
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Anders Thallaug Fagerli

Deep Monocular Depth Estimation
for Autonomous Underwater
Vehicles

Master’s thesis in Cybernetics and Robotics
Supervisor: Annette Stahl
Co-supervisor: Mauhing Yip, Rudolf Mester
June 2022M

as
te

r’s
 th

es
is

Anders Thallaug Fagerli

Deep Monocular Depth Estimation for
Autonomous Underwater Vehicles

Master’s thesis in Cybernetics and Robotics
Supervisor: Annette Stahl
Co-supervisor: Mauhing Yip, Rudolf Mester
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Abstract

Exploring and utilizing the world’s oceans in a sustainable manner is crucial for solving chal-

lenges such as global warming. Autonomous underwater robots aim to replace human operators

in dangerous and harsh underwater environments while efficiently and sustainably surveying,

exploring and acting on underwater structures. Essential for autonomy is the ability to map the

surroundings, and this thesis explores the mapping of underwater environments with a monocu-

lar camera using deep learning.

A conditional variational autoencoder (CVAE) conditioned on the deep features of images is

implemented as a baseline for estimating the depth of scenes, trained in a supervised fashion on

synthetic underwater images. The aleatoric uncertainty of its predictions is additionally estim-

ated, allowing the predictions to be continuously evaluated and fused with other probabilistic

models. Several modifications to the baseline architecture are proposed to improve depth estima-

tion in underwater environments. An edge detector based on the estimated aleatoric uncertainty

is derived, allowing smoothness priors on otherwise unsuited data for geometric smoothing. A

novel method for incorporating auxiliary sparse depth is proposed, fusing sparse data at mul-

tiple scales in a late fusion scheme for convolutional neural networks. Spatiotemporal networks

are also investigated, using multiple temporally adjacent images as input to the model. A pre-

training scheme for learning motion filters in 2D spatiotemporal networks is presented, and the

generation of geometrically consistent depth estimates between multiple views is also explored.

Results on a synthetic, photorealistic underwater dataset show that many of the proposed modi-

fications improve the performance of the baseline, both in terms of qualitative and quantitative

results. However, the model is only evaluated on synthetic data, and it remains to be seen how

the proposed modifications affect performance in actual underwater environments.

i

Sammendrag

Å utforske og utnytte verdenshavene på en bærekraftig måte er avgjørende for å løse utfordringer

som global oppvarming. Autonome undervannsroboter har som hensikt å erstatte menneskelige

operatører i farlige undervannsmiljøer, samtidig som de effektivt kartlegger, utforsker og ma-

nipulerer undervannsstrukturer. Avgjørende for autonomi er evnen til å kartlegge omgivelsene,

og denne oppgaven utforsker kartlegging av undervannsmiljøer med et monokulært kamera ved

hjelp av dyp læring.

En variasjonsautokoder betinget på bilder er implementert som en grunnlinje for å estimere

dybden til scener, trent på syntetiske undervannsbilder med sann dybdedata. Den aleatoriske

usikkerheten til prediksjonene blir i tillegg estimert, slik at prediksjonene kontinuerlig kan eval-

ueres og brukes sammen med andre sannsynlighetsmodeller. Flere modifikasjoner av grunnlin-

jearkitekturen er foreslått, med den hensikt å forbedre dybdeestimering i undervannsmiljøer.

En kantdetektor basert på den estimerte aleatoriske usikkerheten utledes, og tillater metoder

for geometrisk utjevning for data som ellers er uegnet. I tillegg foreslås en ny metode for å

ta i bruk sparsomlige målte dybdeestimater som ekstra data, der dataen slås sammen på flere

skalaer i konvolusjonelle nevrale nettverk. Spatiotemporale nettverk blir også undersøkt, ved å

ta i bruk flere temporale sammenhengende bilder som input til modellen. En metode for å lære

bevegelsesfiltre i 2D spatiotemporale nettverk presenteres, og generering av geometrisk konsist-

ente dybdeestimater mellom flere bilder blir også utforsket. Resultater på et syntetisk, fotoreal-

istisk undervannsdatasett viser at mange av de foreslåtte modifikasjonene forbedrer ytelsen til

grunnlinjen, både når det gjelder kvalitative og kvantitative resultater. Modellen er imidler-

tid kun evaluert på syntetiske data, og det gjenstår å se hvordan de foreslåtte modifikasjonene

påvirker ytelsen i virkelige undervannsmiljøer.

ii

Preface

This Master’s Thesis concludes a Master of Science for the study program Cybernetics and Ro-

botics at the Norwegian University of Science and Technology, counting for 30 credit points.

The work is conducted for the Autonomous Robots for Ocean Sustainability project, supported

by the Research Council of Norway (project number: 304667). This thesis is a continuation of

TTK4550, and will have elements that are highly similar to the specialization project report [1].

This marks the end of five years at Cybernetics and Robotics and seven years in Trondheim.

Although it has been extremely challenging at times, it has also been some of my best and most

rewarding years. I couldn’t have gotten through them without friends and family, so a huge

thanks go to them. Working on this thesis has been especially challenging, so I would like to

thank my supervisors, Annette Stahl, Mauhing Yip and Rudolf Mester, and also the rest of the

AROS Vision Group for excellent feedback and discussions throughout the year.

Anders Thallaug Fagerli
Trondheim, June 6, 2022

iii

Table of Contents

Abstract i

Sammendrag ii

Preface iii

Table of Contents v

List of Tables vii

List of Figures ix

List of Abbreviations x

1 Introduction 1

1.1 Motivation . 1

1.2 Problem description . 3

1.3 Contributions . 4

1.4 Thesis outline . 4

2 Background 5

2.1 Camera geometry . 5

2.1.1 3D geometry . 5

2.1.2 The perspective camera model . 6

2.1.3 From 2D to 3D . 8

2.2 Autoencoders . 9

2.2.1 Vanilla autoencoders . 9

2.2.2 Variational autoencoders . 10

2.2.3 Conditional variational autoencoders . 15

2.3 Uncertainty estimation . 17

2.3.1 Epistemic uncertainty . 17

2.3.2 Aleatoric uncertainty . 18

2.3.3 Confidence propagation . 19

2.4 Evaluation metrics . 20

2.5 Related work . 20

3 Method 22

3.1 Architecture . 22

3.2 Single-view depth estimation . 24

3.2.1 Baseline . 24

iv

3.2.2 Transfer learning . 25

3.2.3 Uncertainty-aware smoothness . 26

3.2.4 Multi-scale loss . 27

3.2.5 Depth in the top stream . 28

3.2.6 Auxiliary sparse depth . 29

3.2.7 Data augmentation . 30

3.3 Temporal multi-view depth estimation . 30

3.3.1 Baseline . 30

3.3.2 Motion filter pre-training . 32

3.3.3 Multi-view consistency . 32

3.3.4 Depth refinement network . 35

4 Results and Discussion 37

4.1 Dataset . 37

4.2 Experiments . 39

4.2.1 Experimental setup . 39

4.2.2 Experimental results: Single-view . 40

4.2.3 Experimental results: Multi-view . 46

4.2.4 Summary . 50

5 Conclusion 52

5.1 Further work . 52

Bibliography 53

A Proofs 58

A.1 Marginal log-likelihood for VAEs . 58

A.2 KL divergence between two Gaussians . 59

B Depth-CVAE architecture 60

B.1 U-Net . 60

B.2 CVAE . 61

C Motion autoencoder architecture 62

D RefineNet architecture 63

E Additional results 64

v

List of Tables

4.1 Distribution of images containing pipes, either viewed from the left or right. . . . 39

4.2 Quantitative results from the baseline Depth-CVAE using RGB and grayscale as

input. Lower values are better for the left side, while higher values are better for

the right side. Bold values are comparatively better. 40

4.3 Comparison of relative metrics between current state-of-the-art deep learning

monocular depth estimation methods on the KITTI Eigen split and NYU-Depth

V2 datasets. 42

4.4 Quantitative results using ImageNet and SceneNet RGB-D transfer learning. Lower

values are better for the left side, while higher values are better for the right side.

Bold values are comparatively better. 43

4.5 Quantitative results using edge-aware (EA) and uncertainty-aware (UA) smooth-

ness. Lower values are better for the left side, while higher values are better for

the right side. Bold values are comparatively better. 45

4.6 Quantitative results using multi-scale loss with decoupled predictions (MS-D) and

multi-scale loss using predictions in subsequent layers (MS-S). Lower values are

better for the left side, while higher values are better for the right side. Bold values

are comparatively better. 45

4.7 Quantitative results for predicting depth in the top stream and depth with un-

certainty in the bottom stream of the Depth-CVAE. Lower values are better for

the left side, while higher values are better for the right side. Bold values are

comparatively better. 46

4.8 Quantitative results using auxiliary sparse depth at input (Sparse-Ma) and auxil-

iary sparse depth at multiple scales (Sparse-MS). Lower values are better for the

left side, while higher values are better for the right side. Bold values are compar-

atively better. 46

4.9 Quantitative results for the baseline multi-view Depth-CVAE. Lower values are

better for the left side, while higher values are better for the right side. 46

4.10 Quantitative results for the motion filter pre-trained multi-view Depth-CVAE. Lower

values are better for the left side, while higher values are better for the right side.

Bold values are comparatively better. 48

4.11 Quantitative results when using multi-view consistency. Lower values are better

for the left side, while higher values are better for the right side. Bold values are

comparatively better. 49

4.12 Quantitative results for RefineNet. Lower values are better for the left side, while

higher values are better for the right side. Bold values are comparatively better. . 50

vi

4.13 Quantitative summary for all models. Lower values are better for the left and right

side, while higher values are better for the middle. Bold values are comparatively

better. 51

B.1 Detailed network architecture for the U-Net stream of the Depth-CVAE. BN is

batch normalization, BasicBlock is a residual layer as depicted in Figure B.1 and

Upsample layers use bilinear interpolation. The output shape gives information

about stride and padding used in convolutional layers. Notice that the encoder is

a ResNet-18[6]. 60

B.2 Detailed network architecture for the CVAE stream of the Depth-CVAE. BN is batch

normalization, BasicBlock is a residual layer as depicted in Figure B.1 and Up-

sample layers use bilinear interpolation. The output shape gives information about

stride and padding used in convolutional layers. The linear layers in the code are

separate, not subsequent, and each predict µ or log Σ. 61

C.1 Detailed network architecture for the motion autoencoder. BN is batch normaliz-

ation, BasicBlock is a residual layer as depicted in Figure B.1 and Upsample layers

use transposed convolutions with 2×2 filters. The output shape gives information

about stride and padding used in convolutional layers. Notice that the encoder is

a ResNet-18[6]. 62

D.1 Detailed network architecture for RefineNet. BN is batch normalization, BasicB-

lock is a residual layer as depicted in Figure B.1 and Upsample layers use bilinear

interpolation. The output shape gives information about stride and padding used

in convolutional layers. 63

vii

List of Figures

1.1 Inspection of underwater structures using the Eelume robot. Image courtesy:

eelume.com. 2

1.2 Synthetic underwater structure visualized by three different representations. . . . 2

2.1 The 3D geometry in Euclidean space (left) and the projection of 3D points into 2D

image coordinates (right). 6

2.2 The perspective camera, projecting a point x = [X Y Z]T through the projective

center of the camera and onto the image plane I located at z = −f , where f is

the focal length of the camera. The projective center has pixel coordinates u = cx

and v = cy in the image plane. 7

2.3 Projections of two differently sized cubes intersect the image plane at the exact

same location, due to the different distances from the camera. Figure is inspired

by [2]. 8

2.4 Graphical representations of CNN-based autoencoders. 10

2.5 Different connection types between encoder and decoder. 10

2.6 Different graphical representations of the directed probabilistic model under con-

sideration. 11

2.7 Possible CNN implementations of a VAE (a) and a CVAE (b). 15

2.8 CVAE conditioned on deep features from a contracting CNN. 17

2.9 CVAE conditioned on deep features from the expanding path of a U-Net [7], addi-

tionally estimating the aleatoric uncertainty of the prediction. 19

3.1 Graphical structure of the Depth-CVAE, with a U-Net in the top stream for pre-

dicting uncertainty and a CVAE in the bottom stream for predicting depth. The

input to the network is in this case a single RGB image, with corresponding depth

during training. 23

3.2 Implementation of the code using neural networks. The final layer of the encoder

is flattened and forwarded through two separate fully connected layers that each

make up the expectation and covariance of the code distribution. The code z is

then sampled using the reparameterization (2.26), and forwarded through one

fully connected layer to generate the first decoder layer. 24

3.3 The ResNet-18 pre-trained on ImageNet (left) and its corresponding layers high-

lighted in yellow in the Depth-CVAE (right). 25

3.4 Top row: A grayscale underwater image (left) with gradients along x-direction

(middle) and y-direction (right). Gradients are approximated by finite differences.

Bottom row: Canny edges detected on I (left), aleatoric uncertainty of model on

I (middle) and canny edges detected on uncertainty map (right). 26

viii

eelume.com

3.5 Two possible ways of implementing multi-scale loss, illustrated with a U-Net for

simplicity. 28

3.6 Detected ORB features (left) and their corresponding depth values (right). 29

3.7 Two possible ways of adding auxiliary sparse depth, illustrated with a U-Net for

simplicity. 30

3.8 Baseline architecture for the multi-view Depth-CVAE. 31

3.9 Three consecutive images taken from the VAROS dataset, skipping three inbetween

images to ensure enough motion. 32

3.10 Autoencoder pre-trained on KITTI (left) and its corresponding layers highlighted

in yellow in the multi-view Depth-CVAE. 33

3.11 Different cases that give invalid geometric errors between two views. 34

3.12 Depth-CVAE with subsequent refinement by a separate depth refinement network. 36

4.1 Two examples (top and bottom row) from the VAROS dataset. 37

4.2 Examples from the training set (left) and test set (right). 38

4.3 Results from the baseline Depth-CVAE using RGB as input. From left to right: RGB

image, ground truth depth, predicted depth and uncertainty of predicted depth.

Brighter areas indicate higher values. 40

4.4 Results from the baseline Depth-CVAE using grayscale as input. From left to right:

Grayscale image, ground truth depth, predicted depth and uncertainty of pre-

dicted depth. Brighter areas indicate higher values. 41

4.5 Point clouds generated by the depth maps in Figure 4.3 from the baseline Depth-

CVAE using RGB as input. 41

4.6 Comparison of the convergence and performance using the baseline, SceneNet

RGB-D transfer learning and ImageNet transfer learning. 43

4.7 Comparison between using edge-aware smoothness and the proposed uncertainty-

aware smoothness as a geometric prior. 44

4.8 Results from the baseline multi-view Depth-CVAE. From left to right: Grayscale

image, ground truth depth, predicted depth and uncertainty of predicted depth.

Brighter areas indicate higher values. 47

4.9 Point clouds generated by the depth maps in Figure 4.8 from the baseline multi-

view Depth-CVAE. 47

4.10 Comparison of the convergence and performance between the baseline and mo-

tion filter pre-trained baseline. 49

B.1 BasicBlock: a residual connection with two convolutional layers consisting of 3×3

filters and batch normalization. 60

E.1 Additional results from the baseline Depth-CVAE with RGB input. 64

E.2 Additional results from the baseline Depth-CVAE with grayscale input. 64

E.3 Additional results from the VAROS train set (top) and test set (bottom). From

left to right: RGB image, ground truth depth, predicted depth and uncertainty of

predicted depth. Brighter areas indicate higher values. 65

E.4 Losses and metrics during training for the baseline Depth-CVAE with RGB input.

B is the uncertainty map predicted by the model. 66

ix

List of Abbreviations

APS Average performance score

ARD Absolute relative difference

AROS Autonomous Robots for Ocean Sustainability

AUV Autonomous underwater vehicle

CNN Convolutional neural network

CVAE Conditional variational autoencoder

KL Kullback-Leibler

LOGRMSE Root mean squared log error

MAP Maximum a posteriori

RMSE Root mean squared error

SFM Structure from motion

SGVB Stochastic gradient variational bayes

SLAM Simultaneous localization and mapping

SRD Squared relative difference

VAE Variational autoencoder

VSLAM Visual simultaneous localization and mapping

x

1 | Introduction

Autonomous robots have in recent years demonstrated increasingly complex capabilities for a

variety of tasks, both previously and currently performed by human operators. Aiming to close

the gap between humans and robots, the robotics community incrementally makes technological

advancements towards a future where robots replace humans in everyday tasks, but importantly

also in dangerous and harsh environments with a high risk to human lives. The Autonomous Ro-

bots for Ocean Sustainability project aims to replace human operators in underwater operations,

automating tasks such as underwater visual inspection, detection and surveying of pipelines, fish

farms and oil and gas facilities. The visual perception of a robot plays a vital role for its working

condition in whatever environment it is placed in, much like a human’s, and is commonly used

to both map the surroundings and localize the robot in its surroundings, the two being highly

interconnected. Mapping the environment is therefore an essential part of any robot’s percep-

tual system. In this work, the focus is on developing full (dense) maps of underwater scenes,

reconstructing the complete geometry by sensory information, in this case, from a monocular

camera.

