
Securing the boot process of embedded
Linux systems

Nahom Aseged Belay

Submission date: June 2022
Supervisor: Danilo Gligoroski, NTNU
Co-supervisor: Sven Schwermer, Disruptive Technologies

Norwegian University of Science and Technology
Department of Information Security and Communication Technology

Title: Securing the boot process of embedded Linux systems
Student: Nahom Aseged Belay

Problem description:

Internet of Things devices have had a growing impact on our daily lives as more
smart devices are occupying crucial roles in domains such as health, agriculture and
energy. Despite their success, they are facing major challenges when it comes to
security and data privacy. This makes researching and resolving the security concerns
of Internet of Things critical.

This thesis will focus on securing the boot time process of an embedded Linux
system by guaranteeing the authenticity and integrity of the software loaded during the
initial boot sequence. It will be pursued in cooperation with Disruptive Technologies,
a Norwegian technology company known for developing the world’s smallest sensors
and for its Internet of Things infrastructure.

The aim of this thesis is securing the boot sequence of an embedded Linux system
running on an i.MX 7Dual processor ARM System-on-Chips processor by studying
and implementing different security protocols. Activities may include implementing
the secure boot protocol, evaluating and implementing the measured boot protocol
using an external Trusted Platform Module, discussing secure firmware updates and
carrying out different attacks to evaluate the robustness of our implementations.

Date approved: 2022-02-15
Responsible professor: Danilo Gligoroski, NTNU
Supervisor(s): Sven Schwermer, Disruptive Technologies

Abstract

The number of connected devices that make up the Internet of Things
has risen dramatically in recent years and is showing no signs of slowing
down. Furthermore, these devices play a vital role in critical sectors
which makes guaranteeing that only trusted code is running on them
evermore crucial. The goal of this research is to investigate how securing
the boot process of embedded devices could prevent unauthorised code
from being executed. This thesis focused on a particular System-on-
Chip and its application in a chosen Internet of Things infrastructure to
understand the overall impact resulting from its exploitation. A study
of the secure boot protocol was made to determine if it is the most
adequate solution for our problem. The requirements of the protocol
were evaluated through implementations and literature review. The fault
injection hardware attack was used to evaluate the robustness of the
secure boot protocol. Our results show that the secure boot protocol
is not the ideal solution when it comes to securing the boot process of
embedded devices as the security guarantees are not as solid as one might
expect. Further research is needed to explore other protocols such as the
measured boot to determine if running unauthorised code can be entirely
prevented by securing the boot process.

Sammendrag

I løpet av de siste årene har antallet tilknyttede enheter som utgjør
Internet of Things økt dramatisk, og lite tyder på at denne utviklingen
er i ferd med å snu. Ettersom disse enhetene utgjør en vesentlig del
av kritiske sektorer i næringslivet er det essensielt å kunne garantere at
de kun kjører pålitelig kode. Målet med denne studien er å undersøke
hvordan kjøring av ikke-autorisert kode kan forhindres gjennom sikring
av oppstartsprosessen i innebygde systemer. For å forstå virkningen av
utnyttelse av en tilknyttet enhet har denne avhandlingen fokusert på
en spesifikk System-on-Chip og dens bruk i en valgt Internet of Things-
infrastruktur. En undersøkelse av the secure boot protocol ble gjennomført
for å vurdere om den er en passende løsning på problemet. Kravene til
protokollen ble vurdert gjennom litteraturstudier og implementasjoner
av protokollen. Injeksjon av feil i systemet gjennom et maskinvareangrep
ble gjennomført for å evaluere hvor robust protokollen er. Resultatene
våre viser at the secure boot protocol ikke er en ideell løsning for å
sikre oppstartsprosessen til innebygde systemer. Dette er grunnet at
protokollen i realiteten gir lavere sikkerhetsgarantier enn først forventet.
Videre forskning på andre protokoller, som for eksempel the measured
boot, er nødvendig for å avgjøre om kjøring av ikke-autorisert kode kan
forhindres gjennom sikring av oppstartsprosessen.

Preface

This research was undertaken at the Department of Information
Security and Communication Technology at the Norwegian University of
Science and Technology (NTNU) as part of the final project of a Master
of Science in Communication Technology.

The study conducted in collaboration with Disruptive Technologies
was carried out by Nahom Aseged Belay. The work was supervised by
Sven Schwermer from Disruptive Technologies. Danilo Gligoroski was the
responsible professor at NTNU.

Acknowledgements

I would like to thank Disruptive Technologies for allowing me to work
on an interesting research project and providing me with all the necessary
resources. I am very grateful for the continuous support and guidance
I received from Sven Schwermer throughout my project. Thank you
Gunnar Bolme for taking the time to help with the electronics portion of
my project. I would also like to thank Danilo Gligoroski.

I am very grateful to NTNU and Institut National des Sciences
Appliquées (INSA) Toulouse for allowing me to take part in their joint-
master’s program and thank you to all professors from both universities.

I would like to express my gratitude to all of the friends I made during
my studies, I am grateful to each and every one of you.

I would like to thank Endre Bruaset, my roommate and an amazing
friend, for translating by abstract into Norwegian.

A special thanks to Théau André Pierre Giraud for embarking on this
joint-master’s program with me and making it memorable. Thank you
for your insightful comments on my thesis and for being such a wonderful
friend.

Lastly, I would like to thank my parents and my two sisters for their
unconditional love and support throughout the years.

Contents

List of Figures xiii

List of Tables xv

List of Acronyms xvii

1 Introduction 1
1.1 Context . 1
1.2 Objectives and methodology . 2
1.3 Outline of the thesis . 3

2 Background 5
2.1 Basic principles of information security 5

2.1.1 Information security triad . 5
2.1.2 Extending the information security triad 5

2.2 Cryptography . 6
2.2.1 Encryption . 6
2.2.2 Key exchange . 7
2.2.3 Cryptographic hash functions 7
2.2.4 Digital signatures . 8
2.2.5 Transport Layer Security . 9

2.3 Hardware attacks on embedded devices 11
2.3.1 Fault injections . 11
2.3.2 Power analysis . 15

2.4 Booting sequence in an embedded Linux system 16
2.4.1 Read-only memory code . 16
2.4.2 The bootloader . 17
2.4.3 Kernel . 18
2.4.4 Rootfs . 18

2.5 Public key infrastructure . 18
2.5.1 Certificates . 18
2.5.2 Trust and validity Models . 20

ix

2.5.3 Certificate revocation . 22

3 Threat model of the cloud connector 25
3.1 The STRIDE threat model . 25

3.1.1 The STRIDE model applied to the cloud connector 26
3.1.2 Addressing these threats . 27

3.2 Focusing on the threat of running unauthorised code 28
3.2.1 Untargeted attacks . 28
3.2.2 Targeted attacks . 29
3.2.3 The secure boot protocol . 29

4 The secure boot protocol on the cloud connector 31
4.1 Secure boot on NXP processors . 31

4.1.1 High assurance boot . 31
4.1.2 Command sequence files . 32
4.1.3 The code signing tool . 33

4.2 Results . 35
4.2.1 PKI for the secure boot protocol 35
4.2.2 Implementation results . 36

5 Fault injection attack to bypass secure boot 39
5.1 Making a voltage glitcher . 39

5.1.1 Description of the implementation 39
5.1.2 Testing the implementation 42
5.1.3 Logic level converter to power the target device 44

5.2 Attacking the secure boot protocol with a fault injection 44
5.2.1 Using a development board 44
5.2.2 Real world scenario . 46

5.3 Results . 46

6 Discussion 49
6.1 Limits of the secure boot protocol 49

6.1.1 Lack of long term support . 49
6.1.2 Vulnerabilities in the boot ROM 50
6.1.3 Frequent image updates with certificate revocation 50

6.2 Measured boot, an alternative protocol 51
6.2.1 Overview of Trusted Platform Modules 51
6.2.2 Description of the protocol 52
6.2.3 An alternative to the secure boot protocol? 53

6.3 Secure over-the-air updates . 54

7 Conclusion and future research 55
7.1 Conclusion . 55

7.2 Future research . 55

References 57

Appendices
A High assurance boot and the code signing tool 61

A.1 Example of a command sequence file 61
A.2 Using the code signing tool to sign an image 62
A.3 HAB status indicating a failed image verification 62

B Developing a voltage glitcher on an FPGA 65
B.1 Code written for the voltage glitcher 65

B.1.1 Source code . 65
B.1.2 Testbench code . 71

List of Figures

1.1 Disruptive Technologies’ infrastructure (simplified) 2

2.1 Signature creation and verification . 9
2.2 The TLS 1.3 handshake . 10
2.3 Simple diagram to illustrate timing constraints 12
2.4 Timing constraints (simplified and adapted from [ZDC+12]) 14
2.5 Four stages that make up the boot process 16
2.6 Hierarchical trust model . 20
2.7 Signature validity in the shell model (adapted from [BKW13]) 21
2.8 Signature validity in the chain model (adapted from [BKW13]) 22

4.1 The secure boot protocol using the High Assurance Boot 32
4.2 HAB PKI tree . 33
4.3 Boot interrupted when no CSF data was found 37

5.1 Block diagram for the glitcher . 40
5.2 The different input and output mappings on the FPGA 42
5.3 Simulation results . 43
5.4 Output signal from the logic analyser 43
5.5 CMOS inverter circuit used to amplify the FPGA output 44
5.6 Power traces of a valid and invalid image 45
5.7 Board being reset after multiple long glitches 46

xiii

List of Tables

3.1 Summary of the STRIDE model . 26

5.1 Summary of the inputs and output of the designed voltage glitcher . . . 41

xv

List of Acronyms

AES Advanced Encryption Standard.

API Application Programming Interface.

CA Certification Authority.

CAAM Cryptographic Acceleration and Assurance Module.

CIA Confidentiality, Integrity and Authenticity.

CMOS Complementary Metal–Oxide–Semiconductor.

CRL Certificate Revocation List.

CRTM Core Root of Trust for Measurement.

CSF Command Sequence File.

CSFK Command Sequence File Key.

CST Code Signing Tool.

DDoS Distributed Denial-of-Service.

DES Data Encryption Standard.

DoS Denial of Service.

DPA Differential Power Analysis.

DRAM Dynamic Random Access Memory.

ECC Elliptic Curve Cryptography.

ECDH Elliptic Curve Diffie–Hellman.

ECDSA Elliptic Curve Digital Signature Algorithm.

xvii

eFuse electronic Fuse.

FPGA Field-Programmable Gate Array.

HAB High Assurance Boot.

initramfs initial Random Access Memory filesystem.

INSA Institut National des Sciences Appliquées.

IoT Internet of Things.

IVT Image Vector Table.

MMC MultiMediaCard.

MMU Memory Management Unit.

mTLS mutual Transport Layer Authentication.

NTNU Norwegian University of Science and Technology.

OSCP Online Certificate Status Protocol.

OSI Open Systems Interconnection.

OTA Over-The-Air.

PCB Printed Circuit Board.

PCR Platform Configuration Registers.

PKCS Public Key Cryptography Standards.

PKI Public-Key Infrastructure.

POR Power-On Reset.

ROM Read-Only Memory.

rootfs root filesystem.

RSA Rivest–Shamir–Adleman.

RVT Read-Only Memory Vector Table.

SDP Serial Download Protocol.

SHA Secure Hashing Algorithm.

SoC System-on-Chip.

SPA Simple Power Analysis.

SPL Secondary Program Loader.

SRAM Static Random Access Memory.

SRK Super Root Key.

SSH Secure Shell.

SSL Secure Socket Layer.

STRIDE Spoofing, Tampering, Repudiation, Information disclosure, Denial of
service, and Elevation of privilege.

TCG Trusted Computing Group.

TLS Transport Layer Authentication.

TPM Trusted Platform Module.

USB Universal Serial Bus.

Chapter1Introduction

The Internet of Things (IoT) is made up of a diverse set of devices that communicate
with one another to collect and share data. The amount of connected devices has
seen a dramatic increase in the last couple of years and this trend is likely to continue.
IoT Analytics predicts that by 2025, more than 27.1 billion IoT devices will be online
[Sin21].

Despite their success, there is growing concern over their security due to the
heterogeneity of the devices and their limits in terms of energy, communication,
computation and storage capabilities [MCZ+19].

When using a connected device, it is crucial to guarantee that only authorised
code is running on the device. This guarantee is as important to the user as it is to
the manufacturer as it allows them to trust that the device is behaving as intended.
For instance, an attacker could install malicious software on a device to retrieve
sensitive user data or paralyse a device rendering it useless.

The first step in ensuring that only trustworthy code is running on a device is
securing its boot process. Furthermore, taking control of the device early on in the
boot process allows an attacker to operate undetected and with greater privilege,
highlighting the need to secure the booting sequence.

1.1 Context

Disruptive Technologies is a Norwegian technology company best known for developing
the world’s smallest sensors and their IoT infrastructure [Dis]. They are also renowned
for their SecureDataShot™protocol which provides a secure communication between
their sensors and their cloud through end-to-end encryption. Figure 1.1 is a simplified
illustration of their their IoT infrastructure. The different sensors measure data such
as temperature, motion, humidity, etc. and which they transmit to a cloud storage
through a cloud connector.

1

2 1. INTRODUCTION

Figure 1.1: Disruptive Technologies’ infrastructure (simplified)

This thesis will focus on the cloud connector which is a an embedded Linux
system running on an i.MX 7Dual processor ARM System-on-Chip (SoC) processor.
However, the results from this work can be extended to different NXP SoCs.

1.2 Objectives and methodology

Here are the three objectives we defined for this thesis:

Objective 1: identifying the potential threats in the infrastructure mentioned in
Subsection 1.1 and understanding how implementing the secure boot protocol on the
cloud connector could help strengthen the security of our system.

Methodology: making a threat model of potential threats in our current
infrastructure.

Objective 2: evaluating the secure boot protocol and understanding what kind of
Public-Key Infrastructure (PKI) needs to be deployed to support this protocol.

