_tension ∗ 1e3])
333

334 # Creating the Interface geometry :
335 addGeometry (Interface . name , " LINE " , " STLIIF " , [])
336 setParameter (GEOMET , Interface . name , " LIFMEM / THICK " , beam . geometry . width)
337

338 # creating the Interface
339 createConnection (Interface . name , " INTER " , " SHAPEEDGE " , " SHAPEEDGE ") # Interface between two edges
340 setParameter (" GEOMETRYCONNECTION " , Interface . name , " MODE " , " CLOSED ")
341 setElementClassType (" GEOMETRYCONNECTION " , Interface . name , " STLIIF ")
342

343 assignMaterial (Interface . name , " GEOMETRYCONNECTION " , Interface . name)
344 assignGeometry (Interface . name , " GEOMETRYCONNECTION " , Interface . name)
345 setParameter (" GEOMETRYCONNECTION " , Interface . name , " FLIP " , False)
346 for obj in Plates . allObjects :
347 if obj . x_coord == beam . x_coord_mid and Options . symmetric_Beam == True :
348 if obj . typeOfPlate == "S" :
349 attachTo (" GEOMETRYCONNECTION " , Interface . name , " SOURCE " , obj . name ,
350 [[obj . x_coord − obj . geometry . length /4 , 0]])
351 attachTo (" GEOMETRYCONNECTION " , Interface . name , " TARGET " , beam . name ,
352 [[obj . x_coord − obj . geometry . length /4 , 0]])
353 elif obj . typeOfPlate == "L" :
354 attachTo (" GEOMETRYCONNECTION " , Interface . name , " SOURCE " , obj . name ,
355 [[obj . x_coord − obj . geometry . length /4 , beam . geometry . height]])
356 attachTo (" GEOMETRYCONNECTION " , Interface . name , " TARGET " , beam . name ,
357 [[obj . x_coord − obj . geometry . length /4 , beam . geometry . height]])
358 elif obj . typeOfPlate == "S" :
359 attachTo (" GEOMETRYCONNECTION " , Interface . name , " SOURCE " , obj . name , [[obj . x_coord , 0]])
360 attachTo (" GEOMETRYCONNECTION " , Interface . name , " TARGET " , beam . name , [[obj . x_coord , 0]])
361 elif obj . typeOfPlate == "L" :
362 attachTo (" GEOMETRYCONNECTION " , Interface . name , " SOURCE " , obj . name ,
363 [[obj . x_coord , beam . geometry . height]])
364 attachTo (" GEOMETRYCONNECTION " , Interface . name , " TARGET " , beam . name ,
365 [[obj . x_coord , beam . geometry . height]])
366

367 # Adding element data to Interface
368 addElementData (" InterfaceData ")
369 setParameter (DATA , " InterfaceData " , " INTEGR " , " HIGH ")
370 assignElementData (" InterfaceData " , " GEOMETRYCONNECTION " , Interface . name)
371

372 # -- Mesh ---

116

373 setElementSize (ListOfAllElements_names , Mesh . elementsize , −1 , True)
374 setMesherType (ListOfAllElements_names , Mesh . meshertype)
375 # setMidSideNodeLocation (ListOfAllElements_names , Mesh . midSideNodeLocation)
376 generateMesh ([])
377

378 # -- Linear Analysis ---
379 for analysis in Analysis . allObjects :
380 if analysis . typeOfAnalysis == " Linear " :
381

382 addAnalysis (analysis . name)
383 addAnalysisCommand (analysis . name , " LINSTA " , analysis . command)
384 setAnalysisCommandDetail (analysis . name , analysis . command , " SOLVE / TYPE " , analysis . method)
385 setAnalysisCommandDetail (analysis . name , analysis . command , " OUTPUT (1)/ SELTYP " , analysis . output)
386

387

388 if analysis . runSolver == True :
389 runSolver ([analysis . name])
390

391 if hasattr (analysis , ' expectedFailureLoad ') :
392 [midNodeBeam] = findNodesCloseTo (((beam . geometry . length)/ 2 , 0))
393 # Displacement at midpoint :
394 results_table = resultsTable ({ " analysis " : analysis . name , " result " : " Displacements " ,
395 " components " : [" DtY "] , " nodes " : [midNodeBeam] , " cases " : (resultCases (analysis . name)) })
396 dispAtExpectedLoad = analysis . expectedFailureLoad ∗ results_table [2] [2]
397 print (dispAtExpectedLoad)
398

399

400 # -- Nonlinear Analysis ---
401 # First selfweight , then point loads .
402 elif analysis . typeOfAnalysis == " Nonlinear " :
403

404 addAnalysis (analysis . name)
405 addAnalysisCommand (analysis . name , " NONLIN " , analysis . command)
406

407 # Dead weight
408 # All self_weight is applied in one increment
409 renameAnalysisCommandDetail (analysis . name , analysis . command , " EXECUT (1) " , selfweight . name)
410 addAnalysisCommandDetail (analysis . name , analysis . command , " EXECUT (1)/ LOAD / LOADNR ")
411 setAnalysisCommandDetail (analysis . name , analysis . command , " EXECUT (1)/ LOAD / LOADNR " , 1)
412

413 # Point loads
414 setAnalysisCommandDetail (analysis . name , analysis . command , " EXECUT / EXETYP " , " LOAD ")
415 renameAnalysisCommandDetail (analysis . name , analysis . command , " EXECUT (2) " , " Loads ")
416 addAnalysisCommandDetail (analysis . name , analysis . command , " EXECUT (2)/ LOAD / LOADNR ")
417 setAnalysisCommandDetail (analysis . name , analysis . command , " EXECUT (2)/ LOAD / LOADNR " , 2)
418

419 for i in [1 , 2] : # only two phases
420 setAnalysisCommandDetail (analysis . name , analysis . command , " EXECUT ("+str (i)+")/ ITERAT / MAXITE " ,
421 analysis . iteration . nrOfIterations)
422 if analysis . iteration . method == " NEWTON - RAPHSON " :
423 setAnalysisCommandDetail (analysis . name , analysis . command ,
424 " EXECUT ("+str (i)+")/ ITERAT / METHOD / METNAM " , " NEWTON ")
425 setAnalysisCommandDetail (analysis . name , analysis . command ,
426 " EXECUT ("+str (i)+")/ ITERAT / METHOD / NEWTON / TYPNAM " , analysis . iteration . typeOfMethod)
427 setAnalysisCommandDetail (analysis . name , analysis . command ,
428 " EXECUT ("+str (i)+")/ ITERAT / LINESE " , analysis . lineSearch) # Bool value
429