1.1 Motivation

In 2019, the Norwegian University of Science and Technology launched a research project on sus-

tainable exploration and utilization of the world’s oceans called Autonomous Robots for Ocean

Sustainability (AROS). This project aims to address and solve challenges relating oceans and how

we use them to issues such as global warming, in addition to sustainable energy consumption

and harvesting of resources like food and minerals for an ever-increasing global population. As

the project name suggests, these sustainability goals will be achieved by employing autonomous
robots to replace humans or remotely operated vehicles in underwater operations. Central to

the fulfillment of AROS is, therefore, the design and implementation of autonomous underwa-

ter vehicles (AUVs) with perceptual, navigational and manipulable capabilities that satisfy the

constraints of the project.

Among these capabilities, the perceptual system of an AUV is perhaps most affected by the

harsh and difficult underwater environment. Perceiving sensors like LiDAR, radar and many

other electromagnetic sensors fail due to the sensing signals being absorbed in water, and ac-

curate sonars pose threats to marine life due to the high-frequency sound waves. Lack of visible

natural light makes a challenge for cameras, requiring artificial light to provide sufficient illu-

mination of the scenes. An example is seen in Figure 1.1, where an AUV uses headlights for

inspecting the underwater environment. However, the strength of cameras is that both contex-

tual and geometric information can be retrieved by the images they capture. In Figure 1.2, an

1

Figure 1.1: Inspection of underwater structures using the Eelume robot. Image courtesy: eelume. com .

(a) Underwater RGB image. (b) Ground truth depth map.

(c) 3D geometry represented as a point cloud.

Figure 1.2: Synthetic underwater structure visualized by three different representations.

2

eelume.com

underwater image is captured by illuminating the scene, and the 3D geometry of the scene can

subsequently be estimated from the image. This provides a measure of proximity, namely the

depth of the scene, in addition to cues and semantics from the image itself. Combined, as shown

in Figure 1.2c, the result is a more information-rich structure than other sensors can capture.

Note that this structure is generated from artificial data and not estimated from the image.

The generation of the 3D structure of a robot’s surroundings is referred to as mapping and

is crucial for a robot to act correctly in its environment. It is thus important for external tasks

but also to enable autonomy itself. In visual simultaneous localization and mapping (VSLAM),

the robot cannot localize itself without concurrently mapping. Subsequently, under guidance,

navigation and control, the robot’s location must be known, and thereby also the map. For the

robot to move safely in its environment, it must also detect and avoid obstacles in its path. These

are just some examples of why mapping is necessary for autonomy, not to mention external

functions such as surveying, inspection and intervention of underwater structures.

The greatest challenge with using cameras is estimating the geometry from the images they

take. In contrast to other proximity sensors, the depth of the scenes is not measured directly and

must be reconstructed using some computational algorithm, usually utilizing multiple views. It is

common to classify structure estimation problems as either sparse or dense, where sparse methods

only estimate a subset of points in the scene and dense methods estimate all points in the scene.

For the sole purpose of mapping, it is clear that a dense reconstruction is desired, as a sparse

geometry will not give sufficient information for tasks such as visual inspection and collision

avoidance. A challenge with dense methods, however, is that they are usually direct, meaning

they operate on image intensity values directly. An assumption for most of these methods is

photometric consistency between views, namely that the intensity value of a pixel viewing a

point in one view should be the same as the corresponding pixel viewing the same point in

another view. This is an approximation to the real world, which holds for many above-water

scenarios, but fails underwater. Figure 1.2a shows one of the failure modes, where the artificial

illumination from the robot gives a non-uniform scattering of light in the image. Traditional,

model-based methods will therefore typically fail underwater without additional modifications

to the algorithms.

With the recent development in deep learning, powerful new models capable of estimating

dense depth from single views have emerged, motivating their use in the otherwise difficult

underwater environment. The deployment of deep learning in this scenario has especially two

motivating reasons:

• Deep learning models can estimate dense depth from single views, enabling monocular

setups in AUVs with tight physical constraints that do not allow stereo configurations.

• Deep learning models may learn photometric relationships between photometrically incon-

sistent views, enabling multiple view methods.

This work will, therefore, investigate monocular dense depth estimation in underwater environ-

ments using deep learning.

1.2 Problem description

The objective of this work is rooted in the objective of AROS, and more specifically, investigating

methods for densely mapping the environment of an AUV using monocular cameras. The current

3

state-of-the-art estimates the complete geometry by stereo vision, often relying on the absence of

photometric and geometric distortions, but many robots operate in conditions that prohibit both

stereo configurations and the assumption of no distortions. Methods based on deep learning

have recently shown promise for above-water monocular depth estimation but have yet to be

trusted in more visually harsh underwater environments. The following is an extension of the

author’s previous work [1], and the subtasks considered in this follow-up are, therefore:

1. Propose methods and modifications for improving depth estimation performance on data

realistically relating to the targeted underwater environment.

2. Implement the proposed methods and modifications.

3. Test and verify the implementation on relevant datasets.

Considerations such as real-time performance and machine-specific implementation will not

be investigated to limit the scope of the thesis. Additionally, backed by the conclusion of [1],

actual underwater data will not be considered or reflected on in this work, as there is currently

no underwater dataset that provides the necessary ground truth depth. Self-supervised methods

may operate even in these cases, but the photometric and geometric distortions in underwater

data render these methods futile. The scope of verification and testing is, therefore, limited to

artificial environments, and the methods are limited to supervised methods.

1.3 Contributions

The contributions of this thesis are in summary:

• The uncertainty-aware smoothness as an improvement on the commonly used edge-aware

smoothness.

• Multi-scale sparse depth for improving the integration of auxiliary sparse depth in depth

estimation networks, compared to other established methods.

• Motion filter learning for improving the convergence and learning of spatiotemporal 2D

convolutional neural networks.

• The depth-conditioned variational autoencoder, as an improvement on variational autoen-

coders conditioned on uncertainty for depth estimation.

• An evaluation of the VAROS Synthetic Underwater dataset for deep learning-based meth-

ods.

Additionally, the source code for all developed methods is made public at

https://github.com/andersfagerli/Depth-CVAE.

1.4 Thesis outline

Chapter 2 presents background theory and related work, defining some of the necessary notation

and formulas for later use. In Chapter 3, the proposed methods and improvements for deep mon-

ocular depth estimation are presented, with results and discussion for all experiments displayed

in Chapter 4. Chapter 5 concludes the thesis, with remarks on possible further work.

4

https://github.com/andersfagerli/Depth-CVAE

2 | Background

This chapter presents the necessary background theory and details for going forward in sub-

sequent chapters. Preliminary theory on machine learning and deep learning is skipped for

brevity, and the reader is assumed to have some knowledge of basic theory related to neural

networks, and especially convolutional neural networks (CNN), so only specifics relevant for the

chosen architecture are presented here. First, a brief description relating depth to cameras and

the world is given, only providing the necessary details for later use. Then, a more detailed

background theory on the implemented architecture is described. Methods to evaluate a deep

learning model’s uncertainty are then presented before some common performance metrics for

depth estimation are given. Finally, the necessary background is rounded off with the related

work in the literature.

2.1 Camera geometry

The following relates depth to the three-dimensional geometry of the world and how a camera

might use it for capturing images of scenes and subsequently capture scenes from images. Most

of the presented theory is based on [2], with notation borrowed from [3].

2.1.1 3D geometry

The world as we know it is a three-dimensional physical space, most commonly represented

mathematically as Euclidean space, with each point located by its Cartesian coordinates. Denot-

ing a point in the world by X, its coordinate vector x ∈ R3 represents the point’s displacement

from some coordinate frame F . As the location is relative to the frame, the frame and point must

be specified by denoting that, e.g., xa belongs to frame a, Fa.

Another useful representation is the projective space, translating to the later-described cam-

era model, where homogeneous coordinates describe the projection of 3D points on a plane. If

a Cartesian coordinate vector x = [x y z]T, then its homogeneous representation in projective

space is x̃ = λ[x y z 1] ∈ P3, where λ is some scaling factor. Homogeneous coordinates inhabit

useful properties for projective geometry and will see usage for simplifying transformations and

camera projections.

When observing the world from multiple frames, it may be necessary to know how these

frames are positioned and oriented relative to each other. It is, for example, common to have a

fixed world frame for representing the world and a local coordinate frame representing a camera

moving in this world. When the camera observes points in its local frame, it may be of interest to

transform these into the world frame, requiring the position and orientation of the camera with

5

(a) The point X expressed by xa and xb in Fa and Fb,
respectively, with the pose Tab of Fb relative to Fa.

(b) The point X being projected onto the image planes Ia
and Ib at pixels ua and ub, respectively.

Figure 2.1: The 3D geometry in Euclidean space (left) and the projection of 3D points into 2D image coordinates (right).

respect to the world. The pose

Tab =

[
Rab taab
01×3 1

]
∈ SE(3) (2.1)

is a homogeneous transformation matrix that describes the rotation Rab ∈ SO(3) and translation

taab ∈ R3 from Fb to Fa, where SE(3) and SO(3) are the special Euclidean and special orthogonal
Lie groups in 3D, respectively. The transformation in (2.1) can then be used to transform points

from one frame to another, as

x̃a = Tabx̃
b. (2.2)

In Figure 2.1a, two frames and their relative pose is shown, which can be used to transform xb

into Fa by (2.2). Note that the coordinate vectors in (2.2) are homogeneous, but the mapping

to and from Cartesian and homogeneous coordinates for our purposes is simply

x̃ = [x y z 1]T 7→ x = [x y z]T, (2.3a)

x = [x y z]T 7→ x̃ = [x y z 1]T. (2.3b)

2.1.2 The perspective camera model

The perspective camera model, also called the pinhole model, describes the relationship between

3D points in the world and their corresponding projection onto the image plane of a camera, and

is one of several possible models for a camera. Generally speaking, a camera projection is a

mapping π : R3 → Ω that transforms 3D points in the camera frame to pixels u ∈ Ω in the image

plane,

u =

[
u

v

]
= π(x). (2.4)

Figure 2.1b shows two cameras viewing the same 3D point X, and the respective projections

onto each image plane. Inversely, the backprojection is a mapping π−1 : Ω × R+ → R3 that

transforms pixels back to 3D points,

x =

xy
z

 = π−1(u, z), (2.5)

6

Figure 2.2: The perspective camera, projecting a point x = [X Y Z]T through the projective center of the camera and onto
the image plane I located at z = −f , where f is the focal length of the camera. The projective center has pixel coordinates
u = cx and v = cy in the image plane.

which also requires the depth, z. The exact forms of (2.4) and (2.5) for the perspective camera

will be presented shortly.

Same as for the homogeneous representations of 3D geometry, a 2D Cartesian vector may be

mapped from and to its homogeneous representation by

ũ = [u v 1]T 7→ u = [u v]T, (2.6a)

u = [u v]T 7→ ũ = [u v 1]T, (2.6b)

which allows some useful properties for describing camera projections.

The full perspective camera model can finally be described using the notation above, and can

be seen more clearly in Figure 2.2. Denoting fx = fsx and fy = fsy to be the size of unit length

in horizontal and vertical pixels, respectively, where f is the focal length in metric units and sx
and sy are the pixel densities per metric unit, it follows by the similar triangles in Figure 2.2 that

u− cx
fx

=
X

Z
→ u = fx

X

Z
+ cx, (2.7a)

v − cy
fy

=
Y

Z
→ v = fy

Y

Z
+ cy. (2.7b)

The projections in (2.7) can more compactly be represented by using the camera intrinsic matrix,

K =

fx 0 cx

0 fy cy

0 0 1

 , (2.8)

where there is assumed no skew between the axes in the image plane, such that the perspective

camera projection function is

u = πp(x; K) =

[
1 0 0

0 1 0

]
K
x

z
. (2.9)

The perspective camera backprojection function can now be written using homogeneous pixel

coordinates as

x = π−1
p (u, z; K) = zK−1ũ. (2.10)

7

(a) The projection of a large cube on the image plane. (b) The projection of a small cube on the image plane.

Figure 2.3: Projections of two differently sized cubes intersect the image plane at the exact same location, due to the different
distances from the camera. Figure is inspired by [2].

Revisiting Figure 2.1b, it may be of interest to find corresponding pixels between two images

that view the same point in space. The warp function

ua = w(ub, zb,Tab) = πp(Tab · π−1
p (ub, zb)) (2.11)

maps a pixel in Ib to its corresponding pixel in Ia using the known transformation Tab between

the two frames, the intrinsics of the cameras and the depth of the point.

2.1.3 From 2D to 3D

This work aims to infer the three-dimensional geometry of the world from two-dimensional

images. The backprojection function (2.10), however, seems to solve this exact goal, as it takes a

2D pixel coordinate and maps it to a 3D point but does so using the points depth. In other words,

knowledge of the scene’s geometry must already be known before a pixel can be backprojected.

Although knowledge may come in many forms, it is clear that the scene can be reconstructed

once the depth is known. Going from 2D to 3D will therefore be analogous to finding the depth

of the scene.

This problem is perhaps one of the most researched within computer vision and is a so-

called inverse problem, that is, determining from pixels the causal points that produced them.

Being inherently ill-posed, the problem arises because one entire dimension is lost when going

from 3D to 2D, and today there is no model-based solution using one single image. Figure 2.3

illustrates one of the reasons why this problem perhaps is impossible to solve analytically, where

two cubes at different distances from the camera have the same projection in the image plane.

For every image, there is, in fact, an infinite number of plausible scenes, informally proven for

the example above, where the cube can vary its size and distance to the camera accordingly in

an infinite number of ways to produce the same image.

Today there are numerous approximations to the problem’s solution, where most fall under

the category of multiple view geometry. However, none truly solve it as they impose additional

assumptions or numerical approximations. The details of multiple view geometry are skipped

here, as they are not relevant for further discussion, but it should be noted that it is the estab-

lished way of estimating the scene from images. A good starting point for more on multiple view

geometry is [2].

Instead of going down the road of multiple view geometry, this work focuses on estimating

depth from single views. Notice that the phrasing of the problem has turned to estimation rather

than some analytical solution. As a hypothesis, let there be some (unknown) function f : R→ R3

8

that maps a pixel value to a valid 3D point,

x = f(I(u)), (2.12)

here using monochrome images as an example. Mark the difference from (2.10) in that (2.12)

is not dependent on depth, and solely maps a pixel value to a 3D point. The goal is to find some

approximation, g(I(u)), such that

x̂ = g(I(u)) ≈ f(I(u)). (2.13)

Although more traditional model-based ways of finding the approximation may exist, recent

years have seen that methods based on machine learning find this approximation to an adequate

extent, where deep convolutional neural networks are typically used as g(·). Although limited to

a restricted domain of scenes, not a one-size-fits-all solution, they learn mappings in incredibly

harsh environments where traditional methods typically fail due to broken assumptions. Varying

illumination, non-Lambertian surfaces and other photometric or geometric distortions are typical

for scenes where methods based on multiple view geometry fail, but deep learning does not. In

combination with the ability to satisfy (2.13) without any prior knowledge of the scene, this

makes deep learning suitable for the problem at hand.

2.2 Autoencoders

Autoencoders have become a standard for fine-grained classification and regression tasks, such

as semantic segmentation and depth estimation. They typically consist of a contracting path,

called the encoder, and an expanding path, called the decoder. The encoder shares the structure

of typical classification networks[4]–[6]. It is used to capture global context, while the decoder

is used for enabling fine-grained predictions, often in the same resolution as the input. The

problem is that local context, or localization of high-resolution features, is lost in the contracting

path, giving coarse predictions. A common approach to solving this is to combine feature maps in

the contracting path and the feature maps in the expanding path. This was popularly introduced

in [7] for segmentation, but already in [8] an autoencoder-like CNN for depth estimation was

used in the same manner. The most prevalent implementations using this structure for depth

estimation are [8] and [9]. Most of this section is taken from the author’s previous work, [1].

2.2.1 Vanilla autoencoders

A vanilla autoencoder is typically used to learn data encodings and not for inference directly.

An example of an autoencoder implemented as a CNN is shown in Figure 2.4a. The encoding,

typically called the latent representation, is a lower-dimensional feature that can be interpreted

as a compressed version of the input. This is useful for reducing the number of features that

describe the data, but this is in the domain of dimensionality reduction and not directly helpful

in inferring depth from images. As it aims to encode the data, it is trained on reconstructing the

input at the output, minimizing the reconstruction loss, giving an encoding that can be decoded

into the original data. This is not the aim in this particular chapter and will therefore not be

explained further here, but is revisited in Chapter 2.2.2 where it is of more relevance.