Methodology: conducting a literature review of the different PKIs, under-
standing the specific tools necessary to implement the protocol on an i.MX
7Dual SoC and implementing it on a development board.

Objective 3: evaluating the robustness of the secure boot protocol against different
logical and hardware attacks.

1.3. OUTLINE OF THE THESIS 3

Methodology: researching disclosed vulnerabilities of the protocol. We will
focus on fault injections, a hardware attack we will attempt to replicate.

1.3 Outline of the thesis

Chapter 1 gave the context, scope as well as the objectives for our research in securing
the booting sequence of embedded systems. Chapter 2 gives the reader the necessary
technical and conceptual background to understand the results of this thesis. In
Chapter 3, we will investigate the threats to our infrastructure which can be exploited
through the cloud connector.

In Chapter 4, we will look at the implementation of the secure boot protocol
using the tools and libraries provided by NXP as well as our results. Chapter 5 will
focus on the vulnerabilities of the secure boot protocol with a particular focus on
fault injections.

Chapter 6 will take a critical look at the secure boot protocol and discuss how it
compares to other solutions. Chapter 7 summarises the work presented as well as
suggestions for future research on this topic.

Chapter2Background

This chapter will present the relevant technical and theoretical background needed
to understand this research.

2.1 Basic principles of information security

2.1.1 Information security triad

The Confidentiality, Integrity and Authenticity (CIA) triad is the main component
of any security model.

Confidentiality

Confidentiality is “preserving authorized restrictions on information access and dis-
closure, including means for protecting personal privacy and proprietary information”
[PB19].

Integrity

Integrity is “the property that data or information have not been altered or destroyed
in an unauthorized manner.” [PB19].

Authenticity

Authenticity is “the property that data originated from its purported source” [PB19].

2.1.2 Extending the information security triad

While the CIA triad gives us a proper base to define information security models,
non-repudiation, availability and authentication complete those models.

5

6 2. BACKGROUND

Non-repudiation

Non-repudiation is the “assurance that the sender of information is provided with
proof of delivery and the recipient is provided with proof of the sender’s identity, so
neither can later deny having processed the information” [PB19].

Availability

Availability is “ensuring timely and reliable access to and use of information” [PB19].

Authentication

Authentication is “verifying the identity of a user, process, or device, often as a
prerequisite to allowing access to resources in an information system” [PB19].

2.2 Cryptography

2.2.1 Encryption

Encryption is the “ process of changing plaintext into ciphertext for the purpose
of security or privacy” [PB19]. Encryption protects the confidentiality of data
transmitted on a public (or insecure) channel. An encryption scheme is comprised of
three algorithms [KL14]:

– Key generation (Gen) probabilistic algorithm that generates one or multiple
keys used by the other next two algorithms

– Encryption (Enc): probabilistic or deterministic algorithm that outputs a
ciphertext c given as input a key k and a message m

– Decryption (Dec): deterministic algorithm that outputs a message m given
as input a key k and a ciphertext m

There are two types of encryption schemes: symmetric and asymmetric encryption.

In symmetric encryption (or private-key encryption), the encryption and
decryption algorithms use the same key. This encryption scheme requires that both
parties have already agreed upon a shared secret before they can securely communicate
in a insecure channel. Commonly used symmetric encryption algorithms include the
Advanced Encryption Standard (AES) and the Data Encryption Standard (DES).

In asymmetric encryption (or public-key encryption), the scheme uses a
public-private key pair for the encryption and decryption algorithms. Suppose we
have two parties Alice and Bob that have both generated a public-private key pair

2.2. CRYPTOGRAPHY 7

and have shared each other’s public keys over a public network. If Alice wants
to send Bob a message, she uses his public key to encrypt a message and Bob
uses his private key to decrypt it. In turn, Bob uses Alice’s public key to encrypt
data which only Alice can decrypt using her private key. The main advantage of
using asymmetric encryption is that it absolves the need to have a pre-shared key
prior to communicating on the insecure channel. However, it is slower compared to
symmetric encryption. Commonly used asymmetric encryption algorithms include
the Rivest–Shamir–Adleman (RSA) encryption algorithm and the Elliptic Curve
Cryptography (ECC) algorithm.

The most commonly used type of encryption scheme is somewhat of a hybrid
approach in which the key exchange (refer to Subsection 2.2.2) that uses asymmetric
cryptography to deduce a common secret that will subsequently be used as the
encryption key in a symmetric encryption algorithm. This enables us to take
advantage of symmetric encryption without having the need to have a pre-shared
key.

When considering a secure encryption scheme, we need to at least satisfy the
following two properties [Sma15]:

Correctness: the decryption always works for a validly encrypted message

Semantic security: in simple terms, having access to the ciphertext does not
leak any information about the corresponding plaintext

2.2.2 Key exchange

A key exchange protocol is a scheme in which two parties negotiate a common
secret key without having a pre-established key. Both parties start by generating a
private-public key pair and exchange their public keys. Then, combining the other
party’s public key and their personal private key, both are able to deduce a common
shared secret. The Elliptic Curve Diffie–Hellman (ECDH) key exchange is the most
commonly used key exchange protocol. [Cer09]

A secure key exchange protocol is built in way such that an adversary who has
access to the public keys of both parties should not be able to deduce the negotiated
key.

2.2.3 Cryptographic hash functions

A cryptographic hash function H is a “function that maps a bit string of arbitrary
length to a fixed length bit string” [PB19]. The output of such functions are referred
to as “message digest” or “hash value”.

8 2. BACKGROUND

H : {0, 1}* → {0, 1}n, with n ∈ N
m 7→ H(m)

A cryptographic hash function should satisfy the following two properties [Sma15]:

One-way functions: given any y from the co-domain of H, it should be
computationally infeasible1 to find the value of x from the domain of H such
that:

H(x) = y

Collision resistant functions: it should be computationally infeasible1 to
find two values m and m’ such that:

H(m) = H(m′)

Hash functions are deterministic and un-keyed functions and are ideal when it
comes to integrity checks. Given a message, a hash algorithm and the hash value,
it is relatively straightforward to verify the integrity of the message. Commonly
used hash functions are slights variants of the Secure Hashing Algorithm (SHA) 2
or SHA-2 such as SHA-256 and SHA-512 which respectively produce a 256 and 512
bit-length outputs.

2.2.4 Digital signatures

Digital signatures provide origin authentication, data integrity, and signatory non-
repudiation.

A digital signature is an “asymmetric key operation where the private key is
used to digitally sign data and the public key is used to verify the signature” [PB19].
When signing a message m, the signer S uses their private key to generate a signature.
The most important information contained in the signature is the hash output of
m that is encrypted using the private key. Any party that wants to verify that m
originated from S uses the tuple message, signature and public key. The verifier
decrypts the encrypted hash output contained in the signature, computes the hash
corresponding to m and verifies that the two outputs match (see Figure 2.1). [KL14]

1 despite it being computable, it is practically impossible to compute as it requires too many
resources

2.2. CRYPTOGRAPHY 9

Figure 2.1: Signature creation and verification

A secure digital signature is built in a way that an attacker can not forge a
message and a valid signature. If the pair message and signature (m, σ) are generated
using a private key, it should be computationally infeasible1 to forge a pair (m’, σ’)
that can be verified using the corresponding public key.

There are numerous digital signature algorithms to choose from; however, the
RSA signing algorithm and Elliptic Curve Digital Signature Algorithm (ECDSA)
are the most commonly used ones.

2.2.5 Transport Layer Security

The Transport Layer Authentication (TLS) cryptographic protocol is the successor of
the deprecated Secure Socket Layer (SSL) and aims at securing communication over
an insecure channel. As the name indicates, its purpose is securing the transport
layer in the Open Systems Interconnection (OSI) model. In this section we will have
a quick overview of the TLS 1.3 protocol [Res18].

Description of the TLS 1.3 protocol

TLS 1.3 handshake

We will look at the full handshake procedure of TLS 1.3, the most recent and efficient
amongst the TLS protocols. Figure 2.2 illustrates this handshake.

10 2. BACKGROUND

Figure 2.2: The TLS 1.3 handshake

Client Hello – this is the first message sent by the client to the server as a
communication request. It is sent along with the following data:

– Supported ciphers: a list of the ciphers the client supports

– Key agreement: the protocol used for the key exchange

– Key share: pre-emptively calculates a shared key based on the different ciphers
it supports

Server Hello – after receiving the client hello, the server responds with a server
hello along with the following information:

– Chosen ciphers: the cipher from the client’s supported ciphers

– Key share: key share calculated using the chosen cipher to later be used for
encryption

– Signed2 and encrypted certificate: at this point the server has all that is needed
to encrypt the certificate

– Encrypted server finish message

Finished – after receiving the server hello, the client is now capable of also
generating the symmetric key that will be used and decrypt the different encrypted
data from the server hello. After authenticating the server, it sends the finished
message marking the start of the secure communication channel.

2signed by a trusted Certification Authority (CA), see Section 2.5 for more details

2.3. HARDWARE ATTACKS ON EMBEDDED DEVICES 11

Application Data – Once a secure communication channel is established, the
two parties can securely exchange their data.

In the case where the server is not able to use any cipher suite proposed by the
client it sends a hello retry request in order to renegotiate the key exchange. If
unsuccessful, the connection is aborted.

Mutual transport layer security

With the classic TLS protocol, only the server authenticates itself to the client.
Mutual authentication is achieved through the mutual Transport Layer Authentication
(mTLS). The client sends an additional message to the server containing its signed2

and encrypted certificate. The server then verifies it before granting access.

2.3 Hardware attacks on embedded devices

2.3.1 Fault injections

Computing systems are designed to withstand faults in their normal operating
conditions. Fault injections (or glitching) attacks work by stressing systems and
having them operate outside their comfort ranges in order to tamper with the normal
flow of execution and give an attacker partial or full control of the device.

Theory behind fault injections

We will use the work of L. Zussa et al. [ZDC+12] to illustrate the theory behind fault
injections. We will focus on a simple circuit comprised of two registers separated by
an abstract block of combinatorial logic network3 (refer to Figure 2.3). The different
blocks use the same clock to synchronise their operations, with a clock period of Tclk .

Here is a quick run down of the terminology that will be used to illustrate timing
constraints:

– Maximum propagation delay (TdMax): the maximum time it takes a signal
to travel from a source register to a destination register

– Setup time (Ts): the minimal amount of time the input should be stable
before a rising edge

– Hold time (Th): the minimal amount of time the input should be stable after
a rising edge

3Combinational logic is a type of digital circuit comprised solely of primitive logic gates (AND,
OR, etc.) and in which the outputs are direct consequences of the inputs. These differ from
sequential logic whose outputs are direct consequences of both current and past inputs.

12 2. BACKGROUND

– Skew (Tskew): the slight difference that may exist between the clock signals at
the two registers

– Jitter (Tjitter): the undesired deviation from pure periodicity of our clock
signal

– Internal propagation delay (TdInternal): the time that separates a rising
edge and the actual update of the output signal of a register.

Figure 2.3: Simple diagram to illustrate timing constraints

By data path and clock path we respectively refer to the paths in which the
data and the clock signals travel. The data and clock paths can be expressed with
equations 2.1 and 2.2 respectively:

Data path = TdMax + Ts + TdInternal + Tjitter (2.1)
Clock path = Tclk + Tskew − Tjitter (2.2)

The launch register outputs data on a certain clock rising edge which is processed
by the combinational logic network before it is used as the input to the capture
register on the following rising edge. In order to have a properly functioning circuit,
the data path should be smaller than the clock path. If this condition is not respected,
the data is not processed in time before the following rising edge and creates what is
called a setup timing violation. The setup timing constraint can be represented as
follows:

Clock path > Data path (2.3)
⇔ Tclk > TdMax + Ts + TdInternal + 2Tjitter − Tskew (2.4)

2.3. HARDWARE ATTACKS ON EMBEDDED DEVICES 13

At the same rising edge, the capture register is capturing the current data whereas
the launch data is launching the next data. However, we need to make sure that
the next data does not arrive during the hold time and change the value of the one
currently being processed by the capture register. This creates what is called a hold
timing violation. The latter is not relevant to understand fault injections so we will
not discuss it any further and any reference to timing constraints refer to the setup
timing constraint.

The different violations of setup timing constraints are illustrated in Figure 2.4:

• Respected timing constraints (Subfigure 2.4a): the capture register is able to
process the data in time and output the correct value.

• Violated timing constraint leading to a nondeterministic state (Subfigure 2.4b):
the capture register processes the data too close to the rising edge resulting in
a nondeterministic state (it can either stabilise on a high or low state). A fault
may or may not occur.

• Violated timing constraint resulting in fault (Subfigure 2.4c): the capture
register processes the wrong value resulting in a fault.

14 2. BACKGROUND

(a) Timing constraints respected

(b) Violation of the timing constraint leading to a nondeterministic state

(c) Violation of the timing constraint resulting in a fault

Figure 2.4: Timing constraints (simplified and adapted from [ZDC+12])

2.3. HARDWARE ATTACKS ON EMBEDDED DEVICES 15

There are two ways of causing setup timing violation [ZDC+12]. Overclocking is
the most straight forward one and is achieved by decreasing the clock signal’s period.
The other option is to increase the propagation time which can be achieved through
overheating or underpowering.

The different fault injection methods

There are numerous ways to inject faults onto a system but we will only discuss three
of the most common ones [WO22].

Clock fault injections work by inserting clock cycles that are either slightly
narrower or wider than regular clock cycles. An attacker generates a signal mimicking
the regular clock signal of the device with a slightly different duty cycle around the
injection point. The main shortcoming of using the clock glitching method is that it
requires the device to be able to use an external clock generator, which unfortunately
most devices do not.

Voltage fault injections work by interfering with the voltage supply of a device.
When the voltage is increased, the propagation time is reduced, and when the voltage
is decreased, the propagation time is increased. Therefore, it is possible to create a
setup timing violation by decreasing the voltage.

Electromagnetic fault injections use electromagnetic pulses to cause faults in
the system. In simple terms, by inducing variations in the magnetic field around the
device, it is possible to cause a voltage difference.

