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Toroidal topology of population activity in 
grid cells

Richard J. Gardner1,6 ✉, Erik Hermansen2,6, Marius Pachitariu3, Yoram Burak4,5, Nils A. Baas2 ✉, 
Benjamin A. Dunn1,2 ✉, May-Britt Moser1 & Edvard I. Moser1 ✉

The medial entorhinal cortex is part of a neural system for mapping the position of an 
individual within a physical environment1. Grid cells, a key component of this system, 
fire in a characteristic hexagonal pattern of locations2, and are organized in modules3 
that collectively form a population code for the animal’s allocentric position1.  
The invariance of the correlation structure of this population code across 
environments4,5 and behavioural states6,7, independent of specific sensory inputs,  
has pointed to intrinsic, recurrently connected continuous attractor networks (CANs) 
as a possible substrate of the grid pattern1,8–11. However, whether grid cell networks 
show continuous attractor dynamics, and how they interface with inputs from the 
environment, has remained unclear owing to the small samples of cells obtained so 
far. Here, using simultaneous recordings from many hundreds of grid cells and 
subsequent topological data analysis, we show that the joint activity of grid cells from 
an individual module resides on a toroidal manifold, as expected in a two-dimensional 
CAN. Positions on the torus correspond to positions of the moving animal in the 
environment. Individual cells are preferentially active at singular positions on the 
torus. Their positions are maintained between environments and from wakefulness to 
sleep, as predicted by CAN models for grid cells but not by alternative feedforward 
models12. This demonstration of network dynamics on a toroidal manifold provides a 
population-level visualization of CAN dynamics in grid cells.

The idea of a CAN has become one of the most influential concepts in 
theoretical systems neuroscience13–15. A CAN is a network in which recur-
rent synaptic connectivity constrains the joint activity of cells to a con-
tinuous low-dimensional repertoire of possible coactivation patterns 
in the presence of a wide range of external inputs. Few systems are more 
suitable for analysis of CAN dynamics than the spatial mapping circuits 
of the rodent brain, owing to the continuous, low-dimensional nature 
of space, and the availability and interpretability of data from these 
circuits1–6. In medial entorhinal cortex (MEC) and surrounding areas, 
head direction cells16 encode orientation whereas grid cells2 encode 
position. CAN models conceptualize the neural representations of 
these variables as spanning periodic one- or two-dimensional (1D or 2D)  
continua on a ring17–19 or a torus1,8–11, respectively. In this scheme, activity 
within the neural network stabilizes as a localized bump when cells are 
ordered according to their preferred firing directions or locations in 
physical space. The activity bump may be smoothly translated along 
the network continuum by speed and direction inputs, or by external 
sensory cues.

In agreement with CAN models1,8–11, head direction cells16,20,21 and 
modules of grid cells4–7 maintain fixed correlation structures. In head 
direction cells, cell samples of a few dozen have been sufficient to 
demonstrate that the network activity traverses a ring22–24, but for 
grid cells, the number of possible locations in the two-dimensional 

state space has been too large for the topology of the manifold 
to be uncovered. Here we take advantage of recently developed 
high-site-count Neuropixels silicon probes25,26 to determine in many 
hundreds of simultaneously recorded grid cells whether, as predicted 
by two-dimensional CAN models8–11, the population activity in an indi-
vidual grid-cell module resides on a toroidal manifold, independently 
of behavioural tasks and states and decoupled from the position of the 
animal in physical space. We focused on individual modules because 
(i) these are the unit networks of CAN models1,8–10; and (ii) topological 
analysis of multi-module representations would require even larger 
numbers of cells27.

Visualization of toroidal manifold
We recorded extracellular spikes of a total of 7,671 single units in layers 
II and III of the MEC–parasubiculum region in freely moving rats with 
unilateral or bilateral implants (total of 4 recordings, in 2 rats with 
bilateral single-shank probes and 1 rat with a unilateral 4-shank probe; 
from 546 to 2,571 cells per recording; Extended Data Fig. 1). During 
recordings, the rats were engaged in foraging behaviour in a square 
open-field (OF) enclosure or on an elevated track, or they slept in a 
small resting box. Using a clustering-based approach, we identified 
six grid modules across all rats (4 recording sessions, from 140 to 544 

https://doi.org/10.1038/s41586-021-04268-7

Received: 24 February 2021

Accepted: 19 November 2021

Published online: 12 January 2022

Open access

 Check for updates

1Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway. 2Department of Mathematical Sciences, 
Norwegian University of Science and Technology, Trondheim, Norway. 3HHMI Janelia Research Campus, Ashburn, VA, USA. 4Edmond and Lily Safra Center for Brain Sciences, The Hebrew 
University of Jerusalem, Jerusalem, Israel. 5Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel. 6These authors contributed equally: Richard J. Gardner, Erik 
Hermansen. ✉e-mail: richard.gardner@ntnu.no; nils.baas@ntnu.no; benjamin.dunn@ntnu.no; edvard.moser@ntnu.no

https://doi.org/10.1038/s41586-021-04268-7
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-021-04268-7&domain=pdf
mailto:richard.gardner@ntnu.no
mailto:nils.baas@ntnu.no
mailto:benjamin.dunn@ntnu.no
mailto:edvard.moser@ntnu.no


124  |  Nature  |  Vol 602  |  3 February 2022

Article

grid cells per session; 7.8% to 25.6% of total number of cells; Extended 
Data Fig. 2a–d, g, h). Each grid module cluster contained a mixture 
of nondirectional (‘pure’) grid cells and conjunctive grid × direction 
cells28, from 66 to 189 grid cells per module (total pure and conjunctive 
grid cells; Extended Data Fig. 2g). We initially limited our analyses to 
the subset of pure grid cells because (i) the expected toroidal topol-
ogy might be distorted by additional directional modulation; and (ii) 
detection of topology in conjunctive cells may require a larger number 
of cells than recorded here27.

To visually inspect the structure of the population activity of grid 
cells for signatures of toroidal topology, we constructed a three 
dimensional (3D) embedding of the n-dimensional population activ-
ity of a module of n = 149 pure grid cells (Fig. 1a). For this, we applied 
a two-stage dimensionality reduction procedure on the matrix of 
firing rates. First, to improve robustness to noise, we conducted a 

principal component analysis (PCA). We retained the first six prin-
cipal components, which explained a particularly large fraction of 
the variance for all grid modules in the OF condition (with a similar 
tendency seen during sleep; Extended Data Fig. 4a). Next, we applied 
uniform manifold approximation and projection (UMAP) to reduce 
the six principal components into a 3D visualization. This visualiza-
tion revealed a torus-like structure (Fig. 1b, Supplementary Video 1). 
Movement of the rat in the OF was accompanied by similarly continu-
ous movement of the population activity across the toroidal mani-
fold (Fig. 1b). When the activity of individual cells was plotted with 
reference to the 3D population representation, spikes for each cell 
were localized within a single patch of the population state space 
(Fig. 1c). The offsets between the firing locations of individual cells 
in the arena corresponded with the relative firing locations of the 
cells in the toroidal state space.
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Fig. 1 | Signatures of toroidal structure in the activity of a module of grid 
cells. a, Firing rates of 149 grid cells co-recorded from the same module and 
shown, in order of spatial information content, as a function of rat position in OF 
arena (rates colour-coded, max 0.2–35.0 Hz; rat ‘R’ day 1, module 2; Extended 
Data Fig. 2b). b, Nonlinear dimensionality reduction reveals torus-like structure 
in the population activity of a single grid module (same 149 cells; 3 different views 
of same point cloud). Each dot represents the population state at one time point 
(dots coloured by first principal component). Bold line shows a 5-s trajectory, 
demonstrating smooth movement over the toroidal manifold. Right, 
corresponding trajectory in OF. c, Toroidal positions of spikes from three grid 
cells from the module in a. Each panel shows the same 3D point cloud of 
population states as in b, with black dots indicating when the cell fired. Insets 
show: left: the cell’s 2D firing locations in OF (black dots on grey trajectory); 

middle: colour-coded firing rate map in OF (range 0 to max); right: colour-coded 
autocorrelogram of the rate map (range −1 to +1). Maximum rate and grid score 
(GS) are indicated. d, Same as in c (same cells) but with the rat running on an 
elevated, wheel-shaped track (‘wagon-wheel track’; WW). Note preserved 
toroidal field locations. e, f, Barcodes indicate toroidal topology of grid-cell 
population activity. Results of persistent cohomology analyses (30 longest bars 
in the first three dimensions: H0, H1 and H2) are shown for three grid modules 
from one rat (R1–R3 day 1, n = 93, 149 and 145 cells, respectively), in OF (e) and WW 
(f). Grey shading indicates longest lifetimes among 1,000 iterations in shuffled 
data (aligned to lower values of original bars). Arrows show four most prominent 
bars across all dimensions (all longer than in shuffled data). One prominent bar in 
dimension 0, two in dimension 1 and one in dimension 2 indicates cohomology 
equal to that of a torus.
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Quantification of toroidal topology
Although the UMAP projection allowed a toroidal point cloud to be 
visualized, the method does not lend itself to straightforward quanti-
fication of the topology of the state space or comparison of represen-
tations across experiments. We therefore turned to the framework 
of persistent cohomology, a toolset from topological data analysis 
in which the structure of neural data can be classified by identifying 
holes of varying dimensionality in topological spaces assigned to point 
clouds of the cells’ firing rates22,23. In applying this toolset, we replace 
each point of the point cloud by a ball of common radius. The union 
of balls results in a topological space in which the number of holes of 
different dimensions can be counted. By increasing this radius from 
zero until all the balls intersect, we observe the lifetime of each hole—
the range of radii from when the hole first appears until it disappears 
(see Extended Data Fig. 3C). The lifetimes of the holes are depicted as 
bars and the totality of bars referred to as the barcode. For a torus, the 
barcode must display four bars of substantial length: a 0D hole (a single 
component connecting all points); two 1D holes (describing circular 
features); and a 2D hole (a cavity; Extended Data Fig. 3B).

Persistent cohomology analyses allowed us to classify the shape of 
the six-dimensional representation that serves as an intermediate step 
in UMAP (Extended Data Fig. 3A). We constructed barcodes for each 
of the six individual modules of grid cells recorded in the OF arena 
(three modules from rat ‘R’, 2 from rat ‘Q’ and 1 from rat ‘S’, henceforth 
named R1, R2, R3, Q1, Q2 and S1). The barcodes showed clear indica-
tions of toroidal characteristics. For all six modules, we detected four 
long-lived bars representing a single 0D hole, two 1D holes and a 2D 
hole. Their lifetimes were significantly longer than the lifetime of any 
bar obtained in 1,000 shuffles of the data in which spike times were 
randomly rotated (Fig. 1e, f, Extended Data Fig. 6Aa; P < 0.001). The 
findings suggest that network dynamics during OF foraging resides on 
a low-dimensional manifold with the same barcode as a torus. We noted 
the appearance of additional short bars in the barcodes for all modules, 
but these are expected for toroidal point clouds27, as we confirmed with 

simulated data from several CAN models10,11 and point clouds sampled 
from idealized tori, which in each case exhibited similar features (see 
Extended Data Fig. 7).

Tori persist despite grid distortions
The appearance of a torus in the point cloud, and the mapping of the 
activity of individual grid cells onto the torus (Fig. 1c), are consistent 
with a relationship between position in 2D physical space and position 
in the dimensionality-reduced neural state space. However, in many 
environments, this relationship may not be isometric, as the grid pattern 
is distorted by geometrical features of the environment, such as walls and 
corners29–31 or discrete landmarks and reward locations32,33. We thus asked 
whether such geometric features could similarly distort the toroidal 
organization of network activity in the point cloud. We tested rats on an 
elevated running track shaped like a wagon wheel with four radial spokes 
(‘wagon-wheel track’ (WW); Fig. 1d, f). Spatial autocorrelation analyses 
confirmed that the strict periodicity of the grid pattern was compromised 
in this task (Extended Data Fig. 2e, f). Despite these distortions of the 
grid pattern in individual cells, toroidal tuning was maintained in the 
transformed population activity (Fig. 1d). The persistent cohomology 
analysis continued to identify one 0D hole, two 1D holes and one 2D hole 
with lifetimes that substantially exceeded those of shuffled data (Fig. 1f, 
Extended Data Fig. 6Ab). We also determined how the neural popula-
tion activity mapped onto the torus by calculating angular coordinates 
from each of the two 1D holes identified by the barcode (‘cohomological 
decoding’; Extended Data Fig. 5). The two angular coordinates defined 
directions intersecting at 60°, identifiable as a twisted torus (Fig. 2a). 
Consistent with CAN models, the vast majority of grid cells were tuned to 
a single location on the torus in each module and across environments, 
independent of geometry and local landmarks (Fig. 2b, Extended Data 
Fig. 4f, Supplementary Information).

