
Im
provem

ents on the m
otor control of a Form

ula
Cam

illa M
arie G

reve H
artviksen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Camilla Marie Greve Hartviksen

Improvements on the motor control
of a Formula
Student racecar

Master’s thesis in Cybernetics and Robotics
Supervisor: Geir Mathisen
June 2022

M
as

te
r’s

 th
es

is

Camilla Marie Greve Hartviksen

Improvements on the motor control of
a Formula
Student racecar

Master’s thesis in Cybernetics and Robotics
Supervisor: Geir Mathisen
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

NTNU Faculty of Information Technology
Norwegian University of and Electrical Engineering
Science and Technology Department of Engineering Cybernetics

MASTER THESIS DESCRIPTION

Candidate: Camilla Greve Hartviksen

Course: TTK4900 Engineering Cybernetics

Thesis title (Norwegian) Forbedringer av en motorkontroller i en Formula
Student racerbil

Thesis title (English): Improvements on the motor control of a Formula
Student racecar

Thesis description: The racing car of Revolve at NTNU has electric propulsion. To get the

desired characteristics, the current motor controller is developed by Revolve themselves. This

motor controller is incrementally upgraded each year, and the development of the motor

controller is the theme for this master thesis.

The main aims for this work are:

- To develop an improved motor control algorithm for the new racecar, within the

consteraints given by the existing system of the car.

- To structure the software of the motor controller and to improve the process of

developing motor controller software.

- Improve the calibration technique used to calibrate the encoders on the motor.

The objectives will be:

1. Conduct a literature review of motor control algorithms/methods applicable for

controlling internal permanent magnet synchronous motors (IPMSMs).

2. Propose algorithms/systems meeting the main aims of this thesis.

3. As far as time permits, implement the suggestions from point 2 above.

Start date: 3rd of January, 2022

Due date: 6th of June, 2022

Thesis performed at: Department of Engineering Cybernetics

Supervisor: Professor Geir Mathisen, Dept. of Eng. Cybernetics

-

Sammendrag

Denne oppgaven ser på forbedringer av motorstyringsalgoritmen som brukes
i vekselretteren til Revolve NTNU’s Formula Student racerbil. Et litter-
aturstudie på mulige forbedringer ble gjort, og det ble foreslått et forbedret
design. Forbedringene er gjort med henhold til struktur og kjøretid, som
ble oppnådd ved å bruke en kodegenerert motorkontroller laget i Simulink
i kodebasen til vekselretteren. Etter resultater fra litteraturstudiet ble det
også laget en implementasjon av denne motorkontrolleren med en id-τref
oppslagstabell i Simulink. Dette skiftet ut de tidligere tilnærmingene til
strømmen id, som før var beregnet fra et referansemoment τref gjort med
flere iterasjoner av Newtons metode.

Implementasjonen av forbedringene på motorkontrollerne ble gjennom-
ført, men valideringen av dem ble ikke utført på grunn av mangel på utstyr
og tid. Begrensningene er beskrevet mer detaljert i Section 1.2.

Det ble også gjort forbedringer på kalibreringsprosedyren til enkoderne på
bilen. En prosedyre ble implementert som automatisk fant statorforskyvn-
ingsvinkelen. Dette ble validert til å ha en betydelig forbedring sammenlignet
med den forrige metoden som finner offset manuelt. Tiden det tok å fullføre
kalibreringen på én enkoder på én motor ble redusert fra 10 timer til 15 min-
utter. Denne forbedringen vil være til nytte for enkoderkalibreringsprosessen
i framtidige år i Revolve NTNU.

I

II

Abstract

This report covers the research done on the improvements of the motor
control algorithm used in the DC-AC inverter of Revolve NTNU’s Formula
Student racing car. A literature review of the improvements on motor con-
trol is done, and new designs and implementations of the improvements are
proposed. This includes structural improvements and improvements in run-
time by using a code-generated motor controller made in a Simulink model
in the inverter. Further, after the literature review, an implementation of
this motor controller with an id-τref Look-Up Table (LUT) was made in
Simulink. This switched out the previous approximations of id calculated
from a reference torque τref , which was done with numerous iterations of the
Newton-Raphson method.

Validation of the implemented motor controller improvements was not
done due to lack of equipment and time. These limitations are described in
more detail in Section 1.2.

In addition, improvements were successfully made to the calibration pro-
cedure of the motor encoders used on the car. A procedure was implemented
that automatically found the stator offset angle. This was validated to have
a significant improvement compared to the previous method of manually
finding the offset. The improvement led to a reduction in time for the cali-
bration procedure, from up to 10 hours to only 15 minutes needed to finish
calibrating one encoder for one motor. This improved procedure will benefit
the encoder calibration process for the following years in Revolve NTNU.

III

IV

Preface

This thesis includes the work on the embedded systems that are built on the
work done by previous members of Revolve NTNU. Specifically, the work
done that is described in Section 3.1 and Section 3.2. Both the Formula
Student racecar that is developed by Revolve NTNU for the season this
thesis was written in, and the ones made in previous seasons, are all built
on the base that alumni have created, and continue to create each year.

V

VI

Acknowledgements

Going into Revolve NTNU was a difficult decision, and one based on my
scarce practical knowledge in electrical and mechanical systems exiting my
fourth year in my master degree. Throughout my years in Cybernetics and
Robotics, I’ve gravitated more and more towards taking the harder, tougher
route with more challenges and higher stakes, but also higher rewards. This
was exactly what Revolve both offered and delivered through with. The
learning curve was steep and difficult, and I still have much to learn within
the field, but I feel that I have put all the theory I’ve learnt throughout my
years in school into practice. Now, I feel much more confident going into the
work force with the tools and knowledge I’ve obtained. I highly recommend
joining this student organization for anyone with even just a slight curiosity
and motivation for learning more within your field. It will be hard, but it
will be so worth it.

I want to thank the members of Revolve NTNU, both current and past,
who have contributed to this thesis. Håkon Skeie, Jan Ottar Seljebu Olsen,
Simen August Tinderholt and Francesco Fanin are all alumni on the inverter
that have provided immense help. They have always been glad to help, and
have responded to my inquires in a moment’s notice. Additionally, this thesis
would not have been possible without the amazing help from Eskil Mogstad
and William Karl Moriggi, that are current members that have been essential
in the improvements on the calibration routine.

I also want to thank my thesis advisor, Geir Mathisen, whose meetings
I’ve always looked forward to, and who have urged me to think outside the
box and evaluate each decision I’ve wanted to make in regards to the thesis.

A special thanks goes out to my group leader and rich person, Niklas
Strømsnes, and brother in-law and professional bolle, André Kapelrud, who
both proofread this thesis. I’m sorry for the number of times you’ve had to
read the word "thus" and "gotten".

I finally want to thank my family for supporting me. This includes my
two awesome brothers and biggest idols growing up, who always have my
back. My sister, who I look so much up to in all things, and her family who
have made Trondheim feel like home. I’ve been so proud and happy to watch
my niece and nephews grow up here. My brother and sister in-laws, who I
have the joy and privilege to be an extra little sister to. My pap, who taught
me to always work hard. Lastly, mijn sterke mam, who inspires me to take
the tough route every day.

This year has been a year of change for me. Not only have I improved
my practical knowledge and skills, but this year brought on some personal
changes as well. Through it all, however, I’ve gained so many memories and
I’ve made strong connections and friends for life.

Writing this got me thinking about the girl I was 5, 10 and 15 years ago,
and I’m so hecking proud of how far I’ve gotten. Not only academically, but

VII

personally as well. This is a result of all of tougher choices I’ve made, and the
harder routes I’ve taken throughout the years that scared me, challenged me
and made me feel little and stupid. Those choices are the ones that benefited
me the most, and has made me into the awesome Camilla I am today.

So I say to you, reader, take the tough path. Run towards what scares
you. Gønn på!

...and support young girls going into STEM!

VIII

Acronyms

• APU - Application Processor Unit

• DV - Driverless Vehicle

• EV - Electrical Vehicle

• I19 - The first self-made generation of inverter, by Revolve NTNU

• I21 - The latest self-made generation of inverter, by Revolve NTNU

• LUT - Look-Up Table

• MPSoC - Microprocessor System on Chip

• PL - Programmable Logic

• PMU - Platform Management Unit

• R21 - The Revolve NTNU team for the 2020-2021 season

• R22 - The Revolve NTNU team for the 2021-2022 season

• RPU - Real-time Processor Unit

• SDK - Software Development Kit

• VCU - Vehicle Control Unit

IX

X

Contents

1 Introduction 1
1.1 Background . 3
1.2 Limitations . 5

2 Motor control theory 7
2.1 Motor topology . 7
2.2 Clarke- and Park-transform 8
2.3 Motor equations . 10
2.4 Motor specification . 11
2.5 Workings of an inverter . 12
2.6 Specifications of the I21 inverter 12
2.7 Motor encoder . 13
2.8 Software architecture . 16
2.9 Motor control methods . 17

2.9.1 Field Oriented Control (FOC) 17
2.9.2 Field Weakening Control 18
2.9.3 Direct Torque Control (DTC) 20
2.9.4 Modulation methods 21
2.9.5 Feed forward control 26

3 Literature Review 27
3.1 Motor control in R19 . 27
3.2 Motor control in R20 . 28

3.2.1 Modulation improvements 29
3.2.2 Field weakening improvements 29

3.3 Sensor-free control . 30
3.3.1 Implementation of Direct Torque Control (DTC) . . . 30
3.3.2 Comparison of Direct Torque Control (DTC) and Field

Oriented Control (FOC) 31
3.4 Effects of motor position sensor calibration 32
3.5 Autocalibration of motor position 33
3.6 Summary . 34

4 Design 37
4.1 Specifications . 37
4.2 Design of the motor control model 39

4.2.1 Motor simulator . 39
4.2.2 Design of new motor controller 41

4.3 Design of a motor controller using a Look-Up Table (LUT) . 44
4.4 Design of an improved calibration procedure 44

4.4.1 Design of a manual calibration procedure 44

XI

4.4.2 Design of an automatic calibration procedure 45

5 Implementation 47
5.1 Implementation of the motor control model 47

5.1.1 Implementation of code base 47
5.1.2 Implementation of code organization 50
5.1.3 Implementation of the merging of the design with the

existing code base . 54
5.2 Implementation of a system using a Look-Up Table (LUT) . . 57
5.3 Implementation of an improved calibration procedure 57

5.3.1 Setup of test rig . 57
5.3.2 Mounting . 59
5.3.3 Implementation of a manual calibration procedure . . 59
5.3.4 Implementation of an automatic calibration procedure 60

6 Testing and Results 65
6.1 Testing and results of the motor control model 65
6.2 Testing and results of the motor control model with a Look-Up

Table (LUT) . 65
6.3 Testing and results of an improved calibration procedure for

the encoder . 66
6.3.1 Testing and results of manual calibration 66
6.3.2 Testing and results of automatic calibration 66

7 Discussion 71
7.1 Discussion of motor control model 71
7.2 Discussion of a motor controller using a Look-Up Table (LUT) 72
7.3 Discussion of an improved calibration procedure 72

7.3.1 Discussion of a manual calibration procedure 72
7.3.2 Discussion of an automatic calibration procedure . . . 74

8 Conclusion 75

9 Further work 77

References 79
9.1 Fischer data sheet . 83
9.2 Original motor simulator . 89
9.3 Scaled-up figures from Section 2 96
9.4 Improved motor simulator . 99

1 Introduction

This thesis was done in collaboration with Revolve NTNU. Revolve NTNU
is a student organization run solely by student volunteers that — in parallel
with full-time studies — design and produce the mechancial and electrical
systems behind an electric racecar every year. Figure 1.1 shows the car made
for the 2021-2022 season, Aurora.

The organization competes in the world’s largest engineering competi-
tion, Formula Student, competing with over 114 universities from 38 coun-
tries. In eight months, the around 60 members participates in the design
and production of the systems needed for a racecar. Revolve NTNU that
has placed on top 3 in the biggest Formula Student competition, Formula
Student Germany (FSG). The specific technical groups are as follows:

• Electrical engineering — responsible for the accumulator and for
all electronics and embedded hardware and software, consisting of the
groups

– Embedded systems

– Power systems

• Mechanical engineering — responsible for all technical systems
ranging from complex composites to gears and motors, consisting of
the groups

– Aerodynamics

– Chassis

– Suspension and Drivetrain

– Driver Interface

• Software Engineering — responsible for making both the Electrical
Vehicle (EV) and the Driverless Vehicle (DV) run as smooth as pos-
sible, and for making Revolve’s self-made analysis software; Revolve
Analyze. It consists of the groups

– Autonomous Systems

– Control Systems

– Software Development

In addition to these groups, Revolve also has its own racecar drivers,
its own board, and a marketing group that deals with all the financials,
contacting sponsors, and managing all events and social media that put
Revolve NTNU on the map.

1

Revolve competes in both EV (Electrical Vehicle) and DV (Driverless
Vehicle) competitions. This season, FSG merged the two competitions. Be-
cause this seasons team in Revolve, team R22, has a goal of placing top 3
in FSG, this will be the first year that Revolve makes a merged EV and DV
vehicle. [1]

Figure 1.1: A photo of the R22 car, Aurora.

It took four years for Revolve NTNU to develop an in-house inverter
implementation, with the first one, named I19, ready for use in 2019. Before
this, OEM solutions have been used instead. The inverter is one of the
the most complex piece of hardware and software on the car. During the
’20/’21 season, development of the second generation of the inverter (I21)
was started. The work described in this thesis is a further refinement of the
development of the I21 that will be used in Revolve NTNU’s four-wheel-
driven electric vehicle.

2

1.1 Background

The first in-house made inverter inverter in Revolve NTNU was called I19,
and took 4 years to make. It is a reliable inverter and has been used for
multiple seasons, including this season; see a render of the placement of the
I19 in the R22 car in Figure 1.2. Parallel to when I19 was finished in 2019,
a combined simulator of the motor control and the whole mechanical system
was made in Simulink. The motor controller of this simulator employed ro-
tational speed in rpm as input, and through the use of a speed controller, a
current controller and a pulse width modulator, outputted duty cycles meant
as input to the transistors in the inverter. This system was only meant to
be used as a model to implement, test and validate the mathematics behind
the motor control algorithm. When the second generation of the in-house
made inverter was developed on in 2021, called I21, its motor controller was
written in C code based directly on the motor controller from the simulator.
Having a sizeable motor control algorithm with a large amount of mathe-
matic calculations in pure C code is not very structured, and can be hard
to read and debug. Instead of using this solution, the motor controller can
be distilled directly from the Simulink model, by means of Simulink’s code
generation capabilities. This generated C code could be optimized based
on objectives like RAM-, ROM- or execution efficiency. These are all code
generation objectives that could be easily selected and put in a prioritized
order of importance in Simulink.

The motivation for improving the current implemented motor control al-
gorithm is to make it more structured with the use of a modular block system
made in Simulink, and faster through the use of optimization strategies that
generated code offers. In the future, when further work is to be done on this
motor controller, the simulator will be up to date with the newest system as
well. Having a simulator of a mechanical system is highly beneficial in an
industry setting, as it determines up front if design goals are met without
having to risk electrical and mechanical parts for a test run. Simulations are
also faster to perform than a mechanical run-through of the motor, which
would have to include setup time. Simulations are therefore likely to be more
cost efficient than testing mechanically. Simulations also allows analysing the
performance and the energy usage of the model to see if the model param-
eters meets all the requirements before production is started. This includes
parameters like power consumption, as well as current, torque and speed
responses. Simulators that are up to date with the mechanical system are
therefore beneficial to have. This is because simulating running the motor
is an important and critical part of testing the motor control design, instead
of risking money and safety by testing designs directly on the motor.

3

This will make it easier to work on and improve upon the motor control
algorithm, because an interface in a Simulink diagram, which is a program
made specifically for mathematical functions, is easier to work with for this
purpose than a large C code base. For instance, Simulink offers finished
solutions like built-in PID-blocks that would be cumbersome to write in C
code. Moreover, a switch like this would ensure that the simulator is always
up to date with the motor controller that is actually running on the car.
This is not ensured at the moment, because the motor controller that is run
on the car is often worked on independently of the simulator.

Thus, another goal is to use Simulink’s code generating capabilities,
which will generate a function with set inputs and outputs that correspond
with the model. This function will then be merged into the existing I21
codebase.

Figure 1.2: The figure shows the systems inside the car, where the inverter
casing is on top of the yellow accumulator package behind the seat.

Furthermore, this thesis investigates different possibilities for improving
the motor control algorithm. Currently, a Newton-Raphson method is used
to find an approximation of the current, which is calculated from the torque.
This is time consuming and can be switched out with a pre-made Look-
Up Table (LUT) of torque and current measurements. This will improve the
runtime of the motor control algorithm, which will it possible to either reduce
the switching time, and therefore increase the peak rotational speed in rpm,
or spend the remaining time of the current switching period on other tasks.
A suggestion of implementation of this is presented in the design chapter, but
the actual implementation of this wasn’t done because of lack of resources.