430 if analysis . convergence . useForceNorm == True :
431 setAnalysisCommandDetail (analysis . name , analysis . command ,
432 " EXECUT ("+str (i)+")/ ITERAT / CONVER / FORCE " , True)
433 setAnalysisCommandDetail (analysis . name , analysis . command ,
434 " EXECUT (1)/ ITERAT / CONVER / FORCE / TOLCON " , analysis . convergence . forceNorm_deadLoad)
435 setAnalysisCommandDetail (analysis . name , analysis . command ,
436 " EXECUT (2)/ ITERAT / CONVER / FORCE / TOLCON " , analysis . convergence . forceNorm)
437 if analysis . continueIfNoConvergence == True :
438 setAnalysisCommandDetail (analysis . name , analysis . command ,
439 " EXECUT ("+str (i)+")/ ITERAT / CONVER / FORCE / NOCONV " , " CONTIN ")
440 else :
441 setAnalysisCommandDetail (analysis . name , analysis . command ,
442 " EXECUT ("+str (i)+")/ ITERAT / CONVER / FORCE / NOCONV " , " TERMIN ")
443 else :
444 setAnalysisCommandDetail (analysis . name , analysis . command ,
445 " EXECUT ("+str (i)+")/ ITERAT / CONVER / FORCE " , False)
446

447 if analysis . convergence . useEnergyNorm == True :

117

448 setAnalysisCommandDetail (analysis . name , analysis . command ,
449 " EXECUT ("+str (i)+")/ ITERAT / CONVER / ENERGY " , True)
450 setAnalysisCommandDetail (analysis . name , analysis . command ,
451 " EXECUT (1)/ ITERAT / CONVER / ENERGY / TOLCON " , analysis . convergence . energyNorm_deadLoad)
452 setAnalysisCommandDetail (analysis . name , analysis . command ,
453 " EXECUT (2)/ ITERAT / CONVER / ENERGY / TOLCON " , analysis . convergence . energyNorm)
454 if analysis . continueIfNoConvergence == True :
455 setAnalysisCommandDetail (analysis . name , analysis . command ,
456 " EXECUT ("+str (i)+")/ ITERAT / CONVER / ENERGY / NOCONV " , " CONTIN ")
457 else :
458 setAnalysisCommandDetail (analysis . name , analysis . command ,
459 " EXECUT ("+str (i)+")/ ITERAT / CONVER / ENERGY / NOCONV " , " TERMIN ")
460 else :
461 setAnalysisCommandDetail (analysis . name , analysis . command ,
462 " EXECUT ("+str (i)+")/ ITERAT / CONVER / ENERGY " , False)
463 # OBS !!! IF dispNorm is removed , you still need to keep the line with dispNorm = False
464 if analysis . convergence . useDispNorm == True :
465 setAnalysisCommandDetail (analysis . name , analysis . command ,
466 " EXECUT ("+str (i)+")/ ITERAT / CONVER / DISPLA " , True)
467 setAnalysisCommandDetail (analysis . name , analysis . command ,
468 " EXECUT (1)/ ITERAT / CONVER / DISPLA / TOLCON " , analysis . convergence . dispNorm_deadLoad)
469 setAnalysisCommandDetail (analysis . name , analysis . command ,
470 " EXECUT (2)/ ITERAT / CONVER / DISPLA / TOLCON " , analysis . convergence . dispNorm)
471 if analysis . continueIfNoConvergence == True :
472 setAnalysisCommandDetail (analysis . name , analysis . command ,
473 " EXECUT ("+str (i)+")/ ITERAT / CONVER / DISPLA / NOCONV " , " CONTIN ")
474 else :
475 setAnalysisCommandDetail (analysis . name , analysis . command ,
476 " EXECUT ("+str (i)+")/ ITERAT / CONVER / DISPLA / NOCONV " , " TERMIN ")
477 else :
478 setAnalysisCommandDetail (analysis . name , analysis . command ,
479 " EXECUT ("+str (i)+")/ ITERAT / CONVER / DISPLA " , False) # This line have to be kept !!!
480

481 if analysis . allConvergenceNormsHaveToBeSatisfied == True :
482 setAnalysisCommandDetail (analysis . name , analysis . command ,
483 " EXECUT ("+str (i)+")/ ITERAT / CONVER / SIMULT " , True)
484

485 ## Point loads :
486 if analysis . incrementation . method == " ENERGY " and analysis . arcLengthControl == True :
487 setAnalysisCommandDetail (analysis . name , analysis . command ,
488 " EXECUT (2)/ LOAD / STEPS / STEPTY " , " ENERGY ")
489 setAnalysisCommandDetail (analysis . name , analysis . command ,
490 " EXECUT (2)/ LOAD / STEPS / ENERGY / INISIZ " , analysis . incrementation . initial_step_size)
491 setAnalysisCommandDetail (analysis . name , analysis . command ,
492 " EXECUT (2)/ LOAD / STEPS / ENERGY / MAXSIZ " , analysis . incrementation . max_step_size)
493 setAnalysisCommandDetail (analysis . name , analysis . command ,
494 " EXECUT (2)/ LOAD / STEPS / ENERGY / MINSIZ " , analysis . incrementation . min_step_size)
495 setAnalysisCommandDetail (analysis . name , analysis . command ,
496 " EXECUT (2)/ LOAD / STEPS / ENERGY / NSTEPS " , analysis . incrementation . nrOfSteps)
497 setAnalysisCommandDetail (analysis . name , analysis . command ,
498 " EXECUT (2)/ LOAD / STEPS / ENERGY / ARCLEN " , True)
499 addAnalysisCommandDetail (analysis . name , analysis . command ,
500 " EXECUT (2)/ LOAD / STEPS / ENERGY / ARCLEN / REGULA / SET ")
501 # Arc length control is done over whole beam .
502 nodes = list (nodeIds (ELEMENTSET , beam . name))
503 setAnalysisCommandDetail (analysis . name , analysis . command ,
504 " EXECUT (2)/ LOAD / STEPS / ENERGY / ARCLEN / REGULA / SET (1)/ NODES (1)/ RNGNRS " , nodes)
505 setAnalysisCommandDetail (analysis . name , analysis . command ,
506 " EXECUT (2)/ LOAD / STEPS / ENERGY / ARCLEN / REGULA / SET (1)/ DIRECT " , 2) #y - dir
507 # Energy based method has to be combined with arc length
508

