
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f S

tr
uc

tu
ra

l E
ng

in
ee

rin
g

Kevin Berget
Martine Grahl-Nielsen

Developing a Python program to
design concrete elements using the
strut and tie model

Master’s thesis in Civil and Enviromental Engineering
Supervisor: Daniel Cantero
June 2022

M
as

te
r’s

 th
es

is

Kevin Berget
Martine Grahl-Nielsen

Developing a Python program to
design concrete elements using the
strut and tie model

Master’s thesis in Civil and Enviromental Engineering
Supervisor: Daniel Cantero
June 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Structural Engineering

Department of Structural Engineering
Faculty of Engineering

NTNU − Norwegian University of Science and Technology

MASTER THESIS 2022

SUBJECT AREA:

Concrete Structures

DATE:

June 10th, 2022

NO. OF PAGES:

73 + 33

TITLE:

Developing a Python program to design concrete elements using the strut
and tie model

 Utvikling av et Python program for å designe betongelementer ved bruk av

stavmodellen

BY:

Kevin Berget
Martine Grahl-Nielsen

RESPONSIBLE TEACHER: Daniel Cantero, NTNU

SUPERVISOR(S): Daniel Cantero, NTNU

CARRIED OUT AT: Department of Structural Engeneering

SUMMARY:
The strut and tie model (STM) is a method for designing concrete structures and is a valuable tool in regions
where the use of standard beam theory is insufficient. STM uses the flow of forces through a structure to
create an imaginary truss system and do design checks on this system. However simple using STM can be
time-consuming. Therefore, this thesis has created a Python program to calculate and do necessary design
checks of strut and tie models. The Python program is developed to make it easy to establish and check a
given strut and tie model, using the design rules of Eurocode 2.

Some examples have been established to showcase that the calculation in the program is correct compared
to hand-calculated problems. Using the program instead of hand calculation makes the calculation more
efficient and with less chance of consequential error. The program also allows changing the STM fast and
effectively to calculate many different STMs or iterate with minor changes on an existing one.
This thesis has also developed a graphical user interface (GUI) with the program as a base. The GUI will
make the program more accessible for more people to establish and check strut and tie models.

Lastly, a small study has been conducted using the program. This study investigates simply supported deep
beams with point loads and tries to optimize the STM. The result of this study shows that fewer vertical ties in
the STM lead to less strain energy and thus “better” STMs, given that the design checks are okay.

Here is the link to the online online repository of the developed program:
https://gitlab.stud.idi.ntnu.no/martgrah/stm

ACCESSIBILITY

Open

https://gitlab.stud.idi.ntnu.no/martgrah/stm

v

Abstract
The strut and tie model (STM) is a method for designing concrete structures and is a valuable

tool in regions where the use of standard beam theory is insufficient. STM uses the flow of

forces through a structure to create an imaginary truss system and do design checks on this

system. However simple using STM can be time-consuming. Therefore, this thesis has created

a Python program to calculate and do necessary design checks of strut and tie models. The

Python program is developed to make it easy to establish and check a given strut and tie

model, using the design rules of Eurocode 2.

Some examples have been established to showcase that the calculation in the program is

correct compared to hand-calculated problems. Using the program instead of hand calculation

makes the calculation more efficient and with less chance of consequential error. The program

also allows changing the STM fast and effectively to calculate many different STMs or iterate

with minor changes on an existing one.

This thesis has also developed a graphical user interface (GUI) with the program as a base.

The GUI will make the program more accessible for more people to establish and check strut

and tie models.

Lastly, a small study has been conducted using the program. This study investigates simply

supported deep beams with point loads and tries to optimize the STM. The result of this study

shows that fewer vertical ties in the STM lead to less strain energy and thus “better” STMs,

given that the design checks are okay.

Here is the link to the online repository of the developed program:

https://gitlab.stud.idi.ntnu.no/martgrah/stm

https://gitlab.stud.idi.ntnu.no/martgrah/stm

vi

vii

Sammendrag
Stavmodellen er en metode for å designe betongkonstruksjoner, og er et verdifullt redskap i

områder hvor det ikke er mulig å benytte vanlig bjelketeori. Metoden bruker fordelingen av

krefter gjennom konstruksjonen for å danne et imaginært fagverkssystem, for så å gjøre

kapasitetskontroller av disse. Til tross for stavmodellens enkelhet, kan den være ganske

tidkrevende å bruke. Derfor har det i dette prosjektet blitt laget et Python-program for å

beregne og gjennomføre nødvendige kapasitetskontroller av stavmodellen. Python-

programmet er laget for å gjøre det enkelt å etablere og sjekke enhver stavmodell med

utgangspunkt i reglegene fra Eurokode 2.

Det har blitt laget noen eksempler for å vise at beregningene fra programmet samsvarer med

håndberegninger. Ved bruk av programmet fremfor håndberegninger, blir utførelse av

beregninger mer effektivt i tillegg til en lavere sjanse for følgefeil. Programmet gir også

muligheten til å endre på stavmodellen raskt og enkelt, for å kunne regne mange forskjellige

stavmodeller eller iterer eksisterende stavmodeller med små forandringer.

Det har også blitt utviklet et brukergrensesnitt til programmet. Dette brukergrensesnittet vil

gjøre programmet mer tilgjengelig.

Til slutt har det blitt gjennomført en liten studie ved bruk av programmet. Denne studien

undersøker fritt opplagte dype bjelker med punktlast for å prøve å finne den optimale

stavmodellen. Resultatene herfra viser at færre vertikale strekkstaver i stavmodellen fører til

mindre tøyningsenergi, og dermed en «bedre» stavmodell, gitt at kapasiteten er ok.

Her er lenken til oppbevaringsstedet til Python programmet:

https://gitlab.stud.idi.ntnu.no/martgrah/stm

https://gitlab.stud.idi.ntnu.no/martgrah/stm

viii

ix

Preface
This master’s thesis is the final part of a master’s degree in Civil and Environmental

Engineering, written for the Department of Structural Engineering at the Norwegian University

of Science and Technology (NTNU), Trondheim. The thesis was written over 20 weeks during

the spring semester of 2022.

This thesis was chosen because of our interest in using coding to simplify calculations and

methods used in structural engineering. Strut and tie modeling lends itself to being a prime

candidate for developing a program around. In combination with relatively scarce information

about strut and tie and the absence of a freely available program to design strut and tie, the

choice fell on this part of concrete design.

In this thesis, we have learned a lot about strut and tie modeling and its design process and

improved our skills in using Python and creating a program. Developing the program has been

exciting and challenging.

We want to thank our supervisor Daniel Cantero, who presented this exciting topic and helped

us to the best of his abilities.

Trondheim, June 10th, 2022

Kevin Berget

Martine Grahl-Nielsen

x

xi

Table of content
1 Introduction ... 1

1.1 Background ... 1

1.2 Purpose of the thesis .. 1

1.3 Existing programs .. 1

1.4 Report Outline... 2

2 Strut and tie model ... 3

2.1 General .. 3

2.2 Separate B- and D-regions .. 4

2.3 Develop the strut and tie model ... 6

2.4 Design the members ... 7

2.5 Minimize the strain ... 13

3 Software and Tools ... 14

3.1 General .. 14

3.2 Python ... 14

3.3 Spyder ... 14

3.4 Git .. 15

4 The program .. 16

4.1 General .. 16

4.2 Class setup .. 16

4.3 Node .. 17

4.4 Element ... 19

4.5 System ... 20

4.6 ElementForce .. 23

4.7 Checks ... 27

4.8 Plot .. 29

4.9 Outputs ... 30

5 User manual .. 31

5.1 General .. 31

5.2 Downloading the repository ... 31

5.3 Python script ... 32

5.4 Graphical user interface .. 37

6 Examples ... 42

xii

6.1 General .. 42

6.2 Example 1: two-pile cap .. 42

6.3 Example 2: deep beam .. 46

6.4 Example 3: Deep beam with large openings and recess... 49

7 Study .. 55

7.1 General .. 55

7.2 Study one: Symmetrical deep beam ... 56

7.3 Study two: Deep beam with non-centered point load ... 59

7.4 Discussion of the studies ... 63

7.5 Conclusion of the studies .. 63

8 Discussion ... 64

8.1 General .. 64

8.2 The process ... 64

8.3 Limitation .. 65

8.4 Examples ... 66

8.5 Study ... 66

8.6 Using the program .. 67

9 Conclusion ... 68

10 Future Work ... 69

References .. 70

Appendix ... 73

xiii

1

1 Introduction

1.1 Background

Strut and tie model/modeling (STM) is a method for designing complex concrete structures.

It can be used in all concrete structures but is most effective where standard beam theory is

inadequate. Strut and tie modeling is a simple but powerful method to design these regions,

called D-regions. D-regions would generally need lots of advanced calculations to be designed.

In contrast, STM can be done with hand calculations and a fraction of the calculations.

Even though the calculations are simple, there are a few drawbacks to using strut and tie

modeling as a design tool. One of them is that the number of calculations rapidly increases in

STMs with more than a couple of trusses, resulting in a long calculation process. Another

drawback is that if the design fails in just one of the design checks, the whole STM fails, and

a redesign is needed. Most of the calculations must be redone for each redesign, which adds

a lot of time and resources. Lastly, since there are many ways of constructing an STM, some

solutions may be better than others. So, iterations are needed to design a suitable structure

using STM. Each iteration needs to go through all the previous steps in the design to get a

satisfactory result. So, even though STM is a simple and effective method for concrete design,

the complete procedure of an optimal design can take a long time and use many resources.

1.2 Purpose of the thesis

This thesis work aims to develop a Python program to calculate and control the capacity of

any given strut and tie model. This program will help overcome the time- and resource-

consuming part of strut and tie modeling. The benefits of the Python program are quickly

checking if a given STM is okay and quickly changing the values of the STM to iterate and find

the optimal solution. Later in the thesis, a small study will be completed using the developed

program. This study is meant to learn something about the strut and tie model and its

behavior and showcase some potential program uses.

1.3 Existing programs

During research for this thesis, papers and studies that had used software to calculate STM

emerged. The programs used in these studies seemed more advanced than those developed

in this project. However, these programs have been used to study and analyze different

aspects of STM, and the programs were just tools for these analyses. Thus, these programs

are not publicly available or even discussed in detail. The program developed in this thesis is

meant to be a helping tool in the design process of STM and will be made publicly available.

A commercially available program for doing design with the strut and tie model, AStrutTie,

was found during research for this thesis. However, this program being a commercial tool is

quite expensive. Given that the nature of this thesis was to develop a freely available program,

this program is not seen as a contender in the same market.

2

1.4 Report Outline

Section 1 is the introduction to the thesis. This section presents some background

information and the purpose of the thesis.

Section 2 presents the theory of the strut and tie model. It will present how to establish an

STM and go through all the necessary design checks and rules.

Section 3 will present the software and tools used to develop the program.

Section 4 will present the program. It will go through the classes, how they work and are

built, and explain the code and workflow of the program.

Section 5 will present a user manual explaining one way of using the code. It also explains

how to use the graphical user interface.

Section 6 will present some strut and tie examples. It will compare the results of

precalculated examples with the results from the program.

Section 7 will present a short study using the program and trying to optimize some STMs

for deep beams.

Section 8 presents the discussion. It outlines the process of developing the program, its

limitations, and some additional comments on the examples and study.

Section 9 presents a conclusion of the whole thesis

Section 10 presents some suggestions for future work on this topic

3

2 Strut and tie model

2.1 General

Strut and tie modeling is an effective method for doing design checks on complicated concrete

structures/elements. Instead of doing design checks for the entire element, STM focuses on

the stress patterns in the element and designs according to them. The stress pattern is usually

represented by an imaginary triangular truss pattern, where the compression trusses

represent the concrete strut, and the tension trusses represent the steel reinforcement ties.

STM can be applied in almost any concrete element design, in both serviceability limit state

and ultimate limit state, even though it is most common in ultimate limit state design.

However, STM is especially useful in zones or regions where it is impossible to use “normal”

beam theory, so-called D-regions (Tae, 2021). Structures where plane sections remain plane

cannot be designed using “normal” beam theory. Other calculations are required in these

cases; this is where STM comes in.

The goal of STM is to determine the flow of the internal forces in the structure to perform the

design checks in the critical areas of the element. An STM consists of nodes, ties, and struts.

The struts and ties should follow the stress patterns in the element, and the nodes are the

interfacial zones between struts and ties. It is necessary to do design checks on each of these

components. An example of an STM is illustrated in Figure 1.

The strut and tie model is based on the lower bound theorem of limit analysis. The lower

bound theorem states that if equilibrium can be found that balances the applied loads and is

everywhere below or at the plastic moment value, the structure will not collapse or be at the

point of collapse. In other words, the lower bound theorem ensures the strut and tie model is

safe and conservative as long as the equilibrium and yield criteria are satisfied. The collapse

load itself is the most significant load value to come out of an STM. The lower bound theorem

is especially useful in tension-weak materials like concrete. (Chen & El-Metwally, 2017). This

gives that if the STM is reasonably well designed and passes all the design checks, the result

will be on the safe side of collapse.

4

Figure 1: Example of a strut and tie model

There are several steps to follow when designing an STM. Later sections will discuss the design

steps for the STM in more detail. The process for designing a strut and tie model is as follows:

1. Separate B- and D-regions, see section 2.2

2. Develop the STM, see section 2.3

3. Design the members of the STM, see section 2.4

4. Minimize the strain energy by optimizing the model, see section 2.5

2.2 Separate B- and D-regions

There are two different types of regions in a concrete structure. These regions are called B-

and D-regions. In B-regions, also called Bernoulli regions, the strains are linear, making it

possible to use existing methods for design checks and calculating required reinforcement. At

D-regions, also called discontinuity or distribution regions, the strains are non-linear.

Therefore, it is impossible to use the standard design rules for D-regions. Even though the

strut and tie model can be used in both B- and D-regions, it is most useful in D-regions.

Hence, D-regions will be the primary goal of this thesis.

There are often multiple D-regions in a structure. D-regions are where there is a discontinuity

in the geometry or the load on a structure. Examples of D-regions are, among others, deep

beams, frame corners, dapped ends, corbels, or structures with holes. Examples of D-regions

with geometry disturbances are shown in Figure 2, and load disturbances are shown in Figure

3.

5

Figure 2 Examples of geometry D-regions. (Goodchild et al., 2014)

Figure 3 Examples of load and/or geometry D-regions, marked with grey. (Goodchild et al.,

2014)

6

2.3 Develop the strut and tie model

The process of developing an STM is as follows:

1. Find the load paths in a structure

2. Choose the position of the struts, ties, and nodes

3. Optimizing the Solution

When creating an STM, it is essential to remember that the model should allow for sufficient

cover over the reinforcement. In figures of strut and tie models, struts are represented by

dashed lines, fully drawn lines represent ties, and dots represent the nodes.

The first step in developing an STM is determining the flow of forces through the structure.

There are many ways to do this. Experience and common sense are one way (Tae, 2022). For

example, in a simply supported deep beam with a central point load, it is simple to find the

load path. In this case, the load-path will follow a triangular shape with compression in the

diagonals and tension parallel to the structure in the lower section, like the example shown

in Figure 1. Finite element analysis (FEA) is another way of determining the flow of forces in

the structure. FEA uses numerical mathematical models to find the direction and magnitude

of forces in elements or structures (English, 2019). FEA can be helpful in more complex

concrete structures and load cases, as these can give more reliable results than human

experience.