4

It is vital that the encoder sends accurately calibrated position sensor
data back to the motor controller for the motor controller algorithm to run
as efficient as possible. This is currently done through manual calibration. If
the encoder isn’t calibrated accurately, more current is required to reach the
peak rotational speed of the motor. Additionally, the calibration has to be
done all over again if the encoder is accidentally rotated at any point, which
has happened in previous years in Revolve NTNU during periods where
several people have worked in tight-knit settings in the workshop.

1.2 Limitations

Because the author could not acquire a torque sensor during the duration of
the writing of this thesis, the Look-Up Table (LUT) of the q-current iq and
the torque reference τref was not made. In addition to NTNU, several local
companies were contacted to try to obtain this without any luck.

In addition, attempts were made to contact the motor company itself that
Revolve NTNU has a sponsor contract with, Fischer Elektromotoren, to get
a completed measured LUT for the specific motor that the organization uses.
The requests were, however, not responded to.

After merging the code-generated Simulink motor controller model with
the existing C code base on the I21, there were issues found with the exist-
ing code base. Because of unsolved repeated errors in the firmware Xilinx
Vivado and Xilinx Software Development Kit, respectively used to generate
bitstreams from the FPGA and compile the existing C code base on the I21
MPSoC, the code generated motor controller could not be run nor validated.
These build errors were attempted to be debugged without success, and be-
cause of time limitations, the attempt to validate the implementation was
discontinued.

When manually calibrating the encoders, the measured .csv-files of the
measured data were not saved; only the screenshots from the runs were saved.
This includes the figures Figure 6.2 and Figure 6.1.

5

6

2 Motor control theory

In this chapter the background theory necessary to understand the different
methods of motor control will be presented. Some chapters are refinements
from the project thesis [2] written in the fall of 2021.

2.1 Motor topology

The racecar made in the ’21/’22 season consists of a 4WD electric pow-
ertrain, where each wheel has a hub-mounted interior permanent magnet
synchronous motor (IPMSM) connected to gearboxes.

Figure 2.1: Image showing topology and connections between the inverter,
the VCU, the motor and the accumulator.

What is called the inverter in the car consists of multiple cards; a control
card and multiple Voltage Source Inverters (VSI). The control card acts as
the brain of the inverter, see Section 2.6, and communicates with one other
PCB on the car, called the Vehicle Control Unit (VCU). The VCU handles
sensor data and driver inputs from the car. The control card receives these
setpoints and uses them to compute control signals in the form of Pulse
Width Modulation (PWM) signals to send to the motors via the VSI cards
— more details on PWM are introduced in Section 2.9.4. The control card
also sends back state feedback data back to the VCU.

7

A higher level topology of the motors can be seen in Figure 2.1, where
the accumulator not only provides energy, but also receives energy by re-
generation during deceleration. By having the opportunity to control each
motor individually, the traction of each wheel can be maximized. Torque is
also distributed between all four wheels depending on the state of the car,
the tires, and the driver’s inputs. This is done using a self-made Torque
Vectoring (TV) algorithm.

Figure 2.2: The figure shows a two-level, three-phase inverter with three
half-bridges, where each Sn represent a transistor. Image gotten from [3]

Each VSI contains six transistors which make up three half-bridges that
receive the PWM signals from the control card and send out a phase output
to the motor, seen in Figure 2.2. In addition to this, the power stages have
DC-link capacitors that act as load-balancing storage and prevent voltage
spikes and electromagnetic interference.

2.2 Clarke- and Park-transform

The three phase currents going to the stator can be calculated from the
stator current Is and the electrical angular velocity ωe asia(t)ib(t)

ic(t)

 = Is

 sin(ωet)

sin(ωet− 2π
3)

sin(ωet− 4π
3)

 , (1)

where ωe is the product of the mechanical angular velocity ωm and the
number of pole pairs p in the motor.

When regulating the currents in the motor control algorithm, it is more
desirable to work with two direct currents instead of sinusoidal currents.
This is to prevent having to input values in a sinusoidal form. This can
be achieved using the Clarke and Park transforms, also called the direct-
quadrature-zero. [4]

8

Figure 2.3: On the left, the Clarke-transform is first performed on the abc-
system to turn it into a two-phase αβ-system. Following that, a Park-
transform is performed on the αβ-system to turn it into a dq-system, which
are two axes that are parallel and perpendicular with the rotor flux axes. [4]
Figure made from figures from [5] and [6].

The Clark transform turns the three-phase currents ia, ib and ic into
two-dimensional currents iα iβ , as in

[
iα
iβ

]
=

2

3

[
1 −1

2
−1
2

0
√
3
2

√
3
2

]iaib
ic

 . (2)

The iα current is parallel with the ia axis, while the iβ current is perpen-
dicular to the ia axis, see Figure 2.3.

Furthermore, the αβ-system can be turned so that it is along the same
axes that the rotor flux is in. The axis that is directly parallel with the
primary rotor flux axis is known as the d-axis (direct axis). The axis that is
perpendicular to the primary rotor flux axis is called the q-axis (quadrature
axis). When the stator flux is along this axis, the motor creates maximum
torque. [4]

This transformation from αβ to dq is done through the Park transform,
which is defined as

[
id
iq

]
=

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

] [
iα
iβ

]
. (3)

9

2.3 Motor equations

As derived in [7], the equations for a general three-phase synchronous motor
can be defined as

uij = RjIij +
∂ψ

∂t
i ∈ {a, b, c}, j ∈ {s, r}, (4)

where the index j appoints to either the rotor or the stator coil windings
and the i appoints to the three phases. The first term contributes to the
voltage across the stator windings, and the latter term contributes to the
counter-electromotive force. [7] ψ is the magnetic flux linkage in the system,
defined as ψ = Nϕ, which essentially represents the total flux in all N turns
of the coil.[8] The variation of the flux linkage over time induces a voltage,
as in

u(t) =
∂ψ

∂t
. (5)

Further derivations made in [7] show that after applying the Clarke- and
Park-transforms on Equation (4), the transformed voltage equations will be
in the dq-frame as in

vd = RsId +
1

ωn

∂ψd

∂t
− pψq

vq = RsIq +
1

ωn

∂ψq

∂t
+ pψd

. (6)

where the flux linkage ψ, the angular velocity ω and the reactances (in-
ductances) x are defined as

ψq = xqiq

ψd = xdid + ψm = xdid + xmif

ωn =
1

n

∂θ

∂t
xd = xmdxsσ

xq = xmqxsσ

. (7)

In Equation (7), n is the speed in rpm per unit, θ is the angle between
the rotor and stator flux, if is the field current per unit, and finally, xm is
the mechanical reactance, where the σ index appoints to a leakage reactance.
[7]

10

Furthermore, the motor torque in the dq-frame is the difference between
the flux linkage and current in the dq-frame, τe = ψdiq −ψqid. [7] Using the
Equation (7), the flux linkages from the dq-frame can be expressed through
the reactances from the same frame, thus the torque can be expressed as

τe = ψdiq − ψqid

= ψmiq − (xq − xd)idiq

= xmif iq − (xq − xd)idiq.

(8)

The torque is thus made up of two terms, the first term stems from the
electromagnetic torque generated from the stator, and the last term stems
from the reluctance in the motor due to saliency, described in Section 2.4.
To increase torque and benefit from the reluctance in the last term, id has
to be negative.[7] This will be elaborated on in Section 2.9.2.

2.4 Motor specification

The motor used in Revolve is from Fischer Elektromotoren, and some im-
portant values from the motor’s datasheet can be seen in Table 1. The
data sheet for the motor is in the appendix, Section 9. The motor is a wye
configuration, 4 pole motor — weighing in at 3.37 kg.

Data Symbol Value
Nominal Torque TNominal 11.1 Nm
Nominal Current INominal 22.6 Arms

Nominal Speed nNominal 13250 rpm
Nominal Power PNominal 15404 W
Peak Torque TPeak 29.1 Nm
Peak Current IPeak 61 Arms

Peak Speed nPeak 20000 rpm
Peak Power PPeak 35366 W

Inductance, d-axis Ld 0.27 mH
Inductance, q-axis Lq 0.37 mH

Table 1: Key values from the motor data sheet of the motor Revolve NTNU
uses, the Fischer Elektronik TI085-052-070-04B7S-07S04BE2. The data
sheet for the motor is in the appendix, Section 9

The stator voltage and current are limited by their direct and quadrature
parts as

istator
peak ≥ istator =

√
i2d + i2q

ustator
peak ≥ ustator =

√
u2d + u2q

. (9)

11

The motor has some saliency that must be considered when calculating
the torque equations. Saliency is a measure of the lack of symmetry between
the rotor and stator in the motor that leads to a non-uniform air gap and can
create a reluctance torque in the motor. The difference can be seen between
the inductance parameters Ld and Lq, see Table 1. The relationship between
the two is that Lq > Ld, which is traditional within IPMSM. This means that
the flux along the d-axis is calculated along the path with higher reluctance
than the q-axis that goes through the path with the lowest reluctance. [7]

2.5 Workings of an inverter

The inverter takes in DC power from the accumulator and turns it into three-
phase AC power for use in the motor’s stator. A controller can then modulate
the amplitude, frequency and phase of these three sinusoidals to create a
magnetic field vector in the stator perpendicular to the one created from
the rotor magnetic field. When these two fields are 90◦ in relation to each
other, this will generate maximum torque in the motor. Increasing amplitude
would increase power to the motor, and increasing frequency would increase
the rpm of the motor.

The inverter uses three half-bridges for this purpose; see Figure 2.2, thus
it is considered three-phase. Each transistor in the half-bridge act as a
switch, where the motor control decides which one of them should let current
through at any moment. By switching which transistors the current can go
through, commutation happens in the motor. The motor has four pole pairs,
so commutation happens every 15◦.

2.6 Specifications of the I21 inverter

Its control card is based on the Enclustra XU5, containing a Xilinx Ultra-
scale+ MPSoC, which features 4x A53 cores at 1.3 GHz and 2x R5 cores at
500 MHz including a powerful and compact FPGA board. Figure 2.4 is a
render of the control card. [9]

I21 will be responsible for powering 4 35 kW IPMSMs at 35 kW each, see
Section 2.4, developing a maximum torque of 29.1 Nm each, and reaching
a maximum rotational velocity of 20 krpm. It will do this by converting
direct current from a 600 VDC battery accumulator to three-phase AC with
variable magnitude, phase, and frequency.

The I21’s VSI is based around a 1.2kV SiCMOSFET six-pack module.
It features shunt current measurement and several overcurrent protection
mechanisms to prevent heat damage in the motor. This includes desaturation
protection for the module and I2t-based (current squared over time) motor
overload protection, which keeps track of the RMS current in the motor
windings.

12

Figure 2.4: A render of the I21 control card, exported from the Altium
software used to design Revolve’s PCBs.

2.7 Motor encoder

The motor encoder that Revolve uses is mounted on each of the four motors
on the car, and has been used in Revolve since 2016. The model comes
from a German company called Heidenhain, see Figure 2.5. It is an absolute
internal rotary encoder without integral bearing, which means that the way
the encoder is mounted determines how well it performs and functions. This
will be elaborated on later in this chapter in relation to the scanning gap of
the encoder.

Figure 2.5: Revolve NTNU’s motor encoder, the Heidenhain ECI1118.

The IPMSM used in this system requires the rotor position as soon as
the car is turned on. This is not possible with an incremental encoder. They
simply count an incremental amount of a particular pattern on the edges
of the rotating unit at start-up from its start position. This is, however,
possible with the absolute rotary encoder as used in this application, as each
point on the edge of the disc has a specific binary code identifiable with light
and dark patterns. This ensures that the rotor position is known at start-up,
even after the loss of supply.

13

Accuracy in the reading of the rotor position is directly related to the mo-
tor control, and this means that the encoder needs to be in mutual alignment
mechanically with the rotor in the motor. The datum shift is a value that
is added to the physical position of an encoder for this purpose. A datum
is a reference frame that is based on the zero point (origin), the shape and
orientation of the encoder geometric disc, and several known control points.
Thus, during mounting, it is necessary to physically align the encoder prop-
erly with the rotor and get a relation between the datum of the two. Then,
when a datum shift is applied in the software of the encoder, the disparity
between the two datums is so negligible that the encoder should, in theory,
be finished calibrated. [10]

Heidenhain makes their own Adjusting and Testing Software (ATS) that
interfaces through their proprietary diagnostic tool called PWM 20. It con-
nects through USB and includes a phase angle measuring unit and is where
the datum shift is set. It has built-in tolerances that are deemed appropri-
ate for the calibration of the encoder. The limits on the voltage amplitude
are 0.20 Vpp and 1.30 Vpp, and the ATS will output errors if the measured
voltage amplitude goes outside these limits. [10]

Figure 2.6: A schematic drawing of the ECI1118. The figure is from [10].

14

The alignment happens in the scanning gap of the encoder, as can be
seen in Figure 2.6. This is the distance between the rotor and the sta-
tor, and can be measured indirectly with the ATS as a signal amplitude.
This measurement gives out a peak-to-peak voltage amplitude in percent-
age, and the optimum scanning gap has a peak-to-peak voltage amplitude of
100%. The aforementioned voltage limits recommended by the software is
equivalent to a percentage interval between 80-120 %. This recommendation
equates to the shaft in the encoder and the scanning gap being allowed to
have a mechanical range of motion of -0.33mm and 0.1mm during operation
of the motors. This small range emphasizes the importance of a tight and
accurate mounting of the encoder. [10]

The data transfer of this value from the encoder to the microcontroller
is done through Heidenhains proprietary bidirectional interface for encoders,
called EnDat, and it transmits the absolute position of the encoder. It
facilitates with a direct reading of the actual physical position. As with other
encoder interfaces like Synchronous Serial Interface (SSI), EnDat encoders
transmit absolute position data on demand.

The encoder is connected to the FPGA on the Enclustra XU5-module on
the control card. Position feedback is essential through the use of sensored
motor control. The angle of the rotor shaft compared to the stator provided
by the encoder with 18-bit res. is sent in as input into the FPGA, which then
acts as an interface and transmits the data to the software in the Ultrascale+
card. Using the EnDat 2.2 protocol, a digital bidirectional interface for
encoders, position values are transmitted in sync with the clock signal in the
electronics it is connected to. EnDat uses specific optimization, which helps
to reduce electromagnetic interference through the transmission of sensor
data. [11]

The Endat 2.2 protocol is integrated into the FPGA design through an
Advanced eXtensible Interface (AXI) to Advanced Peripheral Bus (APB)
bridge, which makes it possible to interface with the Endat IP package in
the FPGA from the software in the Ultrascale+. With the use of interrupts
in the FPGA, the encoder sampled at the extremum points of the PWM
carrier signal, see Figure 2.11. This interrupt notifies the processor core in
the software running on the Ultrascale+ ARM cores, which runs an iteration
of the motor control algorithm after receiving this data.

15

2.8 Software architecture

An overview of how the three cores interact with each other can be seen in
Figure 2.7. The A53-core receives sensor data from the VCU card (Vehicle
Control Unit), see Section 2.1, and sends the setpoints to the controllers in
the two R5-cores based on this. The R5-cores send control signals to the VSI
(Voltage Source Inverter), which then controls the motor. The motor sends
feedback data back to the controller, which again sends back state feedback
data to the A53-core and the VCU.

Figure 2.7: This diagram shows how the cores interact with each other and
some of the rest of the system.

The one A53-core in use on the Application Processor Unit (APU) is
referred to as the vcu in the software since it handles information received
from the VCU. The two R5-cores in use in the Real-time Processing Unit
(RPU), are called inverter_front and inverter_rear in the software since
they run the motor control algorithm for two motors each in the front and
in the rear.

The motor control algorithm running in each of the R5 cores is based
on the carrier signal that runs on 20kHz. The encoder is sampled at every
maximum and minimum peak of the carrier wave, and interrupts the Endat
2.2 protocol in the FPGA. The interrupt is connected from the FPGA to
the A53-core, which triggers an iteration of the control loop in each of the
R5-cores. The control loop runs the motor control algorithm every minima
of the carrier signal, and right before it is triggered, sensor data is read from
the ADC.

16

After the control loop is finished running, the main in the A53-core runs
other less prioritized tasks not operated at switching frequency until the next
minima, and an interrupt occurs one period later.

Thus, the control loop runtime is limited by the switching period of
1/(20kHz). If the runtime of the control loop is too close to the switching
period, lower priority tasks can’t be executed in time. This is called a timeout
condition, where the timeout is the period between interrupts.

2.9 Motor control methods

As can be seen in Table 1, the motor has some restrictions in nominal speed
when the torque reaches the output limit of 11.1 Nm. To exceed this value,
there are some control methods with added solutions that can be imple-
mented that can work against this restriction. In this thesis, Direct Torque
Control (DTC), Field Oriented Control (FOC) and field weakening control
will be presented, as well as some methods for modulating both the output
and the input signals to these algorithms. [7]

2.9.1 Field Oriented Control (FOC)

The motor control happens with the use of Field Oriented Control (FOC).
Essentially, the FOC algorithm consists of the following steps:

1. Measure the angular position of the rotor, in addition to the phase
currents ia, ib and ic.

2. Run the Clarke/Park-transform, see Section 2.2, on the measured cur-
rents, outputting id and iq.

3. Compute the reference currents from the setpoints from the VCU and
the measured angular motor position.

4. Run the PI-controllers for both id and iq.

5. Run the inverse Clarke/Park-transform on the output from the PI-
controllers, now outputting a three-phase signal.

6. Calculate the duty cycles going into the VSI from the three-phase sig-
nals using modulation. [7]

Measuring the position of the rotor is done with the use of a motor
encoder, see Section 2.7. From the power stage cards, the measurements of
the DC link voltage and the phase currents come as input to the control card
and the FOC with the use of shunt resistors. Since the motor is in a wye
configuration, only two phase currents need to be measured as the third one
can be calculated from the two.

