Kristian in‘t Veld

Preserving Steganography
Information Over Image
Transformations

= D = > o >
z Z25%8cs%9 June 2022
@ >0 .2 ¢ IS)
j=d E 23 o ® o
o Z o e o c
3 o 5 £ 5
5 29 i b
~ 5!— 0 [
< o
© c c
o o ®©

o o

o O

z <

]

S G

Zwn

Faculty of Information Technology and Electrical

Department of Information Security and Communication

\/

@NTNU @NTNU

Norwegian University of Norwegian University of
Science and Technology Science and Technology

@NTNU

Norwegian University of
Science and Technology

Preserving Steganography Information
Over Image Transformations

Kristian in't Veld

Communication Technology and Digital Security
Submission date: June 2022

Supervisor: Colin Alexander Boyd, 11K
Co-supervisor: Bor de Kock, IIK

Norwegian University of Science and Technology
Department of Information Security and Communication
Technology

Title: Preserving Steganography Information Over Image
Transformations
Student: Kristian in’t Veld

Problem description:

The field of digital image steganography has already been thoroughly studied. There
exists a plethora of different methods and algorithms to use when trying to hide
information in images. Most of the prior research looks at static images that are not
modified at all after embedding the hidden message. Many of these steganography
methods are often very susceptible to changes in the final image.

In this project, the problem of retaining information hidden in digital images
after transforming the images through different common conversions is to be studied.
The first goal for the project is to compare different existing steganography methods
and see how well they survive different common conversions, such as resizing or file
format conversion. The second goal is to look at how some of these methods can be
improved to be more resilient against these types of transformations.

Date approved: 2022-01-26
Responsible professor: Colin Alexander Boyd, ITK
Supervisor(s): Bor de Kock, IIK

Abstract

Steganography is the art of concealing information in other mediums
without making it clear that information has been hidden. In image
steganography, specifically, messages can be embedded into normal looking
images, but which may contain secret embedded messages that are not
visible to the naked eye. Digital image steganography has been thoroughly
studied for many years and there are many different methods to choose
from. Normally the premise for sending these images is however that the
images will not be tampered with between the sender and receiver. This
might however not always be the case, if the channel for communication is
limited, then one might have to use direct messaging platforms or public
website to which one upload images before the recipient receives them.
These third-parties might perform transformation on these images, such
as down scaling, cropping, or compressing them to save disk space or for
other business goals. These passive attacks will in most cases destroy
any embedded steganography information that has been embedded in
the images.

In this thesis we will study a selection of steganography methods,
specifically, Least Significant Bit (LSB), Discrete Wavelet Transformation
(DWT), Steghide, image metadata (EXIF) and file format polyglots and
investigate how well they survive against such image transformations.
For the methods that fail, we will also propose certain improvements
that successfully are able to mitigate some of these image transformation
operations.

Sammendrag

Steganografi er kunsten & skjule informasjon i andre medium. Innen
bildesteganografi blir skjulte meldinger gjemt i bilder som ser normale
ut for det blotte gye, men som en mottaker kan hente ut den skjulte
meldingen fra. Bildesteganografi har vaert studert i mange ar, og det
finnes mange steganografimetoder a velge mellom. Normalt er premisset en
studerer innen steganografi at bilder vil bli sendt mellom to parter uten noe
videre modifikasjon under overfgringen, men dette er ikke ngdvendigvis
alltid tilfellet i dag, spesielt om muligheten for kommunikasjonskanaler
mellom partene er begrenset. I slike tilfeller kan en bli tvunget til & bruke
direktemeldingsplattformer eller offentlige nettsider. Disse tredjepartene
kan utfgre bildeopperasjoner, slik som nedskalering, beskjeering eller
komprimering for & spare diskplass eller lgse andre forretningsmal. Disse
passive angrepene vil i de fleste tilfeller gdelegge all gjemt steganografi
informasjon i bildene.

I denne oppgaven vil vi studere et utvalg steganografimetoder, spesi-
fikt, minst signifikante bit (LSB), diskret wavelettransformasjon (DWT),
Steghide, bildemetadata (EXIF) og filformatpolyglots og undersgke hvor
godt de overlever mot slike bildetransformasjoner. For metodene som
mislykkes, vil vi ogsa foresla visse forbedringer som med hell kan forbedre
motstanden mot disse bildetransformasjonene.

Preface

This thesis was written during the spring of 2022 as the final chapter
of my five years of studying Communications Technology and Information
Security (KomTek) at the department of Information Security and Com-
munication Technology (ITK) at the Norwegian University of Technology
and Science (NTNU) in Trondheim.

The overall topic of a thesis about steganography was proposed by the
institute, while I with the guidance of my supervisors formed the specific
problem description and scenario to be studied during the pre-project
subject of autumn 2021. A lot of effort was put into finding a problem
that had not been studied too much in advance and could bring forth the
shared knowledge in the field of steganography. The work on this thesis
began and continued out of a period of isolation and home office caused
by the Covid-19 pandemic. While this caused inconveniences and a new
normal with new working patterns and solution, we at the institute of
IIK were lucky enough to still be able to work from an office at campus
and have some meetings before things started opening up more officially.

Even though this thesis is quite narrowed towards the field of steganog-
raphy, the work of producing such a thesis and the thesis itself is meant
to be a culmination of 5 years of studying to become a civil engineer in
the field of information security and communication technology.

Acknowledgements

First and foremost, the work presented in this thesis would not be
possible without the guidance from my supervisors, Colin Alexander Boyd
and Bor de Kock, both from the Department of Information Security and
Communication Technology (IIK). Thank you for your time and patience.

I would also like to direct my gratitude towards the institute staff
of ITK, who, in my subjective opinion, have put more effort than any
other department at NTNU into creating a good social environment for
us student to study in for the past five years.

Furthermore, I would like to both thank and congratulate my fellow
classmates who have joined me through the years on this journey. I
appreciate the social environment we have been able to create, and thank
especially those that have put the extra effort into making everyone
welcome and organizing events to create the community we ended up
with. I wish you all good luck with your future endeavors.

Lastly, I would like to give my thanks to all the friends and family
that have supported me and made these years something special. T will
never forget my time here in Trondheim.

Contents

1 Introduction 1
1.1 Motivation 1
1.2 Objectives 1
1.3 Overview and Results 3

2 Background 5
2.1 Steganography 5
2.2 Steganography Methods 6

2.2.1 Least Significant Bit 0oL 6
2.2.2 Steghide 7
2.2.3 Discrete Wavelet Transformation 9
2.2.4 Image Metadata 11
2.2.5 File Polyglots 12

3 Method 17
3.1 Framework Implementation 17
3.2 Choices e e 18

321 Images. 18
3.2.2 Secret Message & Data 20
3.23 LSB . . . e 20
324 Steghide Lo 23
3.2.5 DWT . . e 25
3.2.6 Metadata 26
3.27 Polyglot 27
4 Results 29
4.1 Image Formats L o 29
4.1.1 Image Quality L. 31
4.2 LSB . . . e 33
4.2.1 Transformation: Cropping 33
4.2.2 Transformation: Down scaling 33
4.2.3 Transformation: File format conversion 34

ix

4.3 Steghide 35

4.3.1 Transformation: JPEGtoPNG 35

4.3.2 Transformation: PNG to JPEG 36

4.3.3 Image Quality 36

4.4 DWT . .. 37

4.4.1 Transformation: None 37

4.4.2 Transformation: Format Conversion 39

4.4.3 Transformation: Downscale. 41

4.4.4 Transformation: Cropping 41

4.5 Metadata e 42

4.6 Polyglot 45

5 Conclusions & Further Work 47

5.1 LSB . . . e 47

52 DWT e 48

5.3 Steghide L 48

5.4 Metadata e 49

5.5 Polyglot 49

References 51
Appendices

A EXIF tag compatability 55

B JPEG image quality metrics 57

Introduction

1.1 Motivation

Steganography is the art of concealing information without making it clear that
information has been hidden. One common way to achieve this is to send a non-
suspicious image which contains hidden information in it. This field of research has
been thoroughly studied for many decades, but usually the premise has been that the
embedded image is sent as-is to the recipient without any modification during the
transportation. In today’s digital world, many digital platforms that offer sending
or sharing of images might end up doing some sort of transformation on the image
to achieve some business goal. This might be down scaling the image to save disk
space, cropping the image to fit a certain dimension, like square profile pictures
or converting between image formats. These transformations are in many cases
destructive to any embedded steganography information that might be embedded.
This project documents the current state of how well classical steganography methods
are able to withstand these transformations and propose some improvements to make
the methoding more robust.

1.2 Objectives

The goal of this thesis is twofold. Firstly, it aims to analyze the current performance
of a selected list of steganography methods to see how well they survive common
image transformations. Secondly, it aims to look at how we can improve some of
these steganography methods to make them become more robust.

Figure 1.1 shows a high level overview of the imagined scenario that will be
studied in this thesis. The first process shows how Alice embeds some secret message
into a cover image, creating a new steganography image. Alice then sends this image
to Bob, who extract this message from the image. In our scenario, however, we
imagine that instead of sending the image directly to Bob, the image is instead
uploaded to some website which might perform some image transformation, such

2 1. INTRODUCTION

Alice Bob
Embed Message : Directly Send Image
Cover Image Image H H Image
Extract
Secret Message
Secret Message
Secret Message
Alice i Website 5 Bob
; Download -
c | Embed Message Upload Image | Image Transformed Image Modified
over Image Image H Transformation H
H H Image
Extract :
Secret Message |
Secret Message
Secret Message

Figure 1.1: High level overview of imagined scenario to study in this thesis.

as resizing, down scaling or similar. Bob then downloads this image that has been
modified by the third party website and tries to extract the embedded message.
We imagine that these attacks are not active, as in, they are not aiming to destroy
steganography information, but rather affects the embedded steganography as a
by-product of solving some business goal by applying these transformations to the
images. An imagined scenario for why one would use such services could be that
only a few selected services are whitelisted in an otherwise restricted communication
channel, such as communicating cross border out of an oppressive regime or similar.

To study this process, each steganography method in this thesis will be imple-
mented first normally, then for some of the transformations we will see if we can
improve them for the specific transformation in question. E.g., one method we
will look into the Least Significant Bit (LSB) method, which we will describe and
implementing normally, then see if we can modify this method to better survive an
image transformation such as down scaling or cropping. Different strategies might
have to be used for each steganography method and image transformation pair.

The image transformations in question have been selected based on them being
among the most popular operations that social media websites or instant messaging
platforms might apply to images uploaded by its users. Specifically, the following list
will be studied:

1.3. OVERVIEW AND RESULTS 3

Downscale is a common operation to reduce the resolution size of images. This is
often done to reduce overall file size, or in some cases to fit a specific aspect ratio,
even though in those cases the cropping operation might be more appropriate. An
example of down scaling might be that they want to fit a certain size, so regardless
of what image dimensions you upload, your image is resized to 600x 600 pixels. In
cases where sites only want to save size, they might just apply a non-descriminate
resize where they reduce the size no matter the dimensions, or if the image is over a
certain size, for instance reducing images over 1000x 1000 pixels by 20%, so that a
1200x800 image becomes a 960x640 image instead.

Cropping cuts out a subsection of the original image. This is most often used
when a specific aspect ratio is desired, such as when selecting a profile picture that
needs to be square. For instance, if you upload an image that is 2000x 2000 pixels,
it might limit you to a 600x400 pixel image. Often the user is prompted to select
which region is to be cut out, or it might automatically select a region, in that case,
usually in the middle of the image.

Image format conversion is often used to optimize images for different target
platforms (web browsers, phones, T'Vs, etc.). The two most common image formats
on the web currently are PNG and JPEG images [Manb]. This thesis will therefor
look at the conversion from PNG to JPEG and from JPEG to PNG. PNG images are
lossless with a raster image format, with raw pixel data compressed using the Deflate
compression algorithm [Wik22f]. JPEG on the other hand are lossy [Wik22c¢| and
converting from PNG to JPEG often lead to minor differences. These are usually
not visible, but for steganography methods that rely on pixel perfect color values,
such as LSB, then this might be a problem.

To measure the performance of the different steganography methods and their
improved modifications, the Peak Signal to Noise Ratio (PSNR), Mean Square Error
(MSE) and Normalized Cross Correlation (NCC) will be studied. The images will
be studied after they have been transformed. These methods aim to capture visual
changes, while their robustness is also measured in how much of the embedded
message could be extracted.

