
Plaintext reconstruction of encrypted SSH
 traffic

Filip Johansen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Filip Johansen

Plaintext reconstruction of encrypted
SSH traffic

Master’s thesis in Communication Technology and Digital Security
Supervisor: Patrick Bours
June 2022

M
as

te
r’s

 th
es

is

Filip Johansen

Plaintext reconstruction of encrypted
SSH traffic

Master’s thesis in Communication Technology and Digital Security
Supervisor: Patrick Bours
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Title: Plaintext reconstruction of encrypted SSH traffic
Student: Filip Johansen

Problem description:

In an SSH session, each key typed by the typist is encrypted and sent separately
wrapped in an SSH packet. Every key typed will have a corresponding SSH packet,
which can be captured using Wireshark or another similar packet sniffing tool. This
makes it possible to extract the time in between the SSH packets, also known as the
packet-to-packet latency time. Having enough information on the typist, combined
with newer research within the fields of behavioral typing, keystroke dynamics,
machine learning, and data analysis raise questions about whether an adversary can
reconstruct the plaintext behind the encrypted SSH traffic sent between the client
and the server. If reconstruction of plaintext based solely on packet-to-packet latency
time as input is possible, a consequence would be that the strong cryptographic
schemes of SSH are bypassed. The internal network delay is often small compared
to someone’s typing rhythm, which opens up the possibility that an adversary can
extract the victim’s typing rhythm directly from the packet-to-packet latency time.
If so, this could lead to a breach in the confidentiality of SSH.

Date approved: 2022-01-17
Supervisor: Patrick Bours, IIK

Abstract

In this thesis, a temporal side-channel attack on SSH is executed, where
the author’s typing rhythm is used to bypass the cryptographic schemes
of SSH. The goal of the thesis is to reconstruct the plaintext behind the
encrypted SSH packets, from the packet-to-packet latency time extracted
from SSH traffic. This research consists of a data collection phase and
a data analysis phase. In the data collection phase, the data set was
collected using a total of 578313 key presses simulated through an SSH
session to extract the packet-to-packet latency time. In the data analysis
phase, the mean and standard deviation for each key pair and each key
triplet were computed. For each incoming latency value, a score based
on the mean and standard deviation of all these key pair classes and key
triplet classes is computed and used as an indicator to predict which
digraph/trigraph the incoming latency value belongs to. To improve the
results, 7 books from the Gutenberg project were web-scraped to gather
information about the digraph and trigraph distribution in the English
language. The research resulted in being able to reconstruct words when
the incoming latency values were close to the mean of the corresponding
key pair or key triplet class. When the incoming latency value differs too
much from the mean, reconstructing is difficult due to all the overlap in
the data set.

Sammendrag

I denne masteroppgaven ble et tidsbasert angrep utført på SSH-protokollen,
der forfatterens skriverytme ble brukt for å omgå de kryptografiske skjema-
ene brukt i SSH. Målet med masteroppgaven er å rekonstruere klarteksten
bak de krypterte SSH-pakkene ved å bruke pakke-til-pakke tiden hentet ut
fra SSH-trafikken. Forskningen bestod av datainnsamling og dataanalyse.
I datainnsamlingen ble et datasett laget ved å bruke 578313 tastetrykk
og simulere disse gjennom en SSH-kobling. Deretter ble pakke-til-pakke
tiden for denne trafikken hentet. I dataanalysen ble først gjennomsnitt og
standardverdi regnet ut for alle bokstavpar og bokstavtripletter. For hver
innkommende latency-verdi blir det deretter regnet ut en score basert
på bokstavpar og bokstavtriplett som blir brukt som en indikator for
å forutsi hvilket bokstavpar eller bokstavtriplett denne innkommende
latency-verdien tilhører. For å forbedre resultatene ble det i tillegg brukt
informasjon om bokstavpar- og bokstavtriplettfordeling i det engelske
språket. Dette ble hentet ved å web-scrape 7 bøker fra Gutenberg pro-
ject. Forskningen resulterte i at det var mulig å rekonstruere ord der
innkommende latency-verdier er nærme gjennomsnittet til bokstavpar
eller bokstavtripletter. Etter som verdiene avviker mer og mer fra gjen-
nomsnittet, blir det svært vanskelig å rekonstruere riktig klartekst da
datasettet består av mye overlappende verdier mellom bokstavparene og
bokstavtriplettene.

Preface

Before you lies the thesis "Plaintext reconstruction of encrypted SSH
traffic", which is a master thesis within the field of cyber security. The
thesis has been written to fulfill the graduation requirements of the 5-year
MSc program in Communication Technology and Digital Security at
NTNU in Trondheim. I spent time researching and writing this thesis
from January to June 2022.

The thesis was introduced by my supervisor, Prof. Dr. Patrick Bours.
The research question and the sub-questions of this thesis have been
formulated together. I would like to thank him for his excellent guidance
and support during the last months. This thesis would not have been
possible without his help and support. I would also like to thank my
family and my friends for giving feedback, helping me discuss problems,
and proofreading during the final days before submission.

I hope you enjoy your reading.

Filip Johansen
Trondheim 2022

Contents

List of Figures vii

List of Tables xi

List of Algorithms xiii

1 Introduction 1
1.1 Keywords . 1
1.2 Motivation . 1
1.3 Limitation . 2
1.4 Ethical considerations . 3
1.5 Research question . 3

1.5.1 How similar is typing rhythm data to SSH traffic captured in
Wireshark? . 3

1.5.2 Is it possible to distinguish and filter out certain special char-
acters in the SSH traffic? . 3

1.5.3 Is it possible to reconstruct English words using packet-to-
packet latency time and the typist’s digraph rhythm? 4

1.5.4 Is it possible to improve these results to achieve a level of
reconstruction that threatens the security of SSH? 4

2 Background knowledge 5
2.1 Encryption . 5
2.2 Timing attacks . 5
2.3 The secure shell protocol (SSH) . 6
2.4 Keystroke Dynamics . 7
2.5 Content reconstruction and natural language processing 9
2.6 The Hidden Markov Model . 9
2.7 Directed tree graphs and tree traversals 10

3 State of the art 13
3.1 SSH . 13
3.2 Keystroke Dynamics . 16

iv

3.3 Content reconstruction . 18

4 Methods 21
4.1 Data collection . 22
4.2 Data analysis . 23

5 Data Collection 25
5.1 BeLT . 25
5.2 Preparing the data for SimulateKeystrokes 26
5.3 SimulateKeystrokes . 27
5.4 Setting up the SSH session . 28
5.5 Filtering in Wireshark and preparing for data analysis 28

6 Data Analysis 31
6.1 Calculating mean and standard deviations for the key pair classes . . 31
6.2 Statistics of the English language . 34
6.3 Calculating scores based upon packet latency and key pair classes . . 36
6.4 HMM states and depth first tree traversal 37
6.5 Matching, dictionary checking and probability checking 40

7 Results and discussion 43
7.1 Data collection and Wireshark traffic 43
7.2 Identifying special keys . 44
7.3 Reconstructing words based on digraphs 46

7.3.1 When packet latency is equal to or close to the mean 46
7.3.2 When packet latency is a standard deviation away from the

mean . 51
7.3.3 When packet latency is simulated 53

7.4 Reconstructing words based on trigraphs 55
7.5 Reconstructing words combined . 57

7.5.1 Combined word candidates 58
7.5.2 Combining digraph and trigraph candidates 60

7.6 The obstacles and hindering factors 60

8 Conclusion and future research 63
8.1 Conclusion . 63
8.2 Future research . 64

References 65

Appendices

A Appendix A 69
A.1 Data frames . 69

A.2 Overlapping values . 113
A.3 Input latency equal to mean for "gate" 114
A.4 Input latency equal to mean for "error" 115
A.5 Input latency equal to mean for "extend" 117
A.6 Full examples including both approaches to combining 118

List of Figures

2.1 Example of how timing attacks work [Ale]. The extra computational time
revealed in the last panel may indicate that the cookies are indeed hidden
in the car. 6

2.2 An SSH session between a client and a server. 7
2.3 A visualization of the terms key latency and key duration used in Keystroke

dynamics. 8
2.4 An HMM of a weather scenario showing the hidden states, observable

states, transitions (black arrows), and emissions (blue arrows). 10
2.5 Full binary tree where height = 3. 11

3.1 A visualization of the Traffic Signature Attack [SWT01]. 14
3.2 The workflow of KREEP [Mon19]. 19

4.1 The overall method process of the research [Joh21]. 22
4.2 The different steps of the data collection phase. 22

5.1 Raw BeLT data collected from "now i am" typed by the author. 26
5.2 The dataframe for "now i am" after cleaning and manipulating in pandas.

The latency value is in milliseconds. 27
5.3 The entire dataframe before simulating it through SSH. 28
5.4 The dataframe for "now i am" after extracting packet latency from Wire-

shark. 29
5.5 Latency comparison for ’now i am’. 30
5.6 Latency comparison for the 100 last packets simulated through SSH using

SimulateKeystrokes. 30

6.1 dfClass, the data frame containing all values for the character combination
classes. 32

6.2 The entire data frame after being extracted from Wireshark and mapped
to their corresponding values. 32

6.3 Mean and standard deviation for key pairs n-*. 33

vii

6.4 Comparison between mean and standard deviation of all key pair classes.
Dark purple colors points to key pairs ending with an a while light yellow
colors points to key pairs ending with a z. The rest of the alphabet (b-y)
is divided among these colors. 34

6.5 Digraph distribution based on word length and its position in the word.
The Unique-column is used to quickly collect the relevant rows. For
instance, "0aa1" represents the digraph "aa" in position 1 in a 0-length
word . 35

6.6 Distribution of the digraphs in the last position in a 5-letter word following
an exponential decay. 36

6.7 Altered distribution of the digraphs in the last position in a 5-letter word. 36
6.8 Simple example of the HMM trying to solve "bed" typed in an SSH session. 38
6.9 The hidden states and the transitions in the real HMM. Without including

emissions and observable states, the model is already a full mesh. 39
6.10 A multitree-design showing the depth first traversal to find words of length

3. 40

7.1 Latency comparison for the first 100 characters. The yellow line is the
actual typing rhythm from BeLT and the blue line is the packet latency
in Wireshark . 44

7.2 The difference between keystroke latency and keystroke latency. 44
7.3 Packet latency values for "now i am" fitted into their corresponding key

pair class . 45
7.4 "bed" sent over an SSH session and captured in Wireshark. 45
7.5 Backspace key in an SSH session captured by Wireshark. An echo packet

of length 44 is returned. 45
7.6 Enter key in an SSH session captured by Wireshark. Three echo packets

are returned, one of length 36, one of length 68 and one of length 52. . . 46
7.7 Tab key used to autocomplete a command in an SSH session captured by

Wireshark. An echo packet of length 44 is returned. 46
7.8 Data frame made from "bed". This frame includes two rows corresponding

to the digraphs "be" and "ed". 47
7.9 n = 5 top digraph candidates for the first position in the word before

and after digraph distribution. "be" is ranked as 1st candidate before and
after combining. 48

7.10 n = 5 top candidates for the last position in the word before and after
digraph distribution. "ed" is ranked as 1st candidate before and after
combining. 48

7.11 The algorithm finding "bed" as the 1st candidate, followed by "fed" and
"bee". The list contains k = 5 word candidates. 48

7.12 Time comparison of words with length between 2-14. 49
7.13 Number of words of different lengths used in the word list. 49

7.14 The data frame showing "be" and "ed" with input latency values 1 more
than the mean . 49

7.15 The data frame showing "be" and "ed" with input latency values 2 more
than the mean . 49

7.16 "bed" ranks 2nd when input latency differs 1 ms from the mean of the
key pair classes. Here, n = 3 and k = 5. 50

7.17 "bed" ranks 11th when input latency differs 2 ms from the mean of the
key pair classes. Here, n = 3 and k = 20 50

7.18 Comparison between the candidate rank and the input-mean difference of
the words "bed", "gate", "error" and "extend". 51

7.19 Digraphs belonging to "bed" with input latency being a standard deviation
away from the mean of the key pair classes. 52

7.20 Results of "bed" with input latency being a standard deviation away from
the mean of the key pair classes. Here, n = 0 and k = 100. 52

7.21 Results of "the" with input latency being a standard deviation away from
the mean of the key pair classes. Here, n = 0 and k = 100. 53

7.22 Results of "bed" with random simulated input latency. Here, n = 0 and
k = 100. 54

7.23 Results of "bed" with input latency being a standard deviation away from
the mean of the key pair classes. Here, n = 0 and k = 100. 54

7.24 Comparison between "bed" and "the" when reconstructing from simulated
input latency values. 54

7.25 Date frame of "gate" divided in the two trigraphs "gat" and "ate". 55
7.26 Top n = 3 trigraph candidates for position 0 and 1 in a 4-letter word. . 56
7.27 Top 4-letter candidates after sending in the inputs 217.76 and 209.90,

corresponding to "gat" and "ate". The correct word, "gate", is number 11
in the list. Here, k = 50. 56

7.28 Comparison between the candidate rank and the input-mean difference of
the words "bed", "gate", "error" and "extend". Hard lines are from using
digraphs and dotted are from using trigraphs. 56

7.29 Comparison between "bed" and "the" when reconstructing from simulated
input latency values. Hard lines are based upon digraphs and dotted lines
are based upon trigraphs. 57

7.30 Top digraphs for the first position in a 4-letter word 58
7.31 Top digraphs for the second position in a 4-letter word 58
7.32 Top trigraphs for the first position in a 4-letter word 58
7.33 Top 100 word candidates found using digraphs and trigraphs. 59
7.34 The correct word, "there", is ranked as 73rd candidate by the use of

digraphs and 36th candidate by the use of trigraphs. 59
7.35 The top word candidate list after combining digraphs and trigraphs. The

correct word is now ranked as 8th. 60

7.36 The results of reconstructing "when" using digraphs, trigraphs and the
combined word list. 61

7.37 The results of reconstructing "when" using combined digraphs and tri-
graphs for every position. 61

A.1 26x26 matrix showing the input latency values for all key pair combina-
tions. Almost all values are in the range of 0-200ms. Outliers (outsside
200) are colored green . 113

A.2 Data frame for "gate" . 114
A.3 Top digraph candidates before and after digraph distribution for first

digraph in "gate" . 114
A.4 Top digraph candidates before and after digraph distribution for second

digraph in "gate" . 114
A.5 Top digraph candidates before and after digraph distribution for last

digraph in "gate" . 115
A.6 Top word candidates for "gate". 115
A.7 Data frame for "error" . 115
A.8 Top digraph candidates before and after digraph distribution for first and

second digraph in "error" . 116
A.9 Top digraph candidates before and after digraph distribution for third

and last digraph in "error" . 116
A.10 Top word candidates for "error". 116
A.11 Data frame for "extend" . 117
A.12 Top digraph candidates before and after digraph distribution for three

first digraphs in "extend" . 117
A.13 Top digraph candidates before and after digraph distribution for two last

digraphs in "extend" and the top word candidates for "extend" 118
A.14 Data frame with digraphs for "when" . 118
A.15 Data frame with trigraphs for "when" 119
A.16 Data frame with digraphs for "grateful" 127
A.17 Data frame with trigraphs for "grateful" 128
A.18 Data frame with digraphs for "wood" . 141
A.19 Data frame with trigraphs for "wood" 141

List of Tables

6.1 Table showing the 1st trimmed mean and standard deviations of key pair
classes n-o, o-w, and a-m. 33

xi

List of Algorithms

6.1 Depth-first tree traversal to find word candidates 42

xiii

Chapter1Introduction

This chapter includes the keywords, motivation, limitations, and ethical considerations
for this research. It also defines the research question and four sub-questions that
will help answer the research question.

1.1 Keywords

SSH, Timing Attacks, Keystroke Dynamics, Text Reconstruction, Hidden Markov
Model, Depth-first graph traversal, n-graph distribution, Natural Language Process-
ing.

1.2 Motivation

With the increasing threat of malevolent intent on the internet, the importance
of cyber security rises by the day. Cyberterrorism and cyberwars happen more
frequently and are written about daily in the news. This makes it important that the
protocols used in the internet are as secure as one should wish they are. SSH is one of
the most used protocols in the modern internet, and since it enables remote work it
intrigues the interest of a variety of adversaries with different goals. SSH is supposed
to ensure a secure channel between two remote machines, guaranteeing authentication,
confidentiality, and integrity. However, there might be some vulnerabilities with the
protocol which make it possible for an adversary to extract valuable information.
Finding evidence and creating proof-of-concepts of vulnerabilities in such a protocol
is crucial for developers and researchers in the field of security to prevent these
threats from ever becoming a reality.

There are two major design flaws in the standard version of SSH, which lay the
foundation for security issues being possible and bring motivation for this research.
SSH in interactive mode works such that every time a key is pressed, the key is
encrypted, wrapped in an SSH packet, and sent separately from the client to the

1

2 1. INTRODUCTION

server. The server will then echo this packet back to the client to inform them that
the server did indeed receive the packet. These packets can be captured using a
sniffing tool, making it possible to extract the packet-to-packet latency time [Flu20].
This is the first major design flaw, as it may reveal the typist’s behavioral typing.
This may lead to a breach in confidentiality in form of text reconstruction or user
identification, which is shown possible by research in the field of keystroke dynamics
[WB14, Moe21]. While keystroke dynamics use an array of timing information, SSH
only leaks the latency time in-between key pairs. How valid are the same scenarios
when only having access to these latency time values extracted from the SSH traffic,
and how secure can one actually feel behind the keyboard in an encrypted SSH
session? The second major design flaw is that some special keys on the keyboard
might have different echo-packet lengths. This helps an adversary to exclude (or
include) certain characters when monitoring an SSH session that is supposed to be
confidential.

User identification is a problem that threatens both the confidentiality and the
privacy of a user. However, this master thesis will focus on text reconstruction,
questioning the confidentiality guaranteed by SSH. Even though this is a special
scenario, the focus will be on English words written in an SSH session. If an
eavesdropper can reconstruct the plaintext without having access to either machine,
the strong encryption schemes of SSH are simply bypassed. The validation of this
research will result in the demand for countermeasures to solve the security issues in
SSH.

1.3 Limitation

In this thesis, the author’s typing rhythm will be used as test data. The test data
is therefore limited to a single user. The alphabet is restricted to the lower case
English alphabet (a-z). Some special keys like space, backspace, and tab will be
included in the first part when looking at SSH traffic. However, these special keys
are filtered out and are not used in the reconstruction part of this research. The
reason for not including special keys like SHIFT and caps lock is that this will likely
mess up the typing rhythm, making the data analysis more difficult. This research is
limited to the use of the QWERTY keyboard, as different keyboards may make a
significant difference. In addition, the test subject’s keyboard is in Norwegian. The
SSH encryption scheme used in this study is the chacha20-poly1305.

An important notice to make the study more understandable is that in this
research, the term digraph/trigraph will be used to refer to a sequence of letters in a
word, while the term digram/trigram will be used to refer to a sequence of words in
a sentence. Normally, these terms are synonyms and are often mixed outside this
research.

1.4. ETHICAL CONSIDERATIONS 3

1.4 Ethical considerations

Due to the test data in this thesis being the author’s typing rhythm, no privacy
concerns need to be considered. It is important to notice that the validation of this
thesis’s main goal could lead to an adversary replicating the attack and using it for
malicious actions in the future.

1.5 Research question

The research question, or the main goal, of this study, is to be able to reconstruct
plaintext from encrypted SSH traffic using the author’s typing rhythm. The author’s
typing rhythm is collected from free typing and is therefore much more inconstant
than having a test subject type a password or a sentence 100 times. If this temporal
attack is possible, it implies that the strong cryptographic schemes in SSH can be
bypassed. To validate the research, the typing data gathered is needed to create a
proof-of-concept algorithm to see if it is possible to reconstruct the plaintext being
typed. It is necessary to compare the packet-to-packet latency to keystroke dynamics
to see if the same methods are feasible when restricting the features to latency. To
summarize and rephrase, the research question in this thesis is:

Is it possible to reconstruct the plaintext from encrypted SSH traffic
using the packet-to-packet latency and information on the author’s typing
rhythm collected from free typing.
This is a rather vague and big research question, which is difficult to answer. Therefore,
multiple sub-questions are defined to guide the study in the right direction and to
support the answering of the research question in the end.

1.5.1 How similar is typing rhythm data to SSH traffic captured
in Wireshark?

If the jitter in the network is high compared to the typing rhythm, the typing rhythm
is obscured and it is difficult to use the typing rhythm data to reconstruct the
plaintext. To be able to reconstruct the plaintext in the end, the study is dependent
on being able to first map typing rhythm data to the corresponding SSH packets in
Wireshark. An underlying criterion here is that the number of keys pressed and the
number of packets captured in Wireshark (from client to server) must be the same
to map the packet-to-packet latency to the keys pressed.

1.5.2 Is it possible to distinguish and filter out certain special
characters in the SSH traffic?

If certain characters are possible to distinguish and filter out early in the process,
text reconstruction will be easier as more constant features can be added to the

4 1. INTRODUCTION

algorithm. If information about some keys is leaked in the SSH session, it could lead
to a new vulnerability and it is therefore important to raise awareness around it.

1.5.3 Is it possible to reconstruct English words using
packet-to-packet latency time and the typist’s digraph
rhythm?

One of the most common ways of using keystroke dynamics as authentication or
text reconstruction is to look at the author’s typing rhythm in the ways of digraph
latency and key duration. As key duration is out of the question in this study, the
focus will be on digraph latency and see if it is possible to use this to reconstruct
words written in an SSH session.

1.5.4 Is it possible to improve these results to achieve a level of
reconstruction that threatens the security of SSH?

Under the assumption that the previous sub-question gives some results, it is im-
portant to see whether there are ways of improving these results. This can either
be by using some sort of other methods or using known methods in combination to
get new results. When reconstructing words, there are no login-prompt that word
guesses can be tested against, so the word must be a high enough candidate that it
threatens the security of SSH.

Chapter2Background knowledge

This chapter will include some relevant background information on the most important
topics used in this research. The purpose of this chapter is to help the reader to
get a better and deeper understanding of what has been done. This chapter will
mainly include background information about SSH, Keystroke Dynamics, content
reconstruction, natural language processing, the Hidden Markov Model, and tree
graphs.

2.1 Encryption

Encryption is a process that turns readable text into something unreadable random
rubbish, securing it by using one or more mathematical techniques. Encrypted
data have a corresponding password or a key, such that the receiver can decrypt
the ciphertext and read the plaintext. This is what differentiates encryption from
a hash, which is a one-way function with no inverse. Encryption mainly ensures
confidentiality, which means that only the receiver the data is meant for can read
the plaintext. Encryption can also ensure integrity, which means that the receiver
knows that the data is unaltered. Since encryption often turns text into random
rubbish, the decryption of altered encrypted data would turn out to be something
entirely different from the original plaintext, revealing that something has happened
during the process. Encryption is an old process that has been used for thousands
of years, but due to the computation power of modern computers, old encryption
methods have turned out to be useless. This, combined with everything sent over
the Internet being available for everyone, has made the field of cryptography one of
the most important research fields today.

2.2 Timing attacks

One attack that has proved itself to be one of the most efficient attacks on strong
cryptographic schemes is timing attacks. These attacks do not try to break the

5

6 2. BACKGROUND KNOWLEDGE

encryption, but rather try to use timing analysis to get valuable information about
the mechanisms that happen behind the encryption. In other words, they do not
try to directly access the data, but instead, they try to learn about it by looking for
clues. Both the Meltdown and the Spectre attacks are examples of timing attacks
[LSG+18, KHF+19]. These attacks exploited the computational time used in the CPU
and forced manufacturers all around the world to redesign their CPUs. Like Meltdown
and Spectre, strong cryptographic schemes are irrelevant as long as vulnerabilities
leak timing information that can be put together by an adversary. Figure 2.1 shows a
cartoon strip explaining how an adversary can gain timing information from a server.

Figure 2.1: Example of how timing attacks work [Ale]. The extra computational
time revealed in the last panel may indicate that the cookies are indeed hidden in
the car.

2.3 The secure shell protocol (SSH)

One important function of the internet is the need for its users to be able to work
remotely. One reason for this necessity is to be able to log into a server that is
neither connected to a monitor nor a keyboard when the latest security issue needs
to be patched. Many protocols have been used to establish such connections, some
safer than others. While insecure file transfer and remote shell protocols like ftp,
rlogin and telnet were common to see in the old days, SSH was designed to replace
these protocols and work as a secure channel providing confidentiality, integrity, and
authentication to its users. Since then, the popularity of SSH has greatly increased,
making it one of the most used protocols in the modern internet. A visualization
of an SSH session can be seen in figure 2.2. Here, a session between a Client and a
Server is shown. The client types "Hi" followed by pressing the enter key. For every
key typed, the key will then be sent by itself to the server, and the server will answer
with an echo packet back to the client. The SSH packets are encrypted, ensuring
confidentiality from an adversary trying to eavesdrop on the conversation.

Even though SSH introduced a lot of important security aspects, it was not
flawless in its earlier days. The first version, SSHv1, was released in 1995 and

2.4. KEYSTROKE DYNAMICS 7

contained a wide range of vulnerabilities [YL06]. One of these vulnerabilities is that
SSHv1 is transmitting the length of its payload in plaintext [Noa07]. This could
reveal important information such as the length of passwords. Later, SSHv2 was
introduced, improving certain aspects like stronger cryptographic keys and a message
authentication code (MAC) [YL06]. SSHv1 and SSHv2 are not compatible with each
other, and due to the vulnerabilities found in SSHv1, SSHv2 has been the standard
since its release in 2006 [YL06]. In this thesis, SSH will therefore refer to the standard
version.

Attacks on SSH have been divided into three different classes. The first class is
the cryptographical attacks that aim to break the encryption of SSH. The second
class is the implementation attacks that only target certain implementations of the
SSH Client and the SSH Server. The last class, which is the focus of this thesis, is
the side-channel attacks (also known as the trusted path attacks). These attacks are
mainly about using another channel to gain information from the cryptosystem used.
One common example here is timing attacks, where an adversary uses a side-channel
to learn valuable information about the cryptography used based on the timing
information that is leaked during the process.

Figure 2.2: An SSH session between a client and a server.

2.4 Keystroke Dynamics

The most common authentication method on the internet is based upon something
you know, such as your mother’s middle name, your first pet’s name, or the password
to your bank account. Due to weaknesses like a user forgetting the password, or a
weak password being quickly brute-forced, two other commonly used authentication
methods are also used. These focus on something you have or something you are
(biometric authentication). The aforementioned is based upon you having something
in your possession. This can be a key to your door or a key card at your workplace.
Biometric authentication is based upon a characteristic that is unique to you. This
can be the iris in your eye or your fingerprints. In more recent times, a new

8 2. BACKGROUND KNOWLEDGE

way of biometric authentication has grown more popular by the day. Keystroke
dynamics is based upon the assumption that people type with different rhythms
[Ilo03], thus creating an opportunity to reveal patterns that can be used for biometric
authentication. With a keylogger installed on a computer or hosted on a website,
the raw typing data that can be collected are the press and release times of keys on
the keyboard. These two values can then be used to compute additional time values
that are necessary to represent the typists’ behavior. Examples of such values are
the frequency of errors, the use of special keys, the typing speed, the key duration,
and the latency time between a pair of keys. The key duration is the time from a
key is pressed down until its release, while the latency time between a pair of keys
is the time from the press of one key until the press of the succeeding key. These
terms are further explained in figure 2.3. A user types "hi" which is recorded by a
keylogger. The duration is the time from the "h" (or "i") key pressed until its release.
The latency of the key pair is the time in between the "h" and "i" keys pressed.

Figure 2.3: A visualization of the terms key latency and key duration used in
Keystroke dynamics.

Keystroke dynamics is mostly used within the field of authentication, where it is
divided between static and continuous authentication. Static authentication focuses
on the authentication of a user based on the typing rhythm of expected input, such
as a password and/or username. This type of research has been applied to some
Norwegian authentication software such as BankID, but this was later criticized by
Datatilsynet (The Norwegian Data Protection Authority) due to collecting sensitive
user information without enlightening the user in advance [Eva16]. Continuous
authentication has another goal than static authentication. Here, the authentication
is used to re-authenticate a user who is already logged in. The goal is to lock the
system in case of an imposter is detected. To detect an imposter, the system tries
to authenticate a user based on a user profile and often looks at the frequency of
certain characteristics such as digraphs or trigraphs in free text. The research of
this master thesis will however focus on an entirely different topic that may benefit
greatly from behavioral typing, namely in the field of text reconstruction.

2.5. CONTENT RECONSTRUCTION AND NATURAL LANGUAGE PROCESSING 9

2.5 Content reconstruction and natural language processing

Content reconstruction is a wide topic where the main focus is to construct something
out of some input values. This research will focus on text reconstruction, as well as
scratching the surface of natural language processing. Here, the concept is about
the interactions between the human language and computers. Examples of such
problems are constructing text from voice (or vice versa), translating handwritten
text to digital text, or finding the correct type of word in an English sentence (noun,
verb, adverb, etc ...) [You09, Yua10, TH99]. The similarity between these problems
and the research question in this thesis is that based on some hidden input variables,
the corresponding output states need to be found using the observable. A common
way of doing this is by applying the Hidden Markov Model, which will be further
explained in Section 2.6.

Text reconstruction often uses the grammar of a language to help construct valid
words and sentences. Since the English language is not random, it is possible to
teach computers patterns that are directly extracted from grammar. This could for
example be which digraphs or trigraphs are most likely to be seen in the English
language, which words are most common, and which trigrams or digrams of words
are most likely to be seen in a sentence. With digraphs and trigraphs, the focus
lies on which combinations of 2 and 3 letters are most likely to be found in the
English language. E.g. "th" is more likely to be seen than "fg" and "the" is more
likely than "zjg". To find the most common words, spell checking with approximate
string searching for words in a word list can be used. Here, the 3-letter word "fir" is
most likely a spelling error of the word "fur" or "for". At last, n-grams can be used to
combine a sequence of n words to find a sentence that makes sense. With digrams,
the focus is the probability of 2 certain words in sequence, while with trigrams the
focus is the sequence of 3 words [DJ21]. Here, "we run" is more likely to be seen than
"we fun" (digram), and "where are you" more likely than "where war joy" (trigram).

2.6 The Hidden Markov Model

The Markov model is a stochastic model where the goal is to find the probabilities
for transitioning from one state to another. The Markov model is limited to the
Markov property, which is the assumption that the future state depends solely on the
current state, and none of the other previous states beforehand [Edd04]. One classic
example of a problem it solves is the probability of rain tomorrow given the weather
today. The Markov model is used when the weather is observable. In reality, things
are often more complex. If you are indoors trying to predict the weather based on
the clothes the people around you are wearing and can no longer directly observe
the weather, you will have to apply the Hidden Markov Model (HMM) instead. The
HMM is widely used to predict different outcomes based on a sequence of hidden

10 2. BACKGROUND KNOWLEDGE

variables as input that you would try to recognize using the observable. Figure 2.4
shows an example of such a model. Here, the gray nodes are the hidden states and
the blue nodes are the observable states. The black arrows represent the transitions
between the hidden states and are known as transition probabilities. One example
is the probability of transitioning from sunny weather to cloudy weather. The blue
arrows represent the transitions between the hidden states and the observable states.
These transitions are known as emission probabilities. One example is the probability
of seeing someone in hot clothing given a sunny day.

Figure 2.4: An HMM of a weather scenario showing the hidden states, observable
states, transitions (black arrows), and emissions (blue arrows).

Another problem the HMM may try to solve is the speech recognition problem,
where the purpose is to translate speech to text [BBDSM86, NE02]. Here, words are
the hidden input, and the computer is only able to observe the soundwaves from the
phonetics of the words. The phonetic of a word is often different from the spelling
of the word, and often combinations of certain words may affect the sound. For
this thesis, the hidden input will be the plaintext behind the SSH session, while the
observable will be the packet-to-packet latency time.

2.7 Directed tree graphs and tree traversals

A directed tree graph is a special type of graph which is a directed acyclic graph,
also called a DAG. One example which is relevant for this thesis is the directed
binary tree, which is shown in figure 2.5. Here, each parent node may have up to
two children. On the top level of the graph is the root node, and in the bottom level
of the graph are the leaf nodes. The leaf nodes does not have any children.

2.7. DIRECTED TREE GRAPHS AND TREE TRAVERSALS 11

Figure 2.5: Full binary tree where height = 3.

Imagine that you start in the root node and want to find every leaf node and
the path that got you there. This is called tree traversal, and there are mainly two
different approaches to this. The breadth-first traversal will discover the nodes in
the order 0-6, as it prioritizes breadth before depth. In other words, it discovers all
nodes in a certain level before going to the next level. The other approach is the
depth-first traversal. This algorithm prioritizes to reach the leaf nodes first. When
programming, breadth-first is solved using a queue and depth-first is solved using a
stack. Which algorithm fits best depends upon the problem. Below is an example of
how both algorithms would traverse figure 2.5. The lines containing an asterisk (*)
are answers to the problem.