Autoencoders are commonly used for fine-grained predictions, either for classification or re-

9

OutputInput Encoder Decoder

(a) Vanilla autoencoder composed of an encoder and a
decoder.

OutputInput Encoder Decoder

Concatenation

(b) Autoencoder with connections between the encoder
and decoder for fine-grained predictions.

Figure 2.4: Graphical representations of CNN-based autoencoders.

Encoder Decoder

Conv

Copy and
concatenate

(a) Concatenation of feature maps.

Encoder Decoder

Copy
and add

(b) Addition of feature maps.

Figure 2.5: Different connection types between encoder and decoder.

gression. This is partly possible due to the expanding path in the decoder, but also because high

dimensional features from the encoder can be added to the decoder, as shown in Figure 2.4b.

This is usually done by concatenating feature maps channel-wise in the decoder, as displayed

in Figure 2.5a. This increases the number of channels in the respective decoder layer, and a

subsequent convolution is usually performed to reduce the channels afterward, producing the

final decoder feature map. An alternative is to instead add feature maps, as in Figure 2.5b. The

connections effectively give the decoder more information about the features of the input, and

by connecting higher-dimensional feature maps, more fine-grained information is retained in the

decoder.

2.2.2 Variational autoencoders

First introduced by [10], and later adapted for depth estimation by [11], the variational autoen-

coder (VAE) adds a variational component to the previously described autoencoder architecture

to enable generation of new data. The VAE is originally rooted in variational inference for prob-

abilistic models and not within deep learning directly, but is often implemented by a neural

network. The following chapters will therefore describe the VAE from a probabilistic perspective,

but with emphasis on the practical implementation using neural networks. Finally, it is shown

how a VAE can be used for estimating depth from monocular images, with the crucial properties

it inhabits for further dense structure from motion (SfM) and VSLAM.

10

(a) Bayesian network of the model. Solid lines are
the generative model, pθ(x|z) and pθ(z), while dashed
lines are the variational approximation qφ(z|x). Figure
is inspired by [10].

Output Latent variableInput

Encoder Decoder

(b) Model implemented as a CNN using the autoen-
coder architecture, with distributions corresponding to
encoder, latent variable and decoder.

Figure 2.6: Different graphical representations of the directed probabilistic model under consideration.

Variational inference with intractable latent posteriors

The motivation of [10] is to solve inference problems that involve directed probabilistic mod-

els with latent variables whose posterior distribution is intractable. For observable variables x

and latent (unobservable) variables z, the described model will contain probability distributions

pθ(z|x), pθ(x|z), pθ(z) and pθ(x), all parameterized by the model parameters θ. In the context

of data generation, a new data point x is sampled from the distribution pθ(x), so in this case the

objective is to find pθ(x). Using the law of total probability,

pθ(x) =

∫
pθ(x|z)pθ(z)dz, (2.14)

the latent variable z can be used to infer knowledge of x. The question is now how to find the

correct latent distribution and mapping from z to x, and how to solve the (generally intractable)

integral in (2.14). The idea is to sample z that produce x, using some distribution pθ(z|x) to

give the z that are likely under x. Using Bayes’ rule,

pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)
, (2.15)

it is seen that this distribution in the general case is intractable to solve, as it includes the intract-

able (2.14). Variational Bayesian methods solve this by the approximation qφ(z|x) ≈ pθ(z|x),

parametrized by φ, where the aim is to find a distribution that is close to the intractable posterior.

This is typically done by finding the parameters φ that minimize the difference between qφ(z|x)

and pθ(z|x). A graphical representation of the model can be seen in Figure 2.6a.

Relating the above to neural networks, qφ(z|x) is denoted as the encoder and pθ(z|x) as

the decoder in an autoencoder, with pθ(z) being the distribution z is sampled from. The latent

variable z is typically denoted as the code. Figure 2.6b shows how the distributions can be

implemented as a CNN. The parameters φ and θ are then the weights of the different layers, and

by training the network on a dataset, the optimal parameters are learned.

The stochastic gradient variational Bayes estimator

A model to sample new data from is desired, so the parameters that maximizes the marginal

likelihood pθ(x) must be found. Assuming there is some dataset X = {x(i)}Ni=1 of N i.i.d.

11

samples of some random variable x, the marginal log-likelihood is a sum over each individual

log-likelihood for every data point

log pθ(x(1),x(2), ...,x(N)) =

N∑
i=1

log pθ(x(i)). (2.16)

As shown in Appendix A.1, each data point can be written

log pθ(x(i)) = DKL

(
qφ(z|x(i))

∣∣∣∣∣∣pθ(z|x(i))
)

+ L(θ,φ,x(i)), (2.17)

where

DKL

(
qφ(z|x(i))

∣∣∣∣∣∣pθ(z|x(i))
)

= Eqφ(z|x(i))

[
log qφ(z|x(i))− log pθ(z|x(i))

]
(2.18)

is the Kullback-Leibler (KL) divergence, measuring the difference between two probability dis-

tributions, Eq[·] is the expectation w.r.t q, and L(θ,φ,x(i)) is the variational lower bound on

the marginal likelihood. Since the KL divergence by definition is always non-negative, it holds

that log pθ(x(i)) ≥ L(θ,φ,x(i)), which is why L(θ,φ,x(i)) is called the lower bound. As seen in

Appendix A.1, this bound can further be written

L(θ,φ,x(i)) = Eqφ(z|x(i))

[
− log qφ(z|x(i)) + log pθ(x(i)|z) + log pθ(z)

]
= −DKL

(
qφ(z|x(i))

∣∣∣∣∣∣pθ(z)
)

+ Eqφ(z|x(i))

[
log pθ(x(i)|z)

]
. (2.19)

The objective is to maximize (2.16), but since the KL divergence in (2.16) involves the unknown

pθ(z|x(i)), it cannot be maximized directly. Instead, the marginal log-likelihood is estimated

by the variational lower bound, as this involves distributions which can be controlled. The

distributions qφ(z|x), pθ(z) and pθ(x|z) must then be more specifically defined.

It is most common to set all distributions to Gaussians, specifically

qφ(z|x) ≡ N (µz(x),Σz(x)), (2.20a)

pθ(z) ≡ N (0, I), (2.20b)

pθ(x|z) ≡ N (µx(z),Σx(z)), (2.20c)

where Σz(x) is diagonal. For a neural network, as in Figure 2.6b, µz(x) will map the input to the

latent variable’s expectation, Σz(x) will map the input to the latent variable’s covariance, µx(z)

will map the latent variable to the expected output and Σx(z) is the output’s corresponding cov-

ariance, each defined by the network layers. Although the assumptions of (2.20) are simplifying,

they allow for efficient computations, and turn out to give good performance. Having defined

the distributions, the objective in (2.19) can more explicitly be defined.

The first term to define is the KL divergence. In the general case this must be estimated by

e.g. Monte Carlo methods[10], but using the distributions defined in (2.20) it takes the explicit

form

DKL

(
qφ(z|x(i))

∣∣∣∣∣∣pθ(z)
)

=
1

2

(
tr(Σz(x(i))) + µz(x(i))Tµz(x(i))− k − log |Σx(x(i))|

)
, (2.21)

as shown in Appendix A.2, where k is the dimensionality of z.

The second term is more problematic, as the expectation is over distributions that are yet to

12

be parametrized by θ and φ. It could be estimated by averaging log pθ(x(i)|z) for a sufficient

amount of samples L,

Eqφ(z|x(i))

[
log pθ(x(i)|z)

]
≈ 1

L

L∑
l=1

log pθ(x(i)|z(i,l)), (2.22)

but this is computationally expensive. The expectation is approximated by log pθ(x(i)|z(i)) in-

stead, where z(i) is a single sample corresponding to x(i). This is usually a poor approximation,

but since a batch of data is averaged over when training the model, the approximation holds.

Using the distributions defined in (2.20), it takes the form

Eqφ(z|x(i))

[
log pθ(x(i)|z)

]
≈ logN

(
µx(z(i)),Σx(z(i))

)
= −k

2
log 2π − 1

2
log |Σx(z(i))| − 1

2

∥∥∥x(i) − µx(z(i))
∥∥∥2

Σx
, (2.23)

where ‖·‖Σ is the Mahalanobis norm.

This in total gives the approximation of the variational lower bound,

L̃(θ,φ,x(i)) = −DKL

(
qφ(z|x(i))

∣∣∣∣∣∣pθ(z)
)

+ log pθ(x(i)|z(i))

= −1

2

(
tr(Σz(x(i))) + µz(x(i))Tµz(x(i))− k − log |Σz(x(i))|

)
+

(
−k

2
log 2π − 1

2
log |Σx(z(i))| − 1

2

∥∥∥x(i) − µx(z(i))
∥∥∥2

Σx

)
, (2.24)

called the stochastic gradient variational Bayes (SGVB) estimator. As the gradients are usually

computed over minibatches XM = {x(i)}Mi=1, where M ≤ N , the minibatch estimator is

L̃M (θ,φ,XM) =
1

M

M∑
i=1

L̃(θ,φ,x(i)). (2.25)

The optimal parameters, and thus the distributions, can then be found by maximizing (2.25) for

a sufficient amount of minibatches M , as an approximation to (2.16).

A problem when calculating the gradients of (2.25) is that there is a random sampling step

in the calculation of L̃(θ,φ,x(i)), namely sampling z(i) from qφ(z|x(i)). This has no gradient, as

it is sampled, and the solution is to reparameterize z(i) by the differentiable transformation

z(i) = µz(x(i)) + Σ
− 1

2
z (x(i)) · ε, (2.26)

where ε ∼ N (0, I). The random sampling is now in the auxiliary noise variable ε, and the

gradient of z(i) can be taken w.r.t. the parameters. Note that (2.26) is just another way of

writing z(i) given from (2.20a), as E[z(i)] = µz(x(i)) and Cov(z(i)) = Σz(x(i)).

13

The approximation to the log-likelihood (2.16) can finally be solved by finding

θ∗,φ∗ = argmax
θ,φ

1

M

M∑
i=1

L̃(θ,φ,x(i))

= argmax
θ,φ

1

M

M∑
i=1

−1

2

(
tr(Σz(x(i))) + µz(x(i))Tµz(x(i))− k − log |Σz(x(i))|

)
+

(
−1

2
log |Σx(z(i))| − 1

2

∥∥∥x(i) − µx(z(i))
∥∥∥2

Σz

)
= argmin

θ,φ

1

M

M∑
i=1

1

2

(
tr(Σz(x(i))) + µz(x(i))Tµz(x(i))− k − log |Σz(x(i))|

)
+

(
1

2
log |Σx(z(i))|+ 1

2

∥∥∥x(i) − µx(z(i))
∥∥∥2

Σz

)
, (2.27)

where the constant terms in (2.24) have been removed in the optimization. Note that this gives

the optimal parameters of the minibatch, which again is an approximation to the whole dataset.

Using a stochastic optimization method, e.g. stochastic gradient descent, minibatches from the

whole dataset can repeatedly be drawn to find the optimal parameters of the whole dataset.

Note also the two terms in (2.27) that are minimized, specifically the KL divergence and the

reconstruction error. The reconstruction error directly measures how well the model reconstructs

the data, which naturally should be as low as possible. In the case of Gaussian distributions, the

error is weighted by the uncertainty in the reconstruction, and log |Σx(z(i))| naturally acts as a

regularizer to ensure the error is not minimized by just driving the uncertainty to large values.

The KL divergence, as mentioned previously, is a measure of distance between two distributions,

in this case qφ(z|x) and pθ(z), both given in (2.20). As pθ(z) is fixed to a standard Gaussian

and not affected by the changing parameters θ and φ, the KL divergence forces qφ(z|x) close

to a standard Gaussian during the optimization. This is important to ensure that the model is

regularized sufficiently so that any code sampled from the latent space is decoded into something

meaningful. Otherwise, the reconstruction error would ensure (near) perfect reconstructions of

the data, but new data could not be sampled from the code, as the model is only trained to

reconstruct the data it has seen. The KL divergence ensures continuity and completeness, namely

that close points in the latent space should give similar output and that points sampled from the

latent space should give meaningful output.

The end result is the distribution pθ(x|z), which now can be use to sample new data from.

The sampling procedure is then:

1. Sample a latent value z from pθ(z).

2. Sample a new data point x from pθ(x|z).

Illustrated by the VAE in Figure 2.7a, the generation of new data only involves sampling the code

z and decoding it with the decoder pθ(x|z). The encoder is therefore not used at run-time.

A common problem when training VAEs using the objective in (2.27) is that the KL divergence

is quickly driven towards zero[12]–[14]. This intuitively does not sound like a problem, as

the aim, after all, is to minimize the objective, but it heavily regularizes the model from the

beginning. The result is a latent representation in which units are inactive during the rest of

the training, as they are pruned away before learning a useful representation, with minimum

gradient flow between the encoder and decoder. The solution is to penalize the KL term at the

14

Output CodeInput

Encoder Decoder

Run-time

(a) VAE with blocks used during run-time highlighted.

Output CodeInput

Encoder DecoderFeature
maps

Run-time
Concatenation

(b) CVAE conditioned on feature maps.

Figure 2.7: Possible CNN implementations of a VAE (a) and a CVAE (b).

start of the optimization, making the model encode as much useful information in z as it can

before it is regularized towards the prior, pθ(z). The new objective can be written

L̃(θ,φ,x) = Lrecon(θ,φ,x) + β · LKL(θ,φ,x), (2.28)

where Lrecon is the reconstruction loss, LKL is the KL divergence and β is the weight on the KL

divergence. A popular KL annealing schedule is to set β = 0 for the first couple of epochs, then

gradually increase it to β = 1.

2.2.3 Conditional variational autoencoders

A limitation of the VAE is that there is no control over the data it generates. If it is trained

on generating new numbers from the MNIST dataset[15], a random code will give a random

digit, which means specific digits cannot be generated. In the case of generating depth maps,

it becomes even worse, as a (pseudo) randomly drawn depth map would most likely give no

meaningful structure. The conditional variational autoencoder (CVAE)[16] solves this by mod-

eling a conditional distribution pθ(x|y), conditioned on some y. In the case of MNIST, one could

condition on the number to be generated, e.g. pθ(x|y = 3) for generating the number three. For

depth maps, it is more complicated, as a depth map should be generated for a given image, so

the CVAE needs to condition on this image. Instead of conditioning on the whole image itself,

one could condition on its deep features (typically extracted by a CNN), as shown in Figure 2.7b.

Here, the conditioning is implemented by concatenation, which effectively gives the network

information about what it should reconstruct.

The variational lower bound in (2.19) can be re-written (without individual samples x(i) for

notational simplicity) using the conditional distribution as

log pθ(x|y) ≥ L(θ,φ,x,y)

= −DKL

(
qφ(z|x,y)

∣∣∣∣∣∣pθ(z|y)
)

+ Eqφ(z|x,y) [log pθ(x|z,y)] , (2.29)

15

giving the SGVB estimator

L̃(θ,φ,x,y) = −1

2

(
tr(Σz(x,y)) + µz(x,y)Tµz(x,y)− k − log |Σz(x,y)|

)
+

(
−k

2
log 2π − 1

2
log |Σx(z,y)| − 1

2
‖x− µx(z,y)‖2Σx

)
. (2.30)

As seen from (2.30), the objective to be optimized for the CVAE is exactly the same as for the

VAE in (2.27).

In practice, weighing the reconstruction error by the covariance of the prediction Σx(z,y) is

strictly not necessary, but often beneficial. After all, the output of interest for the VAE and CVAE

is the reconstruction itself (or rather the newly reconstructed data) and not how uncertain the

model is in its reconstruction. This is effectively done by setting Σx(z,y) = I, giving

L̃(θ,φ,x,y) = −1

2

(
tr(Σz(x,y)) + µz(x,y)Tµz(x,y)− k − log |Σz(x,y)|

)
+

(
−k

2
log 2π − 1

2
‖x− µx(z,y)‖22

)
,

which results in a mean squared error loss for the reconstruction. This does not require the model

to estimate Σx(z,y), but may give poorer results in not doing so. Otherwise, the uncertainty

must be estimated same as the reconstruction, and must be an additional output of the model.

CVAEs for depth estimation

Although these models originate and have their main use within the generation of data, re-

cent works have attempted to adapt them to the inference of data. Most notably, [11] used a

CNN-based CVAE for predicting depth from individual grayscale images. This work was a step

towards a new direction of possible SLAM and 3D reconstruction methods, mainly contributed

by the compact representation of depth that the code in the CVAE provides. This is effectively

a compressed representation of a depth map, with far fewer parameters and has the benefit of

allowing joint optimization of pose and map in dense VSLAM and SfM. However, the accuracy in

the predicted depth maps, particularly how well the code and decoding capture the full structure,

is a limitation of this method. Compared to some of the state-of-the-art methods for monocular

depth estimation[17], [18], neither of the CVAE-based methods[11], [19]–[21] seem to produce

comparable results, indicating that the code (and how well it is decoded) may be a bottleneck.