1.3 Overview and Results

This thesis will present some background material for the different steganography
methods we have chosen to study. Then it will showcase how we have implemented
these methods, along with presenting some improvements to mitigate certain image
transformations for each steganography method. From our testing, we can see that
some of our proposed improvements work against different transformations at different
level of robustness and success.

Background

2.1 Steganography

Traditionally, steganography has always had a strong relation to cryptography, as the
two domains have much in common. In fact, one could view the art of steganography
as the specific case of cryptography where the cryptography system itself is also
an unknown factor instead of only having the secret key unknown, as is generally
assumed for a strong cryptographic system by Kerckhoffs’s principle [Wik22d]. The
goal of steganography is usually to have the adversary discard the concealed message
instead of putting their effort into decoding it, which might be the case for an
encrypted message that obviously hides some information of importance. Looking
back historically, many historic crypto systems might be considered steganography
methods instead today, such as simply encoding a message in the capital letters of a
cover text.

Some traditional steganography methods include invisible ink [Sel07], concatenat-
ing capital letters of a paragraph [Sel07], blinking your eyes to convey Morse code
[Wik21a] or using microdots in letters [Sel07]. The latter was used extensively during
WWII and the following Cold War, where a microscopic image was hidden within
the dot of a punctuation. To the naked eye, the punctuation looked normal, but
looking through a microscope revealed a full image, often containing a new text with
the actual message [Wik21b].

We can however separate the two domains, with steganography being a way of
transporting a message without having it easily detected, and cryptography makes
that message hard to read. You can in fact mix them, and there is no discrete line
to separate the two. For this project, we will however try to isolate steganography as
only a method for embedding a secret message within a cover message. The secret
message should not be trivial to spot, nor alter the cover message significantly. To
achieve better security, we can always apply cryptography to the secret message
before embedding it.

6 2. BACKGROUND

After we entered the digital age, steganography has seen a big transformation in
appliances and usage. One is now able to hide information where it is not visible at
all to the reader, such as metadata in files which is never rendered to screen. One
example of this is hiding information in PNG images, where one simply appends the
bytes to the end of the file. Due to how the PNG image format works, most image
viewing programs will just display the original PNG image and ignore the unused
appended data. Such methods are invisible to the naked eye, but are still detectable
for digital systems. One could look at the file size and conclude that the file is larger
than what is expected of an image of for the given dimensions, or use tools such as
binwalk! to detect files embedded in other files in this fashion.

2.2 Steganography Methods

The following list of methods are some of the most popular steganography methods
used today and also the ones that will be studied further in this project.

2.2.1 Least Significant Bit

Least Significant Bit (LSB) embeds one or more bits of information per color channel
per pixel. The concept builds upon the fact that humans can usually not distinguish
between minor variations of color change, so even if we have a uniform colored image
where the pixels alter only by a single bit, we would usually not be able to see a
difference.

One can choose an arbitrary amount of bits to use, but the more pixels one uses,
the more visible the effect will be. Usually, one or two bits are chosen for images
with 8-bit color depth. If one chooses to use two bits, then for an RGB image, one
could embed 6 bits of data per pixel, so for a 1080x1920 image 12441600 bits or
1.4 MiB could be embedded more or less invisibly. By using existing pixels in the
image, the overall size does not increase, but merely utilizes existing space in the
image. The file size might increase however as in our case both JPEG and PNG
utilize compression, so as a side effect, when the entropy in the image increases, it
might also end up becoming harder to compress and increase the overall file size on
disk for the image.

The general concept of LSB can be applied to any form of data where the least
significant bits of information are not detectable by humans. Examples of this can
be audio files, video files, or even the vector coordinates of scalable vector graphics.

IBinwalk is a tool which scans through a binary file and checks for known magic bytes [Wik22¢],
which indicates the start of a particular file format [ReF].

2.2. STEGANOGRAPHY METHODS 7

LSB is one of the most common steganography methods used by several tools
such as S-Tools, Hide&Seek, HidedGPG and Steghide [CZNY06]. The core concept
of the method is simple to implement and can be adjusted easily. To avoid detection,
one could choose to only use one of the bit planes, such as just the green color plane,
instead of all three RGB. One could alter which pixels one chooses to use, such as
following a pattern instead of just going row by row. The method is also flexible
in which type of data that can be embedded, as it is just raw bytes, so any digital
message can be embedded.

Some of the strength of LSB is how messages are embedded in the fine details of
the image that is hard to spot, but this can also be a downside. When images are
edited or transformed, these fine details are usually some of the first to be altered,
such as applying color filtering, rescaling or other transformations.

2.2.2 Steghide

Steghide is an image steganography program written by Stefan Hetzl. It is one of
the first steganography programs to make steganography easy for end users and still
remains popular to this day [Het].

Steghide uses the LSB method to embed data in images, while also applying
compression, encryption, check summing and methods for defending against first
order statistical attacks. The program supports JPEG and BMP image formats, but
also the WAV and AU audio formats. We will focus on how it works for the image
formats, but the method is much the same for the audio versions.

The program requires three inputs, a cover image, the secret embedded data
and a password. The program starts by compressing the input data and applies
by default AES-128 in CBC mode using your provided password, though other
encryption methods and modes are supported. It calculates the CRC32 checksum of
this encrypted data. It then embeds the encrypted data and the CRC32 checksum
into the image pixels using LSB. Instead of going right to left, top to bottom, it
chooses a sequence of pixels generated from a pseudo-random generator initialized
with the provided password. Then, for each pixel it needs to change, it will first
search the whole image for if the target pixel value already exists elsewhere. If this
is the case, then it will swap the pixel values of these two pixel coordinates. If the
target pixel value does not exist, then it will simply overwrite the pixel. By switching
pixel values like this, the number of occurrences for each unique color value in the
image remains mostly the same.

In figure 2.1 we see how Steghide embeds information into images. Lossy image
formats like JPEG images can not just embed single pixels with information, so
larger chunks have to be modified so to not lose details to the image compression.

8 2. BACKGROUND

(a) Lena cover image (b) Difference between Lena.jpg and
Lena-with-steghide.jpg. Data is embed-
ded in bigger JPEG compression chunks.

(c) Difference between Lena.png and Lena-with-
steghide.png. Data is embedded using LSB in
individual pixel (notice small dots in the image).

Figure 2.1: Shows how Steghide hides information in the lossy JPEG and lossless
PNG image formats. The difference has been amplified x50 times.

2.2. STEGANOGRAPHY METHODS 9

Figure 2.2: The sinc function, showing a traditional wavelet.

On lossless image formats like BMP and PNG, however, make tiny modifications to
single pixels.

2.2.3 Discrete Wavelet Transformation

Wavelet transformation is a way of decomposing a signal using wavelets, much
like Fourier transformation, except Fourier uses sinus and cosines waves. Discrete
Wavelet Transformation (DWT), similar to Fourier transformation or Discrete Cosine
Transformation (DCT) has the nice characteristics of being able to extract and
emphasize the broader outlines of an image. They all work quite similarly, by trying
to approximate a signal using a composition of waves or wavelets, instead of having
to store the original signal itself.

Using DWT usually performs better in signals containing sharper edges due to
their more spiky shape. DCT among other things used as the JPEG compression
algorithm, while the new JPEG2000 has moved on to DWT [TM12].

DWT can utilize different types of wavelets, such as the traditional sinc function
shown in figure 2.2. For DWT performed on images, however, the HAAR wavelet is
much more common, often yielding better results in capturing the signal, as seen in
figure 2.3.

Normally, DWT is applied on one dimensional signals. When doing DWT on
images, one usually uses the DWT2 or 2D discrete wavelet transformation. This
will analyze a 2D gray scaled image returning for matrixes, an approximation (LL),
the horizontal details (LH), the vertical details (HL) and the diagonal details (HH).
One can also go the other way around with the Inverse DWT (IDWT), which also
has a corresponding IDWT2 function for 2D data sets. Performing DWT2 on an
image and then IDWT?2 will return the original image. As the DWT2 transformation
returns an approximation of the image at lower scale, this is just a new image at
lower resolution. One can therefor perform DWT2 on this approximation again. This

10 2. BACKGROUND

15 - -
10 o -
|
L |
ns |
|
[T —" —
I
-0 5 !
i
|
-La -—
4 1 1

Figure 2.3: The HAAR wavelet, a popular wavelet used in DWT.

LL, | HL,,
o LL,, HL,,, HL,,,
Original image LHg | HH,,
256 x 256
LH, HH,, LH,, HH,,

Figure 2.4: Example of 3 level DWT2 from [CG12]

can be repeated multiple times and is often referred to as N level DWT2. See figure
2.4.

The general way to embed steganography messages into images using DWT is to
run the DWT2 function on both your cover image and your secret image that you are
about to embed into your cover image. Then you use alpha blending between the two
approximations (LL) at some level N. By using alpha blending, you select some ratio
for each image, e.g., 95% cover image and 5% embedded image and add these two
together. This creates a new LL approximation that you use in the IDWT2 function
with the detail coefficients gained from your cover image. The outputted image
should look the same as your original cover image and is your new steganography

2.2. STEGANOGRAPHY METHODS 11

image.

To extract the secret image, you need both the embedded image and the orig-
inal cover image. Then you run DWT2 on both your original cover image and
steganography image. Then you subtract the same ratio that you used on your cover
image during embedding from the LL approximation of your steganography image.
Multiply this by the inverse of your secret image ratio, and you should have the
LL approximation of your secret image. Run the IDWT2 function with just empty
LH, HL and HH details, and you should have a similar image to your original secret
image, but without details.

There are two main downsides of using DWT. Firstly, both parties need the
original cover image. Secondly, the extracted secret image is often not perfectly
preserved, as you lose some precision in the alpha merging and by not including the
original LH, HL. and HH details from the secret image. Suitable secret images are
therefor often simple gray scale patterns, like text, logos or QR codes.

Described above is the process for single dimension gray scale images, but it
works perfectly fine for RGB images as well, just following the same process for
each color plane. One does not need to embed the same image in each color plane.
The images could be different, or they could embed the same image but with extra
redundancy. For instance, to embed a black and white image such as an QR code
inside an image one could then use the average value between red, green, and blue
during reconstruction under the extraction process to decide if each pixel should be
black or white, providing extra redundancy in the embedded image. Similarly, three
different QR codes could be embedded for higher capacity.

2.2.4 Image Metadata

One of the easiest ways to include hidden information in images is to embed it in the
image metadata. Most image formats, including PNG and JPEG, supports adding
metadata, such as camera model, text description, GPS location, etc. Some of this
metadata is often easily accessible and editable without extra tools, such as simple
“View More” menus in image viewers or file explorers. In 2022 the .PNG Protest
[FM] project started with an aim to bypass Russian censorship and spread news of
the Ukraine war using images of Putin, but containing news and information in the
text description of the image.

Both PNG and JPEG use the EXIF (Exchangeable image file format) which
supports a key-value like structure for properties and their value. The EXIF metadata
format is also widely used by other media formats, such as video and audio files.
These values are often preserved by default, but external websites often scrub these
to preserve the privacy of their users. For instance, sharing a photo which contains

12 2. BACKGROUND

XX = putin.png Info
More Info:

Last opened: Wednesday, March 23, 2022 at 4:11 PM

Dimensions: 3201x1914.

Color space: RGB

Description: Kak 4/TaTb pecypcsl, 3a6/10KMpOBaHHbIE POCCICKUMM
BnacTsmy. MpocTas UHCTPYKuuS «Mepy3bi»

HayuuTech 06xoauTb 6710KMpOBKY

Ho cnepea nowute MO6UNbHOE NPUNOXeHHeE,
BbINYLIEHHOE 3a6NIOKMPOBAHHBIM (M elle He
3a670KUPOBaHHBIM!) PECYPCOM

370 cambili NPOCTOl CNOCO6. 3a6noKMPOBaTL
MOGHNIbHOE NPUNIOXEHME COXHEE, YeM OGLINHBI CaiiT.
OCo6eHHo ecnv paspaGoTuIKi 3apaHee BCTPOMNM B
Hero UHCTPyMeHTSI 06X0Aa 610KMPoBOK. Ho e ero
He NONyHaeTcs HalkTy UNM YCTAHOBUTS, NPUACTCS UATH
ApYTUM nyTem.

