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Abstract 
The strut and tie model (STM) is a method for designing concrete structures and is a valuable 

tool in regions where the use of standard beam theory is insufficient. STM uses the flow of 

forces through a structure to create an imaginary truss system and do design checks on this 

system. However simple using STM can be time-consuming. Therefore, this thesis has created 

a Python program to calculate and do necessary design checks of strut and tie models. The 

Python program is developed to make it easy to establish and check a given strut and tie 

model, using the design rules of Eurocode 2. 

Some examples have been established to showcase that the calculation in the program is 

correct compared to hand-calculated problems. Using the program instead of hand calculation 

makes the calculation more efficient and with less chance of consequential error. The program 

also allows changing the STM fast and effectively to calculate many different STMs or iterate 

with minor changes on an existing one. 

This thesis has also developed a graphical user interface (GUI) with the program as a base. 

The GUI will make the program more accessible for more people to establish and check strut 

and tie models. 

Lastly, a small study has been conducted using the program. This study investigates simply 

supported deep beams with point loads and tries to optimize the STM. The result of this study 

shows that fewer vertical ties in the STM lead to less strain energy and thus “better” STMs, 

given that the design checks are okay.  

Here is the link to the online repository of the developed program: 

https://gitlab.stud.idi.ntnu.no/martgrah/stm 

  

https://gitlab.stud.idi.ntnu.no/martgrah/stm
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Sammendrag 
Stavmodellen er en metode for å designe betongkonstruksjoner, og er et verdifullt redskap i 

områder hvor det ikke er mulig å benytte vanlig bjelketeori. Metoden bruker fordelingen av 

krefter gjennom konstruksjonen for å danne et imaginært fagverkssystem, for så å gjøre 

kapasitetskontroller av disse. Til tross for stavmodellens enkelhet, kan den være ganske 

tidkrevende å bruke. Derfor har det i dette prosjektet blitt laget et Python-program for å 

beregne og gjennomføre nødvendige kapasitetskontroller av stavmodellen. Python-

programmet er laget for å gjøre det enkelt å etablere og sjekke enhver stavmodell med 

utgangspunkt i reglegene fra Eurokode 2. 

Det har blitt laget noen eksempler for å vise at beregningene fra programmet samsvarer med 

håndberegninger. Ved bruk av programmet fremfor håndberegninger, blir utførelse av 

beregninger mer effektivt i tillegg til en lavere sjanse for følgefeil. Programmet gir også 

muligheten til å endre på stavmodellen raskt og enkelt, for å kunne regne mange forskjellige 

stavmodeller eller iterer eksisterende stavmodeller med små forandringer. 

Det har også blitt utviklet et brukergrensesnitt til programmet. Dette brukergrensesnittet vil 

gjøre programmet mer tilgjengelig. 

Til slutt har det blitt gjennomført en liten studie ved bruk av programmet. Denne studien 

undersøker fritt opplagte dype bjelker med punktlast for å prøve å finne den optimale 

stavmodellen. Resultatene herfra viser at færre vertikale strekkstaver i stavmodellen fører til 

mindre tøyningsenergi, og dermed en «bedre» stavmodell, gitt at kapasiteten er ok. 

Her er lenken til oppbevaringsstedet til Python programmet: 

https://gitlab.stud.idi.ntnu.no/martgrah/stm 

  

https://gitlab.stud.idi.ntnu.no/martgrah/stm
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1 Introduction 

1.1 Background 

Strut and tie model/modeling (STM) is a method for designing complex concrete structures. 

It can be used in all concrete structures but is most effective where standard beam theory is 

inadequate. Strut and tie modeling is a simple but powerful method to design these regions, 

called D-regions. D-regions would generally need lots of advanced calculations to be designed. 

In contrast, STM can be done with hand calculations and a fraction of the calculations. 

Even though the calculations are simple, there are a few drawbacks to using strut and tie 

modeling as a design tool. One of them is that the number of calculations rapidly increases in 

STMs with more than a couple of trusses, resulting in a long calculation process. Another 

drawback is that if the design fails in just one of the design checks, the whole STM fails, and 

a redesign is needed. Most of the calculations must be redone for each redesign, which adds 

a lot of time and resources. Lastly, since there are many ways of constructing an STM, some 

solutions may be better than others. So, iterations are needed to design a suitable structure 

using STM. Each iteration needs to go through all the previous steps in the design to get a 

satisfactory result. So, even though STM is a simple and effective method for concrete design, 

the complete procedure of an optimal design can take a long time and use many resources. 

1.2 Purpose of the thesis 

This thesis work aims to develop a Python program to calculate and control the capacity of 

any given strut and tie model. This program will help overcome the time- and resource-

consuming part of strut and tie modeling. The benefits of the Python program are quickly 

checking if a given STM is okay and quickly changing the values of the STM to iterate and find 

the optimal solution. Later in the thesis, a small study will be completed using the developed 

program. This study is meant to learn something about the strut and tie model and its 

behavior and showcase some potential program uses. 

1.3 Existing programs 

During research for this thesis, papers and studies that had used software to calculate STM 

emerged. The programs used in these studies seemed more advanced than those developed 

in this project. However, these programs have been used to study and analyze different 

aspects of STM, and the programs were just tools for these analyses. Thus, these programs 

are not publicly available or even discussed in detail. The program developed in this thesis is 

meant to be a helping tool in the design process of STM and will be made publicly available.  

A commercially available program for doing design with the strut and tie model, AStrutTie, 

was found during research for this thesis. However, this program being a commercial tool is 

quite expensive. Given that the nature of this thesis was to develop a freely available program, 

this program is not seen as a contender in the same market. 
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1.4 Report Outline 

Section 1 is the introduction to the thesis. This section presents some background 

information and the purpose of the thesis. 

Section 2 presents the theory of the strut and tie model. It will present how to establish an 

STM and go through all the necessary design checks and rules. 

Section 3 will present the software and tools used to develop the program. 

Section 4 will present the program. It will go through the classes, how they work and are 

built, and explain the code and workflow of the program. 

Section 5 will present a user manual explaining one way of using the code. It also explains 

how to use the graphical user interface. 

Section 6 will present some strut and tie examples. It will compare the results of 

precalculated examples with the results from the program.  

Section 7 will present a short study using the program and trying to optimize some STMs 

for deep beams. 

Section 8 presents the discussion. It outlines the process of developing the program, its 

limitations, and some additional comments on the examples and study. 

Section 9 presents a conclusion of the whole thesis 

Section 10 presents some suggestions for future work on this topic 
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2 Strut and tie model 

2.1 General 

Strut and tie modeling is an effective method for doing design checks on complicated concrete 

structures/elements. Instead of doing design checks for the entire element, STM focuses on 

the stress patterns in the element and designs according to them. The stress pattern is usually 

represented by an imaginary triangular truss pattern, where the compression trusses 

represent the concrete strut, and the tension trusses represent the steel reinforcement ties. 

STM can be applied in almost any concrete element design, in both serviceability limit state 

and ultimate limit state, even though it is most common in ultimate limit state design. 

However, STM is especially useful in zones or regions where it is impossible to use “normal” 

beam theory, so-called D-regions (Tae, 2021). Structures where plane sections remain plane 

cannot be designed using “normal” beam theory. Other calculations are required in these 

cases; this is where STM comes in.  

The goal of STM is to determine the flow of the internal forces in the structure to perform the 

design checks in the critical areas of the element. An STM consists of nodes, ties, and struts. 

The struts and ties should follow the stress patterns in the element, and the nodes are the 

interfacial zones between struts and ties. It is necessary to do design checks on each of these 

components. An example of an STM is illustrated in Figure 1. 

The strut and tie model is based on the lower bound theorem of limit analysis. The lower 

bound theorem states that if equilibrium can be found that balances the applied loads and is 

everywhere below or at the plastic moment value, the structure will not collapse or be at the 

point of collapse. In other words, the lower bound theorem ensures the strut and tie model is 

safe and conservative as long as the equilibrium and yield criteria are satisfied. The collapse 

load itself is the most significant load value to come out of an STM. The lower bound theorem 

is especially useful in tension-weak materials like concrete. (Chen & El-Metwally, 2017). This 

gives that if the STM is reasonably well designed and passes all the design checks, the result 

will be on the safe side of collapse. 
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Figure 1: Example of a strut and tie model 

There are several steps to follow when designing an STM. Later sections will discuss the design 

steps for the STM in more detail. The process for designing a strut and tie model is as follows: 

1. Separate B- and D-regions, see section 2.2 

2. Develop the STM, see section 2.3 

3. Design the members of the STM, see section 2.4 

4. Minimize the strain energy by optimizing the model, see section 2.5 

2.2 Separate B- and D-regions 

There are two different types of regions in a concrete structure. These regions are called B- 

and D-regions. In B-regions, also called Bernoulli regions, the strains are linear, making it 

possible to use existing methods for design checks and calculating required reinforcement. At 

D-regions, also called discontinuity or distribution regions, the strains are non-linear. 

Therefore, it is impossible to use the standard design rules for D-regions. Even though the 

strut and tie model can be used in both B- and D-regions, it is most useful in D-regions.  

Hence, D-regions will be the primary goal of this thesis. 

There are often multiple D-regions in a structure. D-regions are where there is a discontinuity 

in the geometry or the load on a structure. Examples of D-regions are, among others, deep 

beams, frame corners, dapped ends, corbels, or structures with holes. Examples of D-regions 

with geometry disturbances are shown in Figure 2, and load disturbances are shown in Figure 

3. 
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Figure 2 Examples of geometry D-regions. (Goodchild et al., 2014) 

 

Figure 3 Examples of load and/or geometry D-regions, marked with grey. (Goodchild et al., 

2014) 
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2.3 Develop the strut and tie model 

The process of developing an STM is as follows: 

1. Find the load paths in a structure 

2. Choose the position of the struts, ties, and nodes 

3. Optimizing the Solution 

When creating an STM, it is essential to remember that the model should allow for sufficient 

cover over the reinforcement. In figures of strut and tie models, struts are represented by 

dashed lines, fully drawn lines represent ties, and dots represent the nodes. 

The first step in developing an STM is determining the flow of forces through the structure. 

There are many ways to do this. Experience and common sense are one way (Tae, 2022). For 

example, in a simply supported deep beam with a central point load, it is simple to find the 

load path. In this case, the load-path will follow a triangular shape with compression in the 

diagonals and tension parallel to the structure in the lower section, like the example shown 

in Figure 1. Finite element analysis (FEA) is another way of determining the flow of forces in 

the structure. FEA uses numerical mathematical models to find the direction and magnitude 

of forces in elements or structures (English, 2019). FEA can be helpful in more complex 

concrete structures and load cases, as these can give more reliable results than human 

experience.  

After determining the load paths, the next step is to place the struts and ties. Struts should 

be placed where there is compression and ties where there is tension. Struts can be placed 

wherever in a structure but should be placed where there is compression. Ties should be 

placed where there is tension in the structure. However, where struts are “imaginary” and 

represent concrete, ties represent the reinforcement in the structure. Hence, orienting the 

ties parallel or perpendicular to the element’s surface is common. This placement of the ties 

is done to help ease the structure’s construction, and dealing with angles in construction is 

laborious and a source of errors, but not impossible. Some other rules are implemented in 

the STM setup to avoid strain incompatibilities, like that the minimum angle between a strut 

and a tie meeting at a node should not be less than 35 degrees (Goodchild et al., 2015). 

There are often several ways to create an STM. Figure 4 shows an example of one structure 

with several STM solutions. So, the last step to developing an STM is to decide the “best” 

solution. The total strain energy typically chooses the “best” strut and tie model. The STM 

with less strain energy results in a “better” STM and will be explained more in-depth in section 

2.5. 
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Figure 4: Example of possible valid strut and tie models for the same load case (Walter, 2017) 

2.4 Design the members 

2.4.1 General 

When the STMs geometry is defined, the next step is to design the components. The 

components refer to the STMs struts, ties, and nodes. Some parameters must be established 

before the design checks. Some of them are stated, and others are calculated.  

The parameters that need to be given before the design checks are: 

- The concrete class 

- The breadth of the concrete element 

- The distance from the surface of the structure to the center of the tie 

- External forces on the element 

- The placement of the strut, ties, and nodes in the STM 

From the given parameters, trigonometry and equilibrium equations can quickly determine 

the angles and forces in the STM. As for the dimensions of the trusses, it is a bit more 

complicated. The breadth of the trusses is the same as the breadth of the concrete element, 

but node geometry determines the width of the trusses. 

This section will go through the design of each of the members in the STM: nodes, struts, and 

ties. The design checks will be done according to the checks in Eurocode 2. 
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2.4.2 Nodes 

2.4.2.1 General 

There are two ways to categorize nodes: smeared and concentrated nodes. Within large STMs 

with many nodes, smeared nodes are the most common. In these nodes, the concrete stress 

is usually not critical and, therefore, usually not checked. 

Concentrated nodes are usually highly stressed and need to be carefully designed. According 

to EC2 6.5.4(3), concentrated nodes may develop where point loads are applied, at supports, 

in anchorage zones of prestressed tendons, and at bends in reinforcements, connections, and 

corners of members. 

There are three types of concentrated nodes. Compression node without ties (CCC). 

Compression tension node with reinforcement in one direction (CCT). Compression tension 

node with reinforcement in two directions (CTT). A CCC-node is shown in Figure 5, CCT-node 

in Figure 6, and CTT-node is in Figure 7. 

 

Figure 5 CCC-node from Eurocode 2 

 

Figure 6 CCT-node, from Eurocode 2 
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Figure 7 CTT-node, from Eurocode 2 

 

2.4.2.2 Geometry of the node  

The support length and the width of the ties determine the geometry of CCT-nodes at the 

supports. The support length is a given value, and the width of the ties (u) is usually double 

the distance between the concrete surface and the reinforcement's center. With these two 

values, see Figure 8, the width of the strut can be found by the formula: 

𝑎2 = 𝑎1 sin 𝜃 + 𝑢 cos 𝜃 

(1) 

 

Figure 8: Example of a CCT-node (Goodchild et al., 2015) 

For a CCC-node below a load, the length of the load is defined. However, the height of the 

node is not known. If it is a horizontal strut, as shown in Figure 9, the node’s height is the 

same as the width of the horizontal strut. There are no rules to establish this width (Colorito 

et al., 2017). There are many ways of calculating this width. However, they are pretty tricky 

to calculate and have varying degrees of accuracy (Todisco, 2009). Thus, for simplicity’s sake, 
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this thesis assumes the width of the flat strut to be the same as for the tie (u). A similar 

method to the CCT-node is used to get the dimensions of the diagonal strut, and the formula 

becomes: 

𝑎2 = 𝑎1 sin 𝜃 + 𝑢 cos 𝜃 

(2) 

 

Figure 9: Geometry of a CCC-node with a flat strut (Colorito et al., 2017) 

For a triangular CCC-node with an external force, the size of the struts is calculated by 

trigonometry and the sine rule (Varsity Tutors, 2007):  

𝑎

sin(𝐴)
=

𝑏

sin(𝐵)
=

𝑐

𝑠𝑖𝑛𝑠(𝐶)
 

(3) 

Sometimes CCC-nodes have more than three struts meeting at a node. This is problematic as 

the node’s design methods are based on just three struts at the node. When this happens, 

there is a need for an extra calculation step. This new step is to calculate resultants from the 

struts and the angle of these resultants until there are just three forces left, as demonstrated 

in Figure 10. External forces or flat/horizontal forces should, as far as possible, not be included 

in the resultants. When three forces have been achieved, the geometry is calculated the same 

way as described previously. 