Research into improving the prediction may therefore be valuable for establishing the CVAE in

the fields of VSLAM and 3D reconstruction.

Following the work of [11], a CVAE for depth estimation may be implemented by conditioning

on the deep features of the intensity image (e.g. grayscale or RGB). The simplest solution is to

extract the first layers of a classification CNN and concatenate them with the features in the

encoder and decoder of the CVAE, as shown in Figure 2.8. This architecture consists of two

streams: the top stream for extracting features of the input and the bottom stream for encoding

and decoding depth conditioned on the features.

Properties for dense SfM and VSLAM

One of the main reasons for using a CVAE for depth estimation is its useful properties in dense

SfM or VSLAM. This typically involves the joint optimization of both pose and map, which be-

16

Depth CodeImage

Encoder DecoderFeature
maps

Run-time

Concatenation

Figure 2.8: CVAE conditioned on deep features from a contracting CNN.

comes infeasible (at least in real-time) due to the large number of parameters the dense map

presents in the optimization. As shown in [11], the reduced parameter space of the code solves

this problem to some extent, making joint optimization of pose and dense map possible. There

is still a question of real-time performance and how much detail is lost when using the compact

representation of the code.

2.3 Uncertainty estimation

The powerful capabilities of deep learning models often come at the cost of losing explainability,

where we as humans have little understanding of how the model reasons or why it performs

better or worse for some data. Understanding what it does not know is sometimes more valuable

than understanding what it does know, especially for safety-critical systems such as the one

concerned in this work. Classifying methods often give normalized scores to each class, signaling

how confident the model is in its prediction, but this is not the case for regression models, and

one could argue it does not necessarily capture model uncertainty even for classification[22].

Bayesian deep learning approaches have recently been introduced to address this problem and

separate uncertainty into two types: epistemic and aleatoric uncertainty. The theory and notation

in the following sections are derived from [22].

2.3.1 Epistemic uncertainty

Epistemic uncertainty is the uncertainty of the model itself, that is, the model parameters. It can

be referred to as the model uncertainty and can often be explained away given enough data.

This makes sense intuitively, as the model should get more confident as it is exposed to more and

more samples from the distribution of data.

A prior distribution is put over the model’s weights to evaluate the epistemic uncertainty, typ-

ically a standard Gaussian W ∼ N (0, I). Such models are denoted as Bayesian neural networks,

where the otherwise deterministic weights are replaced by distributions which can be averaged

17

over, instead of directly optimizing the weights. Denoting the input data as X = {x1, ...,xN}, the

targets as Y = {y1, ...,yN} and the random output of the model as fW(x), the aim is to maxim-

ize the model likelihood p(y|fW(x)). Given the data, the posterior over the weights p(W|X,Y)

then captures the set of probable model parameters. As for the variational autoencoder, Bayesian

neural networks need variational inference to calculate the otherwise intractable posterior, as

p(W|X,Y) =
p(Y|X,W)p(W)

p(Y|X)
(2.31)

involves the marginal p(Y|X), which cannot be evaluated analytically. Following variational

inference, an approximate distribution q∗θ(W) is instead fitted to the intractable posterior by

minimizing the KL-divergence. The objective to be minimized can then be written

L(θ,x,y) =
1

2σ2
||y − fŴ(x)||2 +

1

2
log σ2, (2.32)

where Ŵ ∼ q∗θ(W) and σ is homoscedastic aleatoric uncertainty, soon to be further explained.

The epistemic uncertainty can finally be found by the predictive variance, approximated by

Var(y) ≈ σ2 +
1

T

T∑
i=1

fŴi(x)TfŴi(x)− E[y]TE[y], (2.33)

where T is the number of sampled model weights. The predictive mean is usually modeled by

E[y] ≈ 1
T

∑T
i=1 fŴi(x), such that there is zero parameter uncertainty when all draws Ŵi take

the same value (as everything except σ2 cancels).

A problem with calculating epistemic uncertainty is the need for multiple samplings of the

model weights, each requiring a full forward through the network. This will inevitably not satisfy

real-time constraints in most applications, except for very small models. Epistemic uncertainty is

therefore not considered further here.

2.3.2 Aleatoric uncertainty

Where epistemic uncertainty captures uncertainty in the model, aleatoric uncertainty captures

it in the observations. Aleatoric uncertainty is further categorized into a homoscedastic and

heteroscedastic part, where homoscedastic uncertainty remains constant for different data and

heteroscedastic uncertainty is data-dependent. The latter is of most interest, as it allows the

model to reason on different parts of an image in the case of computer vision and assigns higher

uncertainty to regions that are likely to produce poor results.

Going back to MAP inference, where single values for the model parameters are found, the

aleatoric uncertainty is more easily learned as a function of the data. The objective is in this case

L(θ,x,y) =
1

N

N∑
i=1

1

2σ(xi)2
||yi − f(xi)||2 +

1

2
log σ(xi)

2, (2.34)

where σ(xi) is the aleatoric uncertainty for input xi, which is learned as a parameter together

with the rest of the model.

18

Depth Code

Encoder DecoderFeature
maps

Run-time

Concatenation

UncertaintyImage

Figure 2.9: CVAE conditioned on deep features from the expanding path of a U-Net [7], additionally estimating the aleatoric
uncertainty of the prediction.

Aleatoric uncertainty for CVAEs

As the SGVB estimator in (2.30) naturally incorporates uncertainty, the uncertainty of the depth

can be estimated as well. This is useful for weighing the reconstruction, as the model will put

large weights on areas it struggles to reconstruct and small weights on areas it has no problem

with, ultimately letting the model focus on well-posed areas. The uncertainty is also useful for

further inferring information about the estimated depth, as it enables the possibility of choos-

ing which estimates to use and which not. As the uncertainty map (uncertainty of each pixel)

is a dense prediction, it is typically estimated by an expanding path for enabling fine-grained

predictions, as in Figure 2.9.

2.3.3 Confidence propagation

The aforementioned ways of reasoning about a model’s uncertainty are rooted in a probabilistic

framework. However, the work of [23] is an example of a more engineered way of handling

uncertainty. Although this is targeted at sparse data with missing values, the model outputs

confidences to densely regressed values and more closely resembles the normalized scores of a

classifier.

A confidence map is assigned to the input data, which reflects which values should be trusted

and not. For e.g. sparse data, the missing values should have low confidence. This confidence

map is then concatenated to the data and fed to the network. A problem with normal convolu-

tions, in this case, is that all channels eventually get mixed, so the confidence is lost in deeper

layers. The authors propose normalized convolutions to fix this, which operate on the confid-

ences separately and use confidences continuously in the network to weigh the feature maps.

In the final layer, the network outputs a final confidence map with the regressed values, which

acts as an uncertainty map. This way of modeling uncertainty has the strength of being robust

to missing values but does not have a strict probabilistic interpretation and will therefore not be

further considered in this work. It also requires more extensive modifications to the layers to

propagate confidences correctly, which was not prioritized.

19

2.4 Evaluation metrics

When evaluating the quality of a predicted depth map, one can use qualitative and quantitative

measures. However, quantitative metrics are most common for comparing methods and serve as

the final indication of performance.

A depth map is easily verified qualitatively by humans, as we naturally infer depth from

visible light and the semantics of a scene. To some extent, the estimated depth can be verified to

be correct, but it is difficult to say to what degree. The fine-grained structure is also difficult to

assess from a 2D depth map but much easier from the corresponding 3D point cloud. Therefore,

the depth map will be projected out into the world when evaluated qualitatively.

There are several commonly used metrics for evaluating quantitatively, and most research

in this area uses multiple different metrics for comparison against state-of-the-art. The most

common are:

• Root mean squared error (RMSE) -
√

1
N

∑N
i=1(y − y∗)2

• Root mean squared log error (logRMSE) -
√

1
N

∑N
i=1(log y − log y∗)2

• Absolute relative difference (ARD) - 1
N

∑N
i=1 |y − y∗|/y∗

• Squared relative difference (SRD) - 1
N

∑N
i=1(y − y∗)2/y∗

• Accuracy - max(y
y∗ ,

y∗

y) = δ < thr

where y is predicted depth, y∗ is ground truth depth and thr is a threshold for accuracy, typically

chosen as 1.25, 1.252 and 1.253. Note that lower values indicate better performance for all

metrics except for accuracy. When comparing different models, it is useful to have some overall

performance metric. This work proposes a new metric, the average performance score (APS),

which scores a method relative to the best performing models for each metric, giving the relative

overall performance. The APS is defined as

APS =
1

ME

ME∑
i=1

mi

mi,min
+

1

MA

MA∑
i=1

mi,max

mi
, (2.35)

where ME is the number of error metrics used and mi,min is the value of the best performing

model for the specific error metric, and MA is the number of accuracy metrics used and mi,max

is the value of the best performing model for the specific accuracy metric. The APS is defined in

the range [1,∞), where an APS of 1 is the best possible.

2.5 Related work

Depth estimation from images has been a heavily researched topic for numerous years, early

on, mainly by inferring the scene’s structure from the motion of the camera or using known

relative poses between the cameras. In the last decade, methods based on deep learning have

shown promising results in a large variety of computer vision-related tasks, with depth estimation

20

among them. Monocular depth estimation has been of most significant focus, as estimating depth

from individual images is ill-posed and impossible without geometric priors of the scenes[2] and

is also the focus of this work. Therefore, the reviewed and related work is limited to monocular

methods that utilize deep learning to estimate depth.

Eigen et al.[8] were among the first to use a pure CNN-based architecture for depth es-

timation. Global context and cues for a single image were extracted by a deep contracting

path, giving a coarse prediction of the depth in the scene, which was then fused with a finer,

higher-resolution path to refine the coarse depth map into a fine-grained map that preserves

local details. The method achieved state-of-the-art performance on popular datasets and set the

foundation for later CNN-based depth estimation methods to come. The key contribution is per-

haps how they preserved local details with global context by concatenating the coarse depth map

with finer feature maps, sharing the same conceptual idea as the later introduced and popularly

used U-Net[7].

Laina et al.[9] used the residual connections of [6] to predict depth from a very deep CNN,

using the typical contracting path for calculating deep features, and a subsequent expanding path

with upsampling to get a dense map of higher resolution. These autoencoders and are frequently

seen in dense prediction tasks such as depth estimation or segmentation.

In Wofk et al.[24], a combination of the feature concatenation in [8] and autoencoder struc-

ture of [9] was used, with a focus on achieving real-time performance on smaller platforms.

Computational complexity was lowered by fusing feature maps through addition rather than

concatenation and pruning away redundant parameters.

Different from the previously described methods, Ranftl et al.[17] used a Transformer for

predicting depth, relying on the attention-mechanism instead of convolutions to extract global

context. The architecture was, however, similar to an autoencoder and fused features from the

encoder with convolutional layers in the decoder, same as e.g. [24]. The model outperformed all

others on the popular datasets and is one of the current state-of-the-art methods for single-view

depth estimation.

Generative models have also shown competing performance in inference tasks such as depth

estimation, even though they are primarily targeted at data generation. Bloesch et al.[11] used a

variational autoencoder conditioned on the deep features of the images, generating depth maps

from a compact latent representation. An essential contribution is the latent representation itself,

being a compressed and lower-dimensional representation of the depth maps, which exhibits

beneficial properties for further dense 3D reconstruction or VSLAM.

The works described have predicted depth from individual images and have not used inform-

ation from multiple views. In Godard et al.[25], temporally adjacent frames were used to train

an autoencoder in a self-supervised manner, using photometric errors as a loss function rather

than ground truth depth values. Similarly, in Yang et al.[26], two subsequent autoencoders were

used to predict the disparity maps instead of depth directly. By training on stereo images, a

virtual stereo term was adopted to improve the accuracy of monocular odometry.

Spatiotemporal networks (sometimes referred to as multi-view stereo) have recently shown

promise for monocular depth estimation from videos, where Yao et al.[27] used a 3D convo-

lutional network to extract both spatial and temporal features from multiple views. Although

computationally expensive, these networks are among the current state-of-the-art.

21

3 | Method

This chapter introduces the chosen deep learning architecture and methods used for monocular

depth estimation. The methods are divided into two main categories: single-view and multi-

view methods. Although many modifications to the baseline architecture are presented for the

single-view case in Chapter 3.2, they are just as applicable to the multi-view setting. The goal of

this work is not to find a best-performing network with fine-tuned hyperparameters and the like

but rather to experiment with more extensive changes and how they affect the performance for

depth estimation. The focus here is, therefore, on the modifications themselves.

3.1 Architecture

A CVAE based on [11] was chosen as a baseline for the depth estimation network, with back-

ground in the authors previous work[1]. The network, titled Depth-CVAE, has its general struc-

ture seen in Figure 3.1, but a more detailed description is given in Appendix B. The Depth-CVAE

consists of two main streams: a U-Net in the top stream for predicting the uncertainty in depth

estimates and a CVAE conditioned on the deep features of the U-Net in the bottom stream for

predicting depth.

The Depth-CVAE was implemented1 in PyTorch[28] using the framework of [29], and with

general architecture based on [11]. The encoder of the top stream is a ResNet-18[6] without

the final classifying layers, and each layer in the rest of the network adopts the same residual

connections for improving gradient flow. Fine-grained information is retained by concatenating

higher-dimensional feature maps between the encoder and decoder of the U-Net, and similarly

between the decoder of the U-Net and the CVAE.

Loss function

The traditional noise model in the framework of variational inference is Gaussian, but the Depth-

CVAE uses a Laplace distribution for modeling the noise,

p(x) =
1

2b
exp

(
−|x− µ|

b

)
, (3.1)

where b > 0 is referred to as the diversity of the distribution but in practicality is a measure of

uncertainty, and plays the exact same role as Σ in the Gaussian case. The resulting reconstruction

error is now an `1 loss, instead of `2, which has been shown to produce better results in computer

vision related deep learning problems concerning depth[9]. The final loss function can then be

1https://github.com/andersfagerli/Depth-CVAE

22

https://github.com/andersfagerli/Depth-CVAE

Depth CodeImage

Encoder DecoderFeature
maps

Run-time

Concatenation

Uncertainty

Figure 3.1: Graphical structure of the Depth-CVAE, with a U-Net in the top stream for predicting uncertainty and a CVAE
in the bottom stream for predicting depth. The input to the network is in this case a single RGB image, with corresponding
depth during training.

written as

L̃(θ,φ,x,y) = Lrecon(θ,φ,x,y) + β · LKL(θ,φ,x,y)

=
1

|Ω|
∑
u∈Ω

|x(u)− µx(u)|
B(u)

+ log (2B(u))

+ β · 1

2

(
tr(Σz(x,y) + µz(x,y)Tµz(x,y)− k − log |Σz(x,y|

)
, (3.2)

where x is the ground truth depth map, y is the image, B is the uncertainty map and u are the

pixel coordinates in the set of all pixels Ω with cardinality |Ω|.

Code

To reduce the number of parameters in the network, it is common to let µz(x) and Σz(x) share

layers. This is typically done by sharing all the convolutional layers before two separate fully

connected layers are used for each of them. A possible implementation of the code block is

shown in Figure 3.2. The covariance matrix is assumed to be diagonal, such that each element

of Σz in Figure 3.2 corresponds to each element in the diagonal.

The code is an encoded version of the ground truth depth image during training, but at run-

time, when the model predicts depth from an image alone, the code must be sampled from the

prior, pθ(z). As the prior is a standard Gaussian, it has a distinct peak at its expectation, called

the zero-code. Based on all training data, this geometric prior is the most expected to observe

and is therefore used at run-time. A code is thus not sampled but just chosen as z = 0.

23

CodeEncoder Decoder Fully connected
layer

Figure 3.2: Implementation of the code using neural networks. The final layer of the encoder is flattened and forwarded
through two separate fully connected layers that each make up the expectation and covariance of the code distribution. The
code z is then sampled using the reparameterization (2.26), and forwarded through one fully connected layer to generate the
first decoder layer.

3.2 Single-view depth estimation

Estimating depth from single views is the most heavily researched branch of depth estimation

within deep learning, much due to the ill-posed problem with traditional methods. This chapter

presents modifications and suggestions for further improving the performance of the chosen

architecture, solely relying on single views.

3.2.1 Baseline

The network displayed in Figure 3.1 and detailed in Appendix B serves as a baseline for com-

parison against experiments with further modifications. Despite being a straightforward CVAE,

the number of parameters in itself should give a good performing depth estimation network,

with a final count of 72M parameters. Excluding the encoder of the bottom stream, which is

not used at run-time, the network has 46M parameters. This baseline will remain relatively un-

changed in further experiments, such that the modifications themselves will indicate worse or

better performance.