To test how faithfully location in the environment is mapped onto 
the toroidal representation, we next asked whether grid-cell activity is 
predicted better by the cells’ tuning to the inferred torus than by their 
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Fig. 2 | Cohomological decoding of position on an inferred state space 
torus. a, b, Individual grid cells have distinct firing fields on the inferred torus 
(Extended Data Fig. 5). Toroidal coordinates for population activity vectors 
were decoded from the two significant 1D holes (red circles in a) in the barcodes 
in Fig 1e, f. a, Left, 3D embedding of the toroidal state space displaying 
colour-coded mean firing rate of one grid cell as a function of toroidal position. 
Right, a 2D torus may be formed by gluing opposite sides of a rhombus.  
b, Representative grid cells from module R2 day 1 showing tuning to toroidal 
coordinates (all R2 cells: Supplementary Fig. 1). Each row of four plots 
corresponds to one cell. Left to right, colour-coded maps of cells’ firing rates 
across the environment (OF or WW) and on the inferred torus (toroidal OF, 
toroidal WW, aligned to common axes). c, d, Toroidal information content  
(c) and explained deviance (d) for toroidal position (T) versus spatial position 

(S) in OF (top) and WW (bottom). Explained deviance is an R2-statistic (range 
0–1) expressing goodness-of-fit of GLM models for S or T. Left, scatterplots 
with dots showing individual cells; colour indicates module (inset). Right, 
mean ± s.e.m. for each module. n = 93 (R1), 149 (R2), 145 (R3), 94 (Q1), 65 (Q2)  
and 73 (S1) cells. e, f, Distances between toroidal firing field locations. e, Field 
locations of all R2 cells in OF and WW. Lines connect fields of the same cell. 
Toroidal OF and WW axes were aligned either separately (‘separate’) or 
commonly to OF (‘common’). f, Left, cumulative frequency distribution of field 
distances (all R2 cells; green curve, separate alignment; grey lines, common 
alignment (to either OF or WW); black curve, shuffled data, n = 1,000 shuffles). 
Right, mean distance between field centres (±s.e.m.) for all modules. n cells as 
in c, d. g, Same as f, but showing Pearson correlations between pairs of toroidal 
rate maps.
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tuning to physical space. For five out of six grid modules in OF and four 
out of six in WW, the information content conveyed about position, 
in bits per spike, was higher for position on the torus than for posi-
tion in physical space (Fig. 2c; R2, R3, Q1, Q2: all P < 0.001, W > 1,932 
in OF and WW; R1: P < 0.001, W = 4,010 in OF, P = 0.586, W = 2,129 in 
WW; S1: P = 1.000 in OF and WW, W = 620 in OF, W = 129 in WW; Wil-
coxon signed-rank test). We verified this difference by comparing the 
cross-validated prediction of two Poisson generalized linear model 
(GLM)-based encoding models of each cell’s activity that included 
toroidal position (decoded as above) and 2D spatial position. For both 
environments (OF and WW), the toroidal covariate was closer to a per-
fectly fitted model of the data than was the physical position covariate 
in five out of six grid-cell modules (Fig. 2d; R1, R2, R3, Q1, Q2: P < 0.001, 
W > 2,045 in OF and WW; S1: P < 0.001, W = 1,941 in OF, P = 1.000, W = 727 
in WW; Wilcoxon signed-rank test). Together, these differences point 
to toroidal structure as the primary feature of the population activity 
of grid cells, superior to that of the 2D coordinates of the animal’s cur-
rent position in the physical environment.

If grid cells operate on a toroidal manifold determined by intrinsic 
network features, this manifold may be expressed universally across 
environments, independently of sensory inputs. We tested this propo-
sition by assessing, on the inferred tori, whether the locations of fir-
ing fields of different grid cells were maintained between OF and WW 

(Fig. 2b, Supplementary Information). To compare the toroidal para-
metrizations, we aligned the axes of the toroidal coordinates (Extended 
Data Fig. 5b). First, we compared, for each cell, the distance between 
the centres of mass of the toroidal rate maps in OF and WW (Fig. 2e, f,  
Extended Data Fig. 6Ba). This distance was substantially shorter 
(mean ± s.e.m. of mean distances for all modules: 31.5 ± 6.3 degrees) 
than that of control data in which the order of the rate maps in one 
environment was shuffled (135.8 ± 1.7 degrees; maximum possible 
distance √2∙180 ≈ 254.6 degrees; data versus shuffled: P < 0.001 in all 
modules). Second, we calculated the pairwise Pearson correlations 
of binned toroidal rate maps across the two environments (Fig. 2g, 
Extended Data Fig. 6Ba). Consistent with the centre-of-mass compari-
son, the correlations between OF and WW were higher in observed data 
(mean ± s.e.m. of mean r values for all modules: 0.79 ± 0.07) than in 
shuffled data (r = 0.01 ± 0.01; P < 0.001 for all modules). Very similar 
results were obtained when applying the toroidal parametrization 
from the same environment (either OF or WW) to activity from both 
environments (Fig. 2f, g, 16.0 ± 3.4 degrees; r = 0.95 ± 0.02; P < 0.001 
for all modules and both mappings). Together, these findings suggest 
that physical space is mapped onto the same internal low-dimensional 
manifold irrespective of the specific environment.

Toroidal topology persists during sleep
If population activity is mapped onto the same toroidal manifold inde-
pendently of sensory inputs, the toroidal topology should also be main-
tained during sleep. To test this idea, the rats rested in a high-walled, 
opaque box placed in the centre of the OF or WW track. Periods of 
rapid-eye-movement (REM) sleep and slow-wave sleep (SWS) were 
identified on the basis of the low-frequency rhythmic content of the 
aggregated multi-unit activity in combination with prolonged behav-
ioural immobility (Extended Data Fig. 9).

Persistent cohomology analysis of the sleep population activity sug-
gested toroidal topology in five of the six grid modules during REM and 
four out of six modules during SWS (modules R2, R3, Q1 and Q2 for both 
sleep stages and module R1 only in REM; Fig. 3a, Extended Data Fig. 6Ac, d).  
In the remaining module (S1), there were no long-lived bars in dimen-
sions 1 or 2 (Extended Data Fig. 6Ac, d), indicating an absence of toroidal 
structure during sleep, perhaps because of an insufficient number of 
cells in this module (72 cells; Extended Data Fig. 4e). The barcode results 
were supported by the toroidal mapping, which revealed sharply tuned 
firing fields on the REM and SWS tori (99.3 ± 1.6% and 99.1 ± 1.8%, respec-
tively, of the grid cells in each module had higher information content 
than shuffled data, and in 95.3 ± 7.2% and 98.6 ± 2.4% of cells the toroidal 
tuning explained the activity better than a null model that assumes a 
constant firing rate; Fig. 3b, Extended Data Figs. 6C, 10, Supplementary 
Information). In addition, the spatial arrangements of toroidal firing 
locations of different cells were maintained between wake, REM and 
SWS states (Fig. 3c, Extended Data Fig. 6Bb, c). For between-condition 
pairs of rate maps, the mean distance (±s.e.m.) between the peak firing 
locations (OF versus REM 31.5 ± 15.4 degrees, OF versus SWS 29.8 ± 14.3 
degrees) was well below the distribution of shuffled distances (Fig. 3d, 
Extended Data Fig. 6Bb, c; 135.8 ± 2.3 degrees in both REM and SWS, 
P < 0.001 for all 5 and 4 modules, respectively). Similarly, the mean cor-
relations of pairs of toroidal rate maps (REM versus OF r = 0.80 ± 0.15, 
SWS versus OF r = 0.83 ± 0.12) were substantially larger than in shuffled 
versions of the data (Fig. 3e, Extended Data Fig. 6Bb, c; r = 0.01 ± 0.01 
in both REM and SWS, P < 0.001 for all 5 and 4 modules, respectively). 
Thus, the toroidal structure is maintained in both sleep conditions, 
despite the lack of external spatial inputs.

Classes of grid cells
We next investigated why toroidal structure was not visible during REM 
in module S1 and during SWS in modules R1 and S1 (Fig. 4a, Extended 
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Fig. 3 | Preservation of toroidal structure during sleep. a, Barcodes 
indicating toroidal topology for grid-cell module R2 day 2 (n = 152 cells) during 
REM sleep and SWS (as in Fig. 1e, f). b, Toroidal rate maps showing preserved 
toroidal tuning for individual cells across environments and brain states (as in 
Fig. 2b; all cells shown in Extended Data Fig. 10). From left: rate map for OF in 
physical coordinates; and rate maps for OF, REM sleep and SWS in toroidal 
coordinates. c, Distribution of toroidal field centres (as in Fig. 2e) in OF and 
sleep (n as in a). d, e, Left, cumulative distributions of distances between 
toroidal field centres (d) and Pearson correlation r values (e) of rate maps for all 
R2 grid cells, as in Fig. 2f, g, but comparing OF with REM or SWS. Right, mean 
value ± s.e.m. for all modules. n = 111 (R1), 152 (R2), 165 (R3), 94 (Q1), 65 (Q2) and 
72 (S1) cells. n = 1,000 shuffles.
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Data Fig. 6Ad). Previous studies of medial entorhinal spiking activ-
ity have described cell populations with distinct burst-firing and 
theta-modulation characteristics34–36; therefore, we asked whether a 
lack of toroidal structure was due to heterogeneity in the composition 
of the module. We quantified each cell’s temporal modulation charac-
teristics using the spike train temporal autocorrelogram from the OF 
session, and by applying clustering to the matrix of autocorrelograms 
we obtained three cell classes (Fig. 4b). Each class was distributed across 
multiple modules (Fig. 4d). Within each module, cells from the three 
classes showed overlapping grid spacing and orientation properties 
(Extended Data Fig. 8a). We named the classes ‘bursty’ (B), ‘non-bursty’ 
(N) and ‘theta-modulated’ (T), following the most prominent autocor-
relogram feature of each class (Fig. 4e). We also examined the spike 
waveforms of the cells, and found that each class showed a character-
istic spike width (Fig. 4f, g), suggesting that they differ in morphology 
or biophysical properties.

The firing rates of the cells during SWS exhibited marked correlation 
structure within—but not between—classes (Extended Data Fig. 8b). 
Even though our classification strategy was not influenced by the cells’ 
directional tuning, class T contained 80% of all conjunctive grid cells 
and only 11% of all pure grid cells, supporting the idea that conjunctive 
grid cells are a distinct population. Accordingly, in modules R1 and S1, 
which contained the largest numbers of T cells, pairwise correlations of 
T cells’ spike trains were more strongly related to head-direction tuning 
than to toroidal tuning (Extended Data Fig. 8c). When we subdivided 
module R1 into the three classes (Fig. 4b), we found that during SWS 
toroidal topology was detectable only in B cells (Fig. 4c). By decoding 
toroidal position from B cells, we were able to recover the selectivity 
of each cell with respect to toroidal position in module R1 (Fig. 4h). 
The toroidal tuning locations were preserved between OF and SWS 
in each cell class in R1 (Extended Data Fig. 8d, B: distance of 26.4 ± 6.1 
degrees and correlation of r = 0.85 ± 0.02, T: 43.6 ± 3.9 degrees and 
r = 0.74 ± 0.02, N: 29.9 ± 3.5 degrees and r = 0.80 ± 0.02; mean values of 
shuffled versions of each class were between 135.4 ± 5.2 and 136.4 ± 6.2 
degrees, and between r = 0.00 ± 0.07 and r = 0.02 ± 0.03; comparison 
between observed and shuffled P < 0.001 for all 3 classes and both 
measures). However, in R1 as well as all other modules, toroidal spatial 

information and explained deviance were highest for B cells and lower 
for N and T cells in OF, REM and SWS (Extended Data Fig. 8e) (informa-
tion content: P < 10−56, H > 255; Kruskal–Wallis test; P < 10−9, Z > 6.4; Dunn 
test with Bonferroni correction; explained deviance: P < 10−20, H > 96; 
Kruskal–Wallis test; P < 10−12, Z > 7.4; Dunn test with Bonferroni correc-
tion, for OF, REM and SWS). Collectively, these results show that the  
B cell population (containing the majority of our grid cells) represents 
the torus most robustly across behavioural conditions. The weaker 
toroidal representation in T cells may partly be an effect of the higher 
dimensionality of the code carried by conjunctive grid × direction cells. 
Indeed, running cohomology analysis on T cells from modules S1 and 
R1 (which contained the most T cells) revealed a circular feature that 
corresponded to the animal’s head direction (Extended Data Fig. 8f, g).