 

Figure 10: Example of combining two forces (Colorito et al., 2017) 
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A CCC-node without external force or limiting geometry is considered a smeared node; 

therefore, no calculations are necessary. (Colorito et al., 2017) 

2.4.2.3 Design compressive stress 

The design strength of these nodes is given in the equations (6.60-6.61) in Eurocode 2.  

The design strength for CCC-nodes:   

𝜎𝑅𝑑,𝑚𝑎𝑥 = 𝑘1𝜈′𝑓𝑐𝑑 

(4) 

Where:  

𝜈′ = 1 − 𝑓𝑐𝑘/250 

(5) 

The k1 factor given in the national annex NA.6.5.4, and is equal to 1. 

The design strength for CCT-nodes: 

𝜎𝑅𝑑,𝑚𝑎𝑥 = 𝑘2𝜈′𝑓𝑐𝑑 

(6) 

The k2 factor given in the national annex NA.6.5.4, and is equal to 0,85.  

The design strength for CTT-nodes: 

𝜎𝑅𝑑,𝑚𝑎𝑥 = 𝑘3𝜈′𝑓𝑐𝑑 

(7) 

The k3 factor given in the national annex NA.6.5.4, and is equal to 0,75. 

2.4.3 Struts 

Section 6.5.2 in Eurocode 2 details the design of the struts. The first thing that must be 

checked is whether the strut experiences transverse tensile forces. If it does not, the design 

strength for the strut is given by equation (6.55) in EC2. 

𝜎𝑅𝑑,𝑚𝑎𝑥 = 𝑓𝑐𝑑 

(8) 

However, if this is not the case, the strut may experience transverse tensile forces, and a 

more rigorous method is not used. The new design strength of the strut is calculated by 

equation (6.56). 

𝜎𝑅𝑑,𝑚𝑎𝑥 = 0.6 𝜈′𝑓𝑐𝑑 

(9) 
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Figure 11: From Eurocode 2, strut with transverse tension 

This check must be done at both ends of the strut, as there may be different stresses. In this 

thesis, it is assumed that all the struts may experience transverse tensile forces. This is done 

always to be conservative in the design checks. 

2.4.4 Ties 

EC2 6.5.3 describes the design of ties. Clause 6.5.3(1) in Eurocode 2 says the reinforcement 

should be limited by the rules in sections 3.2 and 3.3. These sections explain the rules and 

limitations of reinforcement and prestressing steel, respectively. With the use of ordinary 

Norwegian reinforcement and prestressing steel, these requirements are met. Thus, the 

design strength of the ties is given by: 

𝜎𝐸𝑑 =
𝑇

𝐴𝑠

< 𝑓yd 

(10) 

Where: 

𝑓𝑦𝑑 =
500

1.5
= 434𝑁/𝑚𝑚2 

(11) 

𝐴𝑠 =
𝑇

𝑓𝑦𝑑

 

(12) 

Where: 

- 𝐴𝑠 is the reinforcement area 

- T is the force in the ties 

In this thesis, there is assumed sufficient anchorage. 
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2.5 Minimize the strain 

Given that there are many ways to set up a strut and tie model, and many of them can satisfy 

the design criteria, there should be a way to know which model is the best. “Best” can be 

interpreted in different ways: most economical, easiest to construct, the strongest, etc. 

Usually, the best solution is the STM that minimizes the strain energy in the STM (Schlaich et 

al., 1987). The total strain energy is measured by summing each truss's strain energy. This 

gives the equation: 

𝑆𝑡𝑟𝑎𝑖𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 = Σ𝐹𝑖𝑙𝑖𝜀𝑚𝑖 

(13) 

Where: 

- 𝐹 is the force in the truss  

- 𝑙 is the length of the truss  

- 𝜀 is the strain in the truss 

In an STM, the strain energy from the compressive struts is small compared to the yield 

strains in steel. This gives that strain energy from struts can be excluded from the calculation, 

such that only the ties in the STM are used in the formula. (Hu et al., 2014) As the 

reinforcement amounts are chosen just to be at yielding, it is assumed that the stresses in 

the ties are the yield stress. Then the formula can be rewritten as: 

𝑆𝑡𝑟𝑎𝑖𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 = ∑
𝐴𝑖𝑙𝑖𝑓𝑦𝑑

2

𝐸
 

𝑛∗

𝑖

 

(14) 

Where: 

- 𝑛∗ is the number of ties 

- 𝐸 is the Young’s modulus of steel reinforcement set to 200 𝐺𝑃𝑎 

- 𝑓𝑦𝑑 being the yield strength of steel reinforcement, see formula (11) 

This rewritten formula shows that the strain energy of the STM is given by the term 𝐴𝑖𝑙𝑖 times 

some constants. The term 𝐴𝑖𝑙𝑖 can be seen as the total volume of steel in the STM, which 

gives that the minimizing of the strain energy also minimizes the steel usage and gives the 

“best” model. (Schlaich et al., 1987) 

For now, iteration and trial and error are the methods to minimize the strain. The biggest 

problem with this is that all the design checks and strain energy calculations have to be done 

again for every iteration, making this iterating method very intensive, especially if done by 

hand. One of the ways to overcome this is with knowledge and experience, as they give an 

indicator of how the best model might look and therefore do not have to calculate the STMs 

known to be worse. 
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3  Software and Tools 

3.1 General 

In this day and age, there are many computer tools and software available to assist with lots 

of tasks and problems. Given that this thesis is developing a computer program to assist with 

a strut and tie modeling design, several external software and tools have been used. This 

section will explain the programming language, development environment, cross-platform 

collaboration, and file-sharing software used for this thesis. 

3.2 Python 

Python is an open-source high-level programming language (Python Software Foundation, 

2012). It is designed with an emphasis on code readability. Python is mainly designed as an 

object-oriented programming language. The work on Python was started in the late 1980s, 

and the first release was Python 0.9.0 in 1991 (Python Software Foundation, 2022). It has 

later been revised, and new features have been introduced. In 2008, Python 3 was released, 

and in this thesis, Python 3.9 have been used. 

Python is a widely used programming language. Since Python is so widely used, a lot of help 

and information exists online. There is also a large community that uses Python as their 

language and shares their codes. Thus, if there is a problem one wants to solve, the chances 

are that others have already done it or something similar that one can take inspiration from 

(Kuhlman, 2012).  

One of the reasons Python was chosen as the programming language in this thesis is that the 

authors had some prior experience coding in Python. This, combined with the open-source 

and collaborative community surrounding Python, made it a prime candidate for this thesis.  

3.3 Spyder 

Spyder (Scientific PYthon Development EnviRonment) is an open-source, cross-platform 

integrated development environment for scientific programming in Python. Pierre Raybaut 

created it in 2009 (Raybaut, 2009). However, since 2012 it has been maintained and improved 

by scientific Python developers and the Spyder community. Spyder is designed by and for 

scientists, engineers, and data analysts. It has several Python packages geared towards 

scientific use already integrated (Spyder Doc Contributors, 2022).  

Spyder was chosen as the development environment for this thesis because it is geared 

towards scientific programming. The already integrated packages have been of considerable 

help, and there has not been a need to download other packages than those already 

integrated with Spyder. Further, the variable explorer was another reason for using Spyder. 

It has been great for quality control during coding and code testing, and even debugging. 
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3.4 Git 

3.4.1 General 

Git is a version control system to handle any type of project. It is an open-source system 

developed by Linus Torvalds in 2005  (Spinellis, 2012). Git is a valuable tool when more than 

one person simultaneously codes on the same project. All the files and documents needed for 

a project are stored in a Git repository. The programmer then clones this repository to their 

computer, where local changes can be made. The programmer must commit and push the 

changes back to the repository (GitLab, 2022). With Git, it is possible to see the entire commit 

history and restore earlier commits. Some of the features of Git that are used in this thesis 

are branching, merging, committing changes, and seeing previous changes.  

This project has three branches, one for each of the authors and the main branch. When the 

code is finished and working, it has been committed to the main, and the other person is 

responsible for implementing the changes into their branch. The reason Git was chosen is that 

it makes it easy to keep the code up to date when other authors have made changes. Another 

reason was to learn more about Git and get some experience using Git since this is a valuable 

tool to know.   

3.4.2 GitLab 

In this thesis, the program has been stored in the open-source software GitLab. GitLab is built 

on top of Git (O’Grady, 2018). GitLab is used to manage our repository and share it online. 

The reason for choosing GitLab was that the authors had some previous experience using 

GitLab. The user interface online makes it easy to use and understand. 

Here is the link to the online GitLab repository: 

https://gitlab.stud.idi.ntnu.no/martgrah/stm  

3.4.3 GitHub Desktop 

GitHub Desktop was used to access the cloned repository locally on the computer. GitHub is 

similar to GitLab, which is an open-source distributer of Git. GitHub Desktop is available for 

GitLab repositories. GitHub Desktop makes it easy to access the repository locally by using 

the user interface instead of command lines, which is the standard for Git. The user interface 

of the GitHub desktop is why it was chosen for this thesis since the user interface made it 

easy to use. The features used on GitHub Desktop are, commit, where the changes to the 

branches are committed and then pushed to transfer the changes to the server. When it has 

been pushed, a merge commits with the main is done, and when doing this, this procedure 

has been used: first merging the main into each branch to fix conflicts, and then merging the 

branches into the main. This way main will be up to date with the updates. This procedure 

ensures that any conflict is fixed before committing to the main. (GitHub, 2022)  

https://gitlab.stud.idi.ntnu.no/martgrah/stm
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4 The program 

4.1 General 

This program aims to speed up going through all the necessary steps in calculating an STM 

and, in other words, automizing the capacity checks of a given STM. It is then easier to find 

the most efficient STM since it is easy to test several alternatives of the STM. 

When writing the program, it was intentionally written as general as possible, such that the 

project could take many different forms from there and not be limited. The code is easy to 

use for external people and easy to get results. It is also easy to expand the code and add 

features in the future for users and the developer.  

The programming method used in this program is object-oriented programming (OOP). 

Objects are the fundamental building block in object-oriented programming. The most popular 

method used in OOP is class-based. This method is used in this program. A class is a coded 

template for the setup of an object. The class defines the object's initial values and variables, 

either set values or from a given input. If there are many objects with similar properties, 

different value classes are beneficial. Here is an example to explain the concept of classes 

and objects. 

In this section, the geometry of the strut and tie model is referred to as a system, and the 

struts and ties are referred to as elements. The respective classes are called System and 

Element in the code. The variable names are marked with cursive, the functions with cursive 

and bold, and the classes are marked with Bold lettering. The first letter in the class names 

is upper case, and variables and functions have lower case first letters. 

4.2 Class setup 

When the program was written, the class setup was chosen to be easy to expand and adjust 

as it takes form. Therefore, the main classes for the setup of the STM are Node, Element, and 

System. These classes define the geometry of the model. Additional to these classes, there is 

a class to calculate the forces in the elements, one to do capacity checks, and one to plot the 

results.  

The classes in the STM program are: 

-      Node, see section 4.3 

-      Element, see section 4.4 

-      System, see section 4.5 

-      ElementForce, see section 4.6 

-      Checks, see section 4.7 

-      Plot, see section 4.8 

All the classes will be discussed in their section.  
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4.3 Node 

A node is the connection point where the struts and ties meet. In this class, there are several 

callable variables. These variables are: 

- nodePosition, the position of the node 

- nodeX, the position of the node in the x-direction 

- nodeY, the position of the node in the y-direction 

- forceMagnitude, the applied external force 

- forceAngle, the angle of the applied external force 

- forceWidth, the width of the applied external force 

- isOkay, whether the capacity of the node is sufficient when it is run through the design 

checks 

- forceX, the external force in the x-direction 

- forceY, the external force in the y-direction 

- nodeType, the type of the node 

When the node class is called, it calls the initialization function, see Figure 12. This function 

assigns values to the callable variables. The initialization function has several arguments, 

which will be listed here:  

- nodePosition 

- forceMagnitude (optional) 

- forceAngle (optional) 

- forceWidth (optional) 
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Figure 12 Initialization function for Node class 

A node must have a position in the x- and the y-direction, represented by a Python list. 

The nodePosition should be on the form [x,y], where x should be replaced by an integer 

number representing the node's position in the x-direction and y in the y-direction. There are 

three checks on the input argument to ensure that the nodePosition is written correctly. The 

first checks if it is a list, the second checks if the length of the list is equal to two, and the last 

checks if it contains integer numbers. 

In each node, there is an option to apply external forces. The input forceMagnitude, 

forceAngle, and forceWidth define the force parameters. At the initialization function, the 

default of the forceMagnitude and the forceWidth is equal to zero, and the default of 

the forceAngle is equal to 𝜋/2. In the initialization function, the program checks if 

the forceMagnitude is not equal to zero, and if this is true, it calls on the function addForce, 

shown in Figure 13. As this program is made in Python, the positive y-direction is downward. 

Hence, the default direction of a force is straight downwards. Since there is a 

function addForce, it is possible to manually add a force by calling on this function with the 

node. 
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Figure 13 Function addForce 

When a node is connected to other nodes in a system, it could also have a node type defined 

in the function nodeType. A node can only have a type if it is part of a system and the 

ElementForce class has been run. The input argument to this function must be an object of 

the type system to check what elements are connected to the node to define the type. The 

nodeType function checks what kind of trusses meet at the node and determines if the node 

is a CCC-, CCT-, or CTT-node. The nodeType will automatically be called by the ElementForce 

class. Thus it will not be necessary to call on this function. 

4.4 Element 

An element represents the trusses between two nodes, the connection between two nodes. 

These elements are known as the struts and ties in an STM. The callable variables in the 

Element class are: 

- node1, the node at one end of the element 

- node2, the node on the other end of the element 

- width, the widths of the element at each end 

- isOkay, whether the capacity of the element is sufficient when it is run through the 

design checks 

- forceMagnitude, the internal force of the element 

The initialization function requires two input arguments when the element class is called, see 

Figure 14. These arguments are node1 and node2. node1 and node2 represent each side of 

the element.  
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Figure 14 Initialization function for Element class 

An element can have an internal force. The variable forceMagnitude represents this internal 

force. The internal force can only be calculated if the element is part of a system. When the 

system is finished, the class ElementForce can be called and will add the internal force of 

the element automatically using the addForce function. The class ElementForce will be 

discussed more in-depth in section 4.6. 

In addition to addForce, there are two functions in the Element class. These functions are 

returnOtherNode and addWidth. returnOtherNode function takes the input argument of 

the type node, checks the element, and returns the node at the other end of the element. 

Suppose the input node is not part of the element. The following text will be printed to the 

console: “not valid node.” addWidth will have an input argument of type number and add it 

to the width list. The width list represents the width of the element on each side. Calculating 

and adding the widths of the elements will be done by the class Checks, which will be 

discussed in section 4.7. 