3pnecs (https://mdza.io/NSmPLDAZSqU) MoXHO
cKadaTb npunoxenve «Menysbi»:

Ecin ccbinka Bbilie He paGoTaeT, BocnonbayiiTech
MIDSIMBIMU CChIAKaMY Ha MarasHbl MpUAOXeHMii:

App Store ans ycTpoiicts ot Apple (https://mdza.iof
GTey8Ny5YDE)

Google Play ans ycTpoiicTs Ha Android (https://mdza.io/
VCBMv4T1ues)

YeranosuTe VPN
370 yHUBEPCanbHbIV CIOCOG 06X0Aa GMOKMPOBOK. OH
N03BONSET NIPONYCTUTS BeCh Balll TPAGUK Yepes

uro

MOTYT CAeNaTb POCCHICKUE BAGCTH - NOMBITATLCS
3abnokvposars sawero VPN-nposaiaepa. Toraa
NPURETCA UCKATb HOBBIV UM YHMTLCH MIORHUMATL VPN-
CePBUC CaMOCTORTENbHO (A3, TaK TOXe MOXHO CaenaTs,
https://getoutline.org/en-GBY).

BaxHo! Mbi He pekoMeHayeM Nonb3osarbes
6ecnnaTHbIM VPN-CepBuCaMy — O MOTyT

Figure 2.5: Example of image with embedded text content which is easily readable
from the .PNG Protest project [FM].

geotagging with GPS coordinates could share your home or current location without
your intention.

The most common option to embed data is in the Image Description and User
Comment tags. These are normal plain text tags where arbitrary data can be added.
There are however a plethora of other tags that could be used as well, such as
Manufacturer, Model or Camera Owner to name some other text tags. One could
also embed data in non-text tags more stealthily, such as in the numbers of the GPS
coordinates or in time and date tags.

2.2.5 File Polyglots

A file polyglot is a file which can be interpreted in multiple ways. For instance,
a PDF file which can also be opened as a ZIP file. The Mitra project [Cor] aims
to document and explore how to create polyglot files between many different file
formats. Another common use of this is GIF files which are also valid JavaScript
files, which can be used in XSS attacks.

One common example of file polyglots is the PNG image, which is also a ZIP
file. One convenient feature of the PNG image format is that one can append an
arbitrary image to the end of the file, and it will just be ignored, meaning it will
work perfectly fine in any image viewer or even load as an image on the web in your
browser. The ZIP file however ignores any data before the magic ZIP header, which
is usually at the start of the file, meaning you can prepend data to the beginning of

oA W N e

19

2.2. STEGANOGRAPHY METHODS 13

Figure 2.6: Image content of the stego.png image.

the file and the ZIP program should just ignore it. In most image or unzip programs,
it should just work to open the file, though some might require renaming the file
with the appropriate .zip or .png file ending.

In general, appending data to the end of files does not affect them much, and it
does not have to be at the end of the file either. One could for instance slice a .wav
file in half and add another file in the middle, in which case the file would sound just
normal, except for in the middle where the raw data has been tampered. Extracting
these files are also usually done by detecting file headers, which can be automatically
done by tools such as binwalk [ReF].

from PIL import Image
import os

Create small cover PNG image
img = Image.new(’RGB’, (2,2))

img.putpixel ((0,0), (255, 0, 0))
img.putpixel ((1,0), (255, 255, 0))
img.putpixel ((0,1), (0, 255, 0))
img.putpixel ((1,1), (O, 0, 255))

img.save (’normal.png’)

Create a secret text file
open(’secret.txt’, ’w’).write("Attack at Dawn")

Create a zip file from our secret
os.system(’zip secret.zip secret.txt’)

Concatinate our cover image and zip file into a new PNG file
os.system(’cat normal.png secret.zip > stego.png’)

Listing 2.1: Python script pngzip.py used to create an example 2x2 PNG image
with an embedded zip file at the end.

AW N

o

S S R

14 2. BACKGROUND

$ unzip -1 stego.png

Archive: stego.png

warning [stego.pngl: 71 extra bytes at beginning or within zipfile
(attempting to process anyway)
Length Date Time Name

14 06-04-2022 18:37 secret.txt

Listing 2.2: Output of "unzip -1 stego.png" listing the zip file content of the PNG
image.

$ xxd stego.png

00000000: 8950 4e47 0dOa 1a0a 0000 000d 4948 4452 .PNG........ IHDR
00000010: 0000 0002 0000 0002 0802 0000 00fd d49a
00000020: 7300 0000 0Oe49 4441 5478 9c63 fccf cOcO s....IDATx.c....
00000030: 00c7 001c 0003 fe28 0384 7700 0000 0049 (oow....I
00000040: 454e 44ae 4260 8250 4b03 040a 0000 0000 END.B¢.PK.......
00000050: OObl 94c4 54ec a262 370e 0000 000e 0000T..b7.......
00000060: 000a 001c 0073 6563 7265 742e 7478 7455 secret.txtU
00000070: 5409 0003 4e8a 9b62 4e8a 9b62 7578 ObOO T...N..bN..bux..
00000080: 0104 e803 0000 0464 0000 0041 7474 6163 d...Attac
00000090: 6b20 6174 2044 6177 6e50 4b01 021e 030a k at DawnPK.....
000000a0: 0000 0000 00bl 94c4 b54ec a262 370e 0000 T..b7...
000000b0: 000e 0000 000a 0018 0000 0000 0001 0000
000000c0O: 00a4 8100 0000 0073 6563 7265 T742e 7478 secret.tx
000000d0: 7455 5405 0003 4e8a 9b62 7578 0b0OO 0104 tUT...N..bux....
000000e0: e803 0000 0464 0000 0050 4b05 0600 0000 @oooPooooo
000000£0: 0001 0001 0050 0000 0052 0000 0000 OO Boooooocoo

Listing 2.3: Output of "xxd stego.png" listing the binary content of the stego.png
image file.

In our script in listing 2.1 we simply create a small 2x2 PNG image with some
colors which will act as our cover image. This is just a normal PNG file, and we
save it to “normal.png”. We can then create a normal zip file, in this case containing
just a single “secret.txt” file. If we concatenate the two files together and store it
as “stego.png”, we now have a fully normal PNG image that can still act as a zip
file. We can see the image in figure 2.6. Looking at the output from the “unzip
-1 stego.png” command in listing 2.2 we see that the unzip command detects our
“secret.txt” file without any problems, though it complains about some extra bytes in
the start of the file, which is the 71 bytes from our PNG image. Looking at the full
binary content of the file in listing 2.3, we can see where the PNG image starts, with
the PNG magic byte headers “PNG”. We can also see where the ZIP file starts, with
the magic bytes “PK”, also the file path of our “secret.txt”, along with the content
of the file “Attack at Dawn”. In this case, the content of the zip file is so small that

2.2. STEGANOGRAPHY METHODS 15

the zip program did compress the file content. Finally, we can also see an example of
the binwalk analysis of the file in listing 2.4 where binwalk first detects the magic
byte headers of the PNG file, then the magic bytes of the Zlib compression data
contained inside the PNG image. Then it detects the magic bytes of the zip archive
file format and finally the zip file footer at the very end of the file.

$ binwalk stego.png

DECIMAL HEXADECIMAL DESCRIPTION
0 0x0 PNG image, 2 x 2, 8-bit/color RGB,
non-interlaced
41 0x29 Z1ib compressed data, default compression
7171 0x47 Zip archive data, at least v1.0 to

extract, compressed size: 14,
uncompressed size: 14, name: secret.txt
233 0xE9 End of Zip archive, footer length: 22

Listing 2.4: Output from the "binwalk stego.png" command.

Method

3.1 Framework Implementation

To standardize testing, a python framework has been developed [iVel22]. The frame-
work automates the process of generating testing matrices. The framework works by
having a set number of input images, cover messages, implemented steganography
methods and implemented image transformations. It then runs through all these
and tests all combinations. This makes it easier to add new steganography meth-
ods or transformations, as the framework will handle running all the different test
combinations and outputting the result.

The GitHub project contains all the 2341 generated images making up the
processed results of this thesis. The project has further been developed using the
Nix package manager and Pipenv for Python package locking to make the project
deterministic and fully reproducible in any environment. See the full source project
at [iVel22].

Transform Image
| Transformed Cover
d Image

Embed Message Steganography Transform Image | Transformed
Cover Image Image » Steganography
9 Image
Extract
Secret Message
Y
Secret Message Secret Message

Figure 3.1: Overview of method for assessing each steganography method.

17

18 3. METHOD

Figure 3.1 shows the overview of the method used for analyzing the different
steganography methods. Firstly, the secret message will be embedded into the cover
image, creating our steganography image. We will then apply the transformation to
the steganography image, returning a transformed steganography image. We will
then try to extract our secret message from the transformed image and compare it to
the original secret message to see if we were successful or not. We will also apply our
image transformation to our original cover image without the steganography method
applied. We now have two images that have gone through the image transformation
and these two images will then be compared using metrics such as MSE, NCC and
PSNR to see how much the image was modified when we applied our steganography
method to the image compared to if we had uploaded the same image without any
modifications to it. We also need to compare our images after the transformation
as our transformed steganography image might not be comparable to our original
cover image anymore, as if the dimensions of the image has been changed (such as
after down scaling or cropping) then we can not measure the difference between the
images.

3.2 Choices

For many of the different steganography methods, there are many variants and
choices to be made. Take for instance the LSB method. The concept itself is quite
simple and basic and one have many variables to choose from, such as how many bits
should be encoded, which color channels, what type of pattern should be used, etc.

In general, the choices made when implementing these methods are usually based
on a straight forward implementation or referencing prior work specifying how these
options should be handled. There has been an aim to keep things as simple as
possible, not adding overhead or complications that could affect the outcome of the
testing and making the work easier to expand upon.

3.2.1 Images

To test the different steganography methods, test images have been provided. All
images have two copies, one JPEG and one in PNG format. All the images use the
RGB-color plane (no alpha plane) and with 8-bit color depth. Keeping the images
standardized like this helps keeping the results comparable and simplifies the test
code for the different image transformations and steganography methods.

Figure 3.2 shows the test images that have been used during testing. Some of the
images, such as Clegg and Frymire are artificial images designed to be challenging to
process due to high contrast and bit rate and Rainbow includes high bit rate with

3.2. CHOICES 19

(d) Monarch

(f) Rainbow

(h) Serrano

Figure 3.2: Images used during testing

20 3. METHOD

difficult to compress gradients. Other images are natural photographs and should be
more comparable to real world usage.

3.2.2 Secret Message & Data

The secret message embedded into the images will during the implementation be
referred to as the embedded data. The aim of this project is to test the improvements
on the specific steganography methods and therefor the data embedded has been
viewed as pure binary data, making it more flexible and allowing any type of content
to be embedded, be it text, files or other images. Since the data is only embedded
as the pure binary blob that is inputted, extra steps could be taken to make the
message harder to detect and extract, such as applying cryptography to the data
before embedding it into the images with the steganography methods presented here.

For certain techniques, extra steps needs to be taken. The currently selected
DWT based steganography method works by embedding a secret image into a cover
image. There are other novel ways of embedding pure binary data using DWT,
but this has not been further explored in this project. During testing, all binary
data for the DWT method has therefor been encoded as QR codes. This allows
arbitrary binary data to be embedded, while allowing existing libraries to apply error
correction and extract the encoded message.

The EXIF metadata method is also somewhat limited in what type of data can
be embedded. Per the official standard, certain EXIF tags has certain data types
which it accepts, such as GPS coordinates needs to be provided as numbers, etc. We
will specifically look at the EXIF tags that can embed text in them, which needs to
be UTF-8 compatible, so not all arbitrary binary blobs can be directly embedded.
Depending on the library used, the EXIF standard might be enforced more strictly
than for other image libraries that purely ignores this part of the image. Some
image libraries just ignore the whole EXIF metadata part of the image and passes
it as a binary blob to the output image, while others such as the JPEG handler
for the Pillow library just disregards the whole EXIF section in the output image,
unless specifically enabled. For most image libraries that preserve the original EXIF
metadata, however, they usually still enforce the requirements that are set for the
official EXIF standard. The best we can do here is exploit the text sections, which
require text to be UTF-8 encoded, meaning we do not get pure binary blobs. We
can hover encode the binary data in base-85 or similar encodings, but at the cost of
some encoding overhead.