Breadth-first:

1. Root node: [0]

2. Node: 1, path = [0, 1]

3. Node: 2, path = [0, 2]

4. Node: 3, path = [0, 1, 3]*

5. Node: 4, path = [0, 1, 4]*

6. Node: 5, path = [0, 2, 5]*

7. Node: 6, path = [0, 2, 6]*

Depth-first:

1. Root node: [0]

2. Node: 1, path = [0, 1]

3. Node: 3, path = [0, 1, 3]*

4. Node: 4, path = [0, 1, 4]*

5. Node: 2, path = [0, 2]

6. Node: 5, path = [0, 2, 5]*

7. Node: 6, path = [0, 2, 6]*

Chapter3State of the art

This thesis will combine relevant research from different topics, such as timing attacks
in trusted paths, keystroke dynamics, content reconstruction, and natural language
processing along with others. By combining these fields, the opportunity for new
attack surfaces rises. This chapter will go into the state of the art within the different
research topics, describing some features and methods of what has been done before,
as well as their conclusions. This is important to get a better understanding of the
different choices and justifications that will be seen later in this thesis, as well as
being able to see complications and limits that may appear.

3.1 SSH

SSH has faced numerous timing attacks, often because timing attacks prove themselves
efficient against strong cryptographic algorithms. The cryptographic schemes in
SSH today do not have any well-known weaknesses and are mostly considered
secure. However, some design flaws make it possible to extract information about
the SSH packets sent. In 2009, Albrecht et al. [APW09] showed that it is possible
to reconstruct the plaintext in the SSH packets in OpenSSH, due to design flaws
in the SSH Binary. These flaws included packet lengths and error reporting. The
attack assumes OpenSSH in CBC mode with 128-bit block ciphers. Albrecht et al.
concluded that they were able to retrieve the plaintext of some schemes, while other
schemes were resistant and only leaked the length information about the plaintext.

In 2001, Song et al. [SWT01] researched the possibility to extract sensitive data
from a user over an SSH session. The latency time information between SSH packets
would be used to extract sensitive data like passwords. The latency time information
reveals typing behavior that is used to reconstruct the plaintext behind the encrypted
SSH packets. Song et al. also mention two major design flaws in SSH today, whereas
the second flaw is a strong motivation for this thesis.

13

14 3. STATE OF THE ART

1. Transmitted SSH packets are padded to an 8-byte boundary. This makes it
possible to assume the lengths of the passwords typed by a user.

2. Each separate keystroke is wrapped in an encrypted SSH packet and immediately
sent to the remote IP. This opens the possibility to extract the latency time
between a pair of keys from the latency time between the packets.

By examining the aforementioned design flaws, Song et al. explained how an attacker
can identify which transmitted packets correspond to the keystrokes typed, and
introduced multiple attacks that could exploit these weaknesses. The first attack
is the Traffic Signature Attack, where the goal is to find the exact moment "su" is
typed in the SSH connection. In SSH, every key typed is normally echoed back
to the client. However, there is one special case in which this is not true. This
happens after typing "su" followed by the enter key. Everyone familiar with the
bash terminal knows that this is the moment when the server expects a password
from the client. By eavesdropping into an SSH session and searching for this exact
moment, an attacker now knows when to expect the packets corresponding to the
password. Figure 3.1 below shows a visualization of the Traffic Signature Attack
[SWT01]. When host A types "su" followed by the enter key, server B stops echoing
the packets back to host A. Here, the packet-to-packet latency time between the
packets corresponding to "Julia" may be eavesdropped on and extracted, revealing
information about the password which can later be used to brute-force the password.
The Multi-User Attack is an even more powerful attack that also exists. For this
attack, the attacker is required to have an account on the remote system where the
user is logged in via SSH. By using the ps-command, the attacker can see which
commands the user is typing. Now the attacker can sit back and wait until the user
types "su" or "pgp", and the attacker immediately knows which packets correspond
to the password.

Figure 3.1: A visualization of the Traffic Signature Attack [SWT01].

3.1. SSH 15

The test data gathered by Song et al. included the latency time between 142
different character pairs. The test subjects were asked to type each character pair
30-40 times, for the 142 different pairs in the experiments. This showed that some
key pairs had great latency time variety, while other key pairs had a lot of overlap.
The key latency time of the different key pairs formed a Gaussian distribution. It was
also discovered that different key pairs require different finger/hand combinations,
which was much easier to divide into obvious groups. The attack program Herbivore
was built, using an HMM with n-Viterbi to find the n most likely password sequences.
Two important notices were done by Song et al. The first notice is that Herbivore did
not work out great on longer character sequences (long passwords), as the n-space
in the n-Viterbi algorithm would grow exponentially for each new character. The
second notice is that most passwords are random and do not have any pattern or
grammar that could be applied to guess logic. This meant that the likely password
candidates given from Herbivore had to be brute-forced. This work concludes that
they were able to brute force a password with a factorial increase of 50 times faster.
They also proposed some countermeasures to this flaw, but due to the large focus
on the quality of service, security often gets the disadvantage of performance. For
shorter passwords, a factorial increase of 50 times is a lot, but when looking at longer
passwords this increase in time does not make any difference.

Later the same year, Lustig [LSY01] used the Traffic Signature Attack from Song
et al. [SWT01] and increased the password brute-force time by a factor of between 4
and 500 times. They also showed that using the training set from one user can be
used efficiently on another user with good results. Lustig discovered that the HMM
does not work optimally on a problem such as key latency timing. This is due to the
Markov property mentioned in Section 2.6. The latency time between "bh" will not
be the same in "abh" and "bha", thus contradicting the Markov property as future
states of such a model are dependent not only on the current state but the previous
n states. The optimal solution may be to use a higher-order Hidden Markov model,
which instead of looking at the current state looks at the n previous states. This
solution was introduced in 2007 by Noack [Noa07] when he revisited the work of
Song et al. [SWT01]. The problem with such a model is that it gets complex very
fast, and is therefore difficult to work with when having a large alphabet and dealing
with longer character sequences in the forms of words and sentences instead of short
passwords.

In 2010, Bhanu [Bha10] tried to use time analysis between character pairs to
detect the type of language used in a secure channel. Instead of focusing on short
phrases like passwords, Bahnu’s goal was to analyze free text and see if it was
possible to find out which language was used. Different languages often have different
keyboard layouts, key pair frequency, and grammar. Bhanu analyzed the differences
between Italian and English and was able to distinguish the language after only

16 3. STATE OF THE ART

77 symbols. For this, Bhanu used an HMM with n-Viterbi, a forward-backward
procedure, and confidence intervals. It is also hinted that Casual State Splitting
Reconstruction (CSSR) may give better results than a simple hidden Markov model,
but this also requires more data on a single author.

Research done by Flucke in 2020 [Flu20], showed that it is possible to identify
users typing in an SSH session, with the help of machine learning. Four different
supervised machine learning models were trained and used to predict the user typing
in the session. The models used are K-NN, Support Vector Machine, Random Forest,
and Perceptron Network. The perceptron network did not get enough data to be
trained well enough, so it was discarded during the experimental phase. Using only
20% of the search space resulted in an attacker having 50% accuracy in guessing the
user behind the terminal. Due to SSH pledging to ensure confidentiality, this is a
huge problem and could be misused by organizations or groups with bad intentions
in the future.

3.2 Keystroke Dynamics

Research within the field of keystroke dynamics originates back to 1980 when the
work done by Gaines et al. [GLPS80] made it possible to identify persons based on
their typing rhythms. As mentioned in Section 2.4, this research was done with a
focus on continuous authentication, whereas the system does not wait for expected
input. Gaines et al. invited seven professional typists to type a paragraph each,
and by looking at digraphs in the English language, they were able to find each of
the typists’ own "signature", and distinguish them from each other. Digraphs are
the probability distribution of popular letter pairs, e.g. "th", "ng", and "he". It was
these early experiments that motivated similar research and set the field of keystroke
dynamics in motion.

A decade later, Joyce and Gupta [JG90] implemented keystroke dynamics as a
biometric static authentication method. To evaluate the attempted login, each user
had to provide their signature by typing their first and last name, login name, and
password eight times. Next, each user would try to log into their account five times,
then attempt to log into another randomly selected user’s account. By looking at
the mean and standard deviation of the keystroke latency from the aforementioned
test data, Joyce’s and Gupta’s experiments resulted in less than 1% of the imposters
trying to log in as someone else passing the authentication stage. In 2001, Wong et al.
[WSI+01] researched further the timing analysis and unique habitual typing rhythms
of individuals. This research aimed to make an enhanced password security design.
Wong et al. looked at the latency time between keystrokes to create individual typing
patterns and classify them accordingly. For classification, both K-Nearest Neighbors
and Artificial Neural Networks were used. The average false match rate (FMR) and

3.2. KEYSTROKE DYNAMICS 17

genuine match rate were 1.03% and 84.63% for K-Nearest Neighbors, and 29% and
99% for the neural network.

Even though keystroke dynamics contribute to providing security in the forms
of static and continuous authentication, it has also grown to be a privacy concern.
Because of this, countermeasures have been developed to ensure the privacy of the
users. One example is Keyboard Privacy, an extension found in Google Chrome. This
software will distort a user’s typing rhythm, pledging to ensure confidentiality and
anonymity. However, recent research by Moe [Moe21] shows that it is still possible
to bypass the distorted traffic created by Keyboard Privacy and distinguish the user
behind it. The equal error rate for eight different distance metrics is computed to
help optimize the performance when differentiating between distorted and original
data. Eleven anomaly detectors were used on the data to help perform testing of the
results. Moe created a software, SimulateKeystrokes, to simulate the keystrokes of a
public typing behavior data set into a website that collected the keystrokes [Moe]. In
the research, Moe noticed that low and negative values for key duration and latency
are considered to be "un-human", and can be filtered out. Three different methods
to reduce the noise in the distorted data set were used. The method that worked out
best is the compensation method. This method is based on trying to compensate for
the distortion that is added throughout the plugin.

Keystroke dynamics has not only been applied for research within authentication
and identification but has also been shown to be viable in the field of text reconstruc-
tion. Having enough typing data makes it possible to reconstruct text from the key
duration and latency available through keystroke dynamics. In 2014, Wu and Bours
[WB14] researched whether it is possible to detect typing patterns from key duration,
and then use this to reconstruct the content of each keystroke. They showed that in
highly optimal conditions, an English sentence could be reconstructed using nothing
but timing information. Wu and Bours limited their alphabet to 27 different keys
(26 letters and space) and invited 31 participants to record their typing rhythms.
BeLT (Behavioural Logging Tool) [BS15], a keylogger developed at NISLab (Norwe-
gian Information Security Laboratory) was used to record the participants’ typing
duration. To analyze the keystroke data, Wu and Bours [WB14] used four different
classification methods, as well as different scenarios, to get optimal results. The
classification methods used were the Probability Density Function, distance metrics,
k-nearest neighbor, and the Back-Propagation Neural Network. The three different
scenarios were different challenges or layers that had to be overcome to get to the
next step. The first is the space recognition problem. To find the words in a sentence,
a long sequence of letters first needs to be split into groups of different lengths. This
is done by detecting the spaces in the sequence. The next scenario aimed to find
the probabilities for each letter given a new key duration. The distance method,
Gaussian distribution estimate, and k-nearest neighbor were used for analysis. In the

18 3. STATE OF THE ART

last scenario, the word found had to be checked against a dictionary and grammar.
Part of speech was used on each word to predict the possible position and to get
sentences that made sense. The work resulted in being able to reconstruct the target
sentence, given 22 working hours. Wu and Bours estimated that the attack could
cost 40 working hours, with the assumption that the space positions were known.

3.3 Content reconstruction

Content reconstruction focuses on trying to reconstruct content based on some sort
of input. The input can differentiate between a variety of features, for example, time
values, images, or noise. In 1998, Elms et al. [EPI98] used HMMs to recognize faxed
words and reconstruct them digitally. Word images are often distorted by noise, so
this is achieved by first recognizing letters and then combining them into likely words
using letter transition probabilities. With the help of HMMs, Elms et al. were able
to recognize 95.9% of the faxed words. In 2000, the researchers Marti and Bunke
[MB00] presented a system for reading handwritten sentences and paragraphs. The
system does this with the help of HMMs and 2-grams (n-grams looking at words
pairwise). While other systems often try to combine letters to words and words
to sentences, Marti and Bunke decided to use complete lines of text as basic units,
and then segment the lines into valid words. Five different experiments were done,
resulting in being able to recognize 46.79% to 61.68% of the words.

In 2009, Zhuang et al. [ZZT09] introduced a way of reconstructing text from the
sound the different keys on the keyboard make as they are pressed. The input of
the attack is 10 minutes sound recording of a user typing English text. Statistical
constraints of the English language were combined with the feature vectors extracted
from the sound recordings to reconstruct the typed text. Zhuang et al. used a
combination of speech recognition and machine learning techniques, such as the
HMM, linear classifications, and feedback-based learning. The results of this research
were that 90% of 5-character random passwords and 80% of 10-character passwords
can be generated in fewer than 20 and 75 attempts by an adversary.

Research within temporal keylogging attacks has grown more popular because of
the possibilities keystroke dynamics create. Temporal keylogging attacks are based
upon using keystroke dynamics data to reverse the keystroke values into text and are
pretty similar to what this thesis is trying to achieve over an SSH session. In 2019,
Monaco [Mon19] released a paper where the goal was to achieve a keylogging attack
on auto-complete in search engines. Just as SSH, when typing in a search engine,
each key is encoded and sent by itself. This makes it possible for the search engine
to propose different auto-complete searches even though the user has not finished
typing. Certain special characters, like space, are encoded differently, making it
possible to filter out these keystrokes at an early stage. To execute the attack, the

3.3. CONTENT RECONSTRUCTION 19

software, KREEP (Keystroke Recognition and Entropy Elimination Program), was
developed. This software consists of five different stages and works with encrypted
traffic. KREEP uses three different independent sources which leak information
about the data. These three sources are the packet packet-to-packet latency values,
static Huffman code in the HTTP2 header, and the encoding of characters in a URL.
To achieve its goal, KREEP uses a variety of different tools and methods, such as
HTTP2 header compression, dictionary search, and word identification from a neural
network. The workflow from KREEP can be seen in figure 3.2. The input to the
software is a packet trace file (pcap), from which it extracts the packets corresponding
to the keystrokes wanted. KREEP then tokenizes the packets into letters and finds
words using dictionary pruning and a neural network. The last step is a beam search
which uses a language model to generate hypothesis queries. The research resulted
in 15% of the search queries being identified from a list of 50 queries generated from
a dictionary with more than 12.000 words. Monaco concluded that 15% is a decent
possibility in such a complex task and that this attack could be expanded to affect
document editing tools like Google Docs.

Figure 3.2: The workflow of KREEP [Mon19].

Chapter4Methods

This chapter describes the different methods needed to achieve the answer to the
research question and sub-questions defined in Section 1.5. The scientific method
in this research is analytical, as statistics and logical expressions are used to derive
new knowledge and to answer the research question for this topic. To accomplish
this, three different methods were applied during the research period. These three
methods are literature study, data collection, and data analysis. On account of this
research’s dependence on gathering a lot of data on a single subject, the first part
of the data collection phase started in November 2021. However, it is important to
notice that this is limited to installing the keylogger, BeLT, on the author’s personal
computer. BeLT is further explained in Section 5.1. This is the beginning of a typing
rhythm collection that will last for approximately three months.

The literature study started in January and is important to get a better under-
standing of the background and the state of the art within the topics relevant to the
research. Data analysis is the last method and is the main tool that will result in
answering the research question. The data collection and literature study do not
need to be finished before starting the data analysis, and the working process will
be similar to the agile methodology. Results in data analysis will initiate changes
in the data collection and literature study, which will iteratively repeat itself. A
visualization of the overall method process is shown in figure 4.1. Literature study
and data collection will partly be executed in parallel. Data analysis will begin when
some degree of literary knowledge and test data has been achieved. The working
flow will continue iterative until optimal results are reached.

21

22 4. METHODS

Figure 4.1: The overall method process of the research [Joh21].

4.1 Data collection

Due to the need of gathering enough data on a single subject, the data collection should
last for a longer period. Consequently, BeLT ran over approximately three months.
The collection of the typing rhythm itself was done by using the keylogger BeLT.
This data needs to be cleaned and put through another software, SimulateKeystrokes,
which is a modified version of what Moe created during his master thesis [Moe].
SimulateKeystrokes will simulate the typing through an SSH session, which will be
captured with tcpdump to extract the SSH packets. Further, the packet-to-packet
latency time will be extracted from the timestamps of these SSH packets. After this
is completed, some minor cleaning is required before the research is ready for the
data analysis phase.

Figure 4.2: The different steps of the data collection phase.

4.2. DATA ANALYSIS 23

4.2 Data analysis

The data analysis phase is divided into different steps that combined give the best
results. The traditional HMM was never applied directly, but instead inspired the
algorithms and computing process used to get the results from the data analysis.
These steps are explained in greater detail in Chapter 6.

i) Mean and standard deviation for key pair classes: A data frame with 262 = 676
rows corresponding to each key pair combination is generated to keep track of
all key pair combinations in the alphabet of 26 characters (a-z). For these key
pair classes, the mean and standard deviation is computed.

ii) Statistics of the English language: The statistics of the English language are
important to indicate which key pairs that are common to see. Therefore, the
next part of the data analysis phase focuses on gathering statistics about the
English language. To achieve this, a script to web scrape online books to get
information about the English language is developed. A total of 7 books from
the Gutenberg project were used [gut].

iii) Calculating scores based upon packet latency and key pair classes: For each
row in the original dataset, a score for the latency value is computed based
upon the mean and standard deviation of the corresponding key pair class.
Higher values indicate a higher score, which again gives a larger probability of
belonging to that key pair class.

iv) HMM and depth-first tree traversal: For all the different key pair classes possible,
an HMM-inspired graph with 26 states and 676 transitions is made. When
brute-forcing the different combinations of an n-letter word, n rows of 676
values need to be traversed to find the most likely [n − 1] key pairs in the word.
Looking at this as a directed acyclic graph (DAG) makes it possible to execute
a depth-first traversal to find all combinations dynamically.

v) Matching and dictionary checking: Brute-forcing an n-letter word gives a total
of 676n−1 combinations. This means that the algorithm will have a time
complexity of O(676n) which gets slow very fast. Matching and dictionary
checking is therefore introduced to reduce the number of combinations in the
depth-first tree traversal. The matching restricts the depth-first traversal from
going deeper if the last and first character from the first and second digraph of
the word does not match. It will also restrict the traversal from going deeper if
no n-letter English word that starts with the key pairs combined exists. The
algorithm returns a list of the top k most likely word candidates.

Chapter5Data Collection

This chapter will pick up from Section 4.1 and describes the data collection phase in
a more detailed manner. Different tools and software were combined to get the test
data that was needed. These tools and pieces of software will be explained in such a
manner that the reproduction of this research is possible.

5.1 BeLT

As mentioned in Section 4.1, BeLT was installed on the author’s personal computer
in November 2021. The keylogger ran in the background over approximately three
months, gathering typing rhythm and saving it as CSV files. Every time the program
exited, a new CSV file was made. This resulted in a high number of CSV files that
eventually needed to be combined into one CSV file. BeLT also gathers information
about which program is running on the computer, in addition to mouse events. It is
important to notice that BeLT gathers every keystroke, which means that the BeLT
data will contain keys that fall outside this thesis’s restricted alphabet.

In figure 5.1 the raw BeLT data from one of the CSV files is displayed. Here,
BeLT has collected "now i am" typed by the author. A total amount of 8 fields is
collected per row. The first field is the sequential counter/ID. The second field is
the type of action (K for key events) and the third field is the type of event (D for
key down, U for key up). The fourth is the key value (which key) and the fifth is
the timestamp with millisecond precision. The sixth field is the relation and points
backward to the previous event. While key down events will point to the program
used while pressing this key, key up events will point to the corresponding key down
event for that similar key (2051 key up "i" points to 2050 which is the key down event
of that "i"). The seventh field is a flag that keeps track of special keys and includes
values such as CTRL, alt, shift, and so forth. The eighth and last field keeps track
of how many key-presses were sent together.

25

26 5. DATA COLLECTION

Figure 5.1: Raw BeLT data collected from "now i am" typed by the author.

BeLT also keeps track of which program is used for typing, and has therefore been
allowed to run uninterrupted during the whole period. This means that the data
gathered is both English and Norwegian, as well as some programming such as Bash,
Python, and JavaScript. While the author’s typing rhythm does not differentiate that
much in Norwegian and English, a combination of these languages can be accepted as
the key-pair latency time in these sentences are the focus. However, for programming
languages this rhythm can differentiate more, consequently needing to exclude these
rows from the dataset.

5.2 Preparing the data for SimulateKeystrokes

The raw BeLT data needed a lot of cleaning before it could be simulated through
SimulteKeystrokes. The different CSV files were first combined, then read with
Python using the library Pandas. Pandas is a strong and fast tool for data analysis
and data manipulating and is therefore used when dealing with a big amount of data
like this. Rows containing characters outside the alphabet and rows containing key
events in Windows Terminal, Bash, and Visual Studio Code were dropped. This
was to exclude programming languages. In addition, only rows containing key-down
events were kept. From the raw BeLT data, latency was computed by subtracting
two consecutively rows. Some rows got negative values, which often was due to errors.
These rows were later altered. Due to BeLT running in the background without the
computer being in use, some rows got very high latency values. Just like the negative
values, these were not valid typing rhythm data and were therefore altered. To make
this work with SimulateKeystrokes, values less than or equal to 20 ms were set to
20 ms, and values more than or equal to 2000 ms were set to 2000 ms. Values less

5.3. SIMULATEKEYSTROKES 27

than 20 ms are most likely an error because this is too fast for human typing. Values
more than 2000 ms were set to 2000 to stop the simulation from taking long typing
pauses, as this would greatly affect the running time of the simulation script later
on. Figure 5.2 shows the data from figure 5.1 after this cleaning process.

Figure 5.2: The dataframe for "now i am" after cleaning and manipulating in
pandas. The latency value is in milliseconds.

5.3 SimulateKeystrokes

A total of 578313 rows of key presses had to be simulated through an SSH session.
The entire data frame for the data, can be seen in figure 5.3. For this, a modified
version of the software SimulateKeystrokes was used [Joh]. SimulateKeystrokes is
written in C and is originally developed by Moe [Moe]. In this thesis, a modified
version of the software had to be used to accomplish the task. The necessary input
of the software is key-value and latency. Key down presses are the only key action
that is relevant because the focus is on the key pair latency time. Simulating a total
of 578313 rows with a mean of 175 milliseconds per row will take approximately 30
hours. Some issues were met, resulting in the simulation taking much longer than
planned. The keys pressed and the packets captured did not always map one-to-one,
so parts of the simulation had to be repeated multiple times. The data was split into
groups containing different amounts of rows, such that a new savepoint always was
achieved after each simulation. This made it easier to backtrack for errors without
having to go through everything. Since the simulation period rendered the computer
useless, the script often ran during the nighttime.

28 5. DATA COLLECTION

Figure 5.3: The entire dataframe before simulating it through SSH.

5.4 Setting up the SSH session

Originally, the SSH connection was with a virtual server hosted by NTNU. However,
due to network traffic, some SSH packets did not arrive. To solve this, an environment
without internet traffic had to be set up. This was accomplished by simulating the
typing data through a local SSH connection between two containers in Docker. Wire-
shark had some issues not being able to capture traffic on this interface. Consequently,
the packet sniffing tool, tcpdump, was executed in the SSH target container. tcpdump
saves the tcp traffic to a PCAP file, which is later analyzed and filtered in Wireshark
to get the relevant SSH packets. Even though most programming languages are
stripped from the dataset, it still contains some commands. Some of these commands
made problems in the SSH session, such as "exit" and "vi". To be able to run the
data in a sandboxed environment, all data typed was typed as a string in bash. The
only way of escaping this string is to type a quotation mark, which is not a part of
the dataset and will therefore never be seen.

5.5 Filtering in Wireshark and preparing for data analysis

After all the data was simulated through SSH, the corresponding PCAP files were
uploaded in Wireshark and all relevant SSH packets were filtered out. This was then
saved as a new PCAP file, and read with pandas in the data analysis phase. The
SSH packets in Wireshark and the typing data were mapped 1:1, resulting in every
row containing the packet latency and the corresponding key value. One example
of this can be seen in figure 5.4. This data frame shows the packet latency from
Wireshark after combining it with the original BeLT data. Latency delta shows

5.5. FILTERING IN WIRESHARK AND PREPARING FOR DATA ANALYSIS 29

the difference between packet latency and the actual key pair latency in BeLT, and
shows the jitter we get from SSH.

Figure 5.4: The dataframe for "now i am" after extracting packet latency from
Wireshark.

To preserve the typing rhythm, all values higher than or equal to 800ms is
classified as a pause, and all values less than or equal to 20ms is classified as an
error. Values outside this 20-800ms range is set to 0ms, and put in its own "Init"
class. Figure 5.5 shows the differences between the packet latency extracted from
Wireshark (blue) and the actual keystroke latency from BeLT (yellow). Figure 5.6
shows a comparison between the last 100 packets sent through SimulateKeystrokes.
These packets correspond to packet number 578213 to packet number 578313. Seeing
how nice this line up is an indicator that all packets are mapped correctly.

30 5. DATA COLLECTION

Figure 5.5: Latency comparison for ’now i am’.

Figure 5.6: Latency comparison for the 100 last packets simulated through SSH
using SimulateKeystrokes.

Chapter6Data Analysis

This chapter will pick up from Section 4.2 and describes the data analysis phase in a
more detailed manner. As earlier mentioned, the data had to go through different
steps to get the best results possible. In this chapter, each of these steps will be
described thoroughly, referring to figures and algorithms to make everything clear to
the reader.

6.1 Calculating mean and standard deviations for the key
pair classes

First, a new data frame, dfClass, is created (see Appendix A.1 for more on data
frames). The data frame contains one row per character combination in the limited
alphabet. In addition, one extra Init class is added to gather all the initial key
values. As the alphabet is 26 letters (a-z), the total combinations is 262 + 1 = 677.
When ignoring the Init class, the first row will correspond to a-a, the second to a-b,
the 26th to a-z, and the 676th to z-z. Here, the first letter is the first letter typed,
and the second letter is the second letter typed. The latency time is the latency
between these two letters. For key pairs that are not observed in the dataset, the
mean and latency values are set to 0. The mean and standard deviations of the key
pair classes are calculated from the original data frame in figure 6.2. To trim the
values, a trimmed mean was calculated after removing every row where one of the
two following statements was true:

latency < meanLatency − 2 ∗ std (6.1)

latency > meanLatency + 2 ∗ std (6.2)

A new standard deviation is calculated upon the new rows, and this trimming process
is then repeated two more times. The different means and standard deviations were
all stored in the dfClass data frame, as well as giving each row in the original data

31

32 6. DATA ANALYSIS

frame a classification (0-2), indicating in which trim iteration the row was removed.
This made it easy to compare which of the trimmed values gave the best results later
on. The dfClass data frame can be seen in figure 6.1.

Figure 6.1: dfClass, the data frame containing all values for the character combina-
tion classes.

Figure 6.2: The entire data frame after being extracted from Wireshark and mapped
to their corresponding values.

Table 6.1 shows some examples of the key pair classes, with the 1st trimmed
mean latency and standard deviation for the key pair n-o, o-w and a-m. All key pair
classes expect values in the range of [mean − std, mean + std]. As we can see from
this figure, key pair classes o-w and a-m will have overlapping values in the range

6.1. CALCULATING MEAN AND STANDARD DEVIATIONS FOR THE KEY PAIR
CLASSES 33

of [59.6, 117.1]. Figure 6.3 shows the comparison of all n-* classes, or all key pair
combinations starting with n. Here, n-g is the fastest, with a mean latency of 72.1
ms and a standard deviation of 24.8. n-m is the slowest, with a mean latency of 208.9
ms and a standard deviation of 31.7 ms. Figure 6.4 shows all key pair class values in
a plot with mean latency on the x-axis and standard deviation on the y-axis. Some
key pairs stand out, but there is a lot of overlap between mean latencies of 70-200
ms and standard deviations of 20-80 ms. In the figure, dark purple dots are key pairs
ending with an "a", light yellow plots are key pairs ending with a "z", and the rest of
the alphabet is spread between.

Key pair class Mean Standard Deviation

n-o 199.4 25.4
o-w 84.9 32.2
a-m 88.8 31.9

Table 6.1: Table showing the 1st trimmed mean and standard deviations of key
pair classes n-o, o-w, and a-m.

Figure 6.3: Mean and standard deviation for key pairs n-*.

34 6. DATA ANALYSIS

Figure 6.4: Comparison between mean and standard deviation of all key pair classes.
Dark purple colors points to key pairs ending with an a while light yellow colors
points to key pairs ending with a z. The rest of the alphabet (b-y) is divided among
these colors.

6.2 Statistics of the English language

As multiple of the researches mentioned in Chapter 3 explain, the English language
is not just random. There are patterns and rules which need to be followed for the
language to work. The statistics of the English language are important to indicate
which letter is most common to see following another letter, and wherein a word
that letter is most likely found. Therefore, in addition to calculating the mean and
standard deviation of the key pair classes, knowledge of the English language is also
applied to increase the guessing probability of the algorithm.

7 books from the Gutenberg project [gut] are web-scraped using BeautifulSoup,
an HTML-parsing library in Python. The text from all the books is then split into
words and appended to a word list. A limit had to be set, ensuring that words were
not repeated more than 1000 times. The reasoning for this is to deny the algorithm
from becoming too biased, as words the frequency of the most common English words
like "the", "of" and "and" will exponentially decay. This phenomenon is explained by
Zipf’s law [Hos] and applies to most known languages.

For all the words in the word list, the digraphs are counted based on the length
of the word and its position in the word. In the code, the position in the word is
zero-indexed. In the word "them", "th" is counted as the 0th digraph in a 4-letter
word, "he" is counted as the 1st digraph in a 4-letter word, and "em" is counted as
the 2nd digraph in a 4-letter word. The total amount of digraphs in an n-letter word
is [n − 1]. After counting the occurrences of digraphs, the distribution is computed,

6.2. STATISTICS OF THE ENGLISH LANGUAGE 35

and the data frame in figure 6.5 is generated. One problem with this approach is
that some key pairs have not been observed in the word list. Ignoring this will lead
to certain key pairs having a zero probability of occurring, which again leads to some
words being impossible to guess. To solve this, key pairs having a zero probability
are given a minor probability to ensure that even if a key pair is not observed from
the Gutenberg books, the key pair is likely to exist in some combination. The figure
has a lot of invalid combinations, such as rows 0-4. They represent the first to fifth
digraph of a 0-length word. Here, the probability in the "Distribution" column is the
minor probability given to unseen combinations, just to make sure to not exclude
any combinations that might exist. All the invalid combinations does not matter in
the end, since the algorithm will choose a relevant subset of the data frame later on.

Figure 6.5: Digraph distribution based on word length and its position in the word.
The Unique-column is used to quickly collect the relevant rows. For instance, "0aa1"
represents the digraph "aa" in position 1 in a 0-length word

The distribution of digraphs in the last position in a 5-letter word can be seen in
figure 6.6. A consequence of the distribution following an exponential decay is that
the algorithm will be biased towards this distribution. In other words, the algorithm
will ignore the probability of an input latency being a certain key pair and will only
look at the digraph distribution. To even this out, the distribution is changed using
the equation score = log(0.01)/log(x), where x is the original value. This leads to
the new distribution, which can be seen in figure 6.7. The distribution will still affect
the algorithm’s final decision, but to a lesser degree than beforehand. This will lead
to a poorer result for the top common words, while it increases the results for most
other words in the English language. Before altering the distribution, every 3-letter
word was reconstructed as "the", no matter what the input latency values were,
and every 2-letter word was reconstructed as "an". If "the" or "an" was the actual

36 6. DATA ANALYSIS

input word, it would guess correctly every time. In all other occurrences, it would
guess wrong. After the change, the algorithm weights the latency higher, giving it a
better chance of guessing e.g. the correct word "him" instead of "the". Altering this
distribution also gives the algorithm a better chance of guessing uncommon words,
like the word "tzatziki".

Figure 6.6: Distribution of the digraphs in the last position in a 5-letter word
following an exponential decay.

Figure 6.7: Altered distribution of the digraphs in the last position in a 5-letter
word.

6.3 Calculating scores based upon packet latency and key
pair classes

The process calculates a score that a given latency t belongs to each of the possible
key pairs. For the incoming packet latencies, the delta is calculated using the equation
6.3. Here, t is the incoming packet latency, mean is the mean of the key pair class’
latency and std is the standard deviation of the key pair class. This calculation is
repeated for every key pair class given the input latency, leading to 262 computations
needing to be done for every input latency. A low delta means that the incoming
packet latency is close to the mean, and should end up having a high score.