After determining the load paths, the next step is to place the struts and ties. Struts should

be placed where there is compression and ties where there is tension. Struts can be placed

wherever in a structure but should be placed where there is compression. Ties should be

placed where there is tension in the structure. However, where struts are “imaginary” and

represent concrete, ties represent the reinforcement in the structure. Hence, orienting the

ties parallel or perpendicular to the element’s surface is common. This placement of the ties

is done to help ease the structure’s construction, and dealing with angles in construction is

laborious and a source of errors, but not impossible. Some other rules are implemented in

the STM setup to avoid strain incompatibilities, like that the minimum angle between a strut

and a tie meeting at a node should not be less than 35 degrees (Goodchild et al., 2015).

There are often several ways to create an STM. Figure 4 shows an example of one structure

with several STM solutions. So, the last step to developing an STM is to decide the “best”

solution. The total strain energy typically chooses the “best” strut and tie model. The STM

with less strain energy results in a “better” STM and will be explained more in-depth in section

2.5.

7

Figure 4: Example of possible valid strut and tie models for the same load case (Walter, 2017)

2.4 Design the members

2.4.1 General

When the STMs geometry is defined, the next step is to design the components. The

components refer to the STMs struts, ties, and nodes. Some parameters must be established

before the design checks. Some of them are stated, and others are calculated.

The parameters that need to be given before the design checks are:

- The concrete class

- The breadth of the concrete element

- The distance from the surface of the structure to the center of the tie

- External forces on the element

- The placement of the strut, ties, and nodes in the STM

From the given parameters, trigonometry and equilibrium equations can quickly determine

the angles and forces in the STM. As for the dimensions of the trusses, it is a bit more

complicated. The breadth of the trusses is the same as the breadth of the concrete element,

but node geometry determines the width of the trusses.

This section will go through the design of each of the members in the STM: nodes, struts, and

ties. The design checks will be done according to the checks in Eurocode 2.

8

2.4.2 Nodes

2.4.2.1 General

There are two ways to categorize nodes: smeared and concentrated nodes. Within large STMs

with many nodes, smeared nodes are the most common. In these nodes, the concrete stress

is usually not critical and, therefore, usually not checked.

Concentrated nodes are usually highly stressed and need to be carefully designed. According

to EC2 6.5.4(3), concentrated nodes may develop where point loads are applied, at supports,

in anchorage zones of prestressed tendons, and at bends in reinforcements, connections, and

corners of members.

There are three types of concentrated nodes. Compression node without ties (CCC).

Compression tension node with reinforcement in one direction (CCT). Compression tension

node with reinforcement in two directions (CTT). A CCC-node is shown in Figure 5, CCT-node

in Figure 6, and CTT-node is in Figure 7.

Figure 5 CCC-node from Eurocode 2

Figure 6 CCT-node, from Eurocode 2

9

Figure 7 CTT-node, from Eurocode 2

2.4.2.2 Geometry of the node

The support length and the width of the ties determine the geometry of CCT-nodes at the

supports. The support length is a given value, and the width of the ties (u) is usually double

the distance between the concrete surface and the reinforcement's center. With these two

values, see Figure 8, the width of the strut can be found by the formula:

𝑎2 = 𝑎1 sin 𝜃 + 𝑢 cos 𝜃

(1)

Figure 8: Example of a CCT-node (Goodchild et al., 2015)

For a CCC-node below a load, the length of the load is defined. However, the height of the

node is not known. If it is a horizontal strut, as shown in Figure 9, the node’s height is the

same as the width of the horizontal strut. There are no rules to establish this width (Colorito

et al., 2017). There are many ways of calculating this width. However, they are pretty tricky

to calculate and have varying degrees of accuracy (Todisco, 2009). Thus, for simplicity’s sake,

10

this thesis assumes the width of the flat strut to be the same as for the tie (u). A similar

method to the CCT-node is used to get the dimensions of the diagonal strut, and the formula

becomes:

𝑎2 = 𝑎1 sin 𝜃 + 𝑢 cos 𝜃

(2)

Figure 9: Geometry of a CCC-node with a flat strut (Colorito et al., 2017)

For a triangular CCC-node with an external force, the size of the struts is calculated by

trigonometry and the sine rule (Varsity Tutors, 2007):

𝑎

sin(𝐴)
=

𝑏

sin(𝐵)
=

𝑐

𝑠𝑖𝑛𝑠(𝐶)

(3)

Sometimes CCC-nodes have more than three struts meeting at a node. This is problematic as

the node’s design methods are based on just three struts at the node. When this happens,

there is a need for an extra calculation step. This new step is to calculate resultants from the

struts and the angle of these resultants until there are just three forces left, as demonstrated

in Figure 10. External forces or flat/horizontal forces should, as far as possible, not be included

in the resultants. When three forces have been achieved, the geometry is calculated the same

way as described previously.

Figure 10: Example of combining two forces (Colorito et al., 2017)

11

A CCC-node without external force or limiting geometry is considered a smeared node;

therefore, no calculations are necessary. (Colorito et al., 2017)

2.4.2.3 Design compressive stress

The design strength of these nodes is given in the equations (6.60-6.61) in Eurocode 2.

The design strength for CCC-nodes:

𝜎𝑅𝑑,𝑚𝑎𝑥 = 𝑘1𝜈′𝑓𝑐𝑑

(4)

Where:

𝜈′ = 1 − 𝑓𝑐𝑘/250

(5)

The k1 factor given in the national annex NA.6.5.4, and is equal to 1.

The design strength for CCT-nodes:

𝜎𝑅𝑑,𝑚𝑎𝑥 = 𝑘2𝜈′𝑓𝑐𝑑

(6)

The k2 factor given in the national annex NA.6.5.4, and is equal to 0,85.

The design strength for CTT-nodes:

𝜎𝑅𝑑,𝑚𝑎𝑥 = 𝑘3𝜈′𝑓𝑐𝑑

(7)

The k3 factor given in the national annex NA.6.5.4, and is equal to 0,75.

2.4.3 Struts

Section 6.5.2 in Eurocode 2 details the design of the struts. The first thing that must be

checked is whether the strut experiences transverse tensile forces. If it does not, the design

strength for the strut is given by equation (6.55) in EC2.

𝜎𝑅𝑑,𝑚𝑎𝑥 = 𝑓𝑐𝑑

(8)

However, if this is not the case, the strut may experience transverse tensile forces, and a

more rigorous method is not used. The new design strength of the strut is calculated by

equation (6.56).

𝜎𝑅𝑑,𝑚𝑎𝑥 = 0.6 𝜈′𝑓𝑐𝑑

(9)

12

Figure 11: From Eurocode 2, strut with transverse tension

This check must be done at both ends of the strut, as there may be different stresses. In this

thesis, it is assumed that all the struts may experience transverse tensile forces. This is done

always to be conservative in the design checks.

2.4.4 Ties

EC2 6.5.3 describes the design of ties. Clause 6.5.3(1) in Eurocode 2 says the reinforcement

should be limited by the rules in sections 3.2 and 3.3. These sections explain the rules and

limitations of reinforcement and prestressing steel, respectively. With the use of ordinary

Norwegian reinforcement and prestressing steel, these requirements are met. Thus, the

design strength of the ties is given by:

𝜎𝐸𝑑 =
𝑇

𝐴𝑠

< 𝑓yd

(10)

Where:

𝑓𝑦𝑑 =
500

1.5
= 434𝑁/𝑚𝑚2

(11)

𝐴𝑠 =
𝑇

𝑓𝑦𝑑

(12)

Where:

- 𝐴𝑠 is the reinforcement area

- T is the force in the ties

In this thesis, there is assumed sufficient anchorage.

13

2.5 Minimize the strain

Given that there are many ways to set up a strut and tie model, and many of them can satisfy

the design criteria, there should be a way to know which model is the best. “Best” can be

interpreted in different ways: most economical, easiest to construct, the strongest, etc.

Usually, the best solution is the STM that minimizes the strain energy in the STM (Schlaich et

al., 1987). The total strain energy is measured by summing each truss's strain energy. This

gives the equation:

𝑆𝑡𝑟𝑎𝑖𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 = Σ𝐹𝑖𝑙𝑖𝜀𝑚𝑖

(13)

Where:

- 𝐹 is the force in the truss

- 𝑙 is the length of the truss

- 𝜀 is the strain in the truss

In an STM, the strain energy from the compressive struts is small compared to the yield

strains in steel. This gives that strain energy from struts can be excluded from the calculation,

such that only the ties in the STM are used in the formula. (Hu et al., 2014) As the

reinforcement amounts are chosen just to be at yielding, it is assumed that the stresses in

the ties are the yield stress. Then the formula can be rewritten as:

𝑆𝑡𝑟𝑎𝑖𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 = ∑
𝐴𝑖𝑙𝑖𝑓𝑦𝑑

2

𝐸

𝑛∗

𝑖

(14)

Where:

- 𝑛∗ is the number of ties

- 𝐸 is the Young’s modulus of steel reinforcement set to 200 𝐺𝑃𝑎

- 𝑓𝑦𝑑 being the yield strength of steel reinforcement, see formula (11)

This rewritten formula shows that the strain energy of the STM is given by the term 𝐴𝑖𝑙𝑖 times

some constants. The term 𝐴𝑖𝑙𝑖 can be seen as the total volume of steel in the STM, which

gives that the minimizing of the strain energy also minimizes the steel usage and gives the

“best” model. (Schlaich et al., 1987)

For now, iteration and trial and error are the methods to minimize the strain. The biggest

problem with this is that all the design checks and strain energy calculations have to be done

again for every iteration, making this iterating method very intensive, especially if done by

hand. One of the ways to overcome this is with knowledge and experience, as they give an

indicator of how the best model might look and therefore do not have to calculate the STMs

known to be worse.

14

3 Software and Tools

3.1 General

In this day and age, there are many computer tools and software available to assist with lots

of tasks and problems. Given that this thesis is developing a computer program to assist with

a strut and tie modeling design, several external software and tools have been used. This

section will explain the programming language, development environment, cross-platform

collaboration, and file-sharing software used for this thesis.

3.2 Python

Python is an open-source high-level programming language (Python Software Foundation,

2012). It is designed with an emphasis on code readability. Python is mainly designed as an

object-oriented programming language. The work on Python was started in the late 1980s,

and the first release was Python 0.9.0 in 1991 (Python Software Foundation, 2022). It has

later been revised, and new features have been introduced. In 2008, Python 3 was released,

and in this thesis, Python 3.9 have been used.

Python is a widely used programming language. Since Python is so widely used, a lot of help

and information exists online. There is also a large community that uses Python as their

language and shares their codes. Thus, if there is a problem one wants to solve, the chances

are that others have already done it or something similar that one can take inspiration from

(Kuhlman, 2012).

One of the reasons Python was chosen as the programming language in this thesis is that the

authors had some prior experience coding in Python. This, combined with the open-source

and collaborative community surrounding Python, made it a prime candidate for this thesis.

3.3 Spyder

Spyder (Scientific PYthon Development EnviRonment) is an open-source, cross-platform

integrated development environment for scientific programming in Python. Pierre Raybaut

created it in 2009 (Raybaut, 2009). However, since 2012 it has been maintained and improved

by scientific Python developers and the Spyder community. Spyder is designed by and for

scientists, engineers, and data analysts. It has several Python packages geared towards

scientific use already integrated (Spyder Doc Contributors, 2022).

Spyder was chosen as the development environment for this thesis because it is geared

towards scientific programming. The already integrated packages have been of considerable

help, and there has not been a need to download other packages than those already

integrated with Spyder. Further, the variable explorer was another reason for using Spyder.

It has been great for quality control during coding and code testing, and even debugging.

15

3.4 Git

3.4.1 General

Git is a version control system to handle any type of project. It is an open-source system

developed by Linus Torvalds in 2005 (Spinellis, 2012). Git is a valuable tool when more than

one person simultaneously codes on the same project. All the files and documents needed for

a project are stored in a Git repository. The programmer then clones this repository to their

computer, where local changes can be made. The programmer must commit and push the

changes back to the repository (GitLab, 2022). With Git, it is possible to see the entire commit

history and restore earlier commits. Some of the features of Git that are used in this thesis

are branching, merging, committing changes, and seeing previous changes.

This project has three branches, one for each of the authors and the main branch. When the

code is finished and working, it has been committed to the main, and the other person is

responsible for implementing the changes into their branch. The reason Git was chosen is that

it makes it easy to keep the code up to date when other authors have made changes. Another

reason was to learn more about Git and get some experience using Git since this is a valuable

tool to know.

3.4.2 GitLab

In this thesis, the program has been stored in the open-source software GitLab. GitLab is built

on top of Git (O’Grady, 2018). GitLab is used to manage our repository and share it online.

The reason for choosing GitLab was that the authors had some previous experience using

GitLab. The user interface online makes it easy to use and understand.

Here is the link to the online GitLab repository:

https://gitlab.stud.idi.ntnu.no/martgrah/stm

3.4.3 GitHub Desktop

GitHub Desktop was used to access the cloned repository locally on the computer. GitHub is

similar to GitLab, which is an open-source distributer of Git. GitHub Desktop is available for

GitLab repositories. GitHub Desktop makes it easy to access the repository locally by using

the user interface instead of command lines, which is the standard for Git. The user interface

of the GitHub desktop is why it was chosen for this thesis since the user interface made it

easy to use. The features used on GitHub Desktop are, commit, where the changes to the

branches are committed and then pushed to transfer the changes to the server. When it has

been pushed, a merge commits with the main is done, and when doing this, this procedure

has been used: first merging the main into each branch to fix conflicts, and then merging the

branches into the main. This way main will be up to date with the updates. This procedure

ensures that any conflict is fixed before committing to the main. (GitHub, 2022)

https://gitlab.stud.idi.ntnu.no/martgrah/stm

16

4 The program

4.1 General

This program aims to speed up going through all the necessary steps in calculating an STM

and, in other words, automizing the capacity checks of a given STM. It is then easier to find

the most efficient STM since it is easy to test several alternatives of the STM.

When writing the program, it was intentionally written as general as possible, such that the

project could take many different forms from there and not be limited. The code is easy to

use for external people and easy to get results. It is also easy to expand the code and add

features in the future for users and the developer.

The programming method used in this program is object-oriented programming (OOP).

Objects are the fundamental building block in object-oriented programming. The most popular

method used in OOP is class-based. This method is used in this program. A class is a coded

template for the setup of an object. The class defines the object's initial values and variables,

either set values or from a given input. If there are many objects with similar properties,

different value classes are beneficial. Here is an example to explain the concept of classes

and objects.

In this section, the geometry of the strut and tie model is referred to as a system, and the

struts and ties are referred to as elements. The respective classes are called System and

Element in the code. The variable names are marked with cursive, the functions with cursive

and bold, and the classes are marked with Bold lettering. The first letter in the class names

is upper case, and variables and functions have lower case first letters.

4.2 Class setup

When the program was written, the class setup was chosen to be easy to expand and adjust

as it takes form. Therefore, the main classes for the setup of the STM are Node, Element, and

System. These classes define the geometry of the model. Additional to these classes, there is

a class to calculate the forces in the elements, one to do capacity checks, and one to plot the

results.

The classes in the STM program are:

- Node, see section 4.3

- Element, see section 4.4

- System, see section 4.5

- ElementForce, see section 4.6

- Checks, see section 4.7

- Plot, see section 4.8

All the classes will be discussed in their section.