4.5 System 

4.5.1 General 

System is the class that contains all the strut, ties, and nodes. This class will represent the 

geometry of the entire strut and tie model. The callable variables in this class will be created 

in the initialization function for the System class, see Figure 15. The callable variables are: 

- nodes, a list of all nodes 

- elements, a list of all elements 

 

Figure 15 Initialization function for the System class 

There are no arguments in the initializations function in the System class, so to fill up the 

lists, the user should call on the functions to add nodes and elements in the class. It is also 

possible to call on the lists and use the append command. The advantage of using the 

functions in this class is that they will check if the object already exists and will not double 

store the objects.  
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4.5.2 Add nodes 

To add nodes to the system, the user must call on the function addNode. The input argument 

must be an object of the type node in this function. To ensure that this node is not already in 

the nodes list, the function existingNode, see Figure 21, is called. A node with the same 

position should not be added to the nodes list. See Figure 16 for an image of the addNode 

function. 

 

Figure 16 Function addNode 

4.5.3 Add elements 

Elements can be added to the elements list by either calling on the function 

addElementWithNodes, see Figure 17, or the function addElementWithElement, see 

Figure 18. Two input arguments must be objects of type Node in addElementWithNodes. 

This function creates an element and then checks if this already exists in the elements list by 

using existingElement function, see Figure 22. The input nodes are also checked if they 

exist in the nodes list by using existingNode. If the nodes exist and the element does not, 

the element will be added to the elements list. By using the function 

addElementWithElement, the input argument must be a defined element. This function 

uses addElementWithNodes to do the same checks for this element. 

 

Figure 17 Function addElementWithNodes 

 

Figure 18 Function addElementWithElement 
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4.5.4 Other functions 

In addition to the mentioned functions, there are two more, connectedNodes, see Figure 

19, and elementsFromNode, see Figure 20. The argument for connectedNodes must be 

of type node. This function will return a list with all the nodes connected to this node with 

elements. The argument for elementsFromNode must also be of type node. This function 

will return a list of all the elements connected to this node.  

 

Figure 19 Function connectedNodes  

 

Figure 20 Function elementsFromNode  

 

Figure 21 Function existingNode 
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Figure 22 Function existingElement 

4.6 ElementForce 

4.6.1 General 

The ElementForce class setup is different from the other classes, Node, Element, and 

System. The purpose of the ElementForce class is to calculate the internal forces of the 

elements in a system. The initialization function, shown in Figure 23, has an input argument 

of the type system, the object system created with the class System. Therefore, a system 

must be established before calling on the ElementForce class. After the initialization function 

is called, the elements will automatically have added the internal force into the objects 

Element in the elements list in the System. All the functions and the mathematics in this 

class will be discussed more in detail in this section. 

 

Figure 23 Initialization function for ElementForce class 

A truss system is not difficult to calculate by hand, but it is laborious. All that is needed is to 

calculate equilibrium at every node and use these results in further calculations at the other 

nodes. The sequential nature of these calculations offered some difficulty in the code. Firstly, 

one would have to locate a node with enough information to calculate the forces. Then there 

is a need to store these answers in a way that could easily be retrieved for calculations at the 

next node, which again might not have enough available information to be determined yet. 

This would result in an extensive, complicated code with many loops and if-statements. 

To overcome this problem, the idea is to calculate everything with a set of equations. The 

equations are equilibrium equations for each node, in both directions (x and y), with the forces 

in the trusses as the unknowns. Calculating a large set of equations can be done using a 

matrix equation.  
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The steps of calculating the element forces: 

1. Create the elementMatrix 

2. Fill the elementMatrix 

3. Create and fill the forceMatrix, for external forces 

4. Establish and solve the equation 

5. Add the result to the element objects and add type to node objects 

4.6.2 Create the elementMatrix 

The first step to this matrix-equation is to establish the matrix, which is done in the function 

elementMatrix. The columns in this matrix represent the elements, so the number of 

columns equals the number of elements. The rows in this matrix represent the contribution 

from the element on the nodes in both the x- and y-direction. So, the two first rows represent 

the first node, where the first row is the x-direction, the second row is the y-direction, the 

second node is represented by rows three and four, and so on. This gives the number of rows 

equal two times the number of nodes. The matrix dimension then equals 2*number of nodes 

× number of elements. The elementMatrix is created in the function elementMatrix by 

creating a matrix consisting of zeros with the given dimension using the NumPy library.  

4.6.3 Fill the elementMatrix 

The next step is then to fill the matrix. The double for loop in the function elementMatrix 

systematically goes through the different cells of the elementMatrix. It calculates the desired 

value, which is the contribution from the element on the nodes. The first loop goes through 

the rows, thus the nodes in the x- and y-direction. The second loop goes through the columns, 

thus the elements. The first check in the first for loop establishes whether the x- or y-direction 

is desired in the given row before the second loop starts. The calculations will only be done if 

the element is connected to the node in question, or else it will remain equal to zero, as an 

element will not have a contribution to the node if they are not connected. If the element is 

connected to the node, the zero will be replaced by the returned numbers from the 

functions xDirection, Figure 24, and yDirection, Figure 25, depending on the direction. See 

equation (15) for the calculation of contribution in the x-direction and equation (16) for the 

calculation of contribution in the y-direction. 
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Calculating the contribution for x-direction: 

𝑥2 − 𝑥1

𝐿
 

(15) 

 

Figure 24 Function xDirection 

Calculating the contribution for y-direction: 

𝑦2 − 𝑦1

𝐿
 

(16) 

 

Figure 25 Function yDirection 

The signs of the contributions are essential, so it is vital to use the correct nodes in the 

functions xDirection and yDirection as the arguments node1 and node2. The current node 

should be node1, and the node on the other side of the element should be node2. All the 

contributions with opposite directions have different signs and give the correct results since 

the signs for the contributions are globally the same at all nodes. 

4.6.4 Create and fill the forceMatrix 

The forceMatrix has a dimension of one column and two times the number of nodes rows. So, 

each number represents the node in x-direction and y-direction, the same as the rows 

in elementMatrix. The forceMatrix is created by creating a matrix consisting of zeros with the 

given dimension using the NumPy library. The forceMatrix function then goes through each 

node and checks if it has an external load. The user should have already added the external 

loads into the node objects. If the node has a force, it changes the number in the forceMatrix 

by calling on the variables in the node objects forceX and forceY.  
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4.6.5 Establish and solve the equation 

The equation to solve this matrix problem is: 

𝐴 ∗ 𝑥 = 𝐵 

(17) 

In this case, for solving the matrix problem, the A-matrix in equation (17) represents the 

elementMatrix, and the B-matrix represents the forceMatrix. The x is the vector of the 

unknown internal forces of the element. The dimension of the x vector should be the same 

number as the number of columns in matrix A. In this case, this is equal to the number of 

elements. When solving this equation, the unknown x vector will give the resulting forces of 

the elements. The elementMatrix problem is solved in the Solve function. This solve function 

is shown in Figure 26. 

 

Figure 26 Function solve 

The problem with this setup is that there are more equations than unknowns, known as an 

overdetermined system (akrowne, 2013b). An overdetermined system of this kind is always 

inconsistent (it has no solution). This is combatted with the ordinary least square method, 

which finds the approximate solution of an overdetermined system (akrowne, 2013a). In 

NumPy linear algebra library in Python, a command called lstsq returns the least-squares 

solution to the matrix problem, shown in Figure 26 in code line 230. The lstsq command 

outputs the approximate solution of the problem and some other parameters. One of these 

parameters is the residual, which indicates how accurate the solution is (NumPy Developers, 

2022). Despite the approximate results, testing has shown that the residuals are relatively 

low if there is nothing wrong with the system. While if there is something wrong with the 

equilibrium, the residual will usually be orders of magnitude higher than the external forces. 

This implies that the results are accurate to a satisfactory level when the residual is “low”.  

Lastly, a check of the residual has been implemented, which prints a warning if this value is 

significant. 
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4.6.6 Add the result to the element objects and add type to 
the node objects 

The solve function is called on in the initialization function, which will be done automatically 

after calculating the elementForce matrix. The solve function, see Figure 26, contains a loop 

to go through the values in the resulting elementForce list and add the forces to the 

corresponding element objects. After the solve function is called, the addTypes function, see 

Figure 27, is called. This function loops through each node in the system and calls the 

function nodeType in the Node class to add the node-type to the nodes.   

 

Figure 27 Function addTypes 

4.7 Checks 

The Checks class is the class where all the design checks of the system are done. This class 

should be called after the ElementForce class has been run. The initialization of this class 

takes four arguments: 

- system, should be of the type system 

- thickness, the breadth of the concrete element 

- conClass, the concrete class 

- c, the distance from the concrete surface to the center of the tie 

These variables are further used to calculate some inherent values needed for the design 

checks. The rest of the initialization function is used as a setup for the program's outputs. 

See Figure 28 

 

Figure 28 Initialization function for Checks class 
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The function check is the primary operator of the Checks class. The check function 

systematically goes through each node and element in the system to perform design checks.  

As mentioned in 2.4.2, there are many different types of nodes and geometries these nodes 

can have. Because of this, many if-statements try to accommodate all the possible node 

types. Inside these if-statements, the geometry of the nodes is determined, with forces and 

sizes dimensions calculated as explained in 2.4.2.2. Sizes of the trusses are saved in their 

respective element objects by using the previously mentioned addWidth function. The 

calculated geometry is used as input arguments in the functions CCC, CCT, or CTT, depending 

on which type of node it is. 

These functions perform the final design checks for the given node type and return if the 

node’s capacity is okay or not. If the capacity is not okay, the functions change the node 

object’s internal variable isOkay from true to false for later use, and the global 

variable is_okay to false to signify that the system fails. These functions can be seen 

exemplified with the function CCC in Figure 29. 

 

Figure 29 Function CCC 

After the nodes have been checked, the same is done for the trusses. All the trusses are 

categorized as either struts or ties. Hence, the strut function checks the trusses experiencing 

compressive forces, and the tie function designs the trusses experiencing tensile forces.  The 

strut function checks if the capacity of the strut is okay using the widths previously calculated 

when the nodes were checked. Some of the trusses do not have two widths if one of the ends 

is at a smeared node. This is handled by the for loop in the function. Suppose the capacity of 

the strut is not okay. In that case, the element’s internal variable isOkay is changed from true 

to false, and the global variable is_okay to false to signify that the system as a whole fails. 

See Figure 30. The tie function calculates the required reinforcement area in the tie for the 

calculated force. 
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Figure 30 Function strut 

Lastly, the class call for the function strainEnergy, which calculates the system's total strain 

energy as described in section 2.5.  The strainEnergy is shown in Figure 31. 

 

Figure 31 Function strainEnergy 

4.8 Plot 

The Plot class exists to draw the system and the calculated results to have a more user-

friendly output than just a bunch of numbers. The initializing of the class uses the system as 

the only input argument before running the internal function draw. The draw function uses 

the Python package matplotlib to draw the system. This includes the nodes, elements, 

external forces as arrows, the internal forces of the elements, and numbering the nodes and 

elements in a plot. This drawing is constructive to visualize the system and uncover any input 

mistakes. The draw function is also where the variable isOkay in the objects is used, as the 

function draws these objects in red if their design checks are not met. Lastly, 

the draw function returns the whole plot as a figure to be able to be drawn in the GUI program 

window. 
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4.9 Outputs 

The result from the program will be printed out on the console. What will be printed: 

- State of nodes 

- State of struts 

- Required reinforcement 

- If the system is sufficient 

- Strain energy (only if the capacity of the system is enough) 

- Residual (only if high) 

All the printed lines will happen in the Checks class. All the nodes and each strut and tie will 

have one printed line each. The nodes and strut will either be OK or not enough. The printed 

line for the tie is the required reinforcement for each tie. If any nodes or struts fail, the 

system's total capacity will not be enough. The strain energy will be printed if the system's 

capacity is enough. A warning will also be printed if the residual from the calculation in the 

class ElementForce.  
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5 User manual 

5.1 General 

There are several ways to create the strut and tie model using the program created for this 

thesis. The methods can be divided into two main groups. The first method is creating a 

Python file and importing all the necessary classes. Then manually calling the necessary 

functions and classes to set up the system and calling on the necessary calculations. This 

method is more open, and the user has more freedom to make it personal to different models. 

The other method is using the user interfaces. This method is more fixed and created for 

users who are not comfortable with coding in Python and can easily create simple strut and 

tie models. Both methods will be discussed further in later sections. 

It is essential to install all the necessary packages before using the code. The code is 

developed in Spyder, with most of the necessary packages already downloaded and 

implemented into the program. 

The packages used: 

- NumPy 

- math 

- matplotlib 

- Tkinter 

- sys 

5.2 Downloading the repository 

5.2.1 General 

The first step of using the repository is downloading it. The code is stored in a GitLab web 

repository which can be accessed from this link: 

https://gitlab.stud.idi.ntnu.no/martgrah/stm 

The repository should be downloaded as a zip or cloned locally on the computer. The easiest 

is downloading the zip and unpack it locally on the computer. See Figure 32 for a screenshot 

from the GitLab web repository. The download button and clone button are inside the dotted 

box. The branch should be main. 

https://gitlab.stud.idi.ntnu.no/martgrah/stm
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Figure 32 GitLab repository 

5.2.2 Repository content 

The repository contains: 

- STM file 

- GUI file 

- models folder 

- examples folders 

The STM file is the main code, where all the calculations are done. The GUI file is the graphical 

user interface file that gives the user the program with the GUI. The models folder is where 

users should save their strut and tie models. Furthermore, the examples folder is where the 

examples are saved that are used in the examples in section 6 and the studies in section 7. 

5.3 Python script 

5.3.1 General 

The main workflow of establishing the strut and tie model using this program can be: 

1. Importing the file 

2. System setup 

3. Calculating the element force 

4. Do the design checks 

5. Plotting the results 

This section shows a general guide on how the code can be used and how to set up models. 

The user can also use the code as a base and extend the code for more complex strut and tie 

models. The possibilities are many, and there is no limit to the use of the code. 

The folder models are created to store the models the user creates. This folder consists of 

two Python files. One is called template, and the purpose of this file is to be used as a template 

that the user can use as a base for creating models. The other file is called user_manual, 

which is the model created for this user manual to show an example. 
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5.3.2 Importing the STM file 

The first step is to import the STM file. Importing the STM file into a new Python file is the 

best method to create a model because it can then be saved as a single model, and the user 

can create several models and compare the results. Another possibility is to use the STM file 

and create the strut and tie model below the code. Then it is essential to create variable 

names so they are easily distinguished from each other.  

Since the user_manual is not in the same folder as the STM file, we need to add this folder. 

We use the package sys and the command sys.path.append('../'). See code lines two and 

three in Figure 33 and Figure 34 for the sys import. If the model is created in another folder 

than models, the argument: '../' needs to be changed.   

Here are two ways to import the STM file: 

- import STM as m 

- from STM import * 

 

Figure 33 Import STM as m 

 

Figure 34 Import STM as * 

If the first option is used, import STM as m, every time a function or class from STM is called 

on must begin with m. The m can be changed to the user’s preference. See Figure 33 for this 

option. This method is used in this user manual. 