2.3.2 Power analysis

Power analysis is a side-channel attack that seeks to exploit sensitive information
leaked by the system when doing sensitive operations [WO22]. It monitors the power
consumption of the device and exploits the fact that devices have a different power
consumption level based on the operations being performed. There are two forms
of power analysis: Simple Power Analysis (SPA) and Differential Power Analysis
(DPA). SPA involves evaluating a single power trace of an execution whereas DPA
combines multiple executions with varying data.

Power analysis is commonly used to leak cryptographic keys. The power consumed
by a device varies based on what instruction is being executed. When performing
cryptographic operations, the different instructions executed are strongly linked to
the secret key being used, which makes recovering the key possible. Furthermore,
power analysis can also be used to extract information that can later be used to
precisely time other attacks. In our case, we will use a simple power analysis to
properly time the fault injection attack.

16 2. BACKGROUND

2.4 Booting sequence in an embedded Linux system

This section will focus on the booting sequence in an embedded Linux system and
individually focus on the four stages that make up this process which, step-by-step,
bring our device into an operational state (see Figure 2.5). We will focus on the
i.MX 7Dual SoC as it is the chip that is used for this thesis.

Figure 2.5: Four stages that make up the boot process

2.4.1 Read-only memory code

Read-Only Memory (ROM) code (or boot ROM code) is a piece of code that is
stored on a read-only memory of the chip and is the first to be executed when a
device is powered on. This code is vendor specific and is loaded onto the device
during manufacturing, it can not be modified. When a device is powered on, the
Power-On Reset (POR) circuit is executed and resets the system into a known stable
state. This ensures that the device boots from the same condition at each reboot.
Once stabilised, the circuit sends a POR signal which triggers the execution of the
ROM code.

The boot ROM has three primary functions [SSW04; NXP18c]:

Initial hardware configurations: such configurations include initialising
memory such as the Static Random Access Memory (SRAM) and the ini-
tialising hardware blocks (e.g. Cryptographic Acceleration and Assurance
Module (CAAM)4, secure non-volatile storage, Universal Serial Bus (USB),
etc.); enabling Memory Management Unit (MMU) and caches.

Diagnostics: hardware diagnostics are carried out when the device boots to
ensure that everything is functioning properly; enabling exception and interrupt
handling, etc.

Loading the next image: in its final phase, the boot ROM loads the next
image (i.e. the bootloader) onto the SRAM and hands over control to it. The
image is either stored in a nonvolatile internal memory such as MultiMediaCard
(MMC) and flash or it is downloaded through a serial communication such

4refer to Section 4.1.1

2.4. BOOTING SEQUENCE IN AN EMBEDDED LINUX SYSTEM 17

as USB. This can be done either by copying the whole image or just a data
area containing volatile variables onto the SRAM. The loaded image can be
compressed in which case it is up to the ROM code to decompress it. Handing
over control is done by updating the program counter to point to the start of
the next image.

The boot ROM is in charge of loading the code and uses the internal BOOT_MODE
registers and electronic Fuses (eFuses) to determine which method will be used to
run the subsequent programs on the device.

If the device is configured to run using verified boot or encrypted boot, the High
Assurance Boot (HAB) (see Subsection 4.1.1 for more details), a component of the
boot ROM is in charge of carrying out the various cryptographic operations.

2.4.2 The bootloader

The primary function of the bootloader is to do the remaining hardware configurations
in order to load the kernel [SV21]. If the size of the bootloader image is large and
can not fit into the SRAM, the bootloader can be broken down into two stages. Das
Universal Boot Loader (or U-Boot) is the most popular bootloader used in embedded
systems. Secondary Program Loader (SPL) and U-Boot proper are the names given
to the first and second stage bootloaders respectively.

SPL

The primary function of the SPL is to initialise the Dynamic Random Access Memory
(DRAM) which has a larger memory compared to SRAM on which it will load U-boot
proper. Once initialised, SPL copies U-Boot proper onto SRAM and hands over
control to it.

U-Boot proper

After initialising the remaining hardware, U-Boot proper prepares the device to load
the kernel. U-Boot proper loads the kernel image into memory as well as a structure
containing the different hardware configurations the kernel needs and hands over
control to it. U-Boot proper also provides a command-line user interface that can
be used to interact with the system. It is also in charge of providing the necessary
information for the kernel to mount the root filesystem (rootfs). If an initial Random
Access Memory filesystem (initramfs) is used, U-Boot proper loads it onto memory
and passes its location and size to the kernel or it simply provides the location of the
rootfs using the kernel’s command line argument.

18 2. BACKGROUND

2.4.3 Kernel

The kernel is the core component of any operating system. Embedded Linux kernels
differ from “traditional” Linux kernels (used in desktops or servers) by being highly
customised to their target and use case, resulting in smaller sizes and better perfor-
mance [GSK+19]. The kernel is the core interface with the device’s hardware and is
in charge of managing its resources (e.g. memory, drivers, processes, etc). Once the
kernel is done with its initialisation it mounts rootfs.

2.4.4 Rootfs

The rootfs contains all the files, libraries and programs necessary to have an opera-
tional system [GSK+19]. After the kernel transfers control of the device, the init
program is the first program executed. It is executed using root privileges and it
launches other daemon programs and brings the device to a working state by doing
the remaining configurations.

2.5 Public key infrastructure

A PKI is the backbone of any system that relies on public-key cryptography. We will
look at the main components of a PKI as described by J. Buchmann et al. [BKW13]

2.5.1 Certificates

In a PKI context, public-key certificates bind the identity of an entity with their
public keys. The CA is the trusted third-party entity that binds the public key to the
entity which holds the corresponding private key and issues a public key certificate.
The relying party (the entity that verifies the validity of the certificate) reduces the
trust in a public key to the trust in an entity (i.e. the CA). By reiterating this
reduction, certificate chains are formed. The relying party should first verify the
public keys are from a trusted source before using them.

X.509 certificates

The most commonly used certificate standard is the X.509 standard and is defined by
the International Telecommunication Union [ITU19]. There are two types of X.509
certificate:

• public key certificates: specify the information to be used in a PKI setting

• attribute certificate: specify the information used in a privilege management
infrastructure to bind an attribute to a subject

2.5. PUBLIC KEY INFRASTRUCTURE 19

We will only focus on public-key certificates.

X.509 certificates are represented as ASN.15 of type SEQUENCE. The latter
simply represents the data as an ordered list. Listings 2.1 and 2.2 provide more
details on the structure of a X.509 certificate.

1 Certificate ::= SEQUENCE {
2 tbsCertificate TBSCertificate ,
3 signatureAlgorithm AlgorithmIdentifier ,
4 signatureValue BIT STRING
5 }

Listing 2.1: ASN.1 specification of an X.509 certificate

1 TBSCertificate ::= SEQUENCE {
2 version [0] EXPLICIT Version DEFAULT v1 ,
3 serialNumber CertificateSerialNumber ,
4 signature AlgorithmIdentifier ,
5 issuer Name ,
6 validity Validity ,
7 subject Name ,
8 subjectPublicKeyInfo SubjectPublicKeyInfo ,
9 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL ,

10 -- If present , version MUST be v2 or v3
11 subjectUniqueID [2] IMPLICIT

UniqueIdentifier OPTIONAL ,
12 -- If present , version MUST be v2 or v3
13 extensions [3] EXPLICIT Extensions OPTIONAL
14 -- If present , version MUST be v3
15 }

Listing 2.2: ASN.1 specification of the TBSCertificate object of an X.509 certificate

Other than the information about the public keys, the TBSCertificate (to be
signed certificate) contains information about the CA and the owner of the certificate.
The extensions portion of a TBSCertificate allow for the addition of extra information
to satisfy the different PKI process without altering the basic ASN.1 data type.

The AlgorithmIdentifier field defines the algorithm that will be used to sign the
certificate and the signatureValue contains the signature of the TBSCertificate.

5The Abstract Syntax Notation One (ASN.1) is used to formally represent data transmitted in
telecommunication protocols [ITU08]

20 2. BACKGROUND

2.5.2 Trust and validity Models

In order to have a properly working PKI, the relying party should be able to verify
the authenticity and validity of the public keys. We will take a look at the different
types of trust and validity models that can be used in a PKI.

Trust models

Trust models define how we can trust the authenticity of public keys. There are
three types of trust models: hierarchical trust, direct trust and web of trust.

Direct trust

The direct trust is the most basic trust model out there. In this scenario, the
public keys are directly obtained from the key owner or the key owner is the
one confirming the authenticity of the keys.

Hierarchical trust

A hierarchical trust model, as the name suggests follows a hierarchical structure
which can be easily represented using a tree structure, as illustrated in Figure
2.6.

Figure 2.6: Hierarchical trust model

At the root of the hierarchy we have what is called a root certification authority,
which is a self-signed CA and is considered the root of trust of the structure.
It certifies the public keys of its CA successors which in-turn certify other CAs
or end-entities. Generally speaking, the intermediate nodes are CAs and the
leaves of the tree are the end-entities.

During the verification process, the authenticity of the public keys are verified
using what is called a certification path. The first certificate in this path should
be a root certification authority and the entity being verified is the last subject
of this path.

2.5. PUBLIC KEY INFRASTRUCTURE 21

For this trust model to work, direct trust should be established between the
end-entities and the root CA.

Web of trust model

In a web of trust model, public keys are trusted if they have been either acquired
from a trusted source or directly from the owner like in a direct trust model.
This trust model aims at forming a decentralised trust model.

Validity models

A validity model in a PKI refers to the period in which a digital signature is valid. The
signing and verification are not necessarily done at the same point in time which can
result in an invalid certificate during the verification process. We will suppose that
the relying party needs to verify the following certification path: C0, C1, .., Cn, n ∈ N.

Shell model

For a certificate to be valid in a shell model, all certificates in the certification
path should be valid at verification time (refer to Figure 2.7 for a visual repre-
sentation). This model is mostly used in cases where signing and verification
are performed close to each other.

Figure 2.7: Signature validity in the shell model (adapted from [BKW13])

Chain model

For a certificate to be valid in the chain model, its predecessor in the certification
path should be valid when signing it. Contrary to the shell model, the chain
model only required to have a valid signature during the signing process and
not during the verification (refer to Figure 2.8 for a visual representation).
This may pose an issue when it comes to long term support when dealing with
revoked keys.

22 2. BACKGROUND

Figure 2.8: Signature validity in the chain model (adapted from [BKW13])

2.5.3 Certificate revocation

Certificate revocation refers to the process of invalidating a certificate before its
expiration. Certification revocation can either be due to changes to information
found on certificate (e.g. change of subject name or identity) or more seriously
due to key compromise (leak or suspected leak of private keys) that weaken the
whole infrastructure. In order to have a proper revocation scheme, the following
requirements should be met:

• Provide information on the revocation: time, reason for revocation

• Readily available for anyone and the most up-to-date information

• Authenticity of the information should be verifiable by anyone

There are two ways of tracking revoked certificates, through the use of Certificate
Revocation Lists (CRLs) [HPFS02] or using the Online Certificate Status Protocol
(OSCP) [GAM+99].

CRLs

CRLs are lists of revoked certificates signed and published by the CA. They are
made available through a public URI. They are specified using the X.509 standard.
This list is regularly updated as more and more certificates are revoked by the same
CA. When a user wants to verify that the certificate they have is valid, they simply
download the CRLs and see if that particular certificate is in the CRL.

2.5. PUBLIC KEY INFRASTRUCTURE 23

Delta CRLs
The main drawback of the CRL is that its length grows overtime. This becomes
less efficient as CRL require to be frequently downloaded in order to have the
most up-to-date lists. Delta CRL aim to resolve this issue by only publishing
certificates added to the Base CRL (which is the complete CRL).

Authority Revocation Lists
Authority Revocation Lists are a particular form of CRLs which are used to
list revoked CA certificates. When a CA’s certificates are revoked, all the
certificates which it has signed prior to and after the revocation date should
not be trusted.

OSCP

When using CRLs, the user should periodically check if they have the up-to-date
list on hand and download the latest version before verifying that the signature has
not been revoked. When using the OSCP, the user simply queries a server with the
certificate it wants to verify to obtain its status.

Chapter3Threat model of the cloud
connector

This chapter will focus on Disruptive Technology’s IoT infrastructure to understand
what threats can be exploited by an attacker. The STRIDE threat modeling method
was used for this analysis.

3.1 The STRIDE threat model

STRIDE is a mnemonic that stands for Spoofing, Tampering, Repudiation, Information
disclosure, Denial of service, and Elevation of Privilege. Each threat violates a se-
curity property any system should have. Table 3.1 gives a quick overview of each
threat.

Threat Property
Violated

Threat Definition

Spoofing Authenticity “The deliberate inducement of a user or
resource to take incorrect action” [PB19]

Tampering Integrity “An intentional but unauthorized act result-
ing in the modification of a system, compo-
nents of systems, its intended behavior, or
data” [PB19]

Repudiation Non-
repudiation

Denying involvement in data exchange or
processing [PB19]

Information
Disclosure

Confidentiality “Data disclosed without authorization”
[PB19]

Denial of
Service

Availability “The prevention of authorized access to a
system resource or the delaying of system
operations and functions” [PB19]

25

26 3. THREAT MODEL OF THE CLOUD CONNECTOR

Threat Property
Violated

Threat Definition

Elevation of
Privilege

Authentication
(or
authorization)

“The exploitation of a bug or flaw that al-
lows for a higher privilege level than what
would normally be permitted” [PB19]

Table 3.1: Summary of the STRIDE model

3.1.1 The STRIDE model applied to the cloud connector

We will apply the Spoofing, Tampering, Repudiation, Information disclosure, Denial
of service, and Elevation of privilege (STRIDE) model to evaluate the security threats
that may weaken our infrastructure from exploiting the cloud connector. The same
infrastructure presented in Subsection 1.1 will be used for this analysis. This modeling
is based on the work of A. Shostack [Sho14].

Spoofing

Spoofing can take two forms in our case: spoofing a machine and spoofing a “file” or
a process running on a system.