3.2.3 LSB

For the LSB method, data is encoded against the two least significant bits of each
color plane (red, green and blue), meaning we get 6 bits of data per pixel. We then

3.2. CHOICES 21

embed the data from right-to-left, top-to-bottom.

If one wanted a more stealthy approach, one could apply some other algorithm
for which pixels to embed. An example of this is the Steghide tool, which uses a
pseudo random number generator to select which pixels to embed data in. For our
use case of testing the robustness during image operations, the order of pixels which
are downscaled does not matter much, hence the choice to do it the trivial way.

Traditionally, LSB is applied to rasterized lossless image formats, such as LSB.
This is due to the nature of LSB embedding information in the high fidelity parts of
the image usually not visible to the naked eye. The JPEG compression algorithm
usually smooths out these “invisible” details in the image that humans can not
perceive, meaning that the LSB information is usually lost during the compression
stage of the image. We also see that during our testing that LSB fails for most or all
image transformations involving JPEG images.

Transformation: None

When no transformation is applied, we can just apply the normal LSB algorithm
straight forward. We embed the pixels right-to-left top-to-bottom, with 2 bits per
color plane leading to 6 bits of data per pixel. 2 bits gives us twice the amount of
data than by using one bit while also being more or less invisible, resulting in a
maximum 42 units of relative color value change per color plane. For the extraction
we just iterate the same pixels, extracting the two last bits, concatenating them
together to form the original binary blob that was encoded.

This version of the method represents the normal textbook implementation of
the LSB method with no additional modifications.

Transformation: Down scaling

Our general strategy for handling down scaling is to downscale the images ourselves
to the target resolution, apply the LSB method, and then upscale the modified image
again to the original resolution. The goal is that when our steganography image now
is transformed with down scaling, the resulting image should contain our embedded
message readable as LSB data and that we should be able to use normal textbook
LSB extraction to extract our message.

The pillow library supports several modes of down scaling. By default, it uses
bicubic mode, which is based on cubic interpolation on all pixels that may contribute
to the output value [Pil]. Another common scaling method is using the “nearest”
mode, which is a simple linear scaling using only a single pixel nearest the center of
the downscaled pixel. The nearest mode works faster than the bicubic mode, but

22 3. METHOD

at the cost of detail, as fewer pixels are used to form the final output pixel. When
upscaling using the linear method, we get a blocker, sharper image, but this has the
characteristics of down scaling very closely to our target image containing our LSB
embedded data. Down scaling using the default cubic interpolation leaves a blurrier
image, but which at a distant look closer to our original, much like how anti-aliasing
works by optimizing the viewing experience for greater distances than if you look at
the image up close [Wik22a]. Similar to the Pillow image library, ImageMagick uses
approximation by default when down scaling. The approximation from Pillow and
ImageMagick is much harder to predict and anticipate without distorting the image
too much. Another possible solution which has not been implemented, as deemed to
compute heavy, would be to downscale and upscale the images repeatedly until the
target modifications are present after down scaling.

Transformation: Cropping

Most image libraries handles cropping quite straight forward, simply cutting out the
specified region from the original image. When cropping an image, the pixels outside
the specified region gets lost. For situations where we know the region that will be
cropped, we could simply apply LSB in the target area. We can however do better
by applying our LSB message repeatedly over our whole image. If our message is not
too long, then our message is likely to be contained once fully inside the cropped area.
For longer messages, we can however split our message into short enough chunks, so
that we only need to observe all our chunks at least once in the cropped area to be
able to reconstruct our whole message. These chunks do not need to come in order,
and if chunks near the edges of our cropped area are not complete, then as long as
they are complete at least once inside the cropped area, then we are still able to
extract the embedded message.

A straight forward example of this is to use the null byte (|z00) as an escape
character, then encode our chunks as [index] [\z00] [total index] [\z00] [data. ..]. We
can also use double null byte to encode a null byte in our actual output. This simple
scheme supports splitting a single message into 255 slices (1 indexed) with only 4
bytes of overhead per slice, and works remarkably well over our test examples.

We also need to take into account that we might start “mid-byte” when starting
to scan. As a single pixel in our setup embeds 6 bits of data per pixel, we might end
up reading in the middle of a byte. A byte would only start every 4 pixels if we skip
horizontally. If we use the embedding technique above, we can however scan for if
the image contains the expected structure from our header, if not, then append a ’0’
bit to the start of our extracted blob and try again. We should only have to apply
this a maximum of 7 times to cycle all possible bit offsets. This strategy works no
matter which configuration scheme you might choose, which affects how many bits

3.2. CHOICES 23

are encoded per bytes. In our specific example, we could apply two null bits each
time as we embed an even number of bits per pixel, and should only see either 0, 2,
4 or 6 bits of from the start of a new byte from our encoded blob.

3.2.4 Steghide

Steghide is an already existing tool that has been included as a comparison for our
other implemented methods. Steghide has not seen any updates since 2003, but
remains to this day a robust and popular choice when novice users are looking for
tools to embed stenographic secrets into images [Het].

The Steghide program supports several different media file formats, both audio
and images. However, for images, it only supports BMP (BitMap) and JPEG [Het].
It does not support PNG images. The BMP and PNG image formats are however
very similar. Both are lossless rasterized image formats, but BMP images are usually
not compressed (even though it is supported in the image format) [Wik22b]. We can
also observe that when we apply Steghide with the same message and key to a BMP
and JPEG image, it behaves very differently.

The reason Steghide has two different ways of embedding data in images are
due to the compression that JPEG adds. We lose much more details in JPEG and
need much higher redundancy when embedding our data to make sure it survives,
meaning instead of changing just a couple pixels per byte, we might need to encode
bigger chunks of the image to embed a single byte. The capacity in BMP images for
Steghide is therefor much higher than for JPEG images.

To adapt Steghide such that we can embed information in both JPEG and PNG
images, we can utilize the BMP support. As both BMP and PNG are lossless formats,
we can interchange between them without losing any quality. If we want to embed
information in an PNG image we can therefor just convert it to a BMP image, apply
Steghide to it and then convert it back to PNG. To decode, we then just convert
the PNG back to BMP and read the embedded message. Converting PNG images
to BMP is usually desired, as it leaves a much higher embedding capacity than the
JPEG format. This method would however also work perfectly fine with converting
the PNG image to JPEG, embedding the information there and converting it back
again. To combatting the PNG and JPEG conversion transformation, we can utilize
this instead. When we have a PNG image that we know is going to be converted to
a JPEG image, we can ourselves convert it to JPEG first, embed the secret message
and convert it back to PNG before sending it off to transformation. Same if we
have a JPEG image that is to be converted from JPEG to PNG, we just embed
the information directly in the JPEG image as normal, but when extracting the
information we convert the transformed PNG image back to JPEG to have Steghide
extract the embedded message using the JPEG method instead. You can see the

24 3. METHOD

Secret Message

Convnle_lg;g JPEG Apply Steghide
Cover.PNG Y > Cover.JPEG »| Steghide.JPEG
Apply
Transformation
A 4
Extract with Convert to JPEG
Steghide Lossy

Secret Message

&
<

Transformed.JPEG

&
<

Transformed.PNG

Figure 3.3: Process for mitigating the PNG to JPEG file format conversion.

difference between how Steghide embeds data in JPEG and PNG (BMP) images
under the background section in figure 2.1.

Transformation: File format Conversion

For most of the methods, we do not apply any special techniques, as we want to see
how well the tool handles these by itself. However, we can do a little better when it
comes to file format conversion.

For conversion from PNG to JPEG we can instead of converting our PNG image
to a BMP image before and embed our message, we can instead convert it to a JPEG
image, loose some details, then embed our message in the JPEG image using the
JPEG technique of Steghide and convert our image losslessly back to PNG. When
the actual PNG to JPEG conversion happens, we then hope that the image has
minimal changes to it and that we can extract the message from the final JPEG
image. See figure 3.3.

For conversion from JPEG to PNG, we can do basically the same. We just embed
the secret normally in our JPEG image by applying Steghide. We then send this
JPEG image for transformation, which losslessly converts it to PNG. We can then
again try to convert it back to JPEG and extract our secret message. See figure 3.4.

3.2. CHOICES 25

Secret Message

Apply Steghide
Cover.JPEG PPy =9 » Steghide.JPEG
Apply
Transformation
Y
Eéttreacrt“ggh Convert to JPEG
Secret Message (€ g Transformed.JPEG [« Transformed.PNG

Figure 3.4: Process for mitigating the JPEG to PNG file format conversion.

3.2.5 DWT

DWT has been implemented similarly to the implementation of [KS12] and [BTA+15].
For the actual DWT implementation, the PyWavelets library has been utilized [PyW].
Following the [KS12] implementation, 3 levels of DWT?2 transformation have been
used. The alpha blending ratio was tweaked to 99.9% of the cover image and 0.215%
of the embedded image, for maximum result with no visible effect on the final images.

Transformation: None

Using DWT, we can only embed new images. To still be able to embed binary blobs,
we can just embed them as QR codes instead. QR codes offer built in error correction
and redundancy. They are high contrast black and white images, making them easier
to extract. For reading the QR codes, the libraries Zbar [Che], ZXing [ZXi] and
DeQR [Tor] have been combined. Checking each one in order to see if any of them
are able to extract the QR code message on a best effort basis. As the QR code also
contains check summing, we generally receive a binary output of either being able to
extract the whole message or nothing at all.

For extra redundancy, we also embed the same QR code in all red, green, and
blue color planes. When decoding, we combine them into a gray scale image using
the average of each of the three values. We can further convert this into a binary
black and white image for easier reading for the QR code readers. QR codes contain

26 3. METHOD

a mask pattern that is XOR~ed with the encoded message. The QR generator is
responsible for selecting a QR mask pattern that makes the easiest to read QR code
for the QR scanner, which means QR codes with high contrast and high oscillation
with as few big monotone areas which could be hard to interpret for the QR scanner
as to see how many pixels are contained in that area [Wik22g]. As a side effect, this
also means that QR codes by design try to aim for an even distribution of black
and white pixels. As we expect roughly half of our pixels to be black and half to be
white, selecting the average brightness values between all the pixels in the image as
the breaking point of whether a pixel should be black or white should yield a good
basis for making a binary form of our image. To improve this further, we can also
try a few extra values, moving the threshold up and down around the mean average
value to see if any of them return a valid QR code that our scanner was able to read.

Transformation: Cropping

For the cropping transformation, we can follow a similar strategy as the one used
against LSB, by repeating our QR codes across the image. This means that our QR
codes become smaller and limits the amount of data that can be embedded, and we
would also need a sufficiently small QR code that it fits within the cropped area. As
most cropping operations often target the center area of images, repeating the QR
code an odd number of times might be desirable, as then one QR code will be dead
in the center. For our testing, we have chosen to repeat the QR code 3x3 times.
Increasing the number of QR codes exponentially increases the space we need in the
images to embed them.

3.2.6 Metadata

Embedding secret messages in the EXIF metadata has the benefit of not altering
the image pixels at all. It is, however, much easier to detect and filter out. As it
can become a major privacy concern to include metadata, such as geotags, many
websites have started to filter out this metadata from uploaded user content. Earlier
researchers have shown that even though sites such as Twitter have now stopped
sharing metadata, still by using the old metadata on older images, one can still
quite accurately track users [DIIP19]. Cameras and phones these days often embed
more than just geotagging, they might also include tags such as phone model and
name of the owner, etc. All this information can be quite sensitive and is therefor
often filtered out. Seeing the dangers of including metadata in images, it is well
documented that many sites have now therefor started to filter out some or all EXIF
metadata embedded in images [Mana].

When implementing a scheme for embedding secret messages in the EXIF meta-
data, there usually are not too many variables to change, except for which EXIF
tags to embed the secret message in.

3.2. CHOICES 27

To decide which tags to include, we can use the popular open source tool ExifTool
[Har]. ExifTool is a common command line tool used to view and edit EXIF metadata
supporting most popular media formats such as images, audio and video files. We
can use this tool to set “all” tags (at least all tags the tool supports) to our text
output, then open the files in Pillow or ImageMagick and check which tags have
survived. We can then use any of these tags to embed our secret data.

In our implementation, we have chosen to try to set all possible tags that
survived through both ImageMagick and Pillow to see which ones survive further
transformations for better analysis afterwards, even though this makes more noise
and increases the file size. In a more practical implementation, only one of these tags
should be needed to embed the final content.