17

Figure 2.8: A block diagram of FOC, showing the feedback regulation of the
speed through the inverter and the motors using the Clarke-Park transform
and PI-controllers. Figure inspired from [12].

As described in Section 2.2, these currents can be turned two-dimensional,
and sent through a PI-controller together with the reference currents calcu-
lated from the setpoints received from the VCU. Figure 2.8 shows a high-level
block diagram of a FOC motor control algorithm.

2.9.2 Field Weakening Control

Field weakening control allows the motor to run at speeds higher than its
nominal speed. This is done by reducing the Back-EMF (BEMF) of the
motor. When the BEMF is reduced, the speed ωr can be raised with no
restrictions from opposing forces. The BEMF of the motor is defined as in
UEMF = ψω, where ψ is the flux produced in the motors gap and ω is the
motor speed in rpm.

Reducing the BEMF UEMF can be done by reducing the magnetic flux
of the stator ψ. The reduction happens along the d-axis by introducing a
negative flux along this axis, which by Equation (7) can be made possible
by introducing a negative id.

The goal of field weakening is to maximize torque. This can be done with
adjusting the currents in relation to the maximum current. The currents and
voltages are limited by their dq-parts, see Equation (9). Those equations can
be illustrated as in Figure 2.9, with theoretical limits for each variable shown
with circles.

The first trajectory I in the figure illustrates the trajectory to be taken
to achieve the maximum stator voltage with nominal torque, II, and thus
Maximum Torque Per Ampere (MTPA). In the second trajectory, the torque
τ is decreaced to increase the speed ω.

18

Figure 2.9: This figure shows the different trajectories I, II and III that the
current can go along, with respect to the maximum current. The dashed
ellipse represents the voltage limitations wrt. the speed. The gray area en-
closed by the trajectories is called the field-weakening region. Figure inspired
from [13].

After the second trajectory, MTPA can no longer be used to increase
the torque of the motor, thus III illustrates the trajectory to be taken to
achieve Maximum Torque Per Voltage (MTPV), or Maximum Torque Per
Flux (MTPF). In each trajectory, the limits come from the bounds from the
DC link voltage and the motor specification.

As derived and defined in chapter 7.4.1 "Optimal ϕc control" in [7], the
currents needed to achieve MTPA and thereby represent the current trajec-
tory I in Figure 2.9 are defined as

i.d
MTPA =

ψm

3 − 3

√
(ψm

3)3 +
(Lq−Ld)2τe

3ψm

Lq − Ld

iMTPA
q =

τe
ψm + id(Ld − Lq)

. (10)

19

2.9.3 Direct Torque Control (DTC)

DTC is similar to FOC in which it runs a control algorithm for both torque
and flux, however it does this without the delay of running a modulation,
thus the algorithm runs much faster. In addition, it does not require the
rotor position for speed control, thus relieving the need for a motor encoder
in the system. [7] Figure 2.10 shows a high-level block diagram of an imple-
mentation of DTC.

Figure 2.10: A high level block diagram of DTC, showing the torque and
flux reference inputs and the torque and flux estimated from the current and
voltage measurements, and the outputs from the the switching table going
into the inverter. Figure inspired from [14].

Torque and flux are the inputs to this algorithm, and they are propor-
tionate to the voltage levels and vectors created in the motor, as described
in Section 2.9.4. The magnitude of flux can be increased or decreased in
relation to which magnitudes the direct components of the voltage vectors
have in the sector in question. The indirect components of the voltage vector
can give an increase or decrease in torque.

Flux Torque Sector
S1 S2 S3 S4 S5 S6

ψstator = 1 τoutput = 1 V2 V3 V4 V5 V6 V1
τoutput = -1 V6 V1 V2 V3 V4 V5

ψstator = -1 τoutput = 1 V3 V4 V5 V6 V1 V2
τoutput = -1 V5 V6 V1 V2 V3 V4

Table 2: Switching table for choosing vectors in DTC that can increase or
decrease the flux and torque.

20

A switching table, see Table 2, is used to show the impact that each
voltage vector has on the torque and flux inside any given sector the vector
is in. By using two hysteresis controllers, which are ON/OFF-controllers that
filter high-varying input values so that the output varies more smoothly, the
torque and flux can be increased or decreased according to this LUT. [7]

2.9.4 Modulation methods

There exists multiple Pulse Width Modulation (PWM) methods in the world
of motor control, where the most widely used are described in this chapter.
The modulation techniques are applied on the last step of the control algo-
rithm, before the signals are sent out to the VSI. The speed of the motor is
regulated with the use of pulse width modulation. [7]

Sinusoidal Pulse Width Modulation (SPWM)

The duty cycle is decided by the amount of time each of the transistors
remain in an open position during a period. Figure 2.11 shows the duty cycle
of a square wave signal in relation to the shape of its respective sinusoidal
wave. A figure showing three phases with a carrier signal can be seen in
Figure 2.12. The I21 inverter is a three-phase inverter, thus the three phase
signals shown in the figure gets sent to each of the three half-bridges in the
VSI, see Figure 2.2. [7]

Each of the four inverters in the car has its own carrier signal which
is compared to the three phases, and the two R5-cores are responsible for
updating the duty cycle in the software on each of the two inverters that
they are in charge of, either in the front or in the rear.

Space Vector Modulation (SVM/SVPWM)

The Space Vector Modulation (SVM), or Space Vector Pulse Width Modula-
tion (SVPWM), is another modulation technique that is the last step of the
FOC algorithm. It generates the three phase voltages which are sent into the
VSI. Voltages in the dq-space that have been through PI-controllers are sent
through an inverse Park transform that converts them into the αβ-space, see
Section 2.2. The resulting voltages are input to the space vector modulation,
which outputs duty cycles. [17]

A space vector is made through binary inputs to the transistor in the
three half bridges. The information says something about which transistor
in each half bridge should let current through. It gives this information
through binary numbers, and an example of an input of 100 is shown in
Figure 2.13. The output is three phase signals. [19]

21

Figure 2.11: The upper graph shows a sinusoidal current (reference signal)
and a high frequency clock signal (carrier signal). The lower graph shows
the resulting square wave from a compare of the two aforementioned signals,
and this output is sent to the transistors shown in Figure 2.2. The transistor
that receives this signal will stay in "on"-mode and let current through when
the duty signal is high, shown with δm. Figure inspired from [15].

Furthermore, 23 = 8 configurations can be made of three half bridges. All
of the eight configurations can be seen in Figure 9.7, where each configuration
of transistors represents one space vector in the motor. Six basic vectors can
be made, and two null vectors can also be made. [19]

To create more than six vectors around the sphere, and thus making the
vectors take a continuous revolution, the null vectors are used. By switching
between two basic vectors inside one of the six sections in the sphere, the
angle of the space vector can be changed, and therefore an approximation
of a space vector can be made all throughout the sphere. Also, by including
null vectors in the switching sequences, the magnitude of the resulting space
vector can be changed. [19]

Since SVPWM uses a weighted average of the three nearest vectors to
generate the wanted voltage, so the resulting modulation waveform has dou-
ble hump characteristics, as can be seen in Figure 2.15.

SVPWM can be achieved with a sector finding algorithm. The algorithm
utilizes the relationship between the values of ud and uq in the stator and
which sector the vector is in. A diagram showing the algorithm can be seen
in Figure 9.8, where the sectors are defined in Figure 2.14.

22

Figure 2.12: The three phase currents shown in sinusoidal and in their respec-
tive square wave form. The grey sawtooth signal with the same amplitude
as the sinusoidal signals is a high frequency clock signal, and is called the
carrier wave. Figure taken from [16].

Figure 2.13: An example of one configuration of three half-bridges. In each
of the half bridge one transistor can let current through. Here, one transistor
connected to + DC and two transistors connected to -DC, shown in red, are
on and letting current through. Each half bridge sends one current through,
represented with A, B and C. The sum of the three vectors that each of the
currents provides are summed up to one space vector, represented here by
the red vector. Figure inspired from [18].

23

Figure 2.14: Image representing the sectors in the sixtant and which sector
each condition points to. Image is inspired from chapter 10.2.4 in [20].

Figure 2.15: Figure shows the double hump characteristics of a space vector
pulse width modulated signal. Figure inspired from [21]

Difference between SPWM and SVPWM

The difference between SPWM and SVPWM is that SVPWM’s modulation
waveforms have double hump charasteristics, see Figure 2.15. With this,
it utilizes more of the source voltage than SPWM that just use sinusoidal
modulation waveforms. It can be shown that the line-to-line voltages of the
two methods can be approximated as

Vline-to-line =


VDC√

2
≈ 70.7 % VDC, Space Vector PWM

√
3VDC
2
√
2

≈ 61.2 % VDC, Sinusoidal PWM
, (11)

derived in ([20], p. 361).

24

This can also be shown with the use of the vector configurations defined
in Section 2.9.4, see Figure 2.16. The outer hexagon represented by the
six-step commutation of the six basic vectors will have its peaks at 2VDC

3 .
SPWM will have its peak value at VDC

2 , while SVPWM will have its peak
value at VDC√

3
.

Figure 2.16: Image representing the peak voltages with radii that SVPWM
and SPWM will stay inside of. The peak voltage achievable with SPWM
is represented with a radius of O⃗N, while SVPWM will have its peak value
with a radius of O⃗M Figure inspired from fig. 1.1 in [22].

Injection of third order harmonics

To utilize more of the source voltage in SPWM, another wave can be injected
to each SPWM phase voltage, which will increase the peak voltage without
suffering added oscillation. This can be done with third harmonic waves,
which are waves with three times the fundamental frequency of the origi-
nal SPWM signal, see Figure 2.17. This method is called Third Harmonic
Sinusoidal Pulse Width Modulation (THISPWM). [19]

The peak size of the modulated sum will be lower than the peak fun-
damental output voltage. So, the peak of each fundamental phase voltage
will have a peak of U , whereas the sum of that phase voltage with a third
harmonic wave will have a peak of 0.87 U . Thus by using third harmonic
injection (THI), a higher peak can be reached while keeping the same line-to-
line voltages. This can happen because the harmonics cancel themselves out
from common-mode voltages between each of the phases, thus the receiving
windings will only see a pure sinusoidal signal. [19]

25

Figure 2.17: Graph showing the three phase voltages with the same fun-
damental frequencies and phase shifts, with a third harmonic wave corre-
sponding to each of the three phases in black. The resulting modulated
signal with the third harmonic injection is shown in dotted lines for all three
phases. Image inspired from [19].

2.9.5 Feed forward control

From the voltage equations in Equation (6), one can observe that the volt-
age vd is dependent on ψq, and vq is dependent on ψd. Furthermore, from
Equation (7), one can see that ψq is proportionate with iq, and ψd is propor-
tionate with id. This makes vd is dependent on iq, and vq dependent on id.
These terms are therefore called cross-coupling terms, and this dependency
can be decoupled using feed forward control. [7]

26

3 Literature Review

Several technologies within motor control are interesting to look into. The
first two chapters are a literature review on the previous master theses that
have worked with the motor control of Revolve NTNU’s current inverter.
The third chapter presents theses that have been done on sensorless control
of the motor, and then the fourth chapter presents work done on encoder
calibration. Finally, the last chapter, Section 3.6, discusses the presented
literature, and a choice is made on which design that will be worked on in
this thesis.

3.1 Motor control in R19

In 2019, Revolve alumni Håkon Skeie wrote his master thesis on motor con-
trol of I19, the older generation inverter [23]. His design consisted of FOC
with the use of Heidenhain’s motor encoder, with added field weakening
control for the reference torque, see Figure 3.1.

Figure 3.1: A simplified block diagram of the motor control that Skeie im-
plemented, with reference inputs nref coming from the VCU, θ coming from
the motor encoder and ia and ic is measured from the power stage (VSI)
cards. [23]

This design is based on NTNU professor Roy Nilsen’s creation of a motor
control of a PMSM in the class TET4120 Electric Drives [7].

Skeie’s solution implemented field weakening control on the torque to find
the current id, with the use of both Maximum Torque Per Ampere (MTPA)
and Maximum Torque Per Flux (MTPF). MTPA was run with the Equa-
tion (10) with the torque τ as input, and a MIN-block in Simulink was
used to switch between this and MTPF, based on the resulting id reference
current, see Figure 3.2.

27

To run the MTPF, a Newton-Raphson method was run to find an ap-
proximation of the stator current angle, which was used to find the optimal
current id. This was done with the use of the equations

0 = f(ϵ, ψs)− τeref

xn+1 = xn +
f(xn)

f ′(xn)

, (12)

where the first equation defines the algorithm used to converge to get
the stator angle ϵ, and the second equation is the definition of the Newtons
method. The function f(ϵ, ψs) and its derived form f ′(ϵ, ψs) are defined as

f(ϵ, ψs) = (sin(ϵ)− (1− xd
xq

)
ψs
2ψm

sin(2ϵ))
ψsψm
xd

− τe

f ′(ϵ, ψs) = (cos(ϵ)− (1− xd
xq

)
ψs
ψm

cos(2ϵ))
ψsψm
xd

. (13)

Furthermore, in the "Modulator"-block, he made an SPWM that is run
together with added third harmonic injection.

The work was made for a SAM E70 ARM Cortex M7 Microcontroller
Unit (MCU). First, the work was conceptualized in Simulink, only to be
used for simulation of the motor, and then after that it was implemented
and written by hand in C code. The Simulink file was partly lost after his
thesis was delivered, thus what is left is an earlier revision.

Figure 3.2: A simplified block diagram of the CRC, or Current Reference
Calculator, where the field weakening control happens [23].

3.2 Motor control in R20

The year after Håkon Skeie did his master on motor control, Francesco Fanin
did both his project- and thesis on the same control system [24], [25]. His
project thesis both researched and implemented improvements of the mod-
ulation of the motor control, and his master thesis researched areas of im-
provement for the field weakening in the motor control.

28

3.2.1 Modulation improvements

Fanin’s project thesis implemented Generalized Discontinous Pulse Width
Modulation (GDPWM) on Skeie’s motor control. GDPWM works by using
different modulation techniques based on the modulation index. The mod-
ulation index M is defined as the ratio between the line-to-neutral voltage
vlm and the six-step voltage VDC,

M =
Vlm
2VDC
π

. (14)

The GDPWM Fanin implemented uses Space Vector PWM (SVPWM)
in the low modulation range, where M < 0.65, and switches to Discontinous
Pulse Width Modulation (DPWM) when M ≥ 0.65. More specifically, when
0.65 ≤ M ≤ 0.81 DPWM2 is used, and finally when M > 0.81 DPWM1 is
used.

DPWM happens when a discontinuous zero-sequence wave is injected
into the three-phase signals, as it is injected for third harmonics that was
described in Section 2.9.4. For this, an inverter leg is clamped to either
the positive or negative side of the DC bus for a maximum period of 120◦.
During the clamping, there can be no switching; thus this method decreases
switching losses. DPWM1 happens when the modulated PWM signal with
the highest magnitude defines the zero-sequence signal, and DPWM2 hap-
pens when all three modulated signals are phase-shifted with 30◦, and the
resulting highest modulated signal defines the zero-sequence signal.

GDPWM was shown to have good results for modulation, since SVPWM
had great performance when modulation indices were low, and DPWM had
great performance when modulation indices were high.

3.2.2 Field weakening improvements

Fanin wrote his master thesis on different algorithms for generating current
references in the field weakening region [25].

Furthermore, Fanin modified the Newton-Raphson model that Skeie im-
plemented in his thesis. He calculated the stator angles beforehand and put
them in a table together with the input torque for a quick and fast response.
This angle was then used in the equations in the Newton Raphson method
in Equation (12). Fanin concluded in his thesis that this modified scheme
was the optimal algorithm for the use in a racecar, since it both alleviated
oscillations and any issues with approximations.

29

He also looked into making custom LUT for the current components id
and iq to very quickly retrieve information on them for any given torque
τ , thus modifying the current reference calculator that Skeie made, see Fig-
ure 3.3. This method was deemed a feasible alternative to running numerous
iterations of the Newton-Raphson method to approximate the d-current from
the torque. However, because of Covid-19 breaking out in March of 2020, he
could not implement and test this method.

Figure 3.3: Fanin’s modified current reference calculator that’s based on
Skeie’s model, see Figure 3.2, but with an added LUT. [25]

3.3 Sensor-free control

There are multiple benefits with implementing a sensorless motor control on
the car. As described in Section 2.9.3, the benefits include not needing a
motor encoder connected to each of the four motors on the car, which can
save a lot of space and weight. This chapter will look into an implementation
of an improved DTC, defined in Section 2.9.3, and how it compares to FOC,
defined in Section 2.9.1.