By spoofing the cloud connector, both the sensors and the cloud would wrongfully
assume that the data they are receiving and transmitting were relayed by an authentic
cloud connector which may give the attacker the possibility to tamper with the data
being transmitted.

Spoofing “files” or processes on the device can dupe the genuine running processes.
The latter are led to believe that they are calling or using the appropriate resources
when in fact they are not.

Tampering

Another possibility is to tamper with the processes running on a genuine cloud
connector. This can either be done to prevent the device from operating normally or
to run an arbitrary process on the device as it is doing its intended tasks. A perfect
example of the latter would be infecting a device and using it in an IoT botnet1. The
arbitrary code running can also be a bootloader or a kernel.

Tampering with the network traffic is another way an attacker can cause damage
to the infrastructure. By forging or dropping packets, an attacker can manipulate
the data flow between the different components of the infrastructure to their liking.

1An IoT botnet is a network of IoT devices infected by malware used to launch greater attacks
such as Distributed Denial-of-Service (DDoS) attacks.

3.1. THE STRIDE THREAT MODEL 27

Repudiation

A compromised gateway can perform malicious tasks such as tampering with the
network traffic but then deny its involvement. Without a proper logging system, an
attacker can easily operate without any accountability.

Information Disclosure

Leaked information such as cryptographic keys, proprietary code, etc. can have
devastating effects. Since the cloud connector is not necessarily placed in a secure
location, away from any possible attacker, having physical access to the device can
result in firmware dumping and reversing the code on the device. However, even
when not having physical access to the device, an attacker can monitor the ongoing
traffic and possibly leak sensitive information.

Denial of Service

A Denial of Service attack on our cloud connector simply renders it useless. This
can be achieved internally by running resource exhausting programs or externally by
flooding the device with useless traffic in order to paralyse it.

Escalation of Privilege

Having complete access to the device is without a doubt the most devastating effect
an attack can have on the cloud connector. Elevated privileges allow an attacker to
easily install malware on the device, modify the device’s configurations and establish
a starting point for larger scale attacks.

3.1.2 Addressing these threats

Different security measures can be implemented, or have already been implemented,
to prevent these threats. Some of these measures will be briefly discussed.

Authenticated encryption

The infrastructure uses an end-to-end encryption scheme between the sensors and
the cloud. During manufacturing, each sensor is assigned an asymmetric encryption
key. The sensors and the cloud exchange their public keys through a secure channel
using the TLS protocol in order to deduce the encryption keys that will be used to
exchange packets. Furthermore, the packets sent by the cloud and the sensors are
signed using their respective keys. This means that the cloud connector is not able
to decrypt these packets and makes forging packets more difficult.

28 3. THREAT MODEL OF THE CLOUD CONNECTOR

Securing network traffic

In section 2.2.5, we have seen how TLS and mTLS can be used to establish secure
communication in an insecure communication channel. mTLS is used to secure
communications between the cloud connector and the cloud. This reduces the
chances of an attacker impersonating the cloud connector and prevents unauthorised
devices from connecting to the cloud. The server only accepts communications if it
is able to verify the identity of the client using a certificate signed by a CA it trusts.

Furthermore, to protect the cloud connector from Denial of Service (DoS) attacks
through request connection flooding, an intrusion detection system or firewall can be
implemented to block and filter unwanted traffic.

Securing the physical layer

Securing the physical layer of the cloud connector is crucial as not doing so gives
an attacker a larger attack surface. The cloud connector is not necessarily stored
in a secure location so it is likely that a malicious attacker can get their hands
on their device and exploit the hardware or the physical layer of the device. For
instance, the different debugging interfaces used during the production phase should
be disabled. During the design, ensuring a tamper-resistant and tamper-evident
product is important.

Running integrity and authenticity checks

Regularly running integrity and authenticity checks on the device greatly reduces
the risk of having unauthorised code running on the device. These verifications can
either be done early on in the boot process or continuously as the device is operating.
Such measures have not been implemented which exposes the cloud connector to
different attacks.

3.2 Focusing on the threat of running unauthorised code

Our main focus is to eliminate the threat of having unauthorised code on the device
which can lead to two types of attacks: targeted and untargeted attacks.

3.2.1 Untargeted attacks

By untargeted attacks we refer to attacks that do not solely target a company or its
resources. The goal is to exploit a particular vulnerability that can be found across
multiple devices. Untargeted attacks are easier to execute because the attacker looks
for victims for a particular attack.

3.2. FOCUSING ON THE THREAT OF RUNNING UNAUTHORISED CODE 29

An example of such attacks is the Mirai malware [AAB+17], a worm-like malware
that infects IoT devices and adds them to its DDoS botnet. Infected devices scan
for open ports on the Telnet or Secure Shell (SSH) ports and attempt to login in by
brute forcing the authentication. If successful, the malicious payload is delivered, the
device is infected, attempts to infect other devices and executes the DDoS command
sent by the attacker.

UbootKit is another instance of a worm-like malware that targets different IoT
devices using U-boot as a bootloader [GWL+18]. It rewrites the bootloader and
allows the execution of arbitrary code which entirely compromises the device. Its
persistence through multiple reboots make this malware even more dangerous.

3.2.2 Targeted attacks

In this scenario, the attacker’s objective is to harm a specific company and their
infrastructure by targeting their systems. These attacks tend to have a devastating
impact but are harder to implement. Contrary to untargeted attacks, the attacker is
not looking for potential victims for a particular attack but rather potential exploits
for a particular victim. We will be working with the assumption that an attacker
can gain physical access to the device.

The STRIDE model in Subsection 3.1 revealed that an attacker can modify the
intended behaviour of the cloud connector as no measures prevent unauthorised code
or processes from running on the device. A possible scenario would be crafting an
exploit that can leak the private keys used by the cloud connector when connecting
to the cloud and using these credentials as an entry point to exploit potential
vulnerabilities on the cloud.

3.2.3 The secure boot protocol

The secure boot protocol ensures that only verified code is running on the device by
establishing what is referred to as a chain of trust linking the main components of
the boot sequence. Ensuring the authenticity and integrity of the running code from
the moment the device is reset until it is fully functional gives us the confidence to
claim that no unauthorised code is running on the device.

30 3. THREAT MODEL OF THE CLOUD CONNECTOR

The root of trust of this chain is the ROM Code. As mentioned in Section 2.4,
this code is a vendor-specific read-only code. It uses the public keys permanently
programmed into the eFuses during manufacturing to verify the authenticity of
the next component (i.e. the bootloader) before handing control over to it. Each
component does the same with its successor. In the case where the signature
verification fails, the execution should be interrupted because the chain of trust is
broken.

The chain of trust should at least be extended until the rootfs. In Subsection 2.4.4,
we mentioned that the init program is executed using root privileges which makes
ensuring its authenticity crucial. The rootfs should be configured as a read-only
partition2.

2Having a read-only partition without extending the chain of trust until the rootfs is not enough
as it does not prevent an attacker from overwriting the whole partition

Chapter4The secure boot protocol on the
cloud connector

As mentioned in Subsection 1.1, the cloud connector is running an i.MX SoC from
NXP. In this chapter, we will focus on the implementation of the secure boot protocol
on this particular SoC as well as the PKI it supports.

4.1 Secure boot on NXP processors

4.1.1 High assurance boot

The HAB library can be found on certain NXP processors and allows the authentica-
tion and encryption of boot images [NXP18b]. This library rests in the on-chip ROM
code. Furthermore, the Read-Only Memory Vector Table (RVT) contains the HAB
Application Programming Interface (API) addresses through which the bootloader
verifies the kernel image. Unfortunately, the HAB library can not be used to verify
the integrity and authenticity of the rootfs. To extend the chain of trust until the
rootfs, the kernel should be in charge of running the authenticity and integrity check.
The kernel having been itself verified by the HAB library, we can trust it to run the
image verification. The module in the kernel in charge of running the verification is
called dm-verity [ZAH+14].

The HAB library uses RSA signatures1 for image authentication and uses the
X.509 public key certificate format. SHA-256 is the cryptographic hash function used
during the signature verification.

The CAAM is a hardware component that allows cryptographic acceleration of
hashing, encryption and decryption algorithms, secure random number generation,
long-term protection of secret data, etc. If the SoC contains a CAAM hardware
block, it uses it to accelerate the SHA-256 digest operations.

1supported key sizes: 1024, 2048, 3072, and 4096 bits

31

32 4. THE SECURE BOOT PROTOCOL ON THE CLOUD CONNECTOR

Figure 4.1: The secure boot protocol using the High Assurance Boot

4.1.2 Command sequence files

The Command Sequence File (CSF) data is processed by the HAB during the
image authentication. It contains the commands for the HAB as well as the digital
signatures and public key certificate. The CSF is a text file that is parsed using the
Code Signing Tool (CST) (see Subsection 4.1.3) to generate the CSF binary data
that can be interpreted by the HAB. This data is then appended to the image being
signed. The most important commands that can be found in the CSF for image
authentication are:

Header: contains header data as well as default values that will be used in
the subsequent commands.

Install Super Root Key (SRK): command to install and authenticate the
SRK that will be used when the HAB authenticates the CSF and the image.

Install Command Sequence File Key (CSFK): installs the public key
that will be used to authenticate the CSF data of an image by the HAB. This
key is authenticated using the previously installed SRK.

Authenticate CSF: command to authenticate the CSF using the previously
installed CSFK.

Install Key: command to authenticate and install the public key used to
authenticate the actual image being signed. This key is verified by the previously
installed SRK.

Authenticate data: verifies the authenticity of the image loaded into memory.
For each block that is being verified, the name of the binary file, the starting

4.1. SECURE BOOT ON NXP PROCESSORS 33

load address in memory, offset and length should be specified. The key that
will be used for authentication should also be specified.

Unlock: prevents the specified hardware features from being locked when
exiting the boot ROM (e.g. the CAAM or the possibility blow fuses in order
to revoke SRKs2).

An example of a CSF file can be found in Listing A.1 in Appendix A.

4.1.3 The code signing tool

The CST is a tool developed by NXP and contains all the necessary programs to
implement the secure boot protocol on the SoC [NXP18a].

Image signing

Given a CSF description file and the corresponding boot image the cst tool generates
the binary CSF data that will later be appended to the image being signed. The
commands to use can be found in Listing A.2 in Appendix A

PKI tree generation

The HAB PKI structure is generated using the hab4_pki_tree.sh script. Here is a
visual representation of that structure:

Figure 4.2: HAB PKI tree

2refer to Subsection 4.2.1

34 4. THE SECURE BOOT PROTOCOL ON THE CLOUD CONNECTOR

The CST generates all the necessary keys and their corresponding certificates:

• CA key: Key that will be used to sign the SRK certificates

• SRK: Key used to sign the CSF and the Image (IMG) certificates. Only one
SRK can be used per reset cycle.

• CSFK: key used to verify the authenticity of the CSF

• IMG key: key used to verify the authenticity of the boot image

The HAB can also be configured to use fast authentication where the same key is
used to verify both the CSF and image file. This reduces the amount of keys needed
as well as certification verifications resulting in a faster boot. In such cases, only the
SRK keys are generated.

The key generation process can be replaced by an alternative, secure generator.
However, the following three conditions must be met in order to be able to use the
CST to sign the images:

• Keys should be in the Public Key Cryptography Standards (PKCS)#8 format

• Certificates should be in the X.509 format

• Keys and their corresponding certificates should follow certain naming and place-
ment conventions: a key <key_name>_key.<extension> stored in the cst/keys/
directory should have the corresponding certificate: <key_name>_crt.<extension>
stored the cst/crts/

SRK table and eFuse data

The CST also contains the srktool script that generates the SRK public table and its
corresponding eFuse data. During the signing process, the CST uses the SRK table
to determine which key will be used to sign the image3. The eFuse data contains
the hash values of the SRKs in the same order as they were specified in the SRK
table. The SHA-256 hash values of the SRK public keys are permanently burnt onto
the SoC and will be used by the HAB when verifying the images during boot. The
one-way and collision resistant properties of hash functions mentioned in Subsection
2.2.3 guarantee that using the hash of the public key stored on the eFuses to verify
the public keys found in the CSF is enough to verify the authenticity of those public
keys.

3the naming conventions for the keys and their certificates allow the CST to easily find the
private keys corresponding to the certificates mentioned in the CSF to sign the image

4.2. RESULTS 35

4.2 Results

4.2.1 PKI for the secure boot protocol

Trust model

As we mentioned in Subsection 4.1.1, during boot, the HAB does the signature
verification by comparing the hash of the public keys with the actual public keys
found in the CSF binary data of the image. It then uses the public keys found in
the certificate to verify the digital signature of the image. Therefore, the verification
scheme during boot follows the direct trust model. This is partly related to the fact
that during boot, the device is unable to cover the whole certificate path and can
only trust the public keys stored on its eFuses.

Validity model

Verifying the validity of the certificate during boot is unfeasible. At the early stages
of the boot sequence, the ROM code does not have the possibility to verify any
certificate in the certification path. The HAB library does not provide the possibility
to verify the validity of a certificate [Yur18]. NXP recommends adding the validity
check further along the boot process (by the bootloader or the kernel).

Certificate revocation

Our gateway, and embedded systems in general, have limited computing capabilities
compared to larger computing systems. Having to regularly download complete or
delta CRLs would be too resource intensive and OSCP should be the favored scheme
as the device is only interested in verifying the status of at most four certificates for
the secure boot protocol.

The SoC we are working on can only store four SRKs. Revoking a key is done by
burning its corresponding SRK_REVOKE fuse. In order to allow the bootloader or
the kernel to blow an SRK_REVOKE fuse, the HAB should be instructed by an
Unlock command in the CSF to allow burning these fuses. Here is the scheme we
came up with for a secure revocation of a SRK:

Scenario 1: the certificate being revoked is the one being used to verify the
current boot process

The different boot images should first be updated and signed with a new key.
During the first update phase, these image should contain the unlock command
that allows to burn SRK_REVOKE fuses. After the bootloader or kernel
revokes the key by burning its corresponding SRK_REVOKE, the boot images

36 4. THE SECURE BOOT PROTOCOL ON THE CLOUD CONNECTOR

should once more be updated and this time without the unlock command that
allows key revocation.