Using the second option, from STM import *, the class and function names can be called on 

directly. This can create a warning triangle but will not affect the code if written correctly. See 

Figure 34 for an image from Spyder on this importing method.  
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5.3.3 System setup 

The system setup should define the geometry of the strut and tie model. This consist of nodes 

and elements. It is important to remember that the coordinate system is defined by x to the 

right and y downwards when using the code. One way to set up the system: 

1. Create the system 

2. Create the nodes 

3. Apply force to nodes 

4. Add the nodes 

5. Create/add the elements 

The first step is to create the system. This is done by calling on the System class and defining 

this object as a variable. This is done in code line 8 in Figure 33 and Figure 34. 

The next step is to create the nodes. The nodes need to be separate variables since they need 

to be callable to add force and create the elements. The Node class must be called and 

defined as a variable. The input argument must be a two-dimensional list representing the 

coordinates in the x- and y-direction, both in mm. See Figure 35 for how this is done. 

 

Figure 35 Creating the nodes 

After the nodes are defined, the external forces can be applied to the nodes. This is done by 

calling on the function addForce in the Node class. The first argument is the magnitude of 

the force in N. The second is the width of the force in mm, and the last is the angle in radians. 

The magnitude of the force should be a positive integer; thus, the force will always point 

toward the node. Increasing angles will rotate the force counter-clockwise with the zero-angle 

coming straight from the right. Figure 36 illustrates the different forceAngle to demonstrate 

the direction of the force. The angle has a default equal to 𝜋/2, representing the force 

downwards, as shown in code line 18 in Figure 37, and defining the angle to be equal to 3𝜋/2 

the force will be upwards, as shown in code lines 16 and 17 in Figure 37. 

 

Figure 36 Illustrating the forceAngle on the node 
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Figure 37 Applying force to the nodes 

After the force is defined, the nodes must be added to the system. This is done by calling on 

the function addNode in the class System. See Figure 38 for how this is done. 

 

Figure 38 Adding the nodes to the system 

The next step is to create/add the elements. The elements do not need to be defined as a 

variable. This is because the element does not need to be callable later. Therefore, there are 

two ways to add the element to the system: 

- addElementWithNodes 

- addElementWithElement 

Figure 39 shows the different ways to create/add the elements. By using 

addElementWithNodes, the two input arguments must be of type node, representing one 

node on each side of the element. It is important to use predefined nodes, so the same node 

objects are in the nodes list in the system. By using addElementWithElement, the input 

argument must be of type element. 

 

Figure 39 Create/add the elements 

5.3.4 Calculating the element force 

After the system is defined, the next step is to find the truss system's internal forces, the 

elements' internal forces. This is done by calling on the class ElementForce The forces will 

be added to the object element when this class is called. See Figure 40 on how to call on the 

ElementForce class. 

 

Figure 40 Calling on the ElementForce 

Defining ElementForce as a variable is advised, as it will be shown in the variable explorer 

in Spyder. With the variable explorer, it is possible to see the list of all the internal forces of 
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the elements in a list, shown in Figure 41. How to get the list: In variable explorer double 

click e (the variable name) ->Double click elementForce ->Double-click the first index (0). 

Here it is also possible to check the residual from the force calculations by double-clicking the 

second index (1) instead of the first. 

 

Figure 41 elementForce list 

5.3.5 Do the design checks 

When the system is established, and the elements' internal forces are added, the next step is 

to call on the Checks class. This class will do all the necessary design checks for the model. 

See how to call on the class Checks in Figure 42. The arguments in the Checks class are 

first the system, then the breadth of the cross-section of the concrete element in mm, then 

the concrete class number, then the distance from the concrete surface to the center of the 

tie in mm. 

 

Figure 42 Calling on the Checks 

The results of the design checks will be printed out in the console field. It will print if the node 

capacity is sufficient or not, the required reinforcement of the ties, if the struts are sufficient, 

and the strain energy. See the printed lines from the user_manual example in Figure 43 

 

Figure 43 The printed lines to the console 
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5.3.6 Plotting the results 

The last step is to plot the results. To do this, the Plot class must be called. See Figure 44 on 

how to call on the Plot class. The input argument is the system. 

 

Figure 44 Calling on the Plot 

After the Plot class has been called, the plot will be shown as the one in Figure 45. If the 

resulting nodes, struts, or ties are insufficient, they will be red.  

 

Figure 45 The Plot of the established STM 

5.4 Graphical user interface 

5.4.1 General 

The graphical user interface has been created using the Python package Tkinter. Tkinter is a 

framework already built into the Python standard library (Python, 2022). The framework 

Tkinter consists of buttons, entry boxes, frames, among many other features. It is easy to 

use and works great for this purpose. 

There are four separate windows in the graphical user interface (GUI). In The first three 

windows, the user is asked to submit some data to create the strut and tie model, and the 

last window will show the results.  
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The four windows are: 

1. Number of nodes 

2. System setup 

3. Concrete specification 

4. Results 

An example is followed through the next sub-chapters to show how the GUI can be used. This 

is just an example, and there are endless possibilities to set up the STM. 

5.4.2 Window one: Number of nodes 

In window one, the user is asked to add the required number of nodes for the strut and tie 

model. The number of nodes is the number of connection points between strut and ties. The 

input must be an integer number. If not, the submit button will not activate.  

 

Figure 46 The first window in the GUI 

5.4.3 Window two: System setup 

In the second window, the user is required to fill in a lot more information. This window is 

built up from a grid format. The rows represent a node, and the columns can be divided into 

three sections. The three sections are: 

- Location of node in coordinate system, both x and y 

- Which node it is connected to by strut or tie 

- Force parameters 
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It is important to notice that the coordinate system is a right-handed coordinates system, 

which gives positive x to the right and positive y upwards. All the input numbers should be 

positive or negative integer numbers. 

Figure 47 illustrates how the window is built. The blue box illustrates the grid's row, which 

represents a node. The red box illustrates the coordinates of each node. The coordinates must 

be a positive or negative integer number of the node’s placement in mm. The green box 

represents the nodes the current node is connected to and is filled with checkboxes. For 

example, in Figure 48, the first node is connected to nodes 2 and 3. The yellow box represents 

the external force on the node. The force width is in mm, and the magnitude is in newtons. 

 

Figure 47 Illustration of how the System setup window is built 

The GUI checks when the user tries to press the button to submit to see if the user has filled 

in all the required information. The checks done are as follows: 

- All coordinates are filled 

- The force magnitude is filled correctly 

- The force width is filled if the magnitude is applied 

- The model is in vertical equilibrium  

If the coordinates are not filled correctly with an integer number, this line will be printed to 

the window: 

"All positions need to be filled with integer number" 

If the force magnitude is filled incorrectly, this line will be printed to the window: 

"The magnitude must be filled with integer number." 

If the force width is not filled when the force magnitude is filled correctly, this line will be 

printed to the window: 
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"Force width must be filled with integer number when force magnitude is applied." 

To check if the element is in vertical equilibrium, it takes all the forces and checks if that is 

equal to zero. If this is not true, this line will be printed on the window: 

 "The structure needs to be at vertical equilibrium" 

If there are more than one error in the input information, it does not always give all the error 

output lines. First, fix the error given and then try to submit again and fix the next one until 

it goes through. There are no checks to see if the user has checked any of the boxes to 

connect them. 

 

Figure 48 The second window in the GUI 

5.4.4 Window three: Concrete specification 

In this window, the user is required to submit three inputs to specify the concrete element. 

The required inputs are: 

- Concrete class 

- Breadth of the concrete element 

- Distance from concrete surface to center of tie 

All the inputs should be an integer number. Nothing will happen when the submit button is 

pressed if this is not true. The concrete class represents the classification of the concrete. The 

breadth of the concrete element is the breadth of the cross-section of the element. The last 

one is the distance from the surface to the center of the tie. 
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Figure 49 The third window in the GUI 

5.4.5 Window four: Results 

The fourth and last window will show the results of the STM. This window is divided into two, 

where the left part is the text to inform if the nodes, struts, ties, and the system in total are 

sufficient. In this section, the strain energy will also be given, and if there is a high residual 

from calculating the internal force, this will also be printed. The STM will be plotted in the 

right section of the fourth window. If there are parts of the STM that is not sufficient, it will 

be written in the left part and marked with red in the right part. 

 

Figure 50 The fourth window in the GUI 
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6 Examples 

6.1 General 

To demonstrate that the program works as intended, three examples of strut and tie models 

will be established in this section. These STM examples are found online, with hand 

calculations to compare with the result from the program. 

6.2 Example 1: two-pile cap 

6.2.1 General 

This example is a two-pile cap, see Figure 51 (Goodchild et al., 2015). The two-pile cap 

example should carry a load of 2500 kN on a 500 mm square column. The diameter of the 

pile caps is 600 mm in diameter.  

 

Figure 51 Two-pile cap (Goodchild et al., 2015) 

6.2.2 Model setup 

The model setup is shown in Figure 52. The program does not have an option to have a 

circular bearing plate, so to fix this, the supports' bearing plate is changed to 314 mm (3002 ∗
𝜋

900
= 314). 
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The following information is known to set up the STM: 

- Coordinates of node, Figure 52 

- Point load, 2 500 kN 

▪ Support forces: 1 250 kN each cap 

- Breadth, 900 mm 

- Width of the bearing plates, b1 = 500 mm and b2 = b3 =314 mm 

- The concrete class, 𝑓𝑐k = 30 MPa 

- Distance to center of tie, c = 50 mm 

 

Figure 52 Geometry of STM for example 1 (Goodchild et al., 2015) 
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Figure 53 STM code setup for example 1 

6.2.3 Results 

The output result lines from the program are given in Figure 54, and the plotted result from 

the program is given in Figure 55. This example will compare the results of the elements and 

the required reinforcement. 

 

Figure 54 Printed output of example 1 
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Figure 55 Plotted STM of example 1 

From the output of the program and the hand calculations shown in Table 1, it is evident that 

the results are the same. The forces in the trusses have been calculated to a satisfactory 

level. The required reinforcement is about the same, and all the design checks of the system 

are suitable for both cases.  

 Program Example  

Element  Okay  Okay Difference 

1 Strut 1520 kN Yes 1520 kN Yes 0 kN 

2 Tie 1520 kN Yes 1520 kN Yes 0 kN 

3 Strut -865 kN Yes -866 kN Yes 1 kN 

Reinforcement 1996 mm2  1991 mm2  5 mm2  

Table 1 Comparing internal forces and required reinforcement of elements in example 1 
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6.3 Example 2: deep beam 

6.3.1 General 

Example 2 is a deep beam with a uniformly distributed load, shown in Figure 56. For STM 

design, calculate distributed load as two point loads equal to 810 kN each. The size of the 

point loads is assumed to be the same at the supports.  

 

Figure 56 Example 2: deep beam (Goodchild et al., 2015) 

6.3.2 Model setup 

The setup of the STM is shown in Figure 57. The program cannot handle struts from the top 

down to the nodes, so the forces are instead placed directly on the nodes. 

The following information is known to set up the STM: 

- Coordinates of node, Figure 57 

- Two point loads, 810 kN each 

▪ Support forces: 810 kN each 

- Breadth, 250 mm 

- Width of the bearing plates, 376 mm (all) 

- The concrete class, 𝑓𝑐k = 25 

- Assuming distance from the surface to tie,  

- c = 180 mm 
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Figure 57 Geometry of STM for example 2 (Goodchild et al., 2015) 

 

Figure 58 STM code setup for example 2 
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6.3.3 Results 

The output result lines from the program are given in 

Figure 59, and the plotted result from the program is given in Figure 60. This example will 

compare the results of the elements and the required reinforcement. 

 

Figure 59 Printed output lines for example 2 

 

 

Figure 60 Plotted result for example 2 

It is evident that the program does the same as the hand calculations, as shown in Table 2. 

The internal forces calculated in the program are the same as the calculated internal forces 

in the example. The required reinforcement differs only with 3 mm2. 
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 Program Example  

Element  Okay   Okay Difference 

1 Strut 955 kN Yes 955 kN Yes 0 kN 

2 Tie -506 kN Yes -506 kN Yes 0 kN 

3 Strut 506 kN Yes 506 kN Yes 0 kN 

4 Strut 955 kN Yes 955 kN Yes 0 kN 

Reinforcement 1167 mm2  1164 mm2  3 mm2 

Table 2 Comparing results for example 2 

6.4 Example 3: Deep beam with large openings 
and recess 

6.4.1 General 

This example is a deep beam with a large opening and recess (Ghoraba et al., 2020). The 

geometry of the beam is illustrated in Figure 61. The beam is designed to carry a nominal 

load of 2667 kN.  

 

Figure 61 Geometry of deep beam with large opening and recess (Ghoraba et al., 2020) 
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6.4.2 Model setup 

The geometry of the STM is given in Figure 62. The model can be established using the 

program with all the given information. The given information: 

- Coordinates of node, Figure 62 

- Nominal load, 2 667 000 N 

▪ Support forces: V1 = 1 706 737 N and V2 = 853 262 N 

- Breadth, 305 mm 

- Width of the bearing plates, b1 = 600 mm and b2 = b3 =400 mm 

- The concrete class, 55 

- c = 200 

 

Figure 62 Geometry of the STM for example 3 (Ghoraba et al., 2020) 
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Figure 63 STM code setup for example 3 
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6.4.3 Results 

The resulting plot from the program is in Figure 65, and the resulting plot from the example 

is in Figure 66. The printed output lines from the program are in Figure 64.  

 

Figure 64 Printed output for example 3 
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Figure 65 Plotted result from the program for example 3 

 

Figure 66 Plotted result from example 3 (Ghoraba et al., 2020) 

Table 3 compares the result of the example and the program. It shows that the struts and 

ties will yield and fail at the same struts and ties. All struts and ties will be sufficient except 

strut one and strut two. Since the example and the program fail and yield at the same places, 

it shows that the program works for a more complex STM like this example. 

The printed output in Figure 64 says that the residual is high. The high residual is essential 

to notice and check, but the difference column in Table 3 shows that it is negligible except for 

two elements. These two elements are struts eight and nine. Struts eight and nine are much 

more significant in the program calculations but are still sufficient, and the high difference 

can be neglected. If the example internal force had been higher than the internal force in the 

program, more calculations and checks would have been necessary. 
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 Program Example  

Element [kN] Okey [kN] 

1 Strut 2169 No 2167 Okay Difference 

2 Strut 2169 No 2167 No 2 

3 Tie -937 Yes -951 No 2 

4 Strut 1517 Yes 1512 Yes 14 

5 Strut 1517 Yes 1512 Yes 5 

6 Tie -815 Yes -813 Yes 5 

7 Tie -183 Yes -193 Yes -2 

8 Strut 449 Yes 238 Yes 10 

9 Strut 948 Yes 238 Yes 211 

10 Strut 1276 Yes 1273 Yes 710 

11 Tie -948 Yes -950 Yes 3 

12 Tie -1896 Yes -1893 Yes 2 

13 Tie -632 Yes -632 Yes -3 

14 Strut 762 Yes 762 Yes 0 

15 Strut 762 Yes 762 Yes 0 

16 Strut 762 Yes 762 Yes 0 

17 Strut 1276 Yes 1273 Yes 0 

18 Strut 1280 Yes 1278 Yes 3 

19 Tie -427 Yes -426 Yes 2 

20 Tie -427 Yes 426 Yes -1 

21 Tie -853 Yes 853 Yes -1 

22 Tie -1264 Yes 1276 Yes 0 

      

Table 3 Comparing results for example 3 
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7 Study  

7.1 General 

There will be done two studies in this section. These studies are created to test the capabilities 

and value of the program developed in this thesis. Both studies are based on calculated 

examples (Goodchild et al., 2015). The goal is to optimize the concrete structures by changing 

the geometry of the strut and tie model and changing the structure’s height. This study section 

is a separate segment from the rest of the report and will be followed by a discussion and 

conclusion. 