As we are working with EXTF metadata tags, we don’t need to handle the different
cases of transformations independently, as the EXIF metadata should survive all the
transformations.

3.2.7 DPolyglot

In our example, we have chosen to look at one of the oldest and simplest forms of
polyglot, simply by appending our custom data to the end of the file. Similar to
the EXIF metadata implementation, there is no need to handle any of the image
transformations differently, as either the appended data survives the transformation
or it does not.

Results

The general methodology used to measure the results was to apply the normal original
steganography method to an image and then apply the image transformation. We
then again apply just the image transformation to the original cover image. We can
then compare the two transformed images with and without steganography applied,
to see how stealthy the steganography method was. We also look at how much of the
secret embedded message was extracted, if any ways extracted at all. See figure 3.1.

For our implemented improved methods, we would then follow the same testing
scheme, except using the modified steganography method adapted to the specific
transformation applied. We would then compare this new image to the original
image and look at how much of the embedded message was extracted. Finally, we
can compare if the modified method did any noticeably better than the original
unmodified one.

4.1 Image Formats

To test how well the different steganography methods perform, we have used JPEG
and PNG images as the formats in our sample set. We have also included the image
transformation of converting between these two image formats. As expected, testes
related to PNG images perform better as PNG is a lossless format, and we can be
more precise in handling our steganography methods. JPEG on the other hand is
lossy, and we therefor do expect to see a more trouble with extracting embedded
steganography messages from these images. Looking at the performance results for
the different steganography methods however, it might seem that the failure rate is
higher than anticipated, and for most of these cases, the reason seems to be related
to the noise introduced by the JPEG format.

We could for instance expect that if we open a JPEG file and simply save it again
without any modifications that the image should be saved as is. This does however
not seem to be the case for Pillow and ImageMagick. The likely culprit seems to be

29

[

N

oo W

30 4. RESULTS

how both ImageMagick and Pillow handle JPEG images. When reading JPEG or
any other image formats, they will convert them into a virtual pixel raster storing
the full individual pixel values for the entire image, and when saving the image to
the JPEG format it goes through lossy compression. This compression step very
rarely outputs the same results as the original image, even if the original image was
a JPEG image. In ImageMagick this is actually a documented feature as it operates
as an image processor that fully decodes and re-encodes the image [Ima].

To see the effect of opening and saving JPEG images, we can use the normal
512x512 Lena image in JPEG format. We can then analyze the difference every time
we read and save the image to the JPEG format using Pillow as follows:

from PIL import Image
import numpy as np

Calculates the RGB value sum of the difference between two images
It also saves an amplified version of the diff
def diff (i, imgl, img2, amplify=50):

arrl = np.array(imgl)
arr2 = np.array(img2)
diff = abs(arrl - arr2)
_sum = diff.sum()

if amplify:

diff = (diff.astype(np.uint64) * amplify)
diff = diff.clip(0, 255).astype(np.uint8)

Image.fromarray (diff) .save (£’ {i}-{i+1}-diff. jpg’)
return _sum

for i in range (9):
a = Image.open(f’{i}.jpg’)
a.save(f’{i+1}. jpg’)
b = Image.open(f’{i+1}.jpg’)
print (£’Diff between image {i} and {i+1}:°’, diff(i, a, b))

Listing 4.1: Reads a JPEG image and saves it again and also outputs the difference
between each iteration of saving the JPEG image to disk.

Assuming our Lena.jpg image is named “0.jpg” this script will output 8 new
images and the difference between the two images. In table 4.1 we see the sum of the
difference between each pixel in the images and notice that the difference starts out
quite big, but that in the end, the difference seems to converge towards a fixed point.
We can also visualize these changes in figure 4.1 and see that the same regions have
the highest difference between each picture. Notice for instance the small white dot

4.1. IMAGE FORMATS 31

Images: | Sum pixel difference:
0 and 1 89550430

1 and 2 1736428

2 and 3 | 285566

3and 4 | 264211

4 and 5 178616

5and 6 | 64011

6 and 7 18405

7 and 8 0

8and 9 | 0

Table 4.1: Pixel difference for each iterative save of JPEG images using Pillow.

in image 6.jpg which is the same as the bigger red and green region in the previous
images.

As we can see here, especially from the first comparison between 0.jpg and 1.jpg
the difference can be quite big, bigger than one might expect. This is partially by
design that the image should try to strip out redundant information that we humans
do not notice anyway, but these big pixel differences might end up affecting our
results more than initially anticipated.

4.1.1 Image Quality

As seen above, the JPEG compression clearly affects and alters images when saved.
Given the popularity of the JPEG format, these small changes are however usually
acceptable, as we get to save disk space compared to storing the images in raw
form. The JPEG format also allows users to specify a quality metric describing at
what ratio keeping the image quality compared to saving disc space should be. This
number usually ranges from 0 to 100 depending on the image processor and in some
cases might also take code name values, such as “maximum?” to set extra variables
such as the chroma sub-sampling.

When compressing our PNG sample images to different JPEG qualities, we notice
that the MSE seems to average between 7 and 27. Anything within this range
should therefor be an acceptable error effect to an image and not be noticeable.
Anything lower than 7 would mean that the operation performs better than most
JPEG compressions. For PSNR, we see that the average lies between 35 and 40.
Higher is better, and identical images have a score of infinite. For the NCC, the
average seems to lie between 0.99224 and 0.99917. This value lies between 0 and

32 4. RESULTS

& L

(a) Difference between 0.jpg (b) Difference between 1.jpg (c) Difference between 2.jpg
and 1.jpg. and 2.jpg. and 3.jpg.

(d) Difference between 3.jpg (e) Difference between 4.jpg (f) Difference between 5.jpg
and 4.jpg. and 5.jpg. and 6.jpg.

(g) Difference between 6.jpg (h) Difference between 7.jpg (i) Difference between 8.jpg
and 7.jpg. and 8.jpg. and 9.jpg.

Figure 4.1: Visual representation of the amplified difference between iterative JPEG
saves using Pillow. Color difference has been amplified x50.

42. LSB 33

1, where 1 would mean that the correlation is identical. See appendix B for more
details.

As we now have some image quality metrics for just the JPEG compression
algorithm, we can use these as a basis when looking further at the results of our
different steganography methods. If we perform better than the JPEG compression
metrics, we can quite confidently say that the methods should not alter the image too
much in a noticeable way, at least not more than what users might already expect
from image compression algorithms such as JPEG.

4.2 LSB

When looking at the results from the LSB method in table 4.2, we see that all tests
using JPEG images fail. As mentioned in section 4.1 about image formats, the JPEG
format is lossy and when we save our JPEG images after applying our LSB, not only
will we lose much of the details we originally tried to embed, but we also add even
more pixel errors from just not being able to save the JPEG image losslessly. We
also see that transformations that involve JPEG, especially the conversion to and
from JPEG, also fail, much for the same reason as mentioned above.

From 4.2 we can further see that the normal implementation for LSB works
perfectly fine for all PNG images. We do, however, see that if we run our images
through any of the image transformations, the message is always lost when we do
not apply any improvements. Looking at our improved methods, we see that we are
successfully able to embed and extract messages in images that are being cropped by
both Pillow and ImageMagick with PNG images. For down scaling, our improved
method is only able to handle the Fast down scaling method in the Pillow library,
while the Normal down scaling of both ImageMagick and Pillow fail.

4.2.1 Transformation: Cropping

When splitting our embedded messages into smaller chunks and repeating this over
our images, we see that we can easily combat cropping in lossless image formats
such as PNG. This works well for both ImageMagick and Pillow as none of them are
doing any more processing to the image except for straight-up cutting out the parts
of the image. Our method does however introduce a slight overhead of 4 bytes per
chunk and double encoding of null bytes (\x00).

4.2.2 Transformation: Down scaling

Looking at down scaling, we see full success for the Fast Pillow downs calling, but
no success for the normal down scaling of Pillow or ImageMagick. We can even try
to use our cropping method for repeating our message in chunks across the entire

34 4. RESULTS

Category Success rate | Sample Size
No transformation PNG [Normal] 100% 9
Any transformation PNG [Normal] 0% 90
Cropping Pillow PNG [Improved] 100% 9
Cropping ImageMagick PNG [Improved| 100% 9
Down scaling Pillow Fast PNG [Improved] 100% 9
Down scaling Pillow Normal PNG [Improved| 0% 9
Down scaling ImageMagick PNG [Improved] 0% 9
Converting PNG to JPEG [Improved| 0% 9
Converting JPEG to PNG [Improved] 0% 9
No transformation JPEG [Normal] 0% 9
Any transformation JPEG [Improved] 0% 90

Table 4.2: Success rate of different LSB methods.

image, hoping that some parts, such as quiet sections of the image should stay more
predictable, but still these areas of images are hard to predict for our up and down
scaling.

4.2.3 Transformation: File format conversion

As expected, all our LSB transformations related to JPEG images fail. The JPEG
format introduces slight changes, with most changes happening in the high fidelity
sections such as the least significant color bits, which is where we are embedding our

messages.

When converting from PNG to JPEG, we embed our message in the PNG image
as normal, but this information gets destroyed by our PNG to JPEG transformation.
When converting from JPEG to PNG, we first try to embed LSB messages in our
JPEG image, but this step already fails, as we see from the None transformation
using JPEG images.

From section 4.1, we see that every time we save a JPEG image, only some regions
in the image differs each time we save. This is, however, only true for the first time
we save images. The reason some sections do not see any changes and that the image
ends up converging to a fixed point is because some of the sections can be perfectly
represented using the DCT compression. If we, however, apply LSB to these regions,
then this will no longer be the case, the and these regions will be converted to their
closest DCT compression representation instead.

As we see in figure 4.2 if we only embed our message a single time traditionally in

4.3. STEGHIDE 35

S

(a) Lena.png (b) LSB with message re- (c) LSB with message re-

peated a single time in the peated multiple times and
top left corner. split into chunks.

Figure 4.2: Illustration showing the difference between embedding our message a
single time vs repeated and split into chunks. Color difference has been amplified 50
times.

the top left of our image, then only this section sees heavy re-encoding, causing big
differences between our steganography image and our converted pure cover image. If
we follow the same strategy as we used with cropping by repeating our message across
the whole image, then we see that almost the entire image needs to be re-encoded.

4.3 Steghide

Steghide has been included as a popular tool that sees real world usage and used
here as a comparison. When we look at our results, though, we see that it only
survives the default usage with no transformations applied to it. We can confirm
that converting the PNG to BMP images works as expected in all our tests, but
the other transformations fail. Most of this is as expected, as Steghide has no
built-in protection or enough redundancy to recover from operations such as cropping
or destructive transformations such as resizing. One could, however, expect our
mitigations against file conversions to work, but this does not seem to be the case.

For cropping and down scaling, these results are as expected. However, we had
implemented mitigations against the file format conversions, but it seems like all of
these have failed as well. The reason seems to be handling the JPEG format. As
seen in 4.1 every time we save a JPEG image, it will become distorted to some affect.

4.3.1 Transformation: JPEG to PNG

To mitigate the JPEG to PNG transformation, we would treat the image as if it was
only JPEG. We would embed the information in the image normally using Steghide

36 4. RESULTS

Transformation Category Success rate | Sample Size
No transformation JPEG Normal 100% 9

No transformation PNG BMP conversion | 100% 9

Convert from JPEG to PNG | Improved 0% 9

Convert from PNG to JPEG | Improved 0% 9

Cropping Normal 0% 36

Down scaling Normal 0% 54

Table 4.3: Success rate of different Steghide methods.

when it was still the JPEG format, then the transformation would convert it into
a PNG losslessly. When we then try to extract our embedded message, we would
convert it back into JPEG before using Steghide for extraction. See figure 3.4 for
visualization. Since we are converting a PNG image to JPEG, we lose some quality,
and it seems to be enough for Steghide to fail and be unable to extract our message.

4.3.2 Transformation: PNG to JPEG

When we tried to prepare against the PNG to JPEG transformation, we would
convert our PNG image to JPEG, apply Steghide and convert it back losslessly to
PNG. We only lost information when converting from PNG to JPEG, but this does
not matter as we have not applied our Steghide embedded message yet. However,
when we send our image of to be transformed during the PNG to JPEG conversion,
this step introduces quality loss before we can then try to decode our image again,
so here as well Steghide fails to be able to extract any embedded message. See figure
3.3.