Scenario 2: the certificate being revoked is not the one being used to verify
the current boot process. The steps are similar to the ones in Scenario 1, except
that we do not sign the updated images with a new key.

It is possible to allow any image to blow SRK_Revoke fuses by leaving the
appropriate unlock command on every image’s CSF. This removes the need to update
the images when the certificate being revoked is the not the one in use for the current
boot sequence. However, this opens up the device to possible attacks (e.g. burning
all the SRK_Revoke eFuses and “bricking” the device).

Furthermore, it is recommended to never revoke one key to prevent having a
“bricked” device.

4.2.2 Implementation results

Using the tools provided by NXP, we attempted to implement the secure boot
protocol on an i.MX 7Dual SoC development board. The goal of this implementation
was to have a working prototype to test the fault injection attack on. However,
the implementation was not entirely successful. The implementation followed the
instructions provided by the instruction manual provided by NXP [iMX21; NXP20]
using a U-Boot bootloader.

After generating a PKI, burning the corresponding SRKs with the appropriate
public keys, signing the image and flashing it onto the device we received HAB
events indicating that the signature verification failed (see Section A.3 in Appendix
A for the detailed log output). Debugging the issue using these HAB events was
unsuccessful. Debugging efforts included:

• Manually comparing the binary segments of the image that failed the verification
from our workstation and from the development board’s memory

• Testing different bootloader images built using Disruptive Technologies’ per-
sonalised bootloader images as well as different U-Boot git repositories found
online

• Implementing the protocol on a i.MX 7Dual Sabre board, a different develop-
ment board

4.2. RESULTS 37

• Flashing the bootloader images using different methods: Serial Download
Protocol (SDP) such as imx_usb4 and uuu5 or by directly exporting block
devices over a USB connection

However, we did manage to interrupt the execution whenever the flashed image
did not have CSF binary data appended to it, as shown in Figure 4.3. These results
were enough to be exploited with a fault injection attack.

Figure 4.3: Boot interrupted when no CSF data was found

4https://github.com/boundarydevices/imx_usb_loader
5https://github.com/NXPmicro/mfgtools/releases/tag/uuu_1.4.193

https://github.com/boundarydevices/imx_usb_loader
https://github.com/NXPmicro/mfgtools/releases/tag/uuu_1.4.193

Chapter5Fault injection attack to bypass
secure boot

By verifying the authenticity and integrity that only authorised code is loaded during
boot, the secure boot gives us the confidence to claim that only authorised code is
running on the device. However, fault injections attacks are known for being able to
bypass the secure boot protocol by skipping the instructions in charge of the image
verification. In this chapter, we will present our work in replicating a fault injection
attack using a “homebrewed” approach to understand the complexity of this attack.

5.1 Making a voltage glitcher

There are a number of commercially available voltage glitchers such as ChipWhisperer
[OC14]. However, we decided to build our own voltage glitcher. We decided to
implement the glitcher on a Field-Programmable Gate Array (FPGA) for its flexibility
and its precision. Ideally, the duration of the glitch should be measured in the range
of nanoseconds or microseconds and it is important to be able to time when to glitch
as precisely as possible. A Zedboard was used for this project.

5.1.1 Description of the implementation

What is expected of the glitcher is being able to output a signal that indicates when
the device should be in a high state and when in it in a low state. A high state
indicates that the device is powered on and a low state indicates that is is not. Figure
5.1 illustrates the system that was designed to control and time the glitch and the
source code can be found in Appendix B.

39

40 5. FAULT INJECTION ATTACK TO BYPASS SECURE BOOT

Figure 5.1: Block diagram for the glitcher

There are a total of five inputs to the system and two output. Their functions
are stated in Table 5.1.

Name Type Description

data Input byte array
of length 8

Binary input used to configure the delay and the
duration of the glitch. These values indicate the
number of rising edges for both these values

mode Input bit If mode is 1, then we are in the configure mode
If mode is 1, we are in the glitch mode

trigger Input bit When trigger is set to 1, causes a glitch after waiting
for the configured delay

config_duration Input bit When config_duration is set to 1, the value read
from data is used to update the value of the duration
of the glitch

config_delay Input bit When config_delay is set to 1, the value read from
data is used to update the value of the delay of the
glitch

reset Input bit
Configure mode: When reset is set to 1, it replaces
the values of the duration and the delay to their
default values.
Glitch mode: when reset is set to 1, it goes back
to an idle state and waits for the trigger. It outputs
a 0 indicating a low state.

output Output bit If output is 1, then it indicates a high state
If output is 0, then it indicates a low state

5.1. MAKING A VOLTAGE GLITCHER 41

Name Type Description

led Output bit Used as a visual indicator of whether we are in a
high state or a low state

Table 5.1: Summary of the inputs and output of the designed voltage glitcher

In order to have a flexible glitcher, the user can configure the duration of the
glitch and when the glitch should occur directly on the board, without having to
reprogram the bit image. We made use of four types of input and outputs:

• Push buttons: these are used to read the five bit inputs of our system. When
using mechanical buttons, unpredictable bounces occur when toggled. In our
case, this will not have an impact on most of the buttons except for the trigger.
Instead of implementing a debouncing circuit for the trigger, an alternative
would be to define a holdoff period after the first change is detected in which
any subsequent changes will not be taken into account. This prevents having
multiple glitches back to back. For the other inputs, the unpredictable bounces
do not have an effect on their functions.

• Slide switches: these switches are used to read the value data. The 8 slide
switches are used to read an 8 bit binary value which allows the user to define
the values for the delay and the duration.

• LED light: indicates whether or not the glitcher is in a high state.

• Pmods: Using a pin on a Pmod of the FPGA, we are able to output the signal
that will be used to power the device.

Figure 5.2 illustrates the different mappings on our FPGA.

42 5. FAULT INJECTION ATTACK TO BYPASS SECURE BOOT

Figure 5.2: The different input and output mappings on the FPGA

5.1.2 Testing the implementation

Simulation

The first step in testing the implementation was by using logic simulator by testing
each block separately. This was followed by testing the system as a whole. The test
script for the whole system can be found in Listing B.4 in Appendix B configures the
duration and the delay to 9 and 4 rising edges respectively and triggers the glitch.
The results of the simulation can be found in Figure 5.3. We can see that once the
trigger is set to 1, output_signal is activated for 9 rising edges and glitches for 4
rising edges.

5.1. MAKING A VOLTAGE GLITCHER 43

Figure 5.3: Simulation results

Using a logic analyser

Once the simulation indicated everything worked as expected, the next step is to
program the FPGA and test that we have the expected results on the board as well.
The output signal was analysed using the Salea logic analyser1 and the results can
be found in Figure 5.4.

(a) Focus on the delay before the glitch

(b) Focus on the duration of the glitch

Figure 5.4: Output signal from the logic analyser

1https://www.saleae.com

https://www.saleae.com

44 5. FAULT INJECTION ATTACK TO BYPASS SECURE BOOT

5.1.3 Logic level converter to power the target device

The output of the FPGA can not be used to directly power the target device for two
reasons:

• the FPGA outputs 3V whereas the target requires a 5V input

• the FPGA can not provide the necessary current to power the target

We used a Complementary Metal–Oxide–Semiconductor (CMOS) inverter to
amplify the output of the FPGA in order to power the target (see Figure 5.5).
Because the circuit uses an inverted logic compared to the FPGA output, some
adaptations needed to be made in Listing B.3 in Appendix B.

Figure 5.5: CMOS inverter circuit used to amplify the FPGA output

5.2 Attacking the secure boot protocol with a fault injection

We will be looking at two different approaches when trying to attack the secure boot
protocol with a voltage fault injection. The first one uses a development board and
the second one looks at a real world scenario on a commercially available device.

5.2.1 Using a development board

Development boards provide different hardware interfaces that are easy to access
and allow for easy debugging, programming and monitoring. For the fault injection
attack on the secure boot protocol, using this approach allows us to easily flash into
memory the different boot images using serial communication, monitor the boot
process using a console output and measure the power consumption for the power
analysis. Two approaches were defined when injecting faults:

5.2. ATTACKING THE SECURE BOOT PROTOCOL WITH A FAULT INJECTION
45

Approach 1: attempt to skip a single instruction
The first attempt was to simply skip an instruction when booting, without worrying
too much about the precise timing. To do so, a simple infinite loop was added in the
bootloader image and the goal was to break out of that loop. Listing 5.1 illustrates
the modifications made to the U-boot source code. The comparison that will be
executed at the while instruction provides a possible injection point to break out of
the loop.

1 while (1) {
2 }

Listing 5.1: Infinite loop added to the U-boot image

Approach 2: attempt to skip a the verification instruction
The second attempt was to precisely time the injection using a power analysis and
inject the fault at that precise time. Since the implementation was not entirely
successful, the goal was not to skip the verification of the image authenticity but the
verification of the presence of a CSF binary (see Listing 5.2).

1 /* Verify CSF */
2 if (! csf_is_valid (ivt , start , bytes)) {
3 goto hab_authentication_exit
4 }

Listing 5.2: Instructions verifying the presence of CSF data

To properly time the injection point, we chose to measure multiple power con-
sumption of valid and invalid images to see when the execution flow diverges. The
power traces of one valid and one invalid image are show in Figure 5.6.

Figure 5.6: Power traces of a valid and invalid image

46 5. FAULT INJECTION ATTACK TO BYPASS SECURE BOOT

5.2.2 Real world scenario

Injecting faults on a commercially available embedded device is a lot more complex
compared to using a development board. Finding the hardware interfaces for de-
bugging or flashing images is not (or at least should not) be as straightforward. A
successful attack requires opening up the device and identifying interesting ports to
exploit. Although putting in place different precautions to protect these debugging
features does not entirely prevent them from being exploited, it adds a significant
amount of complexity to deter attackers.

5.3 Results

Most components on embedded devices require a steady voltage input in order to
function properly. However, during their normal operations, they are confronted
to a wide range of factors that could cause voltage spikes or dips that may cause
malfunctions or damage. Decoupling capacitors are used to suppress such noise by
“absorbing” power spikes and by “powering” the system during power dips [COS13].

Because of these voltage regulators, the short injected glitches were “absorbed”
and had no visible effect. The only visible effects were recorded when inserting longer
glitches that had the effect of resetting the board. Figure 5.7 shows the board being
reset multiple times after inserting multiple glitches.

Figure 5.7: Board being reset after multiple long glitches

Physically removing these capacitors from the board resolves the issue but we
chose not to do so as it could damage the development board. However, in case of a
targeted attacker, they would not be discouraged from carrying out such modifications
to the board.

5.3. RESULTS 47

Despite our unsuccessful replication of the fault injection attack to bypass the
secure boot, it should still be considered as a way to bypass the security protocol. C.
O’Flynn’s work provides proof that voltage fault injection can be used to alter the
normal flow of execution of a code [OFl16] and the works N. Timmers et al. proved
that it could be used to bypass the secure boot protocol [TSW16].

Chapter6Discussion

In this chapter, we will discuss the limits of the secure boot protocol and what can
be done to enhance the security of our device.

6.1 Limits of the secure boot protocol

6.1.1 Lack of long term support

During this study, one of the main issues we found deals with the lack of long term
support for the secure boot protocol.

As mentioned is Subsection 3.2.3, the secure boot protocol uses the public
keys programmed onto its eFuses when verifying the images in the boot chain. In
Subsection 4.2.1, we saw that due to the limited capabilities of the device during
boot, verifying the authenticity of the certificate before handing control over to its
successor was unfeasible. What we are essentially doing is trusting that image was
signed using the appropriate keys but have no way of guaranteeing that it was signed
by the right authority.

During the “early” stages of the device’s life cycle, we can assume that these keys
embedded onto the fuses can be trusted without having the need to validate the
authenticity of the certificates because they were programmed by the manufacturer.
However, overtime, with the increasing likelyhood of certificate revocation it is
difficult to make the same assumptions.

Consequently, the robustness of our chain of trust is weakened. For it to work
properly, handing over control of the boot sequence should only be done if we are
certain that the image is authentic. In practice we are not able to make such claims.
In addition, verifying the authenticity of the certificates used during the image
verification later on in the boot stage goes against the principle of the chain of trust.

We mentioned in Subsection 4.2.1 that out of the four SRKs one should never be

49

50 6. DISCUSSION

revoked even if the corresponding key is no longer valid in our PKI. We are forced to
make this compromise because revoking all four keys will render our device unusable.
Continuing to verify the boot images using invalid keys essentially gives us the same
trust in the authenticity of the image as if we had not implemented the secure boot
protocol.

6.1.2 Vulnerabilities in the boot ROM

Vulnerabilities on certain NXP processors were discovered that allowed bypassing
the secure boot protocol. They were identified as CVE-2017-7932 (or ERR010873)
[NXP17b] and CVE-2017-7936 (or ERR01872) [NXP17a]. Since these vulnerabilities
are in the boot ROM code, they can not be patched through software updates.

The first vulnerability (CVE-2017-7932) is due to an improper parsing of the
X.509 certificates by the HAB which results in a stack-based buffer overflow. An
attacker can craft a malicious certificate to bypass the signature verification. The
i.MX 7Dual chip we are working on has this vulnerability. Recommendations to
protect devices against this vulnerability include having a proper Over-The-Air
(OTA) update policy and restricting physical access to the device.

The second vulnerability (CVE-2017-7936) is also a stack-based buffer overflow
exploit that allows an attacker to write and execute code from an unprotected section
of memory using SDP. Recommendations to protect devices against this vulnerability
include disabling the SDP port if the chip supports it and restricting physical access
to the device.

6.1.3 Frequent image updates with certificate revocation

In Subsection 4.2.1 we proposed a solution that could allow certification revocation
to be done in a secure way. However, it required updating the images of our boot
chain multiple times.