6.4. HMM STATES AND DEPTH FIRST TREE TRAVERSAL 37

{
abs(t−mean)

std , if std ̸= 0
abs(t − mean), otherwise

(6.3)

The next step after calculating all the deltas for the incoming packet latency
sequence is to calculate the score. The score is calculated using the equation 6.4.
If the delta is zero, the incoming packet latency is equal to the mean, and the
score should therefore be really high. To avoid dividing by zero, this is divided by
the smallest non-zero number in the deltas list. At the end, the probability list is
normalized before returned.

(1

sum(deltas))
delta , if delta ̸= 0
(1

sum(deltas))
2ndSmallest(deltas) , otherwise

(6.4)

6.4 HMM states and depth first tree traversal

Imagine the following example: The word "bed" is typed in an SSH session. This
gives the input of two latency values, [latency1, latency2]. From section Section 6.2,
we know that we are looking at a three-letter word with two digraphs. These two
latencies correspond to the two digraphs, but which digraphs are unknown. Since we
know the input word, we know that the two correct digraphs are "be" and "ed". The
score for the two input latencies being "bed" is therefore:

Pr(′bed′) (6.5)
= Pr(′be′) ∗ Pr(′ed′)

Figure 6.8 shows a partial and simplified visualization of an HMM trying to
solve this problem. The figure does not include every state and transition but is
included as a way of trying to explain the calculation process. The two transitions
are marked with red arrows. The first transition is from "b" to "e", and the second
transition is from "e" to "d". The probabilities for these transitions are stored in
the transition matrix of the HMM, and corresponds to Pr(e|b) and Pr(d|e). We get
those probabilities from the digraphs distribution data frame in figure 6.5, where
the Unique correspond to "3be0" and "3be1". The emission probabilities show the
probabilities for being in a state, x, given the observable state, and are the transitions
between the hidden states and the observable states. For each observable state, 26
possible transitions could have happened, but which one is unknown. Therefore, the
probabilities of all the possible transitions have to be calculated. This calculation

38 6. DATA ANALYSIS

is based upon the score from Section 6.3. These transitions are marked with green
arrows in figure 6.8, and corresponds to Pr(be|latency1) and Pr(ed|latency2). The
probability of every possible transition is calculated and stored in a list. Hopefully,
the correct word is given the highest score at the end of the computation process.

Figure 6.8: Simple example of the HMM trying to solve "bed" typed in an SSH
session.

Going from the equation 6.5 and applying the logic from the figure 6.8, we see
that the equation can be derived further. This gives the equation:

Pr(′bed′) (6.6)
= Pr(′be′) ∗ Pr(′ed′)

= Pr(e|b) ∗ Pr(be|latency1) ∗ Pr(d|e) ∗ Pr(ed|latency2)

The partial and simplified HMM in figure 6.8 is only used to explain the process
of solving the word "bed". Here, states a-e are the hidden states and represent
the letters in the word. The transitions between the states represent the key pairs
(e.g. the transition from a to b is the key pair "ab"). The probabilities here are the
transition matrix of the HMM. Every hidden state has 26 observable states, as being
in state "a" can mean that the key pair is a pair ending with "a", which is everything
from "aa" to "za". The probabilities here are the emission matrix of the HMM.

In the real scenario, an HMM with an alphabet with 26 letters instead of 5 is
created. For the different key pair classes and their scores, an HMM with 26 hidden
states, 262 = 676 transitions between the hidden states, 262 = 676 observable states,
and 262 = 676 transitions between the hidden states and observable states are made.
Figure 6.9 shows the idea of how complex this model gets due to the high number
of states and transitions. The model in the figure does not include the observable
states and the transitions between these states and the hidden states and is already

6.4. HMM STATES AND DEPTH FIRST TREE TRAVERSAL 39

a full mesh. In addition, all 26 states would transition to 26 observable states each
with corresponding probabilities.

Figure 6.9: The hidden states and the transitions in the real HMM. Without
including emissions and observable states, the model is already a full mesh.

To simplify the calculation process and to solve the problem dynamically, a
multitree is made. A multitree is a directed acyclic graph (DAG) with multiple root
nodes. Figure 6.10 shows the example of this process with a 3-letter word, continuing
with the "bed" example from above. Here, the words "bed", "bee", and "bet" are
found by the algorithm. The tree is traversed in a depth-first manner, as it requires
less memory. The algorithm also solves the problem dynamically, something which
contributes to reducing the time complexity. It is dynamic in the way that "be" does
not need to be recomputed for "bed" and "bet". At this point, the key pair class
scores and the digraphs distributions are combined and applied to each level in the
tree. As the algorithm goes deeper in the tree, these scores are multiplied and added
to each of the words found at the lowest level.

40 6. DATA ANALYSIS

Figure 6.10: A multitree-design showing the depth first traversal to find words of
length 3.

This multitree has the same amount of root nodes as leaf nodes, and the breadth
is 262 = 676 as the alphabet has 26 letters. The height of the tree is n − 1
where n is the length of the word. Normally, to traverse all nodes in such a tree
gives breadthheight = 6762 = 456976 combinations. For a 3-letter word, the total
combinations will be 676 ∗ 26 = 17576 given that matching is applied. Matching
is further explained in Section 6.5. As the word length increases, the total of
combinations increases exponentially giving the algorithm a time complexity of
O(676n). To greatly reduce the time complexity, some mechanisms are applied to
the algorithm.

6.5 Matching, dictionary checking and probability checking

The time complexity of the algorithm is a big problem as the running time increases
exponentially with the length of the input word. To solve this, three time-reducing
mechanisms are introduced. The algorithm will go one level deeper if and only if
it passes all these three checks. Algorithm 6.1 shows the pseudocode of how this is
solved recursive.

i) Matching: When looking at two digraphs, they have to match to be able to be
put together. The last and first letter in the digraphs "be" and "ed" matches. If
it is a match, these two can be put together and form a 3-letter string. In this
example, the word "bed" is formed. However, "be" and "aa" has no match, and
by combining them you get "beaa" which is a string made up of three digraphs.
If "be" is the first digraphs picked and "aa" is the candidate to be validated,
the match check will fail, and the algorithm will test "be" against the next
digraphs, "ab". This is shown with a red cross in 6.10.

ii) Dictionary checking: Dictionary checking is split into two different scenarios.
Given a 3-letter word as input. After validating all the combinations from "aa"

6.5. MATCHING, DICTIONARY CHECKING AND PROBABILITY CHECKING 41

to "zy", it’s time to validate "zz" as the digraphs in the first position. The
algorithm will check if there exists a 3-letter word starting with "zz". As this
does not exist, there is no need to go deeper in the tree with "zz" as the first
digraphs, since no such words exist. This scenario is shown with a yellow cross
in figure 6.10. The other scenario is checking if the word itself exists. This
happens at the deepest level in the tree, and is shown with the blue cross in
the figure.

iii) Probability checking: When the combined probability of a substring has a lower
score than a certain threshold, the substring is discarded and the algorithm
moves on to the next digraphs instead of going deeper. There is no point in
looking for a word when the substring already has a score that is too low. This
is shown with a green cross in figure 6.10. Here, the word "bee" is found, but
due to its score being too low the word is discarded. As the dept-first tree
traversal brute-forces the different key pair combinations, a valid candidate
is added to a candidate list every time a legitimately n-letter word is found.
When this list has reached its limit of k candidates, new words are replaced if
their score is better than the worst score currently on the list. This score is
used as the threshold mentioned earlier. If an uncompleted word already has a
lower score than the lowest score in this list, the dept-first traversal will not go
deeper and skip till the next key pair combination.

42 6. DATA ANALYSIS

Algorithm 6.1 Depth-first tree traversal to find word candidates
function traverser(row, wordLength, substring, substringScore, digraphMatrix)

for keypair in digraphsMatrix[row] do
if match(substring, keypair) then

if checkDict(substring, keypair, wordLength) then
if checkProb(keypair, keypairScore) then

if exists deeper level then
substring = substring + keypair[1]
substringScore = substringScore * keypairScore
traverser(row+1, wordLength, substring, keypairScore, digraphMatrix)

else
addWord(substring + keypair[1], keypairScore)

end if
end if

end if
end if

end for
end function

Chapter7Results and discussion

This chapter will look into the different results based on analysis as described in
Chapter 6 on the data described in Chapter 5. The results will also be discussed, as
well as tweaking some of the analysis to see if it is possible to improve the results
further. The results will be shown stepwise in the same order as what has been done
in the two previous chapters.

7.1 Data collection and Wireshark traffic

Figure 7.1 shows the first 100 packets extracted from Wireshark. Right now, it
seems like the difference between keystroke latency and packet latency is a minor
detail compared to the actual latency values of the typing rhythm. Later in this
chapter, we will see that these minor differences could be significant in the end. Even
though most of the value lines up nicely, it seems like the packet latency generally is
a little slower than the keystroke latency. It is important to keep in mind that these
results were collected from a zero-traffic environment, made up of an internal docker
container connection. A real scenario over WiFi or a VPN connection would therefore
lead to much bigger differences, obscuring the final results to a higher degree.

Figure 7.2 displays the latency differences, delta, from figure 7.1. The deltas range
from -4ms to +36ms, with a mean of around 15 ms. From the entire data set, this
delta is computed to be as low as -68ms and as high as +72ms. The mean is 8.9 ms
with a standard deviation of 6.4 ms. Compared with the actual keystroke latency,
this does not seem that much.

In Section 6.1, trimmed means and standard deviations were computed for all 262

key pair classes. Figure 7.3 shows the packet latency input for "now i am" plotted
against the corresponding key pair classes. The values in o correspond to the key
pair class n-o, the values in w correspond to the key pair class o-w, and so forth.
The red lines show a lower and upper threshold for what to expect from 99.9% of
the input latency of the corresponding class. The green dots show the mean of the

43

44 7. RESULTS AND DISCUSSION

Figure 7.1: Latency comparison for the first 100 characters. The yellow line is the
actual typing rhythm from BeLT and the blue line is the packet latency in Wireshark

Figure 7.2: The difference between keystroke latency and keystroke latency.

key pair class, while the blue star shows the latency of the incoming key value. We
see that packet latency values between 30ms and 300 ms fit into all the different key
pair classes in the figure, ignoring the first n. This indicates that there is a lot of
overlap in the data set, making it more difficult to guess the incoming key pair class.

7.2 Identifying special keys

Most of the keys sent over an SSH connection are impossible to distinguish, as they
have the same length. Figure 7.4 shows "bed" typed in an SSH session. There are a

7.2. IDENTIFYING SPECIAL KEYS 45

Figure 7.3: Packet latency values for "now i am" fitted into their corresponding key
pair class

total of 6 packets, where 3 of them are from the client to the server, and 3 of them
are echo packets from the server to the client. Here, every packet has a length of
36 bytes. However, certain special keys reveal information in the form of different
lengths. Figure 7.5 shows the captured packets in Wireshark when the backspace
key is pressed. The echo from the server to the client now has a length of 44 bytes
instead of the regular 36. Figure 7.6 shows the captured packets in Wireshark when
the enter key is pressed. Here, the server sends 3 echo packets back to the client, in
which one of them has a length of 68 and one has a length of 52. Figure 7.7 shows
the captured packets in Wireshark when tab is used to autocomplete a command in
bash. Just as the backspace key, the server returns an echo packet with the length of
44.

Figure 7.4: "bed" sent over an SSH session and captured in Wireshark.

Figure 7.5: Backspace key in an SSH session captured by Wireshark. An echo
packet of length 44 is returned.

46 7. RESULTS AND DISCUSSION

Figure 7.6: Enter key in an SSH session captured by Wireshark. Three echo packets
are returned, one of length 36, one of length 68 and one of length 52.

Figure 7.7: Tab key used to autocomplete a command in an SSH session captured
by Wireshark. An echo packet of length 44 is returned.

7.3 Reconstructing words based on digraphs

This section will show results when trying to reconstruct words based on digraphs.
The section is divided into three subsections, comparing different results as the
difference between input latency and mean varies.

7.3.1 When packet latency is equal to or close to the mean

Continuing from the "bed" example from Section 6.4, two different cases will be
described in greater detail. The first case is when the input latency is equal to the
mean of the key pair class, and the other case is when the input latency is close, but
not equal, to the mean of the key pair class.

When packet latency is equal to the mean: Figure 7.8 shows the word "bed"
split into the two digraphs "be" and "ed". The mean latency for the two classes is
approximately 98.76 and 139.85. The data frame also contains the position of the
digraph, as well as the word length for the corresponding word. The column "Input
Latency" shows the actual input latency values which are used to guess the word.
Here, the input latency values are the same as the corresponding key pair class,
rounded to 2 decimals precision.

7.3. RECONSTRUCTING WORDS BASED ON DIGRAPHS 47

Figure 7.8: Data frame made from "bed". This frame includes two rows correspond-
ing to the digraphs "be" and "ed".

In the upper half of figure 7.9, the top 5 digraph candidates for the 1st position
in the word can be seen. These values are based entirely on the score and have
nothing to do with the English digraph distribution made in Section 6.2. The 5 top
candidates are "be", "nc", "pt," "bo" and "fe". The correct digraph, which is "be", is
found as the 1st candidate. Some of these digraphs, especially "nc" and "pt", are
very uncommon to see at the start of a 3-letter English word. In the bottom half
of the figure, "be" is still the 1st candidate. The scores have now been combined
with the digraph distribution for the first two letters of a 3-letter word, such that
the more uncommon digraphs are moved down in the list and the more common
digraphs are moved up in the list. The new top 5 list is now "be", "fe", "bo", "go"
and "ah". The digraphs "nc" and "pt" have now been replaced with "go" and "ah",
which are much more common digraphs to see in the start of a 3-letter word. Figure
7.10 shows the same process for the last digraph, "ed". Due to the precise input
latency, "ed" is the 1st candidate both before and after combining the scores with the
digraph distribution. The code is run with n = 5 and k = 5, indicating how many
top digraph candidate is shown per position and how many words the final result list
will include.

Figure 7.11 shows the end results when combining the digraphs as explained in
Section 6.4 and Section 6.5. The correct word, "bed" is found as the 1st candidate,
followed by "fed" and "bee". Bed now ranks 1st out of approximately the 600 3-letter
words that are used in this study. The word was found in 1.8 seconds.

The algorithm was also tested on the words "gate", "error" and "extend" to include
some words of different lengths. Due to the precision of the input latency values,
every digraph ranks 1st both before and after combining with digraph distribution
(see Appendix A).

Figure 7.12 shows the time comparison between words of different lengths. These

48 7. RESULTS AND DISCUSSION

Figure 7.9: n = 5 top digraph candidates for the first position in the word before
and after digraph distribution. "be" is ranked as 1st candidate before and after
combining.

Figure 7.10: n = 5 top candidates for the last position in the word before and after
digraph distribution. "ed" is ranked as 1st candidate before and after combining.

Figure 7.11: The algorithm finding "bed" as the 1st candidate, followed by "fed"
and "bee". The list contains k = 5 word candidates.

measurements were done with k = 100. In this case, the algorithm will keep an
eye on the top 100 candidate words in the list. The length of this list will greatly
affect the running time as this list needs to be sorted for every recursive call. The
algorithm gets much slower as the length of the word increases. The time needed
increases until the peak, which is 10-letter words. For 11-letter words or larger, the
time decreases again. This is due to the small number of large words that exist in
the word list when compared to shorter words, which is shown in figure 7.13. The
peak here is 8-letter words, but as the combinations increase exponentially with the
length of the word, the running time will continue increasing until 10-letter words.

7.3. RECONSTRUCTING WORDS BASED ON DIGRAPHS 49

Figure 7.12: Time comparison
of words with length between 2-
14.

Figure 7.13: Number of words of
different lengths used in the word
list.

When packet latency is close to the mean: Again, we start with the "bed"
example. However, this time the data frame made from the digraphs "be" and "ed"
are no longer exactly the same as the mean of the key pair classes. Figure 7.14 and
7.15 shows the data frames for these examples. In the first figure, "be" has an input
latency of 98.76 + 1 = 99.76 and "ed" has an input latency of 139.85 + 1 = 140.85. In
the second figure, "be" has a latency of 98.76 + 2 = 100.76 and "ed" has a latency of
139.85+2 = 141.85. Figure 7.16 and figure 7.17 shows the results after reconstructing
"bed" when the input latency has a difference of 1 and 2 from the mean of the key
pair classes. Here, "bed" ranks as the 2nd and 11th candidate.

Figure 7.14: The data frame showing "be" and "ed" with input latency values 1
more than the mean

Figure 7.15: The data frame showing "be" and "ed" with input latency values 2
more than the mean

50 7. RESULTS AND DISCUSSION

Figure 7.16: "bed" ranks 2nd when input latency differs 1 ms from the mean of the
key pair classes. Here, n = 3 and k = 5.

Figure 7.17: "bed" ranks 11th when input latency differs 2 ms from the mean of
the key pair classes. Here, n = 3 and k = 20

7.3. RECONSTRUCTING WORDS BASED ON DIGRAPHS 51

Again, the algorithm was repeated with the words "gate", "error" and "extend".
The scores are now much worse, and figure 7.18 shows a comparison between these
words and the results as the input latency increases.

Figure 7.18: Comparison between the candidate rank and the input-mean difference
of the words "bed", "gate", "error" and "extend".

7.3.2 When packet latency is a standard deviation away from the
mean

As shown in the previous section, the results get worse when the input latency differs
from the mean. Here, an absolute change of the latency by a given value was done.
However, in a real scenario, this is not the expected behavior of typing rhythm. Each
key pair class has a corresponding mean and a standard deviation. For a key pair
being typed, input latency values are expected to range from [mean−std, mean+std]
for that key pair class. To test out these limit values for the different key pairs, the
input latency is now based on the mean and standard deviation of the corresponding
key pair class instead of having an absolute change of value for all key pair classes
across the word. Figure 7.19 shows the input latency values and 7.20 shows the
results of "bed" in such a scenario. The first digraph, "be", has a mean of 98.8 and a
standard deviation of 45. The input latency value for "be" is therefore 143.8, since
98.8 + 45 = 143.8. The same applies to "ed", which has an input latency value of
167.7 = 139.9 + 27.8.

Now the input latency scores for all the key pair classes are much worse than
in the previous section. The score corresponding to the correct class, "be", is 264th
before the digraph distribution based on the first digraph in a 3-letter word. Here, we
see how much digraph distribution helps the cause, as "be" is moved up to being the
39th candidate. This means that applying the logic in the English language improves

52 7. RESULTS AND DISCUSSION

"be" by 225 places. The last digraph, "ed", is slightly better, ranking as the 264th
candidate before digraph distribution and the 32nd candidate after. Having the two
correct digraphs as the 39th candidate and 32nd candidate gives 39 ∗ 32 = 1178
combinations of digraphs (3-letter words) that can score better than "bed" in the
end. This results in the algorithm not being able to find "bed" among the top 100
candidates. Doing the same with "the", gives better results as "the" is the most
common 3-letter word in the English language. As shown in figure 7.21, the digraph
"th" moves from 308th to 19th, and "he" moves from 338th to 14th. "the" is then
found as the 50th candidate.

Figure 7.19: Digraphs belonging to "bed" with input latency being a standard
deviation away from the mean of the key pair classes.

Figure 7.20: Results of "bed" with input latency being a standard deviation away
from the mean of the key pair classes. Here, n = 0 and k = 100.

7.3. RECONSTRUCTING WORDS BASED ON DIGRAPHS 53

Figure 7.21: Results of "the" with input latency being a standard deviation away
from the mean of the key pair classes. Here, n = 0 and k = 100.

7.3.3 When packet latency is simulated

In a real scenario following a Gaussian distribution, expected latency value inputs
follow the 68-95-99.7 rule. This means that for 99.7% of the data, input values will
vary between [mean − 3 ∗ std, mean + 3 ∗ std]. For 95% of the data, between [mean −
2 ∗ std, mean + 2 ∗ std], and for 68% of the data, between [mean − std, mean + std].
To simulate this, a function that picks random numbers from a Gaussian distribution
based on the mean and standard deviations for the key pair classes was developed.

Applying this on "bed", we get the data frame in figure 7.22. The input latency
for "be" is 134.5 and for "ed" is 140.1. The distances from the mean are 35.7 and
1. The digraph distribution moves "be" from being the 237th candidate to the 31st.
"ed" is moved from 18th to 3rd. The result is seen in figure 7.23. The correct word
is found as the 15th candidate. Figure 7.24 shows 10 attempts of reconstructing
"bed" and "the" based on simulated values. For "bed", the algorithm places it below
the top 100 candidates most of the time. As "the" is the most used 3-letter word,
the algorithm is able to guess this word better. For "the", the algorithm is still not
able to guess the word better than the 30-40th candidate. In Section 7.1 it was
mentioned that the delta between keystroke latency and packet latency seemed like
a minor detail. After seeing how prone the algorithm is to error when the input
latency differentiates too much from the mean, this small delta can be the difference
between successfully reconstructing a word or failing to do so.

54 7. RESULTS AND DISCUSSION

Figure 7.22: Results of "bed" with random simulated input latency. Here, n = 0
and k = 100.

Figure 7.23: Results of "bed" with input latency being a standard deviation away
from the mean of the key pair classes. Here, n = 0 and k = 100.

Figure 7.24: Comparison between "bed" and "the" when reconstructing from
simulated input latency values.

7.4. RECONSTRUCTING WORDS BASED ON TRIGRAPHS 55

7.4 Reconstructing words based on trigraphs

Section 7.3 shows that reconstruction based on digraphs is very prone to errors as
the input latency differs from the mean of the key pair classes. Instead of looking
at digraphs, changing the perspective to trigraphs might recover better results. As
mentioned in Section 2.4, trigraphs focus on three letters in a sequence, and here
the latency refers to the time between the first and last letter. The analysis done
in Chapter 6 was repeated focusing on trigraphs instead of digraphs. For trigraphs,
there are 263 = 17576 different key triplet classes, ranging from a-a-a to z-z-z. A
web scrape collecting trigraph distribution based on the length of the word and the
trigraph position was also done.

Figure 7.25 shows the trigraph data frame for the word "gate". The input latency
for both trigraphs, "gat" and "ate", is 1ms slower than the mean of the trigraph classes.
Figure 7.26 shows the trigraph positions found by the algorithm, ranking "gat" 168th
before trigraph distribution and 22nd after. For "ate", trigraph distribution moves it
from rank 131st to 6th. It is important to keep in mind that since trigraphs have
17576 different classes, both rank 168 and 131 are actually pretty high. Figure 7.27
shows the top 50 candidates, ranking "gate" as the 11th best.

Figure 7.25: Date frame of "gate" divided in the two trigraphs "gat" and "ate".

Figure 7.28 shows figure 7.18 when combined with trigraphs for the same words.
Trigraphs improve the results from the last section. When using digraphs, "extend"
is the 125th candidate when the input latency is 4 more than the mean. Using
trigraphs, "extend" is now the 4th candidate instead.

56 7. RESULTS AND DISCUSSION

Figure 7.26: Top n = 3 trigraph candidates for position 0 and 1 in a 4-letter word.

Figure 7.27: Top 4-letter candidates after sending in the inputs 217.76 and 209.90,
corresponding to "gat" and "ate". The correct word, "gate", is number 11 in the list.
Here, k = 50.

Figure 7.28: Comparison between the candidate rank and the input-mean difference
of the words "bed", "gate", "error" and "extend". Hard lines are from using digraphs
and dotted are from using trigraphs.

7.5. RECONSTRUCTING WORDS COMBINED 57

Figure 7.29 shows figure 7.24 combined with trigraphs. It seems like the trigraphs
are scoring better than digraphs. As the number of simulated attempts is as low as
5, this could be due to luck. Even though it is an improvement, the correct words
are still not high enough on the top candidate list.

Figure 7.29: Comparison between "bed" and "the" when reconstructing from
simulated input latency values. Hard lines are based upon digraphs and dotted lines
are based upon trigraphs.

7.5 Reconstructing words combined

Section 7.4 showed that trigraphs actually improve the results from digraphs on
some words to a certain degree. Figure 7.30 and figure 7.31 show the top digraph
candidates for the first and second position in a 4-letter word. For the first position,
these candidates are "wh", "au", "ga", "ci" and "ya". For the second position, the top
candidates are "oc", "wn", "ca", "ug" and "dl". Figure 7.32 shows the top trigraph
candidates for the first position in a 4-letter word. The top trigraph candidates are
"hai", "ree", "hoy", "sur" and "rea". It is important to notice that the top candidates
are not the same. The trigraph "hai" needs the two first digraphs to be "ha" and "ai".
Neither of these digraphs is found as top candidates in the first two figures.

The same goes for the top word candidates found by digraphs and trigraphs.
Figure 7.33 shows the top 100 word candidates using digraphs and trigraphs. For
digraphs, the top 5 words are "hock", "cock", "dock", "when" and "wham", while the
top 5 words for trigraphs are "read", "rich", "hair", "reek" and "goal". There are very
few words that are included in both of these lists.

The aforementioned results give the motivation to try two new approaches. These
two approaches focus on combining digraphs and trigraphs to see if it is possible to

58 7. RESULTS AND DISCUSSION

Figure 7.30: Top digraphs for the first position in a 4-letter word

Figure 7.31: Top digraphs for the second position in a 4-letter word

Figure 7.32: Top trigraphs for the first position in a 4-letter word

improve the results further.

7.5.1 Combined word candidates

The first approach focuses on combining the top word candidate list of both digraphs
and trigraphs. Simulated input values for the word "there" are used using both
digraph and trigraph values. Trying to reconstruct the word "there", figure 7.34
shows the ranking in the top word candidate lists for digraphs and trigraphs. With

7.5. RECONSTRUCTING WORDS COMBINED 59

Figure 7.33: Top 100 word candidates found using digraphs and trigraphs.

digraphs, the correct word is the 73rd candidate while for trigraphs, the correct word
is the 36th candidate. Again, trigraphs scores better than digraphs, but having 35
words that are a better option still makes it difficult to guess the correct word.

Figure 7.34: The correct word, "there", is ranked as 73rd candidate by the use of
digraphs and 36th candidate by the use of trigraphs.

Figure 7.35 shows the combined list. Here, the scores of words that are present
in both lists are multiplied and added to this new list. As seen in the figure, "there"
is now moved from the 36th candidate to the 8th candidate.

Combining the lists makes it easier to find the correct word. However, there are
some weaknesses to doing this. If the word is not present in both lists, the word
will not be found at all. To ensure that this does not happen, the algorithm should
run with a very high k to ensure that as many candidates as possible are present in
both lists. A consequence of this is that the algorithm gets much slower. Figure 7.12
showed that a 5-letter word uses approximately 300 seconds, while in this example,
"there" used more than the double of this, finishing around 800 seconds.

60 7. RESULTS AND DISCUSSION

Figure 7.35: The top word candidate list after combining digraphs and trigraphs.
The correct word is now ranked as 8th.

7.5.2 Combining digraph and trigraph candidates

Since the algorithm will have different trigraphs and digraphs for the positions,
combining them at an early stage may improve the results in the end. Here, the
algorithm is first run using the digraphs. When repeating the same process using
trigraphs, the algorithm will for every trigraph in every position, multiply the score of
the trigraph with the trigraph distribution, as well as multiply it with the combined
score for the two corresponding digraphs matching. If "ris" is the top trigraph
candidate for the first position, the new score will be "ris" * "ri" for the first digraph
* "is" for the second digraph. This approach will be faster than combining word
candidates as it can be run with a lower k.

Figure 7.36 shows an example of using the first approach with "when" as the
correct word. With an absolute change of input latency values of 3 more than the
mean, the correct word is found as the 10th candidate using purely digraphs. Using
purely trigraphs, it is worse and is found as the 17th candidate. As the word is
present relatively high in both top lists, the combined list based on words gives the
1st candidate. This is the results from the approach we just saw in Section 7.5.1.
Figure 7.37 shows the second approach, combining the digraphs and trigraphs for
each position in the word. For this combined trigraph/digraph, the word "when" is
ranked as the 2nd candidate. This is not as good as the first approach but is still an
improvement from using pure digraphs and trigraphs separately. For more examples,
see Appendix A.

7.6 The obstacles and hindering factors

Even though some degree of reconstruction is possible, the results are not good
enough to achieve anything in particular. As mentioned in Section 3.3, Monaco
was able to identify 15% of the search queries and concluded that this was a decent
possibility in such a complex task [Mon19]. Contrary to this thesis, Monaco also had

7.6. THE OBSTACLES AND HINDERING FACTORS 61

Figure 7.36: The results of reconstructing "when" using digraphs, trigraphs and
the combined word list.

Figure 7.37: The results of reconstructing "when" using combined digraphs and
trigraphs for every position.

multiple features available, e.g. static Huffman code, to help to guess the correct
query. Zhuang et al. [ZZT09] reconstructed text from keyboard sound, and tried to
combine this with a temporal dimension without any luck. Reconstructing based on
time is already a complex task, making it even harder with the level of overlapping
latency values that occur in this thesis. Figure 6.4 in Section 6.1 and figure 7.3 in
Section 7.1 indicated early on that the data contained a lot of overlap. Figure A.1 in
the appendix further confirms the amount of overlap in the data set.

There are some major differences when comparing this study to studies like the
password attacks done by Song et al. [SWT01]. One of the differences is that when
brute-forcing passwords, there is an input prompt to check the answers against. Brute
forcing a password list of 100 candidates would not take long at all, but when this
candidate list is filled with different words, a final result is harder to achieve in the
end as testing for word candidates are a more complex task that requires more time.
In addition, studies, where the main data set is based on password typing, give a data
set that is based upon a much more consistent typing rhythm. The data set used in
this study is a mixture of English, Norwegian, and some programming languages.

62 7. RESULTS AND DISCUSSION

The keylogger ran both when typing text like a report, and when messaging with
friends. This could lead to obscuring the data set in the end, as there is a much
higher level of inconsistent typing.

Even though the algorithm fails to find the word among the top candidates in
most cases, this could be the consequence of inconsistency in the author’s typing
rhythm. As we saw early in Section 7.3, the algorithm can find the words when the
typing does not differ too much from the mean. In Section 7.1 we saw that typing
rhythm can be recognized in Wireshark traffic, and even if this research did not get
the most promising results it does not mean that it is impossible. Repeating this
research with another data set could therefore be interesting to see if results would
improve. It would also be interesting to use the typing rhythm of someone who
has a lot of experience typing, consequently ending with a more consistent data set.
Another notice that is important to have in mind is that the granularity of Wireshark
and BeLT may not be enough. Capturing timing information to a precision higher
than milliseconds may be needed to further improve the results of this study.

Chapter8Conclusion and future research

8.1 Conclusion

In this research, the reconstruction of plaintext from encrypted text from an SSH
session has been attempted. This is done by looking at the packet-to-packet latency
and comparing them to the typing rhythm of the author. A total of 578313 rows of
typing data was recorded and simulated through an SSH session. The typing data
recorded by a keylogger and the Wireshark packets corresponding to the SSH session
line up nicely, indicating that the jitter is small compared to the typing rhythm
of the author. In addition, certain special keys like tab, backspace, and enter are
revealed by the packet length of the encrypted SSH packet. For other special keys,
as well as space, this is not possible, and they are therefore impossible to distinguish.

Reconstructing with the use of both digraphs and trigraphs is tested, as well
as combining them in two different approaches. Reconstruction is possible to a
certain degree, but as the input latency values differ too much from the mean of
the corresponding key pair classes, finding the correct word gets difficult. The most
common English words are easier to reconstruct. For some words, the reconstruction
scores increase using trigraphs over digraphs, and vice versa. Combining digraphs
and trigraphs per position gives a better result than using digraphs or trigraphs
by themselves. Using a combined word list at the end improves the results further,
but greatly affects the running time of the algorithm. If one of the top k-candidate
lists does not have the correct word present, this approach fails to find the word
and will discard it entirely. Since some techniques are better on certain words, it
is hard to find a pattern and conclude which tactic is best in the end. It seems
that digraph distribution and trigraph distribution always improve the results by a
high factor when compared to focusing purely on the input latency scores to every
key pair/triplet class. However, none of the techniques provided seems to give good
enough results to make a difference and to raise any questions regarding the security
of the SSH protocol.

63

64 8. CONCLUSION AND FUTURE RESEARCH

In a real scenario, with SSH packets traveling over the internet, jitter will be
present to a much higher degree, leading to even more obscuration of the data. The
algorithm made can reconstruct words when the input latency is equal to or very
close to the mean. When the input latency only differs from the mean by a few
milliseconds, the correct word is already moved way down on the top candidate list.
Improving the size of the top word candidate list might improve the results in the
end. Additionally, when looking at a certain word length, tetragraphs, pentagraphs,
and hexgraphs up until n-graphs could be tested for the word. However, this would
greatly affect the time complexity of the algorithm. Even if results are further
improved, this task is likely too complex to get results worth using, as typing data
from free typing is too inconsistent. This attack would work to a certain degree given
that the typist has an extremely consistent typing, but this is not a realistic scenario.
Therefore, the average SSH user should not be worried that their encrypted session
is vulnerable to temporal reconstruction attacks. However, in some cases, there is
still a possibility that the security of SSH decreases because the typing rhythm can
be recognized from Wireshark data. This research does not validate that this is
a vulnerability, but to answer the question of whether leaking the typing rhythm
decreases the security of SSH, more research in this field should be done.