3.3.1 Implementation of Direct Torque Control (DTC)

A paper was done in the university of Tianjin University in China in 2017,
where they implemented a direct torque control algorithm for a Permanent
Magnet Synchronous Motor (PMSM). The work was done on a three-level in-
verter instead of a two-level one; however, the basic implementation remains
similar. [26]

The implementation focused on reducing steady-state torque ripples and
maintaining a smooth vector switching. This was done by creating a torque/flux
LUT with multiple voltage vectors and thus a precise control. The LUT
found which voltage vectors matched with the flux and torque and had cor-
responding duty cycles that can be outputted to the VSI. [26].

The implementation from the paper resulted in the instantaneous torque
response that the standard DTC already has, in addition to some torque
ripple reduction in steady states. This was done with a three-part algorithm,
where only the first two are relevant to a two-level inverter:

30

1. Make a LUT that extends the standard switching table that’s presented
in Section 2.9.3. The table consists of torque and flux change rates
caused by the voltage vectors. It can be extended with multiple voltage
vectors and precise control levels. In the paper, the three-level inverter
had 18 basic voltage vectors and 18(Nd− 1) number of virtual voltage
vectors with fixed direction. Nd is the number of pieces that dn is
divided into, between 0 and 1. dn is the duty cycle of the basic vector
Vn. The LUT is universal for the DTC of different power levels. [26]

2. The vectors in the LUT are selected based on a cost function that
is defined in the paper. The cost function calculates the effect that
the voltage vectors have on the torque and flux, and the vectors that
minimize this cost function are selected. [26]

Characteristics Field Oriented Control Direct Torque Control
Dynamic torque re-
sponse

Slower Faster

Static torque, current
and flux response

Lower ripple and distortion Higher ripple and distortion

Parameter sensitivity Decoupling depends on stator in-
ductances Lsd and Lsq, and the ro-
tor flux ψr

Sensitive to stator resistance Rs

Controllers PI-regulator for current control Hysteresis controllers for torque
and stator flux ψs

Switching frequency Constant Variable
Complexity of imple-
mentation

High complexity, need Clarke/
Park-transform

Less complexity than FOC, no
need for any coordinate transfor-
mation

Table 3: Comparison between the control methods DTC and FOC in a
PMSM, done in the thesis [27].

3.3.2 Comparison of Direct Torque Control (DTC) and Field Ori-
ented Control (FOC)

In 2018, a survey published by the University of Munich summarized a com-
parison of DTC and FOC based on three other theses. [27] Even though
there are many parameters to take into consideration when comparing the
two methods, and a superior method can’t be determined, a generalised com-
parison was made. Overall, the paper concluded that FOC has good steady-
state characteristics, whereas DTC shows better dynamic performance. This
gives a faster torque response that is more desirable for the running of the
Revolve NTNU’s racecar. More general comparisons are shown in Table 3.
[27]

31

3.4 Effects of motor position sensor calibration

In a thesis done in 2019 at Chalmers University of Technology in Sweden,
an evaluation was done on the effects of sensor measurement errors on a
motor. [28] The calibration looks at the relationship between the angles
between the stators’ and rotors’ magnetic fields. The work was done on
a Dedicated Hybrid Transmission (DHT) system, which consisted of one
Internal Combustion Engine (ICE) and two PMSMs. The position sensor
used was a resolver, which is a bit different from an encoder. It consists of
a rotor with a reference winding and a stator with two windings that are 90
degrees apart. The rotor in the resolver needs AC power to run, which again
induces a voltage in the stator. The shaft position can be found from this
induced voltage and the reference voltage.

32

However, the calibration errors are analogous to those occurring from
using an encoder. Through simulations, a faulty calibration of the position
sensor was shown to be related with torque ripples. More specifically, torque
ripples in the range ± 5 Nm were observed with current offsets larger than
3.5 A. The report concluded that there were significant power losses with
just one mechanical degree offset. This shows how vital the calibration of
the motor position sensors is.

Table 4 shows the results from the simulation of the motor with imposed
angle offset errors. Resistive power loss increases exponentially with the
increase in offset error. This quickly leads to critical faults with the running
of the motor. [28]

Offset error
(mech. deg.)

Increased
resistive power

loss (Watt)

Percentally
increased power

loss (%)
0.25 2 0.5 %
0.5 6 1.5 %
1 22 5.5 %
2 101 25.5 %
3 309 78 %

Table 4: The increased resistive power loss in the machine due to angle
measurement offset errors. [28]

3.5 Autocalibration of motor position

In a thesis [29] done on actuators for dynamic robots done by Benjamin G.
Katz in 2016, a position sensor calibration procedure was made that aligned
the zero-position of the sensor with the rotors d-axis of the rotor in the
motors used in the project. In the thesis, the brushless electric motors ran
electric actuators, and the position sensors used were hall-effect, absolute
digital encoders. [29] The procedure to find the position sensor offset went
as follows:

• A current is imposed so that the magnetic field from the stator is
rotated with little velocity for a full rotation, both for a full clockwise
and a counter-clockwise rotation.

• The rotor will move along with this stator voltage vector for a full
rotation, and this position of the rotor is then registered.

• During each rotation, the rotor magnetic field along the d-axis registers
the stator field along the α-axis. These are proportional axes, as can
be seen in the Park transform Equation (3).

33

• After letting the motor cycle for multiple rotations, the offset was then
found from the average difference inf angles between the Park trans-
formed voltages; the rotor voltage vector along the d-axis, and the
stator voltage vector along the α-axis.

• Since motors have some degree of friction and experience cogging, the
position of the rotor was non-linear around the physical cogging points
of the rotor, which is symmetric for each 360◦ cycle. By just recording
the offset at any point during the rotation of the motor, this could
include the variations from the constant tracking error. To remove
this continuous non-linearity, the offset was recorded using a moving
average FIR filter to compensate for the torque cogging. [29]

This procedure gave efficient results of the offset. This was shown by
intentionally offsetting the position sensor error with 0.75mm off the d-axis.
Without running this procedure and imposing an offset on the position sen-
sor, this caused severe errors in positions that made the rotor turn in the op-
posite direction of where it was urged towards. After a successful calibration
of the motor using this procedure, the torque ripples were not measurable in
comparison with the torque from the cogging of the motor [29].

3.6 Summary

The implementation of a stable and accurate DTC will have many positive
effects on the running of the motor. Like reduced cost and weight on the
car, less complexity wrt. the encoder interface currently used on the inverter,
and less need for maintenance and accurate calibration. However, a choice
was made to continue with the work that Skeie and Fanin have done already
concerning FOC, since there are still a lot of improvements to be done on
this side that can provide great results on the motor. In addition, going
from having a sensored to a sensor-free control in just one semester is a very
ambitious goal, and would require large amounts of work and risk.

Because of the already successful improvements on the modulation of
the motor controller done by Fanin, see Section 3.2.1, the author wanted to
prioritize looking into improvements in other aspects of the motor control
algorithm.

The nominal speed of the Fischer motor Revolve NTNU uses is 13250
rpm at 600V DC, see Section 2.4. At this stage, field weakening is intro-
duced to reach peak torque at 20000 rpm to counteract the BEMF that keep
the motor from reaching peak torque. The field weakening control improve-
ments that Fanin researched on his master, mentioned in Section 3.2.2, is
an interesting design to implement. A custom-made LUT with torque and
current measurements will be a faster implementation than running through
at maximum N = 100 iterations of the Newton Raphson method, as it is
done in the current model.

34

A faster run-through of the motor controller results in possibilities for
smaller switching periods of the control loop, or more time spent in the
control loop doing sensor measurements or other procedures and checks. A
design of a motor controller with a LUT will therefore be implemented in
Simulink as part of the work for this thesis.

A choice was made to pivot towards making improvements on the cali-
bration of the encoder. This is because calibration is a critical part of the
running of the motor. As seen in Section 3.4, if the alignment between the
rotor position and the encoder is inadequate, this could lead to drastically
significant errors when driving the car, such as noise in the motor and power
dissipation. A safe and reliable operation of the car is key, thus, having
accurate encoder data is essential. In addition, having predictable and con-
stant currents out to the motor is essential for motor control, and this will
be achieved with high accuracy in the encoder alignment.

The improvements on the calibration will be based on the procedure used
in Section 3.5. Even though this procedure was not done on an IPMSM, it
will be comparable to this system since it uses absolute encoders and will be
useful because of the solutions the procedure offers against torque cogging
effects.

35

36

4 Design

The chosen design to work on is the already existing Field Oriented Control
(FOC) made by Skeie, presented in Section 3.1, and the specifications of
the design will be introduced in Section 4.1. The chosen improvements that
were be done on this motor control will be presented in Section 4.2 and
Section 4.4.

4.1 Specifications

For this master thesis, it is desired to make improvements to the code quality
of the motor control algorithm that is run in the I21 today. This includes
improvements on the code modularity and structure, as well as its runtime.
As elaborated on in Section 1.1, the current code base with all of the math-
ematic formulas is not easy to read, as it is solely human-written code. A
lot of time was spent on interpreting the code, and it is desired to instead
have the complicated motor control algorithm in Simulink, which is made
for mathematical applications. This will give a better overview of the model
and an easier understanding of the algorithm. The runtime of the code can
also be improved by code optimization objectives, which can be chosen in
the configuration in Simulink.

In addition, the current way of running the current controller in the
motor control algorithm is slow, because of the multiple iterations required
to run the Newton-Raphson method that approximates the d-current. Thus,
a design and an implementation of a motor controller with a current and
torque LUT was seen to improve upon the time needed to run through the
current controller.

Furthermore, the old way of calibrating the motor encoder is inefficient
due to it being done manually each time it’s done. This takes multiple hours
to do, even for those experienced with the process. Furthermore, as described
in Section 3.4, if the calibration isn’t done correctly, this could require much
more current to reach the desired rotational speed of the motor. Thus, a
finely tuned code algorithm that could automatically calibrate the encoder
and leave out the human aspect of the process would significantly improve
the encoder calibration.

37

All of this would be improved by the following functional and technical
specifications, followed by the concrete acceptance requirements that the
system will need to validate to successfully uphold the specifications. The
functional specifications include:

F1 Make improvements on the calibration of the motor encoder

F1.1 Reduce the time taken to calibrate the encoder.

F1.2 Reduce the possibility for human failure and human inaccuracy
when calibrating the encoder by having an automated solution.

F1.3 Reduce the iq-current necessary to achieve 20 krpm with a more
accurate calibration through an autocalibrated system.

F2 Make improvements on the code base of the motor control algorithm.

F2.1 Switch out parts of the current structure of the code base with a
modular solution.

F2.2 Add a code wrapper that interfaces between the old structure and
the new modular structure.

F2.3 Reduce the runtime of the motor control algorithm.

F2.4 Design and implement a more efficient version of the motor control
algorithm.

The technical specifications of the design that are built upon the func-
tional specifications are as follows:

T1 Regarding F1.1 and F1.2, the current solution of manually calibrating
the motor encoder will be replaced with an auto calibrated solution.

T2 Regarding F1.3, by getting a more accurate calibration, less q-current
is needed to correct the alignment of the α- and β-axes with the d -
and q-axes.

T3 Regarding F2.1, and F2.3 the current solution will be switched out
with a modular code generated Simulink model of the controller, which
will be sent through MATLAB’s code generation. When doing this,
the code will be optimized with respect to execution efficiency. This is
because the Embedded Coder that Simulink uses to generate C code,
has optimization strategies to increase the execution speed of different
parts of the code, like shown in [30] and [31].

T4 Regarding F2.4, a motor controller model in Simulink will be made,
where the current controller is switched out with one using a Look-Up
Table (LUT).

38

The acceptence requirements that the design should uphold are as follows:

A1 After calibration, the torque response should stabilize between -2 Nm
and 2 Nm when the motor is running at 20 krpm.

A2 After implementation of the code generated Simulink model of the
motor controller, it should have an equal or faster runtime than what
the current solution on the I21 code has now.

4.2 Design of the motor control model

In this chapter, the original design of the motor simulator will first be in-
troduced. This simulator contains the motor controller that is used as in-
spiration for the motor controller made in this design. Afterwards, the new
design of the motor control model based on the simulator will be introduced.

4.2.1 Motor simulator

The highest level of the Skeie’s self-made Simulink model is as shown in
Figure 4.1. This is the model used for simulations of the motor, including
the mechanical system itself. The mechanical system was made based on
measurements on how the motor acted in Revolve NTNU’s previous seasons.
This was recorded in the organizations very own self-made analyzation soft-
ware called Revolve Analyze. Then, the motor load was approximated and
modeled as damping from vehicle drag [23]

The actual motor control is in the subsystem block called "PM Motor
Control for 3 phase machine", and its content is shown in Figure 9.1. This
is the part that would be separated from the simulator, code generated, and
merged with the I21 code. To do this, some changes would have to be made
to the way it is built up, but first, an overlook of how it currently is in the
simulator will be presented.

In the simulator, the motor control outputs the duty cycle d1, and inputs
the following shown in Table 5. The motor control in Figure 9.1 contains
five major subsystems, each of which works with different parts of the motor
control algorithm. These subsystems are shown in Section 9.

• The "Speed Controller" subsystem takes the reference and measured
rotational speed of the motor, n, and runs a PI-controller on the error
between them, and finally outputs the torque from it.

• The "CRC", or Current Reference Calculator, inputs the torque and
calculates the first two different id-references, using MTPF and MTPA
algorithms, as explained in Section 3.1. The smallest of the two is
chosen and used for calculating the iq current. This subsystem is shown
in Figure 9.3.

39

Figure 4.1: The model made for running a three phase motor, seen here from
the top level. Figure taken from [23].

• The "pwm modulator1" is the modulator that runs the SPWM and
outputs the final duty cycles that go out to the gate drivers. This
subsystem uses an S-Function block, which is a code block that gives
a definition as to what tasks to perform during different parts of the
simulation. [32] This function creates a third harmonic pulse width
modulation that takes dead times and other losses into account for a
more realistic simulation.

• The "Decoupling IM motor"-subsystem is responsible for decou-
pling some of the multiplexed input vectors, and it then calculates the
inputs for the above-mentioned control subsystems. This subsystem
is shown in Figure 9.4. It contains a "Decoupling" subsystem shown
in Figure 9.5, a "Current Measurement" subsystem, which is shown
in Figure 9.6, and a "Voltage Measurement" which is almost identi-
cal to the "Current Measurement"-subsystem, for voltages instead of
currents.

• The "digital current-controller1"-subsystem contains the PI-regulators
that inputs the errors between both reference and measured currents
i_d and i_q, and outputs the voltage u_d and u_q that is used to find
the modulation index and the phase angle in the stator space that is
needed in the "pwm modulator1"-subsystem block. This subsystem
is shown in Figure 9.2.

40

Inputs Description
Enable IM The signal that runs the initial step-function of the model.

Um
A multiplexed vector which contains the UDC, the three

phase voltages Ua, Ub and Uc, and the three currents Ia, Ib
and Ic.

N [rpm]

The speed in rpm, which in this model is simulated, but in
the car it is fed back to the inverter from the Vehicle

Control Unit (VCU). The VCU takes sensor inputs from
the car and runs a torque vectoring algorithm that finds the
optimal setpoints for the car, such as the rotational speed.

Measure A multiplexed vector which contains the inductance ψm
and the encoder angle offset

Table 5: An overview over the different inputs on the motor controller, shown
in Figure 9.1.

4.2.2 Design of new motor controller

The design of the motor control model can be separated into three parts.
First, the structural part of the design, which consists of the changes in the
Simulink code base and block diagram. Further, the design of the way the
motor control model is organized in repositories will be presented. Lastly,
the design of how the new motor control model will be to be ported into the
already existing code in the inverter will be presented.

Code base

The full original simulator made by Skeie, shown in Figure 4.1 will be left
unchanged and kept ’as is for further use. The only change done here is the
tuning of the PI-controllers in the current controller.

The simulator made by Skeie was made with an ATSAM MCU in mind,
whereas the I21 has a Zynq Ultrascale+ MPSoC. Thus, some parts of the
algorithm need to be ported to the new MPSoC. The speed and torque
controllers are, however independent from specific features in the ATSAM.

The new design will, as mentioned, consist of only a motor controller,
where a copy of Figure 9.1 will be used as a baseline for this. The changes
that need to be made on Figure 9.1 include making it work for fixed time
steps, as the inverter runs on a fixed 20 kHz. The simulator uses a vari-
able time-step in some parts of the controller, including most of the "pwm
modulator1"-subsystem block. It is therefore desired not to include this sub-
system block in the new motor controller. This means that the output of
the motor controller will be outputs from the "digital current-controller"-
subsystem.

41

Organizing of source code

In addition to changes in the block diagram, organizational changes will be
done to the project repositories. The desired structure is shown in Figure 4.2.

The repository where all the C code of the I21 inverter is, described in
Section 2.8, is called MPSoC_Inverter.