509 # Output :
510 setAnalysisCommandDetail (analysis . name , analysis . command , " OUTPUT (1)/ SELTYP " , " USER ")
511 addAnalysisCommandDetail (analysis . name , analysis . command , " OUTPUT (1)/ USER ")
512

513 output_commands = {
514 " DISPLA TOTAL TRANSL GLOBAL " : " OUTPUT (1)/ USER / DISPLA (1)/ TOTAL " ,
515 " FORCE REACTI TRANSL GLOBAL " : " OUTPUT (1)/ USER / FORCE (1)/ REACTI " ,
516 " STRAIN TOTAL GREEN GLOBAL " : " OUTPUT (1)/ USER / STRAIN (1)/ TOTAL / GREEN " ,
517 " STRAIN TOTAL GREEN PRINCI " : " OUTPUT (1)/ USER / STRAIN (2)/ TOTAL / GREEN / PRINCI " ,
518 " STRAIN CRKWDT GREEN GLOBAL " : " OUTPUT (1)/ USER / STRAIN (3)/ CRKWDT " ,
519 " STRAIN CRACK GREEN " : " OUTPUT (1)/ USER / STRAIN (4)/ CRACK / GREEN " ,
520 " STRAIN CRKWDT GREEN PRINCI " : " OUTPUT (1)/ USER / STRAIN (5)/ CRKWDT / GREEN / PRINCI " ,
521 " STRESS TOTAL CAUCHY GLOBAL " : " OUTPUT (1)/ USER / STRESS (1)/ TOTAL / CAUCHY " ,
522 " STRESS TOTAL CAUCHY PRINCI " : " OUTPUT (1)/ USER / STRESS (2)/ TOTAL / CAUCHY / PRINCI "

118

523 }
524

525 for key , boolValue in analysis . output . items () :
526 if boolValue == True :
527 addAnalysisCommandDetail (analysis . name , analysis . command , output_commands [key])
528

529 saveProject ()
530

531 if analysis . runSolver == True :
532 runSolver ([analysis . name])
533

534 if hasattr (LoadDispY_Graph , ' x_coord ') :
535 loadDispYPlot (LoadDispY_Graph . x_coord , LoadDispY_Graph . y_coord , analysis ,
536 Scalefactor . loadFactor_plot , Scalefactor . displacement_plot)
537

538 if hasattr (LoadDispY_CSV , ' x_coord ') :
539 getLoadDisplacementCSV (LoadDispY_CSV . x_coord , LoadDispY_CSV . y_coord , analysis ,
540 Scalefactor . loadFactor_CSV , Scalefactor . displacement_CSV , LoadDispY_CSV . decimalPlaces)
541

542 saveProject ()

119

E Case B1 - User input

1 def functionOfUserInput (parametricValue) : # Input inside function allows for parametric study
2 # ---
3 # --------- CASE B1 --
4 # --
5

6 # ##4. CREATING PROJECT
7 Project . modelName = " B1 "
8 Project . modelExtraInfo = " final "
9

10 Project . size_in_m = 1000
11

12 # -#4.1 Modelling choices
13 Options . symmetric_Beam = True # ** Optional ** , default is False
14

15 # ##5. CREATING THE GEOMETRY
16 # -#5.1 The beam
17 # '#5.1.1 Geometry :
18 beam = Beam () # creating beam object
19 beamGeometry = Geometry () # creating geometry object
20 beam . add_geometry (beamGeometry) # adding the geometry to the beam
21

22 beam . geometry . length = 6840 #[mm]
23 beam . geometry . height = 552 #[mm]
24 beam . geometry . width = 152 #[mm] # thickness
25

26 # -#5.2 Reinforcement
27 # '#5.2.1 Cover : #** Optional input **
28 cover = Cover () # creating cover object
29 # ##** Option 1**: definition of each cover
30 cover . side = 48 #[mm]
31 cover . top = 50 #[mm]
32 cover . bot = 64 #[mm]
33

34 # '#5.2.2 User defined variables
35

36 # -#5.3 Longitudinal reinforcement
37 # '#5.3.1 Creation of longitudinal reinforcement
38 ## CREATE YOUR LONG . REINFO OBJECTS HERE
39 # \\ Reinforcement properties based on DIANA Verification & Rijkwaterstaat
40

41 upper_reinfo = Longitudinal_Reinfo (" M10 " , 300 , 315 , 460 , 2 . 3425 E-2)
42 upper_reinfo . y_coord = beam . geometry . height − cover . top
43 upper_reinfo . x_coord_start = cover . side
44 # templateName . x_coord_end = #** Input needed if beam is not symmetric **
45

46 lower_reinfo_M30 = Longitudinal_Reinfo (" M30 " , 1400 , 436 , 700 , 4 . 78 E-2)
47 lower_reinfo_M30. y_coord = cover . bot
48 lower_reinfo_M30. x_coord_start = 0
49 # templateName . x_coord_end = #** Input needed if beam is not symmetric **
50

51 lower_reinfo_M25 = Longitudinal_Reinfo (" M25 " , 1000 , 445 , 680 , 4 . 80 E-2 , 220000)
52 lower_reinfo_M25. y_coord = 2∗ cover . bot
53 lower_reinfo_M25. x_coord_start = 0
54 # templateName . x_coord_end = #** Input needed if beam is not symmetric **
55

56 # -#5.4 Transverse reinforcement (shear)
57 # '#5.4.1 Creation of transverse reinforcement
58 ## CREATE YOUR TRANS . REINFO OBJECTS HERE
59 shear_reinfo = Transverse_Reinfo (" D4_shear " , 25 . 7 , 600 , 651 , 4 . 70 E-2)
60 shear_reinfo . y_coord_bot = cover . bot
61 shear_reinfo . y_coord_top = beam . geometry . height − cover . top
62

63 # '#5.4.2 Spacing / positions of transverse reinforcement :
64 ## CREATE YOUR SECTION OBJECTS HERE
65 spacing_large = 168
66 spacing_small = 86
67 section_1 = Section (spacing_small , cover . side , cover . side + 4∗ spacing_small)
68 section_2 = Section (spacing_large , cover . side + 4∗ spacing_small ,
69 (beam . geometry . length /2) − 2∗ spacing_small)
70 section_3 = Section (spacing_small , (beam . geometry . length /2) − 2∗ spacing_small ,
71 beam . geometry . length /2)
72

120

73 # -#5.5 Plates
74 plateGeometry = Geometry () # creating geometry object for plates
75