RGB vs. grayscale images

A question going forward is whether to use RGB images or only their luminance component

as input to the network, essentially questioning the importance of color for reasoning on the

depth in a scene. It is known from image and video compression[30] that most information in

color images is contained in the luminance component, being a linear combination of the RGB

channels,

Y = 0.299R+ 0.587G+ 0.114B, (3.3)

and that it alone explains most variability in the data. A benefit of only using this component

is reducing input channels to the network, giving fewer parameters and faster inference while

possibly giving the same performance. In fact, [11] observe an insignificant decrease in accuracy

in their depth estimates when converting to grayscale, albeit on very different data than what

is considered in this work. Both RGB and grayscale images will therefore be considered in the

experiments.

24

Image Classes
Feature
maps Fully connected

layer

(a) ResNet-18 trained to classify images on the ImageNet
dataset.

Depth CodeImage

Encoder DecoderFeature
maps

Run-time

Concatenation

Uncertainty

Pre-trained
layers

(b) Depth-CVAE with a pre-trained encoder in the top
stream.

Figure 3.3: The ResNet-18 pre-trained on ImageNet (left) and its corresponding layers highlighted in yellow in the Depth-
CVAE (right).

3.2.2 Transfer learning

A common technique for boosting the performance of a machine learning task is to transfer

knowledge from a related domain into the targeted domain. This is especially the case if there is

a large amount of data in the related domain but not in the targeted domain, enabling the model

to generalize better. Knowledge is, in this case, the weights of the network, which by transfer

learning are directly transferred from the pre-trained network to the targeted network. Although

the end performance might not always be boosted, the training is typically much easier, starting

at a lower loss and with a steeper slope.

ImageNet transfer learning

As deep learning models related to computer vision often learn features in images, regardless

of what the network is predicting, it is common to use a network trained on a large corpus of

images, typically the ImageNet classification dataset[31], consisting of 3.2M images. Although

this pre-trained network is trained for classification, many of the layers will possibly share know-

ledge in the domain of depth estimation, specifically early in the pipeline with layers close to the

image. Only the encoder of the top stream of the Depth-CVAE is therefore initialized with pre-

trained weights, as shown in Figure 3.3. As the ResNet-182 used for transfer learning is trained

on RGB images, the model must also use RGB images as input.

SceneNet RGB-D transfer learning

A limitation with pre-training on ImageNet is that the data does not directly relate to depth.

Therefore, the transferred knowledge may only be used in the early stages of the pipeline. The

model should not only generalize well to different features and cues in images but also the

geometry of different scenes and objects. SceneNet RGB-D[32] is a synthetic but photorealistic

dataset consisting of 5M RGB-D images from indoor scenes with various objects. Since each

image has an accompanying depth map, a model can be trained to predict depth on this large

dataset and later transfer its knowledge to a targeted domain. A question is if the scenes and

2The pre-trained model is downloaded from https://pytorch.org/vision/stable/models.

25

https://pytorch.org/vision/stable/models

(a) Image I. (b) ∇xI. (c) ∇yI.

(d) Canny edges. (e) Aleatoric uncertainty. (f) Canny edges on uncertainty map.

Figure 3.4: Top row: A grayscale underwater image (left) with gradients along x-direction (middle) and y-direction (right).
Gradients are approximated by finite differences. Bottom row: Canny edges detected on I (left), aleatoric uncertainty of
model on I (middle) and canny edges detected on uncertainty map (right).

objects are relatable to the target domain and if the difference in scale poses difficulties in trans-

ferring knowledge, which may give even poorer convergence than when training without transfer

learning.

3.2.3 Uncertainty-aware smoothness

The local geometry of most scenes in the world is typically smooth, with neighboring points

highly correlated. This is a geometric prior one can take advantage of to aid the model in

predicting the geometry of an image, where one can enforce the model to make locally smooth

predictions. This is, of course, not always the case, and this prior fails especially at edges, where

there are depth discontinuities. A commonly used regularizer is the edge-aware smoothness

[18], [26], [33],

Lsmooth(D, I) =
1

|Ω|
∑
u∈Ω

|∇xD(u)|e−|∇xI(u)| + |∇yD(u)|e−|∇yI(u)|, (3.4)

where D is a depth map and I is the corresponding image. This regularizer penalizes areas with

a low image gradient, corresponding to areas that should be locally smooth and down-weighs

areas with a high image gradient. As edges usually have more significant image gradients, this

regularizer will approximate the edges by their gradients and, in theory, be aware of them.

This will, however, also down-weigh areas that are locally smooth but still have high gradients,

typically on texture-rich surfaces. This is typical for some underwater scenes, as seen in the top

row of Figure 3.4, where texture is even more significant than edges, and the prior in (3.4) may

therefore fail in these cases.

Instead of approximating edges by their gradients, an edge detector may be used on the

image. The Canny edge detector[34] is an old but popular edge detector, and applying it to

Figure 3.4a results in Figure 3.4d. Even though the image is smoothed by a Gaussian filter

before passing it to the edge detector, it is clear that many non-edges get detected as edges,

26

same as using image gradients, and canny edges are therefore not suited.

An observation from the results of the network on underwater data is that the uncertainty

of the model is high around edges and not so much on smooth surfaces, as seen in Figure 3.4e.

Leaving further discussion on the resulting uncertainty to Chapter 4, the takeaway here is that

the uncertainty map might be suited for edge detection, as the uncertainty along edges is sharp

while the uncertainty at surfaces is smooth. Applying the Canny edge detector on a smoothed

uncertainty map will then result in detected edges, where non-edges are filtered out because

they do not have high enough image gradients in the uncertainty map. The result can be seen in

Figure 3.4f, where only edges are retained. As the Canny edge detector outputs binary values (0

for non-edges and 1 for edges), the prior is changed to

Lsmooth(D,B) =
1

|Ω|
∑
u∈Ω

|∇xD(u)|(1− E(B(u))) + |∇yD(u)|(1− E(B(u))), (3.5)

here called the uncertainty-aware smoothness, where B is the uncertainty map, and E is the

edge-detector applied on B.

A possible problem with the uncertainty-aware smoothness is that not all edges are detec-

ted. The prior in (3.5) will ensure smooth geometry on all parts that do not contain edges, so

non-smooth parts of the scene will possibly be made smooth if their corresponding edges are not

detected. Also, as seen in Figure 3.4f, each edge is detected twice. This is because the uncer-

tainty at edges is more than one pixel wide, therefore having large gradients on each side. The

biggest disadvantage is that the detected edges are dependent on the estimated uncertainty of

the model, meaning that few edges will be detected if the model estimates low uncertainty, and

many non-edges will be detected if there is high uncertainty. The uncertainty-aware smoothness

loss should therefore not be active until the model outputs consistent uncertainty maps, typically

after several epochs.

The final loss function with edge-aware smoothness or uncertainty-aware smoothness is

L̃(θ,φ,x,y) = Lrecon(θ,φ,x,y) + β · LKL(θ,φ,x,y) + λ · Lsmooth(θ,φ,x,y), (3.6)

where λ is a penalty on the smoothness regularizer.

3.2.4 Multi-scale loss

It is common to evaluate the loss at multiple scales to aid deep learning models in gradually

constructing the output prediction. Similar to [35], predictor heads are placed at multiple feature

maps to make predictions from layers with lower resolution, which then contributes to the overall

loss. The goal is to make each layer learn weights that better relate to depth, not just the final

layer, constructing gradually from coarse to fine-grained depth maps. The number of parameters

in the predictor heads should, therefore, be as small as possible to ensure that the heads solely are

not learning to construct depth. The predictors will typically consist of a convolution for merging

channels, upsampling for matching the target size, and activation for the final prediction.

Along the lines of [18], Figure 3.5a shows one possible implementation, where predictors are

placed at several layers and output a depth map at each resolution. The loss is then calculated

and averaged for each prediction. Although many use 3 × 3 filters when merging channels, this

work will use 1×1 filters as a bottleneck to ensure as few parameters as possible. The depth maps

are then upsampled to the original image size before being passed through a sigmoid activation.

27

Predictor Predictor Predictor

DepthImage Feature
maps

Concatenation

(a) Multi-scale loss with predictions decoupled from sub-
sequent layers.

Predictor

Predictor

Predictor

DepthImage Feature
maps Concatenation

(b) Multi-scale loss with predictions concatenated with sub-
sequent layers.

Figure 3.5: Two possible ways of implementing multi-scale loss, illustrated with a U-Net for simplicity.

Figure 3.5b shows another possible implementation, e.g. used in [8] and [36], where the

multi-scale predictions are subsequently concatenated in the following layer, more tightly integ-

rating depth into the pipeline. This will, however, also increase the number of parameters and

inference time, in contrast to Figure 3.5a which does not add overhead during inference.

Evaluating the loss at multiple scales, the loss function becomes

L̃(θ,φ,x,y) =
1

S

S∑
s=1

Ls
recon(θ,φ,x,y) + β · LKL(θ,φ,x,y), (3.7)

where S is the number of output scales. A smoothness prior can also be applied on each output

scale, but should not penalize the lower scales as heavily, as these are coarse. Following [18],

the loss function at multiple scales with smoothness regularization is

L̃(θ,φ,x,y) =
1

S

S∑
s=1

Ls
recon(θ,φ,x,y) + λs · Ls

smooth(θ,φ,x,y) + β · LKL(θ,φ,x,y), (3.8)

where λs = 10−3 · 1
2s−1 .

3.2.5 Depth in the top stream

As the CVAE in Figure 3.1 concatenates feature maps from the top stream with its own, it is said

to condition on these feature maps. In this way, the conditioning variables provide information to

aid the network in its prediction, and variables better relating to what the model should predict

will perhaps condition it better. Since the top stream predicts uncertainty, the bottom stream is

conditioned on feature maps relating to uncertainty, which may not be optimal for predicting the

depth of a scene.

As an experiment, the top stream is changed to predict depth, and the bottom stream is

changed to predict both depth and uncertainty. Predicting depth in both the top and bottom

stream may seem superfluous, but the goal is to condition the bottom stream better by feeding

feature maps that relate more strongly to depth. Additionally, a possible weakness with the CVAE

in [11] is that uncertainty is predicted before depth and therefore not tightly coupled with it the

entire way. The SGVB estimator in (2.30) naturally incorporates uncertainty at the very end with

the final prediction, so estimating uncertainty together with depth follows the more probabilistic

framework of variational autoencoders.

28

(a) ORB features detected and marked in red. (b) Sparse depth at corresponding ORB feature locations.

Figure 3.6: Detected ORB features (left) and their corresponding depth values (right).

3.2.6 Auxiliary sparse depth

Using information from images alone is not the only way of reasoning about the depth of a

scene. Other sensors may be readily available, which signals serve as auxiliary input to the

model. Distance-sensing sensors are especially useful in this case, as they directly measure what

the network aims to model. However, most of these sensors fail underwater, so using depth

measurements from e.g. LiDAR and RGB-D cameras will not be possible. Acquiring depth estim-

ates from some other computer vision-based method is a possibility, but these estimates should

be close to the ground truth. Today, and especially underwater, this accuracy is usually obtained

by feature-based methods, which provide a sparse depth map. For example ORB-SLAM3[37]

computes depth at ORB features, giving a sparse geometric reconstruction of the scene, as seen

in Figure 3.6.

In [38] a sparse depth map is concatenated with its corresponding RGB image to add auxiliary

data for the prediction, improving over the baseline with RGB only. This is a straightforward way

of adding the sparse data, but it is not optimal. The sparse depth map contains values at a sparse

set of locations, and all other values are initialized to zero. As zero corresponds to some depth,

the invalid values will falsely indicate some structure at these locations, typically very close or

very far away depending on the chosen depth parameterization. If the sparse depth map is not

too sparse, one can e.g. average out values in a close neighborhood to a missing value to fill out

the entire map, but this is still a poor solution for very sparse maps, such as the ones typically

obtained by ORB-SLAM3.

An approach to solve this issue is to assign confidences to each pixel in the sparse depth map

and propagate these confidences throughout the entire network, as in [23]. Pixels containing

values get initialized with 100% confidence, and pixels containing no values (zeros) get initial-

ized with 0% confidence. The network then outputs a confidence map with the prediction that

displays its uncertainty in each prediction, similar to [22], but without the probabilistic interpret-

ation. This, however, requires significant changes to the network layers and adds an additional

channel to the input. The solution is therefore not further investigated here.

Following [38], and more notably [20] and [21], the sparse depth map is concatenated to the

RGB image to form a 4-channel input to the network, as seen in Figure 3.7a. Depth values are

sampled from the ground truth depth map at detected ORB features, and all other pixels are set

to zero. This will provide unrealistically good sparse depth to the network, as ORB-SLAM3 or any

other method cannot match the ground truth in accuracy, and a better approach is to add noise

29

DepthImage Feature
maps

ConcatenationSparse
depth

(a) Sparse depth concatenated at input.

DepthImage Feature
maps

ConcatenationSparse
depth

(b) Sparse depth concatenated at multiple scales in decoder.

Figure 3.7: Two possible ways of adding auxiliary sparse depth, illustrated with a U-Net for simplicity.

to the samples. However, the goal here is to validate how auxiliary data affects performance, so

noise will not be added here.

A possible problem with adding sparse depth to the input, as in Figure 3.7a is that two

significantly different types of data are mixed early on. It is difficult to say if this is a problem, but

as a hypothesis, it may be better to add sparse depth later in the pipeline, where the network is

learning to construct depth. In Figure 3.7b, the sparse depth map is resized at multiple scales and

concatenated at multiple layers in the decoder. This ensures that the sparse depth is mixed with

features more closely related to depth, possibly aiding the network further in its reconstruction.

However, the poor solution of assigning zeroes to missing values is possibly even worse here, as

the sparse depth maps are added closer to the final prediction.

3.2.7 Data augmentation

Data augmentation is central to any machine learning task, where e.g. horizontal and vertical

flips, crops, rotations and color transformations are common within computer vision. This is

especially relevant for datasets with fewer data and may significantly boost the performance on

the test set. However, for the dataset in this work, one could argue that some common augment-

ations will give a false indication of performance on other data. This will be further explained

when the dataset is presented and data augmentations are not used for now. Additionally, since

data augmentation is an established way to boost a model’s performance, it is not of interest in

this work, as the only goal is to investigate how new modifications may work.

3.3 Temporal multi-view depth estimation

As estimating depth in scenes with traditional model-based methods requires multiple views, one

would also expect deep learning models to benefit from multiple views. An important remark is

that this work only considers monocular setups, and the proposed methods will therefore only

rely on temporally adjacent images collected by a single moving camera. These networks are

so-called spatiotemporal deep learning models.

3.3.1 Baseline

The baseline for the experiments in the multi-view setting can be seen in Figure 3.8, where three

consecutive grayscale images are concatenated at the input, together with their corresponding

depth maps at the input of the CVAE. The network predicts each image’s uncertainty and depth

map, thus making predictions for all images simultaneously.

30

Depth CodeImage

Encoder DecoderFeature
maps

Run-time

Concatenation

Uncertainty Addition

Figure 3.8: Baseline architecture for the multi-view Depth-CVAE.

The architecture for the baseline network is roughly the same as for the single-view case. The

input and output dimensionality is increased, and the top stream uses skip connections instead

of concatenations to reduce the number of parameters. Although the architecture is conceptually

simple, it may not be optimal for regressing on multiple views, which may require a completely

different architecture to handle the increased complexity. The scope of this work will, however,

limit itself to variations of the baseline in Figure 3.1, where the goal is to see if using multiple

views in some way can boost the performance.

Because the dimensionality at the input is increased, the number of parameters and compu-

tational cost also increases. In order to satisfy computational constraints on the experimental

platform, RGB images can no longer be used without further modifications to the architecture,

and grayscale images are therefore used instead. Note that this in itself may affect the perform-

ance of the network.

Another consideration is the extent of motion between the consecutive images. In traditional

SfM or VSLAM, adequate motion parallax is crucial for the performance of the method, where

too little motion between keyframes renders the baseline too small, e.g. for estimating depth

correctly, and too much motion results in large occlusions and few overlapping areas. Ideally,

one should use a keyframe-based approach for choosing the consecutive images, such as the co-

visibility criteria in ORB-SLAM, but this is difficult to implement with the data loaders in PyTorch.

Instead, a chosen fixed number of frames are skipped between images in the dataset, where the

number of skipped images is chosen based on manual inspection of the consecutive images in

the dataset. Every fourth frame is chosen for the VAROS dataset, as this should give enough

motion, with an example seen in Figure 3.9. Note that this way of choosing frames is heavily

dependent on the motion of the camera and will fail when the camera is undergoing slow or fast

movements.