As mentioned in section 2.5, the “best” strut and tie model is the model that minimizes the 

total strain energy in the STM. The reinforcement is what defines the strain. The program 

calculates the reinforcement area needed in a tie using the steel yield strength equation (11). 

The strain energy is calculated for the minimum amount of reinforcement in any given tie 

using equation (14). Models with nodes along the “main” tie can lead to changes in the 

reinforcement areas. Changing reinforcement areas is technically possible, but the practice is 

to use the same reinforcement on the whole tie, which would give a different result to the 

total strain energy in the STM. So, this study is based on the technical solutions, with the 

possibility of changing reinforcement areas, and not necessarily on the most practical 

solutions. 

The studies are based on existing calculated problems. Four different STMs with a changing 

number of vertical ties will be run through the program with seven different concrete structure 

heights based on the calculated problems. These four STMs will be referred to as models. 

Both studies will be run two times. In the first run, the concrete specification will be 

unrealistically high, so the strain energy of the model will be given. The concrete specifications 

must be high since the program only gives output for the strain energy when the STM does 

not fail. The results will indicate how the “best” STM might look, but when more realistic 

values for the concrete are added in the second run, other factors may result in failure. 
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7.2 Study one: Symmetrical deep beam 

7.2.1 General 

Study one uses a slightly modified problem from Example 1: two-pile cap (Goodchild et al., 

2015). The concrete structure is shown in Figure 67.  

 

Figure 67 Geometry of problem in study one. Modified figure from (Goodchild et al., 2015) 

The fixed parameters in the study are as follows: 

- Point load, 2 500 kN 

▪ Support forces: 1 250 kN each support 

- Breadth, 900 mm 

- Width of the bearing plates, bp = 500 mm and bs1 = bs2 =320 mm 

- The concrete class, 𝑓𝑐k = 30 MPa 

- c = 100 mm 

- Distance between supports: 1800 mm 

The main difference between the models is the number of vertical ties used. The four models 

to test are: no vertical ties, two vertical ties, four vertical ties, and six vertical ties. The spacing 

of the vertical ties is uniform, dividing the half elements into equally large parts. The four 

models are presented in Figure 68.  
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Figure 68 The four different models. Drawn by the program 

7.2.2 First run 

As mentioned, the first run will have unrealistically high concrete specifications to get the 

strain energy for all cases. The strain energy from all cases of each model can be seen in 

Table 4. 

 300  500 700 900 1100 1300 1500 

0  14647 8788 6277 4882 3994 3380 2929 

2  12613 9303 8505 8544 8963 9587 10334 

4  13020 11284 11780 13019 14598 16358 18228 

6  14037 13630 15315 17669 20399 23270 26243 

Table 4 The strain energy in J from the first run in study one, rows are the number of 

vertical ties, and columns are height in mm 
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7.2.3 Second run 

Now the same models are rerun through the program, only this time with the correct concrete 

specifications given in the list in section 7.2.1. Table 5 shows the resulting strain energies 

with the correct concrete specifications. The cases where the models fail the checks are left 

blank, and only those who pass the checks have given strain energy in Table 5. 

 300 500 700 900 1100 1300 1500 

0   6277 4882 3994 3380 2929 

2  9303 8505 8544 8963 9587 10334 

4  11284 11780 13019    

6  13630 15315     

Table 5 The stain energy in J from the second run in study one, rows are the number of 

vertical ties, and columns are height in mm 

7.2.4 Results 

The results from Table 4 and Table 5 are represented in Figure 69. Each line represents each 

model, with a different number of vertical ties. The transparent line is the idealized strain 

energy from the first run. Where the models do not fail on the second run, the colors are 

opaque.  

 

Figure 69 Plotted data from study one 

Figure 69 illustrates that STMs with fewer vertical ties lead to lower strain energy. The model 

with no vertical ties has the lowest strain energy, except for the cases with a low height. At 

these heights, the rules for the construction of STM are not met, as the angle between the 

strut and the tie is too small. 
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Further, the figures and data show that the models with vertical ties have a specific height 

where the strain energy is minimized. This height becomes smaller as the number of vertical 

ties increases. However, the model without vertical ties never reaches a minimum strain 

energy. The strain energy of the model with no vertical ties converges towards zero as the 

height increase.  

With the given parameters for the element, it is clear that the original model with no vertical 

ties is the optimal solution as long as the height is above 700 mm. If the model’s height is 

lower, vertical reinforcement would be needed even though none of the models manage a 

height lower than 500 mm. 

7.3 Study two: Deep beam with a non-centered 
point load 

7.3.1 General 

This problem is a modified problem from (Goodchild et al., 2015). This study case is not too 

dissimilar from the first study. The main difference is the non-symmetric nature of the STM, 

the scale of the element, as well as some concrete parameters. The concrete structure is 

shown in Figure 70. 

 

Figure 70 Geometry of problem in study two. Modified figure from (Goodchild et al., 2015) 
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The fixed parameters are as follows: 

- Point load, 2 529 kN 

- Distance to point load from support: 1250 mm 

▪ Support forces: V1 = 1 794 kN and V2 = 735 kN 

- Breadth, 500 mm 

- Width of the bearing plates, bp = 500 mm and bs1 = bs2 =500 mm 

- The concrete class, 𝑓𝑐k = 35 MPa 

- c = 100 mm 

- Distance between supports: 4300 mm 

The main difference between the models is the number of vertical ties used. Since the point 

load is not centered on the structure and the STM is non-symmetric, the number of vertical 

ties is placed on the larger side of the point load. The largest side of the point load is divided 

into equally large sections. The four STMs to test are no vertical ties, one vertical, two vertical, 

and three vertical ties. The four models are presented in Figure 71. 

 

 

Figure 71 The four different models. Drawn by the program 
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7.3.2 First run 

As mentioned, the first run will have unrealistically high concrete specifications to get the 

strain energy for all cases. The results can be found in Table 6 below. 

 900 1300 1700 2100 2500 2900 3300 

None 23247 16094 12307 9963 8369 7214 6340 

One  20561 15315 12837 11546 10873 10561 10480 

Two   20622 16437 14821 14307 14366 14760 15369 

Three  21371 18035 17169 17363 18106 19173 20445 

Table 6 The strain energy in J from the first run in study two, rows are the number of 

vertical ties, and columns are height in mm 

7.3.3 Second run 

Now the same models are rerun through the program, only this time with the correct concrete 

specifications given in the list in 7.3.1. Table 7 shows the resulting strain energies with the 

correct concrete specifications. The models that fail the checks are removed, and only those 

who pass the checks are left. 

 900 1300 1700 2100 2500 2900 3300 

None    9963 8369 7214 6340 

One    12837 11546 10873 10561 10480 

Two     14821 14307 14366 14760 15369 

Three    17169 17363 18106 19173 20445 

Table 7 The stain energy in J from the second run in study two, rows are the number of 

vertical ties, and columns are height in mm 

 

 

 

 

 

 

 



62 

7.3.4 Results 

The results from Table 6 and Table 7 are represented in Figure 72. Each line represents each 

model, with a different number of vertical ties. The transparent line is the idealized strain 

energy from the first run. Where the models do not fail on the second run, the colors are 

opaque.  

 

Figure 72 Plotted data from study two 

The data shown in Figure 72 indicates that the models with less vertical ties have lower strain 

energy, except for cases with lower heights. At these heights, the model without vertical ties 

begins to experience more strain energy than the other models. However, these situations 

would not occur, as the general rules for angles between strut and tie will not be satisfied, 

and the model will fail. 

In this study, the figures and data show that the models with vertical ties have a given height 

where the minimum strain energy occurs. With an increasing number of vertical ties, the 

height where the minimum strain occurs decreases. The strain energy goes toward zero as 

the height increase in the model with no vertical ties. 

As for the element with the correct concrete parameters, the model without vertical 

reinforcement is the best solution, as long as the height is 2100 mm or more. Any lower than 

this, and there is a need for more ties. However, below 1700 mm, none of the models pass 

the design checks. 
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7.4 Discussion of the studies 

The precalculated problem from the first study has a height of 1300 mm with no vertical ties. 

Choosing the model with no vertical reinforcement is also the best option from the study, with 

a height of 1300 mm. So, in the first study, the program agrees with the precalculated 

example. 

The precalculated example from the second study has a height of 1300 mm and two vertical 

ties. All the models with a height of 1300 mm fail in the program. The failure is due to the 

slight modifications done to the original problem. However, even though the slightly modified 

version of the problem fails in this test, the strain energy calculations disagree with the choice 

of STM by the example, as the strain energy for one vertical tie is less than for two vertical 

ties, given that the models do not fail. 

As for a comparison of the two studies, some patterns emerge. The “best” models, in general, 

have fewer vertical ties, as this is the case for both studies. This implies that if there is even 

a use for vertical ties to get a valid STM, the fewer, the better.  

The data for both tests also show that the models with vertical ties have an optimum height 

for minimizing strain energy. Except for the models without vertical ties. This is because the 

higher the model becomes, the less force is needed to be carried by the tie, hence a need for 

less reinforcement and, therefore, less strain energy. It is clear that the more vertical ties are 

involved, the lower this optimum height becomes. Given that the two deep beams have 

different sizes, the easiest way to compare them is to use a height-to-length ratio. These 

ratios for study one are 0.44, 0.28, and 0.22 for two, four, and six vertical ties, respectively. 

Likewise, the ratios for study two are 0.77, 0.51, and 0.42 for one, two, and three vertical 

ties, respectively. From these ratios, it is evident that the height to length ratio for the 

optimum height reduces significantly as the number of ties goes up. It is also clear by the 

only direct comparison here that the nature of a tie on each side of the force gives a much 

smaller optimum height to length ratio than on just the one, as 0.44 < 0.77. 

7.5 Conclusion of the studies 

The two studies show that the best STMs are the ones with the least number of vertical ties 

for all height to length ratios, except for low ones where rules for the angle between struts 

and ties would not be met. It is also clear that a given number of vertical ties have an optimum 

height-to-length ratio to get the least strain energy. The more vertical ties, the lower this 

ratio is for the minimum strain energy in the STM. However, inside realistic ratios, fewer 

vertical ties are always better.  
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8 Discussion 

8.1 General 

While developing the program, there were some challenges. The challenges that arose during 

development and the choices that were made will be discussed in this section. The limitations 

of the program will also be stated here.  

8.2 The process 

This thesis was meant to continue a previously done project work. This project had a script 

for varying all the possible parameters of a simply supported deep beam with a central point 

load, similar to the problem in example 1 in section 6.2. The only thing brought further from 

this project was the functions for the design checks of the nodes and trusses. Since these 

were already written, the rest of the script was developed around these functions.  

The development started small and was built step by step outwards from there. Each step 

adding some difficulty and limitations to the program. The most challenging part of the 

development was calculating the internal forces of the elements in the system. Many trial 

programs were made based on iteration like a human would have done it. However, this 

turned out to be much more difficult than anticipated since humans have a more extensive 

understanding of the whole system and can make informed choices on what order the 

calculations should be done. This resulted in a need to develop new methods, and the system 

implemented was, despite its drawbacks, a good choice for developing the program. 

The GUI part of the program may, was developed because of a desire to have some 

interactable user interface and the opportunity to learn about coding GUI in Python. So, even 

though it has its flaws, the GUI works, but the most important part of its development was 

the learning experience.  

During the development process, some assumptions and simplifications were made. The most 

notable one in the program is the choice of width of horizontal struts. This was set to be the 

same as 2*c (2 times distance from surface to center of tie) as this was an input variable that 

could easily be changed without affecting the system too much. This value has proven to be 

one of the most important values in the program, as most failures encountered during testing 

are because of this value being too low. Maybe it should have been a separate variable for 

the user to decide, since arbitrarily increasing the c variable, also increase the strength in the 

CCT- and CTT-nodes.  

Another assumption is that all the struts in the system are designed as if they are prismatic 

struts experiencing transverse tensile stress. This was chosen as it is the most conservative 

way of designing struts, and there would be great difficulty in scripting the program to 

differentiate different types of struts. So, if a strut fails in the program, there might be other 

design methods for struts that can be proven okay for the same values. Adding bursting 

reinforcement might help even more. 
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Other assumptions made are that other design rules for STM generation are not checked (like 

the angle between strut and tie), all the reinforcement are assumed to have sufficient 

anchorage, and requirements for minimum reinforcement are met or checked by the user.  

8.3 Limitation 

8.3.1 General 

Even though the program was written to be as all-encompassing as possible, the finished 

product has some limitations. These limitations will be discussed in detail in this section. These 

are the limitation found in this thesis, but there are probably more that will be uncovered by 

further use of the program. 

8.3.2 Geometry of the concrete structure 

One of the most significant limitations may be the lack of options in choosing different 

geometries of the concrete structures. It would seem like the element only can be square, 

which is somewhat true. It is only the truss system itself that is calculated and drawn. The 

user defines this system, and as long as the geometry of an implied concrete element can 

encompass the truss system, the limitation of different geometries diminishes, as can be seen 

by the non-square nature of example 3. However, one must be careful about the forces around 

corners and holes in the element, as these have restrictive geometry and might not have 

room for the given nodes or struts. So, caution is advised if these kinds of concrete structures 

are to be calculated using this program. 

8.3.3 Forces on the concrete structure 

Another limitation is that the program does not have a capability for other types of external 

forces than point loads. So, other types of forces like distributed loading are impossible. If 

the concrete structure has distributed loading, the program user must decompose these loads 

into point loads, as is the norm when constructing an STM (see example 2 for an example of 

this). 

Further, having a force anywhere other than directly on a node is impossible. The force can 

only be at nodes because the strut and tie model system is based on where the forces are 

applied. Thus, there will always be a node where an external force is applied.  

In the script version of the program, there is a possibility to add forces with other angles than 

the verticals. Calculating the forces in the system with different angles should be fine, but 

some of the checks are not particularly good at handling forces with angles, and errors may 

occur. 

All the external forces must be in equilibrium. The solve function from the NumPy package 

can run even though the concrete structure is not in equilibrium. However, the residual after 

this calculation is high if the equilibrium condition is not met. A check for a high residual 

exists, but it is best practice to ensure equilibrium before making the system. Sometimes this 

residual is high even though the forces are in equilibrium. Often when this is the case, the 
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calculated forces in the system are roughly correct, but this would need to be investigated by 

the user.  

8.3.4 Node 

The program is mainly written for nodes to be the intersection between three trusses/forces, 

and some nodes that can handle more than three. Less than three forces typically give an 

error. Usually, no nodes experience just two forces, which only happens with poorly designed 

STM or when an external load is transported by one truss to a node. This can be overcome 

by placing the force directly on the internal nodes rather than at the edge, as shown in 

example 2. 

When many things happen at a node, there are even more things to consider when designing: 

geometry, forces, node type, which forces to combine to perform design checks, among 

others. To be able to accommodate every type of node would be laborious. Thus, only the 

checks for the most common nodes have gotten their own code. Trying to design for an 

advanced node should not crash the program and still give results, but one should be aware 

that these might not be completely accurate and check these nodes' results.  