8.2 Future research

It would be interesting to repeat the analysis of this thesis with a more consistent
data set. When collecting typing rhythm, it might be important to distinguish
different languages and different typing styles before adding them to the data set.
Collecting multiple test subjects typing rhythms and comparing them could also
reveal new information about the field of research. Collecting typing rhythm from
experienced typists typing in their mother’s tongue would result in a more consistent
rhythm. An interesting approach would be to only collect bash-typing and use a
word list based on Linux shell commands. Here, the commands could perhaps be
reconstructed. Changing the focus from timing information to patterns could also be
interesting to see if it reveals anything else. Typing data may reveal certain patterns,
and maybe especially when focusing on password typing. Enough typing data on
password typing may show that the SSH channel decreases the security of a password.

Besides text reconstruction, it would be interesting to see if the research of
keystroke dynamics as a way of authentication holds through an SSH session. This
could be used to find anomalies, but also to reveal private information about the
user like gender, age, or technical experiences.

References

[Ale] Baldwin Alex. Great scott! timing attack demo for the everyday webdev - simple
thread. https://www.simplethread.com/great-scott-timing-attack-demo/. (last
visited: April. 19, 2022).

[APW09] Martin R Albrecht, Kenneth G Paterson, and Gaven J Watson. Plaintext recovery
attacks against ssh. In 2009 30th IEEE Symposium on Security and Privacy,
pages 16–26. IEEE, 2009. https://ieeexplore.ieee.org/document/5207634 (last
visited: Jan. 17, 2022.

[BBDSM86] Lalit Bahl, Peter Brown, Peter De Souza, and Robert Mercer. Maximum mutual
information estimation of hidden markov model parameters for speech recognition.
In ICASSP’86. IEEE International Conference on Acoustics, Speech, and Signal
Processing, volume 11, pages 49–52. IEEE, 1986. https://ieeexplore.ieee.org/
document/1169179 (last visited: Jan. 17, 2022).

[Bha10] Harikrishnan Bhanu. Timing side-channel attacks on ssh. Clem-
son University, 2010. https://www.proquest.com/openview/
519c241bca56b2cecdb8e812b8995383/1/advanced (last visited: Jan. 17,
2022).

[BS15] Patrick Bours, Robin Stenvi, Magnus Øverbø, and Lasse Johansen. Im-
portance of a versatile logging tool for behavioural biometrics and con-
tinuous authentication. IGI Global, https://www.igi-global.com/chapter/
importance-of-a-versatile-logging-tool-for-behavioural-biometrics-and-continuous
-authentication-research/164726, 2015. (Last visited May. 3, 2022).

[DJ21] Jurafsky Daniel and H. Martin James. N-gram language models. https://web.
stanford.edu/~jurafsky/slp3/3.pdf, December 2021. (last visited: Feb. 2, 2022).

[Edd04] Sean R Eddy. What is a hidden markov model? Nature biotechnology, 22(10):1315–
1316, 2004. https://www.nature.com/articles/nbt1004-1315.pdf (last visited: Jan.
17, 2022).

[EPI98] AJ Elms, Steve Procter, and John Illingworth. The advantage of using an hmm-
based approach for faxed word recognition. International Journal on Document
Analysis and Recognition, 1(1):18–36, 1998. https://link.springer.com/content/
pdf/10.1007/s100320050003.pdf (last visited: Feb. 20, 2022).

65

https://www.simplethread.com/great-scott-timing-attack-demo/
https://ieeexplore.ieee.org/document/5207634
https://ieeexplore.ieee.org/document/1169179
https://ieeexplore.ieee.org/document/1169179
https://www.proquest.com/openview/519c241bca56b2cecdb8e812b8995383/1/advanced
https://www.proquest.com/openview/519c241bca56b2cecdb8e812b8995383/1/advanced
https://www.igi-global.com/chapter/importance-of-a-versatile-logging-tool-for-behavioural-biometrics-and-continuous
https://www.igi-global.com/chapter/importance-of-a-versatile-logging-tool-for-behavioural-biometrics-and-continuous
-authentication-research/164726
https://web.stanford.edu/~jurafsky/slp3/3.pdf
https://web.stanford.edu/~jurafsky/slp3/3.pdf
https://www.nature.com/articles/nbt1004-1315.pdf
https://link.springer.com/content/pdf/10.1007/s100320050003.pdf
https://link.springer.com/content/pdf/10.1007/s100320050003.pdf

66 REFERENCES

[Eva16] I E Jarbekk Eva. Meld. st. 37 (2015–2016) - regjeringen.no. https://www.
regjeringen.no/no/dokumenter/meld.-st.-37-20152016/id2504831/?ch=6, Febru-
ary 2016. (last visited: Feb. 2, 2022).

[Flu20] Thomas J Flucke. Identification of users via ssh timing attack.
2020. https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=3587&
context=theses (last visited: Feb. 17, 2022).

[GLPS80] R Stockton Gaines, William Lisowski, S James Press, and Norman Shapiro.
Authentication by keystroke timing: Some preliminary results. Technical report,
Rand Corp Santa Monica CA, 1980. https://apps.dtic.mil/sti/pdfs/ADA484022.
pdf (last visited: Jan. 17, 2022).

[gut] Free ebooks | project gutenberg. https://www.gutenberg.org/. The books used are
found with the URL: https://www.gutenberg.org/files/6431/6431-0.txt ranging
from 2-9 (last visited: April 20, 2022).

[Hos] William L. Hosch. Zipf’s law | probability | britannica. https://www.britannica.
com/topic/Zipfs-law. (last visited: April 25, 2022).

[Ilo03] Jarmo Ilonen. Keystroke dynamics. Advanced Topics in Information Processing–
Lecture, Citeseer, pages 03–04, 2003. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.99.9014&rep=rep1&type=pdf (last visited: Jan. 17, 2022).

[JG90] Rick Joyce and Gopal Gupta. Identity authentication based on keystroke latencies.
Communications of the ACM, 33(2):168–176, 1990. https://dl.acm.org/doi/pdf/
10.1145/75577.75582 (last visited: Jan. 17, 2022).

[Joh] Filip Johansen. Fellepp/simulatekeystrokes: Modified version of tobias moe’s
simulatekeystrokes. https://github.com/Fellepp/SimulateKeystrokes. (last visited:
April 20, 2022).

[Joh21] Filip Johansen. Plaintext reconstruction from packet-to-packet latency time of
encrypted ssh-traffic. unpublished, 2021.

[KHF+19] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative execution.
In 40th IEEE Symposium on Security and Privacy (S&P’19), 2019. (last visited:
April. 19, 2022).

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. Meltdown: Reading kernel memory from user space.
In 27th USENIX Security Symposium (USENIX Security 18), 2018. (last visited:
April. 19, 2022).

[LSY01] Michael Lustig, Yonit Shabtai, and Yoram Yihyie. Keystroke attack on ssh. Final
Project Report at Technion IIT, 2001. https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.599.8035&rep=rep1&type=pdf (last visited: Jan. 17, 2022).

https://www.regjeringen.no/no/dokumenter/meld.-st.-37-20152016/id2504831/?ch=6
https://www.regjeringen.no/no/dokumenter/meld.-st.-37-20152016/id2504831/?ch=6
https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=3587&context=theses
https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=3587&context=theses
https://apps.dtic.mil/sti/pdfs/ADA484022.pdf
https://apps.dtic.mil/sti/pdfs/ADA484022.pdf
https://www.gutenberg.org/
https://www.britannica.com/topic/Zipfs-law
https://www.britannica.com/topic/Zipfs-law
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.9014&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.9014&rep=rep1&type=pdf
https://dl.acm.org/doi/pdf/10.1145/75577.75582
https://dl.acm.org/doi/pdf/10.1145/75577.75582
https://github.com/Fellepp/SimulateKeystrokes
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.599.8035&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.599.8035&rep=rep1&type=pdf

REFERENCES 67

[MB00] U-V Marti and Horst Bunke. Handwritten sentence recognition. In Proceedings
15th International Conference on Pattern Recognition. ICPR-2000, volume 3,
pages 463–466. IEEE, 2000. https://ieeexplore.ieee.org/abstract/document/
903584 (last visited: Feb. 20, 2022).

[Moe] Tobias Moe. Simulatekeystrokes · github. https://github.com/tobiasmoe/
SimulateKeystrokes/blob/main/SimulateKeystrokes.cpp. (last visited: April
19, 2022).

[Moe21] Tobias Moe. I still know who you are! soft biometric keystroke dynamics
performance with distorted timing data. Master’s thesis, NTNU, 2021.
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2781218/no.
ntnu%3ainspera%3a77286691%3a32312533.pdf?sequence=1&isAllowed=y (last
visited: Jan. 17, 2022).

[Mon19] John V Monaco. What are you searching for? a remote keylogging attack on search
engine autocomplete. In 28th USENIX Security Symposium (USENIX Security
19), pages 959–976, 2019. https://www.usenix.org/system/files/sec19-monaco.pdf
(last visited: Feb. 20, 2022).

[NE02] Mikael Nilsson and Marcus Ejnarsson. Speech recognition using hidden markov
model. [Online]. Available: https://www.diva-portal.org/smash/get/diva2:
831263/FULLTEXT01.pdf, 2002. (last visited: Jan. 17, 2022).

[Noa07] Andreas Noack. Timing analysis of keystrokes and timing attacks on ssh revisited.
Horst Gortz Institut fur IT-Sicherheit Ruhr-Universitat Bochum, 2007. https://
www.researchgate.net/publication/326294351_seminar_work_paper (last visited:
Jan. 17, 2022).

[SWT01] Dawn Xiaodong Song, David A Wagner, and Xuqing Tian. Timing analysis of
keystrokes and timing attacks on ssh. In USENIX Security Symposium, volume
2001, 2001. https://www.usenix.org/legacy/events/sec2001/full_papers/song/
song.pdf (last visited: Jan. 17, 2022).

[TH99] Scott M Thede and Mary Harper. A second-order hidden markov model for part-
of-speech tagging. In Proceedings of the 37th annual meeting of the Association
for Computational Linguistics, pages 175–182, 1999. https://aclanthology.org/
P99-1023.pdf (last visited: Jan. 17, 2022).

[WB14] Liang Wu and Patrick Bours. Content reconstruction using keystroke dynamics:
Preliminary results. In 2014 Fifth International Conference on Emerging Security
Technologies, pages 13–18. IEEE, 2014. https://ieeexplore.ieee.org/document/
6982767 (last visited: Jan. 17, 2022).

[WSI+01] Fadhli Wong Mohd Hasan Wong, Ainil Sufreena Mohd Supian, Ahmad F Ismail,
Lai Weng Kin, and Ong Cheng Soon. Enhanced user authentication through
typing biometrics with artificial neural networks and k-nearest neighbor algorithm.
In Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems
and Computers (Cat. No. 01CH37256), volume 2, pages 911–915. IEEE, 2001.
https://ieeexplore.ieee.org/document/987628 (last visited: Jan. 17, 2022).

https://ieeexplore.ieee.org/abstract/document/903584
https://ieeexplore.ieee.org/abstract/document/903584
https://github.com/tobiasmoe/SimulateKeystrokes/blob/main/SimulateKeystrokes.cpp
https://github.com/tobiasmoe/SimulateKeystrokes/blob/main/SimulateKeystrokes.cpp
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2781218/no.ntnu%3ainspera%3a77286691%3a32312533.pdf?sequence=1&isAllowed=y
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2781218/no.ntnu%3ainspera%3a77286691%3a32312533.pdf?sequence=1&isAllowed=y
https://www.usenix.org/system/files/sec19-monaco.pdf
https://www.diva-portal.org/smash/get/diva2:831263/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:831263/FULLTEXT01.pdf
https://www.researchgate.net/publication/326294351_seminar_work_paper
https://www.researchgate.net/publication/326294351_seminar_work_paper
https://www.usenix.org/legacy/events/sec2001/full_papers/song/song.pdf
https://www.usenix.org/legacy/events/sec2001/full_papers/song/song.pdf
https://aclanthology.org/P99-1023.pdf
https://aclanthology.org/P99-1023.pdf
https://ieeexplore.ieee.org/document/6982767
https://ieeexplore.ieee.org/document/6982767
https://ieeexplore.ieee.org/document/987628

68 REFERENCES

[YL06] Tatu Ylonen and Chris Lonvick. The secure shell (ssh) transport layer protocol.
Technical report, RFC 4253, January, 2006. https://www.hjp.at/doc/rfc/rfc4253.
html (last visited: Jan. 17, 2022).

[You09] Zhang Youzhi. Research and implementation of part-of-speech tagging based
on hidden markov model. In 2009 Asia-Pacific Conference on Computational
Intelligence and Industrial Applications (PACIIA), volume 2, pages 26–29. IEEE,
2009. https://ieeexplore.ieee.org/document/5406648 (last visited: Jan. 17, 2022).

[Yua10] Lichi Yuan. Improvement for the automatic part-of-speech tagging based on
hidden markov model. In 2010 2nd International Conference on Signal Process-
ing Systems, volume 1, pages V1–744. IEEE, 2010. https://ieeexplore.ieee.org/
document/5555259 (last visited: Jan. 17, 2022).

[ZZT09] Li Zhuang, Feng Zhou, and J Doug Tygar. Keyboard acoustic emanations revisited.
ACM Transactions on Information and System Security (TISSEC), 13(1):1–26,
2009. https://dl.acm.org/doi/pdf/10.1145/1609956.1609959 (last visited: April
19, 2022).

https://www.hjp.at/doc/rfc/rfc4253.html
https://www.hjp.at/doc/rfc/rfc4253.html
https://ieeexplore.ieee.org/document/5406648
https://ieeexplore.ieee.org/document/5555259
https://ieeexplore.ieee.org/document/5555259
https://dl.acm.org/doi/pdf/10.1145/1609956.1609959

AppendixAAppendix A

A.1 Data frames

Keypair Class Mean Latency Standard Deviat ion Latency
a−a 156 .88 30 .83
a−b 158.78 45 .40
a−c 124 .56 41 .55
a−d 96 .46 38 .36
a−e 115 .69 60 .50
a−f 138 .76 39 .47
a−g 132 .54 31 .01
a−h 99 .03 31 .57
a−i 95 .52 36 .88
a−j 99 .00 33 .33
a−k 95 .65 34 .16
a−l 91 .24 31 .80
a−m 88.84 31 .87
a−n 96 .24 31 .92
a−o 167 .80 101 .56
a−p 108.07 37 .45
a−q 70 .00 0 .00
a−r 79 .09 25 .65
a−s 79 .20 32 .26
a−t 102 .61 31 .85
a−u 116.61 47 .01
a−v 145.13 29 .93
a−w 85.33 28 .94
a−x 196.21 31 .06
a−y 122.86 45 .38
a−z 199 .72 33 .55
b−a 96 .00 45 .93

69

70 A. APPENDIX A

b−b 129.61 19 .08
b−c 137 .50 112 .43
b−d 216.85 157 .99
b−e 98 .76 45 .04
b−f 237 .50 28 .99
b−g 303 .75 50 .58
b−h 155.18 68 .32
b−i 102 .55 46 .56
b−j 111 .36 50 .50
b−k 141.78 40 .12
b−l 90 .17 29 .26
b−m 117.50 32 .69
b−n 161.50 55 .24
b−o 98 .67 45 .37
b−p 82 .00 0 .00
b−q 127.14 75 .93
b−r 131 .58 59 .08
b−s 151 .46 62 .23
b−t 133 .28 71 .90
b−u 135.44 55 .10
b−v 135.50 66 .62
b−w 94.67 54 .45
b−y 165.88 51 .66
c−a 103 .44 38 .58
c−b 209.00 149 .91
c−c 145 .67 21 .86
c−d 171.56 24 .94
c−e 84 .89 32 .39
c−f 131 .00 0 .00
c−g 195 .17 19 .33
c−h 95 .08 42 .01
c−i 119 .23 45 .64
c−j 137 .20 96 .83
c−k 89 .51 25 .77
c−l 99 .11 34 .25
c−m 105.50 30 .43
c−n 138.71 81 .63
c−o 92 .01 37 .06
c−p 100.00 51 .82
c−q 199.00 107 .13
c−r 190 .61 24 .16

A.1. DATA FRAMES 71

c−s 100 .89 45 .89
c−t 193 .49 24 .94
c−u 120.71 51 .89
c−v 222.40 117 .72
c−y 115.68 36 .93
d−a 77 .85 24 .50
d−b 147.94 59 .00
d−c 172 .75 23 .66
d−d 150.85 22 .27
d−e 138 .53 26 .81
d−f 173 .44 41 .21
d−g 188 .57 33 .21
d−h 107.75 29 .36
d−i 102 .81 33 .96
d−j 150 .50 66 .11
d−k 86 .34 25 .28
d−l 104 .13 34 .65
d−m 86.62 30 .03
d−n 108.55 36 .28
d−o 94 .87 32 .06
d−p 110.75 56 .69
d−q 684.00 0 .00
d−r 167 .36 22 .90
d−s 82 .42 33 .01
d−t 176 .47 21 .34
d−u 80 .92 32 .07
d−v 192.17 46 .91
d−w 160.31 59 .66
d−y 93 .24 39 .49
d−z 355 .00 0 .00
e−a 81 .44 25 .00
e−b 150.16 49 .60
e−c 133 .46 56 .99
e−d 139.85 27 .84
e−e 158 .93 25 .51
e−f 119 .77 59 .61
e−g 80 .25 27 .22
e−h 124.72 54 .44
e−i 95 .94 33 .83
e−j 102 .27 40 .48
e−k 99 .43 35 .06

72 A. APPENDIX A

e−l 100 .94 34 .73
e−m 96.37 35 .84
e−n 90 .92 30 .63
e−o 117 .76 42 .37
e−p 112.22 54 .60
e−q 138.32 45 .98
e−r 82 .18 22 .66
e−s 175 .94 31 .54
e−t 83 .64 27 .99
e−u 145.26 65 .89
e−v 132.10 37 .70
e−w 164.60 18 .89
e−x 205.90 28 .36
e−y 99 .86 41 .32
e−z 206 .00 0 .00
f−a 96 .86 25 .56
f−c 193 .53 44 .54
f−d 171.17 19 .78
f−e 98 .83 33 .44
f−f 143 .77 23 .09
f−g 217 .50 76 .00
f−h 117.00 23 .04
f−i 97 .02 42 .19
f−j 86 .30 29 .73
f−k 115.00 36 .79
f−l 97 .19 32 .92
f−m 80.00 0 .00
f−n 157.00 72 .91
f−o 96 .14 28 .70
f−p 81 .10 34 .93
f−r 159 .02 24 .85
f−s 89 .50 35 .59
f−t 165 .81 20 .19
f−u 93 .52 36 .29
f−v 156.57 66 .25
f−w 92.50 12 .02
f−x 278.25 187 .30
f−y 155.29 68 .63
g−a 115 .16 27 .98
g−b 157.83 117 .66
g−c 236 .00 43 .84

A.1. DATA FRAMES 73

g−d 195.83 31 .49
g−e 89 .41 27 .33
g−f 150 .00 90 .78
g−g 137 .72 20 .44
g−h 108.89 33 .11
g−i 91 .55 31 .76
g−j 84 .84 27 .57
g−k 122.83 62 .76
g−l 108 .44 37 .82
g−m 169.11 78 .24
g−n 93 .29 28 .07
g−o 98 .63 36 .63
g−p 158.33 98 .25
g−r 157 .40 23 .64
g−s 133 .23 27 .64
g−t 157 .34 20 .93
g−u 110.50 38 .20
g−v 173.11 36 .80
g−w 79.00 0 .00
g−y 122.99 55 .26
h−a 82 .66 28 .68
h−b 106.75 50 .03
h−c 118 .38 36 .55
h−d 142.75 49 .23
h−e 91 .97 30 .21
h−f 264 .15 105 .69
h−g 110 .67 45 .37
h−h 198.24 83 .10
h−i 180 .42 38 .30
h−j 96 .43 37 .41
h−l 182 .29 50 .62
h−m 184.01 65 .72
h−n 188.62 72 .06
h−o 144 .29 69 .02
h−p 136.92 86 .56
h−r 111 .64 47 .89
h−s 110 .94 46 .01
h−t 89 .15 37 .04
h−u 163.69 31 .57
h−v 79 .03 29 .94
h−w 197.00 93 .75

74 A. APPENDIX A

h−x 442.00 217 .79
h−y 179.94 33 .11
i−a 106 .28 43 .16
i−b 140.15 61 .26
i−c 94 .85 36 .12
i−d 97 .47 39 .03
i−e 97 .91 32 .99
i−f 96 .47 36 .90
i−g 85 .31 32 .47
i−h 205.58 72 .62
i−i 176 .92 77 .64
i−j 198 .33 95 .60
i−k 168.76 18 .79
i−l 181 .54 20 .82
i−m 182.88 24 .50
i−n 174.65 21 .09
i−o 160 .03 21 .65
i−p 196.24 27 .66
i−q 129.40 106 .72
i−r 85 .07 36 .49
i−s 91 .53 33 .53
i−t 86 .20 34 .20
i−u 193.43 82 .83
i−v 94 .77 34 .93
i−w 92.67 47 .90
i−x 94 .35 29 .67
i−y 214.12 88 .37
i−z 96 .30 41 .90
j−a 87 .62 29 .34
j−b 171.50 2 .12
j−c 216 .33 228 .19
j−d 172.50 116 .87
j−e 79 .10 29 .09
j−g 159 .31 79 .55
j−h 54 .00 0 .00
j−i 181 .95 23 .61
j−j 224 .67 130 .19
j−k 128.64 64 .03
j−l 200 .50 0 .71
j−n 276.50 155 .89
j−o 181 .99 20 .63

A.1. DATA FRAMES 75

j−p 215.34 40 .93
j−r 183 .56 78 .45
j−s 72 .98 29 .12
j−t 105 .00 32 .53
j−u 168.59 23 .81
j−v 149.71 110 .81
j−y 150.67 22 .81
k−a 99 .68 28 .07
k−b 140.23 30 .92
k−c 130 .71 64 .87
k−d 122.32 70 .12
k−e 77 .83 27 .79
k−f 126 .75 50 .03
k−g 128 .44 44 .53
k−h 203.88 43 .38
k−i 170 .84 25 .44
k−j 155 .76 18 .75
k−k 134.45 14 .45
k−l 170 .26 23 .51
k−m 197.50 32 .98
k−n 182.36 25 .24
k−o 166 .69 21 .25
k−p 219.67 41 .15
k−q 311.00 0 .00
k−r 97 .36 32 .82
k−s 103 .29 37 .80
k−t 85 .17 33 .58
k−u 178.28 21 .19
k−v 94 .78 41 .82
k−w 115.00 1 .41
k−x 135.50 35 .95
k−y 140.64 73 .32
l−a 87 .30 32 .92
l−b 123.25 73 .65
l−c 143 .50 67 .25
l−d 82 .38 30 .30
l−e 83 .21 30 .38
l−f 90 .86 37 .93
l−g 87 .62 34 .81
l−h 164.77 89 .76
l−i 181 .54 21 .79

76 A. APPENDIX A

l−j 176 .67 32 .45
l−k 167.82 23 .08
l−l 136 .83 16 .69
l−m 186.61 34 .25
l−n 214.35 22 .70
l−o 171 .35 26 .24
l−p 183.81 40 .12
l−r 128 .27 58 .84
l−s 100 .95 32 .35
l−t 86 .18 34 .74
l−u 205.04 23 .77
l−v 84 .86 23 .66
l−w 127.43 36 .39
l−y 138.18 74 .07
m−a 88 .00 31 .73
m−b 145.10 55 .54
m−c 162 .33 44 .68
m−d 152.10 66 .52
m−e 82 .82 28 .68
m−f 122 .93 69 .09
m−g 109 .69 58 .81
m−h 201.86 50 .35
m−i 182 .93 19 .75
m−j 192 .60 8 .56
m−k 188.88 25 .87
m−l 187 .09 26 .44
m−m 135.11 14 .87
m−n 185.41 41 .81
m−o 192 .76 25 .24
m−p 197.40 22 .73
m−q 390.00 0 .00
m−r 122 .50 78 .15
m−s 104 .43 40 .88
m−t 100 .89 38 .85
m−u 196.66 27 .09
m−v 119.39 71 .50
m−w 137.00 0 .00
m−x 149.00 0 .00
m−y 148.03 69 .82
m−z 138 .00 0 .00
n−a 89 .94 34 .39

A.1. DATA FRAMES 77

n−b 169.53 54 .88
n−c 98 .78 33 .77
n−d 78 .54 27 .42
n−e 81 .68 30 .42
n−f 103 .20 36 .28
n−g 72 .13 24 .76
n−h 206.56 62 .01
n−i 183 .76 22 .73
n−j 185 .50 32 .98
n−k 177.83 20 .93
n−l 198 .28 25 .07
n−m 208.86 31 .72
n−n 132.61 16 .97
n−o 199 .42 25 .38
n−p 207.09 45 .86
n−q 172.33 59 .52
n−r 198 .75 81 .67
n−s 93 .86 37 .05
n−t 89 .44 33 .52
n−u 183.47 26 .84
n−v 98 .07 52 .51
n−w 117.00 54 .43
n−x 98 .25 39 .91
n−y 166.12 57 .69
n−z 141 .75 104 .04
o−a 101 .75 41 .23
o−b 104.32 40 .34
o−c 103 .66 31 .87
o−d 88 .09 36 .14
o−e 81 .90 28 .37
o−f 89 .61 30 .86
o−g 82 .42 30 .28
o−h 180.93 49 .80
o−i 178 .73 44 .32
o−j 207 .05 40 .00
o−k 168.30 20 .41
o−l 170 .81 23 .90
o−m 178.78 18 .66
o−n 187.94 21 .04
o−o 138 .93 18 .95
o−p 179.89 25 .81

78 A. APPENDIX A

o−r 88 .75 29 .75
o−s 98 .86 41 .22
o−t 87 .47 37 .24
o−u 186.94 23 .26
o−v 90 .39 38 .56
o−w 84.87 32 .25
o−x 107.00 46 .79
o−y 170.12 63 .27
o−z 188 .00 173 .95
p−a 87 .73 34 .42
p−b 182.17 92 .24
p−c 89 .30 33 .59
p−d 88 .51 46 .95
p−e 96 .30 36 .01
p−f 102 .54 36 .23
p−g 76 .05 29 .25
p−h 163.56 69 .60
p−i 198 .20 28 .21
p−j 200 .45 15 .66
p−k 208.88 32 .94
p−l 174 .49 24 .94
p−m 191.44 24 .58
p−n 208.94 19 .73
p−o 177 .54 28 .99
p−p 133.09 15 .88
p−r 96 .19 38 .64
p−s 92 .72 39 .53
p−t 98 .82 48 .48
p−u 207.25 30 .66
p−v 149.18 87 .01
p−w 104.00 0 .00
p−x 110.81 58 .18
p−y 119.46 59 .32
q−a 466 .50 21 .92
q−e 193 .67 32 .33
q−i 100 .60 23 .74
q−l 81 .84 24 .35
q−n 393.00 366 .28
q−o 224 .00 0 .00
q−r 248 .83 82 .53
q−u 109.54 41 .65

A.1. DATA FRAMES 79

q−w 85.00 0 .00
r−a 81 .46 25 .89
r−b 142.77 64 .03
r−c 188 .75 26 .28
r−d 161.20 21 .77
r−e 89 .31 27 .65
r−f 161 .37 28 .87
r−g 160 .95 22 .74
r−h 141.92 66 .31
r−i 102 .02 34 .31
r−j 111 .59 46 .51
r−k 91 .94 33 .24
r−l 101 .67 38 .74
r−m 92.83 30 .48
r−n 92 .32 32 .38
r−o 90 .47 30 .23
r−p 99 .69 45 .03
r−q 198.75 88 .17
r−r 145 .18 24 .32
r−s 104 .38 32 .01
r−t 151 .42 24 .32
r−u 90 .62 34 .30
r−v 186.85 34 .64
r−w 152.31 70 .71
r−x 193.00 0 .00
r−y 105.02 47 .62
r−z 119 .47 32 .71
s−a 91 .44 34 .86
s−b 224.10 115 .72
s−c 140 .79 67 .64
s−d 115.88 72 .02
s−e 136 .91 50 .55
s−f 170 .85 75 .55
s−g 163 .89 72 .10
s−h 100.95 44 .42
s−i 97 .15 32 .54
s−j 91 .54 41 .53
s−k 86 .46 31 .13
s−l 92 .35 36 .02
s−m 108.18 52 .84
s−n 109.86 52 .53

80 A. APPENDIX A

s−o 78 .94 30 .37
s−p 105.35 49 .69
s−q 106.02 55 .58
s−r 120 .50 63 .29
s−s 157 .63 22 .32
s−t 102 .50 35 .34
s−u 107.45 53 .96
s−v 156.24 36 .64
s−w 176.49 35 .69
s−x 340.00 0 .00
s−y 118.82 45 .56
t−a 90 .83 25 .50
t−b 201.52 60 .40
t−c 199 .65 26 .70
t−d 210.16 40 .07
t−e 88 .35 25 .17
t−f 188 .31 44 .53
t−g 178 .45 56 .10
t−h 94 .68 37 .31
t−i 84 .68 31 .87
t−j 108 .79 36 .97
t−k 119.54 47 .07
t−l 115 .00 31 .12
t−m 107.95 41 .27
t−n 103.24 46 .08
t−o 90 .12 34 .79
t−p 128.48 58 .00
t−r 149 .61 24 .35
t−s 113 .87 35 .09
t−t 139 .42 20 .41
t−u 100.94 34 .43
t−v 193.85 24 .05
t−w 129.48 53 .36
t−x 161.00 35 .13
t−y 149.12 36 .80
t−z 95 .60 7 .77
u−a 101 .04 37 .50
u−b 132.93 58 .05
u−c 105 .74 31 .56
u−d 106.97 42 .69
u−e 96 .20 42 .54

A.1. DATA FRAMES 81

u−f 86 .82 35 .92
u−g 103 .05 36 .22
u−h 182.71 15 .38
u−i 184 .53 37 .95
u−j 195 .50 33 .27
u−k 181.59 21 .63
u−l 204 .09 21 .47
u−m 190.42 25 .96
u−n 175.14 20 .47
u−o 193 .89 55 .90
u−p 221.84 25 .19
u−q 101.86 59 .10
u−r 92 .32 36 .06
u−s 90 .38 31 .46
u−t 85 .82 32 .85
u−u 175.30 72 .08
u−v 266.60 96 .31
u−w 219.00 0 .00
u−x 82 .53 21 .66
u−y 245.33 49 .57
u−z 196 .67 22 .19
v−a 128 .48 27 .88
v−b 115.16 54 .16
v−c 173 .00 0 .00
v−d 181.10 29 .63
v−e 100 .23 34 .09
v−f 174 .43 16 .24
v−g 136 .21 61 .77
v−h 125.35 80 .61
v−i 96 .02 34 .25
v−j 94 .67 36 .04
v−k 106.50 40 .32
v−l 104 .17 32 .93
v−m 89.94 28 .97
v−n 96 .74 36 .16
v−o 113 .40 32 .15
v−p 144.78 46 .44
v−r 191 .21 33 .12
v−s 170 .19 55 .83
v−t 206 .09 36 .01
v−u 110.58 36 .99

82 A. APPENDIX A

v−v 284.43 219 .53
v−w 246.33 114 .43
v−y 75 .67 31 .44
w−a 100 .54 34 .32
w−c 210 .56 41 .20
w−d 83 .41 23 .04
w−e 171 .32 41 .31
w−f 177 .67 50 .20
w−g 174 .00 0 .00
w−h 116.08 48 .09
w−i 96 .15 41 .26
w−j 151 .00 0 .00
w−k 148.00 39 .95
w−l 104 .67 31 .12
w−n 103.55 32 .58
w−o 96 .11 32 .68
w−p 374.00 332 .34
w−q 93 .83 63 .61
w−r 135 .71 44 .24
w−s 180 .28 24 .86
w−t 144 .32 46 .84
w−u 164.00 0 .00
w−v 281.75 260 .37
w−w 167.20 13 .99
w−x 231.00 0 .00
w−y 130.50 96 .87
x−a 109 .92 26 .59
x−b 323.00 0 .00
x−c 142 .36 76 .28
x−e 180 .02 28 .55
x−f 138 .00 0 .00
x−g 170 .00 0 .00
x−i 116 .51 61 .69
x−k 91 .50 13 .44
x−l 104 .00 0 .00
x−m 144.00 59 .34
x−o 60 .67 31 .18
x−p 107.14 32 .13
x−r 301 .00 0 .00
x−s 232 .67 82 .13
x−t 89 .08 26 .85