31

(a) First image. (b) Middle image. (c) Last image.

Figure 3.9: Three consecutive images taken from the VAROS dataset, skipping three inbetween images to ensure enough
motion.

3.3.2 Motion filter pre-training

As multiple images are given as input, the feature maps close to the input will no longer learn

the features of a single image but rather correlations between the images. It is difficult to say

what filters are learned, as they do not give the same visual cues as e.g. the edge filters for single

images. However, since the motion between the images is essentially the difference from the

multi-view to the single-view case, the filters will in some way be related to motion. Using e.g.

ImageNet for transfer learning is therefore no longer possible since the learned features from

ImageNet are not related to motion.

The proposed solution is to train a multi-view network on a large dataset for a task related to

motion and transfer parts of the learned features related to the target task. Training a network

to estimate depth from multiple images is one possible way, but this restricts the size of the pre-

training dataset to sequences that have ground truth depth, which is typically hard to come by

(except for synthetic datasets), and the resulting pre-trained network will see a limited amount

of data.

Instead, a plain autoencoder is trained to predict the next image from a set of consecutive

images, as displayed in Figure 3.10a. By predicting the next consecutive image, the model is

forced to use the motion between the previous images to aid its reconstruction of the following

image and thereby learns motion filters in its encoder. The strength of this method is that it

is self-supervised, as the only necessary data are sequential images. This way, any video can be

used to train motion filters, and the dataset is practically unlimited in size. Only the KITTI raw

dataset[39] is used to illustrate the motion pre-training here. The network uses a mean squared

error loss as the objective function,

L(θ,y) =
1

|Ω|
∑
u∈Ω

(y(u)− ŷ(u))2, (3.9)

where y is the ground truth next image and ŷ is the predicted next image, and the detailed

network architecture is given in Appendix C. After the network is pre-trained on KITTI, the

weights are transferred to the multi-view Depth-CVAE, as shown in Figure 3.10b. As for the

ImageNet transfer learning in the single-view case, only the feature maps close to the input are

transferred since the decoders of the two networks do not share knowledge due to their different

output types.

3.3.3 Multi-view consistency

A possible problem with the baseline architecture is that the model is in no way forced to inter-

connect information from the different inputs. In the worst case, each of the three consecutive

32

Images Feature maps

(a) Autoencoder trained on predicting the next
image from a set of consecutive images.

Depth CodeImage

Encoder DecoderFeature
maps

Run-time

Concatenation

Uncertainty

Pre-trained
layers

Addition

(b) Multi-view Depth-CVAE with a pre-trained encoder in the
top stream.

Figure 3.10: Autoencoder pre-trained on KITTI (left) and its corresponding layers highlighted in yellow in the multi-view
Depth-CVAE.

images are forwarded independently to produce the output, effectively using one-third of the

parameters compared to the single-view case. Instead of assuming a learned linkage between the

images, one can enforce this by producing consistent depth estimates between multiple views.

This is similar to comparing photometric values between overlapping images, under the assump-

tion of no photometric and geometric distortions, where the intensity value of one pixel should

be the same as the corresponding pixel in another image with an overlapping view.

Given two cameras Fa and Fb and the relative pose between them Tab, the geometric error
from Fb to Fa at a given pixel ub is

eg(ub, zb) =
∣∣Tabπ

−1
p (ub, zb))

∣∣
z
−Da(w(ub, zb,Tab)), (3.10)

where zb ≡ Db(u
b) is the depth in view Fb, π−1

p (·) is the perspective camera backprojection

(2.10), w(·) is the warp function (2.11), Da is the depth map of view Fa and |x|z takes the

z-component of x. In more practical terms, the depth value at Db(u
b) is backprojected into the

3D point xb and transformed into view Fa by Tab, where it should have identical depth to the

corresponding pixel in Da. Notice that the relative pose is assumed to be known here.

Using (3.10) in the loss function, the network is forced to predict depths that are consistent

with corresponding points in consecutive depth maps and will therefore depend more on using

information from several images to reduce the geometric error. Since the geometric error has

a metric scale, in contrast to the network predictions, which lie in the range [0, 1] due to the

sigmoid activation in the final layer, the geometric errors are normalized before being passed to

the loss function. Denoting D
′

a(ua) =
∣∣Tabπ

−1
p (ub, zb))

∣∣
z
, the geometric loss with normalization

as in [40] is given as

Lgeometric(Da, Db) =
1

|Ω|
∑
ua∈Ω

|D′a(ua)−Da(ua)|
D′a(ua) +Da(ua)

. (3.11)

33

(a) Boundary points get warped to
pixels outside image.

(b) Occlusions render different depths
for corresponding pixels.

(c) One camera may see further than
the other.

Figure 3.11: Different cases that give invalid geometric errors between two views.

Masking co-visible points

The loss in (3.11) assumes all pixels in one image have corresponding pixels in the other, which

is not true for a moving camera (or world). Several cases invalidate this assumption, and they

must be handled accordingly when calculating the geometric error. The most common approach

is to mask out not co-visible points, leaving only the pixels that view the same 3D point between

multiple images. The geometric error in (3.10) will then only consider pixels ub that have

corresponding pixels ua which also view the same 3D point.

Figure 3.11 displays the different cases where the geometric error fails between two views. In

Figure 3.11a, one camera sees points that are outside the view of the other, and these boundary

pixels get warped to pixel coordinates outside the image plane. Occlusions, as shown in Fig-

ure 3.11b, are perhaps the most challenging to mask out and give different depths due to objects

blocking the view in one image but not the other. The last case considered in this work is a

limitation of the maximum detectable depth in the cameras, where one camera may see further

than the other, shown in Figure 3.11c.

Another important case is that of moving objects. The world is rarely static, and most scenes

will have dynamic elements that also invalidate the geometric error. The dataset used in this

work, however, has completely static scenes, and this case will therefore not be considered here.

There are multiple ways to address the cases in Figure 3.11, and they are greatly simplified

when the relative pose Tab and depths Da and Db are known exact, which will be assumed here.

Algorithm 1 summarizes the method used to calculate the geometric error with masking, where

Dgt
a and Dgt

b are the ground truth depth maps and Db is the predicted depth map. The algorithm

iterates over every pixel in the image pair, skips pixels that fall under masking conditions and

returns the average geometric error for the image pair. Boundary pixels are pixels that get

warped to coordinates outside the image dimensions, and occluded pixels correspond to ground

truth 3D points that, when transformed into the other view, have a different depth from the other

view. Pixels outside of the depth range correspond to points that exceed the maximum depth

when transformed. Note that these masking conditions rely on the ground truth depths of both

views, in addition to the relative pose between the views, and the calculation is therefore only

possible for supervised methods.

Because the procedure calculates the error iteratively over the pixels and not all at once, the

computational overhead is quite significant for training. A subset of pixels is instead randomly

34

Algorithm 1 Algorithm for calculating the geometric error with masking. Mappings to and from
homogeneous and Cartesian coordinates are skipped for notational simplicity, but are present for
every transformation, projection and backprojection.

1: procedure GEOMETRICERROR(Tab, Dgt
a , Dgt

b , Db)
2: Ub ← GeneratePixels(h,w) . Pixel coordinates for entire image

3: Xb ← π−1(Ub, Db)
4: Xa ← TabX

b

5: D
′

a ← |Xa|z

6: Xb
gt ← π−1(Ub, Dgt

b)

7: Xa
gt ← TabX

b
gt

8: D
′gt
a ← |Xa

gt|z

9: Ua ← w(Ub, Db,Tab)
10: eg ← 0
11: n← 0
12: for ua,ub in Ua,Ub do
13: if ua < (0, 0) or ua > (h,w) then . Boundary masking
14: continue
15: d

′gt
a ← D

′gt
a (ub)

16: if d
′gt
a > dmax then . Maximum depth masking

17: continue
18: da ← BilinearInterpolation(ua, Dgt

a)
19: occlusion error← |da − d

′gt
a |

20: if occlusion error > occlusion threshold then . Occlusion masking
21: continue
22: d

′

a ← D
′

a(ub)
23: eg ← eg + |da − d

′

a|
24: n← n+ 1

return eg/n

sampled for each image pair to reduce the added training time. The number of sampled pixels

should be low enough to allow for feasible training times but simultaneously high enough to give

a sufficient signal.

3.3.4 Depth refinement network

The idea of multi-view consistency is to force the network to use information from all images.

A possible problem is a long path from the images to the final prediction. As the multi-view

consistency is implemented as a loss function at the very end, it may not influence the first layers

sufficiently. Additionally, as it imposes consistency in depth and not any photometric measure, it

may be more useful on feature maps that relate to depth.

Instead of using multi-view consistency on the Depth-CVAE, and additional depth refinement
network, RefineNet, is added to produce consistent depth maps from multiple views. The net-

work, as seen with the baseline Depth-CVAE in Figure 3.12, is an autoencoder that solely works

on depth and takes three consecutive predictions from the single-view Depth-CVAE to produce

refined estimates of the predictions. Additional details can be seen in Table D.1. At run-time, this

can also work in a sliding-window manner with the single-view Depth-CVAE, where the two pre-

vious predictions are used together with the current prediction to produce a consistent current

35

Depth Code Encoder DecoderFeature
maps

Run-time
ConcatenationUncertainty AdditionImage

Figure 3.12: Depth-CVAE with subsequent refinement by a separate depth refinement network.

prediction. The added overhead is thus only RefineNet itself.

The Depth-CVAE is frozen during training to reduce overhead and is solely used as a means

to provide realistic depth maps for refinement. RefineNet is then supervised with an `1 recon-

struction loss and the multi-view geometric loss.

36

4 | Results and Discussion

In this chapter, the results and discussion for the experiments in Chapter 3 are presented both

qualitatively and quantitatively. The VAROS Synthetic Underwater dataset is first presented, with

some discussion around its characteristics for deep learning, before the specific experimental

setup used in the experiments is described. Finally, the results from all experiments are shown,

demonstrating the performance of the Depth-CVAE with each modification.

4.1 Dataset

The VAROS Synthetic Underwater[41] dataset provides photorealistic synthetic RGB images gen-

erated in an artificial environment, with corresponding precise ground truth depth images. The

benefit of using synthetic data is that the much-needed ground truth depth is available. However,

the extent of realism in the synthetic scene is a bottleneck, mainly how well the photorealistic

images translate to real scenes. This was shown in [1], where a model trained on VAROS was

tested on actual underwater footage, and real scenes will therefore not be considered in this

work.

Today, VAROS consists of 4715 rendered RGB images with corresponding depth maps, surface

normal maps, and uniformly lighted images with no water. Additionally, the exact pose of each

image relative to a static world frame is given. Two examples of the scene and its corresponding

data can be seen in Figure 4.1. As VAROS provides a realistic underwater environment, modeling

the varying illumination and visual degradation present in underwater scenes, it serves as a good

test bench for real underwater images. At the current time, however, the dataset contains far

too few images for training deep models, especially considering that the targeted application is

reliable and accurate predictions used in a maneuvering robot. The current sequence of data

(a) Underwater RGB (b) Uniform lighting (c) Surface normals (d) Depth

Figure 4.1: Two examples (top and bottom row) from the VAROS dataset.

37

(a) Training split. (b) Test split.

Figure 4.2: Examples from the training set (left) and test set (right).

is also sequential, taken from a trajectory of a supposed robot, meaning consecutive frames are

highly similar. This reduces the number of unique scenes seen by the model even further and

specializes it heavily on the sequence on which it is trained. Therefore, choosing a representative

test set from the limited data is also a challenge.

Choosing the training and test splits

The test set for VAROS is challenging to choose due to its limited size and, most notably, the

sequential recording of data. Random images can therefore not be removed and used in the test

set, as they will have very similar images in the training set, giving a highly biased indication of

the model’s performance.

Instead, a large sequence of data was removed and used as the test set, such that the test set

did not contain images that were consecutive or very similar to any image in the training set.

More specifically, every image viewing underwater pipes from the right side was moved from

the training set and into the test set. As seen in Figure 4.2, the training set contains images

of underwater seafloor, landscape, and pipes viewed from the left, while the test set exclusively

contains pipes viewed from the right. Thus, when evaluating the model on VAROS, it is primarily

the reconstruction of pipes that is evaluated. The overall distribution of pipes vs. not pipes in

the dataset is therefore essential, in addition to the distribution of pipes viewed from the left

vs. right. Table 4.1 shows the number of images containing pipes and which view they are

in. As seen from the data distribution, only 22.9% of the training set contains pipes, while the

rest views the seabed and underwater landscape. This should, therefore, not bias the model too

heavily towards pipes, and the risk of overfitting is reduced to some extent. However, the angle

38

Images Count Pipes Left Right
0 - 225 226 7 - -

226 - 900 675 3 3 7
901 - 1355 455 3 7 3
1356 - 2700 1345 7 - -
2701 - 3000 300 3 3 7
3001 - 4714 1714 7 - -

Table 4.1: Distribution of images containing pipes, either viewed from the left or right.

of view is relatively unchanged as the simulated vehicle is driving forward at all times. This

biases the model towards the same views, and samples containing a pipe from e.g. the side or

directly above, may give poor performance.

In Chapter 3.2.7, a note was made on data augmentation and why it is left out of this work.

It should be stated that data augmentations fit very well on VAROS due to its small size, but if

one were to use the common augmentations, any horizontal flipping should be avoided. This is

because of the training and test splits, specifically that a horizontally flipped sample containing

a pipe in the training set will be highly similar to the samples in the test set.

As the images are consecutive, samples at the start and end of the test set will be highly

similar to their neighboring images in the training set. The neighboring images in the training

set are, therefore, completely discarded to reduce the bias towards the training set further, such

that there is a sufficient gap between the training set and the test set. Removing 50 images from

the training set on both sides of the test set gives a sufficient gap, resulting in a final training

set consisting of images 0-850 and 1405-4714 and a test set with images 901-1355. A dedicated

validation set has not been made due to the small size of the dataset, and the model is therefore

validated by the test set during training, giving a slight bias towards the test set when tuning the

model. However, fine-tuning of the models has not been conducted in this work, so no efforts

have been made to remove this bias.

4.2 Experiments

The single-view and multi-view Depth-CVAE were trained and tested on VAROS but without

substantial hyperparameter-tuning or other forms of fine-tuning. The goal is not to result in one

best model but to see what more considerable changes affect the performance of the models.

Performance is most easily inspected by quantitative metrics, as changes in qualitative results

are challenging to view, so most of the presented results will be in the form of performance

metrics unless qualitative results give sufficient insight.

4.2.1 Experimental setup

All experiments were conducted on a NVIDIA GeForce GTX 1060 6GB with hyperparameters

proposed in [11], using the Adam optimizer with learning rate α = 0.0001 and β1 = 0.9, β2 =

0.999, training for 40 epochs using a small batch size of 4, due to the memory-constraints on the

GPU. The weight on the KL divergence was gradually increased after eight epochs. The images

were normalized using the calculated mean and standard deviation, and the depth values were

transformed to the range [0, 1] by the proximity parameterization proposed in [11]. Both images

and depth maps were resized to 288×512. The dimension of the code was set to 128.

39

Figure 4.3: Results from the baseline Depth-CVAE using RGB as input. From left to right: RGB image, ground truth depth,
predicted depth and uncertainty of predicted depth. Brighter areas indicate higher values.

RMSE logRMSE ARD SRD δ < 1.25 δ < 1.252 δ < 1.253

RGB 0.02202 0.00134 0.02611 0.00107 0.99098 0.99999 1.0
Grayscale 0.03641 0.00578 0.04928 0.00267 0.98245 0.99968 1.0

Table 4.2: Quantitative results from the baseline Depth-CVAE using RGB and grayscale as input. Lower values are better for
the left side, while higher values are better for the right side. Bold values are comparatively better.

4.2.2 Experimental results: Single-view

This section presents the results from the single-view Depth-CVAE and its modifications proposed

in Chapter 3.2, with accompanying discussion for every experiment.

Baseline

Figure 4.3 and Figure 4.4 display qualitative results from four examples of the VAROS test set,

using RGB and grayscale as input, respectively. The predicted depth maps in Figure 4.3 are

backprojected to their point clouds in Figure 4.5. In Table 4.2, the models are compared us-

ing quantitative metrics calculated over the entire test set. Additional results can be seen in

Appendix E.

By comparing Figure 4.3 and Figure 4.4, one can clearly see that using the full RGB inform-

ation of the underwater images provides important details to the network, significantly outper-

forming luminance-only predictions. Especially fine-grained details are preserved when using

RGB images, which appear more smoothed when using grayscale images. The qualitative differ-

ence can also be seen from the point clouds in Appendix E. The quantitative difference, as seen

in Table 4.2, also shows the largest gap in metrics between two models compared to all other

experiments.