It is not desired to have all of the .slx- and .mat-files, including the tem-
porary project files generated by MATLAB, together in the same repository
as MPSoC_Inverter, which only consists of C-code. Doing this will be unor-
ganized, and it will be hard to keep track of the different systems and mod-
els. Therefore, a new repository was made called Motor_Control_Simulink.
This is the repository where the Simulink- and MATLAB files of the simula-
tor and the motor controller should be. The repository contains all the .mat-
and .slx-files needed to run both the models. This is also where the code
generation is run and where the .c-files are made from the Simulink project.

The .c-files that are code generated from Motor_Control_Simulink will
be used and run on the inverter through the MPSoC_Inverter repository.
One could just copy these files from one repository to the other. However,
when the motor controller model in Simulink is updated in the future, version
control will be difficult to uphold.

Therefore, to maintain structural integrity, a third repository will be
made called Inverter_Motor_Controller, which will inherit only the code
generated .c-files from Motor_Control_Simulink. This repository will be
used as a submodule in the host repository MPSoC_Inverter, which will
make it simple and user-friendly to always have the latest version of the
motor controller in the main inverter repository.

Code generation from Simulink to running code

To run the Simulink model on the Zynq Ultrascale+ MPSoC, some code
interfaces between the Simulink motor controller model and the micropro-
cessor have to be made. First of all, the Simulink model needs to be code
generated.

By first running the model through MATLAB’s Embedded Coder [30],
the resulting function will be inserted in the code base, and appropriate
measures have to be taken to merge this into the already existing main-file
that runs the motor control that is flashed onto the inverter. This includes
making a code wrapper.

Code generation from Simulink is compiled with respect to execution
efficiency and will not be high in readability. This wrapper should therefore
be an interface between the user and the code generated .c-files.

42

Figure 4.2: Overview of the repository structure and inheritance of the motor
control for the inverter software.

The wrapper will contain two structs, called motor_controller_input_t
and motor_controller_output_t. The former would contain all input vari-
ables that correlates to those from the code generated .c-files, and the latter
would contain all correlating output variables.

In addition, the wrapper will contain set- and get-functions which will set
the inputs and get the outputs of the code generated .c-files. These functions
will use pass by reference, which means that they would take in pointers as
input and assign the value directly to the variable. An alternative to this
would be to use pass by value, which would temporarily store a copy of the
variable every time the function is called. An additional read- and write
operation would be required to set or get a variable, which costs overhead.

There would only be one set function that will set all the inputs of the
model, and in addition, only one get function. This would lead to less over-
head in comparison to having multiple set- and get-functions for each of the
individual inputs and outputs for the model since the processor then has to
jump to a specific point in the memory each time the function is called.

43

4.3 Design of a motor controller using a Look-Up Table (LUT)

By switching out the Newton-Raphson method to calculate the currents
id and iq with a LUT, a faster run-through of the motor control will be
achieved. This will allow for an increased switching speed and for reduced
torque rippling.

A LUT can be made by using a sensor that measures torque for each
setpoint of id and iq. The more values in the LUT, the more accurate the
torque response will be. However, then it will take more computational space.
The LUT can be used to find the optimal current reference in relation to the
torque input, as it is done in MTPA, and to find the optimal iq current
reference for the field weakening.

The improvements could be made as such; the voltage threshold for en-
tering the field weakening region could be found using the relationship:

VDC =
√
| Vd |2 + | Vq |2 (15)

The input VDC is calculated from the reference vd and vq as in Equa-
tion (15), from the current controllers. This reference then goes into an
error with the measured 600 VDC from the battery package. This error is
sent through an A/V PI controller that inputs the voltage and outputs the
id current. This reference current can be fed into a 3D LUT along with
the reference torque τref , which approximates the input values and finds the
iq-current that matches up with the approximations. This LUT is found
from measurements on the motor and is generated using a script to find the
optimal torque reference values. The two currents id and iq can then go into
the same current controllers which already exist in the model; see the "D
Controller" and "Q controller" in Figure 3.1.

4.4 Design of an improved calibration procedure

To calibrate the encoder, the stator offset angle is needed. This has normally
been found manually in the past in Revolve NTNU. This design is described
in Section 4.4.1. A design that will improve upon this procedure is a more
automatic way of finding the offset. This is described in Section 4.4.2.

4.4.1 Design of a manual calibration procedure

There are two ways to calibrate the encoder manually. One way is to apply
a DC current from one of the phase currents to the other two. This current
imposes a stator field on the rotor in the direction of the a-axis, which then
aligns the d- and a-axes. See Section 2.2 for a definition and relationship of
the (a, b, c)- and the (d, q)-system.

44

Another method is to take an initial guess at the stator offset angle and
apply an id-current until the current no longer has an effect on the torque or
acceleration of the motor. This method is a bit more tedious to implement
and requires feedback about the torque through a torque sensor that was not
acquirable by the author during the writing of this thesis.

4.4.2 Design of an automatic calibration procedure

The automatic design of the calibration procedure of the encoder is based
on Benjamin G. Katz algorithm from his master thesis; see his algorithm
described in more detail in Section 3.5.

A script will be written in the code base of the MPSoC that will spin
the motor 360 degrees slowly back and forth to find the average stator offset
angle. This will be added to the datum shift of the encoder, and then the
motor shall be spun iteratively with a run-in procedure up to 20 krpm to
validate the calibration.

45

46

5 Implementation

The implementation of the designs from Section 4 are described in this chap-
ter. They have been done with the limitations mentioned from Section 1.2
in mind, and on the basis on work from previous years, like Håkon Skeie’s
motor simulator made in Simulink described in Section 3.1, and Francesco
Fanin’s research on field weakening improvement described in Section 3.2.

5.1 Implementation of the motor control model

The implementation of the motor control model was three fold. First, it
consisted of the work done on the Simulink code base, then on the organiza-
tional structure of the repository of the code base, and finally on the total
merge of the code base with the already existing C code that is running on
the MPSoC.

5.1.1 Implementation of code base

First, the model was tuned to get the proper torque-, speed and current
responses using trial and error, and previous knowledge on methods like the
Ziegler-Nichols method. When the model was finished tuned, a MATLAB
project was made that contained only the now finely tuned motor control
subsystem, see Figure 9.1. This was called motor_controller, and its upper
most level was structured like in Figure 5.1.

Figure 5.1: Simulink block diagram showing the upper most level of the
motor controller model.

47

Inside the upper most subsystem shown in Figure 5.1, the motor con-
troller was divided into four subsystems, shown in Figure 9.9. This is
based on the motor controller from Figure 9.1, with the modulator removed.
The speed controller just contains a PI-regulator that outputs the reference
torque.

The "Decoupling IM Motor"-subsystem calculates the Clarke/Park-transformed
current and voltages, which are necessary inputs to the other control blocks.

Figure 5.2: The contents of the "Decoupling IM motor"-subsystem from the
motor controller shown in Figure 9.9.

"Decoupling IM motor" contains two more subsystems; the leftmost cal-
culates the Clarke-transform of the currents. The rightmost, "Decoupling"
shown in Figure 9.10, calculates the Park-transform of the currents, which
is again used to find the voltages u_d and u_q.

The "Current controller"-subsystem was made into a subsystem refer-
ence, which means that it is also in use by the motor simulator. Both the mo-
tor controller and the simulator use this subsystem identically. The contents
of this subsystem can be seen in Figure 9.11. The changes in this subsystem
included running the phase voltages through an inverse Park transform to
collect the u_alpha and u_beta before being outputted. Furthermore, the
delay to theta was changed to being two switching periods, or 2 ∗ f_sw
samples.

48

The "Is_calculator"-subsystem, seen in Figure 9.12, is where the field
weakening control happened, and where the d- and q-current references from
the torque requests were calculated. The currents were calculated as in Equa-
tion (10), where they were also saturated based on the systems limits. The
d-current was calculated in two ways, by MTPV and MTPA, see Section 2.9.2
for a more detailed description of the two methods. The minimum of the
two resulting d-currents was used further on as reference towards the "cur-
rent controller" subsystem. The algorithm that runs the Newton-Raphson
method is inside the subsystem called "Field-weakening EPSILON".

Changes that were done on the model included the change to fixed time
step on the period T_sw based on the inverters frequency of f_sw=20000. Fur-
thermore, all calculations to pu (per-unit) was done in the Simulink model.

Additonally, all scopes and unused signals going out to terminators was
removed for the ease of structural overview. Instead of having scopes in
the block diagram, the signals that needed to be logged could be viewed in
Simulink’s own Data Inspector.

More changes included changing the period Tsamp used in the calcula-
tions of the PI-controllers from Tsamp=T_sw/2 to only Tsamp=T_sw, since the
motor controller isn’t run on both carrier high and carrier low, but only syn-
chronously on carrier low on the MPSoC. The simulator runs it asynchronous
on every extrema.

The model also didn’t need to manage interrupts only on particular
blocks the same way the simulator had, as the whole of the motor con-
troller should run every 20.000 Hz. Interrupts in the MPSoC are generated
from outside sources based on sensors on the car, which is taken care of by
ISR’s in the already existing C code on the chip. Thus, the interrupt inputs
coming from the Enable_IM in the motor simulator, as shown in the input
to the "PM Motor Control for 3 phase machine" in Figure 4.1, were not
included in the motor controller.

49

5.1.2 Implementation of code organization

To interface between the repositry structures visualized in Figure 4.2, GitHub
Actions was used. A figure showing the workflow of this is shown in Fig-
ure 5.3. All the actions done in relation to the Motor_Control_Simulink
repository are shown inside of the yellow block, and the actions done in re-
lation to the the Inverter_Motor_Controller repository are shown inside
the green block. All actions that have to be done manually are red, and all
actions that happen automatically from the Git workflow are blue.

This worked by making a .yml-file that dispatched a trigger every time
a release was made in Motor_Control_Simulink, or whenever a commit
was pushed to the branch generate-code; thus whenever the motor control
model was updated. This .yml-file was made as shown in Listing 5.1.

The release had to contain a .zip-file called generated_code.zip con-
taining all of the code generated .c and .h-files.

1 name: Publish to Inverter_Motor_Controller
2

3 on:
4 release:
5 types: [published]
6 push:
7 branches: [generate -code]
8

9 jobs:
10 publish:
11 runs -on: ubuntu -latest
12

13 steps:
14 - name: Trigger Inverter_Motor_Controller
15 run: |
16 curl \
17 -X POST \
18 -u "User:${{ secrets.USER_PAT }}" \
19 -H "Accept: application/vnd.github.v3+json" \
20 -H "Content -Type: application/json" \
21 https :// api.github.com/repos/RevolveNTNU/

Inverter_Motor_Controller/dispatches \
22 --data ’{" event_type ": "new_release "}’

Listing 5.1: Code from on_release.yml, which contains a Git workflow
action in the repository Motor_Control_Simulink. The username has been
switched out for this thesis.

50

Figure 5.3: Figure showing the Git workflow between the repositories
Motor_Control_Simulink and Inverter_Motor_Controller.

51

1 name: Update to new release
2

3 on:
4 repository_dispatch:
5 types: [new_release]
6

7 jobs:
8 update:
9 runs -on: ubuntu -latest

10

11 steps:
12 - uses: actions/checkout@v2
13

14 - name: Install jq
15 run: |
16 sudo apt update
17 sudo apt install jq
18 - name: Find release
19 run: |
20 curl \
21 -u User:${{ secrets.USER_PAT }} \
22 -H "Accept: application/vnd.github.v3+json" \
23 https :// api.github.com/repos/RevolveNTNU/Motor -Control -Simulink/

releases/latest \
24 >> asset_response.json
25 - name: Download
26 run: |
27 wget \
28 -q \
29 --auth -no-challenge \
30 --header=’Accept:application/octet -stream ’ \
31 https ://${{ secrets.USER_PAT }}: @api.github.com/repos/RevolveNTNU/

Motor -Control -Simulink/releases/assets/$(jq ’.assets [0].id’ -r
asset_response.json) \

32 -O generated_code.zip
33 - name: Remove old files
34 run: |
35 rm -r include /*
36 rm -r src/*

Listing 5.2: Code from on_release.yml, part 1 of 2, which contains a
Git workflow action in the repository Inverter_Motor_Controller. The
username has been switched out for this thesis.

52

37 - name: Unzip
38 run: |
39 unzip -o generated_code.zip
40

41 - name: Get version
42 id: version
43 run: |
44 echo "::set -output name=version ::$(jq ’.tag_name ’ -r asset_response

.json)"
45

46 - name: Remove temporary files
47 run: |
48 rm generated_code.zip
49 rm asset_response.json
50

51 - name: Commit files
52 run: |
53 git config --local user.email "action@github.com"
54 git config --local user.name "GitHub Action"
55 git add -A
56 git commit -m ${{ steps.version.outputs.version }} -a
57

58 - name: Push changes
59 uses: ad-m/github -push -action@v0 .6.0
60 with:
61 github_token: ${{ secrets.GITHUB_TOKEN }}
62 branch: master

Listing 5.3: Code from on_release.yml, part 2 of 2, which contains a
Git workflow action in the repository Inverter_Motor_Controller. The
username has been switched out for this thesis.

Another GitHub Action was made in the repository
Inverter_Motor_Controller, that listened to trigger events of the type
"new_release", that Motor_Control_Simulink released. This GitHub Ac-
tion was defined as in Listing 5.2 and Listing 5.3.

From Listing 5.2, when a trigger of the type "new_release" is found after
listening for it, the .zip-file called generated_code.zip containing all of the
code generated .c-files is downloaded to the Inverter_Motor_Controller
repository. Then, from Listing 5.3, the old code generated .c-files in the
repository are removed, and the new zipped file is unzipped and replaces the
old code generation files. The zipped file itself is then removed, and then the
changes with the newest version of the repository is pushed to Git.

53

The Inverter_Motor_Controller repository is therefore kept up to date
by GitHub Actions. This repository is a submodule in the MPSoC_Inverter
repository, which contains the code that is run on the MPSoC. Whenever the
submodule has a new commit on its repository, the user only has to update
its submodules on MPSoC_Inverter, which takes one line of code in a shell:

$ git submodule update

or a few clicks using a Git GUI like Gitkraken. The MPSoC_Inverter
already contains multiple submodules which needs to be kept up to date
regardless, so adding another submodule will not add complexity to the
system.

5.1.3 Implementation of the merging of the design with the ex-
isting code base

The code generation was done using Simulink’s Embedded Coder. Since
the inverter’s Zynq Ultrascale+ MPSoC has both ARM Cortex A53 and R5
cores, both "Embedded Coder Support Package for ARM Cortex-A Proces-
sors" and "Embedded Coder Support Package for ARM Cortex-R Proces-
sors" was used for the process. The settings for which cores the code gener-
ation would build to, amongst other settings like what toolchain is used and
which control compiler optimizations used, was configured in the MATLAB
environment. Chosen compiler optimization strategies was improved execu-
tion speed and memory usage [31]. This was saved in a .m-file which was
loaded and run at the project startup.

Several files had to be made to configure the code generation. These
included files like generate_code.m. This code loaded the Simulink model
to the workspace and generated the C code using the follwing MATLAB
function:

slbuild(load_system(fullfile(’..’,’motor_controller.slx’)))

Further, the code generated .c- and .h-files were extracted and saved
in src and include folders respectively. These folders were saved in a
higher level folder called generated_code, which was manually zipped into
generated_code.zip, which was used for the Git workflow mentioned in
Section 5.1.2.

The wrapper consisted of a source and a header file, called
simulink_interface.c and simulink_interface.h.

The source file looked as in Listing 5.5.

The structs motor_controller_input_t and motor_controller_output_t
were defined as follows in the simulink_interface.h:

54

1 typedef struct
2 {
3 /* Currents */
4 float current_u; // [A]
5 float current_v; // [A]
6 float current_w; // [A]
7

8 /* Flux and angle */
9 float psi; // [Wb]

10 float theta; // [deg]
11

12 /* Speed */
13 float speed_rpm; // [rpm]
14

15 /* Voltage */
16 float voltage_dc; // [V]
17

18 } motor_controller_input_t;
19

20

21 /*
22 * Motor Controller output:
23 */
24

25 typedef struct
26 {
27 /* Voltages */
28 float phase_voltage_u; // [V]
29 float phase_voltage_v; // [V]
30 float phase_voltage_w; // [V]
31

32 } motor_controller_output_t;

Listing 5.4: Structs defined in the wrapper simulink_interface.h.

55

1 void simulink_controller_set_inputs(motor_controller_input_t *
motor_controller_input_p){

2

3 /* Currents */
4 motor_controller_U.Phase_Currents_g.current_u =

motor_controller_input_p ->current_u;
5 motor_controller_U.Phase_Currents_g.current_v =

motor_controller_input_p ->current_v;
6 motor_controller_U.Phase_Currents_g.current_w =

motor_controller_input_p ->current_w;
7

8 /* Flux and angle */
9 motor_controller_U.Mechanical_Measurements_h.psi_m_in =

motor_controller_input_p ->psi;
10 motor_controller_U.Mechanical_Measurements_h.tetta_in =

motor_controller_input_p ->theta;
11

12 /* Speed */
13 motor_controller_U.Speed = motor_controller_input_p ->speed_rpm;
14

15 /* Voltage */
16 motor_controller_U.U_dc = motor_controller_input_p ->voltage_dc;
17 }
18

19

20 void simulink_controller_step(motor_controller_output_t *
motor_controller_output_p){

21

22 /* Iterate through the motor controller from input to output */
23 motor_controller_step2 ();
24

25 /* Get outputs */
26 motor_controller_output_p ->phase_voltage_u = motor_controller_Y.