A.1. DATA FRAMES 83

x−v 219.00 0 .00
x−x 158.33 18 .43
x−y 154.43 57 .31
y−a 112 .48 50 .49
y−b 165.14 58 .26
y−c 151 .07 81 .89
y−d 124.65 55 .67
y−e 87 .45 31 .83
y−f 108 .82 51 .53
y−g 121 .67 53 .20
y−h 254.43 69 .59
y−i 157 .21 41 .70
y−k 175.78 53 .60
y−l 142 .16 69 .41
y−m 195.95 16 .19
y−n 183.04 21 .12
y−o 101 .50 56 .42
y−p 142.01 77 .88
y−q 132.33 78 .23
y−r 100 .37 43 .06
y−s 119 .99 47 .97
y−t 136 .50 48 .89
y−u 152.83 118 .55
y−v 220.20 247 .97
y−w 185.75 110 .48
y−y 147.65 35 .38
y−z 133 .00 55 .68
z−a 182 .39 28 .51
z−e 90 .63 40 .61
z−g 433 .00 0 .00
z−h 68 .00 0 .00
z−i 90 .12 32 .62
z−j 301 .00 0 .00
z−l 114 .00 0 .00
z−o 100 .41 34 .17
z−t 150 .00 72 .12
z−x 48 .00 0 .00
z−y 105.50 48 .08
z−z 148 .10 21 .54

Listing A.1: Data frame for all key pair classes

84 A. APPENDIX A

Keypair Class Mean Latency Standard Deviat ion Latency
a−a−a 269 .62 107 .83
a−a−b 172.67 37 .10
a−a−c 174 .62 62 .89
a−a−d 127.60 51 .59
a−a−f 233 .00 0 .00
a−a−g 144 .67 26 .10
a−a−h 188.56 70 .86
a−a−i 179 .43 92 .94
a−a−j 421 .00 0 .00
a−a−k 199.03 37 .26
a−a−l 145 .57 73 .13
a−a−m 113.56 21 .27
a−a−n 149.57 38 .48
a−a−p 106.44 15 .60
a−a−r 129 .72 45 .69
a−a−s 141 .13 73 .74
a−a−t 157 .52 80 .14
a−a−u 120.14 16 .12
a−a−v 220.78 106 .73
a−a−w 94.00 38 .18
a−a−y 659.00 0 .00
a−b−a 225 .97 70 .43
a−b−b 287.56 72 .17
a−b−c 165 .00 0 .00
a−b−d 288.80 192 .03
a−b−e 249 .22 57 .66
a−b−h 211.67 96 .07
a−b−i 261 .64 34 .64
a−b−k 306.00 53 .74
a−b−l 249 .82 44 .84
a−b−m 217.00 0 .00
a−b−n 198.50 26 .16
a−b−o 264 .62 47 .70
a−b−p 237.33 71 .57
a−b−r 206 .33 86 .74
a−b−s 288 .88 93 .96
a−b−t 281 .50 28 .99
a−b−u 301.60 48 .75
a−b−v 286.00 109 .71
a−b−w 179.00 0 .00

A.1. DATA FRAMES 85

a−b−y 339.50 125 .16
a−c−a 124 .25 32 .20
a−c−b 225.33 156 .10
a−c−c 265 .96 61 .25
a−c−d 167.25 73 .18
a−c−e 188 .82 33 .48
a−c−g 268 .00 0 .00
a−c−h 200.01 48 .56
a−c−i 278 .00 50 .91
a−c−j 378 .50 136 .47
a−c−k 198.42 43 .62
a−c−l 217 .50 35 .11
a−c−m 173.33 21 .39
a−c−n 187.00 0 .00
a−c−o 213 .76 71 .33
a−c−p 141.00 21 .21
a−c−r 223 .00 62 .69
a−c−s 170 .80 37 .68
a−c−t 339 .09 40 .32
a−c−u 300.50 67 .18
a−c−v 194.00 113 .03
a−c−w 112.00 0 .00
a−c−x 154.00 0 .00
a−c−y 181.50 35 .64
a−d−a 156 .94 55 .40
a−d−b 284.00 0 .00
a−d−c 174 .50 17 .68
a−d−d 232.19 35 .24
a−d−e 230 .78 48 .69
a−d−f 204 .67 6 .66
a−d−g 167 .67 66 .58
a−d−h 282.00 4 .24
a−d−i 221 .00 56 .24
a−d−j 191 .00 75 .78
a−d−k 108.00 52 .33
a−d−l 197 .50 42 .01
a−d−m 164.13 52 .66
a−d−n 190.44 87 .54
a−d−o 202 .32 76 .83
a−d−p 243.67 226 .13
a−d−r 261 .06 52 .53

86 A. APPENDIX A

a−d−s 172 .28 47 .45
a−d−t 260 .00 124 .24
a−d−u 210.33 84 .75
a−d−v 281.67 66 .32
a−d−w 259.00 0 .00
a−d−y 184.73 39 .07
a−e−a 152 .82 59 .04
a−e−c 244 .00 0 .00
a−e−d 203.00 46 .15
a−e−e 165 .50 75 .12
a−e−g 121 .00 20 .26
a−e−k 181.50 91 .22
a−e−l 198 .89 86 .36
a−e−m 180.43 52 .43
a−e−n 180.34 54 .05
a−e−p 370.00 0 .00
a−e−r 149 .70 55 .52
a−e−s 289 .17 72 .47
a−e−t 219 .21 100 .65
a−e−u 328.00 59 .40
a−e−v 159.25 88 .47
a−e−x 215.00 19 .97
a−e−y 188.50 150 .61
a−e−z 63 .00 0 .00
a−f−a 197 .14 89 .48
a−f−c 512 .00 97 .49
a−f−d 299.00 0 .00
a−f−e 223 .36 42 .12
a−f−f 283 .26 30 .98
a−f−g 176 .25 45 .07
a−f−i 182 .92 49 .95
a−f−l 148 .33 107 .91
a−f−m 161.00 0 .00
a−f−o 181 .67 45 .43
a−f−p 223.00 0 .00
a−f−r 281 .00 83 .70
a−f−s 264 .00 0 .00
a−f−t 295 .29 59 .22
a−f−v 165.00 0 .00
a−g−a 215 .98 73 .60
a−g−b 340.00 0 .00

A.1. DATA FRAMES 87

a−g−d 279.19 53 .98
a−g−e 212 .50 40 .50
a−g−f 170 .67 20 .11
a−g−g 257 .26 57 .26
a−g−h 644.00 0 .00
a−g−i 220 .74 72 .02
a−g−j 140 .50 24 .75
a−g−l 243 .10 84 .83
a−g−m 266.50 62 .93
a−g−n 220.11 38 .24
a−g−o 232 .33 67 .96
a−g−r 263 .95 63 .20
a−g−s 247 .16 36 .99
a−g−t 287 .95 43 .27
a−g−u 195.75 49 .90
a−g−v 127.50 21 .92
a−g−y 208.50 33 .23
a−h−a 189 .66 40 .54
a−h−c 143 .00 0 .00
a−h−e 129 .27 43 .01
a−h−g 89 .00 43 .84
a−h−h 143.25 59 .26
a−h−i 377 .00 0 .00
a−h−j 177 .00 127 .37
a−h−l 320 .00 36 .23
a−h−m 229.67 78 .50
a−h−n 258.00 43 .21
a−h−o 350 .00 8 .49
a−h−r 250 .33 191 .69
a−h−s 281 .50 77 .07
a−h−t 217 .00 57 .98
a−h−u 204.50 17 .68
a−h−v 125.38 54 .36
a−i−a 153 .33 66 .15
a−i−b 187.00 46 .67
a−i−c 186 .38 50 .70
a−i−d 188.53 50 .25
a−i−e 681 .00 0 .00
a−i−g 210 .22 21 .15
a−i−i 63 .00 5 .70
a−i−k 206.50 14 .85

88 A. APPENDIX A

a−i−l 272 .30 50 .49
a−i−m 307.62 65 .24
a−i−n 259.46 39 .65
a−i−o 265 .00 0 .00
a−i−p 217.00 0 .00
a−i−r 219 .73 68 .34
a−i−s 196 .60 54 .82
a−i−t 175 .59 58 .52
a−i−v 182.33 77 .26
a−i−y 88 .00 0 .00
a−j−a 151 .04 50 .61
a−j−e 151 .25 62 .47
a−j−i 347 .67 196 .06
a−j−j 64 .00 0 .00
a−j−k 294.00 0 .00
a−j−n 231.00 0 .00
a−j−o 283 .20 44 .14
a−j−p 247.00 0 .00
a−j−s 109 .67 74 .81
a−j−u 201.33 9 .07
a−k−a 155 .84 37 .50
a−k−c 185 .78 31 .16
a−k−d 87 .00 0 .00
a−k−e 194 .23 39 .93
a−k−g 238 .82 39 .47
a−k−h 270.00 129 .10
a−k−i 282 .22 39 .99
a−k−j 217 .57 70 .23
a−k−k 230.18 32 .55
a−k−l 202 .23 61 .05
a−k−m 233.00 0 .00
a−k−n 263.71 41 .28
a−k−o 242 .72 70 .28
a−k−p 242.00 156 .98
a−k−r 193 .67 98 .51
a−k−s 200 .99 41 .42
a−k−t 180 .53 36 .00
a−k−u 292.29 45 .15
a−k−y 295.50 149 .20
a−l−a 159 .28 60 .04
a−l−b 269.58 88 .10

A.1. DATA FRAMES 89

a−l−c 228 .56 78 .24
a−l−d 196.42 55 .17
a−l−e 200 .75 43 .87
a−l−f 157 .44 45 .52
a−l−g 201 .03 47 .27
a−l−h 310.00 100 .55
a−l−i 270 .31 60 .79
a−l−j 265 .67 77 .44
a−l−k 206.90 71 .00
a−l−l 219 .52 37 .69
a−l−m 220.31 71 .83
a−l−n 172.56 75 .31
a−l−o 200 .76 65 .41
a−l−p 299.50 131 .04
a−l−r 197 .00 108 .58
a−l−s 201 .44 60 .60
a−l−t 194 .75 40 .73
a−l−u 275.47 52 .55
a−l−v 210.94 34 .21
a−l−w 281.00 164 .82
a−l−y 340.75 47 .79
a−m−a 171 .40 58 .38
a−m−b 271.23 66 .49
a−m−c 312 .00 0 .00
a−m−d 159.50 147 .79
a−m−e 193 .27 32 .50
a−m−f 194 .11 92 .22
a−m−g 124 .00 52 .33
a−m−h 121.00 0 .00
a−m−i 274 .74 32 .58
a−m−k 233.00 105 .06
a−m−l 249 .41 22 .11
a−m−m 216.15 31 .17
a−m−n 247.86 74 .54
a−m−o 329 .75 77 .81
a−m−p 287.07 46 .34
a−m−r 143 .20 50 .19
a−m−s 194 .10 42 .44
a−m−t 174 .81 32 .24
a−m−u 397.14 143 .39
a−m−v 156.00 77 .67

90 A. APPENDIX A

a−m−y 338.00 93 .34
a−n−a 179 .18 62 .17
a−n−b 253.94 70 .65
a−n−c 188 .21 46 .00
a−n−d 183.62 38 .37
a−n−e 194 .05 42 .95
a−n−f 113 .67 10 .97
a−n−g 182 .10 37 .15
a−n−h 219.69 97 .85
a−n−i 297 .26 60 .36
a−n−j 453 .33 275 .25
a−n−k 262.35 44 .57
a−n−l 276 .00 34 .53
a−n−m 203.60 98 .89
a−n−n 233.06 40 .16
a−n−o 280 .91 85 .49
a−n−p 312.00 0 .00
a−n−r 223 .27 108 .89
a−n−s 190 .20 35 .40
a−n−t 183 .59 44 .95
a−n−u 265.19 47 .74
a−n−v 152.67 27 .06
a−n−w 161.50 51 .62
a−n−x 153.00 0 .00
a−n−y 240.11 48 .40
a−o−a 110 .50 19 .09
a−o−b 302.00 0 .00
a−o−d 228.00 0 .00
a−o−g 181 .00 141 .23
a−o−i 65 .00 0 .00
a−o−k 255.00 0 .00
a−o−l 214 .50 14 .53
a−o−m 175.00 97 .62
a−o−n 222.00 36 .77
a−o−o 136 .33 120 .98
a−o−p 954.00 0 .00
a−o−r 73 .00 7 .07
a−o−s 223 .20 73 .48
a−o−t 150 .80 44 .62
a−o−u 236.00 16 .97
a−o−w 114.00 0 .00

A.1. DATA FRAMES 91

a−p−a 161 .56 40 .38
a−p−c 223 .00 136 .97
a−p−d 126.00 0 .00
a−p−e 217 .68 35 .81
a−p−g 279 .50 180 .18
a−p−h 236.56 49 .50
a−p−i 303 .40 37 .62
a−p−k 223.00 158 .50
a−p−l 290 .62 59 .41
a−p−m 130.00 29 .70
a−p−o 239 .95 71 .58
a−p−p 245.53 48 .26
a−p−r 244 .80 90 .90
a−p−s 224 .31 98 .18
a−p−t 212 .86 51 .74
a−q−l 152 .00 0 .00
a−r−a 187 .92 41 .34
a−r−b 195.00 65 .12
a−r−c 280 .57 40 .06
a−r−d 246.16 36 .08
a−r−e 179 .31 35 .23
a−r−f 125 .25 30 .34
a−r−g 246 .49 68 .18
a−r−h 198.14 87 .50
a−r−i 183 .50 50 .49
a−r−j 143 .00 34 .53
a−r−k 156.60 45 .66
a−r−l 161 .29 41 .11
a−r−m 159.44 54 .23
a−r−n 169.85 36 .59
a−r−o 180 .40 42 .76
a−r−p 222.20 109 .37
a−r−r 248 .70 90 .12
a−r−s 215 .04 58 .42
a−r−t 229 .89 36 .11
a−r−u 111.50 7 .78
a−r−v 235.43 89 .66
a−r−w 253.00 110 .31
a−r−y 156.75 42 .04
a−r−z 241 .10 19 .16
a−s−a 173 .73 110 .07

92 A. APPENDIX A

a−s−b 114.00 35 .36
a−s−c 229 .75 72 .10
a−s−d 128.68 30 .56
a−s−e 208 .86 68 .58
a−s−f 325 .80 307 .32
a−s−g 313 .40 300 .63
a−s−h 162.86 43 .47
a−s−i 209 .92 77 .89
a−s−j 153 .39 36 .64
a−s−k 156.90 48 .21
a−s−l 150 .30 60 .30
a−s−m 247.00 148 .07
a−s−n 226.00 99 .03
a−s−o 163 .81 66 .66
a−s−p 180.00 84 .24
a−s−r 161 .86 36 .57
a−s−s 244 .06 34 .94
a−s−t 176 .99 40 .41
a−s−u 215.67 71 .62
a−s−v 327.60 232 .35
a−s−w 359.50 213 .60
a−s−x 275.75 249 .44
a−s−y 224.75 79 .82
a−t−a 204 .50 41 .77
a−t−b 304.50 33 .23
a−t−c 292 .36 61 .74
a−t−d 264.75 155 .74
a−t−e 200 .90 38 .65
a−t−f 400 .50 140 .89
a−t−h 192.32 67 .87
a−t−i 186 .83 41 .18
a−t−j 245 .00 0 .00
a−t−k 238.62 103 .96
a−t−l 164 .20 39 .27
a−t−m 176.17 58 .49
a−t−n 251.92 96 .46
a−t−o 206 .37 56 .82
a−t−p 220.25 83 .97
a−t−r 229 .46 39 .97
a−t−s 216 .60 44 .74
a−t−t 239 .20 37 .37

A.1. DATA FRAMES 93

a−t−u 215.45 59 .08
a−t−v 435.00 0 .00
a−t−w 280.50 159 .10
a−t−y 331.00 0 .00
a−u−a 112 .82 37 .33
a−u−c 555 .33 317 .09
a−u−d 240.51 82 .91
a−u−e 188 .00 44 .06
a−u−f 266 .00 0 .00
a−u−g 216 .79 67 .09
a−u−i 275 .33 133 .75
a−u−j 917 .00 0 .00
a−u−l 251 .83 23 .52
a−u−m 300.00 21 .21
a−u−n 250.50 60 .86
a−u−p 216.00 43 .43
a−u−r 196 .93 77 .56
a−u−s 218 .35 71 .81
a−u−t 214 .37 45 .91
a−u−u 252.50 203 .96
a−u−w 609.00 0 .00
a−v−a 201 .97 61 .32
a−v−b 263.78 72 .92
a−v−c 445 .00 0 .00
a−v−d 318.00 0 .00
a−v−e 218 .90 39 .38
a−v−f 395 .50 62 .93
a−v−g 293 .33 77 .17
a−v−h 285.67 47 .69
a−v−i 307 .59 118 .56
a−v−k 418.00 177 .41
a−v−l 272 .36 50 .20
a−v−m 206.50 12 .02
a−v−n 211.58 30 .21
a−v−o 256 .12 91 .85
a−v−p 257.00 101 .47
a−v−r 319 .67 119 .18
a−v−s 334 .11 62 .31
a−v−t 331 .14 47 .23
a−v−v 224.00 77 .08
a−v−y 220.20 18 .63

94 A. APPENDIX A

a−w−a 178 .00 79 .00
a−w−b 115.00 0 .00
a−w−c 90 .50 47 .38
a−w−e 152 .00 50 .58
a−w−f 148 .33 72 .29
a−w−g 115 .50 21 .79
a−w−h 105.00 49 .50
a−w−l 269 .33 56 .59
a−w−m 96.00 7 .07
a−w−n 230.75 132 .06
a−w−o 204 .00 0 .00
a−w−p 136.00 0 .00
a−w−r 128 .50 21 .92
a−w−s 248 .30 79 .49
a−w−w 101.00 0 .00
a−w−y 602.00 0 .00
a−x−e 474 .25 41 .46
a−x−h 204.00 0 .00
a−x−i 272 .18 44 .13
a−x−o 284 .00 0 .00
a−x−p 122.00 0 .00
a−x−t 140 .50 94 .05
a−x−w 212.33 48 .01
a−x−x 365.86 43 .25
a−y−a 169 .75 65 .10
a−y−b 373.50 174 .66
a−y−c 150 .00 0 .00
a−y−d 154.50 60 .65
a−y−e 239 .93 50 .11
a−y−f 104 .50 43 .13
a−y−i 255 .40 59 .67
a−y−l 300 .67 170 .39
a−y−n 267.00 0 .00
a−y−o 347 .60 225 .26
a−y−p 88 .00 11 .31
a−y−r 127 .00 0 .00
a−y−s 220 .55 73 .20
a−y−u 346.00 312 .54
a−y−w 285.00 135 .76
a−y−y 184.00 0 .00
a−z−a 382 .00 164 .16

A.1. DATA FRAMES 95

a−z−e 425 .67 258 .61
a−z−i 245 .00 22 .72
a−z−l 149 .00 0 .00
a−z−o 321 .33 87 .12
a−z−r 354 .00 0 .00
a−z−z 361 .38 14 .46
b−a−a 130 .75 50 .99
b−a−b 313.84 74 .63
b−a−c 221 .90 62 .68
b−a−d 171.71 50 .69
b−a−e 216 .00 44 .30
b−a−g 229 .91 77 .15
b−a−h 424.20 327 .85
b−a−i 240 .88 32 .93
b−a−j 203 .00 0 .00
b−a−k 227.52 31 .56
b−a−l 219 .79 66 .30
b−a−m 176.00 50 .29
b−a−n 214.64 47 .97
b−a−o 304 .00 202 .23
b−a−p 118.00 0 .00
b−a−r 148 .22 37 .53
b−a−s 165 .76 65 .18
b−a−t 223 .88 47 .55
b−a−u 175.00 57 .98
b−a−v 326.50 2 .12
b−b−a 164 .60 54 .10
b−b−b 119.75 59 .06
b−b−d 68 .00 8 .49
b−b−e 252 .64 65 .34
b−b−h 148.00 0 .00
b−b−i 193 .65 78 .80
b−b−l 182 .67 96 .38
b−b−n 62 .00 1 .41
b−b−o 202 .33 15 .04
b−b−q 256.00 0 .00
b−b−r 246 .40 129 .96
b−b−s 204 .50 55 .38
b−b−t 66 .00 0 .00
b−b−u 231.80 68 .87
b−b−v 212.00 33 .94

96 A. APPENDIX A

b−b−y 280.83 140 .89
b−c−a 143 .00 0 .00
b−c−c 73 .00 0 .00
b−c−d 67 .00 0 .00
b−c−e 109 .00 0 .00
b−c−i 221 .00 42 .43
b−c−k 153.00 0 .00
b−c−s 502 .00 0 .00
b−d−a 426 .40 258 .05
b−d−b 142.00 19 .80
b−d−d 359.00 0 .00
b−d−e 155 .28 19 .08
b−d−i 156 .00 0 .00
b−d−m 75.00 0 .00
b−d−n 139.50 38 .89
b−d−o 223 .00 0 .00
b−d−r 203 .75 96 .73
b−d−u 124.00 0 .00
b−e−a 210 .00 88 .28
b−e−b 180.75 74 .73
b−e−c 242 .78 90 .13
b−e−d 199.86 43 .32
b−e−e 272 .85 74 .27
b−e−f 251 .36 120 .56
b−e−g 186 .32 48 .86
b−e−h 222.32 63 .98
b−e−i 225 .57 52 .93
b−e−k 223.20 98 .28
b−e−l 227 .58 55 .21
b−e−m 106.67 22 .12
b−e−n 195.52 43 .69
b−e−o 374 .00 0 .00
b−e−p 189.67 140 .56
b−e−q 357.00 0 .00
b−e−r 190 .63 66 .05
b−e−s 240 .19 46 .12
b−e−t 179 .33 42 .48
b−e−v 241.00 110 .25
b−e−w 139.00 0 .00
b−e−y 216.00 0 .00
b−f−d 75 .00 0 .00

A.1. DATA FRAMES 97

b−f−e 280 .00 0 .00
b−f−f 251 .00 0 .00
b−f−i 121 .00 27 .48
b−f−l 386 .00 0 .00
b−f−o 113 .33 24 .70
b−f−r 194 .67 13 .80
b−f−u 148.00 0 .00
b−g−a 161 .50 80 .96
b−g−e 338 .00 0 .00
b−g−f 67 .00 0 .00
b−g−i 130 .00 0 .00
b−g−l 603 .00 0 .00
b−g−o 205 .33 190 .79
b−g−r 188 .00 0 .00
b−g−u 100.00 0 .00
b−h−a 176 .25 80 .78
b−h−e 95 .50 40 .31
b−h−j 150 .33 103 .74
b−h−o 174 .50 72 .83
b−h−t 111 .00 0 .00
b−h−v 92 .00 37 .29
b−h−y 65 .00 0 .00
b−i−a 193 .11 25 .58
b−i−b 259.91 106 .14
b−i−c 253 .67 51 .01
b−i−d 342.00 141 .42
b−i−e 202 .33 111 .06
b−i−f 260 .50 210 .01
b−i−g 204 .29 44 .86
b−i−h 100.00 0 .00
b−i−k 220.00 0 .00
b−i−l 263 .23 35 .15
b−i−m 182.00 91 .92
b−i−n 277.21 48 .30
b−i−o 341 .81 109 .77
b−i−p 214.00 0 .00
b−i−r 253 .00 117 .26
b−i−s 306 .83 164 .47
b−i−t 223 .27 43 .87
b−i−u 164.00 0 .00
b−i−v 303.00 105 .70

98 A. APPENDIX A

b−j−e 201 .94 60 .24
b−j−j 215 .00 0 .00
b−j−k 433.00 0 .00
b−j−o 138 .00 0 .00
b−j−r 106 .75 23 .89
b−k−a 188 .83 32 .97
b−k−c 151 .00 0 .00
b−k−e 126 .00 25 .56
b−k−k 135.00 0 .00
b−k−m 672.00 0 .00
b−k−n 242.00 0 .00
b−k−o 141 .50 111 .02
b−k−p 188.00 0 .00
b−l−a 203 .13 49 .89
b−l−b 255.33 139 .22
b−l−d 159.75 71 .50
b−l−e 188 .63 23 .95
b−l−h 236.00 0 .00
b−l−i 258 .54 35 .36
b−l−l 165 .20 82 .02
b−l−m 192.00 147 .08
b−l−o 264 .10 36 .68
b−l−p 405.67 323 .32
b−l−r 170 .89 83 .76
b−l−s 158 .00 42 .64
b−l−t 113 .30 23 .25
b−l−u 294.36 32 .42
b−l−v 74 .00 0 .00
b−l−y 245.67 26 .50
b−m−a 103 .25 18 .57
b−m−b 64 .50 0 .71
b−m−e 124 .67 29 .54
b−m−l 166 .00 0 .00
b−m−m 123.00 56 .31
b−m−o 221 .00 0 .00
b−m−s 83 .00 0 .00
b−m−u 234.50 4 .95
b−m−y 228.14 71 .63
b−n−a 124 .50 17 .86
b−n−b 126.33 70 .30
b−n−d 148.17 91 .01

A.1. DATA FRAMES 99

b−n−e 311 .80 276 .37
b−n−i 63 .00 0 .00
b−n−k 65 .00 0 .00
b−n−n 140.25 62 .11
b−n−o 270 .25 80 .64
b−n−r 125 .00 11 .31
b−n−t 335 .00 0 .00
b−n−u 164.00 0 .00
b−n−y 254.67 24 .68
b−o−a 228 .17 69 .61
b−o−b 149.88 41 .19
b−o−d 245.82 34 .38
b−o−e 216 .65 53 .84
b−o−f 195 .00 0 .00
b−o−h 314.00 0 .00
b−o−i 255 .56 74 .05
b−o−k 237.10 27 .10
b−o−l 243 .90 35 .82
b−o−m 250.67 26 .72
b−o−n 337.00 308 .37
b−o−o 202 .88 35 .03
b−o−p 195.00 158 .39
b−o−r 218 .21 36 .61
b−o−s 257 .88 54 .39
b−o−t 220 .60 47 .73
b−o−u 275.55 52 .36
b−o−v 210.07 78 .24
b−o−w 299.20 123 .21
b−o−x 204.08 44 .35
b−o−y 317.09 68 .70
b−p−c 100 .00 0 .00
b−p−i 268 .00 0 .00
b−p−l 221 .00 0 .00
b−p−n 279.00 0 .00
b−p−r 119 .00 33 .10
b−p−u 255.00 7 .07
b−p−y 100.00 0 .00
b−q−b 93 .00 0 .00
b−q−j 159 .00 0 .00
b−q−q 184.00 0 .00
b−q−u 294.00 100 .35

100 A. APPENDIX A

b−r−a 153 .15 49 .89
b−r−b 200.50 64 .35
b−r−d 155.00 73 .54
b−r−e 212 .46 75 .89
b−r−i 262 .50 50 .77
b−r−k 300.00 0 .00
b−r−l 208 .00 45 .25
b−r−o 258 .38 55 .93
b−r−p 264.00 0 .00
b−r−r 488 .33 319 .95
b−r−s 183 .33 36 .02
b−r−t 210 .21 48 .08
b−r−u 230.58 37 .63
b−r−y 231.06 31 .81
b−s−a 278 .00 205 .06
b−s−c 340 .67 406 .70
b−s−e 360 .88 114 .42
b−s−h 311.00 0 .00
b−s−i 220 .00 62 .63
b−s−j 427 .00 0 .00
b−s−k 172.33 49 .54
b−s−m 616.00 0 .00
b−s−n 346.00 0 .00
b−s−o 257 .96 39 .92
b−s−p 131.00 87 .68
b−s−t 187 .93 51 .72
b−s−u 213.88 34 .49
b−s−w 359.00 0 .00
b−s−y 178.00 0 .00
b−t−a 204 .25 85 .13
b−t−b 271.00 0 .00
b−t−e 217 .38 74 .80
b−t−f 324 .00 0 .00
b−t−h 137.00 0 .00
b−t−i 478 .00 332 .61
b−t−n 154.33 88 .68
b−t−o 85 .00 0 .00
b−t−r 191 .20 26 .01
b−t−t 178 .50 64 .25
b−t−w 187.97 69 .86
b−u−b 124.00 0 .00

A.1. DATA FRAMES 101

b−u−d 243.91 64 .95
b−u−e 300 .00 103 .06
b−u−f 202 .00 38 .68
b−u−g 237 .17 52 .08
b−u−i 253 .23 66 .57
b−u−k 283.92 39 .55
b−u−l 333 .20 80 .16
b−u−n 289.27 44 .11
b−u−o 133 .50 28 .99
b−u−r 236 .94 40 .16
b−u−s 255 .43 49 .20
b−u−t 240 .12 50 .10
b−u−u 311.67 139 .52
b−u−y 191.00 0 .00
b−v−a 194 .80 93 .97
b−v−c 61 .00 0 .00
b−v−e 141 .00 14 .72
b−v−g 189 .67 25 .81
b−v−i 294 .00 269 .68
b−v−l 100 .00 0 .00
b−v−n 125.00 0 .00
b−v−r 91 .00 0 .00
b−v−v 160.50 123 .74
b−w−e 265 .00 0 .00
b−w−i 187 .00 0 .00
b−w−o 175 .00 127 .28
b−w−t 273 .00 0 .00
b−y−a 102 .00 0 .00
b−y−d 220.50 9 .19
b−y−e 231 .80 78 .15
b−y−f 226 .00 0 .00
b−y−g 305 .56 108 .49
b−y−h 405.33 19 .86
b−y−i 230 .00 0 .00
b−y−j 214 .00 0 .00
b−y−l 367 .00 0 .00
b−y−o 525 .00 0 .00
b−y−p 347.00 0 .00
b−y−r 509 .00 397 .39
b−y−t 244 .77 50 .56
b−y−u 196.33 36 .68

102 A. APPENDIX A

b−z−e 383 .00 0 .00
c−a−a 166 .20 93 .52
c−a−c 153 .47 58 .14
c−a−d 308.00 80 .61
c−a−e 120 .00 0 .00
c−a−f 114 .00 0 .00
c−a−g 265 .00 0 .00
c−a−h 234.00 49 .50
c−a−i 216 .00 141 .52
c−a−k 196.00 83 .44
c−a−l 163 .35 49 .69
c−a−m 309.00 203 .94
c−a−n 175.25 43 .89
c−a−p 218.52 69 .94
c−a−r 228 .16 29 .44
c−a−s 209 .44 101 .79
c−a−t 240 .30 31 .22
c−a−u 258.38 88 .02
c−a−v 115.00 0 .00
c−a−y 139.00 0 .00
c−b−a 107 .00 74 .81
c−b−e 134 .00 0 .00
c−b−j 61 .00 0 .00
c−b−k 412.00 0 .00
c−b−l 140 .00 22 .07
c−b−r 229 .50 26 .16
c−b−u 155.00 0 .00
c−c−a 234 .25 212 .56
c−c−c 70 .14 5 .70
c−c−d 190.33 84 .57
c−c−e 262 .33 59 .87
c−c−f 85 .00 0 .00
c−c−h 148.57 22 .18
c−c−i 189 .33 32 .25
c−c−k 158.60 91 .79
c−c−l 148 .00 62 .86
c−c−n 242.00 0 .00
c−c−o 184 .51 63 .61
c−c−r 191 .50 36 .06
c−c−s 130 .71 40 .30
c−c−t 248 .20 31 .11

A.1. DATA FRAMES 103

c−c−u 357.83 247 .85
c−c−y 102.00 0 .00
c−d−a 142 .67 85 .22
c−d−c 105 .67 68 .82
c−d−d 345.00 270 .24
c−d−e 214 .00 113 .97
c−d−f 339 .00 0 .00
c−d−i 152 .60 25 .58
c−d−k 151.00 0 .00
c−d−l 226 .50 43 .13
c−d−o 111 .75 22 .86
c−d−r 142 .00 110 .31
c−d−u 216.20 61 .51
c−d−w 228.00 0 .00
c−e−a 218 .83 177 .34
c−e−b 318.33 78 .01
c−e−c 133 .90 55 .31
c−e−d 250.60 28 .19
c−e−e 144 .33 85 .50
c−e−g 118 .00 0 .00
c−e−h 151.17 83 .10
c−e−i 333 .40 204 .62
c−e−k 152.00 19 .80
c−e−l 177 .00 40 .63
c−e−m 161.80 72 .30
c−e−n 194.71 40 .30
c−e−o 214 .75 162 .55
c−e−p 199.20 48 .08
c−e−r 224 .94 51 .17
c−e−s 278 .80 52 .84
c−e−t 208 .10 75 .91
c−e−w 170.00 0 .00
c−e−y 161.29 31 .77
c−f−a 134 .00 0 .00
c−f−c 219 .00 0 .00
c−f−f 121 .00 60 .81
c−f−i 124 .17 19 .61
c−f−o 248 .50 143 .54
c−f−r 186 .00 0 .00
c−g−e 278 .00 31 .11
c−g−g 64 .50 10 .61