Although this result may not seem too significant, it is important to note that grayscale images

are commonly used instead of their RGB counterparts, and in many cases, they perform just as

40

Figure 4.4: Results from the baseline Depth-CVAE using grayscale as input. From left to right: Grayscale image, ground
truth depth, predicted depth and uncertainty of predicted depth. Brighter areas indicate higher values.

Figure 4.5: Point clouds generated by the depth maps in Figure 4.3 from the baseline Depth-CVAE using RGB as input.

41

KITTI NYU-Depth V2
ARD SRD δ < 1.25 ARD SRD δ < 1.25

BinsFormer[43] 0.052 0.151 0.974 0.094 - 0.925
DPT-Hybrid[17] 0.062 - 0.959 0.110 - 0.904
LapDepth[44] 0.059 - 0.962 0.105 - 0.895
Eigen et al.[8] 0.190 1.515 0.692 0.215 0.212 0.618

Table 4.3: Comparison of relative metrics between current state-of-the-art deep learning monocular depth estimation methods
on the KITTI Eigen split and NYU-Depth V2 datasets.

well. As mentioned in Chapter 3, [11] observed no significant decrease in performance from

grayscale with a similar model. The difference, however, is the data the model views, and it

is clear that much information is lost for underwater images when converting to grayscale. All

other experiments were therefore conducted with RGB as input to the model.

The estimated aleatoric uncertainty can also be viewed on the far right of Figure 4.3. The

model allocates the highest uncertainty at edges, highly reflective surfaces, and points at a great

distance from the camera. By inspecting the corresponding point clouds in Figure 4.5, the areas

with the highest uncertainty are also the areas with the poorest depth predictions. This intuitively

seems beneficial, as poor predictions can easily be discarded by their uncertainties. It is, however,

difficult to say how true these uncertainties are to their probabilistic interpretations. For instance,

in the luminance-only predictions of Figure 4.4, the allocated uncertainty for fine-grained regions

is generally lower than when using RGB, even though the predictions are poorer (in the sense

that they are smooth). This illustrates that the estimated uncertainty appears larger for regions

with discontinuities in depth and not necessarily where the model allocates uncertainty in the

images. On the other hand, another interpretation is that this model is falsely confident in these

regions, so it is difficult to say exactly how good these uncertainty estimates are.

A note should also be made to the quantitative performance compared to the performance

of other methods in the literature, with the consideration that the other methods are evaluated

on different datasets. A comparison between some of the current state-of-the-art is shown in

Table 4.3, comparing performance on the KITTI Eigen split[8] and NYU-Depth V2[42]. It should

be stated that these datasets are much larger and more varied than VAROS, making them more

challenging. As seen, the Depth-CVAE outperforms all these methods according to the relative

performance metrics. This does not, however, mean that it is better than any of them, and more

conclusive arguments should be made after evaluating the Depth-CVAE on the same datasets.

The point here is that it performs surprisingly well on VAROS according to the quantitative

metrics compared to what the state-of-the-art achieves on other data. This further highlights the

inadequate properties of VAROS for evaluating deep learning methods, specifically that the small

size and variation in the scenes make it easy to learn.

The baseline will be referred to as the baseline with RGB input from here on, as the baseline

with grayscale images proved inferior compared to RGB.

Transfer learning

While the weights for ImageNet were pre-computed, the weights for SceneNet RGB-D were

transferred from a Depth-CVAE trained on SceneNet RGB-D for 15 epochs using a batch size

of 16. Only the training splits 0, 1, 2, 3, 4 and 5 from the official training set1 were used for

training, resulting in a total of 1.8M images, while training split 16 was used for validation.

1Downloaded from https://robotvault.bitbucket.io/scenenet-rgbd.html

42

https://robotvault.bitbucket.io/scenenet-rgbd.html

0 10000 20000 30000 40000
Iterations

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

To
ta

ll
os

s
Baseline
SceneNet RGB-D transfer
ImageNet transfer

(a) Total loss.

0 10000 20000 30000 40000
Iterations

0.02

0.03

0.04

0.05

0.06

0.07

R
M

SE

Baseline
SceneNet RGB-D transfer
ImageNet transfer

(b) RMSE.

0 10000 20000 30000 40000
Iterations

0.04

0.06

0.08

0.10

A
R

D

Baseline
SceneNet RGB-D transfer
ImageNet transfer

(c) ARD.

0 10000 20000 30000 40000
Iterations

0.88

0.90

0.92

0.94

0.96

0.98
A

cc
ur

ac
y

(δ
<

1.
25

)

Baseline
SceneNet RGB-D transfer
ImageNet transfer

(d) Accuracy.

Figure 4.6: Comparison of the convergence and performance using the baseline, SceneNet RGB-D transfer learning and
ImageNet transfer learning.

The KL annealing milestone was set to epoch 5, and the learning rate was decreased by a factor

of 0.1 at epochs 10 and 13. Training parameters were otherwise identical to Chapter 4.2.1.

Figure 4.6 displays the convergence properties and overall performance during training when

using ImageNet or SceneNet RGB-D transfer learning, while a quantitative comparison of the

models can be seen in Table 4.4.

From the results of using transfer learning in Figure 4.6, it can be seen that pre-trained

ImageNet weights improve convergence and stability during training. This is not too surprising,

as this is a relatively standard way of improving training, but it shows that ImageNet weights are

comparative to those learned from VAROS. SceneNet pre-trained weights did not ease training

and gave overall worse performance compared to the baseline. This is likely because SceneNet

RMSE logRMSE ARD SRD δ < 1.25 δ < 1.252 δ < 1.253

Baseline 0.02202 0.00134 0.02611 0.00107 0.99098 0.99999 1.0
ImageNet 0.02210 0.00120 0.02667 0.00108 0.99070 0.99983 1.0
SceneNet 0.02654 0.00200 0.03615 0.00155 0.98754 0.99969 1.0

Table 4.4: Quantitative results using ImageNet and SceneNet RGB-D transfer learning. Lower values are better for the left
side, while higher values are better for the right side. Bold values are comparatively better.

43

(a) Edge-aware smoothness. (b) Uncertainty-aware smoothness.

Figure 4.7: Comparison between using edge-aware smoothness and the proposed uncertainty-aware smoothness as a geo-
metric prior.

contains very different scenes from VAROS, and the learned weights relating to geometry will

therefore not be transferable. Additionally, since the baseline network is trained for 40 epochs, it

is safe to assume it learns the structure of VAROS sufficiently. Any transferred weights from other

datasets may, therefore, not improve the performance. However, an interesting experiment could

be to test the model on an underwater structure it has not seen, where SceneNet pre-trained

weights may prove useful.

Uncertainty-aware smoothness

The penalty on the edge-aware smoothness in (3.4) was set to λ = 1 and activated from the start

of training, while the uncertainty-aware smoothness was activated after 20 epochs to ensure

converged and consistent uncertainty predictions. In Figure 4.7, a comparison is made between

the edge-aware smoothness and uncertainty-aware smoothness for predicting piece-wise smooth

geometry (except at edges). The results can be compared to the baseline in Figure 4.5 as well.

In Table 4.5, the quantitative comparison between the models can be seen.

In the point clouds of the baseline model, there are several cases of outliers, specifically in

areas with substantial reflections. The idea behind the smoothness priors (3.4) and (3.5) is to

remove these outliers by forcing the local geometry to be smooth. The edge-aware smooth-

44

RMSE logRMSE ARD SRD δ < 1.25 δ < 1.252 δ < 1.253

Baseline 0.02202 0.00134 0.02611 0.00107 0.99098 0.99999 1.0
EA 0.02122 0.00134 0.02576 0.00100 0.99162 0.99993 1.0
UA 0.02253 0.00116 0.02653 0.00112 0.98938 0.99994 1.0

Table 4.5: Quantitative results using edge-aware (EA) and uncertainty-aware (UA) smoothness. Lower values are better for
the left side, while higher values are better for the right side. Bold values are comparatively better.

RMSE logRMSE ARD SRD δ < 1.25 δ < 1.252 δ < 1.253

Baseline 0.02202 0.00134 0.02611 0.00107 0.99098 0.99999 1.0
MS-D 0.02436 0.00156 0.02836 0.00124 0.98956 0.99958 1.0
MS-S 0.02167 0.00147 0.02571 0.00103 0.99203 0.99992 1.0

Table 4.6: Quantitative results using multi-scale loss with decoupled predictions (MS-D) and multi-scale loss using predictions
in subsequent layers (MS-S). Lower values are better for the left side, while higher values are better for the right side. Bold
values are comparatively better.

ness limits the outliers to some extent but struggles to remove them completely. This is argued

by considering that image gradients are poor approximations of edges and detect edges at the

texture-rich smooth surface of the pipes. However, the uncertainty-aware smoothness reduces

these outliers completely and makes the model predict geometry that is coherent with what one

should expect from the images.

A significant result is made from the smoothness experiments: the edge-aware smoothness

performs quantitatively better than the uncertainty-aware smoothness, even though the qualitat-

ive results are better for the uncertainty-aware smoothness. As seen in Table 4.5, the edge-aware

smoothness outperforms the other models on almost all metrics. This shows that quantitative

metrics alone may be a poor way to evaluate a model, and a decision must be made on what

criteria should be decisive for the specific task. Additionally, since the quantitative metrics are

calculated over the entire depth maps, the areas at the boundaries are equally weighted as the

pipes. According to the overall metrics, a model with worse performance might perform better

in reconstructing the pipes, but this will not be revealed by quantitative metrics alone.

Multi-scale loss

Table 4.6 displays the quantitative comparison between the models using multi-scale loss, either

with multi-scale predictions decoupled from the rest of the network or with multi-scale predic-

tions concatenated with subsequent layers.

Using multi-scale loss with predictions in subsequent layers proved superior to decoupled pre-

dictions, but it also requires more parameters, which may explain the performance boost. How-

ever, multi-scale loss with decoupled predictions gave a worse performance than the baseline,

and as this is the most common way to implement multi-scale loss, it should perhaps be revised.

Depth in the top stream

In Table 4.7, the quantitative results of using depth in the top stream and depth with uncertainty

in the bottom stream of the Depth-CVAE is shown.

The experiment of predicting depth in both the top and bottom stream, with uncertainty in

the bottom stream, produces much better results than the baseline, relative to the difference

between the baseline and other models. This confirms the hypothesis that the CVAE is better

conditioned when the top stream predicts depth, unlike uncertainty which is commonly predicted

45

RMSE logRMSE ARD SRD δ < 1.25 δ < 1.252 δ < 1.253

Baseline 0.02202 0.00134 0.02611 0.00107 0.99098 0.99999 1.0
TopDepth 0.02141 0.00124 0.02591 0.00103 0.99357 0.99990 1.0

Table 4.7: Quantitative results for predicting depth in the top stream and depth with uncertainty in the bottom stream of
the Depth-CVAE. Lower values are better for the left side, while higher values are better for the right side. Bold values are
comparatively better.

RMSE logRMSE ARD SRD δ < 1.25 δ < 1.252 δ < 1.253

Baseline 0.02202 0.00134 0.02611 0.00107 0.99098 0.99999 1.0
Sparse-Ma 0.02284 0.00171 0.02730 0.00116 0.99052 0.99998 1.0
Sparse-MS 0.02163 0.00143 0.02591 0.00102 0.99251 0.99988 1.0

Table 4.8: Quantitative results using auxiliary sparse depth at input (Sparse-Ma) and auxiliary sparse depth at multiple
scales (Sparse-MS). Lower values are better for the left side, while higher values are better for the right side. Bold values are
comparatively better.

in the top stream[11], [19], [20].

Auxiliary sparse depth

Sparse depth is sampled at 1000 detected ORB features for each depth map. The results from

the test set can be seen in Table 4.8, comparing the method similar to Ma et al.[38] and the

proposed multi-scale depth.

The multi-scale sparse depth is seen to produce better results than the commonly used

strategy in the literature, which does not improve on the baseline. Although Ma et al.[38] is

the most renowned work for using auxiliary sparse depth in depth completion, it has been im-

proved upon in later works, e.g. [23], so the proposed method may not be state-of-the-art as an

auxiliary method.

4.2.3 Experimental results: Multi-view

This section presents the results and discussion for the multi-view Depth-CVAE and its modifica-

tions proposed in Chapter 3.3.

Baseline

The qualitative performance of the baseline multi-view Depth-CVAE is shown in Figure 4.8,

where the results from the most current of the three concatenated images are used. The point

clouds generated from each depth map are displayed in Figure 4.9, and the quantitative per-

formance on the test set can be seen in Table 4.9.

A detail worth repeating before going forward is that all multi-view methods use grayscale

images as input due to the computational demand of using multiple RGB images exceeding

the constraints of the experimental platform. As discussed in the single-view case, this heavily

affects the model’s performance on underwater data. The results from the multi-view models

will therefore reflect this.

RMSE logRMSE ARD SRD δ < 1.25 δ < 1.252 δ < 1.253

Baseline 0.03642 0.00535 0.04809 0.00256 0.98391 0.99982 1.0

Table 4.9: Quantitative results for the baseline multi-view Depth-CVAE. Lower values are better for the left side, while higher
values are better for the right side.

46

Figure 4.8: Results from the baseline multi-view Depth-CVAE. From left to right: Grayscale image, ground truth depth,
predicted depth and uncertainty of predicted depth. Brighter areas indicate higher values.

Figure 4.9: Point clouds generated by the depth maps in Figure 4.8 from the baseline multi-view Depth-CVAE.

47

RMSE logRMSE ARD SRD δ < 1.25 δ < 1.252 δ < 1.253

Baseline 0.03642 0.00535 0.04809 0.00256 0.98391 0.99982 1.0
MF-transfer 0.03841 0.00537 0.05052 0.00282 0.98453 0.99988 1.0

Table 4.10: Quantitative results for the motion filter pre-trained multi-view Depth-CVAE. Lower values are better for the left
side, while higher values are better for the right side. Bold values are comparatively better.

Comparing the baseline of the multi-view model, Table 4.9, to the baseline of the single-

view model with grayscale in Table 4.2, the results are slightly better for the multi-view model.

However, this marginal increase in performance is not enough to justify that multi-view performs

better than single-view. In model-based multiple view geometry, corresponding points between

images are used to triangulate the depth of a pixel. The idea behind the multi-view network is

to exploit this by providing multiple images and letting the network learn dependencies between

feature maps to improve the estimates. This does not appear to be the case, and although it is

difficult to reason on why for machine learning models, it is not unreasonable to conclude that

the network has insufficient guidance during training to utilize all information. This could be

solved by introducing more model-based constraints to the problem, which forces the network

to fuse information from all inputs.

Motion filter pre-training

The motion autoencoder was trained for 80 epochs using a batch size of 8 on the KITTI raw

dataset[39], and the original image resolution of 375×1242 was used throughout the training.

The learning rate was set to 0.001 for the Adam optimizer and decreased by a factor of 0.1

after epochs 20 and 40. Although 80 epochs is a vast number of times to run over the dataset,

with guaranteed exposure to overfitting for the task of predicting the next consecutive image,

only the encoder of the motion autoencoder was transferred to the multi-view Depth-CVAE. As

motion filters are general (to a large degree) and not specific to one dataset, the problem of

overfitting is not relevant for this case.

From Figure 4.10, it can be seen that motion filter pre-training dramatically increases the rate

of learning, starting at lower errors and higher accuracies, while also being more stable. The best

performing models, however, come from the baseline, as seen in Table 4.10, except for accuracy

metrics. Nonetheless, the main result is that motion filters are present in depth estimation net-

works using multiple views and that they can be learned in a self-supervised manner from video

footage. A possibility could be that any pre-trained network on image data gives a better starting

point than randomly initialized weights. To check this, an autoencoder trained on reconstructing

the exact same images it sees was made. This did not give improved performance after transfer

learning to the Depth-CVAE, so the proposed motion autoencoder actually learns motion filters.

Multi-view consistency

The geometric error was calculated by sampling 200 pixel locations for each depth map. Con-

sistency was only calculated between the target image and the previous images, not between the

previous images themselves. Due to the computational cost of the geometric error, the number

of epochs was reduced to 20. Results are shown in Table 4.11.

From the results of using multi-view consistency in the loss function, it appears the perform-

ance is degraded substantially compared to the baseline, although it should improve the model

in theory. It is difficult to pinpoint the cause of the degradation, and an incorrect implementa-

48

0 10000 20000 30000 40000
Iterations

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

To
ta

ll
os

s
Baseline
Motion filter transfer

(a) Total loss.

0 10000 20000 30000 40000
Iterations

0.04

0.05

0.06

0.07

0.08

R
M

SE

Baseline
Motion filter transfer

(b) RMSE.

0 10000 20000 30000 40000
Iterations

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

A
R

D

Baseline
Motion filter transfer

(c) ARD.