17

4.3 Node

A node is the connection point where the struts and ties meet. In this class, there are several

callable variables. These variables are:

- nodePosition, the position of the node

- nodeX, the position of the node in the x-direction

- nodeY, the position of the node in the y-direction

- forceMagnitude, the applied external force

- forceAngle, the angle of the applied external force

- forceWidth, the width of the applied external force

- isOkay, whether the capacity of the node is sufficient when it is run through the design

checks

- forceX, the external force in the x-direction

- forceY, the external force in the y-direction

- nodeType, the type of the node

When the node class is called, it calls the initialization function, see Figure 12. This function

assigns values to the callable variables. The initialization function has several arguments,

which will be listed here:

- nodePosition

- forceMagnitude (optional)

- forceAngle (optional)

- forceWidth (optional)

18

Figure 12 Initialization function for Node class

A node must have a position in the x- and the y-direction, represented by a Python list.

The nodePosition should be on the form [x,y], where x should be replaced by an integer

number representing the node's position in the x-direction and y in the y-direction. There are

three checks on the input argument to ensure that the nodePosition is written correctly. The

first checks if it is a list, the second checks if the length of the list is equal to two, and the last

checks if it contains integer numbers.

In each node, there is an option to apply external forces. The input forceMagnitude,

forceAngle, and forceWidth define the force parameters. At the initialization function, the

default of the forceMagnitude and the forceWidth is equal to zero, and the default of

the forceAngle is equal to 𝜋/2. In the initialization function, the program checks if

the forceMagnitude is not equal to zero, and if this is true, it calls on the function addForce,

shown in Figure 13. As this program is made in Python, the positive y-direction is downward.

Hence, the default direction of a force is straight downwards. Since there is a

function addForce, it is possible to manually add a force by calling on this function with the

node.

19

Figure 13 Function addForce

When a node is connected to other nodes in a system, it could also have a node type defined

in the function nodeType. A node can only have a type if it is part of a system and the

ElementForce class has been run. The input argument to this function must be an object of

the type system to check what elements are connected to the node to define the type. The

nodeType function checks what kind of trusses meet at the node and determines if the node

is a CCC-, CCT-, or CTT-node. The nodeType will automatically be called by the ElementForce

class. Thus it will not be necessary to call on this function.

4.4 Element

An element represents the trusses between two nodes, the connection between two nodes.

These elements are known as the struts and ties in an STM. The callable variables in the

Element class are:

- node1, the node at one end of the element

- node2, the node on the other end of the element

- width, the widths of the element at each end

- isOkay, whether the capacity of the element is sufficient when it is run through the

design checks

- forceMagnitude, the internal force of the element

The initialization function requires two input arguments when the element class is called, see

Figure 14. These arguments are node1 and node2. node1 and node2 represent each side of

the element.

20

Figure 14 Initialization function for Element class

An element can have an internal force. The variable forceMagnitude represents this internal

force. The internal force can only be calculated if the element is part of a system. When the

system is finished, the class ElementForce can be called and will add the internal force of

the element automatically using the addForce function. The class ElementForce will be

discussed more in-depth in section 4.6.

In addition to addForce, there are two functions in the Element class. These functions are

returnOtherNode and addWidth. returnOtherNode function takes the input argument of

the type node, checks the element, and returns the node at the other end of the element.

Suppose the input node is not part of the element. The following text will be printed to the

console: “not valid node.” addWidth will have an input argument of type number and add it

to the width list. The width list represents the width of the element on each side. Calculating

and adding the widths of the elements will be done by the class Checks, which will be

discussed in section 4.7.

4.5 System

4.5.1 General

System is the class that contains all the strut, ties, and nodes. This class will represent the

geometry of the entire strut and tie model. The callable variables in this class will be created

in the initialization function for the System class, see Figure 15. The callable variables are:

- nodes, a list of all nodes

- elements, a list of all elements

Figure 15 Initialization function for the System class

There are no arguments in the initializations function in the System class, so to fill up the

lists, the user should call on the functions to add nodes and elements in the class. It is also

possible to call on the lists and use the append command. The advantage of using the

functions in this class is that they will check if the object already exists and will not double

store the objects.

21

4.5.2 Add nodes

To add nodes to the system, the user must call on the function addNode. The input argument

must be an object of the type node in this function. To ensure that this node is not already in

the nodes list, the function existingNode, see Figure 21, is called. A node with the same

position should not be added to the nodes list. See Figure 16 for an image of the addNode

function.

Figure 16 Function addNode

4.5.3 Add elements

Elements can be added to the elements list by either calling on the function

addElementWithNodes, see Figure 17, or the function addElementWithElement, see

Figure 18. Two input arguments must be objects of type Node in addElementWithNodes.

This function creates an element and then checks if this already exists in the elements list by

using existingElement function, see Figure 22. The input nodes are also checked if they

exist in the nodes list by using existingNode. If the nodes exist and the element does not,

the element will be added to the elements list. By using the function

addElementWithElement, the input argument must be a defined element. This function

uses addElementWithNodes to do the same checks for this element.

Figure 17 Function addElementWithNodes

Figure 18 Function addElementWithElement

22

4.5.4 Other functions

In addition to the mentioned functions, there are two more, connectedNodes, see Figure

19, and elementsFromNode, see Figure 20. The argument for connectedNodes must be

of type node. This function will return a list with all the nodes connected to this node with

elements. The argument for elementsFromNode must also be of type node. This function

will return a list of all the elements connected to this node.

Figure 19 Function connectedNodes

Figure 20 Function elementsFromNode

Figure 21 Function existingNode

23

Figure 22 Function existingElement

4.6 ElementForce

4.6.1 General

The ElementForce class setup is different from the other classes, Node, Element, and

System. The purpose of the ElementForce class is to calculate the internal forces of the

elements in a system. The initialization function, shown in Figure 23, has an input argument

of the type system, the object system created with the class System. Therefore, a system

must be established before calling on the ElementForce class. After the initialization function

is called, the elements will automatically have added the internal force into the objects

Element in the elements list in the System. All the functions and the mathematics in this

class will be discussed more in detail in this section.

Figure 23 Initialization function for ElementForce class

A truss system is not difficult to calculate by hand, but it is laborious. All that is needed is to

calculate equilibrium at every node and use these results in further calculations at the other

nodes. The sequential nature of these calculations offered some difficulty in the code. Firstly,

one would have to locate a node with enough information to calculate the forces. Then there

is a need to store these answers in a way that could easily be retrieved for calculations at the

next node, which again might not have enough available information to be determined yet.

This would result in an extensive, complicated code with many loops and if-statements.

To overcome this problem, the idea is to calculate everything with a set of equations. The

equations are equilibrium equations for each node, in both directions (x and y), with the forces

in the trusses as the unknowns. Calculating a large set of equations can be done using a

matrix equation.

24

The steps of calculating the element forces:

1. Create the elementMatrix

2. Fill the elementMatrix

3. Create and fill the forceMatrix, for external forces

4. Establish and solve the equation

5. Add the result to the element objects and add type to node objects

4.6.2 Create the elementMatrix

The first step to this matrix-equation is to establish the matrix, which is done in the function

elementMatrix. The columns in this matrix represent the elements, so the number of

columns equals the number of elements. The rows in this matrix represent the contribution

from the element on the nodes in both the x- and y-direction. So, the two first rows represent

the first node, where the first row is the x-direction, the second row is the y-direction, the

second node is represented by rows three and four, and so on. This gives the number of rows

equal two times the number of nodes. The matrix dimension then equals 2*number of nodes

× number of elements. The elementMatrix is created in the function elementMatrix by

creating a matrix consisting of zeros with the given dimension using the NumPy library.

4.6.3 Fill the elementMatrix

The next step is then to fill the matrix. The double for loop in the function elementMatrix

systematically goes through the different cells of the elementMatrix. It calculates the desired

value, which is the contribution from the element on the nodes. The first loop goes through

the rows, thus the nodes in the x- and y-direction. The second loop goes through the columns,

thus the elements. The first check in the first for loop establishes whether the x- or y-direction

is desired in the given row before the second loop starts. The calculations will only be done if

the element is connected to the node in question, or else it will remain equal to zero, as an

element will not have a contribution to the node if they are not connected. If the element is

connected to the node, the zero will be replaced by the returned numbers from the

functions xDirection, Figure 24, and yDirection, Figure 25, depending on the direction. See

equation (15) for the calculation of contribution in the x-direction and equation (16) for the

calculation of contribution in the y-direction.

25

Calculating the contribution for x-direction:

𝑥2 − 𝑥1

𝐿

(15)

Figure 24 Function xDirection

Calculating the contribution for y-direction:

𝑦2 − 𝑦1

𝐿

(16)

Figure 25 Function yDirection

The signs of the contributions are essential, so it is vital to use the correct nodes in the

functions xDirection and yDirection as the arguments node1 and node2. The current node

should be node1, and the node on the other side of the element should be node2. All the

contributions with opposite directions have different signs and give the correct results since

the signs for the contributions are globally the same at all nodes.

4.6.4 Create and fill the forceMatrix

The forceMatrix has a dimension of one column and two times the number of nodes rows. So,

each number represents the node in x-direction and y-direction, the same as the rows

in elementMatrix. The forceMatrix is created by creating a matrix consisting of zeros with the

given dimension using the NumPy library. The forceMatrix function then goes through each

node and checks if it has an external load. The user should have already added the external

loads into the node objects. If the node has a force, it changes the number in the forceMatrix

by calling on the variables in the node objects forceX and forceY.

26

4.6.5 Establish and solve the equation

The equation to solve this matrix problem is:

𝐴 ∗ 𝑥 = 𝐵

(17)

In this case, for solving the matrix problem, the A-matrix in equation (17) represents the

elementMatrix, and the B-matrix represents the forceMatrix. The x is the vector of the

unknown internal forces of the element. The dimension of the x vector should be the same

number as the number of columns in matrix A. In this case, this is equal to the number of

elements. When solving this equation, the unknown x vector will give the resulting forces of

the elements. The elementMatrix problem is solved in the Solve function. This solve function

is shown in Figure 26.

Figure 26 Function solve

The problem with this setup is that there are more equations than unknowns, known as an

overdetermined system (akrowne, 2013b). An overdetermined system of this kind is always

inconsistent (it has no solution). This is combatted with the ordinary least square method,

which finds the approximate solution of an overdetermined system (akrowne, 2013a). In

NumPy linear algebra library in Python, a command called lstsq returns the least-squares

solution to the matrix problem, shown in Figure 26 in code line 230. The lstsq command

outputs the approximate solution of the problem and some other parameters. One of these

parameters is the residual, which indicates how accurate the solution is (NumPy Developers,

2022). Despite the approximate results, testing has shown that the residuals are relatively

low if there is nothing wrong with the system. While if there is something wrong with the

equilibrium, the residual will usually be orders of magnitude higher than the external forces.

This implies that the results are accurate to a satisfactory level when the residual is “low”.

Lastly, a check of the residual has been implemented, which prints a warning if this value is

significant.

27

4.6.6 Add the result to the element objects and add type to
the node objects

The solve function is called on in the initialization function, which will be done automatically

after calculating the elementForce matrix. The solve function, see Figure 26, contains a loop

to go through the values in the resulting elementForce list and add the forces to the

corresponding element objects. After the solve function is called, the addTypes function, see

Figure 27, is called. This function loops through each node in the system and calls the

function nodeType in the Node class to add the node-type to the nodes.

Figure 27 Function addTypes

4.7 Checks

The Checks class is the class where all the design checks of the system are done. This class

should be called after the ElementForce class has been run. The initialization of this class

takes four arguments:

- system, should be of the type system

- thickness, the breadth of the concrete element

- conClass, the concrete class

- c, the distance from the concrete surface to the center of the tie

These variables are further used to calculate some inherent values needed for the design

checks. The rest of the initialization function is used as a setup for the program's outputs.

See Figure 28

Figure 28 Initialization function for Checks class

28

The function check is the primary operator of the Checks class. The check function

systematically goes through each node and element in the system to perform design checks.

As mentioned in 2.4.2, there are many different types of nodes and geometries these nodes

can have. Because of this, many if-statements try to accommodate all the possible node

types. Inside these if-statements, the geometry of the nodes is determined, with forces and

sizes dimensions calculated as explained in 2.4.2.2. Sizes of the trusses are saved in their

respective element objects by using the previously mentioned addWidth function. The

calculated geometry is used as input arguments in the functions CCC, CCT, or CTT, depending

on which type of node it is.

These functions perform the final design checks for the given node type and return if the

node’s capacity is okay or not. If the capacity is not okay, the functions change the node

object’s internal variable isOkay from true to false for later use, and the global

variable is_okay to false to signify that the system fails. These functions can be seen

exemplified with the function CCC in Figure 29.

Figure 29 Function CCC

After the nodes have been checked, the same is done for the trusses. All the trusses are

categorized as either struts or ties. Hence, the strut function checks the trusses experiencing

compressive forces, and the tie function designs the trusses experiencing tensile forces. The

strut function checks if the capacity of the strut is okay using the widths previously calculated

when the nodes were checked. Some of the trusses do not have two widths if one of the ends

is at a smeared node. This is handled by the for loop in the function. Suppose the capacity of

the strut is not okay. In that case, the element’s internal variable isOkay is changed from true

to false, and the global variable is_okay to false to signify that the system as a whole fails.

See Figure 30. The tie function calculates the required reinforcement area in the tie for the

calculated force.

29

Figure 30 Function strut

Lastly, the class call for the function strainEnergy, which calculates the system's total strain

energy as described in section 2.5. The strainEnergy is shown in Figure 31.

Figure 31 Function strainEnergy

4.8 Plot

The Plot class exists to draw the system and the calculated results to have a more user-

friendly output than just a bunch of numbers. The initializing of the class uses the system as

the only input argument before running the internal function draw. The draw function uses

the Python package matplotlib to draw the system. This includes the nodes, elements,

external forces as arrows, the internal forces of the elements, and numbering the nodes and

elements in a plot. This drawing is constructive to visualize the system and uncover any input

mistakes. The draw function is also where the variable isOkay in the objects is used, as the

function draws these objects in red if their design checks are not met. Lastly,

the draw function returns the whole plot as a figure to be able to be drawn in the GUI program

window.

30

4.9 Outputs

The result from the program will be printed out on the console. What will be printed:

- State of nodes

- State of struts

- Required reinforcement

- If the system is sufficient

- Strain energy (only if the capacity of the system is enough)

- Residual (only if high)

All the printed lines will happen in the Checks class. All the nodes and each strut and tie will

have one printed line each. The nodes and strut will either be OK or not enough. The printed

line for the tie is the required reinforcement for each tie. If any nodes or struts fail, the

system's total capacity will not be enough. The strain energy will be printed if the system's

capacity is enough. A warning will also be printed if the residual from the calculation in the

class ElementForce.

31

5 User manual

5.1 General

There are several ways to create the strut and tie model using the program created for this

thesis. The methods can be divided into two main groups. The first method is creating a

Python file and importing all the necessary classes. Then manually calling the necessary

functions and classes to set up the system and calling on the necessary calculations. This

method is more open, and the user has more freedom to make it personal to different models.

The other method is using the user interfaces. This method is more fixed and created for

users who are not comfortable with coding in Python and can easily create simple strut and

tie models. Both methods will be discussed further in later sections.

It is essential to install all the necessary packages before using the code. The code is

developed in Spyder, with most of the necessary packages already downloaded and

implemented into the program.