Discussion
Our findings, from many hundreds of simultaneously recorded grid 
cells, show that population activity in grid cells invariably spans a mani-
fold with toroidal topology, with movement on the torus matching the 
animal’s trajectory in the environment. The toroidal representation was 
most stably encoded by the bursting subclass of grid cells. Toroidal 
topology was not simply inherited from the encoded variable, as 2D 
space is not characterized by toroidal topology, as opposed to pitch and 
azimuth of head orientation, which in bats together span a torus and 
thus naturally map onto a toroidal neural code37. Using cohomological 
decoding, we were able to demonstrate, in each environment and in 
both sleep and awake states, that the toroidal coordinates of individual 
grid cells in individual grid modules were maintained, independently 
of external sensory inputs or environment-induced deformations of 
hexagonal symmetry in the rate maps29–33. The uniform and consistent 
toroidal structure of the manifold suggests that distortions in grid pat-
terns occur in the mapping between physical space and the toroidal 
grid code rather than in the grid code itself.

The invariance of the toroidal manifold across environments and 
brain states is informative about the mechanisms that underlie grid-cell 
activity. Although toroidal topology can be generated by both CAN1,8–10 
and feedforward12 mechanisms, the persistence of an invariant toroidal 
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manifold under conditions that give rise to changes in the correlation 
structure of place-cell activity in the hippocampus6,7 is predicted only 
by CAN models. While the findings do not exclude co-existing feedfor-
ward mechanisms12,38, they point to intrinsic network connectivity as the 
mechanism that underlies the rigid toroidal dynamics of the grid-cell 
system. What kind of network architecture keeps the activity on a toroidal 
manifold—whether it is geometrically organized1,8–10 or acquired from 
random connectivity by synaptic weight adjustments through learn-
ing39–41—remains to be determined, as does the mode of connectivity 
with other CANs in the entorhinal–hippocampal system22,23.
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Methods

Rats
The data were collected from three experimentally naive male Long 
Evans rats (Rats Q, R and S, 300–500 g at time of implantation). The rats 
were group-housed with three to eight of their male littermates before 
surgery and were singly housed in large Plexiglas cages (45 × 44 × 30 cm) 
thereafter. They were kept on a 12-h light–12-h dark schedule, with strict 
control of humidity and temperature. All procedures were performed in 
accordance with the Norwegian Animal Welfare Act and the European 
Convention for the Protection of Vertebrate Animals used for Experi-
mental and Other Scientific Purposes. Protocols were approved by the 
Norwegian Food Safety Authority (FOTS ID 18011 and 18013).

Electrode implantation and surgery
The rats were implanted with Neuropixels silicon probes25,26 targeting 
the MEC–parasubiculum (PaS) region. Two rats were implanted bilat-
erally with prototype Neuropixels ‘phase 3A’ single-shank probes and 
with one probe targeting MEC–PaS in each hemisphere; the third rat 
was implanted with a prototype Neuropixels 2.0 multi-shank probe 
in the left hemisphere. Probes were inserted at an angle of 25° from 
posterior to anterior in the sagittal plane. Implantation coordinates 
were AP 0.05–0.3 mm anterior to the sinus and 4.2–4.7 mm lateral to 
the midline. The probes were inserted to a depth of 4,200–6,000 µm. 
The implant was secured with dental cement. The detailed implanta-
tion procedure has been described elsewhere6,26. After surgery, the rats 
were left to recover for approximately 3 h before beginning recording. 
Postoperative analgesia (meloxicam and buprenorphine) was admin-
istered during the surgical recovery period.

Recording procedures
The details of the Neuropixels hardware system and the procedures for 
freely moving recordings have been described previously. In brief, elec-
trophysiological signals were amplified with a gain of 500 (for phase 3A  
probes) or 80 (for 2.0 probes), low-pass-filtered at 300 Hz (phase 3A)  
or 0.5 Hz (2.0), high-pass-filtered at 10 kHz, and then digitized at 30 kHz 
(all steps performed by the probe’s on-board circuitry). The digitized 
signals were multiplexed by an implant-mounted ‘headstage’ circuit 
board and were transmitted along a lightweight 5-m tether cable, made 
using either micro-coaxial (phase 3A) or twisted pair (2.0) wiring.

Three-dimensional motion capture (OptiTrack Flex 13 cameras and 
Motive recording software) was used to track the rat’s head position 
and orientation, by attaching a set of five retroreflective markers to 
implant during recordings. The 3D marker positions were projected 
onto the horizontal plane to yield the rat’s 2D position and head direc-
tion. An Arduino microcontroller was used to generate digital pulses, 
which were sent to the Neuropixels acquisition system (via direct TTL 
input) and the OptiTrack system (via infra-red LEDs), to permit precise 
temporal alignment of the recorded data streams.

Behavioural procedures
Data were obtained from four recording sessions performed within the 
first 72 h after recovery from surgery. The recordings were performed 
while the rats engaged in three behavioural paradigms, each in a differ-
ent arena within the same room. Abundant distal visual and sonic cues 
were available to the rat. On each day of recording, the rat remained 
continuously connected to the recording apparatus across the various 
behavioural sessions that were performed. Occasionally it was neces-
sary to remove twists that had accumulated in the Neuropixels tether 
cable. In such cases, the ongoing behavioural task was paused while 
the experimenter gently turned the rat to remove the twists. During 
pre-surgical training, the rats were food-restricted, maintaining their 
weight at a minimum of 90% of their free-feeding body weight. Food was 
generally removed 12–18 h before each training session. Food restric-
tion was not used at the time of recording.

Open-field foraging task
Rats foraged for randomly scattered food crumbs (corn puffs) in a 
square open-field (OF) arena of size 1.5 × 1.5 m, with black flooring and 
enclosed by walls of height 50 cm. A large white cue card was affixed to 
one of the arena walls (height same as the wall; width 41 cm; horizontal 
placement at the middle of the wall). At the time of the surgery, each 
rat was highly familiar with the environment and task (10–20 training 
sessions lasting at least 20 min each).

Wagon-wheel track foraging task
The wagon-wheel (WW) track task was designed to function as a 1D 
version of the 2D OF foraging task. The track’s geometry comprised an 
elevated circular track with two perpendicular cross-linking arms span-
ning the circle’s diameter. The track was 10 cm wide and was bounded on 
both sides by a 1-cm-high lip. Each section of the track was fitted with a 
reward point, placed halfway between the two nearest junctions, in the 
centre of the section. Each reward point consisted of an elevated well 
that could be remotely filled with chocolate milk via attached tubing. 
To encourage foraging behaviour, a pseudorandom subset of the wells 
(between one and four of the eight wells) was filled at a given time, and 
the rat was allowed to explore the full maze freely and continuously. 
Wells were refilled as necessary when the rat consumed rewards. Each 
rat was trained to high performance on the foraging task before the 
surgery (collecting at least 30 rewards within a 30-minute session). 
Training to this level of performance took 5–10 half-hour sessions.

Natural sleep
For sleep sessions, the rat was placed in a black acrylic ‘sleep box’ with 
a 40 × 40-cm square base and 80-cm-high walls. The black coating of 
walls was transparent to infrared, which allowed the 3D motion capture 
to track the rat through the walls. The bottom of the sleep box was lined 
with towels, and the rat had free access to water. During recording ses-
sions in the sleep box, the main room light was switched on and pink 
noise was played through the computer speakers to attenuate disturb-
ing background sounds. Sleep sessions typically lasted 2–3 h, but were 
aborted prematurely if the rat seemed highly alert and unlikely to sleep.

Spike sorting and single-unit selection
Spike sorting was performed with KiloSort 2.526. In brief, the algorithm 
consists of three principal stages: (1) a raw-data alignment procedure 
that detects and corrects for shifts in the vertical position of the Neu-
ropixels probe shank relative to the surrounding tissue; (2) an iterative 
template-matching procedure that uses low-rank, variable-amplitude 
waveform templates to extract and classify single-unit spikes; and (3) a 
curation procedure which detects appropriate template merging and 
splitting operations based on spike train auto- and cross-correlograms. 
Some customizations were made to the standard KiloSort 2.5 method to 
improve its performance on recordings from the MEC–PaS region, where 
there is a particularly high spatiotemporal overlap of spike waveforms 
owing to the high density of cells. Therefore, the maximum number 
of spikes extracted per batch in step 1 above was increased, as was the 
number of template-matching iterations in step 2. To improve the sepa-
ration between cells with very similar-looking waveforms, the upper 
limit on template similarity was raised from 0.9 to 0.975 in step 2 and to 
1.0 on step 3, while supervising manually all merge and split operations 
from step 3, using a custom-made GUI running in MATLAB. The manual 
supervision ensured that Kilosort 2.5 did not automatically merge pairs 
of units with a dip in the cross-correlogram, which in our data was often 
due to out-of-phase spatial tuning. The merge and split operations were 
repeated several times to ensure the best separation between single units.

Single units were discarded if more than 1% of their interspike interval 
distribution consisted of intervals less than 2 ms. In additions, units 
were excluded if they had a mean spike rate of less than 0.05 Hz or 
greater than 10 Hz (calculated across the full recording duration).
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Single-unit spike waveforms
During spike sorting, Kilosort assigned each unit with a 2 ms spike 
waveform template on each recording channel. To calculate a repre-
sentative single waveform for each unit, the peak-to-peak amplitude 
of the template was calculated on every channel, and the templates 
from the three highest-amplitude channels were averaged to generate 
the representative spike waveform. To calculate spike width, a unit’s 
representative waveform was finely interpolated (from 61 to 1,000 
points) using a cubic spline function. Spike width was defined as the 
time difference between the waveform’s negative peak (to which the 
waveform was aligned by Kilosort), and the following positive peak.

Spatial position and direction tuning
During awake foraging sessions in the OF arena or wagon-wheel track, 
only time epochs in which the rat was moving at a speed above 2.5 cm s−1 
were used for spatial or toroidal analyses. To generate 2D rate maps 
for the OF arena, position estimates were binned into a square grid of 
3 × 3-cm bins. The spike rate in each position bin was calculated as the 
number of spikes recorded in the bin, divided by the time the rat spent 
in the bin. To interpolate the values of unvisited bins, two auxiliary 
matrices were used, M1 and M2, setting visited bins equal to the value of 
the original rate map in M1 and to 1 in M2, and setting unvisited bins to 
zero in both. One iteration of the image-processing ‘closing’ operation 
was then performed (binary dilation followed by erosion, filling out a 
subset of the non-visited bins) on M2, using a disk-shaped structuring 
element, first padding the matrix border by one bin. Both matrices 
were then spatially smoothed with a Gaussian kernel of smoothing 
width 2.75 bins. Finally, the rate map was obtained by dividing M1 by M2. 
Rate-map spatial autocorrelograms and grid scores were calculated as 
described previously28. The selectivity of each cell’s position tuning was 
quantified by computing its spatial information content42, measured 
in bits per spike (see ‘Information content’).