4.3.3 Image Quality

Looking at the metrics from table 4.4 we see that the retained image quality is quite
good for normal Steghide. The way Steghide shifts around pixels as much as possible
instead of straight up replacing them seems to make a difference in retaining quality
and keeping the quality above average compared to JPEG conversion as seen in
section 4.3. We see that our attempt at combating the file format conversion results
in lower quality, party as these images are converted between PNG and JPEG in
addition to the Steghide modification. Overall, Steghide seems to be a good and
stealthy steganography method on both JPEG and PNG images, as long as the
images are not transformed in any way.

44. DWT 37

Category MSE PSNR NCC | Sample Size
Normal Steghide PNG 0.0026969 | 76.7852039 | 0.9999996 94
Normal Steghide JPEG | 0.8781142 | 49.9698460 | 0.9998816 54
Convert JPEG to PNG | 8.3049062 | 44.1299601 | 0.9988117 18
Convert PNG to JPEG | 15.5933568 | 41.4259026 | 0.9957849 18

Table 4.4: Average MSE, PSNR and NCC for different Steghide methods.

4.4 DWT

Overall, we see that DWT performs quite well. We see little noise and effects on the
image structure while being able to extract our message from difficult to combat
situations such as resizing and cropping. As seen previously with the results from
LSB and similar, the JPEG compression does affect us quite a bit and can be hard
to combat.

4.4.1 Transformation: None

The none operation represents the default implementation of the steganography
algorithm when no transformation is applied. Just out of the box, this method does
not have a 100% success rate. As our implementation uses QR codes to embed the
actual message, we need a certain level of quality in our output to be able to extract
our message. Our embedded images are embedded into the rough structure of our
image, but differentiating our image when extracting from the original structure of
the image can be a challenge for images with high contrast.

Looking at figure 4.3 we can see the process of trying to extract a QR code from
the Lena image. We see that the original Lena image is still somewhat visible in the
combined RGB image of the extracted QR code, but when we run a filter pushing
the color values to binary black and white we get out a clean and readable QR code,
which can be automatically decoded to output our original binary blob that we chose
to embed. Dark cover images or cover images with high contrast are however harder
to extract embedded QR codes from.

Table 4.5 shows which of our sample images succeeded in extracting our embedded
message. We can notice firstly that all our PNG images succeed in extracting their
message. We can also notice that the JPEG images that do fail are the ones that
have high contrast with lots of patterns and dark parts or are generally harder to
compress, like the Rainbow.jpeg image. It might seem that the difficult to extract
images make a challenge for the DWT method, but it is still able to function on
its own in the PNG images, but when we in addition add the noise created from
the JPEG compression, it becomes too much to handle. Looking at an example

38 4. RESULTS

(a) Lena cover image. (b) Secret embedded message to embed as
a QR code.

(c) DWT extract image in (d) DWT extract image in (e) DWT extract image in
the red channel. the green channel. the blue channel.

HE

(f) Extracted channels combined to RGB. (g) Extracted RGB normalized to be bi-
nary black and white.

Figure 4.3: The extraction results from embedding a QR code into an image,
showing the different color channels and our best effort approximation of the original
QR code.

4.4. DWT 39
Successful: | Failed:
Lena.jpg Clegg.jpg
Monarch.jpg | Frymire.jpg
Peppers.jpg Rainbow.jpg
Sail.jpg Serrano.jpg
Tulips.jpg
Clegg.png
Frymire.png
Lena.png
Monarch.png

Peppers.png
Rainbow.png
Sail.png

Serrano.png

Tulips.png

Table 4.5: Images that we could successfully extract QR codes from with no
transformation interfering.

like Frymire, which is an artificial image constructed for being challenging for image
processors and compression algorithms, we can see how this image goes through the
DWT process in figure 4.4.

As we see in figure 4.4 the noise generated from the JPEG format is too much
for us to be able to decode the extracted QR code, while the loessless PNG format
does a much better job where we can see a pretty clear QR code that we are able to
read and decode.

4.4.2 Transformation: Format Conversion

One of the strengths of the DW'T method is that it looks at the overall structure
of the image and should be fairly strong against non-visible transformations or
transformations that retain a high level of structure throughout the image. DWT
should therefor do quite well against file format conversions that might change the
pixel values of images. It might therefor be a bit of a surprise to see how many of
the tests the method fails against the file format conversion transformations. Ideally
these transformations should affect the image as little as possible, but as we see in
4.6 many of these tests fails regardless.

One of the downsides of using DWT is the fact that for most proposed imple-

40 4. RESULTS

(b) QR code extracted us- (c¢) Binary black and white
ing DWT. extracted QR code.

(d) Frymire.png (e) QR code extracted us- (f) Binary black and white
ing DWT. extracted QR code.

Figure 4.4: Compared QR code extraction from a JPEG and PNG image.

Transformation Category | Success rate | Sample Size
Convert JPEG to PNG | Improved | 44.4% 18
Convert PNG to JPEG | Improved 11.1% 18

Table 4.6: Success rate of file format conversions with DWT.

mentations, you also need the original cover image when extracting the message. It
does however seem that for this use case when looking at file format conversions,
this in itself might also contribute to why these results are not performing as well as
expected. When the image is converted, it has small details changed, mostly due
to the JPEG compression. The original cover image however does not experience
any of these changes, and using this as a detailed and absolute truth might therefor
contribute to extra errors being added, compared to if the data was embedded into
the DWT rough data in a stateless manner.

44. DWT 41

Transformation Category | Success rate | Sample Size
Down scale Pillow Fast PNG Improved 100.0% 9
Down scale Pillow Fast JPEG Improved 0.0% 9
Down scale Pillow Normal PNG | Improved 88.9% 9
Down scale Pillow Normal JPEG | Improved 0.0% 9
Down scale ImageMagick PNG Improved 100.0% 9
Down scale ImageMagick JPEG Improved 0.0% 9

Table 4.7: Success rate of down scaling with DW'T.

4.4.3 Transformation: Down scale

Much like the file format conversion transformation, down scaling is another transfor-
mation where we would expect DWT to perform quite well. We see that almost all
of our PNG images survive and are able to extract the message from the downscale
image, but again, the JPEG formats seem to be harder to decode and often failing.
We do see however that are able to extract our embedded message from all library
types of the down scaling, and that mostly the JPEG format is the common factor
for images that fail.

Again, similar to the file format transformation, a source of error might be the
difference between the cover image used for extraction and the JPEG transformations
that have taken place on our steganography image.

4.4.4 Transformation: Cropping

When trying to extract messages from cropped images, we have some success. We see
our method of repeating the QR code and hoping that one lands within the cropped
area works well enough for us to be able to extract our embedded message, but due
to the randomness of the cropping we see some randomness in which samples are
able to extract a message as well.

When selecting a random area to be cropped, we might crop into an area which
does not contain a complete QR code, for instance cutting a QR code in half. We can
always increase the amount of QR codes we include in our image, but if the QR codes
becomes too small, then their pixels blur into each other, making it harder to extract
the message. The embedded capacity also decreases exponentially when we include
more QR codes into our image, as the QR codes are repeated both horizontally and
vertically. In addition, if the embedded message becomes too large, the QR codes will
end up being highly detailed, and might not survive being embedded in the DWT
frequencies.

42 4. RESULTS

Transformation Category | Success rate | Sample Size
Crop Pillow PNG Improved 11.1% 9
Crop Pillow JPEG Improved 0.0% 9
Crop ImageMagick PNG | Improved 11.1% 9
Crop ImageMagick JPEG | Improved 0.0% 9

Table 4.8: Success rate of cropping with DWT.

Another factor to look into is the DWT2 levels. The higher level one chooses, the
more robust the embedded image would end up being, but at the expense of capacity,
as for every level, the resolution is halved. However, adjusting the DWT2 level for
the crop transformation seems to improve our results quite a bit. As we previously
were only able to extract 2 out of 36 images with the default level 3 and 3 repeated
QR codes, we are able to increase this to 15 out of 21 instead by just reducing the
DWT?2 level from 3 to 2.

4.5 Metadata

For embedding messages in images using the EXIF metadata, the tags “Make”,
“Software”, “Artist” and “Copyright” all proved effective in preserving the information
for both Pillow and ImageMagick. All of these tags are also text fields where one
could add what ever type of data one chooses. The method is also easily accessible by
users, often not requiring any special tools to view the comments other than normal
image preview applications or file browsing tools.

The selected tags were the result of checking which tags were common for the
different file formats and libraries, following the example code in A. The code simply
creates some test JPEG and PNG images, uses the ExifTool [Har| to set all supported
EXIF tags. Then process the images with Pillow and ImageMagick and list which
tags still remains on our image. From this process we get tags for each format and
library and common for all 3 out of 4 of them are the “Make”, “Software”, “Artist”
and “Copyright” as listed above. We do however see that Pillow drops all EXIF tags
on JPEG images.

For our tests, as only the image metadata is manipulated, the images before and
after are identical, so MSE and NCC are 0 with PSNR is infinite as expected.

For all the transformation using the ImageMagick library (downscale, crop, convert
to JPEG and convert to PNG) the method performed perfectly. For the Pillow
library, the method performed perfectly, except for when the library exported to
JPEG images.

4.5. METADATA 43

(a) Lena image. (b) Cropped Lena image. (c) Repeated pattern of QR
codes to be embedded.

e
-

=
(d) Extracted RGB image (€) Normalized black and
from cropped Lena.jpg. white QR code from cropped

Lena.jpg.
= e M

| EZ@)1

TR ———
(f) Extracted RGB image (g) Normalized black and
from cropped Lena.png white QR code from cropped
Lena.png.

Figure 4.5: The extraction process for cropped images with grid repeated patterns
of QR codes used for DWT.

44 4. RESULTS

Transformation Library Success rate | Sample Size
Convert from PNG to JPEG Pillow 0% 9
Convert from JPEG to PNG Pillow 100% 9
All other Transformations JPEG | Pillow 0% 27
All other Transformations PNG | Pillow 100% 27
All Transformations PNG ImageMagick 100% 27
All Transformations JPEG ImageMagick 100% 27

Table 4.9: Success rate of EXIF metadata extraction in Pillow and ImageMagick.

Pillow operates with a model of reading files, converting these to an internal
virtual raster where the pixel values are stored. Then, when an image needs to be
saved those pixel values will be handed over to the file format exporter which is
responsible for saving the pixel values into the correct image format, e.g., PNG or
JPEG. The PNG format handler will only export certain EXIF metadata tags. It
will however pass the values as is, and any non-supported EXIF tags are simply
dropped. For the JPEG exporter, no EXIF metadata is saved unless this option is
explicitly enabled when calling the “save” function to write the file to disk. This
means that by default, every time the pillow library writes JPEG images to disk, the
EXIF tags are all dropped. We can see this in the output that all the JPEG files are
handled by pillow transformations (PIL in 4.9).

Another consideration for this method to keep in mind is how easy it is to detect.
If one uses text input in the EXIF tags, then these are stored as plain text in both
the PNG and JPEG format, so it is easy to scan for message content by just reading
all the bytes of the image. It is also easy for tools to scan images for EXIF tags, as
they are officially supported features of many image libraries.

This method is also highly reliant on the digital image format of the file, as it
does not affect the visual aspect of the image at all, it can not be used for any sort
of camera scanning or sharing. It is also not uncommon for many websites to strip
all metadata tags as an extra step after doing any image transformations to protect
user privacy. Any adversary that tries to look for hidden messages in images can
also scan images at scale by only having to read the EXIF metadata section of the
image and without having to do any sort of image pixel analysis at all.

As seen in the [FM] campaign, this method as however already been actively
deployed and seen real world usage. Much of this can probably be attributed to
the low entry bar of not needing specialized tools or programs to read or write the
steganography messages from the images.

4.6. POLYGLOT 45

Transformation | Library Success rate | Sample Size
None None 100% 18
Any Pillow 0% 72
Any ImageMagick 0% 54

Table 4.10: Success rate of survived appended data on image files for Pillow and
ImageMagick.

4.6 Polyglot

Same as with the EXIF metadata steganography method, the polyglot method does
not affect the pixels of the image at all. Visually the images are not altered, so in
use cases such as visually scanning the images to convey messages are not going to
work. We can also see that both ImageMagick and Pillow fully discard the excess
data at the end of the file when they re-encode the image after doing any sort of
transformation on it. The only tests that succeed is the none operation, which does
not alter the image at all.