The complexity associated with updating the earlier stages of the boot sequence is
really high and also poses a risk of rendering the device unusable [SV21]. Furthermore,
since the HAB can only use one SRK per reset cycle, we are obliged to update every
component of the boot cycle during revocation.

6.2. MEASURED BOOT, AN ALTERNATIVE PROTOCOL 51

6.2 Measured boot, an alternative protocol

Measured boot is an other protocol that aims at ensuring the authenticity and
integrity of the code running on a device. This protocol relies on the use of a Trusted
Platform Module (TPM) to properly function.

6.2.1 Overview of Trusted Platform Modules

A TPM is a crypto-processor (or chip) designed to enhance the security of a system
by providing hardware level protection that runs separately from its host system.
We will briefly cover the main security specifications and features of such chips as
specified in the TPM 2.0 Library specifications [Tru19] provided by the Trusted
Computing Group (TCG).

Root of trust

The specification requires that TPMs provide three forms of trust:

– Measurement: when a device boots, the Core Root of Trust for Measurement
(CRTM) which is part of the boot ROM is executed. This component does the
initial self measurements which it shares with the TPM. These measurements
first recorded on the TPM are representative of the initial state of the module
and constitutes the initial trust.

– Reporting: the TPM can share the part of its contents stored in its memory
with a digital signature signed with the endorsement key. The private portion
of the key that is used to sign the data never leaves the module and is stored
in the non-volatile memory.

– Storage: the TPM provides a secure way to store sensitive data and prevent
any inappropriate access to memory. The module generates a Storage Root
Key (SRK) and stores it in the non-volatile memory. When storing sensitive
information such as other keys or certificates, the TPM encrypts them using
the SRK and stores them outside the module. Upon request, it decrypts them.
Sealing and unsealing respectively refer to the encryption and decryption using
the SRK.

Hardware level protection

A TPM should be resistant to all forms of logical and hardware attacks. Tampering
with the storage and the reporting of the stored data should not be possible.

52 6. DISCUSSION

Cryptographic features

Previous version of TPMs did not allow the main processor to use their cryptographic
primitives. However this is not the case with version 2.0. Operations that can be
done on this module include random number generation, hashing, symmetric and
asymmetric encryption and digital signatures.

Platform Configuration Registers

Platform Configuration Registers (PCR) are part of a TPM’s volatile memory. The
values of the register can not be changed directly. The only way of changing a value
of a register is by extending it as follows:

PCR[x] = Hash_Algorithm(PCR[x], new_value)

Upon request, the TPM can either simply return the values found in the PCR or
can provide a quote. A quote is an attestation that contains a nonce1,the digest of
the concatenation of the values found in the registers which is signed by using the
endorsement key.

Sealed storage

With sealed storage, it is possible to wrap keys but what is interesting is that the
PCR should be configured in a particular order to unseal them. This provides an
extra level of security as decrypting can only be done if the TPM is in a clearly
defined state.

6.2.2 Description of the protocol

Similarly to secure boot, each component of the boot sequence computes the hash of
its successor. However, instead of verifying the signature it extends the value of one
of the PCR.

At the end of the boot sequence, once the kernel is loaded and operational, the
values in the PCR indicate the current state of the device and a “summary” of what
was previously loaded. By comparing these values to an expected value, a judgement
is made to decide whether or not the system can be trusted.

However, the TPM can not on its own interrupt the boot sequence if the system
is corrupted but there are different ways of evaluating the boot process.

1A nonce is “time-varying value that has at most a negligible chance of repeating, for example,
a random value that is generated anew for each use, a timestamp, a sequence number, or some
combination of these” [PB19]. In our case, the use of nonce would prevent the reuse of quotes.

6.2. MEASURED BOOT, AN ALTERNATIVE PROTOCOL 53

Reporting to the device

Reporting the values to the device and letting it decide on how to proceed. This
obviously is the worst solution as nothing is preventing the system from continuing
to boot even if the recorded values on the PCR are wrong.

Sealing the rootfs encryption key

Encrypting the rootfs, sealing the encryption key on the TPM and linking it to the
values on the PCR. Doing so ensures that a corrupted system can not complete its
boot process as it will not be able to access its rootfs2.

When using this approach, one important aspect to consider is how to properly
update the values the PCR should expect in accordance to the updated images’
signatures.

Remote attestation

To further enhance security, remote attestation can be implemented. The TPM can
return a quote with the PCR values which will be forwarded to a remote server. The
server then decides whether or not the device can be trusted and if it wishes to give
it access to the rest of its resources.

While this may not be an adequate solution for standalone devices that do not
need external resources, this allows cutting off the device from the cloud if it is
compromised. Furthermore, combining sealed storage and remote attestation can
further enhance the security of the device as it would block the user from accessing
the cloud but also prevent them from exploiting it.

6.2.3 An alternative to the secure boot protocol?

The measured boot protocol is an interesting protocol to study because it may solve
some of the issues the secure boot protocol raises all while adding new features.

Providing an alternative to local attestation

Through remote attestation, it is possible to have a third party decide whether or not
the system can be trusted. While this solution is not adequate for all use-cases, in our
case where the device in question is a gateway, remote attestation is an interesting
feature.

2In this case, the kernel should extend the PCR with the digest of the encrypted rootfs

54 6. DISCUSSION

Issues related to the PKI

The secure boot protocol establishes the chain of trust by verifying each component
of the boot chain before handing control over to the device whereas with measured
boot it is established at the end of the boot sequence using the values recorded in
the PCR.

The digital signatures and certificate verification carried out when using measured
boot are not done early on in the boot stage. This enables proper certificate validity
checks.

Provide runtime security

The aim of the secure boot protocol is to ensure the authenticity and integrity of
the initial code loaded onto the device. Any malware that infects the device during
runtime can not be prevented by the secure boot protocol. By using a TPM and
through remote attestation, running integrity verification on running processes is
possible.

6.3 Secure over-the-air updates

Regardless of whether we are referring to secure boot or measured boot, an important
aspect to consider is securely updating the running images. With OTA updates are
entirely managed by a remote server and require minimal human input. Amongst
the many requirements an OTA update protocol should fulfil, we have security and
fail-safe mechanisms [SV21].

Before installing an image, we should verify that it is coming from an appropriate
source. This requires mutual authentication with the server, sending the update
through a secure channel and verifying the authenticity and integrity of the updated
image.

Another important factor to consider is having a fail-safe mechanism if the update
were to fail. By having such measures put in place, the device will have an image
to revert back to if it encounters any problem (e.g. errors that were not identified
during testing, unexpected power outage duing the update, etc.).

In the realm of the IoT Mender and SWupdate are amongst the popular open-
source projects providing secure and efficient OTA updates.

Chapter7Conclusion and future research

7.1 Conclusion

There is still a long way to go when it comes to IoT security. The threat model
conducted on our infrastructure revealed certain security gaps that could be exploited
by a malicious actor. Our research aimed at removing the threat of running unautho-
rised code by securing the boot system of embedded Linux systems using the secure
boot protocol.

Our study revealed that secure boot is not the ideal solution to our problem.
While it does prevent unauthorised code from being loaded during boot, there are
known methods of bypassing this security measure, mainly through fault injection
attacks. Our attempt to replicate this attack using a “homebrewed” approach was
unsuccessful but commercially available glitchers should make this task a lot more
easier. Furthermore, we revealed that this protocol does not provide a long-term
solution.

While secure boot is not the ideal solution, it is still better than having no
security measures put in place as it adds a layer of complexity for the attacker. While
achieving “perfect security” is impossible, putting in place different security measures
does contribute in getting closer to that goal.

7.2 Future research

The limitations in this research have indicated the following recommendations for
future works:

• A similar study of the measured protocol for the cloud connector to evaluate
the added security features either by implementing it along with secure boot
or as an alternative. As the SoC used in the cloud connector does not have a
built in TPM, securely integrating one should be the main focus of the study.

55

56 7. CONCLUSION AND FUTURE RESEARCH

• An evaluation of the cloud connector’s Printed Circuit Board (PCB). We
mentioned the importance of securing the physical layer of IoT devices in
Subsection 3.1.2. Unfortunately, most vendors do not make the effort in
securing this layer which gives attackers a larger attack surface.

References

[BKW13] J. Buchmann, E. Karatsiolis, and A. Wiesmaier, Introduction to public key
infrastructures. Springer, 2013, vol. 36. [Online]. Available: https : / / link .
springer.com/book/10.1007/978-3-642-40657-7 (last visited: May 29, 2022).

[Cer09] Certicom Research, «Standards for efficient cryptography, sec 1: Elliptic curve
cryptography», May 2009, Version 2.0. [Online]. Available: https://www.secg.
org/sec1-v2.pdf (last visited: May 29, 2022).

[COS13] T. Charania, A. Opal, and M. Sachdev, «Analysis and design of on-chip
decoupling capacitors», IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 21, no. 4, pp. 648–658, 2013. [Online]. Available: https:
//ieeexplore.ieee.org/document/6239613 (last visited: May 29, 2022).

[Dis] Disruptive Technologies. «Disruptive Technologies - Tiny Wireless Sensors &
IoT Infrastructure», [Online]. Available: https://www.disruptive-technologies.
com (last visited: May 29, 2022).

[GAM+99] S. Galperin, D. C. Adams, et al., X.509 Internet Public Key Infrastructure
Online Certificate Status Protocol - OCSP, RFC 2560, Jun. 1999. [Online].
Available: https://www.rfc- editor.org/info/rfc2560 (last visited: May 29,
2022).

[GSK+19] J. Gediya, J. Singh, et al., «7 - open-source software», in Software Engineering
for Embedded Systems, R. Oshana and M. Kraeling, Eds., Second Edition,
Newnes, 2019, pp. 207–244. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/B9780128094488000072 (last visited: May 29, 2022).

[GWL+18] C. Geng, B. WANG, et al., «Ubootkit: A worm attack for the bootloader of
iot devices», presented at the BlackHat Asia 2018, 2018. [Online]. Available:
https://i.blackhat.com/briefings/asia/2018/asia- 18-Yang-UbootKit-A-
Worm-Attack-for-the-Bootloader-of-IoT-Devices-wp.pdf (last visited: May 29,
2022).

[HPFS02] R. Housley, T. Polk, et al., Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile, RFC 3280, May 2002. [Online].
Available: https://www.rfc- editor.org/info/rfc3280 (last visited: May 29,
2022).

57

https://link.springer.com/book/10.1007/978-3-642-40657-7
https://link.springer.com/book/10.1007/978-3-642-40657-7
https://www.secg.org/sec1-v2.pdf
https://www.secg.org/sec1-v2.pdf
https://ieeexplore.ieee.org/document/6239613
https://ieeexplore.ieee.org/document/6239613
https://www.disruptive-technologies.com
https://www.disruptive-technologies.com
https://www.rfc-editor.org/info/rfc2560
https://www.sciencedirect.com/science/article/pii/B9780128094488000072
https://www.sciencedirect.com/science/article/pii/B9780128094488000072
https://i.blackhat.com/briefings/asia/2018/asia-18-Yang-UbootKit-A-Worm-Attack-for-the-Bootloader-of-IoT-Devices-wp.pdf
https://i.blackhat.com/briefings/asia/2018/asia-18-Yang-UbootKit-A-Worm-Attack-for-the-Bootloader-of-IoT-Devices-wp.pdf
https://www.rfc-editor.org/info/rfc3280

58 REFERENCES

[iMX21] i.MX U-Boot, i.MX6, i.MX7 U-Boot HABv4 Secure Boot guide for SPL targets,
Oct. 20, 2021. [Online]. Available: https://source.codeaurora.org/external/
imx/uboot-imx/tree/doc/imx/habv4/guides/mx6_mx7_spl_secure_boot.
txt?h=lf-5.15.5-1.0.0 (last visited: May 29, 2022).

[ITU08] ITU-T, «X.680 : Information technology – Abstract Syntax Notation One
(ASN.1): Specification of basic notation», International Telecommunication
Union - Telecommunication Standardization Sector, Standard, Nov. 2008.
[Online]. Available: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-
REC-X.680-200811-S!!PDF-E&type=items (last visited: May 29, 2022).

[ITU19] ——, «X.509 : Information technology - Open Systems Interconnection - The
Directory: Public-key and attribute certificate frameworks», International
Telecommunication Union - Telecommunication Standardization Sector, Stan-
dard, Oct. 2019. [Online]. Available: https://www.itu.int/rec/dologin_pub.
asp?lang=e&id=T-REC-X.509-201910-I!!PDF-E&type=items (last visited:
May 29, 2022).

[KL14] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Second Edition,
2nd. Chapman & Hall/CRC, 2014. [Online]. Available: https://dl.acm.org/
doi/book/10.5555/2700550 (last visited: May 29, 2022).

[MCZ+19] F. Meneghello, M. Calore, et al., «Iot: Internet of threats? a survey of practical
security vulnerabilities in real iot devices», IEEE Internet of Things Journal,
vol. 6, no. 5, pp. 8182–8201, 2019. [Online]. Available: https://ieeexplore.ieee.
org/document/8796409 (last visited: May 29, 2022).

[NXP17a] NXP Semiconductors, ERR010872 ROM: Secure boot vulnerability when using
the Serial Downloader, Jul. 2017. [Online]. Available: https://community.
nxp.com/t5/i- MX- Processors- Knowledge- Base/i- MX- Vybrid- Security-
Vulnerability-Errata-ERR010872-ERR010873/ta-p/1120527?attachment-
id=85276 (last visited: May 29, 2022).

[NXP17b] ——, ERR010873ROM: Secure boot vulnerability when authenticating a cer-
tificate, Jul. 2017. [Online]. Available: https://community.nxp.com/t5/i-MX-
Processors-Knowledge-Base/i-MX-Vybrid-Security-Vulnerability-Errata-
ERR010872-ERR010873/ta-p/1120527?attachment-id=85277 (last visited:
May 29, 2022).

[NXP18a] ——, Code-Signing Tool - User’s Guide, Sep. 2018.

[NXP18b] ——, High Assurance Boot Version 4 Application Programming Interface
Reference Manual, 2018.

[NXP18c] ——, i.MX 7Dual Applications Processor Reference Manual, Jan. 2018.