Head-direction tuning curves were calculated by binning the 
head-direction estimates into 6° bins. The spike rate in each angular 
bin was calculated as the number of spikes recorded in the bin divided 
by the time that the rat spent in the bin. The resultant tuning curve was 
smoothed with a Gaussian kernel with σ = 2 bins, with the ends of the 
tuning curve wrapped together. The selectivity of head-direction tun-
ing was quantified using the mean vector length (MVL) of the tuning 
curve. This was calculated according to:
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where vector f represents the tuning curve values (firing rates), vec-
tor α represents the corresponding angles, M is the number of tuning 
curve values, and |∙| represents the absolute value of the enclosed term.

Grid module classification
A novel method was implemented to detect populations of cells cor-
responding to grid modules by finding clusters of cells that expressed 
similar spatially periodic activity in the open field (Extended Data 
Fig. 2). Contrary to previous clustering-based methods for grid mod-
ules3, this approach makes no assumptions about the specific geometry 
of the grid pattern, thus making it less susceptible to the detrimental 
effects of geometric distortions such as ellipticity3,30.

For each MEC–PaS cell in a given recording, a coarse-resolution rate 
map of the OF session was constructed, using a grid of 10 × 10-cm bins, 
with no smoothing across bins. The 2D autocorrelogram of this rate 
map was calculated, and the central peak was removed by excluding 
all bins located less than 30 cm from the autocorrelogram centre. Bins 
located more than 100 cm from the autocorrelogram centre were also 
excluded. The autocorrelograms for all cells were subsequently con-
verted into column vectors, z-standardized, then concatenated to form 

a matrix with spatial bins as rows and cells as columns. The nonlinear 
dimensionality reduction algorithm UMAP43,44 was then applied to this 
matrix, yielding a two-dimensional point cloud in which each data point 
represented the autocorrelogram of one cell (Extended Data Fig. 2a–d;  
UMAP hyperparameters: 'metric'=‘manhattan’, ‘n_neighbors’=5, 
‘min_dist’=0.05, ‘init’=‘spectral’). In the resultant 2D point cloud, cells 
with small absolute differences between their autocorrelogram values 
were located near to one another. The point cloud was partitioned 
into clusters using the DBSCAN clustering algorithm (MATLAB func-
tion ‘dbscan’, minimum 30 points per cluster, eta = 0.6–1.0). In every 
recording, the largest cluster was mainly composed of cells that either 
lacked strong spatial selectivity or were spatially selective but without 
clear periodicity. All remaining clusters contained cells with high grid 
scores, and with similar grid spacing and orientation (Extended Data 
Fig. 2a–d); cluster membership was therefore used as the basis for 
grid module classification. In one recording (rat ‘R’ day 1), two clusters 
were identified that had similar average grid spacing and orientation 
(labelled as ‘R1a’ and ‘R1b’ in Extended Data Fig. 2a–d), suggesting that 
they represented the same grid module. R1b appeared to comprise 
cells with higher variability in the within-field firing rates of the spatial 
rate maps, accompanied by more irregularities in the autocorrelo-
grams. These two clusters were merged together in subsequent analysis  
(in which the resultant cluster is called ‘R1’).

A subset of the cells that were assigned to grid module clusters by 
the above procedure were tuned to both location and head direction 
(conjunctive grid × direction cells). These cells, which were defined as 
having a head-direction tuning curve with mean vector length above 
0.3, were discarded from further analysis.

Classification of sleep states
SWS and REM periods were identified on the basis of a combination 
of behavioural and neural activity, following previously described 
approaches6,45,46. First, sleep periods were defined as periods of sus-
tained immobility (longer than 120 s with a locomotion speed of less 
than 1 cm s−1 and head angular speed of less than 6° s−1). Qualifying 
periods were then subclassified into SWS and REM on the basis of the 
amplitude of delta- and theta-band rhythmic activity in the recorded 
MEC–PaS cells. Spike times for each cell were binned at a resolution 
of 10 ms and the resultant spike counts were binarized, such that ‘0’ 
indicated the absence of spikes and ‘1’ indicated one or more spikes. 
The binarized spike counts were then summed across all cells (Extended 
Data Fig. 9A). The rhythmicity of this aggregated firing rate with respect 
to delta (1–4 Hz) and theta (5–10 Hz) frequency bands was quantified 
by applying a zero-phase, fourth-order Butterworth band-pass filter, 
then calculating the amplitude from the absolute value of the Hilbert 
transform of the filtered signal, which was smoothed using a Gaussian 
kernel with σ = 5 s and then standardized (‘z-scored’). The ratio of the 
amplitudes of theta and delta activity was hence calculated (theta/delta 
ratio, ‘TDR’). Periods in which TDR remained above 5.0 for at least 20 s 
were classified as REM; periods in which TDR remained below 2.0 for 
at least 20 s were classified as SWS (Extended Data Fig. 9B).

Spectral analysis was performed on 10-ms-binned multi-unit activ-
ity using the multi-tapered Fourier transform, implemented by the 
Chronux toolbox (http://chronux.org/, function ‘mtspectrumsegc’). 
Non-overlapping 5-second windows were used, with a frequency band-
width of 0.5 Hz and the maximum number of tapers.

Visualization of toroidal manifold
For each module of grid cells, spike times of co-recorded cells in the 
OF were binned for each cell at a resolution of 10 ms, and the binned 
spike counts were convolved with a Gaussian filter with σ = 50 ms. Time 
bins in which the rat’s speed was below 2.5 cm s−1 were then discarded.  
To account for variability of average firing rates across cells, the 
smoothed firing rate of each cell was z-scored. For computational 
reasons, the time bins were downsampled, taking every 25th time 
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bin (equating to 250-ms intervals between selected samples). Col-
lectively, the downsampled firing rates of the full population of cells 
formed a matrix with time bins in rows and cells in columns. PCA was 
applied to this matrix (treating time bins as observations and cells 
as variables), and the first six principal components were retained 
(Extended Data Figs. 3Aa–c, 4a–d). UMAP43,47 was then run on these 
six principal components (with time bins as observations and princi-
pal components as variables). The hyperparameters for UMAP were: 
‘n_dims’=3, ‘metric’=‘cosine’, ‘n_neighbours’=5000, ‘min_dist’=0.8 and 
‘init’=‘spectral’.

For visualizing the toroidal manifold during WW, smoothed firing 
rates were first calculated by the same procedure described above 
for OF. Subsequently, to allow comparison of the toroidal manifold 
between OF and WW, the same PCA and UMAP transformations calcu-
lated for the OF data were re-applied to the WW data, by supplying the 
fitted OF UMAP transformation as the argument ‘template_file’ to the 
‘run_umap’ function in the MATLAB implementation47.

Preprocessing of population activity
Each topological analysis was based on the activity of a single module 
of grid cells, during a single experimental condition in one recording 
session. Topological analysis of multi-module and conjunctive grid × 
direction cell activity was not considered as we expect such data to 
exhibit higher-dimensional topological structure requiring a higher 
number of cells27. The experimental conditions were: open-field forag-
ing (OF), wagon-wheel track foraging (WW), slow-wave sleep (SWS), 
and rapid eye-movement sleep (REM). Sleep epochs of the same type 
were collected from across the recording and concatenated for analysis 
purposes. Similarly, in one case (rat 'S'), two WW task sessions were 
concatenated to increase the sample size.

In total there were 27 combinations of module (Q1, Q2, R1, R2, R3, S1)  
and experimental condition (OF day 1, OF day 2, WW, REM, SWS).

Preprocessing of spike trains began by computing delta functions 
centred on the spike times (valued 1 at time of firing; 0 otherwise), and 
convolving these temporally with a Gaussian kernel with σ = 50 ms 
(OF, WW and REM) or 25 ms (SWS). Samples of the smoothed firing 
rates of all cells (‘population activity vectors’) were then computed at 
50-ms intervals. The awake states were further refined by excluding 
vectors which originated from time periods when the rat’s speed was 
below 2.5 cm s−1.

Computing the persistent cohomology of a point cloud is compu-
tationally expensive and may be sensitive to outliers (for example, 
spurious points breaking the topology of the majority of points in the 
point cloud). For this reason, it is common to preprocess the data by 
downsampling and dimension-reducing the point cloud. The same 
preprocessing procedure was used for all datasets in the present study.

First, the data points were downsampled by keeping the 15,000 most 
active population activity vectors (as measured by the mean popula-
tion firing rate). During SWS, this selection criterion had the conse-
quence of automatically discarding population activity vectors during 
down-states, when neural activity is near-silent. As noise is inherently 
more prevalent and cosine distances less reliable in high-dimensional 
spaces (“the curse of dimensionality”)48, dimensionality-reduction 
and a normalization of distances were subsequently performed. The 
reduced point cloud was z-scored and projected to its six first prin-
cipal components, thus reducing noise while keeping much of the 
variance (see Extended Data Fig. 4a). This was supported by the lack 
of grid structure and the clear drop in explained deviance after six 
components (see Extended Data Fig. 4b, c). The explained deviance 
was computed by fitting a GLM model to each component individu-
ally, using the spatial coordinates as covariate, suggesting that the 
higher components are less spatially modulated and possibly better 
described by other (unknown) covariates. Consistent with this, the 
toroidal structure was most clearly detected in the barcodes when 
comparing the ratio of the lifetimes of the two most persistent H1 bars 

versus the third longest-lived H1 bar for the barcodes obtained when 
using different numbers of components in the analysis (see Extended 
Data Fig. 4d). These analyses both indicated that dimensionality reduc-
tion was required to firmly demonstrate the toroidal topology in the 
grid cells. The empirical findings are supported theoretically; see 
‘Theoretical explanation of the six-dimensionality proposed by PCA’ 
in Supplementary Methods.

To further simplify the low-dimensional point cloud, a different 
downsampling technique was introduced, based on a point-cloud den-
sity strategy motivated by a topological denoising technique intro-
duced previously49 and a fuzzy topological representation used in 
UMAP43,50. Parts of the open-source implementation of the latter were 
copied in this computation. This approach consisted of assigning, for 
each point, a neighbourhood strength to its k nearest neighbours, and 
subsequently sampling points that represent the most tight-knit neigh-
bourhoods of the point cloud in an iterative manner. First, we defined 
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∼ mmax ∑ ,
x

j I j j∈ ,
i

i
 where Ĩ denotes the indices of the points not already 

sampled. In other words, for each iteration, the sampled point is the 
one with the strongest average membership of the neighbourhoods 
of the remaining points.

To compute the persistent cohomology of the downsampled point 
cloud, the neighbourhood strengths were first computed for the 
reduced point cloud (using k = 800) and its negative logarithm was 
taken, obtaining a distance matrix. This matrix was then given as input 
to the Ripser implementation51,52 of persistent cohomology, returning 
a barcode. In short, the barcode gave an estimate of the topology of 
the fuzzy topological representation of the six principal components 
of the grid-cell population activity. Thus, in essence, the first step of 
UMAP was applied before describing the resulting representation with 
persistent cohomology, instead of using it to project each point of 
the point cloud to a representation of user-specified dimensionality 
for visualization (Extended Data Fig. 3Ad, e). This gives a more direct 
and stable quantification of the global data structure, without having 
to choose an initialization53 or optimize a lower-dimensional repre-
sentation.

Persistent cohomology
Persistent cohomology, a tool in topological data analysis, was used 
to characterize the manifold assumed to underlie the data. This has 
clear ties with persistent homology and the main result (the barcode) is 
identical, thus the two terms are often used interchangeably. Persistent 
cohomology was chosen because the computation is (to our knowl-
edge) faster and is required to obtain cocycle representatives, which 
are necessary to perform decoding (see ‘Cohomological decoding’). 
Persistent (co-)homology has previously been successful in analysing 
neural data, describing the ring topology of head direction cell activ-
ity22–24, the spherical representation of population activity in primary 
visual cortex54, and the activity of place cells55–58.

The general outline of the algorithm is as follows. Each point in the 
cloud is replaced by a ball of infinitesimal radius, and the balls are gradu-
ally expanded in unison. Taking the union of balls at a given radius 
results in a space with holes of different dimensions. The range of radii 
for which each hole is detected is tracked; this is referred to as the ‘life-
time’ of the hole and is represented by the length of a bar. The totality 
of bars is referred to as the barcode.