This method of embedding secret content in images does however have the added
benefit of being easy to implement and accessible by users, and also having virtually
no restrictions to size that can be added. Most to none image viewers notice or
complaint on the excess data being appended. As with the EXIF metadata method,
this method can easily be scanned for, looking for redundant bytes at the end of
media files.

Conclusions & Further Work

In this thesis, we have looked at improvements that can be applied to different
common steganography methods to make the embedded information more robust
against image transformations. We have seen that in certain cases, small changes to
the existing ways we embed the secret message into the images can combat different
transformations that images might be put through. There does however not appear
to be a golden method to apply to combat all image transformations at once, so
one would be required to know which transformation one aims to protect against in
advance. Further follows a summery per each steganography method.

5.1 LSB

As we saw in the results’ section for the LSB method, we were especially susceptible
to lossy changes and the compression of the JPEG image format. So much so that
all our implementations failed, even without doing any image transformations, when
we tried to save our changes to the JPEG format. The JPEG format also prevented
us from successfully embedding and extracting any messages from images that were
converted to or from the JPEG format. We were however successful in embedding
and extracting messages without any problems for the cropping method, though
at an increased noise reducing the image quality. We were also partially successful
in mitigating the down scaling transformation for images downscaled using the
Fast method of the Pillow library, but failed for the normal down scaling of both
ImageMagick and Pillow.

Overall, the LSB method seems extra susceptible to image editing and trans-
formations. Transformations such as tone mapping, color filters, blurring or other
image effects have not been studied, but extrapolating from our testing and result
we can estimate that these types of transformations will also be very destructive
to the embedded LSB message. Our cropping mitigation does however seem to be
one of the stronger choices among the tested improvements of all the steganography

47

48 5. CONCLUSIONS & FURTHER WORK

methods, as we are able to handle most cropping dimensions and are not very reliant
on getting lucky with where in the image the cropping takes place.

5.2 DWT

From the results section, we saw that DWT can survive all image transformations.
It could handle both cropping, down scaling, resizing and file format conversions. It
did however have a high failure rate at these and is quite image dependent. The
features of the cover image are important when looking at DWT), as large regions of
dark areas or having lots of contrast will interfere with the embedded cover image.
We also saw especially for the cropping mitigation that our capacity is not great.

As we saw with the failure rate, though, there is room for improvements. Es-
pecially, further research into the alpha blending ratio of the cover and embedded
image could be looked into further. In some images, changing the blending ratio has
a larger effect than in other images, e.g., the Frymire image would often show more
changes before Lena, for instance. Having a stronger embedded factor does however
improve the ability to extract the image, but it also becomes easier to detect. One
could for instance look into adaptive systems that choose an optimal blending factor
depending on characteristics of the cover image. One could also look further into the
effects of how many levels of DWT to apply, which was briefly explored in figure 4.4.

One big disadvantage of the current DWT method that has been explored in
this thesis is that it requires the original cover image during extraction. It could
therefor be of interest to look to alternative methods for embedding data using
DWT which removes this dependency, such as the proposed method involving Arnold
transformations by [SS13]. Another promising tool is the Blind Watermark python
tool [Fei] which utilizes similar tactics, but with the DCT function instead of DWT.
As seen by the Blind Watermark tool, it is already in a mature enough state that it
can produce reliable images, surviving many active attacks on the images.

5.3 Steghide

Steghide showed great results in being able to embed messages, both with built-in
encryption, check summing and easy to use interface for new users. It also showed
great quality by not making too big alterations to the images. It does however
not work with PNG out of the box, but our simple strategy of converting back
and forth between BMP seems to work perfectly fine. The tool does however not
have any built in mitigations against image tampering and failed for all the tested
transformations that were applied. We did try to improve the handling of the tool to
better mitigate file format conversions, but these also ended up failing, as the JPEG
format introduced too much noise.

5.4. METADATA 49

5.4 Metadata

The EXIF metadata may be the easiest and most accessible image steganography
method for most users. For the ImageMagick library, it showed that it survived all
image transformations for both JPEG and PNG format. For Pillow, it survived all
transformations related to the PNG image format. The method does however appear
to be easier to detect than most other steganography methods as well. Actors wishing
to detect steganography in images could easily scan the metadata of images at scale,
looking for keywords in embedded messages or suspicious encrypted data, which
defeats most of the traditional intent of trying to stay stealthy with steganography. It
would be more compute intensive to scan images for steganography embedded inside
the actual image at scale, such as methods like LSB, Steghide or DWT, compared to
looking at the different fields of the metadata.

One could however expand this method with extra steganography, such as text
steganography in the embedded metadata. For instance, inside the user comment
tag which we looked at in this thesis, one could utilize another level of steganography
by included text embedded the with Meteor method recently proposed by [KJGR21].

It is also speculated that metadata is one of the fields that is more heavily
edited and might vary from upload site and social media platform. It could also be
interesting to look at how different platforms and image libraries behave, looking at
which EXIF tags are usually dropped and so on. As referred to in the introduction of
the metadata method, one could also embed messages in other non-text fields, such
as numbers or GPS coordinates. If any such fields are still kept, while more trivial
text tags are stripped out, then messages could most probably still be embedded into
images and survive being uploaded to third-party websites or messaging platforms.

5.5 Polyglot

Creating file polyglots out of PNG and JPEG images is also, as shown, a simple way
of embedded invisible steganography method into images. The method does however
share some of the shortcomings of the metadata method. Firstly, we saw that the
method failed for all transformations using the Pillow and ImageMagick libraries,
as they fully re-encode the images when they save them, meaning that any data
that is not used or read by the image libraries is not passed out to the transformed
image. This method is also easier to scan for at scale than methods like Steghide,
LSB or DWT as it is usually quite easy to check for if there is extra data appended
to the end of the file, compared to having to analyze the actual pixel data to extract
embedded content.

In this thesis, when the file polyglots steganography method, we have looked

50 5. CONCLUSIONS & FURTHER WORK

at one of the simplest ways to embed data in JPEG and PNG images by simply
appending byte data at the end of the file. It could, however, be interesting to look
more into exploiting the image formats themselves, such as shown by in [Phi] where
data was embedded into the IDAT chunk of PNG files, resulting in PNG files that
could embed PHP web shells and still remain even after image resizing, as this chunk
usually stays unmodified. Other fields could also be interesting to look into, such
as how different image processors behave when invalid image formats are set, like
editing the dimensions of PNG files to be smaller than the actual pixel image data
that exists in the file.

References

[BTA+15] D. Baby, J. Thomas, et al., «A novel dwt based image securing method
using steganography», Procedia Computer Science, vol. 46, pp. 612-618, 2015,
Proceedings of the International Conference on Information and Communication
Technologies, ICICT 2014, 3-5 December 2014 at Bolgatty Palace & Island
Resort, Kochi, India. [Online]. Available: https://www.sciencedirect.com /
science/article/pii/S1877050915001696.

[CG12] D. G. Costa and L. A. Guedes, «A discrete wavelet transform (dwt)-based
energy-efficient selective retransmission mechanism for wireless image sensor
networksy, Journal of Sensor and Actuator Networks, vol. 1, no. 1, pp. 3-35,
2012. [Online]. Available: https://www.mdpi.com/2224-2708/1/1/3.

[Che] M. C. Chehab, Zbar. [Online]. Available: https://github.com/mchehab/zbar/
tree/9f0cbc70aba627afe02cb0afdb8fbc39eb4f229d (last visited: Mar. 11, 2022).

[Cor] Corkami, Corkami/mitra: A generator of weird files (binary polyglots, near
polyglots...) [Online|. Available: https://github.com /corkami/mitra /tree/
401d133681db7f0ed9fedc10aabcbch330131ch5.

[CZNY06] M. Chen, R. Zhang, et al., «Analysis of current steganography tools: Classifica-
tions & featuresy», in 2006 International Conference on Intelligent Information
Hiding and Multimedia, IEEE, 2006, pp. 384—387.

[DIIP19] K. Drakonakis, P. Ilia, et al., «Please forget where i was last summer: The
privacy risks of public location (meta) data», arXiv preprint arXiv:1901.00897,
2019.

[Fei] G. Fei, Python blind watermark. [Online]. Available: https://github.com/
guofeif9987/blind_ watermark/tree/791c91df6b3dd59e7a802eafab139505a3e682bd
(last visited: May 15, 2022).

[FM] B. Farkas and T. McCauley, PNG protests. [Online]. Available: https://docs.
google.com/document/d/1K1BKsPBmX2KvUwpYG3noGp_ 2NV JztZ6n9buxgF0cgdO.

[Har] P. Harvey, ExifTool by phil harvey. [Online]. Available: https://www.exiftool.
org/.
[Het] S. Hetzl, Steghide. [Online]. Available: http://steghide.sourceforge.net/ (last

visited: Jan. 29, 2022).

51

https://www.sciencedirect.com/science/article/pii/S1877050915001696
https://www.sciencedirect.com/science/article/pii/S1877050915001696
https://www.mdpi.com/2224-2708/1/1/3
https://github.com/mchehab/zbar/tree/9f0cbc70aba627afe02cb0afdb8fbc39eb4f229d
https://github.com/mchehab/zbar/tree/9f0cbc70aba627afe02cb0afdb8fbc39eb4f229d
https://github.com/corkami/mitra/tree/401d133681db7f0ed9fedc10aabc5cb330131c55
https://github.com/corkami/mitra/tree/401d133681db7f0ed9fedc10aabc5cb330131c55
https://github.com/guofei9987/blind_watermark/tree/791c91df6b3dd59e7a802eafab139505a3e682bd
https://github.com/guofei9987/blind_watermark/tree/791c91df6b3dd59e7a802eafab139505a3e682bd
https://docs.google.com/document/d/1K1BKsPBmX2KvUwpYG3noGp_2NVJztZ6n9buxgF0cgd0
https://docs.google.com/document/d/1K1BKsPBmX2KvUwpYG3noGp_2NVJztZ6n9buxgF0cgd0
https://www.exiftool.org/
https://www.exiftool.org/
http://steghide.sourceforge.net/

52 REFERENCES

[Ima)] ImageMagick, ImageMagick Usage: JPEG Image File Format. [Online]. Avail-
able: https://www.imagemagick.org/Usage/formats/#jpg (last visited: Feb. 5,
2022).

[iVel22] K. in’t Veld, Preserving Steganography Information Over Image Transfor-

mations: Source Code, version v1.0.1, Jun. 2022. [Online]. Available: https:
//doi.org/10.5281 /zenodo.6637468.

[KJGR21] G. Kaptchuk, T. M. Jois, et al., «Meteor: Cryptographically secure steganog-
raphy for realistic distributionsy, in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, 2021, pp. 1529-1548.

[KS12] N. Kashyap and P. G. Sinha, «Image watermarking using 3-level discrete
wavelet transform (dwt)», International Journal of Modern Education and
Computer Science, vol. 4, Apr. 2012.

[Mana] E. M. Manifesto, Social media sites photo metadata test results. [Online]. Avail-
able: https://www.embeddedmetadata.org/social-media-test-results.php.

[Manb] ——, Usage statistics of image file formats for websites. [Online]. Available:
https://w3techs.com/technologies/overview /image_ format.

[Phi] Phil, Encoding web shells in png idat chunks. [Online]. Available: https://web.
archive.org/web/20220310031346 /https: //www.idontplaydarts.com/2012/06/
encoding-web-shells-in-png-idat-chunks/.

[Pil] Pillow, Pillow 9.1.1 documentation: Resizing. [Online]. Available: https://pillow.
readthedocs.io/en/stable/reference /Image.html#PIL.Image.Image.resize (last
visited: Apr. 17, 2022).

[PyW] PyWavelets, PyWavelets. [Online]. Available: https://pywavelets.readthedocs.
io/en/latest/index.html (last visited: Mar. 7, 2022).

[ReF] ReFirmLabs, ReFirmLabs/binwalk: Firmware analysis tool. [Online]. Available:
https://github.com/ReFirmLabs/binwalk /tree/fa0c0bd59b8588814756942fedch5452¢76¢1dcd.

[Sel07] D. Sellars, «An introduction to steganography», 2007.