[NXP20] ——, i.MX Secure Boot on HABv4 Supported Devices, Jun. 2020.

[OC14] C. O’Flynn and Z. D. Chen, «Chipwhisperer: An open-source platform for hard-
ware embedded security research», in International Workshop on Constructive
Side-Channel Analysis and Secure Design, Springer, 2014, pp. 243–260. [Online].
Available: https://link.springer.com/chapter/10.1007/978-3-319-10175-0_17
(last visited: May 29, 2022).

https://source.codeaurora.org/external/imx/uboot-imx/tree/doc/imx/habv4/guides/mx6_mx7_spl_secure_boot.txt?h=lf-5.15.5-1.0.0
https://source.codeaurora.org/external/imx/uboot-imx/tree/doc/imx/habv4/guides/mx6_mx7_spl_secure_boot.txt?h=lf-5.15.5-1.0.0
https://source.codeaurora.org/external/imx/uboot-imx/tree/doc/imx/habv4/guides/mx6_mx7_spl_secure_boot.txt?h=lf-5.15.5-1.0.0
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.680-200811-S!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.680-200811-S!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.509-201910-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.509-201910-I!!PDF-E&type=items
https://dl.acm.org/doi/book/10.5555/2700550
https://dl.acm.org/doi/book/10.5555/2700550
https://ieeexplore.ieee.org/document/8796409
https://ieeexplore.ieee.org/document/8796409
https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX-Vybrid-Security-Vulnerability-Errata-ERR010872-ERR010873/ta-p/1120527?attachment-id=85276
https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX-Vybrid-Security-Vulnerability-Errata-ERR010872-ERR010873/ta-p/1120527?attachment-id=85276
https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX-Vybrid-Security-Vulnerability-Errata-ERR010872-ERR010873/ta-p/1120527?attachment-id=85276
https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX-Vybrid-Security-Vulnerability-Errata-ERR010872-ERR010873/ta-p/1120527?attachment-id=85276
https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX-Vybrid-Security-Vulnerability-Errata-ERR010872-ERR010873/ta-p/1120527?attachment-id=85277
https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX-Vybrid-Security-Vulnerability-Errata-ERR010872-ERR010873/ta-p/1120527?attachment-id=85277
https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/i-MX-Vybrid-Security-Vulnerability-Errata-ERR010872-ERR010873/ta-p/1120527?attachment-id=85277
https://link.springer.com/chapter/10.1007/978-3-319-10175-0_17

REFERENCES 59

[OFl16] C. O’Flynn, «Fault injection using crowbars on embedded systems», Cryptology
ePrint Archive, 2016. [Online]. Available: https://eprint.iacr.org/2016/810
(last visited: May 29, 2022).

[PB19] C. Paulsen and R. Byers, Glossary of key information security terms, en, Jul.
2019. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.
7298r3.pdf (last visited: May 29, 2022).

[Res18] E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.3, RFC
8446, Aug. 2018. [Online]. Available: https://www.rfc-editor.org/info/rfc8446
(last visited: May 29, 2022).

[Sho14] A. Shostack, Threat Modeling: Designing for Security, 1st. Wiley Publishing,
2014. [Online]. Available: https://dl.acm.org/doi/10.5555/2829295 (last
visited: May 29, 2022).

[Sin21] S. Sinha. «State of IoT 2021: Number of connected IoT devices growing 9%
to 12.3 billion globally, cellular IoT now surpassing 2 billion», IoT Analytics.
(Sep. 22, 2021), [Online]. Available: https : // iot - analytics . com/number -
connected-iot-devices/ (last visited: May 29, 2022).

[Sma15] N. P. Smart, Cryptography Made Simple, 1st. Springer Publishing Company,
Incorporated, 2015. [Online]. Available: https://link.springer.com/book/10.
1007/978-3-319-21936-3 (last visited: May 29, 2022).

[SSW04] A. N. Sloss, D. Symes, and C. Wright, «Chapter 1 - ARM embedded systems»,
in ARM System Developer’s Guide, ser. The Morgan Kaufmann Series in Com-
puter Architecture and Design, A. N. SLOSS, D. SYMES, and C. WRIGHT,
Eds., Burlington: Morgan Kaufmann, 2004, pp. 2–16. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9781558608740500022
(last visited: May 29, 2022).

[SV21] C. Simmonds and F. Vasquez, Mastering Embedded Linux Programming, 3rd ed.
Packt Publishing, 2021. [Online]. Available: https://www.oreilly.com/library/
view/mastering-embedded-linux/9781789530384/ (last visited: May 29, 2022).

[Tru19] Trusted Computing Group, Trusted Platform Module Library Specification,
Family “2.0”, Nov. 2019. [Online]. Available: https://trustedcomputinggroup.
org/resource/tpm-library-specification/ (last visited: May 29, 2022).

[TSW16] N. Timmers, A. Spruyt, and M. Witteman, «Controlling PC on ARM Using
Fault Injection», in 2016 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2016, pp. 25–35. [Online]. Available: https://ieeexplore.
ieee.org/document/7774479 (last visited: May 29, 2022).

[WO22] J. v. Woudenberg and C. O’Flynn, The Hardware Hacking Handbook Breaking
Embedded Security with hardware attacks. No Starch Press, 2022. [Online].
Available: https://nostarch.com/hardwarehacking (last visited: May 29, 2022).

[Yur18] Yuri. «[Secure Boot CST 3.0.1]: the validity period of the corresponding
certificates». (Jun. 20, 2018), [Online]. Available: https://community.nxp.com/
t5/i-MX-Processors/Secure-Boot-CST-3-0-1-the-validity-period-of-the-
corresponding/m-p/804589 (last visited: May 29, 2022).

https://eprint.iacr.org/2016/810
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.7298r3.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.7298r3.pdf
https://www.rfc-editor.org/info/rfc8446
https://dl.acm.org/doi/10.5555/2829295
https://iot-analytics.com/number-connected-iot-devices/
https://iot-analytics.com/number-connected-iot-devices/
https://link.springer.com/book/10.1007/978-3-319-21936-3
https://link.springer.com/book/10.1007/978-3-319-21936-3
https://www.sciencedirect.com/science/article/pii/B9781558608740500022
https://www.oreilly.com/library/view/mastering-embedded-linux/9781789530384/
https://www.oreilly.com/library/view/mastering-embedded-linux/9781789530384/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://ieeexplore.ieee.org/document/7774479
https://ieeexplore.ieee.org/document/7774479
https://nostarch.com/hardwarehacking
https://community.nxp.com/t5/i-MX-Processors/Secure-Boot-CST-3-0-1-the-validity-period-of-the-corresponding/m-p/804589
https://community.nxp.com/t5/i-MX-Processors/Secure-Boot-CST-3-0-1-the-validity-period-of-the-corresponding/m-p/804589
https://community.nxp.com/t5/i-MX-Processors/Secure-Boot-CST-3-0-1-the-validity-period-of-the-corresponding/m-p/804589

60 REFERENCES

[ZAH+14] R. Zhou, Z. Ai, et al., «Data Integrity Checking for iSCSI with Dm-verity», in
Advanced Technologies, Embedded and Multimedia for Human-centric Comput-
ing, Y.-M. Huang, H.-C. Chao, et al., Eds., Dordrecht: Springer Netherlands,
2014, pp. 691–697. [Online]. Available: https://link.springer.com/chapter/10.
1007/978-94-007-7262-5_79 (last visited: May 29, 2022).

[ZDC+12] L. Zussa, J.-M. Dutertre, et al., «Investigation of timing constraints violation
as a fault injection means», in 27th Conference on Design of Circuits and
Integrated Systems (DCIS), Avignon, France, Citeseer, 2012, pp. 1–6. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.726.
6326&rep=rep1&type=pdf (last visited: May 29, 2022).

[AAB+17] M. Antonakakis, T. April, et al., «Understanding the mirai botnet», in 26th
USENIX Security Symposium (USENIX Security 17), Vancouver, BC: USENIX
Association, Aug. 2017, pp. 1093–1110. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity17/technical - sessions/presentation/
antonakakis (last visited: May 29, 2022).

https://link.springer.com/chapter/10.1007/978-94-007-7262-5_79
https://link.springer.com/chapter/10.1007/978-94-007-7262-5_79
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.726.6326&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.726.6326&rep=rep1&type=pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis

AppendixAHigh assurance boot and the code
signing tool

A.1 Example of a command sequence file

1 [Header]
2 Version = 4.2
3 Hash Algorithm = sha256
4 Engine Configuration = 0
5 Certificate Format = X509
6 Signature Format = CMS
7 Engine = CAAM
8
9 [Install SRK]

10 # Index of the key location in the SRK table to be installed
11 File = "../ crts/ SRK_1_2_3_4_table .bin"
12 Source index = 0
13
14 [Install CSFK]
15 # Key used to authenticate the CSF data
16 File = "../ crts/ CSF1_1_sha256_2048_65537_v3_usr_crt .pem"
17
18 [Authenticate CSF]
19
20 [Install Key]
21 # Key slot index used to authenticate the key to be installed
22 Verification index = 0
23 # Target key slot in HAB key store where key will be installed
24 Target Index = 2
25 # Key to install
26 File= "../ crts/ IMG1_1_sha256_2048_65537_v3_usr_crt .pem"
27
28 [Authenticate Data]
29 # Key slot index used to authenticate the image data
30 Verification index = 2
31 Blocks = <start_address > <offset > <length > " path_to_image "
32
33 [Unlock]
34 # Leaves SRK revocation unlocked
35 Engine = OCOTP

61

62 A. HIGH ASSURANCE BOOT AND THE CODE SIGNING TOOL

36 Features = SRK Revoke

Listing A.1: Command sequence file

A.2 Using the code signing tool to sign an image
1 ~/ cst/ linux64 /bin$./ cst --output spl_csf .bin --input spl.csf
2
3 ~/ cst/ linux64 /bin$ cat SPL spl_csf .bin > signed_spl

Listing A.2: Signing an SPL image using the CST

A.3 HAB status indicating a failed image verification

HAB event 1 indicates an image verification failure was recorded during boot. HAB
events 2 to 4 indicate which portion of the image loaded failed the authentication:

• HAB event 1: authentication of the Image Vector Table (IVT) failed

• HAB event 2: authentication of the first byte of the boot data failed

• HAB event 3: authentication of the first 4 bytes of the SPL failed

1 => hab_status
2
3 Secure boot disabled
4
5 HAB Configuration : 0xf0 , HAB State : 0x66
6
7 --------- HAB Event 1 -----------------
8 event data:
9 0xdb 0x00 0x08 0x42 0x33 0x22 0x0a 0x00

10
11 STS = HAB_FAILURE (0 x33)
12 RSN = HAB_INV_ADDRESS (0 x22)
13 CTX = HAB_CTX_AUTHENTICATE (0 x0A)
14 ENG = HAB_ENG_ANY (0 x00)
15
16
17 --------- HAB Event 2 -----------------
18 event data:
19 0xdb 0x00 0x14 0x42 0x33 0x0c 0xa0 0x00
20 0x00 0x00 0x00 0x00 0x00 0x91 0x14 0x00
21 0x00 0x00 0x00 0x20
22
23 STS = HAB_FAILURE (0 x33)
24 RSN = HAB_INV_ASSERTION (0 x0C)
25 CTX = HAB_CTX_ASSERT (0 xA0)

A.3. HAB STATUS INDICATING A FAILED IMAGE VERIFICATION 63

26 ENG = HAB_ENG_ANY (0 x00)
27
28
29 --------- HAB Event 3 -----------------
30 event data:
31 0xdb 0x00 0x14 0x42 0x33 0x0c 0xa0 0x00
32 0x00 0x00 0x00 0x00 0x00 0x91 0x14 0x20
33 0x00 0x00 0x00 0x01
34
35 STS = HAB_FAILURE (0 x33)
36 RSN = HAB_INV_ASSERTION (0 x0C)
37 CTX = HAB_CTX_ASSERT (0 xA0)
38 ENG = HAB_ENG_ANY (0 x00)
39
40
41 --------- HAB Event 4 -----------------
42 event data:
43 0xdb 0x00 0x14 0x42 0x33 0x0c 0xa0 0x00
44 0x00 0x00 0x00 0x00 0x00 0x91 0x20 0x00
45 0x00 0x00 0x00 0x04
46
47 STS = HAB_FAILURE (0 x33)
48 RSN = HAB_INV_ASSERTION (0 x0C)
49 CTX = HAB_CTX_ASSERT (0 xA0)
50 ENG = HAB_ENG_ANY (0 x00)

Listing A.3: HAB status for a failed image verification

AppendixBDeveloping a voltage glitcher on an
FPGA

The glitcher was programmed using the VDHL1 language and the Xilinx Vivado
Integrated Development Environment2.