The software package Ripser51,52 was used for all computations of 
persistent cohomology. Ripser computes the persistent cohomology 
of ‘Vietoris-Rips complexes’ (which approximate the union of balls for 
different radii), constructed based on the input distance matrix and a 
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choice of coefficients (in our case, ℤ47-coefficients), and outputs the 
barcode and cocycle representatives for all bars. The prime 47 was chosen 
as homology and cohomology coincide in this case and as it is unlikely 
that this divides the torsion subgroup of the homology of the space. 
Torsion may indicate, for example, orientability of a manifold and in 
choosing 47 as our prime, we disregard all but 47-torsion. Testing with 
other primes (for example, 43) gave similar results (data not shown) 
and the Betti numbers stayed the same regardless of choice of prime.

To verify that the lifetimes of prominent bars in the barcodes were 
beyond chance, shuffled distributions were generated for the persis-
tence lifetimes in each dimension. In each shuffling, the spike train of 
each cell was shifted independently in time by rolling the firing rate 
arrays a random length between 0 and the length of the session. The 
same preprocessing and persistence analysis were then performed on 
the shifted spike trains as for the unshuffled data. This was performed 
1,000 times, and each time a barcode was obtained. The barcodes were 
concatenated for all shuffles and the maximum lifetime was found for 
each dimension. This lifetime served as a significance criterion for 
the bar lifetimes. It is noted, however, that this is a heuristic and that 
statistics of barcodes are still not well established.

Cohomological decoding
As there are other spaces with similar barcodes as for a torus, the results 
identified by the barcode were further investigated, using the ‘coho-
mological decoding’ procedure introduced previously59 to calculate a 
toroidal parametrization of the point clouds of population activity. This 
assigns to each point corresponding positions on each of the two circular 
features identified by the 1D bars with the longest lifetime, resulting in 
coordinates that further characterize the underlying shape of the data.

Cohomological decoding is motivated by the observation that the 
1D cohomology (with integer coefficients) of a topological space X is 
equivalent to the set of homotopy-equivalent classes of continuous 
maps from X to the circle (S1)60; that is:

Z ≅H X X S( ; ) [ , ].1 1

This subsequently means that for each 1D bar existing at a given 
radius, there exists a corresponding continuous map from the 
Vietoris-Rips complex of that radius to the circle. Thus, we may first use 
persistent cohomology to detect which elements represent meaningful 
(long-lived) features of the data and choose a radius for which these 
features exist. As the vertices of the Vietoris-Rips complex are points 
in the point cloud, the circular values of the corresponding maps at 
the vertices describe circular coordinates of the data.

In the present case, persistent cohomology was first applied to the 
grid-cell population activity and X was identified as the Vietoris-Rips 
complex for which the two longest-lived one-dimensional bars in the 
barcode (representing each of the two circles of the torus) existed. To 
define the desired toroidal coordinates on a domain that was as large 
as possible, we chose the complex given at the scale of the birth plus 
0.99 times the lifetime of the second longest-lived one-dimensional 
bar in the barcode22,59,61. Next, the cocycle representatives (given by the 
persistent cohomology implementation of Ripser51,52) of each of the 
chosen 1D bars defined ℤ47-values for each of the edges in the complex. 
These edge values were then lifted to integer coefficients and subse-
quently smoothed by minimizing the sum over all edges (using the 
scipy implementation ‘lsmr’). The values on the vertices (points) of each 
edge followed from the edge values and gave the circular parametriza-
tions of the point cloud. The product of the two parametrizations thus 
provided a mapping from the neural activity to the two-dimensional 
torus—that is, giving a toroidal coordinatization (decoding) of the data.

As persistent cohomology was computed for a reduced dataset of 
1,200 points and therefore circular parametrizations were obtained 
only for this point cloud, each parametrization was interpolated to 
the population activity from the rest of the session(s). First, the 1,200 

toroidal coordinates were weighted by the normalized (‘z-scored’) firing 
rates of the cells at those time points, obtaining a distribution of the 
coordinates for each grid cell. The decoded toroidal coordinates were 
then computed by finding the mass centre of the summed distribu-
tions, weighted by the population activity vector to be decoded. These 
activity vectors were calculated by first applying a Gaussian smoothing 
kernel of 15-ms standard deviation to delta functions centred on spike 
times, sampling at 10-ms intervals and then z-scoring the activity of each 
cell independently. Time intervals that contained no spikes from any 
cell were subsequently excluded. When decoding was used to assess or 
compare the tuning properties of single cells (for example, comparison 
of toroidal versus spatial description), the coordinates were computed 
using the weighted sum of the distributions of the other cells; that is, 
the contribution of the cell to be assessed or compared was removed. 
When comparing preservation of toroidal tuning across two sessions, 
coordinates were interpolated either using the toroidal parametri-
zation in each session independently (‘Separate’) or using the same 
toroidal parametrization in both sessions (‘Common’).

Toroidal rate map visualization
For visualization, toroidal firing rate maps were calculated in the same 
way as the physical space covariate (see ‘Spatial position and direc-
tion tuning’), first binning the toroidal surface into a square grid of 
7.2° × 7.2° bins and computing the average spike rate in each position 
bin. However, for toroidal maps, it was necessary to address the 60° 
angle between the toroidal axes before smoothing. After binning the 
toroidal coordinates, the rate map was ‘straightened’ by shifting the 
bins along the x axis (‘horizontally’) the length of (y mod 2)/2 bins, 
where y is the vertical enumeration of the given bin. Copies of the rate 
map were then tiled in a three-by-three square (similar to Extended 
Data Fig. 5d), before applying the closing and smoothing operations as 
for the spatial firing rate map. The single toroidal rate map was finally 
recovered by cutting out the centre tile, rotating it 90° and defining 
15° shear angles along both the x and the y axis to correct for the 60° 
offset between them.

Comparison of spatial periodicity
Differences in grid periodicity between OF and WW environments 
were quantified for a given cell by comparing the grid scores in the two 
behavioural conditions. Two alternative methods were used to generate 
the spatial autocorrelograms for this comparison: (1) comparing the 
autocorrelograms for OF and WW directly; and (2) comparing autocor-
relograms for OF and WW after first equalizing the spatial coverage 
between the two conditions.

For method (1), rate maps were calculated as specified in the above 
section ‘Spatial position and direction tuning’, using the same grid 
of 3 × 3-cm bins for both environments. This set of bins spanned the 
entirety of the OF arena and covered most of the WW track apart from 
some small regions at the outer extrema, which were discarded for the 
purpose of this analysis. For each of the two rate maps, the autocor-
relogram was computed and the grid score was calculated.

Method (2) was similar to method (1), except that the cell’s OF rate 
map was converted into a ‘masked OF’ rate map, by removing all bins 
that were unvisited by the rat in the WW session. This effectively equal-
ized the position coverage between the two conditions, and thus 
allowed for a more valid comparison.

Toroidal versus spatial description
The explanatory significance of the toroidal description was evaluated 
by comparing statistical measures of how well the toroidal coordinates 
explained neural activity on the torus and in physical space. For a fair 
comparison, it was important to avoid overfitting, which might occur if 
a toroidal parametrization of a point cloud is used to describe that same 
set of data points. Two precautions were taken to avoid such overfit-
ting: first, the data were decoded using the toroidal parametrization 



from a different condition (an OF session for a WW recording and a 
WW session for an OF recording), and second, the cell for which the 
statistical measurement was made was omitted from the decoding.

The comparison of toroidal and environmental representations also 
accounted for tracking error in the physical position estimate, which 
mainly resulted from the approximately 4 cm vertical offset of the 
tracking device above the rat’s head. This causes a discrepancy when 
the angle α between the animal’s zenith and the axis of gravitation is 
different from 0°, measured as 4 tan(α) cm. The mean discrepancy in 
the recorded position data was measured to 1.5 cm. To account for this 
error of the position estimate, proportional Gaussian noise was added 
to the toroidal coordinates, using a standard deviation of 1.5 cm/Ω, 
where Ω denotes the grid spacing of the particular grid-cell module, 
estimated from the mean period of the fitted cosine waves of the toroi-
dal coordinates in the open field (see ‘Toroidal alignment’).

Information content
The information content (I) was calculated as previously described42, to 
quantify and compare the amount of information carried by single-cell 
activity about the location on the torus and physical space per spike. 
Both covariates were binned in a M = 15 × 15 grid of square bins. For 
each bin  j, the average firing rate fj (given in spikes per second), and  
the occupancy ratio, pj, were computed. The information content for 
each grid cell was then given as:
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where f̄  is the mean firing rate of the cell across the entire session.
Note that although the rate maps for physical space have multiple 

firing fields, whereas the toroidal rate maps have single firing fields, 
we expect the spatial information to be comparable, as the meas-
ure primarily depends on the ratio of bins with high firing activity.  
This number should be comparable as the firing field size (in bins) will 
be inversely related to the number of fields in the rate map, assum-
ing that the discretization of the map captures the relevant firing rate 
variations. For example, given a similar binning of space, a larger OF 
environment will include more fields, but the number of bins per field 
will decrease correspondingly. The binning used should be sufficient 
to resolve the smallest fields, as the same discretization was used in 
classifying the grid cells in the recorded population.

Deviance explained
Deviance explained was computed to measure how well a Poisson GLM 
model fitted to the spike count was at representing the data, using 
either the toroidal coordinates or the tracked position as regressors.  
A similar set-up was used to that of a previous study62, with a smooth-
ness prior for the GLM to avoid overfitting.

Both the toroidal and spatial coordinates were binned into a 15 × 15 
grid of bins, and GLM design matrices were built with entries Xi(t) = 1  
if the covariate at time t fell in the i-th bin and Xi(t) = 0 otherwise.

The Poisson probability of recording k spikes in time bin t is:
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where ( )μ t β X t( ) = exp ∑ ( )i i i  is the expected firing rate in time bin t.  
The parameters β of the Poisson GLM were optimized for each covari-
ate by minimizing the cost function:
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where N is the set of neighbour pairs. The first term is the negative 
log-likelihood of the spike count in the given time bin, whereas the second 

term puts a penalty on large differences in neighbouring parameters, enforc-
ing smoothness in the covariate response of the predicted spike count.

The parameters, β, were initialized to zero and then modified to 
minimize the loss function by first running two iterations of gradient 
descent, before optimizing using the ‘l-bfgs-b’-algorithm (as imple-
mented in the ‘scipy.optimize’-module) with ‘gtol’=1e-5 as the cut-off 
threshold, and finally running two more iterations of gradient descent. 
A three-fold cross validation procedure was used, repeatedly fitting the 
model to two-thirds of the data and testing on the held-out last third.

The smoothness hyperparameter γ was optimized a priori on each 
grid-cell module based on the summed likelihood, testing γ ∈ (1, √10, 
10, √1,000), and found to be either 1 or √10 in all cases.

Similarly, after fitting a null model (using only the intercept term) and 
the saturated model (perfectly fitting each spike count), the deviance 
explained could be computed as:
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where llp, ll0 and lls denote the cross-validated log likelihood of the fit-
ted model, the null model and the saturated model, respectively. This 
provides a normalized comparison describing the difference between 
the fitted model and the idealized model.

Toroidal alignment
To infer a geometric interpretation of the tori, as characterized via 
the cohomological decoding, and compare the toroidal parametriza-
tions across modules and conditions, two cosine waves of the form 
cos(ωt + k) were fitted to the OF mappings of the decoded circular 
coordinates (Extended Data Fig. 5a), where t is the centre 1002-bins of 
a 540° × 540°-valued 1502-bin grid rotated θ degrees. The parameters 
(ω, k, θ) were optimized by minimizing the square difference between 
the cosine waves and the cosine of the mean of the circular coordinates 
in 1002 bins of the physical environment (smoothed using a Gaussian 
kernel with 1-bin standard deviation). Estimates were first obtained 
by finding the minimum when testing all combinations in the follow-
ing intervals, each discretized in 10 steps: ω ∈ [1,6], ϕ ∈ [0, 360) and  
θ ∈ [0,180). The parameters of the cosine waves were further optimized 
using the ‘slsqp’-minimization algorithm (as implemented in the ‘scipy.
optimize’-module using default hyperparameters). The period of each 
cosine wave was computed as 1.5 m/ω, giving a spatial scale estimate of 
the grid-cell modules.