8.3.5 Arrows  

When plotting the systems, drawing the arrows for the forces is a significant contributor to 

error messages. As this part of the program was not prioritized the most, the arrows can be 

miscalculated, such that they become very large and sometimes too large in the plotted 

output. If this is the case, the user can turn off the arrows by editing the Boolean variable 

arrows from True to False in line 568 in the STM.py file.  

8.4 Examples 

Referring to the examples in section 6, they show that the results from the program are 

satisfactory compared to the results from the online example. There is more trouble in the 

complex example in section Example 3: Deep beam with large openings and recess. It shows 

that the results are satisfactory, but when a complex STM such as this should be established 

carefully. It is important to check that the internal forces are correct, especially if the residual 

number is high. The program has no trouble establishing and checking a simple STM such as 

Example 1: two-pile cap and Example 2: deep beam.  

8.5 Study 

The studies done in section 7 show how the program can be used to find the most optimal 

solution for an STM. It uses the same concrete structure and does some changes to compare 

the strain energy. Setting up the models and doing the iterations in Python were done 

manually. It might seem like a lot of work doing the iterations manually, but one of the 

program’s main features is that it is easy to change variables manually. Hence the process of 

iteration did not take much time at all. Most of the human labor time was used to design the 

models and compare the results. This was just one example of studies that can be done with 

this program, and the options are almost limitless. 
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8.6 Using the program 

The intention when developing the program was to create a program that would be intuitive 

to use by external users. It is hard to know whether it was succeeded or not before external 

users try using it on real structures. The authors discussed with friends and family to check if 

the program and the GUI were intuitive. There was some feedback, and after suggestions, 

some changes to the GUI were made. To have created a fully optimal user-friendly program, 

it should have been tested more by external users.  
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9 Conclusion 
Strut and tie modeling is an effective tool when designing complex concrete structures where 

standard design rules cannot be applied. Even though the calculations are simple, there are 

often a lot of them, which will make the design process long and laborious.  

Thus, this thesis aimed to develop an all-encompassing program in Python to design strut and 

tie models and use this program to perform a small study. Despite all the program’s 

limitations, it can be a robust tool in designing a structure using STM, showcased by the 

examples in section 6. The precalculated examples and the results from the calculations done 

by the program coincide.  

STM is a method based on iteration to find the most optimal solutions for a structure, which 

is easily done with the program. Even though the iteration needs to be done manually, it is 

designed so that changing variables, node placements, and changes to the STM should be 

relatively quick and easy. After performing the study in section 7, it is clear that it is easy to 

find the optimal solution by making small changes to an STM and concludes that the goals of 

making a functional Python program are fulfilled. 
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10 Future Work 
The future of this program is dependent on its overall capabilities. While there are known 

limitations, there are also bound to be some unknown limitations. Hence, the program needs 

to be used more to uncover its overall value. 

Since the program is publicly available, future work on this topic will be to build on the existing 

framework or use it as an inspiration for a new program with the intent of lowering the number 

of limitations to get an even more all-encompassing freely available program. 

As for the program itself, the input method can be developed more. Either by having an easier 

way of setting up the system or a more capable and fleshed-out GUI.  



70 

References 
akrowne. (2013a, mars 22). Linear least squares. https://planetmath.org/linearleastsquares 

akrowne. (2013b, mars 22). Overdetermined. https://planetmath.org/overdetermined 

Chen, W. F., & El-Metwally, S. E. (2017). Understanding Structural Engineering: From 

Science to Engineering. 16. 

Colorito, A. B., Wilson, K. E., Bayrak, O., & Russo, F. M. (2017). Strut-and-Tie Modeling 

(STM) for Concrete Structures. Federal Highway Administration. 

https://www.fhwa.dot.gov/bridge/concrete/nhi17071.pdf 

English, T. (2019, november 7). Finite Element Analysis Is the Foundation of All Mechanical 

Engineering Simulation. https://interestingengineering.com/what-is-finite-element-

analysis-and-how-does-it-work 

Getting started with GitHub Desktop. (2022). GitHub Docs. Hentet 26. april 2022, fra 

http://ghdocs-prod.azurewebsites.net:80/en/desktop/installing-and-configuring-

github-desktop/overview/getting-started-with-github-desktop 

Ghoraba, A., El-Metwally, S., & El-Zoughiby, M. (2020). The strut-and-tie model and the 

finite element -good design companions. Journal of Structural Engineering & Applied 

Mechanics, 3, 244–275. https://doi.org/10.31462/jseam.2020.04244275 

Goodchild, C. H., Morrison, J., & Vollum, R. L. (2015). Strut-and-tie Models: How to design 

concrete members using strut-and-tie models in accordance with Eurocode 2. 

Hu, Q., Ley, M. T., & Russell, B. W. (2014). Determining Efficient Strut-and-Tie Models for 

Simply Supported Beams Using Minimum Strain Energy. ACI Structural Journal, 

111(5), 1015–1025. 

Kuhlman, D. (2012, april 22). A Python Book: Beginning Python, Advanced Python, and 

Python Exercises. 

https://web.archive.org/web/20120623165941/http://cutter.rexx.com/~dkuhlman/p

ython_book_01.html 



71 

Make your first Git commit | GitLab.  Hentet 27. april 2022, fra 

https://docs.gitlab.com/ee/tutorials/make_your_first_git_commit.html 

NumPy Developers. (2022). numpy.linalg.lstsq—NumPy v1.22 Manual. 

https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html 

O’Grady, A. (2018). GitLab Quick Start Guide: Migrate to GitLab for all your repository 

management solutions. Packt Publishing Ltd. 

Python, R.  Python GUI Programming With Tkinter – Real Python. Hentet 23. mai 2022, fra 

https://realpython.com/python-gui-tkinter/ 

Python Software Foundation. (2012, februar 24). Why is Python a dynamic language and 

also a strongly typed language—Python Wiki. 

https://wiki.python.org/moin/Why%20is%20Python%20a%20dynamic%20language

%20and%20also%20a%20strongly%20typed%20language 

Python Software Foundation. (2022, april 26). General Python FAQ — Python 3.10.4 

documentation. https://docs.python.org/3/faq/general.html#why-was-python-

created-in-the-first-place 

Raybaut, P. (2009, oktober 18). [PyQt] [ANN] Spyder v1.0.0 released. 

https://www.riverbankcomputing.com/pipermail/pyqt/2009-October/024764.html 

Schlaich, J., Schafer, K., & Jennewein, M. (1987). Toward a Consistent Design of Structural 

Concrete. PCI Journal, 32(3), 74–150. 

https://doi.org/10.15554/pcij.05011987.74.150 

Spinellis, D. (2012). Git. IEEE Software, 29(3), 100–101. 

https://doi.org/10.1109/MS.2012.61 

Spyder Doc Contributors. (2022). Welcome to Spyder’s Documentation—Spyder 5 

documentation. https://docs.spyder-ide.org/current/index.html 

Tae, K. M. (2021, april 28). Strut-and-Tie Model: Part 1 - Basics. 

https://www.midasbridge.com/en/blog/bridgeinsight/strut-and-tie-model-part-1-

basics 



72 

Tae, K. M. (2022, januar 19). Strut-and-Tie Model: Part 2 - Determining STM. 

https://www.midasbridge.com/en/blog/bridgeinsight/strut-and-tie-model-part-2-

determining-stm 

Todisco, L. (2009). Test evidence for applying Strut-and-Tie Models to deep beams. 

https://doi.org/10.13140/RG.2.2.30462.38721 

Varsity Tutors. (2007). Law of Sines. 

https://www.varsitytutors.com/hotmath/hotmath_help/topics/law-of-sines 

walter. (2017, oktober 21). How to select the most appropriate strut-and-tie model in your 

design? Wallingford Consultancy. 

https://wallingford.com.my/index.php/2017/10/21/select-appropriate-strut-tie-

model/ 

  



73 

Appendix 
Appendix A: STM code 

Appendix B: GUI code



 

 

A: STM code 

import numpy as np 

import math as mt 

import numpy.linalg as la  

 

class Node: 

    def __init__(self,nodePosition_,forceMagnitude_= 0,forceWidth_= 0, 

                 forceAngle_=np.pi/2): 

    #The nodePosition must be a list that represent the coordinates to the node 

    #in integer numbers. The rest of the arguments should be integer numbers. 

        if(isinstance(nodePosition_, list)): 

            if(len(nodePosition_)==2): 

                if(isinstance(nodePosition_[0], int) and  

                   isinstance(nodePosition_[0], int)): 

                    self.nodePosition = nodePosition_ 

                    self.nodeX = nodePosition_[0] 

                    self.nodeY = nodePosition_[1] 

                else: 

                    print("The node list needs to contain integer numbers") 

            else: 

                print("The node list has to be of length 2") 

        else: 

            print("Then nodePosition needs to be of type list") 

        self.forceMagnitude = 0 

        self.forceAngle = 0 

        self.forceWidth = 0 

        self.isOkay=True 

        if(forceMagnitude_!=0): 

            self.addForce(forceMagnitude_,forceWidth_,forceAngle_) 



 

         

    def addForce(self,forceMagnitude_,forceWidth_,forceAngle_=np.pi/2):  

        #adds force to node 

            if(isinstance(forceMagnitude_, int) and  

               isinstance(forceAngle_, float) and  

               isinstance(forceWidth_, int)): 

                self.forceMagnitude = forceMagnitude_ 

                self.forceAngle = forceAngle_ 

                self.forceWidth = forceWidth_ 

                self.forceX = self.forceMagnitude*-mt.cos(forceAngle_) 

                self.forceY = self.forceMagnitude*mt.sin(forceAngle_) 

            else: 

                print("The forceMagnitude and forceWidth needs to be int," + 

                      " and the forceAngle float")        

         

    def nodeType(self,system_): #determines node type 

        system=system_ 

        elements=system.elementsFromNode(self) 

        ties=0 

        for elem in elements: 

            if elem.forceMagnitude < 0: 

                ties+=1 

        if (len(elements) >= 3 and  

            abs(self.forceMagnitude) >0) or len(elements)> 3 :  

            #checks if more than 3 trusses at node 

            if ties == 2: 

                tieang=[] 

                for elem in elements: 

                    if elem.forceMagnitude < 0: 

                        ang=angle([elem.node2.nodePosition[0]- 

                                   elem.node1.nodePosition[0], 



 

                                   elem.node2.nodePosition[1]- 

                                   elem.node1.nodePosition[1]]) 

                        tieang.append(ang) 

                if tieang[0]+tieang[1] == 0 or tieang[0]+tieang[1] == np.pi:  

                    #if two ties are paralell, they count as one 

                    ties-=1         

        if ties==0: 

            self.nodeType="CCC" 

        elif ties==1: 

            self.nodeType="CCT" 

        else: 

            self.nodeType="CTT" 

 

 

class Element: #setup of element class, representing the trusses 

    def __init__(self,node1_,node2_): 

        self.node1 = node1_ 

        self.node2 = node2_ 

        self.width = [] 

        self.isOkay=True 

           

    def returnOtherNode(self,node_): #return the other node of the element 

        if(node_ == self.node1): 

            return self.node2 

        elif(node_ == self.node2): 

            return self.node1 

        else: 

            print('not valid node') 

     

    def addForce(self,forceMagnitude_): #adds force to the element 

        self.forceMagnitude = forceMagnitude_ 



 

           

    def addWidth(self,width): #adds width to element in a list 

        self.width.append(width)   

             

         

class System: #setup for the STM system 

    def __init__(self): 

        self.nodes = [] #The list of all nodes in the system 

        self.elements = [] #The list of all elements in the system 

         

    def addNode(self,node_): #adds nodes to the system 

        if(self.existingNode(node_.nodePosition) == False): 

            self.nodes.append(node_) 

        else: 

            print("This node already exist!") 

             

    def addElementWithNodes(self,node1_,node2_): #adds elements to the system 

        element = Element(node1_, node2_) 

        if(self.existingNode(node1_.nodePosition) == False): 

            print("This node1 does not exist. Creat node first") 

        elif(self.existingNode(node2_.nodePosition) == False): 

            print("This node2 does not exist. Creat node first") 

        elif(self.existingElement(element)): 

            print("This element already exist") 

        else: 

            self.elements.append(element) 

                 

    def addElementWithElement(self,element_): #adds elements to the system 

        node1 = element_.node1 

        node2 = element_.node2 

        self.addElementWithNodes(node1, node2) 



 

         

    def connectedNodes(self,node_):  

        #returns which nodes are connected to another node by an element 

        connectedNodes = [] 

        if(self.existingNode(node_.nodePosition) != False): 

            for element in self.elements: 

                if(element.node1.nodePosition == node_.nodePosition): 

                    connectedNodes.append(element.node2) 

                elif(element.node2.nodePosition == node_.nodePosition): 

                    connectedNodes.append(element.node1)  

            return connectedNodes 

        else: 

            print("This node is not part of the system") 

             

    def elementsFromNode(self,node_):  

        #returns which elements are connected to a node 

        connectedElements = [] 

        if(self.existingNode(node_.nodePosition)): 

            for element in self.elements: 

                if (node_.nodePosition == element.node1.nodePosition  

                    or node_.nodePosition == element.node2.nodePosition): 

                    connectedElements.append(element) 

            return connectedElements 

        else: 

            print("This node is not part of the system")          

         

    def existingNode(self,nodePosition_):  

        #checks if a node exist in the system 

        for node in self.nodes: 

            if(node.nodePosition == nodePosition_): 

                return node 



 

        return False 

     

    def existingElement(self,element_):  

        #checks if an element exist in the system 

        for element in self.elements: 

            if((element.node1.nodePosition==element_.node1.nodePosition and  

                element.node2.nodePosition==element_.node2.nodePosition) or 

               (element.node2.nodePosition==element_.node1.nodePosition and  

                element.node1.nodePosition==element_.node2.nodePosition)): 

                return element 

        return False 

                 

     

class ElementForce: #calculates the forces in the trusses 

    def __init__(self,system_): 

        self.system = system_ 

        self.solve() 

        self.addTypes() 

           

    def elementMatrix(self):  

        #setup of matrix with the contributions from the trusses on the nodes 

        nNodes = len(self.system.nodes) 

        nElements = len(self.system.elements) 

        elementMatrix = np.zeros((nNodes*2,nElements)) #creating the matrix      

        for i in range(nNodes*2): 

            if(i%2 == 0): #forces in x direction 

                iNode = int(i/2) 

                node = self.system.nodes[iNode] 

                connectedElements = self.system.elementsFromNode(node) 

                for iElement in range(nElements): 

                    if(self.system.elements[iElement] in connectedElements): 



 

                        element = self.system.elements[iElement] 

                        elementMatrix[i][iElement] = self.xDirection(node, 

element.returnOtherNode(node)) 

         

            elif(i%2 == 1): #forces in y direction 

                 iNode = int((i-1)/2) 

                 node = self.system.nodes[iNode] 

                 connectedElements = self.system.elementsFromNode(node) 

                 for iElement in range(nElements): 

                     if(self.system.elements[iElement] in connectedElements): 

                         element = self.system.elements[iElement] 