Phase_Voltages [0];
27 motor_controller_output_p ->phase_voltage_v = motor_controller_Y.

Phase_Voltages [1];
28 motor_controller_output_p ->phase_voltage_w = motor_controller_Y.

Phase_Voltages [2];
29 }

Listing 5.5: Two of the functions from the wrapper simulink_interface.c,
where the setter-function simulink_controller_set_inputs() updated
the motor_controller_input_t struct, and simulink_controller_step()
iterated once through the motor controller model, and then updated the
motor_controller_output_t struct.

56

5.2 Implementation of a system using a Look-Up Table (LUT)

Figure 9.13 shows how the field weakening control can be implemented with
the use of a custom made LUT.

Figure 9.14 is made as described in the design chapter Section 4.3.
The "2-D T(u)"-block illustrates the LUT. This system requires a mod-

ification of the original Simulink model, since the id and iq no longer is
calculated from the torque τ using Equation (10). Rather, the current id is
found using VDC as described in the Section 4.3, and then iq is found using a
LUT based on the values of id and the torque τ . This meant a total change
in the "Is calculator"-subsystem, which originally looked like Figure 9.12.

Here, the mathematical block "hypot" is used to calculate the square
root of sum of squares of the voltages.

The Fw_delay gain is a number between 0 and 1 that delays the entering
of the field weakening region, and must be tuned when a LUT is acquired.
This is necessary because it is desired to control when the field weakening
region is entered. It is desired to enter the field weakening late, since id
decreases during this region, and then the torque τ at any given iq would
decrease. Thus, torque per ampere decreases when field weakening is entered.
This is a sacrifice that has to be made to reach higher speeds than the
nominal speed of the motor.

5.3 Implementation of an improved calibration procedure

The implementation of the encoder calibration was first done manually, and
then the design of a more automatic calibration technique was implemented.

5.3.1 Setup of test rig

The testbench of the motor is pictured as in Figure 5.4.
The motor is pictured on the left with the encoder coupled on the housing.

The power is supplied through the orange cable from the VSI, which are
the PCB’s on the inverter that takes PWM signals as input and outputs
the three phase currents (more on the VSI in chapter Section 2.1). In the
photo they are shown underneath a cover, since they have 600 VDC running
through them when the motor runs at peak speed with 20 krpm. This can
kill instantly if touched, thus the protective cover is used as a precaution.

Because of the high amounts of current and voltage running through this
card at peak power, they are situated on top of water cooling blocks. The
water container is underneath the bench in a red plastic box, and the water
is transported through the system with the help of an electric water pump.

57

Figure 5.4: Setup of calibration at the motor testbench, with no power
connected.

The PCB that is not underneath the cover is the control card, which is
also supplied with 600 VDC from a voltage supply not pictured on Figure 5.4,
and with 24 VDC through the power supply labeled "LV". It communicates
with the VSI through ribbon cables. The control card is directly connected
to the encoder through the black cable coupled on the PCB’s with DuraClik
connectors. It also has a CAN-bus that is used to retrieve data from the
system.

Barely pictured on the right is a box filled with the PCB’s that are
normally in the cars accumulators’ front compartment. These include the
Accumulator Management System (AMS), that keeps track of the state of
the accumulator; in this case the huge voltage supply that disburses 600
VDC through the system.

On the edge of a table is an emergency stop button, which is connected
to the system through a Shutdown Circuit (SDC). There are two of these
buttons near the bench, one is not pictured and is placed near the test rig
by the computer that analyzes the output data from the control card. For
safety measures, there are always minimum two people working on the motor
together during high voltage testing.

58

5.3.2 Mounting

The size of the scanning gap between the rotor and the stator is dictated
by the mounting situation. Later adjustment is possible only through the
insertion of shim rings.

Figure 5.5: Four motors finished mounted and calibrated.

5.3.3 Implementation of a manual calibration procedure

First, 20A was provided from a power supply into the U-phase and out of
the V- and W-phases of the VSI, thus from phase U to V and W. This
should in theory align the rotor field (d-axis) with the U-phase (α-axis), as
is desired from the Park-transform, see Figure 2.3. The applied 20A should
then impose a stator field on the rotor in the direction of the U-phase (α-
axis), and thus align the d- and α-axis.

From the assumption that the axes were aligned, the mechanical offset in
the encoder datum shift was then manually sat using Heidenhain’s firmware
called the PWM20-tool, c.f. Section 2.7.

59

5.3.4 Implementation of an automatic calibration procedure

The semi-automatic calibration of the encoder was based on Benjamin G.
Katz master thesis, see his algorithm described in more detail in Section 3.5.
A similar algorithm procedure was done in this implementation:

• Firstly, the datum shift was set to 0 in the ATS via Heidenhain’s PWM
20 tool. This was to set the encoder zero equilibrium.

• Then, a reference angle was set in the software of the control card,
written in the code as in Listing 5.6. This was meant to spin the motor
clockwise for one 360◦ cycle, and then counter-clockwise for another
360◦ cycle.

• The code was added to an already existing state machine, so the state
CALIBRATE_ENCODER was created and checked for as in line 1 in List-
ing 5.6. Further, a variable delta_angle was created in line 6 to
step through the cycle 0.1 rotation a second, for the frequency of
PWM_FREQUENCY_HZ = 20000 that the inverter runs on.

• After the reference_angle was updated, the angle_offset was set
and cycled once positively for 360◦ if it was negative.

The encoder angle was measured and plotted together with the reference
angle and the angle offset. Only a screenshot was taken from the first run
with the offset angle, see Figure 5.6, and as can be seen from the plot, the
offset was sinuous and when measured at any one particular timestamp, had
a sizeable deviation of around ±17◦. This was because the encoder angle
was sinuous when measured, which again is a consequence of the cogging of
the motor.

To counteract this, a higher d-current reference was used. Before, the q-
and d-current references used were

iq_ref = 0

id_ref =
3

INominal
=

3

22.6
A ≈ 0.133A

. (16)

where INominal is the motors nominal current, see Table 1.

60

1 if(status_check(CALIBRATE_ENCODER)) {
2

3 // Up down 0-360 deg
4 static bool counting_up = true;
5

6 // 0.1 rotations per second
7 float delta_angle = 0.1 * 360.0f / ((float)PWM_FREQUENCY_HZ);
8

9 if(counting_up) {
10 state.reference_angle += delta_angle;
11 if(state.reference_angle >= 360.0f) {
12 counting_up = false;
13 }
14 } else {
15 state.reference_angle -= delta_angle;
16 if(state.reference_angle <= 0.0f) {
17 counting_up = true;
18 }
19 }
20

21 //Set the encoder offset
22 state.angle_offset = state.reference_angle - state.encoder_angle;
23

24 if(state.angle_offset < 0) {
25 state.angle_offset += 360.0f;
26 }
27 }

Listing 5.6: Code snippet from the inverters control loop, where a reference
angle is run for alternating 360◦ cycles.

The mitigation was done by amplifying the self-tuned constant in the
denominator from 3 to 20. Thus, this increased the d-current reference to

id_ref =
20

22.6
A ≈ 0.885A (17)

This improved the deviation of the offset, see Figure 5.7. It reduced to a
mere ± ≈ 3◦.

Since the rotor is symmetrical, the motor cogging was identical for every
cycle. Thus, an offset of the error between the reference angle and the
measured angle was first measured in a period of T = 100s in Figure 5.6,
and then taken the average of. This was increased to T = 200s for the second
run, in addition to the over 6 time increase in d-current reference, see results
in Figure 5.7. For the second run, cooling blocks were added to the inverter
as to keep it from overheating when running with a higher current for so
long. The 200 second run was long enough for the average of the offset to
only differ in the third decimal, which was deemed as accurate enough after
the previous errors were resolved.

After running for T = 200s, the cogging effects were virtually removed,
and the offset of the two was added to the datum shift in the encoder soft-

61

ware. The encoder has 18-bit resolution, so the datum shift, ∆, is updated
as

∆ = 218 ∗ Eoffset

360◦
+ Eabs, (18)

where Eoffset is the encoder offset in degrees, and Eabs is the exisiting
absolute encoder position. This datum shift was manually added to the
encoder through Heidenhains ATS and PWM 20 tool.

Figure 5.6: A screenshot taken of the measurement of the angular offset of
the first run with the semi-automatic calibration method. The .csv-file of
the measurement was not saved this day, and only the offset was recorded.
The unit of the y-axis is degrees.

62

Figure 5.7: A plot of the measured encoder angle, the applied reference angle
and the offset between the two.

63

64

6 Testing and Results

This chapter contains the testing procedures done on the designs imple-
mented in Section 5. If tests weren’t completed, it is described in each
chapter. The results from each test on each implementation are presented,
and then they are discussed in Section 7.

6.1 Testing and results of the motor control model

The motor control model was implemented as described in Section 5.1. The
model was merged with the existing code base, and the resulting control loop
was made and was ready to be run on the MPSoC and used to spin motors.
The resulting current- and torque responses would validate the design of
the motor control model. However, as described in Section 1.2, because of
unsolved repeated errors in the firmware Xilinx Software Development Kit
used to run the code on the MPSoC, the code could not be run nor validated.
These build errors were attempted to be debugged without success; this is
described in more detail in Section 1.2.

6.2 Testing and results of the motor control model with a
Look-Up Table (LUT)

The motor control model was implemented as described in Section 5.2. The
actual LUT was not made because a torque sensor was not acquired.

As the model had the same inputs and outputs as the motor controller
implemented in Section 5.1, the testing of the model would have been done
the same way as in Section 6.1. The code-generated motor control with a
LUT could be merged with the existing code base and run in the same way on
the MPSoC as in Section 5.1. The resulting current- and torque responses
would validate the design of the motor control model. Again, because of
unsolved repeated errors in the firmware Xilinx Software Development Kit
used to run the code on the MPSoC, the code could not be run nor validated.
These build errors were attempted to be debugged without success; this is
described in more detail in Section 1.2.

65

6.3 Testing and results of an improved calibration procedure
for the encoder

The testing of the calibration of the encoder was done first on the manual
implementation, and then on the automatic implementation. The testing
procedure was the same for both of the implementations.

6.3.1 Testing and results of manual calibration

After the datum shift was set with the manual calibration routine, the testing
was performed by spinning the motor up to 2 krpm with field weakening
control applied, and then validating the results.

This manual calibration routine took several hours spanning multiple
days and gave only one of two results depending on how the datum shift in
the encoder was misaligned.

Either, the results were as shown in Figure 6.1, which was a result of
the encoder having a negatively misaligned datum shift. When the encoder
had a misaligned datum shift in the other direction, results were as shown
in Figure 6.2.

This shows the q-current growing large in either the positive or negative
direction when entering the field weakening region, which again gave an
unstable torque response.

Up to 10 hours were used on attempting to calibrate one encoder man-
ually. Because of time limitations, a choice was made to stop trying to
calibrate the encoders this way, as it took too much time. This resulted in a
non-successful manual calibration.

6.3.2 Testing and results of automatic calibration

After the datum shift was manually added to the encoder through Heiden-
hains ATS and PWM 20 tool, tests were done to validate the precision of
the calibration.

Tests were done by running the motor incrementally up to 20 krpm and
then analyzing the resulting torque and current responses. This test con-
sisted of a run-in procedure and was done as follows, shown in Table 6.
The run-in procedure was done incrementally from low speeds to peak speed
to spot errors with the calibration early on and to prohibit any significant
electrical and mechanical damages.

The test was done without load on the motor, so it spun freely, and
the power supply had a current limitation of 42 Arms. Using this run-in
procedure, some plots were saved. The resulting run at 2 krpm with field
weakening control were as shown in Figure 9.15.

66

Speed reference
(rpm)

Field weakening control
applied?

Voltage applied to the
transistors from the power
supply (V)

1000 No 60
2000 No 60
2000 Yes 60
2000 No 600
5000 No 600
7000 No 600
10000 No 600
14000 No 600
14000 Yes 600
17000 Yes 600
20000 Yes 600

Table 6: Run-in procedure of the testing done to validate the calibration of
the motor encoder.

After a successful run-in procedure was performed, where the torque and
current responses were shown to be satisfactory, the resulting run at 20 krpm
with field weakening control were as shown in Figure 9.16.

As can be seen in Figure 9.16, after approximately 7.3 s, the speed of
the motor hit the nominal speed of nNominal = 13250 rpm. This is where
field weakening control was applied, and negative d-current was added to the
system. At this stage, the reference q-current sank to ≈ −0.2 A, resulting in
a proportionate decrease in torque. The torque sank to ≈ −0.2 Nm, where it
stabilized with a variation of ≈ ±0.25 Nm. It got a slightly higher variation
than before the field weakening control was applied.

The calibration routine took 200 seconds, and the run-in procedure took
about 500 seconds to complete. There were some breaks here and there to set
the datum shift, analyze data between each run, and do safety checks that
assured that the equipment was functioning as it should be (i.e., that the
motor was not overheating). In total, the motor was successfully calibrated
and validated in approximately 15 minutes.

67

(a) Current response, the unit of the y-axis is in [A].

(b) Speed response, the unit of the y-axis is in [rpm].

Figure 6.1: Screenshots taken of the measurement of the speed and current
responses after running the motor from 0 rpm to 2 krpm with the encoder
having a negatively misaligned datum shift. The .csv-file of the measurement
was not saved this day.

68

(a) Current response, the unit of the y-axis is in [A].

(b) Speed response, the unit of the y-axis is in [rpm].

Figure 6.2: Screenshots taken of the measurement of the speed and current
responses after running the motor from 0 rpm to 2 krpm with the encoder
having a positively misaligned datum shift. After the results from Figure 6.1,
a limitation on the q-current was sat at iq = ± 3A, where it saturated.
This was done to prevent large torque responses and, therefore, mechanical
damages. The .csv-file of the measurements was not saved this day.

69

70

7 Discussion

Firstly, the results of the implementation of the motor controller will be
discussed. Following this, the results of the implementation of the motor
controller using a Look-Up Table (LUT) will be discussed. Finally, the results
from the improved calibration procedure will be discussed.

7.1 Discussion of motor control model

The motor control model was finished implemented, but because of time
limitations on debugging existing build errors described in Section 1.2, the
improvement of the runtime of the control model was not verified. However,
because the motor controller already in use in the inverter is based on the
motor controller from the simulator, it is expected to have similar torque
and current responses as it already does. In addition, it is expected that the
runtime of the motor controller to be shorter because of the code optimization
done with respect to efficiency in execution speed and memory usage.

The implementation of the code structure was, however, a success. The
resulting motor controller model was simplified from the motor controller in
Simulink. One of the reasons for this was that all scopes and unused signals
going out to terminators were removed for the ease of structural overview.
Instead of having scopes in the block diagram, the signals that needed to
be logged could be viewed in Simulink’s own Data Inspector. This resulted
in multiple subsystems being significantly smaller and less complex. The
"Decoupling IM Motor" for instance, shown originally in Figure 9.4, ended
up only being as shown in Figure 5.2. The "Current Measurement", shown
in Figure 9.6 and "Voltage Measurement" subsystems mostly only outputted
to terminators, which resulted in both of them being compressed to only a
Clarke-transform and the "u_dc [pu]"-output being taken out to the motor
controller overview, shown in Figure 9.9.

Additionally, due to the model being successfully implemented in Simulink,
the model had more structural overview than the motor controller made in
the C code.

This upholds the functional requirements F2.1 and F2.2, and the tech-
nical requirement T3 made in Section 4.1. It did not uphold the functional
requirement F2.3, nor the acceptance requirement A2, as the implementa-
tion was not tested or validated.

71

7.2 Discussion of a motor controller using a Look-Up Table
(LUT)

The model for the motor control with a look-up table was made in Simulink
and implemented as in Section 5.2. It was made with the motor controller
Section 5.1, and was made with the already existing model.

As the motor controller with a LUT has the same inputs and outputs
as the motor controller made in Section 5.1, the same wrappers made in
Section 5.1.3 and code organizational structure made in Section 5.1.2 could
be used for the motor controller with a LUT as well.

However, because of limitations on resources of a proper motor test bench
to make the measurements required in a LUT, the LUT itself was not made,
and therefore the model could not be tested nor verified. To make the LUT,
either a torque sensor would be required, or an already finished LUT cal-
ibrated explicitly according to the exact motor Revolve NTNU uses is re-
quired. The former is expensive and difficult to acquire; multiple known
companies in the local area were contacted to try to borrow this without
success; the latter could be gotten from Fischer, who makes and sponsors
the motor Revolve NTNU uses. Fischer Electronics did not answer inquiries
regarding this. Although the implementation of the LUT would give im-
provements on the torque ripples in the field weakening part of the motor
control, it would not be realistic without any of those two aforementioned
options.

This upholds the functional requirements F2.4, and the technical re-
quirement T4 made in Section 4.1.