104 A. APPENDIX A

c−g−k 238.00 0 .00
c−g−r 185 .00 0 .00
c−g−t 235 .00 0 .00
c−h−a 205 .41 59 .67
c−h−c 147 .22 75 .67
c−h−e 186 .18 32 .93
c−h−f 119 .00 0 .00
c−h−g 93 .00 0 .00
c−h−h 87 .00 0 .00
c−h−i 256 .86 40 .81
c−h−j 233 .33 241 .68
c−h−l 167 .75 131 .58
c−h−m 273.60 129 .68
c−h−n 318.33 86 .34
c−h−o 315 .24 56 .13
c−h−r 244 .97 73 .42
c−h−s 99 .33 22 .84
c−h−t 187 .25 60 .01
c−h−u 241.75 29 .84
c−h−w 199.00 0 .00
c−h−y 182.50 64 .35
c−i−a 206 .29 33 .10
c−i−b 523.00 0 .00
c−i−c 175 .80 93 .78
c−i−d 194.88 27 .06
c−i−e 245 .83 70 .94
c−i−f 380 .67 310 .83
c−i−h 226.75 24 .35
c−i−i 198 .25 135 .34
c−i−k 148.00 0 .00
c−i−l 268 .00 135 .96
c−i−m 412.00 117 .91
c−i−n 255.00 39 .17
c−i−o 148 .00 0 .00
c−i−p 286.59 43 .14
c−i−r 252 .88 75 .33
c−i−s 229 .31 74 .63
c−i−t 235 .69 37 .70
c−i−v 223.00 0 .00
c−i−w 165.00 0 .00
c−j−a 206 .00 0 .00

A.1. DATA FRAMES 105

c−j−k 136.50 36 .06
c−j−s 426 .00 0 .00
c−k−a 148 .77 27 .46
c−k−b 188.50 64 .83
c−k−c 137 .00 30 .45
c−k−d 98 .50 3 .54
c−k−e 183 .47 29 .20
c−k−f 125 .00 0 .00
c−k−g 249 .74 52 .27
c−k−h 98 .00 33 .94
c−k−i 247 .95 18 .79
c−k−j 122 .75 9 .57
c−k−k 210.00 58 .36
c−k−l 185 .25 96 .29
c−k−m 289.00 211 .94
c−k−n 173.00 98 .85
c−k−o 196 .29 84 .25
c−k−p 204.90 117 .64
c−k−r 198 .43 91 .29
c−k−s 198 .06 40 .13
c−k−t 169 .17 122 .32
c−k−u 265.14 25 .96
c−k−v 281.00 0 .00
c−k−w 220.00 4 .24
c−k−y 276.75 49 .62
c−l−a 188 .48 35 .01
c−l−c 135 .00 0 .00
c−l−e 219 .03 46 .30
c−l−i 275 .65 54 .42
c−l−j 287 .00 0 .00
c−l−k 179.00 0 .00
c−l−l 137 .20 58 .52
c−l−m 80.00 0 .00
c−l−n 129.00 0 .00
c−l−o 263 .65 47 .37
c−l−s 166 .29 105 .38
c−l−u 286.85 23 .77
c−l−v 115.00 0 .00
c−m−a 196 .67 73 .86
c−m−d 251.50 149 .20
c−m−e 151 .50 62 .93

106 A. APPENDIX A

c−m−i 216 .00 0 .00
c−m−k 228.00 0 .00
c−m−p 284.00 45 .64
c−n−a 179 .60 104 .17
c−n−c 180 .75 186 .60
c−n−e 164 .43 41 .48
c−n−f 276 .50 43 .13
c−n−k 210.50 10 .61
c−n−n 155.40 106 .81
c−n−o 287 .00 27 .51
c−n−t 271 .00 0 .00
c−n−y 228.00 0 .00
c−o−a 243 .00 66 .07
c−o−b 268.75 68 .83
c−o−c 163 .83 70 .05
c−o−d 202.54 44 .93
c−o−e 215 .67 60 .12
c−o−f 150 .25 21 .81
c−o−g 267 .22 74 .91
c−o−h 248.33 47 .23
c−o−i 208 .12 112 .73
c−o−k 187.00 131 .97
c−o−l 261 .71 59 .51
c−o−m 262.32 45 .39
c−o−n 280.32 52 .23
c−o−o 169 .50 42 .01
c−o−p 261.60 28 .99
c−o−r 223 .86 42 .26
c−o−s 206 .00 116 .75
c−o−t 225 .67 76 .90
c−o−u 282.63 68 .63
c−o−v 199.60 36 .14
c−o−w 392.50 62 .93
c−o−y 329.33 54 .52
c−p−a 113 .89 34 .67
c−p−c 85 .00 0 .00
c−p−d 267.11 114 .27
c−p−e 97 .00 0 .00
c−p−n 254.00 0 .00
c−p−o 220 .33 82 .86
c−p−p 293.50 17 .68

A.1. DATA FRAMES 107

c−p−r 166 .83 115 .72
c−p−s 70 .00 0 .00
c−p−t 335 .00 36 .77
c−p−u 288.00 0 .00
c−p−y 163.00 0 .00
c−q−s 153 .00 0 .00
c−q−u 199.00 63 .64
c−q−w 404.00 0 .00
c−r−a 339 .11 91 .56
c−r−b 212.00 0 .00
c−r−c 223 .50 27 .58
c−r−e 290 .04 74 .82
c−r−h 227.00 0 .00
c−r−i 269 .47 36 .92
c−r−k 263.00 0 .00
c−r−m 82.00 0 .00
c−r−n 197.50 187 .38
c−r−o 263 .12 86 .07
c−r−p 241.50 45 .96
c−r−r 498 .00 189 .50
c−r−t 328 .00 116 .50
c−r−u 212.00 0 .00
c−r−w 250.00 0 .00
c−r−y 260.89 46 .00
c−s−a 106 .00 21 .59
c−s−b 111.00 7 .07
c−s−c 163 .45 61 .06
c−s−e 273 .86 175 .24
c−s−f 82 .00 0 .00
c−s−g 331 .00 0 .00
c−s−h 125.00 47 .81
c−s−i 262 .00 0 .00
c−s−k 286.75 217 .30
c−s−m 113.00 0 .00
c−s−n 684.00 0 .00
c−s−o 99 .00 19 .88
c−s−r 312 .00 0 .00
c−s−s 279 .56 50 .96
c−s−t 189 .89 90 .21
c−s−u 149.50 68 .19
c−s−v 243.75 38 .94

108 A. APPENDIX A

c−t−a 203 .47 84 .02
c−t−b 235.00 0 .00
c−t−c 196 .67 111 .64
c−t−d 243.00 0 .00
c−t−e 280 .16 36 .95
c−t−f 272 .33 183 .19
c−t−g 234 .50 7 .78
c−t−h 195.17 76 .94
c−t−i 257 .31 34 .44
c−t−j 251 .50 24 .75
c−t−l 294 .55 95 .24

. . .
z−y−z 245 .67 34 .15
z−z−a 333 .67 33 .82
z−z−e 287 .00 0 .00
z−z−y 217.00 0 .00
Listing A.2: Data frame for some of the key triplet classes

Unique Digraph Word Length Pos i t i on D i s t r i b u t i o n
5na0 na 5 0 0.726435
5na1 na 5 1 0.555823
5na2 na 5 2 0.667510
5na3 na 5 3 0.001000
5na4 na 5 4 0.001000
5na5 na 5 5 0.001000
5nb0 nb 5 0 0.001000
5nb1 nb 5 1 0.001000
5nb2 nb 5 2 0.001000
5nb3 nb 5 3 0.001000
5nb4 nb 5 4 0.001000
5nb5 nb 5 5 0.001000
5nc0 nc 5 0 0.001000
5nc1 nc 5 1 0.476153
5nc2 nc 5 2 0.908954
5nc3 nc 5 3 0.001000
5nc4 nc 5 4 0.001000
5nc5 nc 5 5 0.001000
5nd0 nd 5 0 0.001000
5nd1 nd 5 1 0.975081
5nd2 nd 5 2 0.899844
5nd3 nd 5 3 1.113898

A.1. DATA FRAMES 109

5nd4 nd 5 4 0.001000
5nd5 nd 5 5 0.001000
5ne0 ne 5 0 1.054222
5ne1 ne 5 1 0.616126
5ne2 ne 5 2 0.939652
5ne3 ne 5 3 0.916046
5ne4 ne 5 4 0.001000
5ne5 ne 5 5 0.001000
5 nf0 nf 5 0 0.001000
5 nf1 nf 5 1 0.001000
5 nf2 nf 5 2 0.001000
5 nf3 nf 5 3 0.001000
5 nf4 nf 5 4 0.001000
5 nf5 nf 5 5 0.001000
5ng0 ng 5 0 0.001000
5ng1 ng 5 1 0.667510
5ng2 ng 5 2 0.769743
5ng3 ng 5 3 1.452584
5ng4 ng 5 4 0.001000
5ng5 ng 5 5 0.001000
5nh0 nh 5 0 0.001000
5nh1 nh 5 1 0.001000
5nh2 nh 5 2 0.001000
5nh3 nh 5 3 0.001000
5nh4 nh 5 4 0.001000
5nh5 nh 5 5 0.001000
5 ni0 n i 5 0 0.872659
5 ni1 n i 5 1 0.667510
5 ni2 n i 5 2 0.699813
5 ni3 n i 5 3 0.512912
5 ni4 n i 5 4 0.001000
5 ni5 n i 5 5 0.001000
5 nj0 nj 5 0 0.001000
5 nj1 nj 5 1 0.606568
5 nj2 nj 5 2 0.476153
5 nj3 nj 5 3 0.001000
5 nj4 nj 5 4 0.001000
5 nj5 nj 5 5 0.001000
5nk0 nk 5 0 0.001000
5nk1 nk 5 1 0.001000
5nk2 nk 5 2 0.704572

110 A. APPENDIX A

5nk3 nk 5 3 1.111772
5nk4 nk 5 4 0.001000
5nk5 nk 5 5 0.001000
5 nl0 n l 5 0 0.001000
5 nl1 n l 5 1 0.476153
5 nl2 n l 5 2 0.476153
5 nl3 n l 5 3 0.001000
5 nl4 n l 5 4 0.001000
5 nl5 n l 5 5 0.001000
5nm0 nm 5 0 0.001000
5nm1 nm 5 1 0.001000
5nm2 nm 5 2 0.001000
5nm3 nm 5 3 0.001000
5nm4 nm 5 4 0.001000
5nm5 nm 5 5 0.001000
5nn0 nn 5 0 0.001000
5nn1 nn 5 1 0.726435
5nn2 nn 5 2 0.667510
5nn3 nn 5 3 0.001000
5nn4 nn 5 4 0.001000
5nn5 nn 5 5 0.001000
5no0 no 5 0 0.842369
5no1 no 5 1 0.772933
5no2 no 5 2 0.684562
5no3 no 5 3 0.001000
5no4 no 5 4 0.001000
5no5 no 5 5 0.001000
5np0 np 5 0 0.001000
5np1 np 5 1 0.001000
5np2 np 5 2 0.001000
5np3 np 5 3 0.001000
5np4 np 5 4 0.001000
5np5 np 5 5 0.001000
5nq0 nq 5 0 0.001000
5nq1 nq 5 1 0.001000
5nq2 nq 5 2 0.001000
5nq3 nq 5 3 0.001000
5nq4 nq 5 4 0.001000
5nq5 nq 5 5 0.001000
5nr0 nr 5 0 0.001000
5nr1 nr 5 1 0.001000

A.1. DATA FRAMES 111

5nr2 nr 5 2 0.512912
5nr3 nr 5 3 0.001000
5nr4 nr 5 4 0.001000
5nr5 nr 5 5 0.001000
5ns0 ns 5 0 0.001000
5ns1 ns 5 1 0.001000
5ns2 ns 5 2 0.802323
5ns3 ns 5 3 0.931423
5ns4 ns 5 4 0.001000
5ns5 ns 5 5 0.001000
5nt0 nt 5 0 0.001000
5nt1 nt 5 1 0.912521
5nt2 nt 5 2 0.769743
5nt3 nt 5 3 1.110706
5nt4 nt 5 4 0.001000
5nt5 nt 5 5 0.001000
5nu0 nu 5 0 0.633124
5nu1 nu 5 1 0.001000
5nu2 nu 5 2 0.571207
5nu3 nu 5 3 0.001000
5nu4 nu 5 4 0.001000
5nu5 nu 5 5 0.001000
5nv0 nv 5 0 0.001000
5nv1 nv 5 1 0.476153
5nv2 nv 5 2 0.001000
5nv3 nv 5 3 0.001000
5nv4 nv 5 4 0.001000
5nv5 nv 5 5 0.001000
5nw0 nw 5 0 0.001000
5nw1 nw 5 1 0.001000
5nw2 nw 5 2 0.001000
5nw3 nw 5 3 0.001000
5nw4 nw 5 4 0.001000
5nw5 nw 5 5 0.001000
5nx0 nx 5 0 0.001000
5nx1 nx 5 1 0.001000
5nx2 nx 5 2 0.001000
5nx3 nx 5 3 0.001000
5nx4 nx 5 4 0.001000
5nx5 nx 5 5 0.001000
5ny0 ny 5 0 0.001000

112 A. APPENDIX A

5ny1 ny 5 1 0.001000
5ny2 ny 5 2 0.001000
5ny3 ny 5 3 0.667510
5ny4 ny 5 4 0.001000
5ny5 ny 5 5 0.001000
5nz0 nz 5 0 0.001000
5nz1 nz 5 1 0.001000
5nz2 nz 5 2 0.001000
5nz3 nz 5 3 0.001000
5nz4 nz 5 4 0.001000
5nz5 nz 5 5 0.001000

Listing A.3: Digraph distribution for words of length 5 or shorter, where the
digraph starts with "n"

A.2. OVERLAPPING VALUES 113

A.2 Overlapping values

Figure A.1: 26x26 matrix showing the input latency values for all key pair combi-
nations. Almost all values are in the range of 0-200ms. Outliers (outsside 200) are
colored green

114 A. APPENDIX A

A.3 Input latency equal to mean for "gate"

Figure A.2: Data frame for "gate"

Figure A.3: Top digraph candidates before and after digraph distribution for first
digraph in "gate"

Figure A.4: Top digraph candidates before and after digraph distribution for second
digraph in "gate"

A.4. INPUT LATENCY EQUAL TO MEAN FOR "ERROR" 115

Figure A.5: Top digraph candidates before and after digraph distribution for last
digraph in "gate"

Figure A.6: Top word candidates for "gate".

A.4 Input latency equal to mean for "error"

Figure A.7: Data frame for "error"

116 A. APPENDIX A

Figure A.8: Top digraph candidates before and after digraph distribution for first
and second digraph in "error"

Figure A.9: Top digraph candidates before and after digraph distribution for third
and last digraph in "error"

Figure A.10: Top word candidates for "error".

A.5. INPUT LATENCY EQUAL TO MEAN FOR "EXTEND" 117

A.5 Input latency equal to mean for "extend"

Figure A.11: Data frame for "extend"

Figure A.12: Top digraph candidates before and after digraph distribution for
three first digraphs in "extend"

118 A. APPENDIX A

Figure A.13: Top digraph candidates before and after digraph distribution for two
last digraphs in "extend" and the top word candidates for "extend"

A.6 Full examples including both approaches to combining

Figure A.14: Data frame with digraphs for "when"

A.6. FULL EXAMPLES INCLUDING BOTH APPROACHES TO COMBINING 119

Figure A.15: Data frame with trigraphs for "when"

The score of class w-h being recognized as keypair w-h before
↪→ combining is 1.33E-02 which is score number 12

The top key pair candidates for position 0 before combining with
↪→ digraph distributions are

Nr 1 : t-s with the score of 7.68E-02
Nr 2 : v-b with the score of 2.84E-02
Nr 3 : v-o with the score of 2.45E-02
Nr 4 : f-k with the score of 2.27E-02
Nr 5 : s-d with the score of 2.23E-02
The score of class w-h being recognized as keypair w-h after

↪→ combining is 9.36E-02 which is score number 1
The top key pair candidates for position 0 after combining with

↪→ digraph distributions are
Nr 1 : w-h with the score of 9.36E-02
Nr 2 : v-o with the score of 8.10E-02
Nr 3 : g-a with the score of 6.49E-02
Nr 4 : y-a with the score of 4.83E-02
Nr 5 : e-p with the score of 4.08E-02
The score of class h-e being recognized as keypair h-e before

↪→ combining is 5.22E-04 which is score number 55
The top key pair candidates for position 1 before combining with

↪→ digraph distributions are
Nr 1 : d-o with the score of 6.64E-01
Nr 2 : i-c with the score of 1.43E-01
Nr 3 : k-v with the score of 2.32E-02
Nr 4 : i-v with the score of 1.89E-02
Nr 5 : b-w with the score of 1.37E-02

120 A. APPENDIX A

The score of class h-e being recognized as keypair h-e after
↪→ combining is 1.70E-03 which is score number 12

The top key pair candidates for position 1 after combining with
↪→ digraph distributions are

Nr 1 : d-o with the score of 6.29E-01
Nr 2 : i-c with the score of 2.60E-01
Nr 3 : i-v with the score of 3.50E-02
Nr 4 : c-h with the score of 1.13E-02
Nr 5 : a-i with the score of 6.18E-03
The score of class e-n being recognized as keypair e-n before

↪→ combining is 1.78E-03 which is score number 31
The top key pair candidates for position 2 before combining with

↪→ digraph distributions are
Nr 1 : r-m with the score of 6.61E-01
Nr 2 : p-s with the score of 4.04E-02
Nr 3 : i-w with the score of 3.34E-02
Nr 4 : d-y with the score of 1.06E-02
Nr 5 : s-l with the score of 8.42E-03
The score of class e-n being recognized as keypair e-n after

↪→ combining is 4.12E-03 which is score number 10
The top key pair candidates for position 2 after combining with

↪→ digraph distributions are
Nr 1 : r-m with the score of 8.14E-01
Nr 2 : p-s with the score of 4.12E-02
Nr 3 : u-r with the score of 1.26E-02
Nr 4 : d-y with the score of 1.17E-02
Nr 5 : r-n with the score of 8.56E-03
The score of class w-h-e being recognized as keypair w-h-e before

↪→ combining is 2.27E-05 which is score number 2751
The top key pair candidates for position 0 before combining with

↪→ digraph distributions are
Nr 1 : m-p-y with the score of 2.43E-01
Nr 2 : e-r-w with the score of 1.83E-01
Nr 3 : s-f-o with the score of 2.68E-02
Nr 4 : b-b-i with the score of 2.57E-02
Nr 5 : a-k-r with the score of 2.33E-02
The score of class w-h-e being recognized as keypair w-h-e after

↪→ combining is 8.30E-04 which is score number 140

A.6. FULL EXAMPLES INCLUDING BOTH APPROACHES TO COMBINING 121

The top key pair candidates for position 0 after combining with
↪→ digraph distributions are

Nr 1 : w-a-r with the score of 3.80E-01
Nr 2 : t-a-s with the score of 2.88E-02
Nr 3 : n-a-m with the score of 2.26E-02
Nr 4 : g-l-a with the score of 2.05E-02
Nr 5 : s-l-a with the score of 1.83E-02
The score of class h-e-n being recognized as keypair h-e-n before

↪→ combining is 4.04E-05 which is score number 2283
The top key pair candidates for position 1 before combining with

↪→ digraph distributions are
Nr 1 : v-t-r with the score of 1.20E-01
Nr 2 : e-m-l with the score of 7.18E-02
Nr 3 : b-h-a with the score of 7.12E-02
Nr 4 : a-f-g with the score of 3.97E-02
Nr 5 : e-j-a with the score of 2.51E-02
The score of class h-e-n being recognized as keypair h-e-n after

↪→ combining is 2.03E-03 which is score number 71
The top key pair candidates for position 1 after combining with

↪→ digraph distributions are
Nr 1 : u-s-h with the score of 8.02E-02
Nr 2 : e-e-r with the score of 7.26E-02
Nr 3 : a-i-t with the score of 5.74E-02
Nr 4 : h-a-t with the score of 5.57E-02
Nr 5 : a-s-t with the score of 4.64E-02
The score of class w-h-e being recognized as keypair w-h-e before

↪→ combining is 8.30E-04 which is score number 140
The top key pair candidates for position 0 before combining with

↪→ digraph distributions are
Nr 1 : w-a-r with the score of 3.80E-01
Nr 2 : t-a-s with the score of 2.88E-02
Nr 3 : n-a-m with the score of 2.26E-02
Nr 4 : g-l-a with the score of 2.05E-02
Nr 5 : s-l-a with the score of 1.83E-02
The score of class w-h-e being recognized as keypair w-h-e after

↪→ combining is 1.14E-02 which is score number 15
The top key pair candidates for position 0 after combining with

↪→ digraph distributions are

122 A. APPENDIX A

Nr 1 : i-d-o with the score of 1.50E-01
Nr 2 : d-i-c with the score of 1.23E-01
Nr 3 : s-i-c with the score of 1.06E-01
Nr 4 : f-i-v with the score of 9.63E-02
Nr 5 : r-i-c with the score of 6.95E-02
The score of class h-e-n being recognized as keypair h-e-n before

↪→ combining is 2.03E-03 which is score number 71
The top key pair candidates for position 1 before combining with

↪→ digraph distributions are
Nr 1 : u-s-h with the score of 8.02E-02
Nr 2 : e-e-r with the score of 7.26E-02
Nr 3 : a-i-t with the score of 5.74E-02
Nr 4 : h-a-t with the score of 5.57E-02
Nr 5 : a-s-t with the score of 4.64E-02
The score of class h-e-n being recognized as keypair h-e-n after

↪→ combining is 3.91E-03 which is score number 20
The top key pair candidates for position 1 after combining with

↪→ digraph distributions are
Nr 1 : i-c-h with the score of 2.05E-01
Nr 2 : o-r-m with the score of 1.13E-01
Nr 3 : d-o-r with the score of 8.96E-02
Nr 4 : i-c-k with the score of 8.48E-02
Nr 5 : e-r-m with the score of 7.98E-02
when is the correct word with score 6.54E-07

A.6. FULL EXAMPLES INCLUDING BOTH APPROACHES TO COMBINING 123

In pure digraph, the correct word is found as number 14 candidate
Sorted list digraphs
{’rich’: ’5.59E-06’, ’wick’: ’3.86E-06’, ’worm’: ’3.18E-06’, ’rick’:

↪→ ’2.25E-06’, ’form’: ’2.20E-06’, ’firm’: ’1.97E-06’, ’sick’:
↪→ ’1.79E-06’, ’tick’: ’1.19E-06’, ’dice’: ’1.02E-06’, ’warm’:
↪→ ’1.01E-06’, ’rice’: ’9.62E-07’, ’herm’: ’8.22E-07’, ’vice’:
↪→ ’6.89E-07’, ’when’: ’6.54E-07’, ’perm’: ’5.79E-07’, ’farm’:
↪→ ’5.45E-07’, ’harm’: ’5.21E-07’, ’term’: ’5.18E-07’, ’lick’:
↪→ ’4.28E-07’, ’tics’: ’4.09E-07’, ’kick’: ’4.00E-07’, ’germ’:
↪→ ’3.61E-07’, ’gaps’: ’3.59E-07’, ’norm’: ’3.35E-07’, ’nick’:
↪→ ’3.11E-07’, ’yaps’: ’2.67E-07’, ’five’: ’2.62E-07’, ’pick’:
↪→ ’2.55E-07’, ’dive’: ’2.45E-07’, ’gait’: ’2.42E-07’, ’whey’:
↪→ ’1.97E-07’, ’lice’: ’1.83E-07’, ’ache’: ’1.80E-07’, ’give’:
↪→ ’1.65E-07’, ’mice’: ’1.36E-07’, ’nice’: ’1.33E-07’, ’cans’:
↪→ ’1.09E-07’, ’idol’: ’1.06E-07’, ’lady’: ’1.04E-07’, ’then’:
↪→ ’9.05E-08’, ’bans’: ’7.03E-08’, ’yarn’: ’6.96E-08’, ’dais’:
↪→ ’6.53E-08’, ’whet’: ’6.21E-08’, ’caps’: ’6.20E-08’, ’yaks’:
↪→ ’6.18E-08’, ’york’: ’6.17E-08’, ’turn’: ’5.84E-08’, ’sure’:
↪→ ’5.67E-08’, ’burn’: ’5.58E-08’, ’hive’: ’5.16E-08’, ’cant’:
↪→ ’4.96E-08’, ’turk’: ’4.77E-08’, ’born’: ’4.67E-08’, ’said’:
↪→ ’4.60E-08’, ’tidy’: ’4.47E-08’, ’live’: ’4.39E-08’, ’them’:
↪→ ’3.90E-08’, ’fans’: ’3.86E-08’, ’maid’: ’3.84E-08’, ’pans’:
↪→ ’3.77E-08’, ’body’: ’3.64E-08’, ’wham’: ’3.51E-08’, ’paid’:
↪→ ’3.50E-08’, ’horn’: ’3.36E-08’, ’worn’: ’3.34E-08’, ’laid’:
↪→ ’3.32E-08’, ’want’: ’3.26E-08’, ’what’: ’3.06E-08’, ’vans’:
↪→ ’3.02E-08’, ’cure’: ’2.96E-08’, ’tans’: ’2.96E-08’, ’gang’:
↪→ ’2.95E-08’, ’gala’: ’2.91E-08’, ’corn’: ’2.84E-08’, ’saps’:
↪→ ’2.82E-08’, ’with’: ’2.78E-08’, ’wait’: ’2.75E-08’, ’work’:
↪→ ’2.73E-08’, ’they’: ’2.72E-08’, ’bait’: ’2.70E-08’, ’such’:
↪→ ’2.66E-08’, ’vote’: ’2.64E-08’, ’peps’: ’2.62E-08’, ’reps’:
↪→ ’2.54E-08’, ’game’: ’2.52E-08’, ’gale’: ’2.50E-08’, ’calf’:
↪→ ’2.43E-08’, ’torn’: ’2.41E-08’, ’maps’: ’2.36E-08’, ’cork’:
↪→ ’2.32E-08’, ’bern’: ’2.06E-08’, ’laps’: ’2.04E-08’, ’cake’:
↪→ ’1.90E-08’, ’fork’: ’1.89E-08’, ’yale’: ’1.86E-08’, ’even’:
↪→ ’1.83E-08’, ’fens’: ’1.81E-08’, ’both’: ’1.72E-08’, ’pant’:
↪→ ’1.72E-08’, ’yore’: ’1.71E-08’, ’naps’: ’1.70E-08’, ’taps’:
↪→ ’1.68E-08’, ’berk’: ’1.68E-08’, ’auto’: ’1.67E-08’, ’gate’:
↪→ ’1.64E-08’, ’size’: ’1.63E-08’, ’diva’: ’1.58E-08’, ’suet’:
↪→ ’1.58E-08’,

124 A. APPENDIX A

’raid’: ’1.56E-08’, ’oven’: ’1.45E-08’, ’cist’: ’1.43E-08’, ’wife’:
↪→ ’1.42E-08’, ’gain’: ’1.41E-08’, ’goth’: ’1.34E-08’, ’fair’:
↪→ ’1.32E-08’, ’bent’: ’1.32E-08’, ’pair’: ’1.29E-08’, ’fern’:
↪→ ’1.28E-08’, ’hair’: ’1.26E-08’, ’wake’: ’1.25E-08’, ’gust’:
↪→ ’1.23E-08’, ’lair’: ’1.23E-08’, ’bake’: ’1.22E-08’, ’hens’:
↪→ ’1.22E-08’, ’cane’: ’1.18E-08’, ’yams’: ’1.16E-08’, ’bath’:
↪→ ’1.16E-08’, ’gape’: ’1.12E-08’, ’suck’: ’1.07E-08’, ’viva’:
↪→ ’1.07E-08’, ’warn’: ’1.06E-08’, ’bore’: ’1.06E-08’, ’barn’:
↪→ ’1.04E-08’, ’glen’: ’1.04E-08’, ’curl’: ’1.03E-08’, ’self’:
↪→ ’9.67E-09’, ’raps’: ’9.56E-09’, ’gush’: ’9.50E-09’, ’fife’:
↪→ ’9.37E-09’, ’cads’: ’9.37E-09’, ’sups’: ’9.36E-09’, ’bops’:
↪→ ’8.90E-09’, ’murk’: ’8.85E-09’, ’gash’: ’8.82E-09’, ’glad’:
↪→ ’8.72E-09’, ’sake’: ’8.61E-09’, ’vent’: ’8.59E-09’, ’pens’:
↪→ ’8.57E-09’, ’bark’: ’8.52E-09’}

when is the correct word with score 1.69E-06
In pure trigraph, the correct word is not found among top 150

↪→ candidates
Sorted list trigraphs
{’ware’: ’3.03E-03’, ’warn’: ’1.16E-03’, ’warm’: ’7.87E-04’, ’warp’:

↪→ ’4.62E-04’, ’wary’: ’4.20E-04’, ’wars’: ’3.82E-04’, ’wart’:
↪→ ’2.04E-04’, ’ward’: ’1.37E-04’, ’gore’: ’1.14E-04’, ’that’:
↪→ ’1.08E-04’, ’what’: ’9.95E-05’, ’cast’: ’9.80E-05’, ’gush’:
↪→ ’8.87E-05’, ’vast’: ’7.15E-05’, ’glad’: ’6.86E-05’, ’wits’:
↪→ ’5.33E-05’, ’rush’: ’5.17E-05’, ’seer’: ’4.79E-05’, ’name’:
↪→ ’4.44E-05’, ’deer’: ’4.18E-05’, ’task’: ’3.95E-05’, ’door’:
↪→ ’3.94E-05’, ’beer’: ’3.70E-05’, ’slat’: ’3.43E-05’, ’east’:
↪→ ’3.43E-05’, ’slay’: ’3.12E-05’, ’code’: ’2.80E-05’, ’wast’:
↪→ ’2.71E-05’, ’five’: ’2.71E-05’, ’bent’: ’2.57E-05’, ’mush’:
↪→ ’2.57E-05’, ’laid’: ’2.51E-05’, ’arms’: ’2.26E-05’, ’lath’:
↪→ ’2.25E-05’, ’bush’: ’2.01E-05’, ’bias’: ’1.89E-05’, ’cake’:
↪→ ’1.87E-05’, ’item’: ’1.80E-05’, ’last’: ’1.77E-05’, ’peer’:
↪→ ’1.77E-05’, ’past’: ’1.75E-05’, ’sore’: ’1.71E-05’, ’wore’:
↪→ ’1.62E-05’, ’said’: ’1.61E-05’, ’fore’: ’1.60E-05’, ’kept’:
↪→ ’1.56E-05’, ’wait’: ’1.53E-05’, ’oven’: ’1.48E-05’, ’poor’:
↪→ ’1.43E-05’, ’gait’: ’1.31E-05’, ’fare’: ’1.29E-05’, ’tyre’:
↪→ ’1.25E-05’, ’give’: ’1.22E-05’, ’bend’: ’1.17E-05’, ’slag’:
↪→ ’1.16E-05’, ’fads’: ’1.14E-05’, ’hush’: ’1.13E-05’, ’zero’:
↪→ ’1.11E-05’, ’dose’: ’1.11E-05’, ’stem’: ’1.09E-05’, ’hero’:
↪→ ’1.07E-05’, ’keel’: ’1.05E-05’, ’late’: ’9.58E-06’, ’mast’:
↪→ ’9.57E-06’, ’fast’: ’9.51E-06’,