76 plateGeometry . length = 150 #[mm]
77 plateGeometry . height = 35 #[mm]
78

79 # '#5.5.1 Option 1: using template for 3- point bending
80 Options . template_3PointBending = True
81 beam . geometry . lengthOfSpan = 6400 #[mm]
82

83 # ##6. LOADS
84 # -#6.1 Option 1: using template for 3- or 4- point bending
85 ## Both loads are assumed to have same value for 4- point bending . Only one has to be defined .
86 load = Loads (" Point " , " Load " , −1000 , "Y")
87

88 # ##7. MATERIAL MODELS
89 # -#7.1 Concrete material model
90 # The concrete material is defined as follows : concrete = Concrete (f_ck)
91 concrete = Concrete (35)
92

93 # '#7.1.1 Concrete properties :
94 ## The following properties can be changed :
95 concrete . compressive_strength = 43 . 5 # ** Optional **
96

97 # -#7.2 Steel plates material model
98 Steel_Plates . e_mod = 2000000
99 Steel_Plates . poissons_ratio = 0 . 3

100

101 # -#7.3 Reinforcement material model
102

103 # ##8. STRUCTURAL INTERFACES
104 ## The following properties can be changed :
105 Interface . Knn_tension = 3 . 63 e-08 # [N/ mm3] ** Optional **
106 Interface . Knn_compression = 3 . 63 e+04 # [N/ mm3] ** Optional **
107 Interface . Kt = 3 . 63 e-08 # [N/ mm3] ** Optional **
108

109 # ##9. MESH
110 Mesh . elementsize = 25 #[mm]
111

112 # ##10. ANALYSIS
113 # -#10.1 Linear Analysis
114 LFEA = Analysis (" Linear analysis " , " Linear ") # creating linear static analysis
115

116 # '#10.1.1 RUN LINEAR ANALYSIS
117 # LFEA . runSolver = True #** Optional **
118

119 # -#10.2 Nonlinear Analysis
120 NLFEA = Analysis (" Nonlinear analysis 1" , " Nonlinear ") # creating nonlinear analysis
121

122 # '#10.2.1 Arch length control :
123 NLFEA . arcLengthControl = True # ** Default and strongly recommended as true **
124

125 # '#10.2.2 Load incrementation :
126 incrementation = Incrementation () # Creating an incrementation object
127 NLFEA . setIncrementalMethod (incrementation) # adding incremental method to the analysis
128

129 ## Option 1: Energy based adaptive loading
130 ## The energy based method MUST be combined with arch length control .
131 incrementation . method = " ENERGY "
132 incrementation . initial_step_size = 5 # initial size for the first step
133 incrementation . max_step_size = 10 # upper limit of yhe step size
134 incrementation . min_step_size = 3 # lower limit of the step size
135 incrementation . nrOfSteps = 75 # maximum number of steps
136

137 # '#10.2.3 Iteration method :
138 iteration = Iteration () # creating iteration object
139 NLFEA . setIterationMethod (iteration) # adding iterative procedure to the analysis
140

141 ## Option 1: Regular Newton - Raphson
142 iteration . method = " NEWTON - RAPHSON "
143 iteration . typeOfMethod = " REGULA "
144 iteration . nrOfIterations = 100
145

146 # '#10.2.4 Line search :
147 ## Using a line search algorithm is recommended .

121

148 NLFEA . lineSearch = True # ** Default and recommended as true **
149

150 # '#10.2.5 Convergence criteria :
151 convergence = Convergence () # creating convergence object
152 NLFEA . setConvergence (convergence) # adding convergence criteria to the analysis
153

154 convergence . useForceNorm = True # ** Default and recommended as true **
155 convergence . useEnergyNorm = True # ** Default and recommended as true **
156 convergence . useDispNorm = False # ** Default and recommended as false **
157

158 ## Option 1: Suggested tolerances
159 ## Force norm :
160 convergence . forceNorm = 0 . 01
161 convergence . forceNorm_deadLoad = 0 . 05
162 ## Energy norm :
163 convergence . energyNorm = 0 . 001
164 convergence . energyNorm_deadLoad = 0 . 01
165

166 # '#10.2.6 Additional choices for analysis
167 NLFEA . allConvergenceNormsHaveToBeSatisfied = False # ** Default and recommended as false **
168 NLFEA . continueIfNoConvergence = True # ** Default and recommended as true **
169

170 # '#10.2.7 RUN NONLINEAR ANALYSIS
171 ## To run the analysis , uncomment the following line :
172 NLFEA . runSolver = True # ** optional **
173

174 # ##11. OUTPUTS FROM NONLINEAR ANALYSIS
175 # -#11.1 Analysis output :
176 NLFEA . output = {
177 " DISPLA TOTAL TRANSL GLOBAL " : True , # ** Optional **
178 " FORCE REACTI TRANSL GLOBAL " : True , # ** Optional **
179 " STRAIN TOTAL GREEN GLOBAL " : True , # ** Optional **
180 " STRAIN TOTAL GREEN PRINCI " : True , # ** Optional **
181 " STRAIN CRKWDT GREEN GLOBAL " : True , # ** Optional **
182 " STRAIN CRACK GREEN " : True , # ** Optional **
183 " STRAIN CRKWDT GREEN PRINCI " : True , # ** Optional **
184 " STRESS TOTAL CAUCHY GLOBAL " : True , # ** Optional **
185 " STRESS TOTAL CAUCHY PRINCI " : True # ** Optional **
186 }
187 # ---
188 globals () . update (locals ()) # Allows main script to access all variables in function as globals
189 return

122

F Case B2 - User input

1 def functionOfUserInput (parametricValue) : # Input inside function allows for parametric study
2 # ---
3 # --------- CASE B2 --
4 # --
5

6 # ##4. CREATING PROJECT
7 Project . modelName = " RB2 "
8 Project . modelExtraInfo = " final "
9

10 Project . size_in_m = 1000
11

12 # -#4.1 Modelling choices
13

14 # ##5. CREATING THE GEOMETRY
15 # -#5.1 The beam
16 # '#5.1.1 Geometry :
17 beam = Beam () # creating beam object
18 beamGeometry = Geometry () # creating geometry object
19 beam . add_geometry (beamGeometry) # adding the geometry to the beam
20

21 beam . geometry . length = 5000 #[mm]
22 beam . geometry . height = 500 #[mm]
23 beam . geometry . width = 169 #[mm] # thickness
24

25 # -#5.2 Reinforcement
26 # '#5.2.1 Cover : #** Optional input **
27 cover = Cover () # creating cover object
28

29 # #** Option 2**: all sides have same cover :
30 cover . length = 33 #[mm]
31 cover . side = cover . top = cover . bot = cover . length
32