As circular coordinates have arbitrary origin and orientation (that 
is, clockwise or counterclockwise evolution) we needed to realign 
the directions of the circular coordinates to compare these across 
modules and sessions (see Extended Data Fig. 4b). The clockwise 
orientation of each circular coordinate was first determined by not-
ing whether (ωt + k) or 360° − (ωt + k) best fit the spatial mapping of 
the circular means of the toroidal coordinates, and subsequently 
reoriented to obtain the same orientation for both coordinates.  
The coordinate for which cos(θ) was largest (intuitively, the ‘x axis’) 
was then defined as the first coordinate (denoted ϕ1, with parameters 
(ω1, k1, θ1)) and the other as the second coordinate (ϕ2). Although  
(ϕ1, ϕ2) fully describe the toroidal location, the hexagonal torus 
allows for three axes, and the two axes obtained are thus oriented at 
either 60° or 120° relative to each other (see Extended Data Fig. 5b).  
The difference in directions was given by θ1 − θ2 and if this difference 
was greater than 90°, ϕ2 was replaced with ϕ2 + 60° ⋅ ϕ1. Finally, the 
origin of the coordinates was aligned to a fixed reference, by subtract-
ing the mean angular difference between the decoded coordinates 
and the corresponding coordinates obtained when using the toroidal 
parametrization of the reference OF session.

For visualization (Extended Data Fig. 5), it was furthermore neces-
sary, in some cases, to rotate both vectors of the rhombi 30 degrees 
depending on whether one of the axes was directed outside of the box.
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Preservation of toroidal tuning
Centre-to-centre distance and Pearson correlation were computed 
between toroidal tuning maps of different sessions to measure the 
degree of preservation between the toroidal descriptions.

First, the preferred toroidal firing location for each cell was com-
puted as the centre of mass of the toroidal firing distribution:
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where yi denotes the mean spike count of the given cell in the i-th bin 
whose binned toroidal coordinates are given by θi. The distance between 
mass centres found in two sessions (‘S1’ and “S2”) was then defined as:
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where || ⋅ ||2 refers to the L2-norm.
Pearson correlation between two tuning maps was computed by 

flattening the smoothed 2D rate maps to 1D arrays and calculating 
the correlation coefficient, r, using the ‘pearsonr’-function given in 
the ‘scipy.stats’-library.

To determine how much the preservation of the toroidal representa-
tions across two sessions (measured with Pearson correlation and peak 
distance) differed from a random distribution, the indices of the cells 
in one of the sessions were randomly re-ordered before computing 
correlation and distance for the pair of conditions. This process was 
repeated 1,000 times, and the P value was calculated from the rank of 
the original r value or distance with respect to the shuffled distribution.

Classification of grid cells
Temporal autocorrelograms were computed, for each cell, by calcu-
lating a histogram of the temporal lags between every spike and all 
surrounding spikes within a 200 ms window, using 1 ms bins. The his-
togram was then divided by the value of the zero-lag bin, which was 
subsequently set to zero. The autocorrelogram was smoothed using a 
gaussian kernel with smoothing window 4 ms. Considering the autocor-
relograms of all modules during OF foraging (day 2 for R1–3) as a point 
cloud, the cosine distances between all points were calculated, and 
hence each point’s 80 nearest neighbours were found. This defined a 
graph in which each point described a vertex and the neighbour pairs 
gave rise to edges. A density estimate was then calculated as the expo-
nential of the negative distances summed over each neighbour for each 
point. The graph and the density estimate were given as the input to 
the Gudhi implementation63 of ToMATo64. ToMATo uses a hill-climbing 
procedure to find modes of the density function and uses persistence 
to determine stable clusters. In the present case, the algorithm finds 
three long-lived clusters.

Minimum number of cells for torus detection
To address the question of how many cells are minimally needed to 
expect to see toroidal structure, random samples of n = 10, 20, ..., 140 
cells were taken from R2 (n = 149 cells) during OF foraging, and the 
same topological analysis was repeated as for the whole population. 
The cells were resampled 1,000 times for each number of cells in the 
subsample. To determine whether toroidal structure was detected, 
a heuristic was introduced based on the circular parameterization 
given by the two most persistent 1D bars in the barcode mapped onto 
physical space. An estimate of the resulting planar representation of 
the torus was obtained by fitting planar cosine waves to each mapping 
(see ‘Toroidal alignment’). For the analysis to be determined ‘successful’ 
in detecting toroidal structure, we required: (i) the mean value of the 
least-squares fitting (across bins of the mapping) to be less than 0.25; 
(ii) the angle of the rhombus to be close to 60° (between 50° and 70°); 
and (iii) the side lengths to be within 25% of each other.

Toroidal peak detection
The number of peaks per toroidal rate map was detected to assert the 
number of grid cells whose toroidal rate map portrayed single fields. 
First, 1,000 points were sampled from the toroidal distribution given 
by the mean activity of each cell in 150 × 150 bins of the stacked toroidal 
surface (that is, as described in ‘Toroidal rate map visualization’, each 
50 × 50-binned toroidal rate map is first ‘straightened’ and subsequently 
stacked in 3 × 3 to address the toroidal boundaries) and then spatially 
smoothed using a Gaussian kernel with smoothing widths 0, 1, 2, …, 10 
bins with mode set to ‘constant’ in the ‘scipy.gaussian_filter’ function. 
Next, the points were clustered by computing a density estimate, using 
the Euclidean distance, and defining neighbours as points closer than 
5 bins. Cluster labels were iteratively assigned to each point and all its 
neighbours in a downhill manner, instantiating a new cluster identity 
if the point was not already labelled. Finally, the centroids for each 
cluster were computed and counted as a peak depending on whether 
its position fell within the centre 50 × 50 bins of the stacked rate maps.

Simulated CAN models
To confirm the expected outcomes of topological analyses of grid cell 
CAN models, grid cells were simulated using two different, noiseless 
CAN models (Extended Data Fig. 7).

First, a 56 × 44 grid cell network was simulated based on the CAN 
model proposed previously9, but using solely lateral inhibition (for 
details see ref. 11) in the connectivity matrix, W. The animal movement 
was given as the first 1,000 s of the recorded trajectory of rat ‘R’ dur-
ing OF session, originally sampled at 10 ms, and interpolated to 2-ms 
time steps. The speed, v(t), and head direction θ(t) of the animal was 
calculated as the (unsmoothed) displacement in position for every 
time step. The activity, s, was updated as:

s s s s
τ

I W αv t θ t θ= +
1

( − + ( + ⋅ + ( )cos( ( ) − ~)) ),i i i i+1 +

where (…)+ is the Heaviside function and θ~ is the population vector of 
preferred head directions. The following parameters were used: I = 1, 
α = 0.15, l = 2, W0 = −0.01, R = 20 and τ = 10, and let the activity pattern 
stabilize by first initializing to random and performing 2,000 updates, 
disregarding animal movement. For computational reasons, the activ-
ity was set to 0 if si < 0.0001. The simulation was subsequently down-
sampled keeping only every 5th time frame.

Next, a 20 × 20 grid-cell network was simulated, for a synthetically 
generated OF trajectory (‘random walk’), based on the twisted torus 
model formulated in a previous study10. The parameter values and the 
code for computing both the grid cell network (choosing a single grid 
scale by defining the parameter ‘grid_gain’ = 0.04) and the random 
navigation (using 5,000 time steps) were given by the implementation 
by Santos Pata65.

Idealized torus models
To compare the results of both the original and simulated grid cell 
networks with point clouds where the topology is known, a priori, 
to be toroidal, points were sampled from a square and a hexagonal 
torus. First, a 50 × 50 (angle) mesh grid (θ1, θ2) was created in the square 
[0,2π)×[0,2π) and slight Gaussian noise (ϵ = 0.1⋅N(0,1)) was added to 
each angle. The square torus was then constructed via the 4D Clifford 
torus parametrization: (cos(θ1), sin(θ1), cos(θ2), sin(θ2)). The hexago-
nal torus was constructed using the 6D embedding: (cos(θ1), sin(θ1), 
cos(a1θ1 + θ2), sin(a1θ1 + θ2), cos(a2θ1 + θ2), sin(a2θ1 + θ2)), where a1=1/√3 
and a2 = −1/√3.

Histology and recording locations
Rats were given an overdose of sodium pentobarbital and were 
perfused intracardially with saline followed by 4% formaldehyde.  



The extracted brains were stored in formaldehyde and a cryostat was 
used to cut 30-µm sagittal sections, which were then Nissl-stained 
with cresyl violet. The probe shank traces were identified in photomi-
crographs, and a map of the probe shank was aligned to the histology 
by using two reference points that had known locations in both refer-
ence frames: (1) the tip of the probe shank; and (2) the intersection of 
the shank with the brain surface. In all cases, the shank traces were 
near-parallel to the cutting plane, therefore it was deemed sufficient to 
perform a flat 2D alignment in a single section where most of the shank 
trace was visible. The aligned shank map was then used to calculate the 
anatomical locations of individual electrodes (Extended Data Fig. 1).

Data analysis and statistics
Data analyses were performed with custom-written scripts in Python 
and MATLAB. Open-source Python packages used were: umap (version 
0.3.10), ripser (0.4.1), numba (0.48.0), scipy (1.4.1), numpy (1.18.1), 
scikit-learn (0.22.1), matplotlib (3.1.3), h5py (2.10.0) and gudhi 
(3.4.1.post1). Samples included all available cells that matched the 
classification criteria for the relevant cell type. Power analysis was not 
used to determine sample sizes. The study did not involve any experi-
mental subject groups; therefore, random allocation and experimenter 
blinding did not apply and were not performed. All statistical tests 
were one-sided.

The most intensive computations were performed on resources 
provided by the NTNU IDUN/EPIC computing cluster66.

Additional discussion
The demonstration that populations of grid cells operate on a toroidal 
manifold, which is preserved across environments and behavioural 
states, confirms a central prediction of CAN models. The present obser-
vations provide the first—to our knowledge—population-level visualiza-
tion of a two-dimensional CAN manifold, though there is accumulating 
evidence for one-dimensional CANs in a number of neural systems. The 
most powerful support for the latter has been obtained in fruit flies, 
in which CAN-like dynamics can be visualized in a ring of serially con-
nected orientation-tuned cells of the central complex67–69. In mammals, 
analysis of data from dozens of simultaneously recorded head direction 
cells has shown that population activity in these cells faithfully traverses 
a conceptual ring22–24, in accordance with ring-attractor models17–19. 
Dynamics along low-dimensional manifolds with line, ring, or sheet 
topologies is also thought to underlie a wide range of other mamma-
lian brain functions that operate on continuous scales, spanning from 
visual orientation tuning14 to neural operations underlying place-cell 
formation70–72, as well as motor control73, decision making and action 
selection74–76, and certain forms of memory39,77–80. The present analyses 
provide a visualization of 2D CAN dynamics in pure grid cells within a 
module and, together with the previous work, point to a widespread 
implementation of CAN dynamics in the brain. The existence of CAN 
structure to constrain activity to low-dimensional manifolds does not 
preclude additional mechanisms for pattern formation, however. Grid 
cell patterns may emerge also by feedforward mechanisms12,38,81–86. 
Such mechanisms may operate in parallel with recurrent networks87 
and may even be the primary mechanism for grid-like firing at early 
stages of development, before the full maturation of recurrent con-
nectivity11,88–90.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The datasets generated during the current study are available at https://
figshare.com/articles/dataset/Toroidal_topology_of_population_activ-
ity_in_grid_cells/16764508. Source data are provided with this paper.