The packages used:

- NumPy

- math

- matplotlib

- Tkinter

- sys

5.2 Downloading the repository

5.2.1 General

The first step of using the repository is downloading it. The code is stored in a GitLab web

repository which can be accessed from this link:

https://gitlab.stud.idi.ntnu.no/martgrah/stm

The repository should be downloaded as a zip or cloned locally on the computer. The easiest

is downloading the zip and unpack it locally on the computer. See Figure 32 for a screenshot

from the GitLab web repository. The download button and clone button are inside the dotted

box. The branch should be main.

https://gitlab.stud.idi.ntnu.no/martgrah/stm

32

Figure 32 GitLab repository

5.2.2 Repository content

The repository contains:

- STM file

- GUI file

- models folder

- examples folders

The STM file is the main code, where all the calculations are done. The GUI file is the graphical

user interface file that gives the user the program with the GUI. The models folder is where

users should save their strut and tie models. Furthermore, the examples folder is where the

examples are saved that are used in the examples in section 6 and the studies in section 7.

5.3 Python script

5.3.1 General

The main workflow of establishing the strut and tie model using this program can be:

1. Importing the file

2. System setup

3. Calculating the element force

4. Do the design checks

5. Plotting the results

This section shows a general guide on how the code can be used and how to set up models.

The user can also use the code as a base and extend the code for more complex strut and tie

models. The possibilities are many, and there is no limit to the use of the code.

The folder models are created to store the models the user creates. This folder consists of

two Python files. One is called template, and the purpose of this file is to be used as a template

that the user can use as a base for creating models. The other file is called user_manual,

which is the model created for this user manual to show an example.

33

5.3.2 Importing the STM file

The first step is to import the STM file. Importing the STM file into a new Python file is the

best method to create a model because it can then be saved as a single model, and the user

can create several models and compare the results. Another possibility is to use the STM file

and create the strut and tie model below the code. Then it is essential to create variable

names so they are easily distinguished from each other.

Since the user_manual is not in the same folder as the STM file, we need to add this folder.

We use the package sys and the command sys.path.append('../'). See code lines two and

three in Figure 33 and Figure 34 for the sys import. If the model is created in another folder

than models, the argument: '../' needs to be changed.

Here are two ways to import the STM file:

- import STM as m

- from STM import *

Figure 33 Import STM as m

Figure 34 Import STM as *

If the first option is used, import STM as m, every time a function or class from STM is called

on must begin with m. The m can be changed to the user’s preference. See Figure 33 for this

option. This method is used in this user manual.

Using the second option, from STM import *, the class and function names can be called on

directly. This can create a warning triangle but will not affect the code if written correctly. See

Figure 34 for an image from Spyder on this importing method.

34

5.3.3 System setup

The system setup should define the geometry of the strut and tie model. This consist of nodes

and elements. It is important to remember that the coordinate system is defined by x to the

right and y downwards when using the code. One way to set up the system:

1. Create the system

2. Create the nodes

3. Apply force to nodes

4. Add the nodes

5. Create/add the elements

The first step is to create the system. This is done by calling on the System class and defining

this object as a variable. This is done in code line 8 in Figure 33 and Figure 34.

The next step is to create the nodes. The nodes need to be separate variables since they need

to be callable to add force and create the elements. The Node class must be called and

defined as a variable. The input argument must be a two-dimensional list representing the

coordinates in the x- and y-direction, both in mm. See Figure 35 for how this is done.

Figure 35 Creating the nodes

After the nodes are defined, the external forces can be applied to the nodes. This is done by

calling on the function addForce in the Node class. The first argument is the magnitude of

the force in N. The second is the width of the force in mm, and the last is the angle in radians.

The magnitude of the force should be a positive integer; thus, the force will always point

toward the node. Increasing angles will rotate the force counter-clockwise with the zero-angle

coming straight from the right. Figure 36 illustrates the different forceAngle to demonstrate

the direction of the force. The angle has a default equal to 𝜋/2, representing the force

downwards, as shown in code line 18 in Figure 37, and defining the angle to be equal to 3𝜋/2

the force will be upwards, as shown in code lines 16 and 17 in Figure 37.

Figure 36 Illustrating the forceAngle on the node

35

Figure 37 Applying force to the nodes

After the force is defined, the nodes must be added to the system. This is done by calling on

the function addNode in the class System. See Figure 38 for how this is done.

Figure 38 Adding the nodes to the system

The next step is to create/add the elements. The elements do not need to be defined as a

variable. This is because the element does not need to be callable later. Therefore, there are

two ways to add the element to the system:

- addElementWithNodes

- addElementWithElement

Figure 39 shows the different ways to create/add the elements. By using

addElementWithNodes, the two input arguments must be of type node, representing one

node on each side of the element. It is important to use predefined nodes, so the same node

objects are in the nodes list in the system. By using addElementWithElement, the input

argument must be of type element.

Figure 39 Create/add the elements

5.3.4 Calculating the element force

After the system is defined, the next step is to find the truss system's internal forces, the

elements' internal forces. This is done by calling on the class ElementForce The forces will

be added to the object element when this class is called. See Figure 40 on how to call on the

ElementForce class.

Figure 40 Calling on the ElementForce

Defining ElementForce as a variable is advised, as it will be shown in the variable explorer

in Spyder. With the variable explorer, it is possible to see the list of all the internal forces of

36

the elements in a list, shown in Figure 41. How to get the list: In variable explorer double

click e (the variable name) ->Double click elementForce ->Double-click the first index (0).

Here it is also possible to check the residual from the force calculations by double-clicking the

second index (1) instead of the first.

Figure 41 elementForce list

5.3.5 Do the design checks

When the system is established, and the elements' internal forces are added, the next step is

to call on the Checks class. This class will do all the necessary design checks for the model.

See how to call on the class Checks in Figure 42. The arguments in the Checks class are

first the system, then the breadth of the cross-section of the concrete element in mm, then

the concrete class number, then the distance from the concrete surface to the center of the

tie in mm.

Figure 42 Calling on the Checks

The results of the design checks will be printed out in the console field. It will print if the node

capacity is sufficient or not, the required reinforcement of the ties, if the struts are sufficient,

and the strain energy. See the printed lines from the user_manual example in Figure 43

Figure 43 The printed lines to the console

37

5.3.6 Plotting the results

The last step is to plot the results. To do this, the Plot class must be called. See Figure 44 on

how to call on the Plot class. The input argument is the system.

Figure 44 Calling on the Plot

After the Plot class has been called, the plot will be shown as the one in Figure 45. If the

resulting nodes, struts, or ties are insufficient, they will be red.

Figure 45 The Plot of the established STM

5.4 Graphical user interface

5.4.1 General

The graphical user interface has been created using the Python package Tkinter. Tkinter is a

framework already built into the Python standard library (Python, 2022). The framework

Tkinter consists of buttons, entry boxes, frames, among many other features. It is easy to

use and works great for this purpose.

There are four separate windows in the graphical user interface (GUI). In The first three

windows, the user is asked to submit some data to create the strut and tie model, and the

last window will show the results.

38

The four windows are:

1. Number of nodes

2. System setup

3. Concrete specification

4. Results

An example is followed through the next sub-chapters to show how the GUI can be used. This

is just an example, and there are endless possibilities to set up the STM.

5.4.2 Window one: Number of nodes

In window one, the user is asked to add the required number of nodes for the strut and tie

model. The number of nodes is the number of connection points between strut and ties. The

input must be an integer number. If not, the submit button will not activate.

Figure 46 The first window in the GUI

5.4.3 Window two: System setup

In the second window, the user is required to fill in a lot more information. This window is

built up from a grid format. The rows represent a node, and the columns can be divided into

three sections. The three sections are:

- Location of node in coordinate system, both x and y

- Which node it is connected to by strut or tie

- Force parameters

39

It is important to notice that the coordinate system is a right-handed coordinates system,

which gives positive x to the right and positive y upwards. All the input numbers should be

positive or negative integer numbers.

Figure 47 illustrates how the window is built. The blue box illustrates the grid's row, which

represents a node. The red box illustrates the coordinates of each node. The coordinates must

be a positive or negative integer number of the node’s placement in mm. The green box

represents the nodes the current node is connected to and is filled with checkboxes. For

example, in Figure 48, the first node is connected to nodes 2 and 3. The yellow box represents

the external force on the node. The force width is in mm, and the magnitude is in newtons.

Figure 47 Illustration of how the System setup window is built

The GUI checks when the user tries to press the button to submit to see if the user has filled

in all the required information. The checks done are as follows:

- All coordinates are filled

- The force magnitude is filled correctly

- The force width is filled if the magnitude is applied

- The model is in vertical equilibrium

If the coordinates are not filled correctly with an integer number, this line will be printed to

the window:

"All positions need to be filled with integer number"

If the force magnitude is filled incorrectly, this line will be printed to the window:

"The magnitude must be filled with integer number."

If the force width is not filled when the force magnitude is filled correctly, this line will be

printed to the window:

40

"Force width must be filled with integer number when force magnitude is applied."

To check if the element is in vertical equilibrium, it takes all the forces and checks if that is

equal to zero. If this is not true, this line will be printed on the window:

 "The structure needs to be at vertical equilibrium"

If there are more than one error in the input information, it does not always give all the error

output lines. First, fix the error given and then try to submit again and fix the next one until

it goes through. There are no checks to see if the user has checked any of the boxes to

connect them.

Figure 48 The second window in the GUI

5.4.4 Window three: Concrete specification

In this window, the user is required to submit three inputs to specify the concrete element.

The required inputs are:

- Concrete class

- Breadth of the concrete element

- Distance from concrete surface to center of tie

All the inputs should be an integer number. Nothing will happen when the submit button is

pressed if this is not true. The concrete class represents the classification of the concrete. The

breadth of the concrete element is the breadth of the cross-section of the element. The last

one is the distance from the surface to the center of the tie.

41

Figure 49 The third window in the GUI

5.4.5 Window four: Results

The fourth and last window will show the results of the STM. This window is divided into two,

where the left part is the text to inform if the nodes, struts, ties, and the system in total are

sufficient. In this section, the strain energy will also be given, and if there is a high residual

from calculating the internal force, this will also be printed. The STM will be plotted in the

right section of the fourth window. If there are parts of the STM that is not sufficient, it will

be written in the left part and marked with red in the right part.

Figure 50 The fourth window in the GUI

42

6 Examples

6.1 General

To demonstrate that the program works as intended, three examples of strut and tie models

will be established in this section. These STM examples are found online, with hand

calculations to compare with the result from the program.

6.2 Example 1: two-pile cap

6.2.1 General

This example is a two-pile cap, see Figure 51 (Goodchild et al., 2015). The two-pile cap

example should carry a load of 2500 kN on a 500 mm square column. The diameter of the

pile caps is 600 mm in diameter.

Figure 51 Two-pile cap (Goodchild et al., 2015)

6.2.2 Model setup

The model setup is shown in Figure 52. The program does not have an option to have a

circular bearing plate, so to fix this, the supports' bearing plate is changed to 314 mm (3002 ∗
𝜋

900
= 314).

43

The following information is known to set up the STM:

- Coordinates of node, Figure 52

- Point load, 2 500 kN

▪ Support forces: 1 250 kN each cap

- Breadth, 900 mm

- Width of the bearing plates, b1 = 500 mm and b2 = b3 =314 mm

- The concrete class, 𝑓𝑐k = 30 MPa

- Distance to center of tie, c = 50 mm

Figure 52 Geometry of STM for example 1 (Goodchild et al., 2015)

44

Figure 53 STM code setup for example 1

6.2.3 Results

The output result lines from the program are given in Figure 54, and the plotted result from

the program is given in Figure 55. This example will compare the results of the elements and

the required reinforcement.

Figure 54 Printed output of example 1

45

Figure 55 Plotted STM of example 1

From the output of the program and the hand calculations shown in Table 1, it is evident that

the results are the same. The forces in the trusses have been calculated to a satisfactory

level. The required reinforcement is about the same, and all the design checks of the system

are suitable for both cases.

 Program Example

Element Okay Okay Difference

1 Strut 1520 kN Yes 1520 kN Yes 0 kN

2 Tie 1520 kN Yes 1520 kN Yes 0 kN

3 Strut -865 kN Yes -866 kN Yes 1 kN

Reinforcement 1996 mm2 1991 mm2 5 mm2

Table 1 Comparing internal forces and required reinforcement of elements in example 1

46

6.3 Example 2: deep beam

6.3.1 General

Example 2 is a deep beam with a uniformly distributed load, shown in Figure 56. For STM

design, calculate distributed load as two point loads equal to 810 kN each. The size of the

point loads is assumed to be the same at the supports.

Figure 56 Example 2: deep beam (Goodchild et al., 2015)

6.3.2 Model setup

The setup of the STM is shown in Figure 57. The program cannot handle struts from the top

down to the nodes, so the forces are instead placed directly on the nodes.

The following information is known to set up the STM:

- Coordinates of node, Figure 57

- Two point loads, 810 kN each

▪ Support forces: 810 kN each

- Breadth, 250 mm

- Width of the bearing plates, 376 mm (all)

- The concrete class, 𝑓𝑐k = 25

- Assuming distance from the surface to tie,

- c = 180 mm

47

Figure 57 Geometry of STM for example 2 (Goodchild et al., 2015)

Figure 58 STM code setup for example 2

48

6.3.3 Results

The output result lines from the program are given in

Figure 59, and the plotted result from the program is given in Figure 60. This example will

compare the results of the elements and the required reinforcement.

Figure 59 Printed output lines for example 2

Figure 60 Plotted result for example 2

It is evident that the program does the same as the hand calculations, as shown in Table 2.

The internal forces calculated in the program are the same as the calculated internal forces

in the example. The required reinforcement differs only with 3 mm2.

49

 Program Example

Element Okay Okay Difference

1 Strut 955 kN Yes 955 kN Yes 0 kN

2 Tie -506 kN Yes -506 kN Yes 0 kN

3 Strut 506 kN Yes 506 kN Yes 0 kN

4 Strut 955 kN Yes 955 kN Yes 0 kN

Reinforcement 1167 mm2 1164 mm2 3 mm2

Table 2 Comparing results for example 2

6.4 Example 3: Deep beam with large openings
and recess

6.4.1 General

This example is a deep beam with a large opening and recess (Ghoraba et al., 2020). The

geometry of the beam is illustrated in Figure 61. The beam is designed to carry a nominal

load of 2667 kN.

Figure 61 Geometry of deep beam with large opening and recess (Ghoraba et al., 2020)

50

6.4.2 Model setup

The geometry of the STM is given in Figure 62. The model can be established using the

program with all the given information. The given information:

- Coordinates of node, Figure 62

- Nominal load, 2 667 000 N

▪ Support forces: V1 = 1 706 737 N and V2 = 853 262 N

- Breadth, 305 mm

- Width of the bearing plates, b1 = 600 mm and b2 = b3 =400 mm

- The concrete class, 55

- c = 200

Figure 62 Geometry of the STM for example 3 (Ghoraba et al., 2020)

51

Figure 63 STM code setup for example 3

52

6.4.3 Results

The resulting plot from the program is in Figure 65, and the resulting plot from the example

is in Figure 66. The printed output lines from the program are in Figure 64.