33 # '#5.2.2 User defined variables
34 diameterOfBars = 16# ** Optional **
35

36 # -#5.3 Longitudinal reinforcement
37 # '#5.3.1 Creation of longitudinal reinforcement
38 ## CREATE YOUR LONG . REINFO OBJECTS HERE
39 #
40 reinfo1 = Longitudinal_Reinfo (" Reinfo " , 2∗200 , 400 , 600 , 0 . 05)
41 reinfo1 . y_coord = cover . bot
42 reinfo1 . x_coord_start = cover . side
43 reinfo1 . x_coord_end = beam . geometry . length − cover . side
44

45 #
46 reinfo2 = Longitudinal_Reinfo (" Reinfo2 " , 2∗200 , 400 , 600 , 0 . 05)
47 reinfo2 . y_coord = cover . bot + diameterOfBars
48 reinfo2 . x_coord_start = cover . side
49 reinfo2 . x_coord_end = beam . geometry . length − cover . side
50

51 #
52 reinfo3 = Longitudinal_Reinfo (" Reinfo3 " , 2∗200 , 400 , 600 , 0 . 05)
53 reinfo3 . y_coord = beam . geometry . height − cover . top
54 reinfo3 . x_coord_start = cover . side
55 reinfo3 . x_coord_end = beam . geometry . length − cover . side
56

57 #
58 reinfo4 = Longitudinal_Reinfo (" Reinfo4 " , 2∗200 , 400 , 600 , 0 . 05)
59 reinfo4 . y_coord = beam . geometry . height − cover . top − diameterOfBars
60 reinfo4 . x_coord_start = cover . side
61 reinfo4 . x_coord_end = beam . geometry . length − cover . side
62

63 #
64 reinfo5 = Longitudinal_Reinfo (" Reinfo5 " , 2∗200 , 400 , 600 , 0 . 05)
65 reinfo5 . y_coord = beam . geometry . height − cover . top
66 reinfo5 . x_coord_start = 850
67 reinfo5 . x_coord_end = 1850
68

69 #
70 reinfo6 = Longitudinal_Reinfo (" Reinfo6 " , 2∗200 , 400 , 600 , 0 . 05)
71 reinfo6 . y_coord = beam . geometry . height − cover . top − diameterOfBars
72 reinfo6 . x_coord_start = 850

123

73 reinfo6 . x_coord_end = 1850
74

75 #
76 reinfo7 = Longitudinal_Reinfo (" Reinfo7 " , 2∗200 , 400 , 600 , 0 . 05)
77 reinfo7 . y_coord = cover . bot
78 reinfo7 . x_coord_start = 3150
79 reinfo7 . x_coord_end = 4150
80

81 #
82 reinfo8 = Longitudinal_Reinfo (" Reinfo8 " , 2∗200 , 400 , 600 , 0 . 05)
83 reinfo8 . y_coord = cover . bot + diameterOfBars
84 reinfo8 . x_coord_start = 3150
85 reinfo8 . x_coord_end = 4150
86

87 # -#5.4 Transverse reinforcement (shear)
88 # \\ No shear reinfo
89

90 # -#5.5 Plates
91 plateGeometry = Geometry () # creating geometry object for plates
92

93 plateGeometry . length = 76 #[mm]
94 plateGeometry . height = 25 #[mm]
95

96 # '#5.5.3 Option 3: Creation of individual plates
97 ## CREATE YOUR PLATE OBJECTS HERE (option 3)
98 sup_plate1= Plates ("S" , " Support plate 1" , 1350)
99 load_plate1= Plates ("L" , " Loading plate 1" , 200)

100 sup_plate2= Plates ("S" , " Support plate 2" , beam . geometry . length − 200)
101 load_plate2= Plates ("L" , " Loading plate 2" , 3650)
102 sup_plate2. fixedTranslation_x = False
103

104 # ##6. LOADS
105 # -#6.2 Option 2: Creation of individual loads
106 ## CREATE YOUR LOAD OBJECTS HERE (option 2)
107 load1 = Loads (" Point " , " Load 1" , −1000 , "Y")
108 load1 . target = load_plate1
109 load2 = Loads (" Point " , " Load 2" , −2000 , "Y")
110 load2 . target = load_plate2
111

112 # ##7. MATERIAL MODELS
113 # -#7.1 Concrete material model
114 concrete = Concrete (45)
115

116 # '#7.1.1 Concrete properties :
117 concrete . compressive_strength = 53 # ** Optional **
118 concrete . lateralCracking_reductionCurve_lowerBound = 0 . 6 # ** Optional **
119

120 # -#7.2 Steel plates material model
121 Steel_Plates . e_mod = 2000000
122 Steel_Plates . poissons_ratio = 0 . 3
123

124 # -#7.3 Reinforcement material model
125

126 # ##8. STRUCTURAL INTERFACES
127 ## The following properties can be changed :
128 Interface . Knn_tension = 3 . 63 e-08 # [N/ mm3] ** Optional **
129 Interface . Knn_compression = 3 . 63 e+04 # [N/ mm3] ** Optional **
130 Interface . Kt = 3 . 63 e-08 # [N/ mm3] ** Optional **
131

132 # ##9. MESH
133 Mesh . elementsize = 25 #[mm]
134

135 # ##10. ANALYSIS
136

137 # -#10.1 Linear Analysis
138 ## DIANA Primary output is chosen for the linear analysis .
139 LFEA = Analysis (" Linear analysis " , " Linear ") # creating linear static analysis
140

141 # '#10.1.1 RUN LINEAR ANALYSIS
142 LFEA . runSolver = True # ** Optional **
143

144 # -#10.2 Nonlinear Analysis
145 NLFEA = Analysis (" Nonlinear analysis 1" , " Nonlinear ") # creating nonlinear analysis
146

147 # '#10.2.1 Arch length control :

124

148 NLFEA . arcLengthControl = True # ** Default and strongly recommended as true **
149

150 # '#10.2.2 Load incrementation :
151 incrementation = Incrementation () # Creating an incrementation object
152 NLFEA . setIncrementalMethod (incrementation) # adding incremental method to the analysis
153

154 ## Option 1: Energy based adaptive loading
155 incrementation . method = " ENERGY "
156 incrementation . initial_step_size = 5 # initial size for the first step
157 incrementation . max_step_size = 10 # upper limit of yhe step size
158 incrementation . min_step_size = 0 . 5 # lower limit of the step size
159 incrementation . nrOfSteps = 130 # maximum number of steps
160