7.3 Discussion of an improved calibration procedure

The tests of the calibration of both manual and automatic calibration of the
encoder were done without load on the motor, so it spun freely. This was
done to see the worst-case scenario on how the currents affected the torque
response. This is because the motor torque is dependent on both the friction
and any extra load on the motor. If the load is high, the acceleration of
the torque will be low, and vice versa. Thus, the sensitivity of the torque
response will be lower and more stable with more load added to the motor.
Therefore, the test done in this thesis is the worst-case scenario in terms of
the stability of the torque response.

7.3.1 Discussion of a manual calibration procedure

When trying to reach peak speed through field weakening control, manual
calibration required significantly more q-current to maintain the same speeds
as the auto-calibration did. This can be seen firstly in Figure 6.1, whereby
only running the motor towards 2000rpm, and where the encoder had a
negatively misaligned datum shift. Here, the q-current was varying at around

72

-14 A, which is significantly lower compared to when the encoder is more
accurately calibrated, and varies around -0.1 A when run towards 2000 rpm,
as can be seen in Figure 9.15. As a reaction to the sudden high absolute value
of the q-current, a lot more torque was generated than what was desired,
which happened because the torque and the q-current are proportionate.
This resulted in a much higher speed response than desired and is why the
speed response hit 3300rpm in Figure 6.1, where the reference speed was
actually 2000rpm.

The d-current also dropped to a lower current, stabilizing at around -58A,
compared again to the more stable run in Figure 9.15, where it stabilized at
around -49A. This was likely because the motor controller tried to compen-
sate for the decrease in q-current.

In Figure 6.2, the encoder had a positively misaligned datum shift. Here,
the current responses were slightly more delayed than when the encoder was
negatively misaligned. This could be because the misalignment was less for
the particular run than when it was negatively misaligned - thus, the encoder
offset was smaller. This is likely because the rotor was in a mechanical cog
closer to the encoder zero reference in the positive direction than when it
was in the mechanical cog in the negative direction compared to the encoder
zero reference.

The q-current had a positive increase which saturated at 3A, which,
as mentioned in Section 6.3.1 was done to prevent significant torque re-
sponses similar to what happened when running the motor with a nega-
tively misaligned datum shift in the encoder. Because of the saturation in
q-current, the torque saturated as well, which made the speed saturate at
1550 rpm. Without the saturation in place, the q-current would have likely
increased more, resulting in an increase in torque, which would have made
for a more unstable system. The d-current stabilized at around -30 A, which
is more positive than when the encoder was negatively misaligned. This was
likely because the motor controller tried to compensate for the increase in
q-current.

Manual calibration was not completed because it took too much time. It
was deemed a limitation on both the master thesis and the deadlines that
the electrical systems on the car, including the motors and encoders, had to
reach. Up to 10 hours were used on attempting to manually calibrate the
encoder, which was a lot more than the 15 minutes needed to calibrate the
encoders automatically.

’

73

7.3.2 Discussion of an automatic calibration procedure

The torque stabilized at ≈ −0.2 Nm, with a variation of ≈ ±0.2 Nm. This
was well within the min and max limits of the torque response. Since this
run was without load, the variation of the torque response will only lessen
running it with a load connected to the gearbox and upright on the car. This
means that the torque response will be even more stable on the car.

During the manual calibration of the encoder, results were generated from
when the encoder was not accurately calibrated. Under these circumstances,
the current and torque needed to compensate for the misalignment in the
datum shift were high and kept growing more unstable depending on the
misalignment and the size of the offset.

When the encoder was more accurately calibrated, less current was needed
to compensate for the misalignment, and fewer torque ripples were produced.
This resulted in less power loss, which correlates to the results from Sec-
tion 3.4.

This upholds the functional, technical, and the acceptance requirements
made in Section 4.1.

This upholds the functional requirements F2.1 and F2.2, and the tech-
nical requirement T3 made in Section 4.1. It did not uphold the functional
requirement F2.3, nor the acceptance requirement A2, as the implementa-
tion was not tested or validated.

74

8 Conclusion

This thesis was supposed to cover improvements on the motor control algo-
rithm of the inverter of a Formula Student racecar. Implementation of the
improvements was made; this included using a code-generated motor control
model made in Simulink and merging this model with existing C code that
runs on the Microprocessor System on Chip (MPSoC) of the inverter in the
car. However, validation of this model was not performed because of time
limitations, more closely described in Section 1.2.

Furthermore, this thesis did successfully implement a design based on
the improvement of the motor control model that switched out the previous
approximations of id calculated with numerous iterations of the Newton-
Raphson method from a reference torque τref , with a LUT. This LUT was
intended to contain pre-measured values of id and τ , that could be run
through faster than the NR-method with approximations. However, this im-
plementation was not tested as well due to a lack of torque sensor equipment
and time limitations.

In addition, improvements were designed, implemented, and validated on
encoder calibration. A procedure was implemented that automatically found
the stator offset angle. This was validated to have a significant improvement
compared to the previous method of manually finding the offset. The im-
provement includes the reduced time from up to 10 hours, to only 15 minutes
needed to finish calibrating one encoder for one motor. This improved pro-
cedure will benefit the encoder calibration process for the following years in
Revolve NTNU.

75

76

9 Further work

Suggested further work on the implementation done in this thesis is listed
below.

• Test and validate the implemented motor controller from Section 5.1.

• Make a LUT for iq and τref using measurements done with a torque
sensor on the Fischer motors

• Test and validate the implemented motor controller from Section 5.2,
with the aforementioned measured LUT.

• Save the corrected datum shift found in the autocalibration proce-
dure described in Section 5.3.4, in the encoders non-volatile memory
by using the EnDat 2.2 interface. This will render the PWM20-tool
superfluous, and will make the calibration procedure even faster.

• Run the calibration routine as a function from the user interface as a
button in the dashboard, using a CAN-message from the dashboard
PCB to the I21 MPSoC. This can be run while the car is on stand.
There already exists CAN-messages from the dashboard to the I21
that can spin the motors with specific speed setpoints, with and with-
out field weakening. Thus, the run-in procedure used to validate the
accuracy of the calibration presented in Table 6 can be run on stand
as well.

– The dashboard can run safety checks after the button is pressed,
like checking if the damper position is negative that ensures that
the car is on stand and not on ground. Another possible stand
check would be a current check on how much inertia is needed
to spin the motor. To do this, a threshold can be found on how
much inertia is needed to spin the motor when the wheels have no
friction and the car is on stand versus how much it needs when the
car is on the ground. If the safety checks passes, the dashboard
could send a CAN-message to the inverter, urging it to run the
encoder calibration script.

77

78

References

[1] "About us" page at Revolve NTNU’s official webpages. Revolve NTNU.
Dec. 2021. url: https://www.revolve.no/about- us (visited on
12/06/2021).

[2] C. M. G. Hartviksen. “Boot sequence for processors used in control of
electric motors in a Formula Student racecar.” In: Dec. 2021.

[3] Do-Hyun Jang and Duck-Yong Yoon. “Space-vector PWM technique
for two-phase inverter-fed two-phase induction motors.” In: 39 (Apr.
2003), pp. 542 –549. doi: 10.1109/TIA.2003.809448.

[4] et al. O’Rourke C. J. “A Geometric Interpretation of Reference Frames
and Transformations: dq0, Clarke, and Park.” In: 34 (Dec. 2019), pp. 2070–
2083.

[5] “Clarke Transform.” In: Matlab. Jan. 2022. url: https://se.mathworks.
com/help/physmod/sps/ref/clarketransform.html?s_tid=doc_ta
(visited on 01/14/2021).

[6] “Park Transform.” In: Matlab. Jan. 2022. url: https://se.mathworks.
com/help/mcb/ref/parktransform.html (visited on 01/14/2021).

[7] Roy Nilsen. TET4120 Electric drives. Compendium. 2018.

[8] I.D. Mayergoyz and W. Lawson. “Chapter 1 - Basic Circuit Variables
and Elements.” In: Basic Electric Circuit Theory. Ed. by I.D. May-
ergoyz and W. Lawson. San Diego: Academic Press, 1997, pp. 1–32.
isbn: 978-0-08-057228-4. doi: https://doi.org/10.1016/B978-0-
08-057228-4.50005-7. url: https://www.sciencedirect.com/
science/article/pii/B9780080572284500057.

[9] Mercury XU5. Product Overview. Enclustra, 2022. url: https://
www . enclustra . com / en / products / system - on - chip - modules /
mercury-xu5/ (visited on 01/17/2022).

[10] Encoders for Servo Drives. Heidenhain, Nov. 2021. url: https : / /
www.heidenhain.com/fileadmin/pdf/en/01_Products/Prospekte/
PR _ Encoders _ for _ Servo _ Drives _ ID208922 _ en . pdf (visited on
05/19/2022).

[11] EnDat 2.2 – Bidirectional Interface for Position Encoders. Technical In-
formation. Heidenhain, Sept. 2017. url: https://www.endat.de/
fileadmin/pdb/media/img/383942-28_EnDat_2-2_en.pdf (visited
on 01/17/2022).

[12] Matlab. Field-Oriented Control (FOC). 2021. url: https://se.mathworks.
com/help/mcb/gs/implement-motor-speed-control-by-using-
field-oriented-control-foc.html (visited on 01/24/2022).

79

https://www.revolve.no/about-us
https://doi.org/10.1109/TIA.2003.809448
https://se.mathworks.com/help/physmod/sps/ref/clarketransform.html?s_tid=doc_ta
https://se.mathworks.com/help/physmod/sps/ref/clarketransform.html?s_tid=doc_ta
https://se.mathworks.com/help/mcb/ref/parktransform.html
https://se.mathworks.com/help/mcb/ref/parktransform.html
https://doi.org/https://doi.org/10.1016/B978-0-08-057228-4.50005-7
https://doi.org/https://doi.org/10.1016/B978-0-08-057228-4.50005-7
https://www.sciencedirect.com/science/article/pii/B9780080572284500057
https://www.sciencedirect.com/science/article/pii/B9780080572284500057
https://www.enclustra.com/en/products/system-on-chip-modules/mercury-xu5/
https://www.enclustra.com/en/products/system-on-chip-modules/mercury-xu5/
https://www.enclustra.com/en/products/system-on-chip-modules/mercury-xu5/
https://www.heidenhain.com/fileadmin/pdf/en/01_Products/Prospekte/PR_Encoders_for_Servo_Drives_ID208922_en.pdf
https://www.heidenhain.com/fileadmin/pdf/en/01_Products/Prospekte/PR_Encoders_for_Servo_Drives_ID208922_en.pdf
https://www.heidenhain.com/fileadmin/pdf/en/01_Products/Prospekte/PR_Encoders_for_Servo_Drives_ID208922_en.pdf
https://www.endat.de/fileadmin/pdb/media/img/383942-28_EnDat_2-2_en.pdf
https://www.endat.de/fileadmin/pdb/media/img/383942-28_EnDat_2-2_en.pdf
https://se.mathworks.com/help/mcb/gs/implement-motor-speed-control-by-using-field-oriented-control-foc.html
https://se.mathworks.com/help/mcb/gs/implement-motor-speed-control-by-using-field-oriented-control-foc.html
https://se.mathworks.com/help/mcb/gs/implement-motor-speed-control-by-using-field-oriented-control-foc.html

[13] Matlab. Field-Weakening Control of IPMSMs. Apr. 2021. url: https:
/ / se . mathworks . com / videos / field - weakening - control - of -
interior-permanent-magnet-synchronous-motors-ipmsm--1617815717811.
html (visited on 01/22/2022).

[14] T.R. Khramshin, G.P. Kornilov, and R.R. Khramshin. “Three-Level
Inverter-Fed Direct Torque Control of the Synchronous Motor.” In:
Procedia Engineering 206 (Dec. 2017). doi: 10.1016/j.proeng.2017.
10.714.

[15] Seyed Hosseini, Seyed Sadeghzadeh, and Yousef BEROMI. “A new
method for active power factor correction using a dual-purpose inverter
in a yback converter.” In: (Jan. 2016), p. 4741.

[16] Three phase currents and their respective PWM signals. Microchip. Nov.
2021. url: https : / / microchipdeveloper . com / local -- files /
mct5001:pwm/sinetri3.png (visited on 12/06/2021).

[17] H.W. van der Broeck, H.-C. Skudelny, and G.V. Stanke. “Analysis and
realization of a pulsewidth modulator based on voltage space vectors.”
In: IEEE Transactions on Industry Applications 24.1 (1988), pp. 142–
150. doi: 10.1109/28.87265.

[18] Matlab. Motor Control, Part 5: Space Vector Modulation. Jan. 2021.
url: https://www.youtube.com/watch?v=Gj7qAlsq_m8&list=
PLn8PRpmsu08qL-EG3DRMtRyokpXQJyhp7&index=5 (visited on 01/18/2022).

[19] Yngve Solbakken. Space vector PWM intro. 2017. url: https://www.
switchcraft.org/learning/2017/3/15/space-vector-pwm-intro
(visited on 01/24/2022).

[20] K. H. Nam. “AC Motor Control and Electrical Vehicle Applications,
Second Edition.” In: 2019. isbn: 978-1-138-71249-2.

[21] Microchip Developer Help. Space Vector Modulation. 2022. url: https:
//skills.microchip.com/zero-sequence-modulation-for-three-
phase-motors/690239 (visited on 05/29/2022).

[22] B. Zhang and D. Qiu. m-Mode SVPWM Technique for Power Converters.
2019.

[23] H. K. Skeie. “Automotive Drive for a Formula Student Racecar.” In:
2019.

[24] F. Fanin. “General Discontinuous Pulse Width Modulationalgorithm
applied in an Electric Racing Car.” In: 2019.

[25] F. Fanin. “Optimization algorithms for the currents in the Field Weak-
ening region of an Interior Permanent Magnet Synchronous Motor of
an Electric Racing Car.” In: 2020.

80

https://se.mathworks.com/videos/field-weakening-control-of-interior-permanent-magnet-synchronous-motors-ipmsm--1617815717811.html
https://se.mathworks.com/videos/field-weakening-control-of-interior-permanent-magnet-synchronous-motors-ipmsm--1617815717811.html
https://se.mathworks.com/videos/field-weakening-control-of-interior-permanent-magnet-synchronous-motors-ipmsm--1617815717811.html
https://se.mathworks.com/videos/field-weakening-control-of-interior-permanent-magnet-synchronous-motors-ipmsm--1617815717811.html
https://doi.org/10.1016/j.proeng.2017.10.714
https://doi.org/10.1016/j.proeng.2017.10.714
https://microchipdeveloper.com/local--files/mct5001:pwm/sinetri3.png
https://microchipdeveloper.com/local--files/mct5001:pwm/sinetri3.png
https://doi.org/10.1109/28.87265
https://www.youtube.com/watch?v=Gj7qAlsq_m8&list=PLn8PRpmsu08qL-EG3DRMtRyokpXQJyhp7&index=5
https://www.youtube.com/watch?v=Gj7qAlsq_m8&list=PLn8PRpmsu08qL-EG3DRMtRyokpXQJyhp7&index=5
https://www.switchcraft.org/learning/2017/3/15/space-vector-pwm-intro
https://www.switchcraft.org/learning/2017/3/15/space-vector-pwm-intro
https://skills.microchip.com/zero-sequence-modulation-for-three-phase-motors/690239
https://skills.microchip.com/zero-sequence-modulation-for-three-phase-motors/690239
https://skills.microchip.com/zero-sequence-modulation-for-three-phase-motors/690239

[26] W. Chen, Y. Zhao, and Z. Zhou. “Torque Ripple Reduction in Three-
Level Inverter-Fed Permanent Magnet Synchronous Motor Drives by
Duty-Cycle Direct Torque Control Using an Evaluation Table.” In:
2017.

[27] M. Begh and H. Herzog. “Comparison of Field Oriented Control and
Direct Torque Control.” In: Mar. 2018.

[28] N. Höglund and D. Poposki. “Evaluation of position and current sensor
technologies for a PMSM used in automotive applications.” In: 2019.

[29] Benjamin G. Katz. “A low cost modular actuator for dynamic robots.”
In: 2018.

[30] “MATLAB Coder Optimizations in Generated Code.” In: Matlab. 2022.
url: https://se.mathworks.com/help/coder/ug/matlab-coder-
optimizations-in-generated-cc-code.html (visited on 02/14/2022).

[31] “Performance - Reduce memory usage and improve execution speed of
generated code.” In: Matlab. 2022. url: https://se.mathworks.com/
help/rtw/performance.html (visited on 02/14/2022).

[32] Matlab. What is an S-Function? May 2022. url: https://se.mathworks.
com/help/simulink/sfg/what-is-an-s-function.html (visited on
01/14/2021).