Figure 64 Printed output for example 3

53

Figure 65 Plotted result from the program for example 3

Figure 66 Plotted result from example 3 (Ghoraba et al., 2020)

Table 3 compares the result of the example and the program. It shows that the struts and

ties will yield and fail at the same struts and ties. All struts and ties will be sufficient except

strut one and strut two. Since the example and the program fail and yield at the same places,

it shows that the program works for a more complex STM like this example.

The printed output in Figure 64 says that the residual is high. The high residual is essential

to notice and check, but the difference column in Table 3 shows that it is negligible except for

two elements. These two elements are struts eight and nine. Struts eight and nine are much

more significant in the program calculations but are still sufficient, and the high difference

can be neglected. If the example internal force had been higher than the internal force in the

program, more calculations and checks would have been necessary.

54

 Program Example

Element [kN] Okey [kN]

1 Strut 2169 No 2167 Okay Difference

2 Strut 2169 No 2167 No 2

3 Tie -937 Yes -951 No 2

4 Strut 1517 Yes 1512 Yes 14

5 Strut 1517 Yes 1512 Yes 5

6 Tie -815 Yes -813 Yes 5

7 Tie -183 Yes -193 Yes -2

8 Strut 449 Yes 238 Yes 10

9 Strut 948 Yes 238 Yes 211

10 Strut 1276 Yes 1273 Yes 710

11 Tie -948 Yes -950 Yes 3

12 Tie -1896 Yes -1893 Yes 2

13 Tie -632 Yes -632 Yes -3

14 Strut 762 Yes 762 Yes 0

15 Strut 762 Yes 762 Yes 0

16 Strut 762 Yes 762 Yes 0

17 Strut 1276 Yes 1273 Yes 0

18 Strut 1280 Yes 1278 Yes 3

19 Tie -427 Yes -426 Yes 2

20 Tie -427 Yes 426 Yes -1

21 Tie -853 Yes 853 Yes -1

22 Tie -1264 Yes 1276 Yes 0

Table 3 Comparing results for example 3

55

7 Study

7.1 General

There will be done two studies in this section. These studies are created to test the capabilities

and value of the program developed in this thesis. Both studies are based on calculated

examples (Goodchild et al., 2015). The goal is to optimize the concrete structures by changing

the geometry of the strut and tie model and changing the structure’s height. This study section

is a separate segment from the rest of the report and will be followed by a discussion and

conclusion.

As mentioned in section 2.5, the “best” strut and tie model is the model that minimizes the

total strain energy in the STM. The reinforcement is what defines the strain. The program

calculates the reinforcement area needed in a tie using the steel yield strength equation (11).

The strain energy is calculated for the minimum amount of reinforcement in any given tie

using equation (14). Models with nodes along the “main” tie can lead to changes in the

reinforcement areas. Changing reinforcement areas is technically possible, but the practice is

to use the same reinforcement on the whole tie, which would give a different result to the

total strain energy in the STM. So, this study is based on the technical solutions, with the

possibility of changing reinforcement areas, and not necessarily on the most practical

solutions.

The studies are based on existing calculated problems. Four different STMs with a changing

number of vertical ties will be run through the program with seven different concrete structure

heights based on the calculated problems. These four STMs will be referred to as models.

Both studies will be run two times. In the first run, the concrete specification will be

unrealistically high, so the strain energy of the model will be given. The concrete specifications

must be high since the program only gives output for the strain energy when the STM does

not fail. The results will indicate how the “best” STM might look, but when more realistic

values for the concrete are added in the second run, other factors may result in failure.

56

7.2 Study one: Symmetrical deep beam

7.2.1 General

Study one uses a slightly modified problem from Example 1: two-pile cap (Goodchild et al.,

2015). The concrete structure is shown in Figure 67.

Figure 67 Geometry of problem in study one. Modified figure from (Goodchild et al., 2015)

The fixed parameters in the study are as follows:

- Point load, 2 500 kN

▪ Support forces: 1 250 kN each support

- Breadth, 900 mm

- Width of the bearing plates, bp = 500 mm and bs1 = bs2 =320 mm

- The concrete class, 𝑓𝑐k = 30 MPa

- c = 100 mm

- Distance between supports: 1800 mm

The main difference between the models is the number of vertical ties used. The four models

to test are: no vertical ties, two vertical ties, four vertical ties, and six vertical ties. The spacing

of the vertical ties is uniform, dividing the half elements into equally large parts. The four

models are presented in Figure 68.

57

Figure 68 The four different models. Drawn by the program

7.2.2 First run

As mentioned, the first run will have unrealistically high concrete specifications to get the

strain energy for all cases. The strain energy from all cases of each model can be seen in

Table 4.

 300 500 700 900 1100 1300 1500

0 14647 8788 6277 4882 3994 3380 2929

2 12613 9303 8505 8544 8963 9587 10334

4 13020 11284 11780 13019 14598 16358 18228

6 14037 13630 15315 17669 20399 23270 26243

Table 4 The strain energy in J from the first run in study one, rows are the number of

vertical ties, and columns are height in mm

58

7.2.3 Second run

Now the same models are rerun through the program, only this time with the correct concrete

specifications given in the list in section 7.2.1. Table 5 shows the resulting strain energies

with the correct concrete specifications. The cases where the models fail the checks are left

blank, and only those who pass the checks have given strain energy in Table 5.

 300 500 700 900 1100 1300 1500

0 6277 4882 3994 3380 2929

2 9303 8505 8544 8963 9587 10334

4 11284 11780 13019

6 13630 15315

Table 5 The stain energy in J from the second run in study one, rows are the number of

vertical ties, and columns are height in mm

7.2.4 Results

The results from Table 4 and Table 5 are represented in Figure 69. Each line represents each

model, with a different number of vertical ties. The transparent line is the idealized strain

energy from the first run. Where the models do not fail on the second run, the colors are

opaque.

Figure 69 Plotted data from study one

Figure 69 illustrates that STMs with fewer vertical ties lead to lower strain energy. The model

with no vertical ties has the lowest strain energy, except for the cases with a low height. At

these heights, the rules for the construction of STM are not met, as the angle between the

strut and the tie is too small.

59

Further, the figures and data show that the models with vertical ties have a specific height

where the strain energy is minimized. This height becomes smaller as the number of vertical

ties increases. However, the model without vertical ties never reaches a minimum strain

energy. The strain energy of the model with no vertical ties converges towards zero as the

height increase.

With the given parameters for the element, it is clear that the original model with no vertical

ties is the optimal solution as long as the height is above 700 mm. If the model’s height is

lower, vertical reinforcement would be needed even though none of the models manage a

height lower than 500 mm.

7.3 Study two: Deep beam with a non-centered
point load

7.3.1 General

This problem is a modified problem from (Goodchild et al., 2015). This study case is not too

dissimilar from the first study. The main difference is the non-symmetric nature of the STM,

the scale of the element, as well as some concrete parameters. The concrete structure is

shown in Figure 70.

Figure 70 Geometry of problem in study two. Modified figure from (Goodchild et al., 2015)

60

The fixed parameters are as follows:

- Point load, 2 529 kN

- Distance to point load from support: 1250 mm

▪ Support forces: V1 = 1 794 kN and V2 = 735 kN

- Breadth, 500 mm

- Width of the bearing plates, bp = 500 mm and bs1 = bs2 =500 mm

- The concrete class, 𝑓𝑐k = 35 MPa

- c = 100 mm

- Distance between supports: 4300 mm

The main difference between the models is the number of vertical ties used. Since the point

load is not centered on the structure and the STM is non-symmetric, the number of vertical

ties is placed on the larger side of the point load. The largest side of the point load is divided

into equally large sections. The four STMs to test are no vertical ties, one vertical, two vertical,

and three vertical ties. The four models are presented in Figure 71.

Figure 71 The four different models. Drawn by the program

61

7.3.2 First run

As mentioned, the first run will have unrealistically high concrete specifications to get the

strain energy for all cases. The results can be found in Table 6 below.

 900 1300 1700 2100 2500 2900 3300

None 23247 16094 12307 9963 8369 7214 6340

One 20561 15315 12837 11546 10873 10561 10480

Two 20622 16437 14821 14307 14366 14760 15369

Three 21371 18035 17169 17363 18106 19173 20445

Table 6 The strain energy in J from the first run in study two, rows are the number of

vertical ties, and columns are height in mm

7.3.3 Second run

Now the same models are rerun through the program, only this time with the correct concrete

specifications given in the list in 7.3.1. Table 7 shows the resulting strain energies with the

correct concrete specifications. The models that fail the checks are removed, and only those

who pass the checks are left.

 900 1300 1700 2100 2500 2900 3300

None 9963 8369 7214 6340

One 12837 11546 10873 10561 10480

Two 14821 14307 14366 14760 15369

Three 17169 17363 18106 19173 20445

Table 7 The stain energy in J from the second run in study two, rows are the number of

vertical ties, and columns are height in mm

62

7.3.4 Results

The results from Table 6 and Table 7 are represented in Figure 72. Each line represents each

model, with a different number of vertical ties. The transparent line is the idealized strain

energy from the first run. Where the models do not fail on the second run, the colors are

opaque.

Figure 72 Plotted data from study two

The data shown in Figure 72 indicates that the models with less vertical ties have lower strain

energy, except for cases with lower heights. At these heights, the model without vertical ties

begins to experience more strain energy than the other models. However, these situations

would not occur, as the general rules for angles between strut and tie will not be satisfied,

and the model will fail.

In this study, the figures and data show that the models with vertical ties have a given height

where the minimum strain energy occurs. With an increasing number of vertical ties, the

height where the minimum strain occurs decreases. The strain energy goes toward zero as

the height increase in the model with no vertical ties.

As for the element with the correct concrete parameters, the model without vertical

reinforcement is the best solution, as long as the height is 2100 mm or more. Any lower than

this, and there is a need for more ties. However, below 1700 mm, none of the models pass

the design checks.

63

7.4 Discussion of the studies

The precalculated problem from the first study has a height of 1300 mm with no vertical ties.

Choosing the model with no vertical reinforcement is also the best option from the study, with

a height of 1300 mm. So, in the first study, the program agrees with the precalculated

example.

The precalculated example from the second study has a height of 1300 mm and two vertical

ties. All the models with a height of 1300 mm fail in the program. The failure is due to the

slight modifications done to the original problem. However, even though the slightly modified

version of the problem fails in this test, the strain energy calculations disagree with the choice

of STM by the example, as the strain energy for one vertical tie is less than for two vertical

ties, given that the models do not fail.

As for a comparison of the two studies, some patterns emerge. The “best” models, in general,

have fewer vertical ties, as this is the case for both studies. This implies that if there is even

a use for vertical ties to get a valid STM, the fewer, the better.

The data for both tests also show that the models with vertical ties have an optimum height

for minimizing strain energy. Except for the models without vertical ties. This is because the

higher the model becomes, the less force is needed to be carried by the tie, hence a need for

less reinforcement and, therefore, less strain energy. It is clear that the more vertical ties are

involved, the lower this optimum height becomes. Given that the two deep beams have

different sizes, the easiest way to compare them is to use a height-to-length ratio. These

ratios for study one are 0.44, 0.28, and 0.22 for two, four, and six vertical ties, respectively.

Likewise, the ratios for study two are 0.77, 0.51, and 0.42 for one, two, and three vertical

ties, respectively. From these ratios, it is evident that the height to length ratio for the

optimum height reduces significantly as the number of ties goes up. It is also clear by the

only direct comparison here that the nature of a tie on each side of the force gives a much

smaller optimum height to length ratio than on just the one, as 0.44 < 0.77.

7.5 Conclusion of the studies

The two studies show that the best STMs are the ones with the least number of vertical ties

for all height to length ratios, except for low ones where rules for the angle between struts

and ties would not be met. It is also clear that a given number of vertical ties have an optimum

height-to-length ratio to get the least strain energy. The more vertical ties, the lower this

ratio is for the minimum strain energy in the STM. However, inside realistic ratios, fewer

vertical ties are always better.

64

8 Discussion

8.1 General

While developing the program, there were some challenges. The challenges that arose during

development and the choices that were made will be discussed in this section. The limitations

of the program will also be stated here.

8.2 The process

This thesis was meant to continue a previously done project work. This project had a script

for varying all the possible parameters of a simply supported deep beam with a central point

load, similar to the problem in example 1 in section 6.2. The only thing brought further from

this project was the functions for the design checks of the nodes and trusses. Since these

were already written, the rest of the script was developed around these functions.

The development started small and was built step by step outwards from there. Each step

adding some difficulty and limitations to the program. The most challenging part of the

development was calculating the internal forces of the elements in the system. Many trial

programs were made based on iteration like a human would have done it. However, this

turned out to be much more difficult than anticipated since humans have a more extensive

understanding of the whole system and can make informed choices on what order the

calculations should be done. This resulted in a need to develop new methods, and the system

implemented was, despite its drawbacks, a good choice for developing the program.

The GUI part of the program may, was developed because of a desire to have some

interactable user interface and the opportunity to learn about coding GUI in Python. So, even

though it has its flaws, the GUI works, but the most important part of its development was

the learning experience.

During the development process, some assumptions and simplifications were made. The most

notable one in the program is the choice of width of horizontal struts. This was set to be the

same as 2*c (2 times distance from surface to center of tie) as this was an input variable that

could easily be changed without affecting the system too much. This value has proven to be

one of the most important values in the program, as most failures encountered during testing

are because of this value being too low. Maybe it should have been a separate variable for

the user to decide, since arbitrarily increasing the c variable, also increase the strength in the

CCT- and CTT-nodes.

Another assumption is that all the struts in the system are designed as if they are prismatic

struts experiencing transverse tensile stress. This was chosen as it is the most conservative

way of designing struts, and there would be great difficulty in scripting the program to

differentiate different types of struts. So, if a strut fails in the program, there might be other

design methods for struts that can be proven okay for the same values. Adding bursting

reinforcement might help even more.

65

Other assumptions made are that other design rules for STM generation are not checked (like

the angle between strut and tie), all the reinforcement are assumed to have sufficient

anchorage, and requirements for minimum reinforcement are met or checked by the user.

8.3 Limitation

8.3.1 General

Even though the program was written to be as all-encompassing as possible, the finished

product has some limitations. These limitations will be discussed in detail in this section. These

are the limitation found in this thesis, but there are probably more that will be uncovered by

further use of the program.

8.3.2 Geometry of the concrete structure

One of the most significant limitations may be the lack of options in choosing different

geometries of the concrete structures. It would seem like the element only can be square,

which is somewhat true. It is only the truss system itself that is calculated and drawn. The

user defines this system, and as long as the geometry of an implied concrete element can

encompass the truss system, the limitation of different geometries diminishes, as can be seen

by the non-square nature of example 3. However, one must be careful about the forces around

corners and holes in the element, as these have restrictive geometry and might not have

room for the given nodes or struts. So, caution is advised if these kinds of concrete structures

are to be calculated using this program.

8.3.3 Forces on the concrete structure

Another limitation is that the program does not have a capability for other types of external

forces than point loads. So, other types of forces like distributed loading are impossible. If

the concrete structure has distributed loading, the program user must decompose these loads

into point loads, as is the norm when constructing an STM (see example 2 for an example of

this).

Further, having a force anywhere other than directly on a node is impossible. The force can

only be at nodes because the strut and tie model system is based on where the forces are

applied. Thus, there will always be a node where an external force is applied.

In the script version of the program, there is a possibility to add forces with other angles than

the verticals. Calculating the forces in the system with different angles should be fine, but

some of the checks are not particularly good at handling forces with angles, and errors may

occur.