                         elementMatrix[i][iElement]=self.yDirection(node, 

element.returnOtherNode(node)) 

        return elementMatrix    

         

    def xDirection (self,node1_,node2_): #calculates the contribution in x-direction 

        x1=node1_.nodeX 

        x2=node2_.nodeX 

        y1=node1_.nodeY 

        y2=node2_.nodeY 

        L = mt.sqrt((x2-x1)**2+(y2-y1)**2) 

        if L == 0: #failsafe 

            return 0 

        return (x2-x1)/L    

     

    def yDirection (self,node1_,node2_): #calculates contribution i y-direction 

        x1=node1_.nodeX 

        x2=node2_.nodeX 

        y1=node1_.nodeY 

        y2=node2_.nodeY 

        L=mt.sqrt((x2-x1)**2+(y2-y1)**2) 



 

        if L == 0: #failsafe 

            return 0 

        return (y2-y1)/L  

     

    def forceMatrix(self): #setup of matrix of external forces on the nodes 

        forceMatrix = np.zeros(len(self.system.nodes)*2) 

        i = 0    

        for node in self.system.nodes: 

            if(node.forceMagnitude): 

                forceMatrix[i] = node.forceX 

                forceMatrix[i+1] = node.forceY 

            i+=2 

        return forceMatrix   

     

    def solve(self): #solves the matrix equation, and add the truss forces into the elements 

        elementMatrix = self.elementMatrix() 

        forceMatrix = self.forceMatrix() 

        self.elementForce = la.lstsq(elementMatrix, forceMatrix , rcond=None) 

        res=False 

        for force in self.system.nodes: 

            l=len(str(int(force.forceMagnitude))) 

            if self.elementForce[1] > 10**(l-1) and l !=1: 

                res=True 

        if res: #checks if residual is too high 

            self.system.residual="\nHigh residual in the calculation of forces, please check 

equilibrium!!" 

        else: 

            self.system.residual="" 

        i = 0 

        for force in self.elementForce[0]: 

            self.system.elements[i].addForce(force) 



 

            i+=1 

        return self.elementForce   

 

    def addTypes(self): #adds the nodetypes to the node objects after the trussforces have 

been calculated 

        for node in self.system.nodes: 

            node.nodeType(self.system)         

             

 

class Checks: 

    def __init__(self,system_,thicness_,conClass_,c_):  

        #performs design checks for all nodes and elements in the system 

        self.system=system_ 

        self.thickness=thicness_ 

        self.conClass=conClass_*0.85/1.5 

        self.v=1-self.conClass/250 

        self.c=c_     

        self.output_strings = [] 

        self.is_okay=True 

        self.check() 

        string=self.system.residual 

        self.output_strings.append(string)       

        print(string) 

         

    def check(self): 

        num=1  #nodenumber 

        for node in self.system.nodes: 

            elements=self.system.elementsFromNode(node) 

            morethan3=False 

            if (len(elements) >= 3 and abs(node.forceMagnitude) >0) or len(elements)> 3 : 

#checks if more than 3 forces act on the node 



 

                morethan3=True 

            if node.nodeType=="CCC": 

                isflat=False 

                for elem in elements: #checks if one of the struts are flat 

                    vector=[elem.node2.nodePosition[0]-

elem.node1.nodePosition[0],elem.node2.nodePosition[1]-elem.node1.nodePosition[1]] 

                    ang=angle(vector) 

                     

                    if ang==0: 

                        isflat=True 

                        flat=elem        

                if node.forceMagnitude: #if external force exist 

                    F1=node.forceMagnitude 

                    width1=node.forceWidth 

                    if isflat: 

                        F2=flat.forceMagnitude 

                        width2=2*self.c         #assumes height of flat strut to be 2* cover 

                        flat.addWidth(width2)  

                        comp=[] #components 

                        ang=[]  #angles 

                        for elem in elements: 

                            if elem != flat: 

                                comp.append(elem) 

                                node2=elem.returnOtherNode(node) 

                                vector=[node2.nodePosition[0]-

node.nodePosition[0],node2.nodePosition[1]-node.nodePosition[1]] 

                                ang.append(angle(vector))  

                        if morethan3: #calculates the resultant if more than 3 forces 

                            R=0 

                            vert=0 

                            hor=0 



 

                            i=0 

                            while i < len(comp): 

                                R+=comp[i].forceMagnitude**2 

                                vert+=comp[i].forceMagnitude*mt.sin(ang[i]) 

                                hor+=comp[i].forceMagnitude*mt.cos(ang[i]) 

                                i+=1 

                            R=mt.sqrt(R) 

                            ang=abs(mt.atan(vert/hor)) 

                            F3=R 

                            width3=width1*mt.sin(ang)+width2*mt.cos(ang) 

                            node.isOkay=self.CCC(F1, F2, F3, width1, width2, width3, self.thickness, 

self.conClass, self.v, num) 

                        else: #don't need a resultant 

                            F3=comp[0].forceMagnitude 

                            width3=abs(width1*mt.sin(ang[0]))+abs(width2*mt.cos(ang[0]))  

                            comp[0].addWidth(width3) 

                            node.isOkay=self.CCC(F1, F2, F3, width1, width2, width3, self.thickness, 

self.conClass, self.v, num) 

                    else:  #isn't flat 

                        comp=[] 

                        ang=[] 

                        for elem in elements: 

                            comp.append(elem) 

                            node2=elem.returnOtherNode(node) 

                            vector=[node2.nodePosition[0]-

node.nodePosition[0],node2.nodePosition[1]-node.nodePosition[1]] 

                            angtemp=angle(vector) 

                            if angtemp > np.pi/2: angtemp=np.pi-angtemp 

                            ang.append(angtemp) 

                        F2=comp[0].forceMagnitude 

                        width2=width1*mt.sin(ang[0])/(mt.sin(np.pi-ang[0]-ang[1])) 

                        F3=comp[1].forceMagnitude 



 

                        width3=width1*mt.sin(ang[1])/(mt.sin(np.pi-ang[0]-ang[1])) 

                        comp[0].addWidth(width2)  

                        comp[1].addWidth(width3)  

                        node.isOkay=self.CCC(F1, F2, F3, width1, width2, width3, self.thickness, 

self.conClass, self.v, num) 

                else: #no external force, internal CCC node is smeared 

                    string = "Node "+str(num)+" is a smeered node, no check needed" 

                    print(string) 

                    self.output_strings.append(string) 

            elif node.nodeType=="CCT": 

                if node.forceMagnitude > 0: #if external force exist 

                    F1=node.forceMagnitude 

                    width1=node.forceWidth 

                    if morethan3: 

                        comp=[] 

                        ang=[] 

                        strut=0 

                        tie=0 

                        for elem in elements: 

                            if elem.forceMagnitude < 0: 

                                tie+=1 

                            else: 

                                strut+=1 

                                comp.append(elem) 

                                node2=elem.returnOtherNode(node) 

                                vector=[node2.nodePosition[0]-

node.nodePosition[0],node2.nodePosition[1]-node.nodePosition[1]] 

                                angtemp=angle(vector) 

                                ang.append(angtemp)   

                        if strut==2:  #2 struts at CCT node with external force, checked twice, 

once for each side 



 

                            width2_1=width1*np.sin(ang[0])+2*self.c*np.cos(ang[0]) #assumes 

height of tie to be 2* cover 

                            width2_2=width1*np.sin(ang[1])+2*self.c*np.cos(ang[1]) 

                            F2_1=comp[0].forceMagnitude 

                            F2_2=comp[1].forceMagnitude 

                            comp[0].addWidth(width2_1)  

                            comp[1].addWidth(width2_2)  

                            node.isOkay=self.CCT(F1, F2_1, self.thickness, width1, width2_1, 

self.conClass, self.v, num) 

                            node.isOkay=self.CCT(F1, F2_2, self.thickness, width1, width2_2, 

self.conClass, self.v, num) 

                        else: 

                            string = "please have a maximum of 2 struts at node " +str(num)  

                            print(string) 

                            self.output_strings.append(string) 

                    else: #if not more than 3 

                        for elem in elements: 

                            if elem.forceMagnitude > 0: 

                                node2=elem.returnOtherNode(node) 

                                vector=[node2.nodePosition[0]-

node.nodePosition[0],node2.nodePosition[1]-node.nodePosition[1]] 

                                ang=angle(vector) 

                                F2=elem.forceMagnitude 

                                width2=width1*np.sin(ang)+2*self.c*np.cos(ang) #assumes  heigth 

of tie to be 2* cover 

                                elem.addWidth(width2) 

                        node.isOkay=self.CCT(F1, F2, self.thickness, width1, width2, self.conClass, 

self.v, num) 

                else: #no external force 

                    if morethan3: 

                        comp=[] 

                        ang=[] 

                        strut=0 



 

                        isflat=False 

                        for elem in elements:  

                            if elem.forceMagnitude > 0: 

                                strut+=1 

                                comp.append(elem) 

                                node2=elem.returnOtherNode(node) 

                                vector=[node2.nodePosition[0]-

node.nodePosition[0],node2.nodePosition[1]-node.nodePosition[1]] 

                                angtemp=angle(vector) 

                                ang.append(angtemp) 

                                if angtemp==0: 

                                    isflat=True 

                                    flat=elem 

                                    comp.remove(flat) 

                        if strut==3:  

                            if isflat: 

                                F1=flat.forceMagnitude 

                                width1=2*self.c 

                                flat.addWidth(width1) 

                                R=0 

                                vert=0 

                                hor=0 

                                i=0 

                                while i < len(comp): 

                                    R+=comp[i].forceMagnitude**2 

                                    vert+=comp[i].forceMagnitude*mt.sin(ang[i]) 

                                    hor+=comp[i].forceMagnitude*mt.cos(ang[i]) 

                                    i+=1 

                                R=mt.sqrt(R) 

                                ang=abs(mt.atan(vert/hor)) 

                                F2=R 



 

                                width2=width1*mt.sin(ang)+width2*mt.cos(ang) 

                                node.isOkay=self.CCT(F1, F2, self.thickness, width1, width2, 

self.conClass, self.v, num) 

                            else: 

                                string = "Node "+str(num)+" is a smeared node, no check needed" 

                                print(string) 

                                self.output_strings.append(string) 

                        else: 

                            string = "Too many struts at node "+str(num) 

                            print(string) 

                            self.output_strings.append(string) 

                    else: #3 trusses 

                        comp=[] 

                        ang=[] 

                        isflat=False 

                        for elem in elements:  

                            if elem.forceMagnitude > 0: 

                                comp.append(elem) 

                                node2=elem.returnOtherNode(node) 

                                vector=[node2.nodePosition[0]-

node.nodePosition[0],node2.nodePosition[1]-node.nodePosition[1]] 

                                angtemp=angle(vector) 

                                ang.append(angtemp) 

                                if angtemp==0: 

                                    isflat=True 

                                    flat=elem 

                                    comp.remove(flat) 

                        if isflat: 

                            F1=flat.forceMagnitude 

                            width1=2*self.c 

                            flat.addWidth(width1) 



 

                            F2=comp[0].forceMagnitude 

                            width2=width2=width1*mt.sin(ang[0])+width2*abs(mt.cos(ang[0])) 

                            comp[0].addWidth(width2) 

                            node.isOkay=self.CCT(F1, F2, self.thickness, width1, width2, 

self.conClass, self.v, num) 

                        else: #isn't flat 

                            string = "Node "+str(num)+" is a smeared node, no check needed" 

                            print(string) 

                            self.output_strings.append(string) 

            else: #CTT node 

                for elem in elements: 

                    if elem.forceMagnitude > 0: 

                        F1=elem.forceMagnitude 

                        node2=elem.returnOtherNode(node) 

                        vector=[node2.nodePosition[0]-

node.nodePosition[0],node2.nodePosition[1]-node.nodePosition[1]] 

                        ang=angle(vector) 

                        width1=self.c*np.sin(ang)+2*self.c*np.cos(ang) 

                        elem.addWidth(width1)  

                        node.isOkay=self.CTT(F1, self.thickness, width1, self.conClass, self.v, num) 

            num+=1     #adds to the nodenumber   

        print('') 

        self.output_strings.append('') 

        num=1  #truss number 

        for elem in self.system.elements: 

                if elem.forceMagnitude >0:  #checks if strut or tie              

                    elem.isOkay=self.strut(elem, self.thickness, self.conClass, self.v, num) 

                else: 

                    self.tie(elem.forceMagnitude,num) 

                num+=1 #adds to trussnumber 

        if self.is_okay: #if the system doesnt fail 



 

            string="\nThe capacity of the system is enough" 

            print (string) 

            self.output_strings.append(string) 

            s=strainEnergy(self.system)         #calculate strain energy if the system holds 

            string='\nThe strain energy in the system is ' +str(int(s))+' J' 

            print (string) 

            self.output_strings.append(string)    

        else: 

            string="\nThe capacity of the system is NOT enough!!!" 

            print (string) 

            self.output_strings.append(string) 

             

    def CCC(self, F1, F2, F3, width1, width2, width3, bredd, strength, v, num):  

        #design check of CCC node 

        sigma_1=(F1/(bredd*width1))      #stresses 

        sigma_2=(F2)/(bredd*width2) 

        sigma_3=F3/(bredd*width3)       

        sigma_M=v*strength             #Ec2. formula(6.60) for ccc-node    

        if sigma_1 > sigma_M or sigma_2 > sigma_M or sigma_3 > sigma_M: 

            string = "The capacity of node " +str(num)+" is not enough." 

            print (string) 

            self.output_strings.append(string) 

            self.is_okay=False 

            return False 

        else: 

            string = "The capacity of node " +str(num)+" is OK!" 

            print(string)  

            self.output_strings.append(string) 

            return True             

             



 

    def CCT(self, F1, F2, bredd, width1, width2, strength, v, num): #design check for CCT 

node 

        sigma_1=F1/(width1*bredd)         #stresses 

        sigma_2=F2/(width2*bredd)         

        sigma_M=0.85*v*strength        #Ec2. formula(6.61) for cct-node 

        if sigma_1 > sigma_M or sigma_2 > sigma_M: 

            string = "The capacity of node " +str(num)+" is not enough." 

            print (string) 

            self.output_strings.append(string) 

            self.is_okay=False 

            return False 

        else: 

            string="The capacity of node " +str(num)+" is OK!" 

            print(string) 

            self.output_strings.append(string) 

            return True 

             

    def CTT(self, F1, bredd, width1, strength, v, num): #design check for CTT node 

        sigma_1=F1/(width1*bredd)       #stress   

        sigma_M=0.75*v*strength        #Ec2. formula(6.62) for ctt-node 

        if sigma_1 > sigma_M: 

            string = "The capacity of node " +str(num)+" is not enough." 

            print (string) 

            self.output_strings.append(string) 

            self.is_okay=False 

            return False 

        else: 

            string = "The capacity of node " +str(num)+" is OK!" 

            print(string) 

            self.output_strings.append(string) 

            return True 



 

             

    def strut(self, element, thickness, strength, v, num):  

        #design check of strut 

        isokay=True 

        sigma_M=0.6*v*strength  # Ec2. formula(6.56) for strut with transverse tensile stress  

        for i in element.width: #checking both ends of the strut 

            sigma=element.forceMagnitude/(i*thickness) 

            if sigma > sigma_M: 

                isokay=False 

          

        if isokay == False: 

            string = "The capacity of strut " +str(num)+" is not enough." 