161 # '#10.2.3 Iteration method :
162 iteration = Iteration () # creating iteration object
163 NLFEA . setIterationMethod (iteration) # adding iterative procedure to the analysis
164

165 ## Option 1: Regular Newton - Raphson
166 iteration . method = " NEWTON - RAPHSON "
167 iteration . typeOfMethod = " REGULA "
168 iteration . nrOfIterations = 100
169

170 # '#10.2.4 Line search :
171 NLFEA . lineSearch = True # ** Default and recommended as true **
172

173 # '#10.2.5 Convergence criteria :
174 convergence = Convergence () # creating convergence object
175 NLFEA . setConvergence (convergence) # adding convergence criteria to the analysis
176

177 convergence . useForceNorm = True # ** Default and recommended as true **
178 convergence . useEnergyNorm = True # ** Default and recommended as true **
179 convergence . useDispNorm = False # ** Default and recommended as false **
180

181

182 ## Option 1: Suggested tolerances
183 ## Force norm :
184 convergence . forceNorm = 0 . 01
185 convergence . forceNorm_deadLoad = 0 . 05
186 ## Energy norm :
187 convergence . energyNorm = 0 . 001
188 convergence . energyNorm_deadLoad = 0 . 01
189

190 # '#10.2.6 Additional choices for analysis
191 NLFEA . allConvergenceNormsHaveToBeSatisfied = False # ** Default and recommended as false **
192 NLFEA . continueIfNoConvergence = True # ** Default and recommended as true **
193

194 # '#10.2.7 RUN NONLINEAR ANALYSIS
195 NLFEA . runSolver = True # ** optional **
196

197 # ##11. OUTPUTS FROM NONLINEAR ANALYSIS
198 # -#11.1 Analysis output :
199 NLFEA . output = {
200 " DISPLA TOTAL TRANSL GLOBAL " : True , # ** Optional **
201 " FORCE REACTI TRANSL GLOBAL " : True , # ** Optional **
202 " STRAIN TOTAL GREEN GLOBAL " : True , # ** Optional **
203 " STRAIN TOTAL GREEN PRINCI " : True , # ** Optional **
204 " STRAIN CRKWDT GREEN GLOBAL " : True , # ** Optional **
205 " STRAIN CRACK GREEN " : True , # ** Optional **
206 " STRAIN CRKWDT GREEN PRINCI " : True , # ** Optional **
207 " STRESS TOTAL CAUCHY GLOBAL " : True , # ** Optional **
208 " STRESS TOTAL CAUCHY PRINCI " : True # ** Optional **
209 }
210

211 # -#11.2 Load - displacement graph (displacement in y - dir) ** Optional **
212 ## Specify the coordinates of the point at where the displacement will be retrived .
213 LoadDispY_Graph . x_coord = load_plate1. x_coord #[mm]
214 LoadDispY_Graph . y_coord = beam . geometry . height + plateGeometry . height #[mm]
215

216 ## The following options can be changed :
217 LoadDispY_Graph . xlabel = " Deflection (mm)"# ** optional **
218 LoadDispY_Graph . ylabel = " Load (kN)"# ** optional **
219 LoadDispY_Graph . xLim = [0 , 1 . 5] # ** optional **
220 LoadDispY_Graph . yLim = [0 , 120] # ** optional **
221

222 # -#11.3 Load - displacement CSV (displacement in y - dir)** Optional **

125

223 ## Specify the coordinates of the point for which the CSV - file will be generated :
224 LoadDispY_CSV . x_coord = load_plate1. x_coord #[mm]
225 LoadDispY_CSV . y_coord = beam . geometry . height + plateGeometry . height #[mm]
226

227 # ---
228 globals () . update (locals ()) # Allows main script to access all variables in function as globals
229 return

126

G Parametric study - User input

1 def functionOfUserInput (parametricValue) : # Input inside function allows for parametric study
2 # ---
3 # --------- PARAMETRUC STUDY OF BEAM LENGTH --
4 # --
5

6 # ##4. CREATING PROJECT
7 Project . modelName = " Parametric "
8 Project . modelExtraInfo = " final "
9

10 Project . size_in_m = 1000
11

12 # -#4.1 Modelling choices
13 Options . symmetric_Beam = True # ** Optional ** , default is False
14

15 # ##5. CREATING THE GEOMETRY
16 # -#5.1 The beam
17 # '#5.1.1 Geometry :
18 beam = Beam () # creating beam object
19 beamGeometry = Geometry () # creating geometry object
20 beam . add_geometry (beamGeometry) # adding the geometry to the beam
21

22 beam . geometry . length = parametricValue #[mm]
23 beam . geometry . height = 400 #[mm]
24 beam . geometry . width = 250 #[mm] # thickness
25

26 # -#5.2 Reinforcement
27 # '#5.2.1 Cover : #** Optional input **
28 cover = Cover () # creating cover object
29

30 # #** Option 2**: all sides have same cover :
31 cover . length = 35 #[mm]
32 cover . side = cover . top = cover . bot = cover . length
33

34 # '#5.2.2 User defined variables
35 # \\ X_coordinate of first stirrup :
36 # \\ Parameter to maintain the symmetry plane at midpoint for stirrups as well :
37 a = beam . geometry . length /2
38 firstPOS = a − floor (a/240)∗ 240 # \\ added by user
39

40 # -#5.3 Longitudinal reinforcement
41 # '#5.3.1 Creation of longitudinal reinforcement
42 ## CREATE YOUR LONG . REINFO OBJECTS HERE
43

44 reinfo2 = Longitudinal_Reinfo (" Lower " , 942 , 500 , 540 , 0 . 05) # \\ 3 kam20 using f_yk , f_uk and ep_uk
45 reinfo2 . y_coord = cover . bot
46 reinfo2 . x_coord_start = cover . side
47 # reinfo2 . x_coord_end = beam . geometry . length - cover . side #** Input needed if beam is not symmetric **
48

49 # -#5.4 Transverse reinforcement (shear)
50 # '#5.4.1 Creation of transverse reinforcement
51 ## CREATE YOUR TRANS . REINFO OBJECT HERE
52 shear_reinfo = Transverse_Reinfo (" Shear_reinfo " , 25 . 7 , 600 , 651 , 4 . 70 E-2 , 220000)
53 shear_reinfo . y_coord_bot = cover . bot
54 shear_reinfo . y_coord_top = beam . geometry . height − cover . top
55

56 # '#5.4.2 Spacing / positions of transverse reinforcement :
57 ## CREATE YOUR SECTION OBJECTS HERE
58 section = Section (240 , firstPOS , (beam . geometry . length − cover . side))
59

60 # -#5.5 Plates
61 plateGeometry = Geometry () # creating geometry object for plates
62

63 plateGeometry . length = 150 #[mm]
64 plateGeometry . height = 35 #[mm]
65

66 # '#5.5.1 Option 1: using template for 3- point bending
67 Options . template_3PointBending = True
68 beam . geometry . lengthOfSpan = beam . geometry . length − 200#[mm]
69

70 # ##6. LOADS
71 # -#6.1 Option 1: using template for 3- or 4- point bending
72 ## Both loads are assumed to have same value for 4- point bending . Only one has to be defined .