All the external forces must be in equilibrium. The solve function from the NumPy package

can run even though the concrete structure is not in equilibrium. However, the residual after

this calculation is high if the equilibrium condition is not met. A check for a high residual

exists, but it is best practice to ensure equilibrium before making the system. Sometimes this

residual is high even though the forces are in equilibrium. Often when this is the case, the

66

calculated forces in the system are roughly correct, but this would need to be investigated by

the user.

8.3.4 Node

The program is mainly written for nodes to be the intersection between three trusses/forces,

and some nodes that can handle more than three. Less than three forces typically give an

error. Usually, no nodes experience just two forces, which only happens with poorly designed

STM or when an external load is transported by one truss to a node. This can be overcome

by placing the force directly on the internal nodes rather than at the edge, as shown in

example 2.

When many things happen at a node, there are even more things to consider when designing:

geometry, forces, node type, which forces to combine to perform design checks, among

others. To be able to accommodate every type of node would be laborious. Thus, only the

checks for the most common nodes have gotten their own code. Trying to design for an

advanced node should not crash the program and still give results, but one should be aware

that these might not be completely accurate and check these nodes' results.

8.3.5 Arrows

When plotting the systems, drawing the arrows for the forces is a significant contributor to

error messages. As this part of the program was not prioritized the most, the arrows can be

miscalculated, such that they become very large and sometimes too large in the plotted

output. If this is the case, the user can turn off the arrows by editing the Boolean variable

arrows from True to False in line 568 in the STM.py file.

8.4 Examples

Referring to the examples in section 6, they show that the results from the program are

satisfactory compared to the results from the online example. There is more trouble in the

complex example in section Example 3: Deep beam with large openings and recess. It shows

that the results are satisfactory, but when a complex STM such as this should be established

carefully. It is important to check that the internal forces are correct, especially if the residual

number is high. The program has no trouble establishing and checking a simple STM such as

Example 1: two-pile cap and Example 2: deep beam.

8.5 Study

The studies done in section 7 show how the program can be used to find the most optimal

solution for an STM. It uses the same concrete structure and does some changes to compare

the strain energy. Setting up the models and doing the iterations in Python were done

manually. It might seem like a lot of work doing the iterations manually, but one of the

program’s main features is that it is easy to change variables manually. Hence the process of

iteration did not take much time at all. Most of the human labor time was used to design the

models and compare the results. This was just one example of studies that can be done with

this program, and the options are almost limitless.

67

8.6 Using the program

The intention when developing the program was to create a program that would be intuitive

to use by external users. It is hard to know whether it was succeeded or not before external

users try using it on real structures. The authors discussed with friends and family to check if

the program and the GUI were intuitive. There was some feedback, and after suggestions,

some changes to the GUI were made. To have created a fully optimal user-friendly program,

it should have been tested more by external users.

68

9 Conclusion
Strut and tie modeling is an effective tool when designing complex concrete structures where

standard design rules cannot be applied. Even though the calculations are simple, there are

often a lot of them, which will make the design process long and laborious.

Thus, this thesis aimed to develop an all-encompassing program in Python to design strut and

tie models and use this program to perform a small study. Despite all the program’s

limitations, it can be a robust tool in designing a structure using STM, showcased by the

examples in section 6. The precalculated examples and the results from the calculations done

by the program coincide.

STM is a method based on iteration to find the most optimal solutions for a structure, which

is easily done with the program. Even though the iteration needs to be done manually, it is

designed so that changing variables, node placements, and changes to the STM should be

relatively quick and easy. After performing the study in section 7, it is clear that it is easy to

find the optimal solution by making small changes to an STM and concludes that the goals of

making a functional Python program are fulfilled.

69

10 Future Work
The future of this program is dependent on its overall capabilities. While there are known

limitations, there are also bound to be some unknown limitations. Hence, the program needs

to be used more to uncover its overall value.

Since the program is publicly available, future work on this topic will be to build on the existing

framework or use it as an inspiration for a new program with the intent of lowering the number

of limitations to get an even more all-encompassing freely available program.

As for the program itself, the input method can be developed more. Either by having an easier

way of setting up the system or a more capable and fleshed-out GUI.

70

References
akrowne. (2013a, mars 22). Linear least squares. https://planetmath.org/linearleastsquares

akrowne. (2013b, mars 22). Overdetermined. https://planetmath.org/overdetermined

Chen, W. F., & El-Metwally, S. E. (2017). Understanding Structural Engineering: From

Science to Engineering. 16.

Colorito, A. B., Wilson, K. E., Bayrak, O., & Russo, F. M. (2017). Strut-and-Tie Modeling

(STM) for Concrete Structures. Federal Highway Administration.

https://www.fhwa.dot.gov/bridge/concrete/nhi17071.pdf

English, T. (2019, november 7). Finite Element Analysis Is the Foundation of All Mechanical

Engineering Simulation. https://interestingengineering.com/what-is-finite-element-

analysis-and-how-does-it-work

Getting started with GitHub Desktop. (2022). GitHub Docs. Hentet 26. april 2022, fra

http://ghdocs-prod.azurewebsites.net:80/en/desktop/installing-and-configuring-

github-desktop/overview/getting-started-with-github-desktop

Ghoraba, A., El-Metwally, S., & El-Zoughiby, M. (2020). The strut-and-tie model and the

finite element -good design companions. Journal of Structural Engineering & Applied

Mechanics, 3, 244–275. https://doi.org/10.31462/jseam.2020.04244275

Goodchild, C. H., Morrison, J., & Vollum, R. L. (2015). Strut-and-tie Models: How to design

concrete members using strut-and-tie models in accordance with Eurocode 2.

Hu, Q., Ley, M. T., & Russell, B. W. (2014). Determining Efficient Strut-and-Tie Models for

Simply Supported Beams Using Minimum Strain Energy. ACI Structural Journal,

111(5), 1015–1025.

Kuhlman, D. (2012, april 22). A Python Book: Beginning Python, Advanced Python, and

Python Exercises.

https://web.archive.org/web/20120623165941/http://cutter.rexx.com/~dkuhlman/p

ython_book_01.html

71

Make your first Git commit | GitLab. Hentet 27. april 2022, fra

https://docs.gitlab.com/ee/tutorials/make_your_first_git_commit.html

NumPy Developers. (2022). numpy.linalg.lstsq—NumPy v1.22 Manual.

https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html

O’Grady, A. (2018). GitLab Quick Start Guide: Migrate to GitLab for all your repository

management solutions. Packt Publishing Ltd.

Python, R. Python GUI Programming With Tkinter – Real Python. Hentet 23. mai 2022, fra

https://realpython.com/python-gui-tkinter/

Python Software Foundation. (2012, februar 24). Why is Python a dynamic language and

also a strongly typed language—Python Wiki.

https://wiki.python.org/moin/Why%20is%20Python%20a%20dynamic%20language

%20and%20also%20a%20strongly%20typed%20language

Python Software Foundation. (2022, april 26). General Python FAQ — Python 3.10.4

documentation. https://docs.python.org/3/faq/general.html#why-was-python-

created-in-the-first-place

Raybaut, P. (2009, oktober 18). [PyQt] [ANN] Spyder v1.0.0 released.

https://www.riverbankcomputing.com/pipermail/pyqt/2009-October/024764.html

Schlaich, J., Schafer, K., & Jennewein, M. (1987). Toward a Consistent Design of Structural

Concrete. PCI Journal, 32(3), 74–150.

https://doi.org/10.15554/pcij.05011987.74.150

Spinellis, D. (2012). Git. IEEE Software, 29(3), 100–101.

https://doi.org/10.1109/MS.2012.61

Spyder Doc Contributors. (2022). Welcome to Spyder’s Documentation—Spyder 5

documentation. https://docs.spyder-ide.org/current/index.html

Tae, K. M. (2021, april 28). Strut-and-Tie Model: Part 1 - Basics.

https://www.midasbridge.com/en/blog/bridgeinsight/strut-and-tie-model-part-1-

basics

72

Tae, K. M. (2022, januar 19). Strut-and-Tie Model: Part 2 - Determining STM.

https://www.midasbridge.com/en/blog/bridgeinsight/strut-and-tie-model-part-2-

determining-stm

Todisco, L. (2009). Test evidence for applying Strut-and-Tie Models to deep beams.

https://doi.org/10.13140/RG.2.2.30462.38721

Varsity Tutors. (2007). Law of Sines.

https://www.varsitytutors.com/hotmath/hotmath_help/topics/law-of-sines

walter. (2017, oktober 21). How to select the most appropriate strut-and-tie model in your

design? Wallingford Consultancy.

https://wallingford.com.my/index.php/2017/10/21/select-appropriate-strut-tie-

model/

73

Appendix
Appendix A: STM code

Appendix B: GUI code

A: STM code

import numpy as np

import math as mt

import numpy.linalg as la

class Node:

 def __init__(self,nodePosition_,forceMagnitude_= 0,forceWidth_= 0,

 forceAngle_=np.pi/2):

 #The nodePosition must be a list that represent the coordinates to the node

 #in integer numbers. The rest of the arguments should be integer numbers.

 if(isinstance(nodePosition_, list)):

 if(len(nodePosition_)==2):

 if(isinstance(nodePosition_[0], int) and

 isinstance(nodePosition_[0], int)):

 self.nodePosition = nodePosition_

 self.nodeX = nodePosition_[0]

 self.nodeY = nodePosition_[1]

 else:

 print("The node list needs to contain integer numbers")

 else:

 print("The node list has to be of length 2")

 else:

 print("Then nodePosition needs to be of type list")

 self.forceMagnitude = 0

 self.forceAngle = 0

 self.forceWidth = 0

 self.isOkay=True

 if(forceMagnitude_!=0):

 self.addForce(forceMagnitude_,forceWidth_,forceAngle_)

 def addForce(self,forceMagnitude_,forceWidth_,forceAngle_=np.pi/2):

 #adds force to node

 if(isinstance(forceMagnitude_, int) and

 isinstance(forceAngle_, float) and

 isinstance(forceWidth_, int)):

 self.forceMagnitude = forceMagnitude_

 self.forceAngle = forceAngle_

 self.forceWidth = forceWidth_

 self.forceX = self.forceMagnitude*-mt.cos(forceAngle_)

 self.forceY = self.forceMagnitude*mt.sin(forceAngle_)

 else:

 print("The forceMagnitude and forceWidth needs to be int," +

 " and the forceAngle float")

 def nodeType(self,system_): #determines node type

 system=system_

 elements=system.elementsFromNode(self)

 ties=0

 for elem in elements:

 if elem.forceMagnitude < 0:

 ties+=1

 if (len(elements) >= 3 and

 abs(self.forceMagnitude) >0) or len(elements)> 3 :

 #checks if more than 3 trusses at node

 if ties == 2:

 tieang=[]

 for elem in elements:

 if elem.forceMagnitude < 0:

 ang=angle([elem.node2.nodePosition[0]-

 elem.node1.nodePosition[0],

 elem.node2.nodePosition[1]-

 elem.node1.nodePosition[1]])

 tieang.append(ang)

 if tieang[0]+tieang[1] == 0 or tieang[0]+tieang[1] == np.pi:

 #if two ties are paralell, they count as one

 ties-=1

 if ties==0:

 self.nodeType="CCC"

 elif ties==1:

 self.nodeType="CCT"

 else:

 self.nodeType="CTT"

class Element: #setup of element class, representing the trusses

 def __init__(self,node1_,node2_):

 self.node1 = node1_

 self.node2 = node2_

 self.width = []

 self.isOkay=True

 def returnOtherNode(self,node_): #return the other node of the element

 if(node_ == self.node1):

 return self.node2

 elif(node_ == self.node2):

 return self.node1

 else:

 print('not valid node')

 def addForce(self,forceMagnitude_): #adds force to the element

 self.forceMagnitude = forceMagnitude_

 def addWidth(self,width): #adds width to element in a list

 self.width.append(width)

class System: #setup for the STM system

 def __init__(self):

 self.nodes = [] #The list of all nodes in the system

 self.elements = [] #The list of all elements in the system

 def addNode(self,node_): #adds nodes to the system

 if(self.existingNode(node_.nodePosition) == False):

 self.nodes.append(node_)

 else:

 print("This node already exist!")

 def addElementWithNodes(self,node1_,node2_): #adds elements to the system

 element = Element(node1_, node2_)

 if(self.existingNode(node1_.nodePosition) == False):

 print("This node1 does not exist. Creat node first")

 elif(self.existingNode(node2_.nodePosition) == False):

 print("This node2 does not exist. Creat node first")

 elif(self.existingElement(element)):

 print("This element already exist")

 else:

 self.elements.append(element)

 def addElementWithElement(self,element_): #adds elements to the system

 node1 = element_.node1

 node2 = element_.node2

 self.addElementWithNodes(node1, node2)

 def connectedNodes(self,node_):

 #returns which nodes are connected to another node by an element

 connectedNodes = []

 if(self.existingNode(node_.nodePosition) != False):

 for element in self.elements:

 if(element.node1.nodePosition == node_.nodePosition):

 connectedNodes.append(element.node2)

 elif(element.node2.nodePosition == node_.nodePosition):

 connectedNodes.append(element.node1)

 return connectedNodes

 else:

 print("This node is not part of the system")

 def elementsFromNode(self,node_):

 #returns which elements are connected to a node

 connectedElements = []

 if(self.existingNode(node_.nodePosition)):

 for element in self.elements:

 if (node_.nodePosition == element.node1.nodePosition

 or node_.nodePosition == element.node2.nodePosition):

 connectedElements.append(element)

 return connectedElements

 else:

 print("This node is not part of the system")

 def existingNode(self,nodePosition_):

 #checks if a node exist in the system

 for node in self.nodes:

 if(node.nodePosition == nodePosition_):

 return node

 return False

 def existingElement(self,element_):

 #checks if an element exist in the system

 for element in self.elements:

 if((element.node1.nodePosition==element_.node1.nodePosition and

 element.node2.nodePosition==element_.node2.nodePosition) or

 (element.node2.nodePosition==element_.node1.nodePosition and

 element.node1.nodePosition==element_.node2.nodePosition)):

 return element

 return False

class ElementForce: #calculates the forces in the trusses

 def __init__(self,system_):

 self.system = system_

 self.solve()

 self.addTypes()

 def elementMatrix(self):