A.6. FULL EXAMPLES INCLUDING BOTH APPROACHES TO COMBINING 125

’boor’: ’9.48E-06’, ’push’: ’9.43E-06’, ’with’: ’9.32E-06’, ’mare’:
↪→ ’9.28E-06’, ’tore’: ’8.71E-06’, ’roan’: ’8.51E-06’, ’days’:
↪→ ’8.25E-06’, ’fire’: ’7.99E-06’, ’tire’: ’7.90E-06’, ’lush’:
↪→ ’7.84E-06’, ’rode’: ’7.69E-06’, ’pare’: ’7.47E-06’, ’suit’:
↪→ ’6.94E-06’, ’keys’: ’6.81E-06’, ’slap’: ’6.63E-06’, ’knee’:
↪→ ’6.55E-06’, ’germ’: ’6.48E-06’, ’gasp’: ’6.48E-06’, ’rose’:
↪→ ’6.36E-06’, ’roar’: ’6.31E-06’, ’wasp’: ’6.27E-06’, ’lair’:
↪→ ’6.25E-06’, ’hand’: ’6.23E-06’, ’clad’: ’6.19E-06’, ’site’:
↪→ ’6.18E-06’, ’then’: ’6.10E-06’, ’feel’: ’6.08E-06’, ’uses’:
↪→ ’5.76E-06’, ’hang’: ’5.66E-06’, ’pale’: ’5.66E-06’, ’kent’:
↪→ ’5.52E-06’, ’they’: ’5.52E-06’, ’cost’: ’5.51E-06’, ’jams’:
↪→ ’5.34E-06’, ’bear’: ’5.15E-06’, ’swam’: ’4.94E-06’, ’make’:
↪→ ’4.86E-06’, ’than’: ’4.85E-06’, ’earn’: ’4.66E-06’, ’gala’:
↪→ ’4.64E-06’, ’dust’: ’4.63E-06’, ’dare’: ’4.53E-06’, ’reel’:
↪→ ’4.52E-06’, ’bode’: ’4.51E-06’, ’down’: ’4.50E-06’, ’yore’:
↪→ ’4.38E-06’, ’maid’: ’4.31E-06’, ’rise’: ’4.29E-06’, ’used’:
↪→ ’4.25E-06’, ’girl’: ’4.11E-06’, ’fist’: ’4.03E-06’, ’sits’:
↪→ ’4.02E-06’, ’palm’: ’4.00E-06’, ’beam’: ’3.98E-06’, ’rids’:
↪→ ’3.94E-06’, ’rare’: ’3.93E-06’, ’bore’: ’3.83E-06’, ’user’:
↪→ ’3.80E-06’, ’cash’: ’3.77E-06’, ’lads’: ’3.72E-06’, ’sure’:
↪→ ’3.66E-06’, ’pall’: ’3.66E-06’, ’over’: ’3.58E-06’, ’sway’:
↪→ ’3.52E-06’, ’tray’: ’3.50E-06’, ’gang’: ’3.44E-06’, ’else’:
↪→ ’3.42E-06’, ’gale’: ’3.39E-06’, ’step’: ’3.35E-06’, ’farm’:
↪→ ’3.35E-06’, ’gory’: ’3.30E-06’, ’rant’: ’3.28E-06’, ’meet’:
↪→ ’3.25E-06’, ’path’: ’3.24E-06’, ’does’: ’3.23E-06’, ’more’:
↪→ ’3.19E-06’, ’clay’: ’3.15E-06’, ’spat’: ’3.12E-06’, ’doom’:
↪→ ’3.07E-06’, ’bite’: ’3.07E-06’, ’dent’: ’3.06E-06’, ’pore’:
↪→ ’3.06E-06’, ’rows’: ’3.05E-06’, ’tang’: ’3.01E-06’, ’were’:
↪→ ’3.00E-06’}

Combined, the correct word is not found among top 150 candidates
Sorted list combined
{’warm’: ’7.95E-10’, ’warn’: ’1.23E-11’, ’five’: ’7.10E-12’, ’gait’:

↪→ ’3.17E-12’, ’what’: ’3.04E-12’, ’germ’: ’2.34E-12’, ’give’:
↪→ ’2.01E-12’, ’farm’: ’1.83E-12’, ’gush’: ’8.43E-13’, ’laid’:
↪→ ’8.33E-13’, ’said’: ’7.41E-13’, ’glad’: ’5.98E-13’, ’then’:
↪→ ’5.52E-13’, ’wait’: ’4.21E-13’, ’cake’: ’3.55E-13’, ’bent’:
↪→ ’3.39E-13’, ’with’: ’2.59E-13’, ’oven’: ’2.15E-13’, ’sure’:
↪→ ’2.08E-13’, ’maid’: ’1.66E-13’, ’they’: ’1.50E-13’, ’gala’:
↪→ ’1.35E-13’, ’gang’: ’1.01E-13’, ’gale’: ’8.48E-14’, ’lair’:
↪→ ’7.69E-14’, ’yore’: ’7.49E-14’, ’bore’: ’4.06E-14’}

126 A. APPENDIX A

when is the correct word with score 4.46E-05
In combined digraph/trigraph, the correct word is found as number 27

↪→ candidate
Sorted list trigraphs/digraphs combined
{’rich’: ’1.42E-02’, ’sick’: ’8.98E-03’, ’five’: ’5.92E-03’, ’rick’:

↪→ ’5.90E-03’, ’dice’: ’5.87E-03’, ’kick’: ’3.74E-03’, ’rice’:
↪→ ’3.31E-03’, ’warm’: ’3.20E-03’, ’give’: ’1.68E-03’, ’nick’:
↪→ ’6.58E-04’, ’gait’: ’4.69E-04’, ’idol’: ’4.31E-04’, ’dive’:
↪→ ’3.70E-04’, ’nice’: ’3.69E-04’, ’lick’: ’3.59E-04’, ’pick’:
↪→ ’2.75E-04’, ’vice’: ’2.22E-04’, ’lice’: ’2.01E-04’, ’ache’:
↪→ ’1.32E-04’, ’laid’: ’1.23E-04’, ’said’: ’1.09E-04’, ’worm’:
↪→ ’7.44E-05’, ’wait’: ’6.20E-05’, ’live’: ’5.19E-05’, ’form’:
↪→ ’5.07E-05’, ’warn’: ’4.97E-05’, ’when’: ’4.46E-05’, ’wick’:
↪→ ’3.80E-05’, ’cake’: ’3.76E-05’, ’ware’: ’2.94E-05’, ’what’:
↪→ ’2.78E-05’, ’maid’: ’2.45E-05’, ’then’: ’2.23E-05’, ’gush’:
↪→ ’1.63E-05’, ’gore’: ’1.46E-05’, ’germ’: ’1.33E-05’, ’whey’:
↪→ ’1.21E-05’, ’lair’: ’1.13E-05’, ’lady’: ’1.04E-05’, ’cant’:
↪→ ’8.04E-06’, ’firm’: ’7.71E-06’, ’farm’: ’7.34E-06’, ’paid’:
↪→ ’6.53E-06’, ’they’: ’6.08E-06’, ’sure’: ’6.01E-06’, ’gang’:
↪→ ’5.99E-06’, ’bent’: ’5.90E-06’, ’glad’: ’5.30E-06’, ’term’:
↪→ ’5.10E-06’, ’raid’: ’4.59E-06’, ’that’: ’4.18E-06’, ’dais’:
↪→ ’4.17E-06’, ’cans’: ’3.92E-06’, ’oven’: ’3.77E-06’, ’make’:
↪→ ’3.71E-06’, ’them’: ’3.53E-06’, ’with’: ’3.44E-06’, ’want’:
↪→ ’3.41E-06’, ’diva’: ’3.31E-06’, ’herm’: ’3.13E-06’, ’tick’:
↪→ ’2.96E-06’, ’bans’: ’2.87E-06’, ’gala’: ’2.82E-06’, ’fads’:
↪→ ’2.18E-06’, ’wore’: ’1.92E-06’, ’gale’: ’1.77E-06’, ’hair’:
↪→ ’1.74E-06’, ’tans’: ’1.60E-06’, ’rush’: ’1.56E-06’, ’rant’:
↪→ ’1.48E-06’, ’warp’: ’1.34E-06’, ’fore’: ’1.31E-06’, ’pant’:
↪→ ’1.27E-06’, ’wary’: ’1.25E-06’, ’hand’: ’1.23E-06’, ’yore’:
↪→ ’1.17E-06’, ’harm’: ’1.13E-06’, ’bush’: ’1.12E-06’, ’work’:
↪→ ’1.10E-06’, ’turn’: ’1.06E-06’, ’lath’: ’1.05E-06’, ’cast’:
↪→ ’9.56E-07’, ’sore’: ’9.48E-07’, ’band’: ’9.35E-07’, ’lake’:
↪→ ’9.25E-07’, ’sake’: ’8.69E-07’, ’game’: ’8.19E-07’, ’wits’:
↪→ ’7.93E-07’, ’even’: ’7.51E-07’, ’fork’: ’7.46E-07’, ’tore’:
↪→ ’7.41E-07’, ’name’: ’7.28E-07’, ’york’: ’6.69E-07’, ’lads’:
↪→ ’6.60E-07’, ’bore’: ’6.33E-07’, ’wars’: ’6.26E-07’, ’pans’:
↪→ ’6.19E-07’, ’take’: ’6.08E-07’, ’pair’: ’5.99E-07’, ’cost’:
↪→ ’5.96E-07’, ’size’: ’5.78E-07’, ’hang’: ’5.77E-07’, ’sand’:
↪→ ’5.60E-07’, ’mane’: ’5.48E-07’, ’wand’: ’5.42E-07’, ’calf’:
↪→ ’5.33E-07’, ’bend’: ’5.32E-07’,

A.6. FULL EXAMPLES INCLUDING BOTH APPROACHES TO COMBINING 127

’gust’: ’5.22E-07’, ’worn’: ’5.22E-07’, ’fist’: ’4.98E-07’, ’yale’:
↪→ ’4.55E-07’, ’bang’: ’4.40E-07’, ’cane’: ’4.35E-07’, ’fair’:
↪→ ’3.74E-07’, ’than’: ’3.67E-07’, ’arms’: ’3.61E-07’, ’sent’:
↪→ ’3.56E-07’, ’burn’: ’3.31E-07’, ’bane’: ’3.18E-07’, ’fake’:
↪→ ’3.16E-07’, ’fire’: ’3.16E-07’, ’slat’: ’3.10E-07’, ’such’:
↪→ ’2.98E-07’, ’rids’: ’2.80E-07’, ’mush’: ’2.77E-07’, ’echo’:
↪→ ’2.75E-07’, ’land’: ’2.74E-07’, ’sang’: ’2.63E-07’, ’cite’:
↪→ ’2.63E-07’, ’lain’: ’2.55E-07’, ’core’: ’2.55E-07’, ’tang’:
↪→ ’2.45E-07’, ’kent’: ’2.38E-07’, ’rand’: ’2.35E-07’, ’dose’:
↪→ ’2.32E-07’, ’roan’: ’2.17E-07’, ’gall’: ’2.15E-07’, ’torn’:
↪→ ’2.02E-07’, ’vast’: ’1.93E-07’, ’mice’: ’1.93E-07’, ’sane’:
↪→ ’1.91E-07’, ’dent’: ’1.89E-07’, ’wane’: ’1.84E-07’, ’rent’:
↪→ ’1.84E-07’, ’yaks’: ’1.84E-07’, ’pale’: ’1.77E-07’, ’wast’:
↪→ ’1.74E-07’, ’born’: ’1.72E-07’, ’site’: ’1.67E-07’, ’gain’:
↪→ ’1.65E-07’}

Listing A.4: Simulated word "when"

Figure A.16: Data frame with digraphs for "grateful"

128 A. APPENDIX A

Figure A.17: Data frame with trigraphs for "grateful"

The score of class g-r being recognized as keypair g-r before
↪→ combining is 2.28E-03 which is score number 57

The top key pair candidates for position 0 before combining with
↪→ digraph distributions are

Nr 1 : m-c with the score of 3.23E-01
Nr 2 : b-n with the score of 2.96E-02
Nr 3 : p-h with the score of 2.88E-02
Nr 4 : s-g with the score of 2.34E-02
Nr 5 : l-h with the score of 1.83E-02
The score of class g-r being recognized as keypair g-r after

↪→ combining is 1.95E-02 which is score number 7
The top key pair candidates for position 0 after combining with

↪→ digraph distributions are
Nr 1 : p-h with the score of 2.43E-01
Nr 2 : h-u with the score of 8.29E-02
Nr 3 : d-w with the score of 6.86E-02
Nr 4 : a-b with the score of 4.79E-02
Nr 5 : f-r with the score of 2.49E-02
The score of class r-a being recognized as keypair r-a before

↪→ combining is 5.06E-04 which is score number 83
The top key pair candidates for position 1 before combining with

↪→ digraph distributions are
Nr 1 : s-k with the score of 7.47E-01
Nr 2 : d-k with the score of 2.13E-02

A.6. FULL EXAMPLES INCLUDING BOTH APPROACHES TO COMBINING 129

Nr 3 : d-m with the score of 1.89E-02
Nr 4 : f-j with the score of 1.76E-02
Nr 5 : i-t with the score of 1.28E-02
The score of class r-a being recognized as keypair r-a after

↪→ combining is 5.89E-03 which is score number 32
The top key pair candidates for position 1 after combining with

↪→ digraph distributions are
Nr 1 : d-m with the score of 1.27E-01
Nr 2 : i-t with the score of 1.14E-01
Nr 3 : l-t with the score of 9.02E-02
Nr 4 : u-f with the score of 5.06E-02
Nr 5 : u-t with the score of 4.09E-02
The score of class a-t being recognized as keypair a-t before

↪→ combining is 2.25E-03 which is score number 68
The top key pair candidates for position 2 before combining with

↪→ digraph distributions are
Nr 1 : s-u with the score of 1.19E-01
Nr 2 : d-h with the score of 7.17E-02
Nr 3 : t-m with the score of 4.33E-02
Nr 4 : s-m with the score of 3.28E-02
Nr 5 : a-p with the score of 2.86E-02
The score of class a-t being recognized as keypair a-t after

↪→ combining is 6.01E-03 which is score number 24
The top key pair candidates for position 2 after combining with

↪→ digraph distributions are
Nr 1 : s-u with the score of 2.65E-01
Nr 2 : a-p with the score of 5.40E-02
Nr 3 : s-m with the score of 5.34E-02
Nr 4 : u-d with the score of 4.93E-02
Nr 5 : d-n with the score of 2.45E-02
The score of class t-e being recognized as keypair t-e before

↪→ combining is 1.49E-03 which is score number 113
The top key pair candidates for position 3 before combining with

↪→ digraph distributions are
Nr 1 : g-n with the score of 1.40E-01
Nr 2 : d-y with the score of 1.03E-01
Nr 3 : f-u with the score of 6.22E-02

130 A. APPENDIX A

Nr 4 : w-q with the score of 3.90E-02
Nr 5 : n-s with the score of 2.16E-02
The score of class t-e being recognized as keypair t-e after

↪→ combining is 3.36E-03 which is score number 53
The top key pair candidates for position 3 after combining with

↪→ digraph distributions are
Nr 1 : g-n with the score of 1.66E-01
Nr 2 : d-y with the score of 1.23E-01
Nr 3 : f-u with the score of 8.79E-02
Nr 4 : r-m with the score of 2.82E-02
Nr 5 : n-s with the score of 2.67E-02
The score of class e-f being recognized as keypair e-f before

↪→ combining is 3.58E-03 which is score number 25
The top key pair candidates for position 4 before combining with

↪→ digraph distributions are
Nr 1 : e-h with the score of 3.33E-01
Nr 2 : y-d with the score of 1.42E-01
Nr 3 : a-c with the score of 5.89E-02
Nr 4 : v-h with the score of 4.19E-02
Nr 5 : l-b with the score of 1.45E-02
The score of class e-f being recognized as keypair e-f after

↪→ combining is 1.23E-02 which is score number 5
The top key pair candidates for position 4 after combining with

↪→ digraph distributions are
Nr 1 : y-d with the score of 3.99E-01
Nr 2 : a-c with the score of 1.95E-01
Nr 3 : k-f with the score of 2.40E-02
Nr 4 : a-y with the score of 2.01E-02
Nr 5 : e-f with the score of 1.23E-02
The score of class f-u being recognized as keypair f-u before

↪→ combining is 1.90E-03 which is score number 86
The top key pair candidates for position 5 before combining with

↪→ digraph distributions are
Nr 1 : g-o with the score of 8.63E-02
Nr 2 : b-o with the score of 8.01E-02
Nr 3 : b-e with the score of 4.93E-02
Nr 4 : p-t with the score of 4.24E-02
Nr 5 : n-x with the score of 3.87E-02

A.6. FULL EXAMPLES INCLUDING BOTH APPROACHES TO COMBINING 131

The score of class f-u being recognized as keypair f-u after
↪→ combining is 6.13E-03 which is score number 32

The top key pair candidates for position 5 after combining with
↪→ digraph distributions are

Nr 1 : b-e with the score of 1.39E-01
Nr 2 : n-c with the score of 1.28E-01
Nr 3 : p-t with the score of 9.22E-02
Nr 4 : o-s with the score of 6.67E-02
Nr 5 : f-e with the score of 5.03E-02
The score of class u-l being recognized as keypair u-l before

↪→ combining is 1.47E-03 which is score number 37
The top key pair candidates for position 6 before combining with

↪→ digraph distributions are
Nr 1 : c-b with the score of 5.70E-01
Nr 2 : p-k with the score of 5.24E-02
Nr 3 : n-m with the score of 4.76E-02
Nr 4 : p-n with the score of 4.47E-02
Nr 5 : t-d with the score of 1.29E-02
The score of class u-l being recognized as keypair u-l after

↪→ combining is 9.09E-02 which is score number 1
The top key pair candidates for position 6 after combining with

↪→ digraph distributions are
Nr 1 : u-l with the score of 9.09E-02
Nr 2 : c-b with the score of 3.44E-02
Nr 3 : l-y with the score of 3.44E-02
Nr 4 : e-s with the score of 2.94E-02
Nr 5 : c-t with the score of 2.91E-02
The score of class g-r-a being recognized as keypair g-r-a before

↪→ combining is 4.20E-05 which is score number 3026
The top key pair candidates for position 0 before combining with

↪→ digraph distributions are
Nr 1 : i-k-a with the score of 3.99E-02
Nr 2 : d-e-e with the score of 3.45E-02
Nr 3 : v-s-s with the score of 2.03E-02
Nr 4 : a-r-r with the score of 1.97E-02
Nr 5 : c-f-o with the score of 1.41E-02
The score of class g-r-a being recognized as keypair g-r-a after

↪→ combining is 3.45E-04 which is score number 319

132 A. APPENDIX A

The top key pair candidates for position 0 after combining with
↪→ digraph distributions are

Nr 1 : d-e-e with the score of 1.91E-01
Nr 2 : a-r-r with the score of 1.39E-01
Nr 3 : e-q-u with the score of 3.56E-02
Nr 4 : c-u-r with the score of 2.88E-02
Nr 5 : s-a-u with the score of 1.67E-02
The score of class r-a-t being recognized as keypair r-a-t before

↪→ combining is 2.38E-04 which is score number 409
The top key pair candidates for position 1 before combining with

↪→ digraph distributions are
Nr 1 : g-g-r with the score of 6.14E-02
Nr 2 : a-m-f with the score of 5.21E-02
Nr 3 : a-n-e with the score of 4.03E-02
Nr 4 : s-r-u with the score of 4.02E-02
Nr 5 : a-c-v with the score of 3.39E-02
The score of class r-a-t being recognized as keypair r-a-t after

↪→ combining is 2.03E-03 which is score number 38
The top key pair candidates for position 1 after combining with

↪→ digraph distributions are
Nr 1 : a-n-e with the score of 2.97E-01
Nr 2 : n-f-i with the score of 1.17E-01
Nr 3 : n-b-r with the score of 7.46E-02
Nr 4 : i-s-c with the score of 4.04E-02
Nr 5 : n-d-e with the score of 2.71E-02
The score of class a-t-e being recognized as keypair a-t-e before

↪→ combining is 1.35E-02 which is score number 10
The top key pair candidates for position 2 before combining with

↪→ digraph distributions are
Nr 1 : m-m-g with the score of 7.39E-02
Nr 2 : i-a-u with the score of 5.28E-02
Nr 3 : r-r-h with the score of 5.00E-02
Nr 4 : e-y-h with the score of 4.93E-02
Nr 5 : c-y-i with the score of 3.72E-02
The score of class a-t-e being recognized as keypair a-t-e after

↪→ combining is 1.43E-01 which is score number 1
The top key pair candidates for position 2 after combining with

↪→ digraph distributions are

A.6. FULL EXAMPLES INCLUDING BOTH APPROACHES TO COMBINING 133

Nr 1 : a-t-e with the score of 1.43E-01
Nr 2 : i-e-v with the score of 5.31E-02
Nr 3 : a-l-o with the score of 4.66E-02
Nr 4 : o-v-i with the score of 4.02E-02
Nr 5 : e-r-b with the score of 2.92E-02
The score of class t-e-f being recognized as keypair t-e-f before

↪→ combining is 5.65E-05 which is score number 1970
The top key pair candidates for position 3 before combining with

↪→ digraph distributions are
Nr 1 : p-e-k with the score of 5.05E-02
Nr 2 : e-j-g with the score of 3.75E-02
Nr 3 : r-q-u with the score of 3.64E-02
Nr 4 : n-n-s with the score of 2.70E-02
Nr 5 : c-u-b with the score of 2.61E-02
The score of class t-e-f being recognized as keypair t-e-f after

↪→ combining is 5.27E-04 which is score number 236
The top key pair candidates for position 3 after combining with

↪→ digraph distributions are
Nr 1 : d-e-r with the score of 2.19E-01
Nr 2 : b-o-r with the score of 7.02E-02
Nr 3 : r-e-a with the score of 4.51E-02
Nr 4 : o-i-c with the score of 2.31E-02
Nr 5 : t-i-a with the score of 2.13E-02
The score of class e-f-u being recognized as keypair e-f-u before

↪→ combining is 6.01E-05 which is score number 1395
The top key pair candidates for position 4 before combining with

↪→ digraph distributions are
Nr 1 : a-n-r with the score of 1.15E-01
Nr 2 : j-f-i with the score of 8.61E-02
Nr 3 : g-i-h with the score of 6.13E-02
Nr 4 : b-i-t with the score of 3.87E-02
Nr 5 : p-s-y with the score of 3.48E-02
The score of class e-f-u being recognized as keypair e-f-u after

↪→ combining is 8.27E-04 which is score number 122
The top key pair candidates for position 4 after combining with

↪→ digraph distributions are
Nr 1 : b-i-t with the score of 3.99E-01
Nr 2 : d-i-s with the score of 3.52E-02

134 A. APPENDIX A

Nr 3 : i-t-l with the score of 2.52E-02
Nr 4 : k-a-g with the score of 2.51E-02
Nr 5 : g-r-a with the score of 2.32E-02
The score of class f-u-l being recognized as keypair f-u-l before

↪→ combining is 4.98E-04 which is score number 127
The top key pair candidates for position 5 before combining with

↪→ digraph distributions are
Nr 1 : a-v-i with the score of 1.51E-01
Nr 2 : y-o-p with the score of 1.34E-01
Nr 3 : a-i-m with the score of 1.32E-01
Nr 4 : y-y-i with the score of 5.12E-02
Nr 5 : v-a-b with the score of 2.54E-02
The score of class f-u-l being recognized as keypair f-u-l after

↪→ combining is 5.32E-03 which is score number 2
The top key pair candidates for position 5 after combining with

↪→ digraph distributions are
Nr 1 : a-i-m with the score of 9.33E-01
Nr 2 : f-u-l with the score of 5.32E-03
Nr 3 : e-c-t with the score of 2.34E-03
Nr 4 : o-o-k with the score of 2.12E-03
Nr 5 : a-v-i with the score of 1.58E-03
The score of class g-r-a being recognized as keypair g-r-a before

↪→ combining is 3.45E-04 which is score number 319
The top key pair candidates for position 0 before combining with

↪→ digraph distributions are
Nr 1 : d-e-e with the score of 1.91E-01
Nr 2 : a-r-r with the score of 1.39E-01
Nr 3 : e-q-u with the score of 3.56E-02
Nr 4 : c-u-r with the score of 2.88E-02
Nr 5 : s-a-u with the score of 1.67E-02
The score of class g-r-a being recognized as keypair g-r-a after

↪→ combining is 2.07E-03 which is score number 68
The top key pair candidates for position 0 after combining with

↪→ digraph distributions are
Nr 1 : p-l-a with the score of 1.95E-01
Nr 2 : d-r-a with the score of 5.99E-02
Nr 3 : l-i-t with the score of 5.41E-02

A.6. FULL EXAMPLES INCLUDING BOTH APPROACHES TO COMBINING 135

Nr 4 : i-n-t with the score of 5.10E-02
Nr 5 : p-l-e with the score of 4.36E-02
The score of class r-a-t being recognized as keypair r-a-t before

↪→ combining is 2.03E-03 which is score number 38
The top key pair candidates for position 1 before combining with

↪→ digraph distributions are
Nr 1 : a-n-e with the score of 2.97E-01
Nr 2 : n-f-i with the score of 1.17E-01
Nr 3 : n-b-r with the score of 7.46E-02
Nr 4 : i-s-c with the score of 4.04E-02
Nr 5 : n-d-e with the score of 2.71E-02
The score of class r-a-t being recognized as keypair r-a-t after

↪→ combining is 5.75E-03 which is score number 24
The top key pair candidates for position 1 after combining with

↪→ digraph distributions are
Nr 1 : n-s-u with the score of 2.17E-01
Nr 2 : i-t-a with the score of 6.06E-02
Nr 3 : a-n-e with the score of 5.59E-02
Nr 4 : l-a-t with the score of 5.53E-02
Nr 5 : n-f-i with the score of 5.28E-02
The score of class a-t-e being recognized as keypair a-t-e before

↪→ combining is 1.43E-01 which is score number 1
The top key pair candidates for position 2 before combining with

↪→ digraph distributions are
Nr 1 : a-t-e with the score of 1.43E-01
Nr 2 : i-e-v with the score of 5.31E-02
Nr 3 : a-l-o with the score of 4.66E-02
Nr 4 : o-v-i with the score of 4.02E-02
Nr 5 : e-r-b with the score of 2.92E-02
The score of class a-t-e being recognized as keypair a-t-e after

↪→ combining is 1.74E-01 which is score number 2
The top key pair candidates for position 2 after combining with

↪→ digraph distributions are
Nr 1 : s-u-r with the score of 2.54E-01
Nr 2 : a-t-e with the score of 1.74E-01
Nr 3 : s-u-a with the score of 4.89E-02
Nr 4 : r-i-s with the score of 3.42E-02
Nr 5 : u-d-y with the score of 3.20E-02

136 A. APPENDIX A

The score of class t-e-f being recognized as keypair t-e-f before
↪→ combining is 5.27E-04 which is score number 236

The top key pair candidates for position 3 before combining with
↪→ digraph distributions are

Nr 1 : d-e-r with the score of 2.19E-01
Nr 2 : b-o-r with the score of 7.02E-02
Nr 3 : r-e-a with the score of 4.51E-02
Nr 4 : o-i-c with the score of 2.31E-02
Nr 5 : t-i-a with the score of 2.13E-02
The score of class t-e-f being recognized as keypair t-e-f after

↪→ combining is 4.00E-03 which is score number 47
The top key pair candidates for position 3 after combining with

↪→ digraph distributions are
Nr 1 : i-c-i with the score of 1.09E-01
Nr 2 : t-a-c with the score of 8.42E-02
Nr 3 : r-y-d with the score of 8.36E-02
Nr 4 : b-o-r with the score of 6.55E-02
Nr 5 : f-u-s with the score of 2.86E-02
The score of class e-f-u being recognized as keypair e-f-u before

↪→ combining is 8.27E-04 which is score number 122
The top key pair candidates for position 4 before combining with

↪→ digraph distributions are
Nr 1 : b-i-t with the score of 3.99E-01
Nr 2 : d-i-s with the score of 3.52E-02
Nr 3 : i-t-l with the score of 2.52E-02
Nr 4 : k-a-g with the score of 2.51E-02
Nr 5 : g-r-a with the score of 2.32E-02
The score of class e-f-u being recognized as keypair e-f-u after

↪→ combining is 2.85E-03 which is score number 16
The top key pair candidates for position 4 after combining with

↪→ digraph distributions are
Nr 1 : a-c-l with the score of 2.38E-01
Nr 2 : y-d-a with the score of 1.77E-01
Nr 3 : r-b-e with the score of 1.71E-01
Nr 4 : e-v-e with the score of 1.32E-01
Nr 5 : b-i-t with the score of 8.43E-02
The score of class f-u-l being recognized as keypair f-u-l before

↪→ combining is 5.32E-03 which is score number 2

A.6. FULL EXAMPLES INCLUDING BOTH APPROACHES TO COMBINING 137

The top key pair candidates for position 5 before combining with
↪→ digraph distributions are

Nr 1 : a-i-m with the score of 9.33E-01
Nr 2 : f-u-l with the score of 5.32E-03
Nr 3 : e-c-t with the score of 2.34E-03
Nr 4 : o-o-k with the score of 2.12E-03
Nr 5 : a-v-i with the score of 1.58E-03
The score of class f-u-l being recognized as keypair f-u-l after

↪→ combining is 2.77E-02 which is score number 2
The top key pair candidates for position 5 after combining with

↪→ digraph distributions are
Nr 1 : a-i-m with the score of 9.34E-01
Nr 2 : f-u-l with the score of 2.77E-02
Nr 3 : n-c-t with the score of 8.74E-03
Nr 4 : b-e-d with the score of 2.83E-03
Nr 5 : i-e-s with the score of 1.76E-03
grateful is the correct word with score 1.59E-14
In pure digraph, the correct word is found as number 3 candidate
Sorted list digraphs
{’plateful’: ’3.34E-14’, ’absurdly’: ’1.82E-14’, ’grateful’: ’1.59E

↪→ -14’, ’litanies’: ’3.87E-15’, ’eighties’: ’3.80E-15’, ’
↪→ graceful’: ’3.17E-15’, ’crateful’: ’3.00E-15’, ’instinct’:
↪→ ’2.97E-15’, ’insuring’: ’2.94E-15’, ’instancy’: ’2.93E-15’, ’
↪→ instance’: ’2.88E-15’, ’modifies’: ’2.81E-15’, ’insurers’:
↪→ ’2.60E-15’, ’codifies’: ’2.59E-15’, ’modified’: ’2.40E-15’, ’
↪→ obstacle’: ’2.30E-15’, ’dismayed’: ’2.24E-15’,

’codified’: ’2.22E-15’, ’tentacle’: ’2.20E-15’, ’mightier’: ’2.03E
↪→ -15’, ’blatancy’: ’1.78E-15’, ’frothier’: ’1.77E-15’, ’
↪→ pittance’: ’1.67E-15’, ’wrathful’: ’1.57E-15’, ’barnacle’:
↪→ ’1.47E-15’, ’unsubtly’: ’1.38E-15’, ’absorbed’: ’1.35E-15’, ’
↪→ wasteful’: ’1.35E-15’, ’transfer’: ’1.18E-15’, ’rightful’:
↪→ ’1.13E-15’, ’november’: ’1.11E-15’, ’distinct’: ’1.01E-15’, ’
↪→ varicose’: ’9.79E-16’, ’distance’: ’9.77E-16’, ’notifies’:
↪→ ’8.76E-16’, ’judicial’: ’8.29E-16’, ’sequence’: ’8.12E-16’, ’
↪→ dithered’: ’8.03E-16’, ’scornful’: ’7.58E-16’, ’probably’:
↪→ ’7.55E-16’, ’notified’: ’7.51E-16’, ’futurity’: ’7.47E-16’, ’
↪→ tasteful’: ’7.24E-16’, ’cutbacks’: ’7.00E-16’, ’dreadful’:
↪→ ’6.61E-16’, ’shanties’: ’6.37E-16’,

138 A. APPENDIX A

’unturned’: ’6.36E-16’, ’futurist’: ’6.32E-16’, ’withered’: ’6.24E
↪→ -16’, ’absurder’: ’5.97E-16’, ’frostier’: ’5.84E-16’, ’
↪→ aviaries’: ’5.78E-16’, ’piracies’: ’5.68E-16’, ’ensuring’:
↪→ ’5.62E-16’, ’blameful’: ’5.53E-16’, ’purifies’: ’5.47E-16’, ’
↪→ futurism’: ’5.31E-16’, ’downside’: ’5.27E-16’, ’situated’:
↪→ ’5.16E-16’, ’prudence’: ’5.13E-16’, ’hostages’: ’4.90E-16’, ’
↪→ motherly’: ’4.89E-16’, ’modifier’: ’4.87E-16’, ’indicant’:
↪→ ’4.87E-16’, ’sensibly’: ’4.84E-16’, ’lovelies’: ’4.79E-16’, ’
↪→ purified’: ’4.69E-16’, ’furnaces’: ’4.68E-16’, ’treaties’:
↪→ ’4.59E-16’, ’securely’: ’4.53E-16’, ’sentence’: ’4.51E-16’, ’
↪→ elapsing’: ’4.49E-16’, ’litigant’: ’4.38E-16’, ’truthful’:
↪→ ’4.37E-16’, ’drenches’: ’4.33E-16’, ’brandies’: ’4.32E-16’, ’
↪→ suspense’: ’4.16E-16’, ’purities’: ’4.16E-16’, ’verifies’:
↪→ ’4.11E-16’, ’prairies’: ’4.06E-16’, ’maturely’: ’4.05E-16’, ’
↪→ steadied’: ’4.04E-16’, ’insisted’: ’3.92E-16’, ’whatever’:
↪→ ’3.82E-16’, ’rhapsody’: ’3.77E-16’, ’drenched’: ’3.71E-16’, ’
↪→ setbacks’: ’3.70E-16’, ’instated’: ’3.64E-16’, ’verified’:
↪→ ’3.52E-16’, ’chancier’: ’3.50E-16’, ’motivate’: ’3.47E-16’, ’
↪→ mirthful’: ’3.45E-16’, ’parities’: ’3.39E-16’, ’chaperon’:
↪→ ’3.30E-16’, ’untraced’: ’3.27E-16’, ’precepts’: ’3.24E-16’, ’
↪→ untidier’: ’3.24E-16’, ’theories’: ’3.18E-16’, ’logician’:
↪→ ’3.15E-16’, ’grimaces’: ’3.14E-16’}

grateful is the correct word with score 2.32E-16
In pure trigraph, the correct word is found as number 3 candidate
Sorted list trigraphs
{’plateful’: ’2.00E-14’, ’disclaim’: ’1.90E-15’, ’grateful’: ’2.32E