B.1 Code written for the voltage glitcher

B.1.1 Source code
1 -- Author : Nahom Belay
2 -- Module Name: config - Behavioral
3
4 library IEEE;
5 use IEEE. STD_LOGIC_1164 .ALL;
6
7 entity config is
8 Port (
9 clk : in STD_LOGIC ;

10 rst : in STD_LOGIC ;
11 config_duration : in std_logic ;
12 config_delay : in std_logic ;
13 mode: in std_logic ;
14 data: in std_logic_vector (7 downto 0);
15 output_duration : out std_logic_vector (7 downto 0);
16 output_delay : out std_logic_vector (7 downto 0));
17 end config ;
18
19 architecture Behavioral of config is
20
21 signal duration : std_logic_vector (7 downto 0) := "01000000";
22 signal delay : std_logic_vector (7 downto 0) := "01000000";
23
24 begin
25 process
26 begin

1Very High Speed Integrated Circuit (VHSIC) Hardware Description Language
2https://www.xilinx.com/products/design-tools/vivado.html

65

https://www.xilinx.com/products/design-tools/vivado.html

66 B. DEVELOPING A VOLTAGE GLITCHER ON AN FPGA

27 wait until rising_edge (clk);
28 if mode = ’1’ then
29 if config_delay = ’1’ then
30 delay <= data;
31 end if;
32
33 if config_duration = ’1’ then
34 duration <= data;
35 end if;
36
37 if rst = ’1’ then
38 duration <= "01000000";
39 delay <= "01000000";
40 end if;
41 end if;
42
43
44 output_delay <= delay ;
45 output_duration <= duration ;
46
47 end process ;
48
49
50 end Behavioral ;

1 -- Author : Nahom Belay
2 -- Module Name: main_glitcher - Behavioral
3
4 library IEEE;
5 use IEEE. STD_LOGIC_1164 .ALL;
6
7 -- Uncomment the following library declaration if using
8 -- arithmetic functions with Signed or Unsigned values
9 --use IEEE. NUMERIC_STD .ALL;

10
11 -- Uncomment the following library declaration if instantiating
12 -- any Xilinx leaf cells in this code.
13 --library UNISIM ;
14 --use UNISIM . VComponents .all;
15
16 entity main_glitcher is
17 Port (clk : in STD_LOGIC ;
18 rst : in STD_LOGIC ;
19 mode : in STD_LOGIC ;
20 trigger : in STD_LOGIC ;
21 config_duration : in STD_LOGIC ;
22 config_delay : in STD_LOGIC ;
23 data : in STD_LOGIC_VECTOR (7 downto 0);
24 output_signal : out STD_LOGIC ;
25 led : out std_logic
26);
27 end main_glitcher ;

B.1. CODE WRITTEN FOR THE VOLTAGE GLITCHER 67

28
29 architecture Behavioral of main_glitcher is
30 component config is
31 port(
32 clk : in STD_LOGIC ;
33 rst : in STD_LOGIC ;
34 config_duration : in std_logic ;
35 config_delay : in std_logic ;
36 mode: in std_logic ;
37 data: in std_logic_vector (7 downto 0);
38 output_duration : out std_logic_vector (7 downto 0);
39 output_delay : out std_logic_vector (7 downto 0)
40);
41 end component ;
42
43 component glitch is
44 port(
45 trigger : in std_logic ;
46 clk: in std_logic ;
47 rst: in std_logic ;
48 mode: in std_logic ;
49 delay : in std_logic_vector (7 downto 0);
50 duration : in std_logic_vector (7 downto 0);
51 output_signal : out std_logic ;
52 led: out std_logic
53);
54 end component ;
55
56 --Auxiliary signal
57 signal configured_duration : std_logic_vector (7 downto 0);
58 signal configured_delay : std_logic_vector (7 downto 0);
59
60
61 begin
62
63 --Instanciate config component
64 instance_config : config port map (
65 clk => clk ,
66 rst => rst ,
67 mode => mode ,
68 config_delay => config_delay ,
69 config_duration => config_duration ,
70 data => data ,
71 output_delay => configured_delay ,
72 output_duration => configured_duration
73);
74
75 --Instanciate glitch component
76 instance_glitch : glitch port map (
77 clk => clk ,
78 rst => rst ,
79 mode => mode ,

68 B. DEVELOPING A VOLTAGE GLITCHER ON AN FPGA

80 trigger => trigger ,
81 delay => configured_delay ,
82 duration => configured_duration ,
83 output_signal => output_signal ,
84 led => led
85);
86
87 process
88 begin
89 wait until rising_edge (clk);
90 end process ;
91
92 end Behavioral ;

1 -- Author : Nahom Belay
2 -- Module Name: glitch - Behavioral
3
4 library IEEE;
5 use IEEE. STD_LOGIC_1164 .ALL;
6 use IEEE. NUMERIC_STD .ALL;
7 use IEEE. std_logic_arith .all;
8 use IEEE. std_logic_unsigned .all;
9

10 entity glitch is
11 Port (
12 trigger : in std_logic ;
13 clk: in std_logic ;
14 rst: in std_logic ;
15 mode: in std_logic ;
16 delay : in std_logic_vector (7 downto 0);
17 duration : in std_logic_vector (7 downto 0);
18 output_signal : out std_logic ;
19 led : out std_logic
20);
21 end glitch ;
22
23 architecture Behavioral of glitch is
24
25 constant configuration_in_rising_edges : std_logic_vector (31 downto 0)

:= "00000000000000000000000000000001";
26 --delay in milliseconds (multiply by 100000 not 1000000 because la

periode is 10 ns)
27 constant configuration_in_milliseconds : std_logic_vector (31 downto 0)

:= "00000000000000011000011010100000";
28 --delay in microseconds (multiply by 100 not 1000 for same reason above

)
29 constant configuration_in_microseonds : std_logic_vector (31 downto 0)

:= "00000000000000000000000001100100";
30
31 constant glitch_mode : std_logic := ’0’;
32

B.1. CODE WRITTEN FOR THE VOLTAGE GLITCHER 69

33 constant multiplication_factor_duration : std_logic_vector (31 downto
0) := configuration_in_rising_edges ;

34 constant multiplication_factor_delay : std_logic_vector (31 downto 0)
:= configuration_in_rising_edges ;

35
36 --glitch approximxated to around 200 ms so delay will be 600 ms + delay

configured from config_block
37 --constant base_delay : std_logic_vector (15 downto 0) :=

"0000000011001000";
38 constant base_delay : std_logic_vector (15 downto 0) :=

"0000000000000001";
39
40 -- delay in number of rising edges
41 --constant multiplication_factor_duration : std_logic_vector (31 downto

0) := "00000000000000000000000000000001";
42 --constant multiplication_factor_delay : std_logic_vector (31 downto 0)

:= "00000000000000000000000000000001";
43
44 --delay in milliseconds (multiply by 100000 not 1000000 because la

periode is 10 ns)
45 --constant multiplication_factor_duration : std_logic_vector (31 downto

0) := "00000000000000011000011010100000";
46 --constant multiplication_factor_delay : std_logic_vector (31 downto 0)

:= "00000000000000011000011010100000";
47
48 --delay in microseconds (multiply by 100 not 1000 for same reason above

)
49 --constant multiplication_factor_duration : std_logic_vector (31 downto

0) := "00000000000000000000000001100100";
50 --constant multiplication_factor_delay : std_logic_vector (31 downto 0)

:= "00000000000000000000000001100100";
51
52 constant idle_state : std_logic_vector (2 downto 0) := "000" ;
53 constant initial_delay : std_logic_vector (2 downto 0) := "001" ;
54 constant waiting_trigger_glitch_state : std_logic_vector (2 downto 0) :=

"010" ;
55 constant glitch_state : std_logic_vector (2 downto 0) := "011" ;
56 constant holdoff : std_logic_vector (2 downto 0) := "100" ;
57
58 --constant holdoff_duration : std_logic_vector (31 downto 0) :=

"00000000000001111010000100100000";
59 --equivalent to 300000000 rising edges which is about 3s I think
60 constant holdoff_duration : std_logic_vector (31 downto 0) :=

"00010001111000011010001100000000";
61
62 constant normal_output : std_logic := ’1’;
63 constant glitch_output : std_logic := ’0’;
64
65 signal delay_counter : std_logic_vector (63 downto 0) := (others => ’0’)

;
66 signal duration_counter : std_logic_vector (63 downto 0) := (others =>

’0’);

70 B. DEVELOPING A VOLTAGE GLITCHER ON AN FPGA

67 signal glitch_register : std_logic := ’0’;
68 signal state : std_logic_vector (2 downto 0) := (others => ’0’);
69
70 begin
71 process
72 begin
73 wait until rising_edge (clk);
74 if mode = glitch_mode then
75
76 case state is
77 when idle_state =>
78 if trigger = ’1’ then
79 glitch_register <= normal_output ;
80 led <= ’1’;
81 state <= initial_delay ;
82 delay_counter <= (others => ’0’);
83 -- delay_counter <= delay_counter + "1";
84 end if;
85
86 when initial_delay =>
87 glitch_register <= normal_output ;
88 delay_counter <= delay_counter + "1";
89 if delay_counter = (base_delay *

multiplication_factor_delay - "1") then
90 state <= waiting_trigger_glitch_state ;
91 delay_counter <= (others => ’0’);
92 end if;
93
94 when waiting_trigger_glitch_state =>
95 glitch_register <= normal_output ;
96 delay_counter <= delay_counter + "1";
97 if delay_counter = (delay *

multiplication_factor_delay - "1") then
98 glitch_register <= glitch_output ;
99 state <= glitch_state ;

100 delay_counter <= (others => ’0’);
101 end if;
102
103 when glitch_state =>
104 duration_counter <= duration_counter + "1";
105 glitch_register <= glitch_output ;
106 if duration_counter = (duration *

multiplication_factor_duration - "1") then
107 duration_counter <= (others => ’0’);
108 glitch_register <= normal_output ;
109 state <= holdoff ;
110 end if;
111
112 when holdoff =>
113 duration_counter <= duration_counter + "1";
114 glitch_register <= normal_output ;
115 if duration_counter = holdoff_duration then

B.1. CODE WRITTEN FOR THE VOLTAGE GLITCHER 71

116 state <= idle_state ;
117 duration_counter <= (others => ’0’);
118 end if;
119 when others => null;
120 end case;
121
122 if rst = ’1’ then
123 glitch_register <= glitch_output ;
124 delay_counter <= (others => ’0’);
125 duration_counter <= (others => ’0’);
126 led <= ’0’;
127 state <= idle_state ;
128 end if;
129
130 end if;
131
132 output_signal <= glitch_register ;
133 end process ;
134
135 end Behavioral ;

B.1.2 Testbench code
1 -- Author : Nahom Belay
2 -- Module Name: main_glicher_test - Behavioral
3
4 library IEEE;
5 use IEEE. STD_LOGIC_1164 .ALL;
6
7 entity main_glitcher_test is
8 -- Port ();
9 end main_glitcher_test ;

10
11 architecture Behavioral of main_glitcher_test is
12 component main_glitcher is
13 port (
14 clk : in STD_LOGIC ;
15 rst : in STD_LOGIC ;
16 trigger : in STD_LOGIC ;
17 mode: in std_logic ;
18 config_duration : in std_logic ;
19 config_delay : in std_logic ;
20 data: in std_logic_vector (7 downto 0);
21 output_signal : out STD_LOGIC ;
22 led : out std_logic
23);
24 end component ;
25
26 --Inputs
27 signal clk : STD_LOGIC ;
28 signal rst : STD_LOGIC ;
29 signal mode: STD_LOGIC ;

72 B. DEVELOPING A VOLTAGE GLITCHER ON AN FPGA

30 signal trigger : STD_LOGIC ;
31 signal config_duration : std_logic ;
32 signal config_delay : std_logic ;
33 signal data: STD_LOGIC_VECTOR (7 downto 0);
34
35 --output
36 signal output_signal : std_logic ;
37 signal led: std_logic ;
38
39 constant CLK_period : time := 10 ns;
40
41 begin
42 uut: main_glitcher port map (
43 clk => clk ,
44 rst => rst ,
45 mode => mode ,
46 trigger => trigger ,
47 config_delay => config_delay ,
48 config_duration => config_duration ,
49 data => data ,
50 output_signal => output_signal ,
51 led => led
52);
53
54 -- Clock process definitions
55 CLK_process : process
56 begin
57 clk <= ’0’;
58 wait for CLK_period /2;
59 clk <= ’1’;
60 wait for CLK_period /2;
61 end process ;
62
63 -- Stimulus process
64 stim_proc : process
65 begin
66 mode <= ’1’;
67 trigger <= ’0’;
68 rst <= ’0’;
69 config_delay <= ’0’;
70 config_duration <= ’0’;
71 data <= "00000000";
72 wait for 100 ns;
73 data <= "00001001";
74 wait for 10 ns;
75 config_delay <= ’1’;
76 wait for 20 ns;
77 config_delay <= ’0’;
78 wait for 20 ns;
79 config_duration <= ’1’;
80 data <= "00000100";
81 wait for 10 ns;

B.1. CODE WRITTEN FOR THE VOLTAGE GLITCHER 73

82 config_duration <= ’0’;
83 mode <= ’0’;
84 data <= "11111111";
85 wait for 10 ns;
86 trigger <= ’1’;
87 wait for 20 ns;
88 trigger <= ’0’;
89 wait for 10 us;
90 end process ;
91 end Behavioral ;

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Context
	Objectives and methodology
	Outline of the thesis

	Background
	Basic principles of information security
	Information security triad
	Extending the information security triad

	Cryptography
	Encryption
	Key exchange
	Cryptographic hash functions
	Digital signatures
	Transport Layer Security

	Hardware attacks on embedded devices
	Fault injections
	Power analysis

	Booting sequence in an embedded Linux system
	Read-only memory code
	The bootloader
	Kernel
	Rootfs

	Public key infrastructure
	Certificates
	Trust and validity Models
	Certificate revocation

	Threat model of the cloud connector
	The STRIDE threat model
	The STRIDE model applied to the cloud connector
	Addressing these threats

	Focusing on the threat of running unauthorised code
	Untargeted attacks
	Targeted attacks
	The secure boot protocol

	The secure boot protocol on the cloud connector
	Secure boot on NXP processors
	High assurance boot
	Command sequence files
	The code signing tool

	Results
	PKI for the secure boot protocol
	Implementation results

	Fault injection attack to bypass secure boot
	Making a voltage glitcher
	Description of the implementation
	Testing the implementation
	Logic level converter to power the target device

	Attacking the secure boot protocol with a fault injection
	Using a development board
	Real world scenario

	Results

	Discussion
	Limits of the secure boot protocol
	Lack of long term support
	Vulnerabilities in the boot ROM
	Frequent image updates with certificate revocation

	Measured boot, an alternative protocol
	Overview of Trusted Platform Modules
	Description of the protocol
	An alternative to the secure boot protocol?

	Secure over-the-air updates

	Conclusion and future research
	Conclusion
	Future research

	References
	High assurance boot and the code signing tool
	Example of a command sequence file
	Using the code signing tool to sign an image
	HAB status indicating a failed image verification

	Developing a voltage glitcher on an FPGA
	Code written for the voltage glitcher
	Source code
	Testbench code