 #setup of matrix with the contributions from the trusses on the nodes

 nNodes = len(self.system.nodes)

 nElements = len(self.system.elements)

 elementMatrix = np.zeros((nNodes*2,nElements)) #creating the matrix

 for i in range(nNodes*2):

 if(i%2 == 0): #forces in x direction

 iNode = int(i/2)

 node = self.system.nodes[iNode]

 connectedElements = self.system.elementsFromNode(node)

 for iElement in range(nElements):

 if(self.system.elements[iElement] in connectedElements):

 element = self.system.elements[iElement]

 elementMatrix[i][iElement] = self.xDirection(node,

element.returnOtherNode(node))

 elif(i%2 == 1): #forces in y direction

 iNode = int((i-1)/2)

 node = self.system.nodes[iNode]

 connectedElements = self.system.elementsFromNode(node)

 for iElement in range(nElements):

 if(self.system.elements[iElement] in connectedElements):

 element = self.system.elements[iElement]

 elementMatrix[i][iElement]=self.yDirection(node,

element.returnOtherNode(node))

 return elementMatrix

 def xDirection (self,node1_,node2_): #calculates the contribution in x-direction

 x1=node1_.nodeX

 x2=node2_.nodeX

 y1=node1_.nodeY

 y2=node2_.nodeY

 L = mt.sqrt((x2-x1)**2+(y2-y1)**2)

 if L == 0: #failsafe

 return 0

 return (x2-x1)/L

 def yDirection (self,node1_,node2_): #calculates contribution i y-direction

 x1=node1_.nodeX

 x2=node2_.nodeX

 y1=node1_.nodeY

 y2=node2_.nodeY

 L=mt.sqrt((x2-x1)**2+(y2-y1)**2)

 if L == 0: #failsafe

 return 0

 return (y2-y1)/L

 def forceMatrix(self): #setup of matrix of external forces on the nodes

 forceMatrix = np.zeros(len(self.system.nodes)*2)

 i = 0

 for node in self.system.nodes:

 if(node.forceMagnitude):

 forceMatrix[i] = node.forceX

 forceMatrix[i+1] = node.forceY

 i+=2

 return forceMatrix

 def solve(self): #solves the matrix equation, and add the truss forces into the elements

 elementMatrix = self.elementMatrix()

 forceMatrix = self.forceMatrix()

 self.elementForce = la.lstsq(elementMatrix, forceMatrix , rcond=None)

 res=False

 for force in self.system.nodes:

 l=len(str(int(force.forceMagnitude)))

 if self.elementForce[1] > 10**(l-1) and l !=1:

 res=True

 if res: #checks if residual is too high

 self.system.residual="\nHigh residual in the calculation of forces, please check

equilibrium!!"

 else:

 self.system.residual=""

 i = 0

 for force in self.elementForce[0]:

 self.system.elements[i].addForce(force)

 i+=1

 return self.elementForce

 def addTypes(self): #adds the nodetypes to the node objects after the trussforces have

been calculated

 for node in self.system.nodes:

 node.nodeType(self.system)

class Checks:

 def __init__(self,system_,thicness_,conClass_,c_):

 #performs design checks for all nodes and elements in the system

 self.system=system_

 self.thickness=thicness_

 self.conClass=conClass_*0.85/1.5

 self.v=1-self.conClass/250

 self.c=c_

 self.output_strings = []

 self.is_okay=True

 self.check()

 string=self.system.residual

 self.output_strings.append(string)

 print(string)

 def check(self):

 num=1 #nodenumber

 for node in self.system.nodes:

 elements=self.system.elementsFromNode(node)

 morethan3=False

 if (len(elements) >= 3 and abs(node.forceMagnitude) >0) or len(elements)> 3 :

#checks if more than 3 forces act on the node

 morethan3=True

 if node.nodeType=="CCC":

 isflat=False

 for elem in elements: #checks if one of the struts are flat

 vector=[elem.node2.nodePosition[0]-

elem.node1.nodePosition[0],elem.node2.nodePosition[1]-elem.node1.nodePosition[1]]

 ang=angle(vector)

 if ang==0:

 isflat=True

 flat=elem

 if node.forceMagnitude: #if external force exist

 F1=node.forceMagnitude

 width1=node.forceWidth

 if isflat:

 F2=flat.forceMagnitude

 width2=2*self.c #assumes height of flat strut to be 2* cover

 flat.addWidth(width2)

 comp=[] #components

 ang=[] #angles

 for elem in elements:

 if elem != flat:

 comp.append(elem)

 node2=elem.returnOtherNode(node)

 vector=[node2.nodePosition[0]-

node.nodePosition[0],node2.nodePosition[1]-node.nodePosition[1]]

 ang.append(angle(vector))

 if morethan3: #calculates the resultant if more than 3 forces

 R=0

 vert=0

 hor=0

 i=0

 while i < len(comp):

 R+=comp[i].forceMagnitude**2

 vert+=comp[i].forceMagnitude*mt.sin(ang[i])

 hor+=comp[i].forceMagnitude*mt.cos(ang[i])

 i+=1

 R=mt.sqrt(R)

 ang=abs(mt.atan(vert/hor))

 F3=R

 width3=width1*mt.sin(ang)+width2*mt.cos(ang)

 node.isOkay=self.CCC(F1, F2, F3, width1, width2, width3, self.thickness,

self.conClass, self.v, num)

 else: #don't need a resultant

 F3=comp[0].forceMagnitude

 width3=abs(width1*mt.sin(ang[0]))+abs(width2*mt.cos(ang[0]))

 comp[0].addWidth(width3)

 node.isOkay=self.CCC(F1, F2, F3, width1, width2, width3, self.thickness,

self.conClass, self.v, num)

 else: #isn't flat

 comp=[]

 ang=[]

 for elem in elements:

 comp.append(elem)

 node2=elem.returnOtherNode(node)

 vector=[node2.nodePosition[0]-

node.nodePosition[0],node2.nodePosition[1]-node.nodePosition[1]]

 angtemp=angle(vector)

 if angtemp > np.pi/2: angtemp=np.pi-angtemp

 ang.append(angtemp)

 F2=comp[0].forceMagnitude

 width2=width1*mt.sin(ang[0])/(mt.sin(np.pi-ang[0]-ang[1]))

 F3=comp[1].forceMagnitude

 width3=width1*mt.sin(ang[1])/(mt.sin(np.pi-ang[0]-ang[1]))

 comp[0].addWidth(width2)

 comp[1].addWidth(width3)

 node.isOkay=self.CCC(F1, F2, F3, width1, width2, width3, self.thickness,

self.conClass, self.v, num)

 else: #no external force, internal CCC node is smeared

 string = "Node "+str(num)+" is a smeered node, no check needed"

 print(string)

 self.output_strings.append(string)

 elif node.nodeType=="CCT":

 if node.forceMagnitude > 0: #if external force exist

 F1=node.forceMagnitude

 width1=node.forceWidth

 if morethan3:

 comp=[]

 ang=[]

 strut=0

 tie=0

 for elem in elements:

 if elem.forceMagnitude < 0:

 tie+=1

 else:

 strut+=1

 comp.append(elem)

 node2=elem.returnOtherNode(node)

 vector=[node2.nodePosition[0]-

node.nodePosition[0],node2.nodePosition[1]-node.nodePosition[1]]

 angtemp=angle(vector)

 ang.append(angtemp)

 if strut==2: #2 struts at CCT node with external force, checked twice,

once for each side

 width2_1=width1*np.sin(ang[0])+2*self.c*np.cos(ang[0]) #assumes

height of tie to be 2* cover

 width2_2=width1*np.sin(ang[1])+2*self.c*np.cos(ang[1])

 F2_1=comp[0].forceMagnitude

 F2_2=comp[1].forceMagnitude

 comp[0].addWidth(width2_1)

 comp[1].addWidth(width2_2)

 node.isOkay=self.CCT(F1, F2_1, self.thickness, width1, width2_1,

self.conClass, self.v, num)

 node.isOkay=self.CCT(F1, F2_2, self.thickness, width1, width2_2,

self.conClass, self.v, num)

 else:

 string = "please have a maximum of 2 struts at node " +str(num)

 print(string)

 self.output_strings.append(string)

 else: #if not more than 3

 for elem in elements:

 if elem.forceMagnitude > 0:

 node2=elem.returnOtherNode(node)

 vector=[node2.nodePosition[0]-

node.nodePosition[0],node2.nodePosition[1]-node.nodePosition[1]]

 ang=angle(vector)

 F2=elem.forceMagnitude

 width2=width1*np.sin(ang)+2*self.c*np.cos(ang) #assumes heigth

of tie to be 2* cover

 elem.addWidth(width2)

 node.isOkay=self.CCT(F1, F2, self.thickness, width1, width2, self.conClass,

self.v, num)

 else: #no external force

 if morethan3:

 comp=[]

 ang=[]

 strut=0

 isflat=False

 for elem in elements:

 if elem.forceMagnitude > 0:

 strut+=1

 comp.append(elem)

 node2=elem.returnOtherNode(node)

 vector=[node2.nodePosition[0]-

node.nodePosition[0],node2.nodePosition[1]-node.nodePosition[1]]

 angtemp=angle(vector)

 ang.append(angtemp)

 if angtemp==0:

 isflat=True

 flat=elem

 comp.remove(flat)

 if strut==3:

 if isflat:

 F1=flat.forceMagnitude

 width1=2*self.c

 flat.addWidth(width1)

 R=0

 vert=0

 hor=0

 i=0

 while i < len(comp):

 R+=comp[i].forceMagnitude**2

 vert+=comp[i].forceMagnitude*mt.sin(ang[i])

 hor+=comp[i].forceMagnitude*mt.cos(ang[i])

 i+=1

 R=mt.sqrt(R)

 ang=abs(mt.atan(vert/hor))

 F2=R

 width2=width1*mt.sin(ang)+width2*mt.cos(ang)

 node.isOkay=self.CCT(F1, F2, self.thickness, width1, width2,

self.conClass, self.v, num)

 else:

 string = "Node "+str(num)+" is a smeared node, no check needed"

 print(string)

 self.output_strings.append(string)

 else:

 string = "Too many struts at node "+str(num)

 print(string)

 self.output_strings.append(string)

 else: #3 trusses

 comp=[]

 ang=[]

 isflat=False

 for elem in elements:

 if elem.forceMagnitude > 0:

 comp.append(elem)

 node2=elem.returnOtherNode(node)

 vector=[node2.nodePosition[0]-

node.nodePosition[0],node2.nodePosition[1]-node.nodePosition[1]]

 angtemp=angle(vector)

 ang.append(angtemp)

 if angtemp==0:

 isflat=True

 flat=elem

 comp.remove(flat)

 if isflat:

 F1=flat.forceMagnitude

 width1=2*self.c

 flat.addWidth(width1)

 F2=comp[0].forceMagnitude

 width2=width2=width1*mt.sin(ang[0])+width2*abs(mt.cos(ang[0]))

 comp[0].addWidth(width2)

 node.isOkay=self.CCT(F1, F2, self.thickness, width1, width2,

self.conClass, self.v, num)

 else: #isn't flat

 string = "Node "+str(num)+" is a smeared node, no check needed"

 print(string)

 self.output_strings.append(string)

 else: #CTT node

 for elem in elements:

 if elem.forceMagnitude > 0:

 F1=elem.forceMagnitude

 node2=elem.returnOtherNode(node)

 vector=[node2.nodePosition[0]-

node.nodePosition[0],node2.nodePosition[1]-node.nodePosition[1]]

 ang=angle(vector)

 width1=self.c*np.sin(ang)+2*self.c*np.cos(ang)

 elem.addWidth(width1)

 node.isOkay=self.CTT(F1, self.thickness, width1, self.conClass, self.v, num)

 num+=1 #adds to the nodenumber

 print('')

 self.output_strings.append('')

 num=1 #truss number

 for elem in self.system.elements:

 if elem.forceMagnitude >0: #checks if strut or tie

 elem.isOkay=self.strut(elem, self.thickness, self.conClass, self.v, num)

 else:

 self.tie(elem.forceMagnitude,num)

 num+=1 #adds to trussnumber

 if self.is_okay: #if the system doesnt fail

 string="\nThe capacity of the system is enough"

 print (string)

 self.output_strings.append(string)

 s=strainEnergy(self.system) #calculate strain energy if the system holds

 string='\nThe strain energy in the system is ' +str(int(s))+' J'

 print (string)

 self.output_strings.append(string)

 else:

 string="\nThe capacity of the system is NOT enough!!!"

 print (string)

 self.output_strings.append(string)

 def CCC(self, F1, F2, F3, width1, width2, width3, bredd, strength, v, num):

 #design check of CCC node

 sigma_1=(F1/(bredd*width1)) #stresses

 sigma_2=(F2)/(bredd*width2)

 sigma_3=F3/(bredd*width3)

 sigma_M=v*strength #Ec2. formula(6.60) for ccc-node

 if sigma_1 > sigma_M or sigma_2 > sigma_M or sigma_3 > sigma_M:

 string = "The capacity of node " +str(num)+" is not enough."

 print (string)

 self.output_strings.append(string)

 self.is_okay=False

 return False

 else:

 string = "The capacity of node " +str(num)+" is OK!"

 print(string)

 self.output_strings.append(string)

 return True

 def CCT(self, F1, F2, bredd, width1, width2, strength, v, num): #design check for CCT

node

 sigma_1=F1/(width1*bredd) #stresses

 sigma_2=F2/(width2*bredd)

 sigma_M=0.85*v*strength #Ec2. formula(6.61) for cct-node

 if sigma_1 > sigma_M or sigma_2 > sigma_M:

 string = "The capacity of node " +str(num)+" is not enough."

 print (string)

 self.output_strings.append(string)

 self.is_okay=False

 return False

 else:

 string="The capacity of node " +str(num)+" is OK!"

 print(string)

 self.output_strings.append(string)

 return True

 def CTT(self, F1, bredd, width1, strength, v, num): #design check for CTT node

 sigma_1=F1/(width1*bredd) #stress

 sigma_M=0.75*v*strength #Ec2. formula(6.62) for ctt-node

 if sigma_1 > sigma_M:

 string = "The capacity of node " +str(num)+" is not enough."

 print (string)

 self.output_strings.append(string)

 self.is_okay=False

 return False

 else:

 string = "The capacity of node " +str(num)+" is OK!"

 print(string)

 self.output_strings.append(string)

 return True

 def strut(self, element, thickness, strength, v, num):

 #design check of strut

 isokay=True

 sigma_M=0.6*v*strength # Ec2. formula(6.56) for strut with transverse tensile stress

 for i in element.width: #checking both ends of the strut

 sigma=element.forceMagnitude/(i*thickness)

 if sigma > sigma_M:

 isokay=False

 if isokay == False:

 string = "The capacity of strut " +str(num)+" is not enough."

 print (string)

 self.output_strings.append(string)

 self.is_okay=False

 return False

 else:

 string = "The capacity of strut " +str(num)+" is OK!"