127

73 load = Loads (" Point " , " Load " , −1000 , "Y")
74

75 # ##7. MATERIAL MODELS
76 # -#7.1 Concrete material model
77 concrete = Concrete (30)
78

79 # -#7.2 Steel plates material model
80 Steel_Plates . e_mod = 2000000
81 Steel_Plates . poissons_ratio = 0 . 3
82

83 # ##9. MESH
84 Mesh . elementsize = 25 #[mm]
85

86 # ##10. ANALYSIS
87

88 # -#10.1 Linear Analysis
89 ## DIANA Primary output is chosen for the linear analysis .
90 LFEA = Analysis (" Linear analysis " , " Linear ") # creating linear static analysis
91

92 # '#10.1.1 RUN LINEAR ANALYSIS
93 # LFEA . runSolver = True #** Optional **
94

95 # -#10.2 Nonlinear Analysis
96 NLFEA = Analysis (" Nonlinear analysis " , " Nonlinear ") # creating nonlinear analysis
97

98 # '#10.2.1 Arc length control :
99 NLFEA . arcLengthControl = True # ** Default and strongly recommended as true **

100

101 # '#10.2.2 Load incrementation :
102 incrementation = Incrementation () # Creating an incrementation object
103 NLFEA . setIncrementalMethod (incrementation) # adding incremental method to the analysis
104

105 ## Option 1: Energy based adaptive loading
106 incrementation . method = " ENERGY "
107 incrementation . initial_step_size = 5 # initial size for the first step
108 incrementation . max_step_size = 10 # upper limit of the step size
109 incrementation . min_step_size = 3 # lower limit of the step size
110 incrementation . nrOfSteps = 100 # maximum number of steps
111

112 # '#10.2.3 Iteration method :
113 iteration = Iteration () # creating iteration object
114 NLFEA . setIterationMethod (iteration) # adding iterative procedure to the analysis
115

116 ## Option 1: Regular Newton - Raphson
117 iteration . method = " NEWTON - RAPHSON "
118 iteration . typeOfMethod = " REGULA "
119 iteration . nrOfIterations = 100
120

121 # '#10.2.4 Line search :
122 NLFEA . lineSearch = True # ** Default and recommended as true **
123

124 # '#10.2.5 Convergence criteria :
125 convergence = Convergence () # creating convergence object
126 NLFEA . setConvergence (convergence) # adding convergence criteria to the analysis
127

128 convergence . useForceNorm = True # ** Default and recommended as true **
129 convergence . useEnergyNorm = True # ** Default and recommended as true **
130 convergence . useDispNorm = False # ** Default and recommended as false **
131

132

133 ## Option 1: Suggested tolerances
134 ## Force norm :
135 convergence . forceNorm = 0 . 01
136 convergence . forceNorm_deadLoad = 0 . 05
137 ## Energy norm :
138 convergence . energyNorm = 0 . 001
139 convergence . energyNorm_deadLoad = 0 . 01
140

141 # '#10.2.6 Additional choices for analysis
142 NLFEA . allConvergenceNormsHaveToBeSatisfied = False # ** Default and recommended as false **
143 NLFEA . continueIfNoConvergence = True # ** Default and recommended as true **
144

145 # '#10.2.7 RUN NONLINEAR ANALYSIS
146 NLFEA . runSolver = True # ** optional **
147

128

148 # ##11. OUTPUTS FROM NONLINEAR ANALYSIS
149

150 # -#11.1 Analysis output :
151 NLFEA . output = {
152 " DISPLA TOTAL TRANSL GLOBAL " : True , # ** Optional **
153 " FORCE REACTI TRANSL GLOBAL " : True , # ** Optional **
154 " STRAIN TOTAL GREEN GLOBAL " : True , # ** Optional **
155 " STRAIN TOTAL GREEN PRINCI " : True , # ** Optional **
156 " STRAIN CRKWDT GREEN GLOBAL " : True , # ** Optional **
157 " STRAIN CRACK GREEN " : True , # ** Optional **
158 " STRAIN CRKWDT GREEN PRINCI " : True , # ** Optional **
159 " STRESS TOTAL CAUCHY GLOBAL " : True , # ** Optional **
160 " STRESS TOTAL CAUCHY PRINCI " : True # ** Optional **
161 }
162

163 # -#11.2 Load - displacement graph (displacement in y - dir) ** Optional **
164 # Specify the coordinates of the point where the displacement will be retrived .
165 LoadDispY_Graph . x_coord = beam . geometry . length /2 #[mm]
166 LoadDispY_Graph . y_coord = 0 #[mm]
167

168 ## The following options can be changed :
169 Scalefactor . loadFactor_plot = 2# ** optional **
170 LoadDispY_Graph . ylabel = " Load [kN]"# ** optional **
171

172 # -#11.3 Load - displacement CSV (displacement in y - dir)** Optional **
173 ## Specify the coordinates of the point for which the CSV - file will be generated :
174 LoadDispY_CSV . x_coord = beam . geometry . length /2 #[mm]
175 LoadDispY_CSV . y_coord = 0 #[mm]
176

177 # The following options can be changed :
178 Scalefactor . loadFactor_CSV = 2 # ** optional *
179

180 # --
181 globals () . update (locals ()) # Allows main script to access all variables in function as globals
182 return

129

H Parametric study - Script B

1 def parametricStudy (valuesList) :
2 for val in valuesList :
3 wd = sys . path [0] # Working directory of main . py
4 exec (open (wd+" \\ C_classesAndFunctions . py ") . read () , globals ())
5 LoadDispY_Graph . parametric = val
6 LoadDispY_CSV . parametric = val
7 exec (open (wd+" \\ A_UserInput . py ") . read () , globals ())
8 functionOfUserInput (val)
9 parametric_Study = True

10 if not hasattr (Project , ' name ') :
11 Project . name = Project . modelName + "_" + date + "_" + Project . modelExtraInfo + "_" + str (val)
12 else :
13 Project . name = Project . name + "_" + str (val)
14 exec (open (wd+" \\ D_main . py ") . read ())
15 return locals ()
16

17 ## INPUT LIST OF PARAMETRIC VALUES HERE :
18 parametricStudy ([3000 , 4000 , 5000 , 6000])

130

I Parametric study - Analytical analysis

The critical value of resistance moment is evaluated with sectional analysis by assuming:

– plane sections remain plane,

– the strain in bonded reinforcement is the same as that in the surrounding concrete,

– the tensile strength of the concrete is ignored,

– the stresses in the concrete in compression are derived a parabola-rectangle relation,

– the stresses in the reinforcing steel are derived from the design curve in Figure 3.9,

– since the material properties have no uncertainties, the partial safety factors are set to γ = 1,

– the factor λ = 0.8 and η = 1.