[SS13] P. Sehgal and V. K. Sharma, «Eliminating cover image requirement in discrete

wavelet transform based digital image steganography», International Journal
of Computer Applications, vol. 68, no. 3, 2013.

[TM12] D. Taubman and M. Marcellin, JPEG2000 image compression fundamentals,
standards and practice: image compression fundamentals, standards and practice.
Springer Science & Business Media, 2012, vol. 642. (last visited: Apr. 23, 2022).

[Tor] Torque, Simple QR code reader. [Online]. Available: https://github.com/torque/
deqr/tree/0fbbbc565b56bb38e3901e3a5d2{76e00b8a98d7 (last visited: Mar. 11,
2022).

[Wik21a] ~ Wikipedia contributors, Jeremiah denton — Wikipedia, the free encyclopedia,
2021. [Online]. Available: https://en.wikipedia.org/w /index.php ?title=
Jeremiah Denton&oldid=1054554310.

[Wik21b] ——, Microdot — Wikipedia, the free encyclopedia, 2021. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Microdot&oldid=1050453393.

https://www.imagemagick.org/Usage/formats/#jpg
https://doi.org/10.5281/zenodo.6637468
https://doi.org/10.5281/zenodo.6637468
https://www.embeddedmetadata.org/social-media-test-results.php
https://w3techs.com/technologies/overview/image_format
https://web.archive.org/web/20220310031346/https://www.idontplaydarts.com/2012/06/encoding-web-shells-in-png-idat-chunks/
https://web.archive.org/web/20220310031346/https://www.idontplaydarts.com/2012/06/encoding-web-shells-in-png-idat-chunks/
https://web.archive.org/web/20220310031346/https://www.idontplaydarts.com/2012/06/encoding-web-shells-in-png-idat-chunks/
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image.resize
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image.resize
https://pywavelets.readthedocs.io/en/latest/index.html
https://pywavelets.readthedocs.io/en/latest/index.html
https://github.com/ReFirmLabs/binwalk/tree/fa0c0bd59b8588814756942fe4cb5452e76c1dcd
https://github.com/torque/deqr/tree/0fbbbc565b56bb38e3901e3a5d2f76e00b8a98d7
https://github.com/torque/deqr/tree/0fbbbc565b56bb38e3901e3a5d2f76e00b8a98d7
https://en.wikipedia.org/w/index.php?title=Jeremiah_Denton&oldid=1054554310
https://en.wikipedia.org/w/index.php?title=Jeremiah_Denton&oldid=1054554310
https://en.wikipedia.org/w/index.php?title=Microdot&oldid=1050453393

[Wik22a]

[Wik22b]

[Wik22c]

[Wik22d]

[Wik22e]

[Wik22f]

[Wik22g]

[ZXi]

REFERENCES 53

——, Anti-aliasing filler — Wikipedia, the free encyclopedia, 2022. [Online].
Available: https://en.wikipedia.org/w/index.php?title=Anti-aliasing_ filter&
oldid=1089603358 (last visited: Feb. 14, 2022).

——, BMP file format — Wikipedia, the free encyclopedia, 2022. [Online].
Available: https://en.wikipedia.org/w/index.php?title=BMP__file_ format&
oldid=1087715076 (last visited: Feb. 10, 2022).

——, JPEG — Wikipedia, the free encyclopedia, [Online; accessed 12-June-
2022], 2022. [Online]. Available: https://en.wikipedia.org/w/index.php?title=
JPEG&oldid=1091175877.

——, Kerckhoffs’s principle — Wikipedia, the free encyclopedia, 2022. [Online].
Available: https://en.wikipedia.org/w/index.php?title=Kerckhoffs %27s__
principle&oldid=1087949106 (last visited: Jun. 1, 2022).

——, List of file signatures — Wikipedia, the free encyclopedia, [Online; accessed
12-June-2022], 2022. [Online]. Available: https://en.wikipedia.org/w/index.
php?title=List_ of file_ signatures&oldid=1092819115.

——, Portable network graphics — Wikipedia, the free encyclopedia, [Online;
accessed 12-June-2022], 2022. [Online]. Available: https://en.wikipedia.org/w/
index.php?title=Portable_ Network Graphics&oldid=1090755984.

——, QR code — Wikipedia, the free encyclopedia, 2022. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=QR__code&oldid=1090363355
(last visited: Mar. 11, 2022).

ZXing, Zzing zebra crossing barcode scannling library. [Online]. Available: https:
//github.com/zxing/zxing/tree/75dbbb00dd10a5{3683553e1d56b8209b9db48e2
(last visited: Mar. 11, 2022).

https://en.wikipedia.org/w/index.php?title=Anti-aliasing_filter&oldid=1089603358
https://en.wikipedia.org/w/index.php?title=Anti-aliasing_filter&oldid=1089603358
https://en.wikipedia.org/w/index.php?title=BMP_file_format&oldid=1087715076
https://en.wikipedia.org/w/index.php?title=BMP_file_format&oldid=1087715076
https://en.wikipedia.org/w/index.php?title=JPEG&oldid=1091175877
https://en.wikipedia.org/w/index.php?title=JPEG&oldid=1091175877
https://en.wikipedia.org/w/index.php?title=Kerckhoffs%27s_principle&oldid=1087949106
https://en.wikipedia.org/w/index.php?title=Kerckhoffs%27s_principle&oldid=1087949106
https://en.wikipedia.org/w/index.php?title=List_of_file_signatures&oldid=1092819115
https://en.wikipedia.org/w/index.php?title=List_of_file_signatures&oldid=1092819115
https://en.wikipedia.org/w/index.php?title=Portable_Network_Graphics&oldid=1090755984
https://en.wikipedia.org/w/index.php?title=Portable_Network_Graphics&oldid=1090755984
https://en.wikipedia.org/w/index.php?title=QR_code&oldid=1090363355
https://github.com/zxing/zxing/tree/75dbbb00dd10a5f3683553e1d56b8209b9db48e2
https://github.com/zxing/zxing/tree/75dbbb00dd10a5f3683553e1d56b8209b9db48e2

EXIF tag compatability

A short python script for checking which EXIF tags survive through being opened
and saved by Pillow and ImageMagick.

from subprocess import check_output
from PIL import Image

import os, tempfile

import random

msg = ’Attack at dawn’

jpeg = tempfile.gettempdir() + ’/’ + str(random.randint (1000, 9999)) +
’-exif_test.jpg’

png = tempfile.gettempdir() + ’/’ + str(random.randint (1000, 9999)) +

-exif_test.png’

out_jpeg_pil = jpegl:-4] + ’-pil. jpg’
out_png_pil = pngl[:-4] + ’-pil.png’

out_jpeg_im = jpegl:-4] + ’-im.jpg’
out_png_im = pngl[:-4] + ’-im.png’

Create empty jpeg and png image files but with instansiated exif
sections

7| # Here just setting the 33432=Copyright exif tag to our message

img = Image.new(’RGB’, (24, 24), color=(0,0,0))
exif = img.getexif ()

exif .update ({33432: msgl)

img.save (png, exif=exif)

img.save (jpeg, exif=exif)

Add all exif tags set to our message on the two images
check_output ([’exiftool’, f’-all={msgl}’, jpegl)
check_output ([’exiftool’, f’-all={msg}’, pngl)

Open and save the images using pillow

Image.open(jpeg) .save (out_jpeg_pil)
Image.open(png) .save (out_png_pil)

55

10

56 A. EXIF TAG COMPATABILITY

Open and save the images using ImageMagick
check_output ([’convert’, jpeg, out_jpeg_im])
check_output ([’convert’, png, out_png_im])

Check which tags survived

7| def filter (path):

lines = check_output ([’exiftool’, path]).decode().split(’\n’)

tags = [line.split(’:’)[0].strip() for line in lines if msg in line
]

print (f’Tags for {pathl}: {tagsl}’)

filter (out_jpeg_pil)
filter (out_png_pil)
filter (out_jpeg_im)
filter (out_png_im)

Cleanup
exiftool creates copies with the ending ’_original’ after editing
files
for file in [jpeg, png, out_jpeg_pil, out_png_pil, out_jpeg_im,
out_png_im]:
os.remove (file)
if os.path.isfile(file + ’_original’):
os.remove(file + ’_original’)

Listing A.1: Python script which generates some sample images with EXIF tags
and processes them with Pillow and ImageMagick to see which tags survives.

NN N
[

[CEN)

[CENN)
o >

N}
-~

JPEG image quality metrics

The following script was used to calculate normal MSE, PSNR and NCC metrics
compared between PNG images before and after saving to the JPEG format. The
script loops through all .png images in the current folder, saves the images to JPEG
with different qualities and prints out some statistics.

import numpy as np
import math

from PIL import Image
import sys

import os

Calculate Mean Square Error
def mse(imgl, img2):

arrl = np.array(imgl)
arr2 = np.array(img2)
return np.mean((arrl - arr2)**2)

3| # Calculate Peak Signal to Noise Ratio

def psnr(imgl, img2):
_mse = mse(imgl, img2)
if _mse == 0:
return float(’inf’)
return 20 * math.logl0(255.0 / math.sqrt(_mse))

NCC helper function
def _normalize(arr):

mean = np.mean(arr)
std = np.std(arr, ddof=1)
return (arr - mean) / std

Calculate Normalized Cross Correlation
def ncc(imgl, img2):

arrl = _normalize(np.array(imgl))
arr2 = _normalize(np.array(img2))
return (1.0/(arrl.size - 1)) * np.sum(arrl * arr2)

o7

58 B. JPEG IMAGE QUALITY METRICS

33| # Print stats of an array on a nice line with min, mean and max values
34| def stats(name, arr):

35 print (f’{name:>11}: min={np.min(arr) :23.20f} mean={np.mean(arr)
:23.20f} max={np.max(arr) :23.20f}’)

38| # Loop through all .png images in the current folder.

39| # Open the file and save it with JPEG quality set to 75 (default), 95,
100 and maximum

40| # Calculate MSE, PSNR and NCC between the original PNG and JPEG image
41| # Print statistics for each metric

42| for quality in [75, 95, 100, ’maximum’]:

43 MSE, PSNR, NCC, COMPRESSION = [1, [1, [1, (]
44

45 for file in os.listdir():

46 if file.endswith(’.png’):

47 out = f’{file}-PIL-{quality}. jpg’

48 png = Image.open(file)

49 png.save (out, quality=quality)

50 jpg = Image.open(out)

51 MSE.append (mse (png, jpg))

52 PSNR.append (psnr (png, jpg))

5 NCC.append(ncc(png, jpg))

5 COMPRESSION. append(os.path.getsize(out)/os.path.getsize(
file))

5

56 print (’Samples:’, len(MSE))

57 print (£f’{quality=}’)

58 stats (’MSE’, MSE)

59 stats (’PSNR’, PSNR)

60 stats (’NCC’, NCC)

61 stats (? COMPRESSION’, COMPRESSION)
62 print ()

Listing B.1: jpeg-metrics.py

59

Metric: Min: Mean: Max:
Quality: 75
MSE: 0.8824412027994 | 26.7665030346913 | 55.2871803104757
PSNR: 30.7045591972330 | 35.3791971216353 | 48.6739458295584
NCC: 0.9729369593636 | 0.9922385238503 | 0.9999572563902
COMPRESSION: 0.0797499530423 | 0.4832687166066 1.6192645623169
Quality: 95
MSE: 0.4099642435709 | 13.7919916952829 | 38.0083705606432
PSNR: 32.3320110930452 | 38.8130928731764 | 52.0033438097013
NCC: 0.9803209592913 | 0.9955972164434 | 0.9999797383653
COMPRESSION: 0.2268277086134 1.1097539651754 | 3.8115847705824
Quality: 100
MSE: 0.3178405761718 | 10.4927803360722 | 34.7496281922418
PSNR: 32.7213019870210 | 40.8877567025006 | 53.1087102154386
NCC: 0.9808379642100 | 0.9961024652709 | 0.9999843066327
COMPRESSION: 0.4844385445443 | 2.4077574082483 | 10.4396355353075
Quality: maximum
MSE: 0.4046541849772 7.3752103014990 | 15.2463912776412
PSNR: 36.2991329972092 | 40.8270360008744 | 52.0599632459575
NCC: 0.9983152599554 | 0.9991658843794 | 0.9999802740820
COMPRESSION: 0.2495434843355 1.4105296332210 | 4.8042629352424

Table B.1: Output from jpeg-metrics.py