Code availability
Code for reproducing the analyses in this article is available at https://
figshare.com/articles/dataset/Toroidal_topology_of_population_activ-
ity_in_grid_cells/16764508.
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Extended Data Fig. 1 | Nissl-stained sagittal brain sections showing 
recording locations for rats Q, R and S. Red arrows indicate the dorsoventral 
range of the probe’s active recording sites (corresponding to the yellow stripe 
in the inset). Stippled lines indicate borders between brain regions (MEC, 
medial entorhinal cortex; PaS, parasubiculum, PrS, presubiculum; PoR, 
postrhinal cortex). Layers are indicated for MEC (MECII, MECIII). Animal name, 
hemisphere (L, left; R, right) and shank number (for Rat 'S') are indicated in text 
above each section. Insets show, for each section, the number of grid cells 
recorded at each depth on the probe shank (histogram bin sizes 100 μm for 
Rats 'Q' and 'R', 75 μm for Rat 'S'; total numbers of cells are given in Extended 
Data Fig. 2g). Only the implanted portion of the probe shank is shown. Counts 

are colour-coded according to module identity. Module R1 is subdivided into 
the two UMAP clusters R1a and R1b (as shown in Extended Data Fig. 2), shown 
here as two stacked histograms. The yellow stripe on the probe shank indicates 
the range of active recording sites. The indicated locations of units are subject 
to measurement error, because the anatomical registration of probe shanks 
can only be approximately estimated, and furthermore because units may be 
detected on electrodes up to 50 µm away91. Note that several modules spanned 
across hemispheres (see Extended Data Fig. 2g). The cell counts shown for Rat 
'R' are from Recording Day 1. The same set of recording sites was used for both 
recording sessions, and therefore the anatomical distributions of recorded 
cells were similar between the two sessions.
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Extended Data Fig. 2 | Grid module identification and properties.  
a–d, Clustering of grid modules (a, Rat 'Q'; b, Rat 'R', day 1; c, Rat 'R', day 2; d, Rat 
'S'). For all experiments, coarse spatial autocorrelograms were first calculated 
from all cells’ OF firing rate maps (n cells as shown in g). UMAP was then used to 
reduce the M-dimensional autocorrelograms (where M = 668 spatial bins)  
to a two-dimensional point cloud, where each point represented the 
autocorrelogram of a single cell, and distances between points represented the 
similarity between autocorrelograms. Left scatterplot in a–d: 2D point cloud, 
with points colour-coded according to cluster ID. Clusters were identified by 
applying the density-based clustering algorithm DBSCAN to the 2D point 
cloud. In every recording, the largest cluster (in grey, labelled “main”) 
comprised mainly non-grid cells, and the remaining smaller clusters (coloured) 
represented different modules of grid cells. The black crosses (“noise”) are 
identified as outlier data points. The well-isolated clusters formed by grid cells 
support the notion that these cells are a distinct functional class, in contrast to 
the claim that grid-like characteristics are expressed by MEC cells to different 
extents92. Right pair of scatterplots in a–d: Combinations of three grid 
parameters (grid score, grid spacing and grid orientation) for co-recorded cells 
from each recording. Each dot corresponds to one autocorrelogram (one cell). 
Dots are coloured by cluster ID as in a. e, Comparison of grid-cell spatial 
periodicity in the open-field arena (OF) and on the wagon-wheel track (WW). 
Top: firing rate map and corresponding autocorrelogram for an example grid 
cell in OF (left) and WW (right). For the purposes of this comparison, the same 
position bins were applied to both environments, resulting in cropping of the 

outermost parts of WW. Colour coding as indicated by scale bar; peak rates 16.1 
Hz (OF) and 15.8 Hz (WW); range of autocorrelation values: −0.56 to 0.83 and 
−0.58 to 0.71, respectively. Note the more irregular appearance of the 
autocorrelogram for WW. Bottom: scatter plots showing grid scores of all grid 
cells in OF (x axis) and WW ( y axis). Colours refer to the module assignment in  
a. Note the bias for points to lie in the lower-right quadrant, reflecting generally 
higher grid scores in OF than in WW. f, As for e, but controlling for differences in 
behavioural coverage of OF and WW environments. It is possible that the lower 
WW grid scores in e were a product of sparser behavioural coverage of the WW 
environment (animals visited only positions on the track). To control for this 
possibility, we created “masked OF” (MOF) rate maps by removing spatial bins 
from the original OF rate map which were not visited by the animal in WW. In all 
modules, grid scores in the “masked” OF condition were higher than in WW 
(grid score mean ± S.E.M. across all cells: OF: 0.677 ± 0.017, WW: 0.360 ± 0.017, 
N = 618 cells, P values for the 6 modules ranged from 1.26 × 10−14 to 0.03, 
Z-values ranged from 2.12 to 7.71, Wilcoxon signed-rank test). Top row shows 
the same example cell as in e after leaving the same subset of position bins in OF 
as in WW. Bottom row shows comparison of grid scores for MOF and WW. As in  
e, grid scores are lower for WW, indicating that grid periodicity is reduced in 
WW even when differences in spatial coverage are accounted for. g, Table 
showing total number of cells and number of pure grid cells and conjunctive 
grid × direction cells. h, Number of cells (as in g) broken down on recording 
sessions, with session lengths in minutes indicated for open field (OF), wagon 
wheel (WW), slow-wave sleep (SWS) and REM sleep.
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Extended Data Fig. 3 | Preprocessing steps for visualization and detection 
of toroidal topology. A, Flow diagram showing method for extracting 
low-dimensional embeddings of neural activity. The animal foraged in an OF 
arena while spikes from 149 grid cells shown in Fig. 1a were recorded (Aa; cells 
are ordered arbitrarily). A 5-second example behavioural trajectory is 
highlighted, with colour indicating elapsed time. The spike trains were binned 
in time (N bins) and then smoothed and normalized, yielding a matrix of 
N-dimensional population activity vectors (Ab). After temporally 
downsampling and z-scoring the neural activity, PCA was applied to the 
N-dimensional neural activity, yielding a six-dimensional linear embedding 
(Ac). This preserved the grid structure in the activity (Extended Data Fig. 4b, c), 
while mitigating drawbacks associated with high-dimensional spaces (the 
“curse of dimensionality”)48. The six principal components were then passed 
through a second, nonlinear, dimensionality reduction step by UMAP, which 
generated a three-dimensional nonlinear embedding (Ae(i)) allowing the 
toroidal structure to be visualized. UMAP consists of two steps: first, a fuzzy 
topological graph representation is constructed (i.e. a “Uniform Manifold 
Approximation” - UMA) using a distance metric in the high-dimensional space 
(Ad); second, to obtain the lower-dimensional projection (P), the coordinates 
of corresponding points in fewer dimensions are optimized to have a similar 
fuzzy topological representation. In the persistence analysis, we applied 
persistent cohomology to the fuzzy topological representation of the 
high-dimensional point cloud (Ae(ii)) and subsequently used cohomological 

decoding to obtain a two-dimensional projection of the original N-dimensional 
point cloud (Ae(iii); right, showing a 5-second snippet; left, embedded in 3D, 
points are coloured by each angular coordinate, whose direction is indicated 
by a red arrow). B, Cohomology can help differentiate topological spaces such 
as the union of three discs (upper left), a circle (upper right), a sphere (lower 
left) and a torus (lower right) by counting the number of topological holes (𝛽) in 
different dimensions. A disc has a 0D hole (a connected component); a circle 
additionally has a 1D hole; a (hollow) sphere is a connected component and has 
a 2D hole (a cavity); a torus is a connected component with two 1D holes 
(illustrated with red circles) and one 2D hole (a cavity in the interior of the 
torus). C, Persistent cohomology tracks the lifetime of topological holes in 
spaces associated with point clouds. Top: The radius of balls centred at each 
data point in the point cloud is continuously increased (left to right). The union 
of the balls forms a space with possible holes. The lifetime of a hole during 
expansion of the radius is defined as the radial interval from when the hole first 
appears until it is filled in. Note the short lifetime of the hole marked with a red 
circle and the long lifetime of the hole indicated with a yellow circle. Second 
and third row: The lifetime of each hole of dimension zero (H0) and one (H1) in 
the example in the top row is indicated by the length of a bar (in green) in the 
barcode diagram. Two 1D holes are detected: the first bar, corresponding to the 
red hole in the top row, is short and regarded as noise, and the second, 
corresponding to the yellow hole, is substantially longer and captures the 
prominent topology of the point cloud.
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Extended Data Fig. 4 | Analysis of principal components, number of cells 
and number of toroidal peaks. a, Variance explained by the first 15 principal 
components (PCs) after applying PCA to the n-dimensional neural activity, 
shown for each module. Note that during OF, a particularly large amount of 
variance is explained by the first 6 PCs, followed by a sharp drop in the 7th PC, in 
all modules. A drop in variance explained is also seen after the 6th PC in REM and 
SWS. b, The first six PCs contain a grid-like representation at the population 
level. Each panel shows the mean value of one PC as a function of the animal’s 
position in the OF. PC value is colour-coded as indicated by the scale bar. The 8 
first PCs are arranged in descending order of explained variance (columns, 
from left to right), and are shown for each module (in rows). Note the presence 
of grid-like structure, which is particularly strong in the first six PCs, 
irrespective of the grid spacing. These six grid-like PCs correspond to the set 
with the highest explained variance in a. z-scored PC values are indicated by the 
scale bar (see Supplementary Methods for theoretical explanation of the 
six-dimensionality). c, Line plots showing the goodness-of-fit of a Gaussian 
GLM model based on the position in the spatial environment (OF) fitted to each 
principal component (components as in a). This is measured (as in Fig. 2d) as 
the explained deviance of the model showing that the six first components are 
better explained by space than the subsequent components for each module. 

d, Line plots showing the lifetime of the two longest-lived H1-bars (longest-lived 
– “1st”, black; second longest-lived – “2nd”, blue) divided by the lifetime of the 
third longest-lived H1-bar as a function of number of principal components kept 
in the persistence analysis of R1 day 1 OF (n = 93 cells). This heuristic measures 
how clearly the two longest-lived H1-bars (expected to be long for a torus) 
separates from the third (expected to be short), thus indicating how clearly the 
barcode displays toroidal topology. This is clearly the case when using 6 
principal components in this dataset. e, The percentage of subsamples of R2 
(resampled randomly 1,000 times per number of cells; total n = 149 cells) for 
which toroidal structure was detected in the parameterization given by the two 
most persistent 1D bars in the barcode (as in Extended Data Fig. 5). Note that 
approximately 60 cells were needed for the probability of detecting toroidal 
structure exceed 50%. f, Effect of varying spatial smoothing on the number of 
peaks in toroidal rate maps. The y axis displays the percentage of single-peaked 
(black) and multi-peaked (blue) toroidal rate maps of all grid cells (n = 2,727 
cells) pooled across modules and behaviour conditions. The vertical dashed 
line marks the smoothing width used in Extended Data Fig. 10, and the 
horizontal dashed line marks 100%. Note that cells with single peaks quickly 
describe the majority of the pooled cells.