The design bending moment resistance is calculated below. For further explanations of the following
equations, please refer to [29].

Figure 1: Stress block for determination of the design moment resistance [29]

Design strength:

fcd “ αcc
fck
γc

“ 0.85 ¨
30

1
“ 25.5 MPa (1)

fyd “
fyk
γs

“
500

1
“ 500 MPa (2)

Yielding strain of longitudinal reinforcement:

εyd “
fyd
Es

“
500

200000
“ 0.0025 (3)

Determining Balanced section [29]:

αb “
εcu

εcu ` εyd
“

0.0035

0.0035 ` 0.0025
“ 0.583 (4)

As,b “ λ ¨ η ¨
fcd
fyd

¨ b ¨ d ¨ αb “ 0.8 ¨
25.5

500
¨ 250 ¨ 365 ¨ 0.583 “ 2172 mm2 (5)

As “ 3 ¨ 314 “ 942 mm2 ă As,b (6)

The section is underreinforced, which gives:

α “
fydAs

ληfcdbd
“

500 ¨ 942

0, 8 ¨ 25.5 ¨ 250 ¨ 365
“ 0.253 (7)

131

Control of reinforcement strain:

εs “
1 ´ α

α
¨ εcu “

1 ´ 0.253

0.253
¨ 0.0035 “ 0.0103 ÝÑ steel yields (8)

εs ă εud

Design value of moment resistance [29]:

MRd “ ληαp1 ´ 0.5λαqfcdbd
2 “ 0.8 ¨ 0.253 ¨ p1 ´ 0.4 ¨ 0.253q ¨ 25.5 ¨ 250 ¨ 3652 “ 155kNm (9)

Critical load (dead weight is ignored) [21]:

P “
4M

L
(10)

The critical values of the point load for the different beam lengths are given in Table 1, and will be compared to the results
of the NLFEA in Section 13.4.

Table 1: Critical loads

L [m] P [kN]
3 206
4 129
5 103
6 86

132

Python/D
IAN

A fram
ew

ork for robust N
LFEA of RC beam

s
Katja H

ansen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f S

tr
uc

tu
ra

l E
ng

in
ee

rin
g

Katja Hansen

Python/DIANA framework for
robust nonlinear analysis of
reinforced concrete beams

Master’s thesis in Civil and Environmental Engineering
Supervisor: Daniel Cantero
June 2022

M
as

te
r’s

 th
es

is

	Summary form master thesis (English).pdf
	Master_thesis_signert.pdf
	Preface
	Abstract
	Sammendrag
	Abbreviations
	Introduction
	Background
	Method
	Previous work
	Thesis outline

	I Theory and recommendations
	Nonlinear finite element analysis
	Finite element analysis
	Nonlinear finite element analysis
	Solution procedure
	Iterative solution method
	Newton-Raphson
	Line Search

	Incremental procedure
	Arc-length method
	Adaptive load incrementation

	Convergence criteria
	Nonconvergence

	Finite element discretization
	Finite elements for concrete
	Finite elements for reinforcement

	Modelling of reinforced concrete
	Constitutive model for concrete
	Crack modelling
	Crack bandwidth for smeared cracking

	Total Strain Based Cracking
	Fixed and rotating crack models
	Poisson effect and shear behaviour
	Tensile behaviour
	Fracture energy

	Compressive behaviour
	Lateral influence on compression

	Constitutive model for reinforcement
	Hardening

	Concrete-reinforcement interaction

	II Modelling in DIANA and Python
	General information
	Modelling in DIANA
	DIANA workflow
	Importing Python modules in DIANA
	Structural interfaces
	Load step execution

	Modelling in Python
	Object-oriented programming in Python
	List of objects

	III The Beam Script
	General information
	Units
	Coordinate system
	Input parameters
	Symmetry
	Templates
	Templates for bending tests
	Parametric study

	Script A: User input
	Creating the project
	Creating the geometry
	Beam
	Reinforcement
	Cover
	Longitudinal reinforcement
	Transverse reinforcement

	Plates

	Loads
	Material models
	Concrete
	Reinforcement steel
	Steel for plates

	Structural interfaces
	Mesh
	Analyses
	Linear analysis
	Nonlinear analysis

	Output from nonlinear analysis
	DIANA output
	Additional output

	IV Experiments to benchmark the script
	General information
	Case B1: Vecchio & Shim (2004)
	Experimental setup and results
	Geometry and loading
	Material properties
	Experimental results

	Finite element model
	Geometry and loading
	Material properties
	Mesh

	Structural nonlinear analysis
	Results of nonlinear finite element analysis
	Load deflection
	Cracking
	Crushing
	Yielding of reinforcement
	Stress-strain curves of concrete
	Convergence behaviour

	Discussion

	Case B2: Collins and Kuchma (1999)
	Experimental setup and results
	Geometry and loading
	Material properties
	Experimental results

	Finite element model
	Geometry and loading
	Material properties
	Mesh

	Structural nonlinear analysis
	Results of nonlinear finite element analysis
	Load deflection
	Cracking
	Minimum principal stress
	Reinforcement stresses
	Convergence behaviour

	Discussion

	V Parametric study
	General information
	Parametric study on beam length
	The beam
	Geometry and loading
	Material properties

	Finite element model
	Nonlinear finite element analysis
	Results of parametric study
	Discussion of parametric results

	Conclusions and recommendations
	Conclusions
	Recommendations for future work

	Bibliography
	Appendix
	User input
	Parameric Study
	Classes and Functions
	Main
	Case B1 - User input
	Case B2 - User input
	Parametric study - User input
	Parametric study - Script B
	Parametric study - Analytical analysis