            print (string) 

            self.output_strings.append(string) 

            self.is_okay=False 

            return False 

        else: 

            string = "The capacity of strut " +str(num)+" is OK!"  

            print(string) 

            self.output_strings.append(string) 

            return True 

             

    def tie(self,F,num): #calculate required reinforcement in the ties 

        Area_s=round(abs(F)/434 +0.5)   

        string = "Required reinforcement area in tie "+str(num)+" is "+str(Area_s)+"mm^2" 

        print(string) 

        self.output_strings.append(string) 

 

 

class Plot: #plots the system 

    def __init__(self,system_): 



 

        self.system=system_ 

        self.pl=self.draw()         

 

    def draw(self): 

        arrows=True 

        import matplotlib as mpl 

        import matplotlib.pyplot as plt 

        f = plt.figure() 

        num=1 #nodenumber              

        for node in self.system.nodes: #plotting the nodes 

           x=node.nodeX 

           y=-node.nodeY 

           cor="("+str(node.nodeX)+","+str(-node.nodeY)+")" 

           if node.isOkay: 

               plt.plot(x, y, 'ko')  

           else: 

               plt.plot(x,y,'ro')    

           plt.annotate(num, xy=(x, y), xytext=(x+80, y-80), color='blue') 

           plt.annotate(cor, xy=(x, y) , xytext=(x, y+150),color='blue') 

           if arrows: 

               if node.forceMagnitude !=0: #arrows, not fun might break 

                       lolx=len(str(int(node.forceX))) 

                       if abs(node.forceX) < 1: 

                           x1=x 

                           if node.forceX<0: 

                               x1=x-(node.forceX*node.forceMagnitude/(10**(lolx-3.2))) 

                           else: 

                               x1=x+(node.forceX*node.forceMagnitude/(10**(lolx-3.2))) 

                       loly=len(str(int(node.forceY*node.forceMagnitude))) 

                       if node.forceAngle == (3*np.pi/2): 

                           y1=y+(node.forceY*node.forceMagnitude/(10**(loly-4.2))) 



 

                       else: 

                           y1=y+(node.forceY*node.forceMagnitude/(10**(loly-3.2))) 

                       plt.annotate(str(abs(node.forceMagnitude)), xy=(x, y), xytext=(x1, y1), 

arrowprops=dict(facecolor='black', shrink=0.05))    

           num+=1 

        num=1 #element number 

        for elem in self.system.elements: 

            xmid=(elem.node1.nodeX+elem.node2.nodeX)/2 

            ymid=(-elem.node1.nodeY+-elem.node2.nodeY)/2 

            #angles of the plotted forces, and numbering of element 

            if (elem.node1.nodeX>elem.node2.nodeX and elem.node1.nodeY < 

elem.node2.nodeY) or (elem.node2.nodeX>elem.node1.nodeX and elem.node2.nodeY < 

elem.node1.nodeY): 

                ang=180-mt.degrees(angle([elem.node2.nodeX-elem.node1.nodeX,-

elem.node2.nodeY--elem.node1.nodeY])) 

                plt.annotate(num, xy=(x, y), xytext=(xmid+50,ymid-80)) 

            else: 

                ang=-mt.degrees(angle([elem.node2.nodeX-elem.node1.nodeX,-

elem.node2.nodeY--elem.node1.nodeY])) 

                plt.annotate(num, xy=(x, y), xytext=(xmid-60,ymid-80)) 

            if elem.forceMagnitude<0:     

                plt.plot([elem.node1.nodeX,elem.node2.nodeX],[-elem.node1.nodeY,-

elem.node2.nodeY],'k-') 

                plt.annotate(round(elem.forceMagnitude), xy=(xmid,ymid), xytext=(xmid-110, 

ymid+50), rotation=ang)   

            else: 

                if elem.isOkay: 

                    plt.plot([elem.node1.nodeX,elem.node2.nodeX],[-elem.node1.nodeY,-

elem.node2.nodeY],'k--') 

                    plt.annotate(round(elem.forceMagnitude), xy=(xmid,ymid), xytext=(xmid-80, 

ymid+50), rotation=ang)   

                else: 

                    plt.plot([elem.node1.nodeX,elem.node2.nodeX],[-elem.node1.nodeY,-

elem.node2.nodeY],'r--') 



 

                    plt.annotate(round(elem.forceMagnitude), xy=(xmid,ymid), xytext=(xmid-80, 

ymid+50), rotation=ang)      

            num+=1         

        plt.axis('off') #turn off axissystem 

        plt.gca().set_aspect('equal', adjustable='box') 

        f.set_size_inches(10, 5.6, forward=True) #set size of the figure 

        return f 

 

 

 

def strainEnergy(system): #calculates the total strain energy in the system 

    strain=0 

    for i in system.elements: 

        if i.forceMagnitude < 0: 

            l=mt.sqrt((i.node1.nodeX-i.node2.nodeX)**2+(i.node1.nodeY-i.node2.nodeY)**2) 

            strain+=abs(i.forceMagnitude)*l*434/200000*10**(-3) 

    return strain 

         

 

 

def angle(vector): #calculate angle from the horizontal to a vector 

    vector_2=[mt.inf,0] 

    ang1 = np.arctan2(*vector[::-1]) 

    ang2 = np.arctan2(*vector_2[::-1]) 

    ang=(ang2 - ang1) % (2 * np.pi) 

    if ang >np.pi/2: ang=np.pi-ang 

    return abs(ang) 

  



 

 

B: GUI Code 

import tkinter as tk 

import STM as e 

import numpy as np 

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg 

from matplotlib.figure import Figure 

 

nodes = [] 

elements = [] 

system = e.System() 

thicness = 0 

conClass = 0 

c = 0 

number_nodes = 0 

 

#first window, to specify number of nodes: 

window1 = tk.Tk() 

 

window1.title('STM') 

             

window1.geometry('500x200') 

 

def submitNumberNodes(): 

    number=ent_number_nodes.get() 

    if(number.isdigit()): 

        global number_nodes 

        number_nodes = int(number) 

        window1.destroy()         

 



 

intro_string =  ("Welcome! This program will help you check if your strut-and-tie model is 

sufficient.\n" + 

                   "This program will show you four windows in sequence. Each window will\n" + 

                   "tell you what you need to know to fill in the required information. Good luck!") 

 

lbl_intro = tk.Label(text =intro_string) 

 

lbl_number_nodes = tk.Label(text="Enter number of nodes:") 

ent_number_nodes = tk.Entry() 

btn_submit = tk.Button(text="Submit", command = submitNumberNodes) 

 

lbl_intro.pack() 

lbl_number_nodes.pack() 

ent_number_nodes.pack() 

btn_submit.pack() 

 

window1.mainloop() 

 

 

#second window to setup the system 

window2 = tk.Tk() 

 

window2.title('System setup') 

              

window2.geometry('500x200') 

 

entry_x = [] #cordinates in x direction 

entry_y = [] #cordinates in y direction 

connected = [] #checkboxes 

n=0 

entry_force_magnitudes = [] #external forces 



 

entry_force_widths = [] #external forces widths 

error_text = [] 

error_lables = [] 

satisfied = True 

 

 

def submitNodes(): 

    global error_text 

    error_text = [] 

    global satisfied 

    satisfied = True 

    global nodes 

    nodes.clear() 

    global elements 

    elements.clear() 

    sum_force_magnitude = 0 

     

    for i in range(number_nodes): 

        force_magnitude = entry_force_magnitudes[i].get() 

        force_width = entry_force_widths[i].get() 

        if(force_magnitude==""): 

            force_magnitude = 0 

            force_width = 0 

        elif(force_magnitude.isdigit() or (force_magnitude[0]=="-" and 

force_magnitude[1:len(force_magnitude)].isdigit())): 

            if(force_width.isdigit()): 

                force_magnitude = int(force_magnitude) 

                force_width = int(force_width) 

            else: 

                error_text.append("Force width must be filled with integer number when force 

magnitude is applied.") 



 

                print("Force width must be filled with integer number when force magnitude is 

applied.") 

                satisfied = False 

                break 

        else: 

            error_text.append("The magnitude must be filled with integer number.") 

            print("The magnitude must be filled with integer number.") 

            satisfied = False 

            break 

        sum_force_magnitude += force_magnitude 

        node_position = [] 

        x = entry_x[i].get() 

        y = entry_y[i].get() 

        val1 = True 

        try: 

            x = int(x) 

            y = int(y) 

        except: 

            val1 = False 

        if(val1): 

            satisfied = True 

            node_position.append(x) 

            node_position.append(y*-1) 

            if(force_magnitude<0): 

                node = 

e.Node(node_position,forceMagnitude_=abs(force_magnitude),forceWidth_=force_width) 

                nodes.append(node) 

            else: 

                node = 

e.Node(node_position,forceMagnitude_=force_magnitude,forceWidth_=force_width,forceAn

gle_=3*np.pi/2) 

                nodes.append(node) 



 

        else: 

            error_text.append("All positions need to be filled with integer number") 

            print("All positions need to be filled with integer number") 

            satisfied = False 

            break 

         

    connected_index=0 

     

    if(sum_force_magnitude !=0): 

        error_text.append("The structure needs to be at vertical equilibrium") 

        satisfied = False 

     

    if(len(error_lables)>0): 

        for l in error_lables: 

            l.destroy() 

        error_lables.clear() 

     

    if(satisfied==False): 

        for t in error_text: 

            label_error=tk.Label(text = t) 

            label_error.pack() 

            error_lables.append(label_error) 

     

    if(satisfied): 

        for i in range(number_nodes-1): 

            for j in range(number_nodes-1-i): 

                element = [] 

                if(connected[connected_index].get()): 

                    element.append(nodes[i]) 

                    element.append(nodes[j+i+1]) 

                    elements.append(element) 



 

                connected_index+=1 

         

        for node in nodes: 

            global system 

            system.addNode(node) 

         

        for element in elements: 

            system.addElementWithNodes(element[0], element[1]) 

        e.ElementForce(system) #calculating the internal forces of the elements 

        window2.destroy() 

 

label = tk.Label( text="Input: Node cordinates, connected node(s), force at node.\n" +  

                 "Right handed cordinate system, positiv x to the rigth and positive y upwards.") 

label.pack(padx=1, pady=1) 

grid_frame = tk.Frame(window2) 

 

#creating the grid for the nodes: 

for i in range(number_nodes+2): 

     

    grid_frame.columnconfigure(i, weight=1) 

    grid_frame.rowconfigure(i, weight=1) 

     

    for j in range(number_nodes+6): 

        frame = tk.Frame(master=grid_frame) 

        frame.grid(row=i, column=j,padx=1, pady=1) 

        if(i==0): 

            if(j==0): 

                label = tk.Label(master=frame, text="Nodes") 

                label.pack() 

            elif(j==1): 

                label = tk.Label(master=frame, text="X [mm]") 



 

                label.pack() 

            elif(j==2): 

                label = tk.Label(master=frame, text="Y [mm]") 

                label.pack() 

            elif(j>2 and j<number_nodes+3): 

                label = tk.Label(master=frame, text=j-2) 

                label.pack() 

            elif(j==number_nodes+4): 

                label = tk.Label(master=frame, text="Force magnitude [N]") 

                label.pack() 

            elif(j==number_nodes+5): 

                label = tk.Label(master=frame, text="Force width [mm]") 

                label.pack() 

        if(j==0 and i>0 and i<number_nodes+1): 

            label = tk.Label(master=frame, text=i) 

            label.pack() 

        if(j==1 and i>0 and i<number_nodes+1): 

            ent_number_x = tk.Entry(master=frame,width = 10) 

            ent_number_x.pack() 

            entry_x.append(ent_number_x) 

        if(j==2 and i>0 and i<number_nodes+1): 

            ent_number_y = tk.Entry(master=frame,width = 10) 

            ent_number_y.pack() 

            entry_y.append(ent_number_y) 

        if(i>=1 and i<number_nodes+1 and j>i+2 and j<number_nodes+3): 

            var = tk.IntVar() 

            connected.append(var) 

            check = tk.Checkbutton(master=frame,variable = connected[n]) 

            check.pack() 

            n+=1 

        if(i > 0 and i<number_nodes+1 and j == number_nodes+4): 



 

            ent_force_magnitude = tk.Entry(master=frame,width = 18) 

            ent_force_magnitude.pack() 

            entry_force_magnitudes.append(ent_force_magnitude) 

        if(i > 0 and i<number_nodes+1 and j == number_nodes+5): 

            ent_force_width = tk.Entry(master=frame,width = 18) 

            ent_force_width.pack() 

            entry_force_widths.append(ent_force_width) 

        if(i == number_nodes+1 and j == number_nodes+5): 

            btn_submit_1 = tk.Button(master=frame,text="Submit", command = 

submitNodes) 

            btn_submit_1.pack()  

 

grid_frame.pack(  fill = tk.BOTH ) 

 

window2.mainloop() 

 

 

#window three to specify the concrete 

window3 = tk.Tk() 

 

window3.title('Concrete specification') 

              

window3.geometry('500x200') 

 

def submitInputs(): 

    global thicness 

    global conClass 

    global c 

    val = True 

     

     



 

    if(ent_concrete_class.get().isdigit()): 

        conClass = int(ent_concrete_class.get()) 

    else: 

        val=False 

    if(ent_concrete_cover.get().isdigit()): 

        c = int(ent_concrete_cover.get()) 

    else: 

        val=False 

    if(ent_thicness.get().isdigit()): 

        thicness = int(ent_thicness.get()) 

    else: 

        val=False 

    if(val): 

        window3.destroy() 

     

         

lbl_instruction = tk.Label(text="All the numbers needs to be a integer number") 

lbl_concrete_class = tk.Label(text="Enter the concrete class:") 

ent_concrete_class = tk.Entry() 

lbl_thicness = tk.Label(text="Enter the breadth of the concrete structure in mm:") 

ent_thicness = tk.Entry() 

lbl_concrete_cover = tk.Label(text="Enter the distance from concrete surface to center of 

tie in mm:") 

ent_concrete_cover = tk.Entry() 

btn_submit2 = tk.Button(text="Submit", command = submitInputs) 

 

lbl_instruction.pack() 

lbl_concrete_class.pack() 

ent_concrete_class.pack() 

lbl_thicness.pack() 

ent_thicness.pack() 



 

lbl_concrete_cover.pack() 

ent_concrete_cover.pack() 

 

btn_submit2.pack() 

 

window3.mainloop() 

 

checks = e.Checks(system, thicness, conClass, c) #do the checks for the stm 

 

#window four to show results 

 

window4 = tk.Tk() 

 

window4.title('Results') 

 

lbl_frame = tk.Frame(window4) 

plt_frame = tk.Frame(window4) 

 

output = checks.output_strings 

 

for string in output: 

    label=tk.Label(master = lbl_frame,text = string) 

    label.pack() 

 

plot = e.Plot(system) 

fig = plot.draw() 

 

canvas = FigureCanvasTkAgg(fig, master = plt_frame) 

canvas.draw() 

canvas.get_tk_widget().pack() 

 



 

lbl_frame.pack(side=tk.LEFT) 

plt_frame.pack(side=tk.RIGHT) 

 

window4.mainloop() 
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