Extended Data Fig. 5 | Mapping of decoded circular coordinates onto the 
open field allows geometrical interpretation of toroidal structure. a, Top 
row: Toroidal coordinates given by cohomological decoding from activity of 
grid module R2 during OF foraging, mapped onto the recording box. In each 
plot, colour indicates the mean value of the cosine of each of the two circular 
coordinates. The mappings of both coordinates show 2D striped patterns, with 
similar periods but distinct angles. Bottom row: A cosine wave is fitted to each 
coordinate to obtain the direction of the toroidal axes. The period and angle of 
the cosine wave in the plane may be represented by spatial vectors, v and  
w, with corresponding length and orientation. Note the clear transversality of 
the two circles, expressed in the directions of the two vectors, further 
confirming the toroidal identification of the data. b, The periods and angles of 
the cosine waves in a reflect the scale and orientation of the grid module. 
Taking the origin of the vectors in a to be alike, we see that the vectors span a 
parallelogram with approximately equal side lengths (0.67m and 0.72m) and an 
angle of 60 degrees, suggesting a rhomboidal tile representing the toroidal 
structure (top left). When repeated across the environment, the tile depicts the 
hexagonal grid pattern of the grid-cell module, confirming that the product of 
the two decoded circles defines a hexagonal (“twisted”) torus. As the 
orientation of the circular coordinates is arbitrary, the directions of the axes 
may be any of the following: reversely oriented (blue arrows), a different 
60-degree pair of axes (green), or have a relative angle of 120 degrees (yellow). 
c, Rhombi of each module for each OF session (n cells as in Extended Data Fig. 2g), 

given by the cosine wave fitted to the toroidal coordinates (as in b). The toroidal 
parametrizations were obtained independently in different behavioural 
conditions (colour-coded), then used to decode the module’s activity during 
OF foraging, and subsequently mapped as a function of the rat’s position in the 
environment (see f). Positions of downsampled spikes from example cells of 
each module are shown in greyscale to illustrate grid scale and orientation. The 
consistent angle and side lengths suggest the geometry of the rhombus is 
retained across brain states and environments, with a constant scale 
relationship between modules. d, Mean value of a single neuron in rhomboidal 
coordinates displays a single bump (as in Fig. 2a), which, when repeated and 
arranged to tesselate a 2D surface, reveals a grid-like pattern in the activity of 
the grid cell, akin to its spatial firing. e, Table of side lengths and angles of the 
cosine waves that form the rhombi in c, shown for each grid module and each 
condition (n cells as in Extended Data Fig. 2g). f, Visualization of the 
cohomological decoding of toroidal coordinates as a function of physical 
space (one visualization for each grid module during each condition, with the 
toroidal parametrizations aligned to the same axes before creating the rate 
maps; n cells as in Extended Data Fig. 2g). All barcodes which indicated toroidal 
structure exhibited periodic stripes in the OF, with phase and orientation 
corresponding to the two-dimensional periodicity of the grid pattern of the 
respective module. SWS* refers to the decoding when considering only 
“bursty” (B) cells of R1 as given by the correlation clustering method described 
in Fig 4b.
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Extended Data Fig. 6 | Barcodes and toroidal tuning statistics for grid 
modules or recording sessions not included in Figs. 2–4. Data are shown for 
six grid-cell modules: R1, R3, Q1, Q2, S1 and R2 (n cells as in Extended Data Fig. 
2g). Toroidal structure is clearly present across environments and behavioural 
states. Aa–Ad, Barcode diagrams (as in Fig 1e, f) showing the results of the 
persistent cohomology analysis on open-field (OF), wagon-wheel track (WW) 
or sleep (REM or SWS) data. Ba–Bc, Preservation of toroidal field centres 
between conditions: OF vs WW (1), OF vs REM (2) OF vs SWS (3). Top row in each 
panel: Distribution of grid cells’ receptive field centres on the inferred torus for 
OF and WW as well as sleep states, similar to Fig 2e. Each dot signifies the field 
centre of an individual grid cell. Grey lines connect field centres of the same cell 
across conditions. Note the proximity of red-black pairs (after separate 
alignment for the two recording sessions of each panel). Middle and bottom 
rows: Cumulative distributions showing stability of grid cells’ toroidal tuning 

between brain states, as in Fig. 2f, g. Distributions show peak field distance 
(middle) and Pearson correlation of pairs of toroidal rate maps (bottom). 
Labelling as in Fig. 2e–g. C, Top: Histograms of the information content carried 
by individual cells’ activity about position on the inferred torus during REM 
(left) and SWS (right). Counts (fractions of the cell sample) are shown as a 
function of information content (in bins of 0.28 bits/spike) for all grid modules 
(colour-coded). The vertical dashed line (close to zero) shows mean 
information content for shuffled distributions (n = 1,000 shuffles). The 
majority of cells have a higher information content. Bottom: Explained 
deviance of a GLM model fitted to the spike count with toroidal coordinates 
during REM (left) and SWS (right) as regressor. Distributions show counts 
(fractions of the cell sample) as a function of explained deviance, in bins of 
0.035, for all grid modules. Values larger than 0 indicate that the fitted model 
explains the data better than a null model that assumes a constant firing rate.



Extended Data Fig. 7 | Barcodes and decoding of simulated firing activity 
for two grid-cell CAN models (with no noise), and for two point clouds 
randomly sampled on a hexagonal and a square torus. a, Persistent 
cohomology analysis of a simulated grid-cell network based on the CAN model 
from Couey et al (2013)11 during OF foraging. Left: Colour-coded firing rates for 
a single time frame of the 56 × 44 grid cells, shown at their respective positions 
on the neural sheet. Middle: Barcode of the simulated data. Arrows point to one 
0D, two 1D and one 2D bar with long lifetimes, indicating toroidal structure. 
Right: Each coordinate of the toroidal parametrization of the two longest lived 
1D features is mapped onto the spatial trajectory, colour-coded by its cosine 
value (as in Extended Data Fig. 5a, f). The resulting striped patterns of the two 
maps are oriented approximately 60 degrees relative to each other, as 
expected from a hexagonal torus network structure (see d). b, Analysis of a 
random sample of 100 grid cells (of a total of 400 cells) of a simulated grid cell 
network, using the twisted torus CAN model formulated by Guanella et al 
(2007)10. Left: Firing rates of the cells in the network at a single time frame. The 
model generates a single bump of activity based on both inhibitory and 

excitatory, asymmetric connections representing a twisted torus. Barcode 
(middle) and cohomological decoding of toroidal position (right) are shown as 
in a. The barcode shows four prominent bars: one 0D bar, two 1D bars and one 
2D bar, similar to that of a torus. Note that the pair of stripes in toroidal 
coordinates are oriented 60 degrees relative to each other. c, d, To verify the 
expected barcodes and decoding of a torus and compare with both real and 
synthetic grid cell data, we performed the same topological analysis on point 
clouds sampled from two idealized toroidal parametrizations (n = 2,500 
points): a 4D description of a square torus (c) and a 6D embedding of a 
hexagonal torus (d). Left: Representing the firing of a cell as a Gaussian 
function centred at a single toroidal coordinate on the toroidal sheet results in 
a square (c) and hexagonal (d) firing pattern, when arranged to tesselate a 2D 
surface. Middle: The expected barcode of a torus (one 0D, two 1D, and one 2D 
bar clearly longer than the other bars) is seen in both cases. Right: each 
sampled angle is coloured according to the decoded toroidal coordinates. 
Note the difference in the relative angle of the pair of stripes between the 
square and the hexagonal torus.
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Extended Data Fig. 8 | Subpopulations of grid cells with different  
temporal spiking statistics have different degrees of toroidal selectivity.  
a, Geometry of grid-cell pattern of all six modules with classes of grid cells (B, 
bursty; T, theta-modulated; N, non-bursty; as defined in Fig. 4). Each plot shows 
the locations of the innermost six peaks of the spatial autocorrelogram for 
every grid cell in one module. Each dot indicates the position of one peak from 
one cell (total of 6 dots per cell); dots are coloured by the cell’s class. The grey 
crosshair indicates the centre of the autocorrelogram. b, Correlation matrix 
showing pairwise correlation of firing rates for all grid cells belonging to S1 
(left; n = 73 cells) and R1 (right – same data as for autocorrelogram distance 
matrix in Fig. 4b; n = 111 cells). Correlation is colour-coded according to the 
scale bar, with minimum and maximum defined as the 1st and 99th percentile, 
respectively, of the pairwise correlation distribution for each module. Rows 
and column (cells) are ordered according to class, as assigned by the clustering 
analysis shown in Fig. 4. Each cluster displays strong inner correlation structure 
for both modules during SWS. Cluster boundaries are indicated on the x axis of 
the correlation matrix. c, Summary of pairwise correlations of SWS activity for 
grid cells in modules R1 and S1, shown according to cell class. In each matrix 
plot, rows and columns indicate cell classes, and each element represents all 
pairs of grid cells from the classes corresponding to the row and column. 
Matrix elements are colour-coded to represent (top) the median of the spike 
train Pearson correlation r value across all cell pairs, (middle) Spearman rank 
correlation between cell pairs’ grid (toroidal) phase offsets and their spike train 
Pearson correlation r values, (bottom) same as middle, but for head-direction 
phase instead of grid phase. Number of cell pairs were as follows: module R1, 

B-B 2346, B-T 6348, B-N 1932, T-T 4186, T-N 2576, N-N 378; module S1 B-B 378, B-T 
1680, B-N 1456, T-T 1770, T-N 3120, N-N 1326. Note that, in agreement with the 
topological analyses, the correlation between cell pairs’ grid phases and their 
spike-time correlations are weaker for theta-modulated cells than non-bursty 
and particularly bursty cells. This drop is explained by an increase in the 
correlation with head direction, suggesting, as expected in conjunctive cells, 
that head direction accounts for much of the variation in these cells, unlike the 
other classes. Furthermore, the median spike correlation for pairs of 
theta-modulated and non-bursty cells is higher than for bursty cells, indicating 
a stronger positive correlation bias, consistent with more global fluctuations 
of activity in these populations. d, Cumulative distributions showing distance 
between toroidal field centres (upper) and Pearson correlation r values (lower) 
for toroidal rate maps of grid cells in each class as in Fig. 2f, g, but here 
comparing awake behaviour in OF with SWS, n cells = 523(B), 229(T) and 95(N) 
cells for OF and 495(B), 169(T), 43(N) cells for REM and SWS. n = 1,000 shuffles. 
e, Cumulative distributions showing toroidal explained deviance (left) and 
information content (right) for all grid cells in each class – bursty (B), 
theta-modulated (T) and non-bursty (N) – and for each of three conditions – OF, 
REM and SWS. Cells are from all modules. n cells as in d. f, Barcode of T-class 
grid cells from modules R1 (left; n = 92 cells) and S1 (right; n = 60 cells) during 
SWS reveals a single prominent long-lived H1 bar (indicated by black arrow).  
g, Cohomological decoding of the longest-lived H1 bar in each barcode in  
f reveals strong correlation with recorded head direction. Recorded head 
direction (black) and decoded direction (blue) are shown as a function of 
time (total snippet length 10 s).



Extended Data Fig. 9 | Classification of sleep and wake states based on 
behavioural and neural activity during rest sessions. A, Example traces of 
MEC multi-unit activity (upper; coloured lines), and rasters of spike times of 
444 grid cells (lower; black dots) recorded from rat 'R' during OF foraging, REM 
sleep and slow-wave sleep (SWS). Cells are ranked from top to bottom by the 
number of spikes fired during the example time window. Note the presence of 
regular theta waves (5–10 Hz) during OF and REM, and presence of slower, more 
irregular fluctuations between active "up-states" and silent “down-states” 
during SWS. Middle: times of population activity vectors (calculated in 10 ms 
time bins) which were selected for persistent cohomology analysis, for each 
module (R1-R3). Each dot indicates a vector which was included in the initial 
downsampled set of 15,000 vectors with the highest mean firing rate across 
cells in the module. Vertical ticks indicate the subset of these vectors which 
were retained after using a density-based method to reduce the data to a 
representative point cloud. Note that during SWS, all of the selected 
population activity vectors occurred during up-states. B, Classification of 
sleep/wake states based on behavioural and neural activity during rest 

sessions. Each of the three horizontal blocks shows a recording from one 
animal. Rat 'R' day 1 did not contain a rest session and is not shown on this 
figure. Ba, Detection of REM and SWS sleep epochs in the rest session. The 
plots show the time courses of the three variables used for detecting REM and 
SWS epochs. Top panel of each block: animal locomotion speed; middle panel: 
the animal’s head angular speed; bottom panel: the ratio of the amplitude of 
theta (5–10 Hz) and delta (1–4 Hz) frequency bands in the multi-unit spiking 
activity (theta/delta ratio, TDR). Bb, Log-power spectra of MEC multi-unit 
activity during each sleep/wake state. The line and shaded area indicate the 
mean and 95% bootstrap confidence intervals, calculated across time windows 
(confidence intervals are narrow). Note the pronounced peak corresponding to 
the theta band (5–10 Hz) during OF and REM, and the higher power in the delta 
band (1–4 Hz) during SWS. Bc, Histograms showing distributions of firing rates 
for all grid cells during each sleep/wake state (number of grid cells: rat 'Q' 159, 
rat 'R' 428, rat 'S' 72). C, Table showing total time and median bout length of 
recorded sleep for each animal.
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Extended Data Fig. 10 | Tuning to coordinates in space and on the inferred 
torus for all grid cells of module R2 (separated into pure and conjunctive 
categories) on recording day 2. Plots show all 152 cells in module R2, a subset 
of which is shown in Fig. 3b. Plots from left to right: OF firing rate map, 

head-direction tuning curve (black) compared to occupancy of head directions 
(light grey), temporal autocorrelogram, toroidal firing rate maps for OF, REM 
and SWS. The full set of plots, for all remaining grid cells of all recordings, is 
shown in Supplementary Information.
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