81

https://se.mathworks.com/help/coder/ug/matlab-coder-optimizations-in-generated-cc-code.html
https://se.mathworks.com/help/coder/ug/matlab-coder-optimizations-in-generated-cc-code.html
https://se.mathworks.com/help/rtw/performance.html
https://se.mathworks.com/help/rtw/performance.html
https://se.mathworks.com/help/simulink/sfg/what-is-an-s-function.html
https://se.mathworks.com/help/simulink/sfg/what-is-an-s-function.html

Appendix

82

mit Feldschwächung

Projektnummer: 2018-079-2

Zeichen Einheit

Nenndaten Wasserkühlung (ϕ = 0°)

Nennmoment MNennWk Nm

Nennstrom INennWk Aeff

Nenndrehzahl nNennWk U/min

abgegebene Wellenleistung PNennWk W
Wicklungsverluste

1
 / Gesamtverluste

1,2
PVNennWk W 254 617

Stillstands-/ Haltemoment MHaltWk Nm

Stillstands-/ Haltestrom IHaltWk Aeff

Daten bei S6 Betrieb (ϕ = -10°)

Drehmoment MS6 Nm

Strom IS6 Aeff

Drehzahl bei Drehmoment nS6 U/min

abgegebene Wellenleistung PS6 W
Wicklungsverluste1 / Gesamtverluste 1,2

PVS6 W 1282 1619

Stillstands-/ Haltemoment MHaltS6 Nm

Stillstands-/ Haltestrom IHaltS6 Aeff

Daten bei Spitzenlast (ϕ = -10°)

Spitzenmoment MPeak Nm

Spitzenstrom IPeak Aeff

Drehzahl bei Spitzenmoment nPeak U/min

abgegebene Wellenleistung PPeak W
Wicklungsverluste1 / Gesamtverluste 1,2

PVPeak W 1843 2167

Daten

Drehmomentkonstante kt Nm/Aeff

Veff/(rad/s)
Veff/(U/min)

Motorkonstante km Nm/√W

Leerlaufdrehzahl nLeer U/min

max. zul. Drehzahl (Feldschwächung) nmax U/min

max. Frequenz (Leerlauf/Feldschw.) fmax Hz 910 1333

Zwischenkreisspannung UZk VDC

Ø Widerstand pro Phase (nur Wicklung) RPh20 Ω

Ø Induktivität pro Phase (nur Wicklung) LPh mH

elektr. Zeitkonstante τ=L/R τel ms

Polpaarzahl n

Schaltung

Stand: 28.09.2018 Seite 1 von 3

Motordatenblatt [berechnete Daten]

TI085-052-070-04B7S-07S04BE2

Wert

11,1

22,6

0,447

35366

Stern

0,393

3,11

4

13650

20000

600

0,126

Spannungskonstante (Phase - Phase) ke

13250

15404

7,9

16

24,6

51

12100

31199

0,031

17,4

35,9

29,1

61

11600

0,492

0,296

9.1 Fischer data sheet

83

mit Feldschwächung

Zeichen Einheit

Daten Wasserkühlung

Eintrittstemperatur Kühlmittel Tein °C

Max. zul. Kühlmitteltemperaturerhöhung Tmax K

Min. erforderlicher Kühlmitteldurchfluss Qmin l/min

Volumen Kühlkanal Vkühl l
thermische Zeitkonstante τth min

Daten Mechanik

Drehmasse Rotor (Einbausatz) J kgm²

Motorgewicht ohne Gehäuse m kg

Statoraußendurchmesser ohne Gehäuse dA mm

Statorinnendurchmesser dLS mm

Eisenlänge l mm

Anmerkungen - Verluste
1
 Wicklungsverluste sind bezogen auf eine Spulentemperatur von 100°C.

2 Die Gesamtverluste setzen sich zusammen aus: Wicklungsverluste; Statoreisenverluste; Rotorverluste;

Berechnung der Gesamtverluste:

Wicklungsverluste + Statoreisenverluste (bei Drehzahl X) + Rotorverluste (bei Drehzahl X)

Anmerkungen - allgemein

Achten Sie darauf, dass Ihr Regler den Motornenn- und Spitzenstrom bereitstellen kann.

Eine Anpassung der Drehzahl und Zwischenkreisspannung kann nach Rücksprache erfolgen.
Die im Datenblatt angegebenen Nenndaten gelten für eine Umgebungs-/Kühlmitteltemperatur von 20°C.

Die Drehmomente sind angegeben ohne Berücksichtigung der Reibverluste durch Lagerung oder Dichtungen.

Anmerkungen - Temperaturüberwachungssystem

Da die genaue Betriebsart auch von der thermischen Anbindung des Motors abhängt, muss das eingebaute

Temperaturüberwachungssystem ausgewertet und berücksichtigt werden. Dennoch gilt zu beachten, dass die

Thermosensoren nicht die exakte Wicklungstemperatur anzeigen und diese durch thermische Kapazitäten um

bis zu 20 K höher sein kann. Trotz einer elektrischen Isolation der Sensoren gegenüber der Wicklung dürfen die

Sensoren nur über eine zusätzliche galvanische Trennung an den Regler/die Steuerung angeschlossen werden.

Stand: 28.09.2018 Seite 2 von 3

2,8

85

51,6

70

Motordatenblatt [berechnete Daten]

TI085-052-070-04B7S-07S04BE2

Wert

10 … 40

5

0,33*10^-3

mit Feldschwächung

Fischer Elektromotoren GmbH Tel.: 06265/9222-0

Schützenstraße 19 Fax: 06265/9222-22

D-74842 Billigheim-Allfeld info@fischer-elektromotoren.de

Geschäftsführer: Peter Fischer www.fischer-elektromotoren.de

Stand: 28.09.2018 Seite 3 von 3

TI085-052-070-04B7S-07S04BE2

Motordatenblatt [berechnete Daten]

0

5

10

15

20

25

30

0 5000 10000 15000 20000

D
re

h
m

o
m

e
n

t
[N

m
]

Drehzahl [U/min]

Drehzahl-Drehmoment-Diagramm

Spitzenmoment

Drehmoment S6

Nennmoment Wk

Feldschw. Spitze

Feldschw. S6

Feldschw. Wk

0

10000

20000

30000

40000

0 5000 10000 15000

m
e

ch
. L

e
is

tu
n

g
[W

]

Drehzahl [U/min]

Drehzahl-Leistungs-Diagramm

Spitzenleistung Leistung S6

Nennleistung Wk

0

5

10

15

20

25

30

0 20 40 60

D
re

h
m

o
m

e
n

t
[N

m
]

Strom [A]

Strom-Drehmoment-Diagramm

0

50

100

150

200

250

300

0 5000 10000 15000 20000

St
at

o
rv

e
rl

u
st

e
 [

W
]

Drehzahl [U/min]

Statoreisenverluste

0

20

40

60

80

100

0 5000 10000 15000 20000

R
o

to
rv

e
rl

u
st

e
 [

W
]

Drehzahl [U/min]

Rotorverluste

with Fieldweaking

Project-No.: 2018-079-2

Symbol Unit

Rated Data Water cooled (ϕ = 0°)

Nominal Torque TNomWC Nm

Nominal Current INomWC Arms

Nominal Speed nNomWC rpm

Nominal Power PNomWC W
Winding Losses

1
 / Total Losses

1,2
PDWC W 254 617

Holding Torque THWC Nm

Holding Current IHWC Arms

Rated Data S6 duty (ϕ = -10°)

Torque TS6 Nm

Current IS6 Arms

Speed nS6 rpm

Power PS6 W
Winding Losses1 / Total Losses 1,2

PDS6 W 1282 1619

Holding Torque THS6 Nm

Holding Current IHS6 Arms

Peak Data (ϕ = -10°)

Peak Torque TPeak Nm

Peak Current IPeak Arms

Speed at Peak Torque nPeak rpm

Peak Power PPeak W
Winding Losses1 / Total Losses 1,2

PDPeak W 1843 2167

Data

Torque Constant kt Nm/Arms

Vrms/(rad/s)
Vrms/rpm

Motor Constant km Nm/√W

Idle Speed nidle rpm
max. Speed (Fieldweaking) nmax rpm

max. Frequency (Idle/Fieldweaking) fmax Hz 910 1333

DC Bus Voltage UDC VDC

Ø Resistance per Phase (Winding only) RPh20 Ω

Ø Inductance per Phase (Winding only) LPh mH

electr. Time Constant τ=L/R τel ms

Number of Polepairs n

Winding Connection

Date: 28.09.2018 Page 1 of 3

11600

Value

13250

BEMF Constant (Phase - Phase) ke

13650

20000

600

0,126

0,393

3,11

Star

4

TI085-052-070-04B7S-07S04BE2

0,492

0,296

11,1

22,6

24,6

51

35,9

15404

7,9

16

12100

31199

17,4

29,1

61

0,031

0,447

35366

Motor Datasheet [calculated Values]

Motor Datasheet [calculated Values]

with Fieldweaking

Symbol Unit

Data Watercooling

Inlet Temperature of Coolant Tin °C

Max. Temperature rise of Coolant Tmax K

Min. required Coolant flow Qmin l/min

Volume of cooling channel Vcool l
thermal Time Constant τth min

Data Mechanics

Rotor Inertia (assembly set) J kgm²

Weight of Motor w/o Housing m kg

Outer Stator Diameter w/o Housing dA mm

Inner Stator Diameter dAg mm

Length of Stator l mm

Annotations - Losses
1
 Winding Losses are referred to a Coil Temperature of 100°C.

2 The total Losses are made up of: Winding Losses; Stator Iron Losses; Rotor Losses;

Calculation of total Losses:

Winding Losses + Stator Iron Losses (at speed X) + Rotor Losses (at speed X)

Annotations - general

Ensure that your servo drive can handle the Nominal- and Peakcurrent of the Motor.

An adjustment of the Speed and DC Bus Voltage can be done after consultation.
The nominal data in this datasheet are based on an ambient/coolant temperature of 20°C

The stated nominal Torques are without consideration of friction losses through Bearings or Sealings.

Annotations - thermal monitoring system

Because the exact duty type depends also on the thermal connection of the motor, the embedded thermal

monitoring system has to be analysed and attented. However, attention has to be payed that the temperature

sensors do not show the exact temperature of the winding and this could be up to 20 K higher due to thermal

capacities. Despite an electrical insulation towards the winding, you are only allowed to connect the sensors

to your controller by using a galvanic separation in between.

Date: 28.09.2018 Page 2 of 3

Value

10 … 40

5

0,33*10^-3

70

2,8

85

TI085-052-070-04B7S-07S04BE2

51,6

Motor Datasheet [calculated Values]

with Fieldweaking

Fischer Elektromotoren GmbH Tel. (0049) 6265/9222-0

Schützenstraße 19 Fax: (0049) 6265/9222-22

D-74842 Billigheim-Allfeld info@fischer-elektromotoren.de

Geschäftsführer: Peter Fischer www.fischer-elektromotoren.de

Date: 28.09.2018 Page 3 of 3

TI085-052-070-04B7S-07S04BE2

0

5

10

15

20

25

30

0 5000 10000 15000 20000

To
rq

u
e

 [
N

m
]

Speed [rpm]

Speed-Torque-Graph

Peak Torque

Torque S6

Nominal Torque WC

Fieldweaking Peak

Fieldweaking S6

Fieldweaking WC

0

10000

20000

30000

40000

0 5000 10000 15000

m
e

ch
. P

o
w

e
r

[W
]

Speed [rpm]

Speed-Power-Graph

Peak Power Power S6

Nominal Power WC

0

5

10

15

20

25

30

0 20 40 60

To
rq

u
e

 [
N

m
]

Current [A]

Current-Torque-Graph

0

50

100

150

200

250

300

0 5000 10000 15000 20000

St
at

o
r

Lo
ss

e
s

[W
]

Speed [rpm]

Stator Iron Losses

0

20

40

60

80

100

0 5000 10000 15000 20000

R
o

to
r

Lo
ss

e
s

[W
]

Speed [rpm]

Rotor Losses

9.2 Original motor simulator

The following models are taken from the simulator made by Håkon Skeie in
2019 during his master thesis, based on the work by NTNU professor Roy
Nilsen’s creation of a motor control of a PMSM in the class TET4120 Electric
Drives. [7]

89

Figure 9.1: The motor controller, inside the "PM Motor Control for 3 phase
machine" subsystem in Figure 4.1.

90

F
ig

ur
e

9.
2:

T
he

co
nt

en
ts

of
th

e
"d

ig
it

al
cu

rr
en

t-
co

nt
ro

lle
r

1"
su

bs
ys

te
m

in
F
ig

ur
e

9.
1.

91

F
igure

9.3:
T

he
contents

of
the

"C
R

C
"

subsystem
in

F
igure

9.1.

92

F
ig

ur
e

9.
4:

T
he

co
nt

en
ts

of
th

e
"D

ec
ou

pl
in

g
IM

"
su

bs
ys

te
m

in
F
ig

ur
e

9.
1.

93

F
igure

9.5:
T

he
contents

of
the

"D
ecoupling"

subsystem
in

F
igure

9.4.

94

F
ig

ur
e

9.
6:

T
he

co
nt

en
ts

of
th

e
"C

ur
re

nt
m

ea
su

re
m

en
ts

"
su

bs
ys

te
m

in
F
ig

ur
e

9.
4.

95

9.3 Scaled-up figures from Section 2

96

Figure 9.7: All eight configurations of the transistors are shown on the left,
correspond to one space vector in the motor. V1-V6 creates six basic vectors
that go along the six lines shown in the sphere. V7 and V8 create null
vectors, shown in the origin. Figure inspired from [18]

97

F
igure

9.8:
Im

age
representing

flow
chart

ofthe
sector

finding
algorithm

from
the

d
q-voltages

from
the

stator.
F
igure

inspired
from

chapter
10.2.4

in
[20].

98

9.4 Improved motor simulator

Figure 9.9: Overview over the contents of the motor controller.

99

F
igure

9.10:
T

he
contents

of
the

"D
ecoupling"-subsystem

from
the

"D
ecoupling

IM
M

otor"
show

n
in

F
igure

5.2.

100

F
ig

ur
e

9.
11

:
T

he
co

nt
en

ts
of

th
e

"C
ur

re
nt

co
nt

ro
lle

r"
-s

ub
sy

st
em

fr
om

th
e

m
ot

or
co

nt
ro

lle
r

sh
ow

n
in

F
ig

ur
e

9.
9.

101

F
igure

9.12:
T

he
contents

of
the

"Is_
calculator"-subsystem

from
the

m
otor

controller
show

n
in

F
igure

9.9.

102

F
ig

ur
e

9.
13

:
Si

m
ul

in
k

bl
oc

k
di

ag
ra

m
sh

ow
in

g
th

e
up

pe
r

m
os

t
le

ve
lo

ft
he

m
ot

or
co

nt
ro

lle
r

m
od

el
w

it
h

an
I s

-
ca

lc
ul

at
or

ba
se

d
on

a
LU

T
.

103

F
igure

9.14:
T

he
contents

of
the

"Is_
calculator

w
ith

LU
T

"-subsystem
from

the
m

otor
controller

show
n

in
F
igure

9.13.

104

F
ig

ur
e

9.
15

:
C

ur
re

nt
,t

or
qu

e
an

d
sp

ee
d

re
sp

on
se

s
fr

om
ru

nn
in

g
th

e
m

ot
or

fr
om

0
rp

m
to

2
kr

pm
.

105

F
igure

9.16:
C

urrent,torque
and

speed
responses

from
running

the
m

otor
from

0rpm
to

20krpm
.

106

Im
provem

ents on the m
otor control of a Form

ula
Cam

illa M
arie G

reve H
artviksen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Camilla Marie Greve Hartviksen

Improvements on the motor control
of a Formula
Student racecar

Master’s thesis in Cybernetics and Robotics
Supervisor: Geir Mathisen
June 2022

M
as

te
r’s

 th
es

is

	Introduction
	Background
	Limitations

	Motor control theory
	Motor topology
	Clarke- and Park-transform
	Motor equations
	Motor specification
	Workings of an inverter
	Specifications of the I21 inverter
	Motor encoder
	Software architecture
	Motor control methods
	Field Oriented Control (FOC)
	Field Weakening Control
	Direct Torque Control (DTC)
	Modulation methods
	Feed forward control

	Literature Review
	Motor control in R19
	Motor control in R20
	Modulation improvements
	Field weakening improvements

	Sensor-free control
	Implementation of Direct Torque Control (DTC)
	Comparison of Direct Torque Control (DTC) and Field Oriented Control (FOC)

	Effects of motor position sensor calibration
	Autocalibration of motor position
	Summary

	Design
	Specifications
	Design of the motor control model
	Motor simulator
	Design of new motor controller

	Design of a motor controller using a Look-Up Table (LUT)
	Design of an improved calibration procedure
	Design of a manual calibration procedure
	Design of an automatic calibration procedure

	Implementation
	Implementation of the motor control model
	Implementation of code base
	Implementation of code organization
	Implementation of the merging of the design with the existing code base

	Implementation of a system using a Look-Up Table (LUT)
	Implementation of an improved calibration procedure
	Setup of test rig
	Mounting
	Implementation of a manual calibration procedure
	Implementation of an automatic calibration procedure

	Testing and Results
	Testing and results of the motor control model
	Testing and results of the motor control model with a Look-Up Table (LUT)
	Testing and results of an improved calibration procedure for the encoder
	Testing and results of manual calibration
	Testing and results of automatic calibration

	Discussion
	Discussion of motor control model
	Discussion of a motor controller using a Look-Up Table (LUT)
	Discussion of an improved calibration procedure
	Discussion of a manual calibration procedure
	Discussion of an automatic calibration procedure

	Conclusion
	Further work
	References
	Fischer data sheet
	Original motor simulator
	Scaled-up figures from sec:motortheory
	Improved motor simulator