↪→ -16’, ’crateful’: ’1.34E-16’, ’whatever’: ’6.00E-17’, ’
↪→ indebted’: ’2.55E-17’, ’pleading’: ’2.48E-17’, ’bathroom’:
↪→ ’1.14E-17’, ’interior’: ’1.04E-17’, ’grieving’: ’9.91E-18’, ’
↪→ arrowing’: ’9.55E-18’, ’provides’: ’8.98E-18’, ’powdered’:
↪→ ’8.22E-18’, ’interact’: ’7.35E-18’, ’interred’: ’6.51E-18’, ’
↪→ deepened’: ’5.69E-18’, ’arriving’: ’5.21E-18’, ’tendered’:
↪→ ’4.53E-18’, ’approval’: ’4.31E-18’, ’panelled’: ’4.27E-18’, ’
↪→ pleasure’: ’4.15E-18’, ’distorts’: ’4.14E-18’, ’quantify’:
↪→ ’4.08E-18’, ’equation’: ’3.66E-18’, ’gendered’: ’3.31E-18’, ’
↪→ cratered’: ’3.07E-18’, ’tenderly’: ’2.82E-18’, ’provided’:
↪→ ’2.70E-18’, ’watering’: ’2.55E-18’, ’kneading’: ’2.39E-18’, ’
↪→ wondered’: ’2.01E-18’, ’approves’: ’2.00E-18’, ’fritters’:
↪→ ’1.92E-18’, ’approved’: ’1.89E-18’,

A.6. FULL EXAMPLES INCLUDING BOTH APPROACHES TO COMBINING 139

’wandered’: ’1.83E-18’, ’platters’: ’1.73E-18’, ’indented’: ’1.69E
↪→ -18’, ’whenever’: ’1.50E-18’, ’licensed’: ’1.43E-18’, ’
↪→ laureate’: ’1.41E-18’, ’prospect’: ’1.37E-18’, ’attitude’:
↪→ ’1.37E-18’, ’literate’: ’1.19E-18’, ’romantic’: ’1.15E-18’, ’
↪→ occasion’: ’1.10E-18’, ’currency’: ’1.05E-18’, ’official’:
↪→ ’1.04E-18’, ’somewhat’: ’1.01E-18’, ’planting’: ’1.00E-18’, ’
↪→ deterred’: ’1.00E-18’, ’amenable’: ’9.62E-19’, ’licenses’:
↪→ ’9.37E-19’, ’ventures’: ’8.90E-19’, ’ventured’: ’8.78E-19’, ’
↪→ appalled’: ’8.44E-19’, ’division’: ’8.37E-19’, ’dreading’:
↪→ ’8.33E-19’, ’provider’: ’8.02E-19’, ’literacy’: ’7.88E-19’, ’
↪→ careless’: ’7.51E-19’, ’interest’: ’7.48E-19’, ’derision’:
↪→ ’7.37E-19’, ’frigates’: ’7.26E-19’, ’tenderer’: ’6.89E-19’, ’
↪→ resorted’: ’6.86E-19’, ’intrudes’: ’6.72E-19’, ’foreland’:
↪→ ’6.51E-19’, ’arranged’: ’6.43E-19’, ’literary’: ’6.19E-19’, ’
↪→ currants’: ’5.97E-19’, ’material’: ’5.97E-19’, ’currents’:
↪→ ’5.95E-19’, ’equating’: ’5.79E-19’, ’gestures’: ’5.74E-19’, ’
↪→ treading’: ’5.72E-19’, ’gestured’: ’5.66E-19’, ’literati’:
↪→ ’5.63E-19’, ’adroitly’: ’5.27E-19’, ’querying’: ’5.17E-19’, ’
↪→ unsorted’: ’5.08E-19’, ’addition’: ’4.98E-19’, ’indirect’:
↪→ ’4.97E-19’, ’catering’: ’4.75E-19’, ’moreover’: ’4.70E-19’, ’
↪→ perishes’: ’4.60E-19’, ’jovially’: ’4.53E-19’, ’repeated’:
↪→ ’4.40E-19’, ’discover’: ’4.19E-19’, ’insuring’: ’4.05E-19’, ’
↪→ coalesce’: ’3.88E-19’, ’everyday’: ’3.61E-19’, ’pleasing’:
↪→ ’3.53E-19’, ’powerful’: ’3.47E-19’, ’envision’: ’3.37E-19’, ’
↪→ plaudits’: ’3.31E-19’, ’notation’: ’3.29E-19’, ’arranges’:
↪→ ’3.28E-19’, ’artistry’: ’3.27E-19’, ’pondered’: ’3.25E-19’, ’
↪→ drenches’: ’3.08E-19’}

Combined, the correct word is found as number 2 candidate
Sorted list combined
{’plateful’: ’6.68E-28’, ’grateful’: ’3.69E-30’, ’crateful’: ’4.02E

↪→ -31’, ’whatever’: ’2.29E-32’, ’insuring’: ’1.19E-33’, ’
↪→ drenches’: ’1.33E-34’}

grateful is the correct word with score 6.53E-13
In combined digraph/trigraph, the correct word is found as number 2

↪→ candidate
Sorted list trigraphs/digraphs combined
{’plateful’: ’5.93E-10’, ’grateful’: ’6.53E-13’, ’crateful’: ’7.11E

↪→ -14’, ’whatever’: ’8.25E-15’, ’insuring’: ’8.07E-16’, ’
↪→ obstacle’: ’9.53E-17’, ’disclaim’: ’5.61E-17’, ’pittance’:
↪→ ’5.25E-17’, ’dismayed’: ’4.81E-17’,

140 A. APPENDIX A

’eighties’: ’4.35E-17’, ’wasteful’: ’3.76E-17’, ’november’: ’2.79E
↪→ -17’, ’ensuring’: ’2.78E-17’, ’musician’: ’2.24E-17’, ’
↪→ motivate’: ’1.89E-17’, ’insurers’: ’1.83E-17’, ’wrathful’:
↪→ ’1.56E-17’, ’tentacle’: ’1.14E-17’, ’perishes’: ’9.20E-18’, ’
↪→ modifies’: ’7.91E-18’, ’distance’: ’7.62E-18’, ’modified’:
↪→ ’6.68E-18’, ’instance’: ’4.84E-18’, ’mightier’: ’4.74E-18’, ’
↪→ instancy’: ’4.08E-18’, ’literate’: ’3.38E-18’, ’currency’:
↪→ ’2.51E-18’, ’steadied’: ’2.45E-18’, ’distinct’: ’2.40E-18’, ’
↪→ absorbed’: ’2.21E-18’, ’perished’: ’1.69E-18’, ’indicate’:
↪→ ’1.66E-18’, ’dispense’: ’1.65E-18’, ’drenches’: ’1.60E-18’, ’
↪→ instinct’: ’1.52E-18’, ’interred’: ’1.33E-18’, ’discover’:
↪→ ’1.27E-18’, ’cratered’: ’1.18E-18’, ’sensibly’: ’1.11E-18’, ’
↪→ province’: ’1.00E-18’, ’whenever’: ’9.21E-19’, ’literati’:
↪→ ’9.00E-19’, ’absorber’: ’7.99E-19’, ’truthful’: ’6.08E-19’, ’
↪→ quantify’: ’5.79E-19’, ’shanties’: ’5.56E-19’, ’audience’:
↪→ ’4.40E-19’, ’dreadful’: ’4.30E-19’, ’modifier’: ’3.90E-19’, ’
↪→ waterbed’: ’3.86E-19’, ’provides’: ’3.81E-19’, ’trenches’:
↪→ ’3.37E-19’, ’returned’: ’3.29E-19’, ’insisted’: ’3.25E-19’, ’
↪→ derisive’: ’3.20E-19’, ’wrenches’: ’3.19E-19’, ’noticing’:
↪→ ’3.19E-19’, ’drenched’: ’2.93E-19’, ’remember’: ’2.91E-19’, ’
↪→ everyday’: ’2.87E-19’, ’december’: ’2.73E-19’, ’frothier’:
↪→ ’2.36E-19’, ’untraced’: ’2.35E-19’, ’official’: ’2.13E-19’, ’
↪→ planting’: ’2.13E-19’, ’verities’: ’2.11E-19’, ’transfer’:
↪→ ’2.08E-19’, ’verifies’: ’2.00E-19’, ’plaudits’: ’1.97E-19’, ’
↪→ postures’: ’1.78E-19’, ’casually’: ’1.77E-19’, ’verified’:
↪→ ’1.69E-19’, ’judicial’: ’1.66E-19’, ’hittable’: ’1.65E-19’, ’
↪→ blatancy’: ’1.58E-19’, ’sentence’: ’1.54E-19’, ’postured’:
↪→ ’1.50E-19’, ’pleading’: ’1.45E-19’, ’dithered’: ’1.45E-19’, ’
↪→ prudence’: ’1.45E-19’, ’cottages’: ’1.44E-19’, ’steadier’:
↪→ ’1.43E-19’, ’plantain’: ’1.43E-19’, ’lighting’: ’1.41E-19’, ’
↪→ disclose’: ’1.31E-19’, ’literary’: ’1.14E-19’, ’littered’:
↪→ ’1.13E-19’, ’statures’: ’1.11E-19’, ’provided’: ’9.82E-20’, ’
↪→ pleasure’: ’9.46E-20’, ’rigidity’: ’8.96E-20’, ’hostages’:
↪→ ’8.94E-20’, ’absurdly’: ’8.75E-20’, ’sensible’: ’8.42E-20’, ’
↪→ literacy’: ’8.18E-20’, ’pitiably’: ’7.63E-20’, ’interact’:
↪→ ’7.53E-20’, ’probably’: ’7.14E-20’, ’untitled’: ’7.11E-20’, ’
↪→ features’: ’6.89E-20’}

Listing A.5: Simulated word "grateful"

A.6. FULL EXAMPLES INCLUDING BOTH APPROACHES TO COMBINING 141

Figure A.18: Data frame with digraphs for "wood"

Figure A.19: Data frame with trigraphs for "wood"

142 A. APPENDIX A

The score of class w-o being recognized as keypair w-o before
↪→ combining is 1.15E-03 which is score number 117

The top key pair candidates for position 0 before combining with
↪→ digraph distributions are

Nr 1 : u-g with the score of 1.39E-01
Nr 2 : n-f with the score of 1.02E-01
Nr 3 : t-n with the score of 8.51E-02
Nr 4 : k-s with the score of 5.04E-02
Nr 5 : c-a with the score of 2.85E-02
The score of class w-o being recognized as keypair w-o after

↪→ combining is 4.88E-03 which is score number 28
The top key pair candidates for position 0 after combining with

↪→ digraph distributions are
Nr 1 : u-g with the score of 2.56E-01
Nr 2 : c-a with the score of 1.15E-01
Nr 3 : d-i with the score of 7.68E-02
Nr 4 : b-i with the score of 4.48E-02
Nr 5 : s-t with the score of 4.15E-02
The score of class o-o being recognized as keypair o-o before

↪→ combining is 1.51E-03 which is score number 111
The top key pair candidates for position 1 before combining with

↪→ digraph distributions are
Nr 1 : e-u with the score of 5.47E-02
Nr 2 : c-c with the score of 4.74E-02
Nr 3 : m-b with the score of 3.74E-02
Nr 4 : h-o with the score of 2.35E-02
Nr 5 : v-p with the score of 2.25E-02
The score of class o-o being recognized as keypair o-o after

↪→ combining is 1.48E-02 which is score number 7
The top key pair candidates for position 1 after combining with

↪→ digraph distributions are
Nr 1 : a-v with the score of 2.21E-01
Nr 2 : h-o with the score of 1.57E-01
Nr 3 : y-p with the score of 4.62E-02
Nr 4 : e-b with the score of 2.64E-02
Nr 5 : i-b with the score of 2.29E-02
The score of class o-d being recognized as keypair o-d before

↪→ combining is 8.67E-04 which is score number 109

A.6. FULL EXAMPLES INCLUDING BOTH APPROACHES TO COMBINING 143

The top key pair candidates for position 2 before combining with
↪→ digraph distributions are

Nr 1 : c-h with the score of 4.77E-01
Nr 2 : i-c with the score of 2.56E-02
Nr 3 : d-o with the score of 2.43E-02
Nr 4 : k-v with the score of 2.23E-02
Nr 5 : b-w with the score of 2.16E-02
The score of class o-d being recognized as keypair o-d after

↪→ combining is 1.12E-03 which is score number 45
The top key pair candidates for position 2 after combining with

↪→ digraph distributions are
Nr 1 : c-h with the score of 7.90E-01
Nr 2 : t-h with the score of 3.25E-02
Nr 3 : i-c with the score of 1.86E-02
Nr 4 : a-k with the score of 7.44E-03
Nr 5 : a-n with the score of 7.22E-03
The score of class w-o-o being recognized as keypair w-o-o before

↪→ combining is 7.01E-05 which is score number 1747
The top key pair candidates for position 0 before combining with

↪→ digraph distributions are
Nr 1 : v-s-s with the score of 6.30E-02
Nr 2 : w-h-y with the score of 3.89E-02
Nr 3 : r-a-b with the score of 3.17E-02
Nr 4 : d-e-e with the score of 3.13E-02
Nr 5 : i-k-a with the score of 2.90E-02
The score of class w-o-o being recognized as keypair w-o-o after

↪→ combining is 4.61E-04 which is score number 211
The top key pair candidates for position 0 after combining with

↪→ digraph distributions are
Nr 1 : d-e-e with the score of 2.64E-01
Nr 2 : r-a-b with the score of 1.83E-01
Nr 3 : m-o-r with the score of 3.93E-02
Nr 4 : e-l-m with the score of 2.95E-02
Nr 5 : v-e-s with the score of 2.56E-02
The score of class o-o-d being recognized as keypair o-o-d before

↪→ combining is 1.95E-05 which is score number 3120

144 A. APPENDIX A

The top key pair candidates for position 1 before combining with
↪→ digraph distributions are

Nr 1 : n-i-c with the score of 1.33E-01
Nr 2 : b-e-v with the score of 8.83E-02
Nr 3 : f-e-e with the score of 7.67E-02
Nr 4 : l-o-y with the score of 6.95E-02
Nr 5 : y-s-y with the score of 5.35E-02
The score of class o-o-d being recognized as keypair o-o-d after

↪→ combining is 3.21E-04 which is score number 173
The top key pair candidates for position 1 after combining with

↪→ digraph distributions are
Nr 1 : e-f-t with the score of 3.33E-01
Nr 2 : u-n-g with the score of 2.60E-01
Nr 3 : n-e-s with the score of 7.23E-02
Nr 4 : i-n-y with the score of 3.53E-02
Nr 5 : i-s-s with the score of 1.69E-02
The score of class w-o-o being recognized as keypair w-o-o before

↪→ combining is 4.61E-04 which is score number 211
The top key pair candidates for position 0 before combining with

↪→ digraph distributions are
Nr 1 : d-e-e with the score of 2.64E-01
Nr 2 : r-a-b with the score of 1.83E-01
Nr 3 : m-o-r with the score of 3.93E-02
Nr 4 : e-l-m with the score of 2.95E-02
Nr 5 : v-e-s with the score of 2.56E-02
The score of class w-o-o being recognized as keypair w-o-o after

↪→ combining is 1.55E-03 which is score number 52
The top key pair candidates for position 0 after combining with

↪→ digraph distributions are
Nr 1 : t-h-o with the score of 2.73E-01
Nr 2 : d-e-e with the score of 8.79E-02
Nr 3 : r-a-b with the score of 6.32E-02
Nr 4 : v-e-s with the score of 5.27E-02
Nr 5 : r-i-b with the score of 4.81E-02
The score of class o-o-d being recognized as keypair o-o-d before

↪→ combining is 3.21E-04 which is score number 173

A.6. FULL EXAMPLES INCLUDING BOTH APPROACHES TO COMBINING 145

The top key pair candidates for position 1 before combining with
↪→ digraph distributions are

Nr 1 : e-f-t with the score of 3.33E-01
Nr 2 : u-n-g with the score of 2.60E-01
Nr 3 : n-e-s with the score of 7.23E-02
Nr 4 : i-n-y with the score of 3.53E-02
Nr 5 : i-s-s with the score of 1.69E-02
The score of class o-o-d being recognized as keypair o-o-d after

↪→ combining is 8.79E-04 which is score number 51
The top key pair candidates for position 1 after combining with

↪→ digraph distributions are
Nr 1 : a-c-h with the score of 3.66E-01
Nr 2 : u-c-h with the score of 8.42E-02
Nr 3 : n-c-h with the score of 7.15E-02
Nr 4 : r-c-h with the score of 6.72E-02
Nr 5 : i-c-h with the score of 6.15E-02
wood is the correct word with score 8.09E-08
In pure digraph, the correct word is not found among top 100

↪→ candidates
Sorted list digraphs
{’cave’: ’5.83E-05’, ’rich’: ’4.93E-05’, ’bach’: ’4.53E-05’, ’such’:

↪→ ’3.55E-05’, ’tech’: ’1.43E-05’, ’each’: ’7.42E-06’, ’wave’:
↪→ ’6.31E-06’, ’shod’: ’2.76E-06’, ’cafe’: ’2.73E-06’, ’shot’:
↪→ ’2.10E-06’, ’show’: ’1.92E-06’, ’cans’: ’1.72E-06’, ’save’:
↪→ ’1.60E-06’, ’cape’: ’1.31E-06’, ’thor’: ’1.29E-06’, ’oath’:
↪→ ’1.25E-06’, ’pave’: ’1.08E-06’, ’with’: ’1.01E-06’, ’have’:
↪→ ’9.46E-07’, ’nave’: ’9.14E-07’, ’gave’: ’9.07E-07’, ’much’:
↪→ ’8.83E-07’, ’cage’: ’8.36E-07’, ’bins’: ’7.89E-07’, ’arch’:
↪→ ’7.78E-07’, ’both’: ’7.34E-07’, ’caps’: ’6.68E-07’, ’loch’:
↪→ ’6.41E-07’, ’inch’: ’6.26E-07’, ’shoe’: ’5.75E-07’, ’goth’:
↪→ ’5.66E-07’, ’cant’: ’5.58E-07’, ’wavy’: ’5.17E-07’, ’bath’:
↪→ ’5.13E-07’, ’calf’: ’5.07E-07’, ’dive’: ’5.06E-07’, ’dint’:
↪→ ’4.39E-07’, ’idem’: ’4.25E-07’, ’rave’: ’4.22E-07’, ’ouch’:
↪→ ’4.16E-07’, ’cast’: ’4.11E-07’, ’been’: ’3.73E-07’, ’care’:
↪→ ’3.56E-07’, ’chic’: ’3.52E-07’, ’stem’: ’3.42E-07’, ’dire’:
↪→ ’3.41E-07’, ’dips’: ’3.39E-07’, ’cash’: ’3.36E-07’, ’chow’:
↪→ ’3.31E-07’, ’your’: ’3.14E-07’, ’york’: ’3.05E-07’, ’them’:
↪→ ’2.82E-07’, ’dial’: ’2.68E-07’, ’dish’: ’2.68E-07’,

146 A. APPENDIX A

’carp’: ’2.62E-07’, ’ugly’: ’2.60E-07’, ’came’: ’2.54E-07’, ’cams’:
↪→ ’2.40E-07’, ’than’: ’2.31E-07’, ’this’: ’2.09E-07’, ’math’:
↪→ ’2.05E-07’, ’path’: ’1.85E-07’, ’ripe’: ’1.84E-07’, ’yore’:
↪→ ’1.84E-07’, ’cane’: ’1.84E-07’, ’dime’: ’1.77E-07’, ’beak’:
↪→ ’1.76E-07’, ’boos’: ’1.74E-07’, ’cake’: ’1.74E-07’, ’lath’:
↪→ ’1.74E-07’, ’beck’: ’1.71E-07’, ’bean’: ’1.71E-07’, ’cads’:
↪→ ’1.68E-07’, ’dims’: ’1.67E-07’, ’elan’: ’1.60E-07’, ’dice’:
↪→ ’1.56E-07’, ’bead’: ’1.52E-07’, ’wins’: ’1.50E-07’, ’cask’:
↪→ ’1.46E-07’, ’dine’: ’1.45E-07’, ’goad’: ’1.42E-07’, ’span’:
↪→ ’1.39E-07’, ’bibs’: ’1.38E-07’, ’cabs’: ’1.37E-07’, ’shop’:
↪→ ’1.31E-07’, ’suns’: ’1.28E-07’, ’teem’: ’1.27E-07’, ’cars’:
↪→ ’1.23E-07’, ’bite’: ’1.22E-07’, ’boor’: ’1.19E-07’, ’good’:
↪→ ’1.18E-07’, ’tuns’: ’1.18E-07’, ’boot’: ’1.16E-07’, ’seem’:
↪→ ’1.13E-07’, ’then’: ’1.08E-07’, ’fins’: ’1.08E-07’, ’they’:
↪→ ’1.05E-07’, ’rife’: ’1.01E-07’, ’type’: ’9.89E-08’, ’cats’:
↪→ ’9.85E-08’}

wood is the correct word with score 1.48E-07
In pure trigraph, the correct word is not found among top 100

↪→ candidates
Sorted list trigraphs
{’deep’: ’6.84E-04’, ’deem’: ’6.16E-04’, ’rung’: ’3.71E-04’, ’sung’:

↪→ ’1.13E-04’, ’left’: ’9.86E-05’, ’deed’: ’7.47E-05’, ’ones’:
↪→ ’6.83E-05’, ’tiny’: ’4.90E-05’, ’deer’: ’4.10E-05’, ’deft’:
↪→ ’3.51E-05’, ’knew’: ’3.41E-05’, ’mort’: ’2.46E-05’, ’miss’:
↪→ ’2.29E-05’, ’fine’: ’1.83E-05’, ’vest’: ’1.52E-05’, ’play’:
↪→ ’1.16E-05’, ’plan’: ’1.16E-05’, ’more’: ’1.02E-05’, ’sine’:
↪→ ’8.96E-06’, ’seep’: ’8.57E-06’, ’hung’: ’8.53E-06’, ’wine’:
↪→ ’7.95E-06’, ’loss’: ’7.84E-06’, ’seem’: ’7.71E-06’, ’morn’:
↪→ ’7.15E-06’, ’grey’: ’5.84E-06’, ’kiss’: ’5.83E-06’, ’paul’:
↪→ ’5.77E-06’, ’aunt’: ’5.52E-06’, ’bowl’: ’5.42E-06’, ’lily’:
↪→ ’5.03E-06’, ’lift’: ’4.79E-06’, ’dawn’: ’4.76E-06’, ’sell’:
↪→ ’4.37E-06’, ’void’: ’4.06E-06’, ’liny’: ’4.00E-06’, ’howl’:
↪→ ’3.86E-06’, ’bird’: ’3.62E-06’, ’seen’: ’3.57E-06’, ’dole’:
↪→ ’3.55E-06’, ’fees’: ’3.55E-06’, ’were’: ’3.46E-06’, ’lilt’:
↪→ ’3.45E-06’, ’some’: ’3.42E-06’, ’goon’: ’3.34E-06’, ’sees’:
↪→ ’3.31E-06’, ’beep’: ’3.23E-06’, ’piny’: ’3.13E-06’, ’drag’:
↪→ ’3.02E-06’, ’crop’: ’2.87E-06’, ’seek’: ’2.86E-06’, ’find’:
↪→ ’2.80E-06’, ’jest’: ’2.70E-06’, ’only’: ’2.64E-06’, ’told’:
↪→ ’2.61E-06’, ’rome’: ’2.59E-06’, ’dolt’: ’2.31E-06’, ’moss’:
↪→ ’2.09E-06’, ’into’: ’2.03E-06’, ’lord’: ’2.00E-06’,

A.6. FULL EXAMPLES INCLUDING BOTH APPROACHES TO COMBINING 147

’song’: ’1.99E-06’, ’boss’: ’1.98E-06’, ’well’: ’1.95E-06’, ’gong’:
↪→ ’1.93E-06’, ’idol’: ’1.91E-06’, ’bold’: ’1.90E-06’, ’slit’:
↪→ ’1.90E-06’, ’feet’: ’1.82E-06’, ’cord’: ’1.81E-06’, ’cold’:
↪→ ’1.80E-06’, ’goof’: ’1.78E-06’, ’stop’: ’1.78E-06’, ’tint’:
↪→ ’1.74E-06’, ’scar’: ’1.71E-06’, ’good’: ’1.68E-06’, ’sold’:
↪→ ’1.67E-06’, ’just’: ’1.60E-06’, ’word’: ’1.51E-06’, ’come’:
↪→ ’1.50E-06’, ’nosy’: ’1.50E-06’, ’line’: ’1.49E-06’, ’peep’:
↪→ ’1.49E-06’, ’many’: ’1.45E-06’, ’able’: ’1.44E-06’, ’urge’:
↪→ ’1.44E-06’, ’rags’: ’1.43E-06’, ’been’: ’1.35E-06’, ’wold’:
↪→ ’1.30E-06’, ’atop’: ’1.30E-06’, ’rind’: ’1.25E-06’, ’bees’:
↪→ ’1.25E-06’, ’gold’: ’1.23E-06’, ’draw’: ’1.23E-06’, ’wind’:
↪→ ’1.21E-06’, ’pine’: ’1.17E-06’, ’bows’: ’1.16E-06’, ’tile’:
↪→ ’1.13E-06’, ’lest’: ’1.12E-06’, ’abut’: ’1.10E-06’, ’mine’:
↪→ ’1.08E-06’}

Combined, the correct word is not found among top 100 candidates
Sorted list combined
{’seem’: ’8.71E-13’, ’been’: ’5.04E-13’, ’good’: ’1.98E-13’}
wood is the correct word with score 1.36E-06
In combined digraph/trigraph, the correct word is found as number 67

↪→ candidate
Sorted list trigraphs/digraphs combined
{’deem’: ’2.90E-03’, ’save’: ’1.88E-03’, ’wave’: ’1.73E-03’, ’bach’:

↪→ ’7.46E-04’, ’have’: ’7.42E-04’, ’shot’: ’6.10E-04’, ’deep’:
↪→ ’3.01E-04’, ’nave’: ’2.39E-04’, ’gave’: ’2.27E-04’, ’show’:
↪→ ’2.23E-04’, ’such’: ’2.09E-04’, ’shoe’: ’9.47E-05’, ’cave’:
↪→ ’8.21E-05’, ’seem’: ’8.04E-05’, ’each’: ’7.95E-05’, ’thou’:
↪→ ’5.50E-05’, ’been’: ’4.63E-05’, ’rich’: ’4.18E-05’, ’shop’:
↪→ ’3.87E-05’, ’vest’: ’3.67E-05’, ’beep’: ’2.72E-05’, ’wavy’:
↪→ ’2.61E-05’, ’good’: ’2.26E-05’, ’chow’: ’1.75E-05’, ’goof’:
↪→ ’1.47E-05’, ’seen’: ’1.43E-05’, ’whop’: ’1.27E-05’, ’sung’:
↪→ ’1.26E-05’, ’deer’: ’1.24E-05’, ’this’: ’8.72E-06’, ’seep’:
↪→ ’8.36E-06’, ’type’: ’7.23E-06’, ’deed’: ’6.62E-06’, ’feet’:
↪→ ’6.61E-06’, ’rung’: ’6.15E-06’, ’fine’: ’5.96E-06’, ’feel’:
↪→ ’5.96E-06’, ’your’: ’5.47E-06’, ’seek’: ’5.35E-06’, ’whom’:
↪→ ’4.70E-06’, ’dive’: ’4.43E-06’, ’left’: ’4.04E-06’, ’beet’:
↪→ ’3.68E-06’, ’navy’: ’3.61E-06’, ’wine’: ’3.59E-06’, ’with’:
↪→ ’3.48E-06’, ’void’: ’3.35E-06’, ’bins’: ’3.14E-06’, ’chic’:
↪→ ’3.12E-06’, ’chop’: ’3.04E-06’, ’peep’: ’2.75E-06’, ’thor’:
↪→ ’2.68E-06’, ’safe’: ’2.61E-06’, ’fees’: ’2.59E-06’, ’goon’:
↪→ ’2.24E-06’, ’user’: ’2.20E-06’, ’teem’: ’2.16E-06’,

148 A. APPENDIX A

’best’: ’2.13E-06’, ’sine’: ’2.07E-06’, ’fins’: ’2.02E-06’, ’peek’:
↪→ ’1.76E-06’, ’they’: ’1.71E-06’, ’rave’: ’1.59E-06’, ’meek’:
↪→ ’1.56E-06’, ’bees’: ’1.44E-06’, ’inch’: ’1.40E-06’, ’wood’:
↪→ ’1.36E-06’, ’whey’: ’1.36E-06’, ’came’: ’1.31E-06’, ’bold’:
↪→ ’1.28E-06’, ’them’: ’1.27E-06’, ’tiny’: ’1.27E-06’, ’carp’:
↪→ ’1.27E-06’, ’both’: ’1.26E-06’, ’rind’: ’1.23E-06’, ’bind’:
↪→ ’1.23E-06’, ’wins’: ’1.22E-06’, ’back’: ’1.18E-06’, ’beer’:
↪→ ’1.12E-06’, ’feed’: ’1.07E-06’, ’much’: ’1.05E-06’, ’ways’:
↪→ ’9.77E-07’, ’bath’: ’9.75E-07’, ’food’: ’9.69E-07’, ’boot’:
↪→ ’9.06E-07’, ’dole’: ’8.98E-07’, ’dolt’: ’8.89E-07’, ’woof’:
↪→ ’8.84E-07’, ’keen’: ’8.70E-07’, ’foot’: ’8.20E-07’, ’pave’:
↪→ ’8.18E-07’, ’ribs’: ’8.05E-07’, ’bowl’: ’7.99E-07’, ’find’:
↪→ ’7.90E-07’, ’plan’: ’7.89E-07’, ’woos’: ’7.57E-07’, ’rope’:
↪→ ’7.52E-07’, ’cast’: ’7.45E-07’, ’cams’: ’7.37E-07’, ’arch’:
↪→ ’7.08E-07’}

Listing A.6: Simulated word "wood"

Plaintext reconstruction of encrypted SSH
 traffic

Filip Johansen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Filip Johansen

Plaintext reconstruction of encrypted
SSH traffic

Master’s thesis in Communication Technology and Digital Security
Supervisor: Patrick Bours
June 2022

M
as

te
r’s

 th
es

is

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Keywords
	Motivation
	Limitation
	Ethical considerations
	Research question
	How similar is typing rhythm data to SSH traffic captured in Wireshark?
	Is it possible to distinguish and filter out certain special characters in the SSH traffic?
	Is it possible to reconstruct English words using packet-to-packet latency time and the typist's digraph rhythm?
	Is it possible to improve these results to achieve a level of reconstruction that threatens the security of SSH?

	Background knowledge
	Encryption
	Timing attacks
	The secure shell protocol (SSH)
	Keystroke Dynamics
	Content reconstruction and natural language processing
	The Hidden Markov Model
	Directed tree graphs and tree traversals

	State of the art
	SSH
	Keystroke Dynamics
	Content reconstruction

	Methods
	Data collection
	Data analysis

	Data Collection
	BeLT
	Preparing the data for SimulateKeystrokes
	SimulateKeystrokes
	Setting up the SSH session
	Filtering in Wireshark and preparing for data analysis

	Data Analysis
	Calculating mean and standard deviations for the key pair classes
	Statistics of the English language
	Calculating scores based upon packet latency and key pair classes
	HMM states and depth first tree traversal
	Matching, dictionary checking and probability checking

	Results and discussion
	Data collection and Wireshark traffic
	Identifying special keys
	Reconstructing words based on digraphs
	When packet latency is equal to or close to the mean
	When packet latency is a standard deviation away from the mean
	When packet latency is simulated

	Reconstructing words based on trigraphs
	Reconstructing words combined
	Combined word candidates
	Combining digraph and trigraph candidates

	The obstacles and hindering factors

	Conclusion and future research
	Conclusion
	Future research

	References
	Appendix A
	Data frames
	Overlapping values
	Input latency equal to mean for "gate"
	Input latency equal to mean for "error"
	Input latency equal to mean for "extend"
	Full examples including both approaches to combining