 print(string)

 self.output_strings.append(string)

 return True

 def tie(self,F,num): #calculate required reinforcement in the ties

 Area_s=round(abs(F)/434 +0.5)

 string = "Required reinforcement area in tie "+str(num)+" is "+str(Area_s)+"mm^2"

 print(string)

 self.output_strings.append(string)

class Plot: #plots the system

 def __init__(self,system_):

 self.system=system_

 self.pl=self.draw()

 def draw(self):

 arrows=True

 import matplotlib as mpl

 import matplotlib.pyplot as plt

 f = plt.figure()

 num=1 #nodenumber

 for node in self.system.nodes: #plotting the nodes

 x=node.nodeX

 y=-node.nodeY

 cor="("+str(node.nodeX)+","+str(-node.nodeY)+")"

 if node.isOkay:

 plt.plot(x, y, 'ko')

 else:

 plt.plot(x,y,'ro')

 plt.annotate(num, xy=(x, y), xytext=(x+80, y-80), color='blue')

 plt.annotate(cor, xy=(x, y) , xytext=(x, y+150),color='blue')

 if arrows:

 if node.forceMagnitude !=0: #arrows, not fun might break

 lolx=len(str(int(node.forceX)))

 if abs(node.forceX) < 1:

 x1=x

 if node.forceX<0:

 x1=x-(node.forceX*node.forceMagnitude/(10**(lolx-3.2)))

 else:

 x1=x+(node.forceX*node.forceMagnitude/(10**(lolx-3.2)))

 loly=len(str(int(node.forceY*node.forceMagnitude)))

 if node.forceAngle == (3*np.pi/2):

 y1=y+(node.forceY*node.forceMagnitude/(10**(loly-4.2)))

 else:

 y1=y+(node.forceY*node.forceMagnitude/(10**(loly-3.2)))

 plt.annotate(str(abs(node.forceMagnitude)), xy=(x, y), xytext=(x1, y1),

arrowprops=dict(facecolor='black', shrink=0.05))

 num+=1

 num=1 #element number

 for elem in self.system.elements:

 xmid=(elem.node1.nodeX+elem.node2.nodeX)/2

 ymid=(-elem.node1.nodeY+-elem.node2.nodeY)/2

 #angles of the plotted forces, and numbering of element

 if (elem.node1.nodeX>elem.node2.nodeX and elem.node1.nodeY <

elem.node2.nodeY) or (elem.node2.nodeX>elem.node1.nodeX and elem.node2.nodeY <

elem.node1.nodeY):

 ang=180-mt.degrees(angle([elem.node2.nodeX-elem.node1.nodeX,-

elem.node2.nodeY--elem.node1.nodeY]))

 plt.annotate(num, xy=(x, y), xytext=(xmid+50,ymid-80))

 else:

 ang=-mt.degrees(angle([elem.node2.nodeX-elem.node1.nodeX,-

elem.node2.nodeY--elem.node1.nodeY]))

 plt.annotate(num, xy=(x, y), xytext=(xmid-60,ymid-80))

 if elem.forceMagnitude<0:

 plt.plot([elem.node1.nodeX,elem.node2.nodeX],[-elem.node1.nodeY,-

elem.node2.nodeY],'k-')

 plt.annotate(round(elem.forceMagnitude), xy=(xmid,ymid), xytext=(xmid-110,

ymid+50), rotation=ang)

 else:

 if elem.isOkay:

 plt.plot([elem.node1.nodeX,elem.node2.nodeX],[-elem.node1.nodeY,-

elem.node2.nodeY],'k--')

 plt.annotate(round(elem.forceMagnitude), xy=(xmid,ymid), xytext=(xmid-80,

ymid+50), rotation=ang)

 else:

 plt.plot([elem.node1.nodeX,elem.node2.nodeX],[-elem.node1.nodeY,-

elem.node2.nodeY],'r--')

 plt.annotate(round(elem.forceMagnitude), xy=(xmid,ymid), xytext=(xmid-80,

ymid+50), rotation=ang)

 num+=1

 plt.axis('off') #turn off axissystem

 plt.gca().set_aspect('equal', adjustable='box')

 f.set_size_inches(10, 5.6, forward=True) #set size of the figure

 return f

def strainEnergy(system): #calculates the total strain energy in the system

 strain=0

 for i in system.elements:

 if i.forceMagnitude < 0:

 l=mt.sqrt((i.node1.nodeX-i.node2.nodeX)**2+(i.node1.nodeY-i.node2.nodeY)**2)

 strain+=abs(i.forceMagnitude)*l*434/200000*10**(-3)

 return strain

def angle(vector): #calculate angle from the horizontal to a vector

 vector_2=[mt.inf,0]

 ang1 = np.arctan2(*vector[::-1])

 ang2 = np.arctan2(*vector_2[::-1])

 ang=(ang2 - ang1) % (2 * np.pi)

 if ang >np.pi/2: ang=np.pi-ang

 return abs(ang)

B: GUI Code

import tkinter as tk

import STM as e

import numpy as np

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg

from matplotlib.figure import Figure

nodes = []

elements = []

system = e.System()

thicness = 0

conClass = 0

c = 0

number_nodes = 0

#first window, to specify number of nodes:

window1 = tk.Tk()

window1.title('STM')

window1.geometry('500x200')

def submitNumberNodes():

 number=ent_number_nodes.get()

 if(number.isdigit()):

 global number_nodes

 number_nodes = int(number)

 window1.destroy()

intro_string = ("Welcome! This program will help you check if your strut-and-tie model is

sufficient.\n" +

 "This program will show you four windows in sequence. Each window will\n" +

 "tell you what you need to know to fill in the required information. Good luck!")

lbl_intro = tk.Label(text =intro_string)

lbl_number_nodes = tk.Label(text="Enter number of nodes:")

ent_number_nodes = tk.Entry()

btn_submit = tk.Button(text="Submit", command = submitNumberNodes)

lbl_intro.pack()

lbl_number_nodes.pack()

ent_number_nodes.pack()

btn_submit.pack()

window1.mainloop()

#second window to setup the system

window2 = tk.Tk()

window2.title('System setup')

window2.geometry('500x200')

entry_x = [] #cordinates in x direction

entry_y = [] #cordinates in y direction

connected = [] #checkboxes

n=0

entry_force_magnitudes = [] #external forces

entry_force_widths = [] #external forces widths

error_text = []

error_lables = []

satisfied = True

def submitNodes():

 global error_text

 error_text = []

 global satisfied

 satisfied = True

 global nodes

 nodes.clear()

 global elements

 elements.clear()

 sum_force_magnitude = 0

 for i in range(number_nodes):

 force_magnitude = entry_force_magnitudes[i].get()

 force_width = entry_force_widths[i].get()

 if(force_magnitude==""):

 force_magnitude = 0

 force_width = 0

 elif(force_magnitude.isdigit() or (force_magnitude[0]=="-" and

force_magnitude[1:len(force_magnitude)].isdigit())):

 if(force_width.isdigit()):

 force_magnitude = int(force_magnitude)

 force_width = int(force_width)

 else:

 error_text.append("Force width must be filled with integer number when force

magnitude is applied.")

 print("Force width must be filled with integer number when force magnitude is

applied.")

 satisfied = False

 break

 else:

 error_text.append("The magnitude must be filled with integer number.")

 print("The magnitude must be filled with integer number.")

 satisfied = False

 break

 sum_force_magnitude += force_magnitude

 node_position = []

 x = entry_x[i].get()

 y = entry_y[i].get()

 val1 = True

 try:

 x = int(x)

 y = int(y)

 except:

 val1 = False

 if(val1):

 satisfied = True

 node_position.append(x)

 node_position.append(y*-1)

 if(force_magnitude<0):

 node =

e.Node(node_position,forceMagnitude_=abs(force_magnitude),forceWidth_=force_width)

 nodes.append(node)

 else:

 node =

e.Node(node_position,forceMagnitude_=force_magnitude,forceWidth_=force_width,forceAn

gle_=3*np.pi/2)

 nodes.append(node)

 else:

 error_text.append("All positions need to be filled with integer number")

 print("All positions need to be filled with integer number")

 satisfied = False

 break

 connected_index=0

 if(sum_force_magnitude !=0):

 error_text.append("The structure needs to be at vertical equilibrium")

 satisfied = False

 if(len(error_lables)>0):

 for l in error_lables:

 l.destroy()

 error_lables.clear()

 if(satisfied==False):

 for t in error_text:

 label_error=tk.Label(text = t)

 label_error.pack()

 error_lables.append(label_error)

 if(satisfied):

 for i in range(number_nodes-1):

 for j in range(number_nodes-1-i):

 element = []

 if(connected[connected_index].get()):

 element.append(nodes[i])

 element.append(nodes[j+i+1])

 elements.append(element)

 connected_index+=1

 for node in nodes:

 global system

 system.addNode(node)

 for element in elements:

 system.addElementWithNodes(element[0], element[1])

 e.ElementForce(system) #calculating the internal forces of the elements

 window2.destroy()

label = tk.Label(text="Input: Node cordinates, connected node(s), force at node.\n" +

 "Right handed cordinate system, positiv x to the rigth and positive y upwards.")

label.pack(padx=1, pady=1)

grid_frame = tk.Frame(window2)

#creating the grid for the nodes:

for i in range(number_nodes+2):

 grid_frame.columnconfigure(i, weight=1)

 grid_frame.rowconfigure(i, weight=1)

 for j in range(number_nodes+6):

 frame = tk.Frame(master=grid_frame)

 frame.grid(row=i, column=j,padx=1, pady=1)

 if(i==0):

 if(j==0):

 label = tk.Label(master=frame, text="Nodes")

 label.pack()

 elif(j==1):

 label = tk.Label(master=frame, text="X [mm]")

 label.pack()

 elif(j==2):

 label = tk.Label(master=frame, text="Y [mm]")

 label.pack()

 elif(j>2 and j<number_nodes+3):

 label = tk.Label(master=frame, text=j-2)

 label.pack()

 elif(j==number_nodes+4):

 label = tk.Label(master=frame, text="Force magnitude [N]")

 label.pack()

 elif(j==number_nodes+5):

 label = tk.Label(master=frame, text="Force width [mm]")

 label.pack()

 if(j==0 and i>0 and i<number_nodes+1):

 label = tk.Label(master=frame, text=i)

 label.pack()

 if(j==1 and i>0 and i<number_nodes+1):

 ent_number_x = tk.Entry(master=frame,width = 10)

 ent_number_x.pack()

 entry_x.append(ent_number_x)

 if(j==2 and i>0 and i<number_nodes+1):

 ent_number_y = tk.Entry(master=frame,width = 10)

 ent_number_y.pack()

 entry_y.append(ent_number_y)

 if(i>=1 and i<number_nodes+1 and j>i+2 and j<number_nodes+3):

 var = tk.IntVar()

 connected.append(var)

 check = tk.Checkbutton(master=frame,variable = connected[n])

 check.pack()

 n+=1

 if(i > 0 and i<number_nodes+1 and j == number_nodes+4):

 ent_force_magnitude = tk.Entry(master=frame,width = 18)

 ent_force_magnitude.pack()

 entry_force_magnitudes.append(ent_force_magnitude)

 if(i > 0 and i<number_nodes+1 and j == number_nodes+5):

 ent_force_width = tk.Entry(master=frame,width = 18)

 ent_force_width.pack()

 entry_force_widths.append(ent_force_width)

 if(i == number_nodes+1 and j == number_nodes+5):

 btn_submit_1 = tk.Button(master=frame,text="Submit", command =

submitNodes)

 btn_submit_1.pack()

grid_frame.pack(fill = tk.BOTH)

window2.mainloop()

#window three to specify the concrete

window3 = tk.Tk()

window3.title('Concrete specification')

window3.geometry('500x200')

def submitInputs():

 global thicness

 global conClass

 global c

 val = True

 if(ent_concrete_class.get().isdigit()):

 conClass = int(ent_concrete_class.get())

 else:

 val=False

 if(ent_concrete_cover.get().isdigit()):

 c = int(ent_concrete_cover.get())

 else:

 val=False

 if(ent_thicness.get().isdigit()):

 thicness = int(ent_thicness.get())

 else:

 val=False

 if(val):

 window3.destroy()

lbl_instruction = tk.Label(text="All the numbers needs to be a integer number")

lbl_concrete_class = tk.Label(text="Enter the concrete class:")

ent_concrete_class = tk.Entry()

lbl_thicness = tk.Label(text="Enter the breadth of the concrete structure in mm:")

ent_thicness = tk.Entry()

lbl_concrete_cover = tk.Label(text="Enter the distance from concrete surface to center of

tie in mm:")

ent_concrete_cover = tk.Entry()

btn_submit2 = tk.Button(text="Submit", command = submitInputs)

lbl_instruction.pack()

lbl_concrete_class.pack()

ent_concrete_class.pack()

lbl_thicness.pack()

ent_thicness.pack()

lbl_concrete_cover.pack()

ent_concrete_cover.pack()

btn_submit2.pack()

window3.mainloop()

checks = e.Checks(system, thicness, conClass, c) #do the checks for the stm

#window four to show results

window4 = tk.Tk()

window4.title('Results')

lbl_frame = tk.Frame(window4)

plt_frame = tk.Frame(window4)

output = checks.output_strings

for string in output:

 label=tk.Label(master = lbl_frame,text = string)

 label.pack()

plot = e.Plot(system)

fig = plot.draw()

canvas = FigureCanvasTkAgg(fig, master = plt_frame)

canvas.draw()

canvas.get_tk_widget().pack()

lbl_frame.pack(side=tk.LEFT)

plt_frame.pack(side=tk.RIGHT)

window4.mainloop()

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f S

tr
uc

tu
ra

l E
ng

in
ee

rin
g

Kevin Berget
Martine Grahl-Nielsen

Developing a Python program to
design concrete elements using the
strut and tie model

Master’s thesis in Civil and Enviromental Engineering
Supervisor: Daniel Cantero
June 2022

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Preface
	1 Introduction
	1.1 Background
	1.2 Purpose of the thesis
	1.3 Existing programs
	1.4 Report Outline

	2 Strut and tie model
	2.1 General
	2.2 Separate B- and D-regions
	2.3 Develop the strut and tie model
	2.4 Design the members
	2.4.1 General
	2.4.2 Nodes
	2.4.2.1 General
	2.4.2.2 Geometry of the node
	2.4.2.3 Design compressive stress

	2.4.3 Struts
	2.4.4 Ties

	2.5 Minimize the strain

	3 Software and Tools
	3.1 General
	3.2 Python
	3.3 Spyder
	3.4 Git
	3.4.1 General
	3.4.2 GitLab
	3.4.3 GitHub Desktop

	4 The program
	4.1 General
	4.2 Class setup
	4.3 Node
	4.4 Element
	4.5 System
	4.5.1 General
	4.5.2 Add nodes
	4.5.3 Add elements
	4.5.4 Other functions

	4.6 ElementForce
	4.6.1 General
	4.6.2 Create the elementMatrix
	4.6.3 Fill the elementMatrix
	4.6.4 Create and fill the forceMatrix
	4.6.5 Establish and solve the equation
	4.6.6 Add the result to the element objects and add type to the node objects

	4.7 Checks
	4.8 Plot
	4.9 Outputs

	5 User manual
	5.1 General
	5.2 Downloading the repository
	5.2.1 General
	5.2.2 Repository content

	5.3 Python script
	5.3.1 General
	5.3.2 Importing the STM file
	5.3.3 System setup
	5.3.4 Calculating the element force
	5.3.5 Do the design checks
	5.3.6 Plotting the results

	5.4 Graphical user interface
	5.4.1 General
	5.4.2 Window one: Number of nodes
	5.4.3 Window two: System setup
	5.4.4 Window three: Concrete specification
	5.4.5 Window four: Results

	6 Examples
	6.1 General
	6.2 Example 1: two-pile cap
	6.2.1 General
	6.2.2 Model setup
	6.2.3 Results

	6.3 Example 2: deep beam
	6.3.1 General
	6.3.2 Model setup
	6.3.3 Results

	6.4 Example 3: Deep beam with large openings and recess
	6.4.1 General
	6.4.2 Model setup
	6.4.3 Results

	7 Study
	7.1 General
	7.2 Study one: Symmetrical deep beam
	7.2.1 General
	7.2.2 First run
	7.2.3 Second run
	7.2.4 Results

	7.3 Study two: Deep beam with a non-centered point load
	7.3.1 General
	7.3.2 First run
	7.3.3 Second run
	7.3.4 Results

	7.4 Discussion of the studies
	7.5 Conclusion of the studies

	8 Discussion
	8.1 General
	8.2 The process
	8.3 Limitation
	8.3.1 General
	8.3.2 Geometry of the concrete structure
	8.3.3 Forces on the concrete structure
	8.3.4 Node
	8.3.5 Arrows

	8.4 Examples
	8.5 Study
	8.6 Using the program

	9 Conclusion
	10 Future Work
	References
	Appendix
	A: STM code
	B: GUI Code