0 10000 20000 30000 40000
Iterations

0.86

0.88

0.90

0.92

0.94

0.96

0.98
A

cc
ur

ac
y

(δ
<

1.
25

)

Baseline
Motion filter transfer

(d) Accuracy.

Figure 4.10: Comparison of the convergence and performance between the baseline and motion filter pre-trained baseline.

RMSE logRMSE ARD SRD δ < 1.25 δ < 1.252 δ < 1.253

Baseline 0.03642 0.00535 0.04809 0.00256 0.98391 0.99982 1.0
Consistency 0.04285 0.00456 0.05364 0.00336 0.97553 0.99961 1.0

Table 4.11: Quantitative results when using multi-view consistency. Lower values are better for the left side, while higher
values are better for the right side. Bold values are comparatively better.

49

RMSE logRMSE ARD SRD δ < 1.25 δ < 1.252 δ < 1.253

Baseline 0.03642 0.00535 0.04809 0.00256 0.98391 0.99982 1.0
RefineNet 0.04059 0.00482 0.05586 0.00328 0.97287 0.99919 0.99999

Table 4.12: Quantitative results for RefineNet. Lower values are better for the left side, while higher values are better for the
right side. Bold values are comparatively better.

tion may be the cause. However, the apparent problem is that too few pixels are sampled and

calculated for each depth map. A total of 147456 pixel locations exist in each depth map, but

only 200 are sampled at each training step due to the computational cost of calculating the geo-

metric error. This is far from sufficient and may not give a significant enough signal for training.

The pixels are also sampled uniformly, meaning there is no guarantee that important structure is

consistent from one frame to the next, as pixels in the boundary regions may be sampled.

Depth refinement network

Same as for the multi-view consistency training, the depth refinement network was trained for

20 epochs with 200 pixel locations sampled for each depth map. Quantitative results can be seen

in Table 4.12.

RefineNet was made under the hypothesis that multi-view consistency is poorly suited for a

network that operates on both depth and images, but performs even worse. However, a problem

here is that refining the depth maps solely by a reconstruction loss also degraded the depth maps,

so the geometric error is not at fault by itself here.

4.2.4 Summary

A summary of the quantitative performance for all proposed methods is given in Table 4.13,

additionally displaying which methods perform best according to the respective metrics. In order

to compare the overall performance between the methods, the APS is calculated, shown at the

far right. Note that the score for the multi-view methods is calculated by comparing to the best

performing models from the single-view methods, such that the performance of the multi-view

methods can be compared to the single-view methods.

The overall best performing model is the network predicting depth in the top stream, fol-

lowed by the edge-aware smoothness and ImageNet transfer learning. These are, however,

purely quantitative measures of performance, and qualitative performance is equally important,

as argued for the uncertainty-aware smoothness. The APS also shows that many of the proposed

modifications improve on their counterparts. Using depth in the top stream improves on the

baseline, which uses uncertainty in the top stream, and multi-scale late fusion sparse depth per-

forms better than single-scale early fusion sparse depth. Using edge-aware smoothness performs

better than uncertainty-aware smoothness quantitatively, but not qualitatively, so a choice must

be made for what is decisive. The multi-view methods are seen to be inferior to the single-view

methods, but much is likely due to using grayscale images. However, every modification leads to

worse performance, leaving much further work in this area.

Although an investigation into real-time performance is outside the scope of this work, it

should be mentioned as it is highly relevant to the problem at hand. A robot mapping its sur-

roundings at a low rate will struggle with localization and collision avoidance tasks. However,

the exact rate of predictions will be hardware-dependent and challenging to assess on a single

platform. All single-view methods have close to 46.4M parameters during inference, while the

50

RMSE logRMSE ARD SRD δ < 1.25 δ < 1.252 δ < 1.253 APS
Single-view
Baseline 0.02202 0.00134 0.02611 0.00107 0.99098 0.99999 1.0 1.04015
ImageNet 0.02210 0.00120 0.02667 0.00108 0.99070 0.99983 1.0 1.02805
SceneNet 0.02654 0.00200 0.03615 0.00155 0.98754 0.99969 1.0 1.27676
EA 0.02122 0.00134 0.02576 0.00100 0.99162 0.99993 1.0 1.02273
UA 0.02253 0.00116 0.02653 0.00112 0.98938 0.99994 1.0 1.03113
MS-D 0.02436 0.00156 0.02836 0.00124 0.98956 0.99958 1.0 1.12005
MS-S 0.02167 0.00147 0.02571 0.00103 0.99203 0.99992 1.0 1.04572
TopDepth 0.02141 0.00124 0.02591 0.00103 0.99357 0.99990 1.0 1.01654
Sparse-Ma 0.02284 0.00171 0.02730 0.00116 0.99052 0.99998 1.0 1.11077
Sparse-MS 0.02163 0.00143 0.02591 0.00102 0.99251 0.99988 1.0 1.04015
Multi-view
Baseline 0.03642 0.00535 0.04809 0.00256 0.98391 0.99982 1.0 1.96698
MF-transfer 0.03841 0.00537 0.05052 0.00282 0.98453 0.99988 1.0 2.03338
Consistency 0.04285 0.00456 0.05364 0.00336 0.97553 0.99961 1.0 2.05937
RefineNet 0.04059 0.00482 0.05586 0.00328 0.97287 0.99919 1.0 2.07754

Table 4.13: Quantitative summary for all models. Lower values are better for the left and right side, while higher values are
better for the middle. Bold values are comparatively better.

multi-view methods have 45.5M, except for RefineNet, which with the Depth-CVAE has a total of

59.4M parameters. Unfortunately, many of the current state-of-the-art methods do not provide

the size of their networks, so it is difficult to quickly assess how large the Depth-CVAE is com-

pared to other methods.

51

5 | Conclusion

This thesis presented methods for improving supervised deep monocular depth estimation using

convolutional neural networks. Despite being evaluated on and targeted at underwater scenes,

many of the proposed methods are general and may be applied to other domains and are flexible

to different architectures.

Necessary background information and theory for the implemented variational autoencoder

were presented, which served as a baseline for evaluating the performance of the proposed

modifications. Methods tested on, but not limited to, single-view depth estimation were then

displayed. Leveraging uncertainty estimates for geometric smoothing was shown to produce

more coherent depth maps than the current state-of-the-art geometric prior. Adding auxiliary

sparse depth in a multi-scale late fusion scheme improved the quantitative performance com-

pared to typical depth completion schemes using sparse depth. Additionally, and more specific

to variational autoencoders, it was shown that predicting depth in the top stream and depth with

uncertainty in the bottom stream improved results, in contrast to typical implementations.

Spatiotemporal networks using multiple views were then considered, with the hypothesis that

multiple views would improve performance as for traditional model-based methods. Results on

underwater images using 2D spatiotemporal networks indicate that little is learned between the

views. They perform equally or worse than their single-view counterparts, even when enforcing

consistency between predictions from multiple views. A more extensive investigation into 2D

spatiotemporal networks is, therefore, needed.

5.1 Further work

The work done in this thesis is just a small contribution to the extensive field of depth estim-

ation, and there is much that can be improved upon or further investigated. Possible further

work is naturally to examine model-specific considerations more closely, but improvements on

the dataset and surrounding elements should be made. The greatest weakness of this work is

perhaps that the model is not transferable to real underwater scenes, which, after all, is the

target application. The following lists some potential work in these areas.

Further research should be done into the successful deployment of deep learning models in

real underwater environments:

• Ground truth depth is difficult to obtain underwater, if at all possible, meaning super-

vised methods are poorly suited for these scenarios. Today, self-supervised methods use

assumptions on photometric consistency to extrapolate depth, but these assumptions fail

underwater. Bypassing this issue, by e.g. proposing other metrics that are robust to visual

degradation, will enable self-supervised methods on underwater data as well.

52

• A limitation of VAROS is that it does not provide a sufficiently realistic underwater en-

vironment to directly transfer a learned model into real underwater scenes, as shown in

[1]. The simulator should be further developed to make the scenes as realistic as possible,

potentially making supervised models work in real scenes.

Other than the aforementioned issue, several other efforts can be made to improve VAROS

for deep learning:

• The limited size of the dataset has already been mentioned as an issue for deep learning,

and several different sequences should be made to increase the training and test sets.

• The variety of scenes is today very limited, and more man-made structures or other com-

monly observed structures in real scenes should be added.

The depth estimation network implementation and pipeline can be improved upon in several

areas:

• The strength of the code in the CVAE is not fully realized in the Depth-CVAE, and is cur-

rently not used during optimization. The original idea of [11] was to use the reduced

dimensionality of the code to ease optimization for VSLAM, and this can be further invest-

igated for multi-view consistency during training.

• The loss and calculated metrics should only be calculated for regions of interest, and not

the entire image. Specifically, they should be calculated for areas that are visible, and not

boundary regions that are completely dark.

• The multi-scale late fusion scheme for auxiliary sparse depth uses zero imputation for

missing values, which is suboptimal as zero actually is a depth value. Using the normalized

convolutions of [23] with confidence propagation could improve the performance of this

method.

• The multi-view data loader skips a fixed set of frames between returned images to ensure

enough motion, but a keyframe-based approach should instead be used based on the actual

motion between the images.

• A faster implementation of the geometric error for multi-view consistency should be found,

as the proposed algorithm is too slow for sampling a larger part of the depth maps during

training.

• 2D spatiotemporal networks may not be suited for multiple view depth estimation at all,

but 3D convolutional neural networks using cost volumes have been shown to produce

good results[27]. Further experimentation with these networks may be a better alternative

to 2D networks.

The Depth-CVAE can be evaluated more thoroughly:

• The models are not comparable to the state-of-the-art within depth estimation as they are

only evaluated on VAROS. To compare the actual performance of the Depth-CVAE, it should

be evaluated on one of the popular datasets like KITTI, EuRoC or NYU-Depth.

• Each modification is in this work evaluated by itself, but a model containing several modi-

fications together should be tested and compared against the best performing model.

53

Bibliography

[1] A. T. Fagerli, Deep monocular depth estimation for underwater autonomous vehicles, Spe-

cialization project, 2021.

[2] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed. USA:

Cambridge University Press, 2004, ISBN: 0521540518.

[3] T. V. Haavardsholm, A handbook in visual slam, 2021. [Online]. Available: https://

github.com/tussedrotten/vslam-handbook.

[4] A. Krizhevsky, I. Sutskever and G. E. Hinton, ‘Imagenet classification with deep convolu-

tional neural networks,’ in Advances in Neural Information Processing Systems, F. Pereira,

C. J. C. Burges, L. Bottou and K. Q. Weinberger, Eds., vol. 25, Curran Associates, Inc.,

2012. [Online]. Available: https://proceedings.neurips.cc/paper/2012/file/

c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[5] K. Simonyan and A. Zisserman, ‘Very deep convolutional networks for large-scale image

recognition,’ 2015. arXiv: 1409.1556 [cs.CV].

[6] K. He, X. Zhang, S. Ren and J. Sun, ‘Deep residual learning for image recognition,’ 2015.

arXiv: 1512.03385 [cs.CV].

[7] O. Ronneberger, P. Fischer and T. Brox, ‘U-net: Convolutional networks for biomedical

image segmentation,’ 2015. arXiv: 1505.04597 [cs.CV].

[8] D. Eigen, C. Puhrsch and R. Fergus, ‘Depth map prediction from a single image using a

multi-scale deep network,’ 2014. arXiv: 1406.2283 [cs.CV].

[9] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari and N. Navab, ‘Deeper depth prediction

with fully convolutional residual networks,’ 2016. arXiv: 1606.00373 [cs.CV].

[10] D. P. Kingma and M. Welling, ‘Auto-encoding variational bayes,’ 2014. arXiv: 1312.6114

[stat.ML].

[11] M. Bloesch, J. Czarnowski, R. Clark, S. Leutenegger and A. J. Davison, ‘Codeslam - learn-

ing a compact, optimisable representation for dense visual slam,’ 2019. arXiv: 1804.00874

[cs.CV].

[12] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby and O. Winther, ‘Ladder variational

autoencoders,’ 2016. arXiv: 1602.02282 [stat.ML].

[13] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz and S. Bengio, ‘Generating

sentences from a continuous space,’ 2016. arXiv: 1511.06349 [cs.LG].

[14] H. Fu, C. Li, X. Liu, J. Gao, A. Celikyilmaz and L. Carin, ‘Cyclical annealing schedule: A

simple approach to mitigating kl vanishing,’ 2019. arXiv: 1903.10145 [cs.LG].

54

https://github.com/tussedrotten/vslam-handbook
https://github.com/tussedrotten/vslam-handbook
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1406.2283
https://arxiv.org/abs/1606.00373
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1804.00874
https://arxiv.org/abs/1804.00874
https://arxiv.org/abs/1602.02282
https://arxiv.org/abs/1511.06349
https://arxiv.org/abs/1903.10145

[15] L. Deng, ‘The mnist database of handwritten digit images for machine learning research,’

IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[16] K. Sohn, H. Lee and X. Yan, ‘Learning structured output representation using deep condi-

tional generative models,’ in Advances in Neural Information Processing Systems, C. Cortes,

N. Lawrence, D. Lee, M. Sugiyama and R. Garnett, Eds., vol. 28, Curran Associates, Inc.,

2015. [Online]. Available: https://proceedings.neurips.cc/paper/2015/file/

8d55a249e6baa5c06772297520da2051-Paper.pdf.

[17] R. Ranftl, A. Bochkovskiy and V. Koltun, ‘Vision transformers for dense prediction,’ 2021.

arXiv: 2103.13413 [cs.CV].

[18] N. Yang, L. von Stumberg, R. Wang and D. Cremers, ‘D3vo: Deep depth, deep pose and

deep uncertainty for monocular visual odometry,’ 2020. arXiv: 2003.01060 [cs.CV].

[19] J. Czarnowski, T. Laidlow, R. Clark and A. J. Davison, ‘Deepfactors: Real-time probabilistic

dense monocular slam,’ IEEE Robotics and Automation Letters, vol. 5, no. 2, 721–728,

2020, ISSN: 2377-3774. DOI: 10.1109/lra.2020.2965415. [Online]. Available: http:

//dx.doi.org/10.1109/LRA.2020.2965415.

[20] X. Zuo, N. Merrill, W. Li, Y. Liu, M. Pollefeys and G. Huang, ‘Codevio: Visual-inertial odo-

metry with learned optimizable dense depth,’ 2021. arXiv: 2012.10133 [cs.CV].

[21] H. Matsuki, R. Scona, J. Czarnowski and A. J. Davison, ‘Codemapping: Real-time dense

mapping for sparse slam using compact scene representations,’ 2021. arXiv: 2107.08994

[cs.CV].

[22] A. Kendall and Y. Gal, ‘What uncertainties do we need in bayesian deep learning for

computer vision?,’ 2017. arXiv: 1703.04977 [cs.CV].

[23] A. Eldesokey, M. Felsberg and F. S. Khan, ‘Propagating confidences through cnns for sparse

data regression,’ 2018. DOI: 10.48550/ARXIV.1805.11913. [Online]. Available: https:

//arxiv.org/abs/1805.11913.

[24] D. Wofk, F. Ma, T.-J. Yang, S. Karaman and V. Sze, ‘Fastdepth: Fast monocular depth

estimation on embedded systems,’ 2019. arXiv: 1903.03273 [cs.CV].

[25] C. Godard, O. M. Aodha, M. Firman and G. Brostow, ‘Digging into self-supervised mon-

ocular depth estimation,’ 2019. arXiv: 1806.01260 [cs.CV].

[26] N. Yang, R. Wang, J. Stückler and D. Cremers, ‘Deep virtual stereo odometry: Leveraging

deep depth prediction for monocular direct sparse odometry,’ 2018. arXiv: 1807.02570

[cs.CV].

[27] Y. Yao, Z. Luo, S. Li, T. Fang and L. Quan, ‘Mvsnet: Depth inference for unstructured

multi-view stereo,’ 2018. DOI: 10.48550/ARXIV.1804.02505. [Online]. Available: https:

//arxiv.org/abs/1804.02505.

[28] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.

Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,

S. Chilamkurthy, B. Steiner, L. Fang, J. Bai and S. Chintala, ‘Pytorch: An imperative style,

high-performance deep learning library,’ in Advances in Neural Information Processing Sys-
tems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox and R. Garnett,

Eds., Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.

neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-

learning-library.pdf.

55

https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://arxiv.org/abs/2103.13413
https://arxiv.org/abs/2003.01060
https://doi.org/10.1109/lra.2020.2965415
http://dx.doi.org/10.1109/LRA.2020.2965415
http://dx.doi.org/10.1109/LRA.2020.2965415
https://arxiv.org/abs/2012.10133
https://arxiv.org/abs/2107.08994
https://arxiv.org/abs/2107.08994
https://arxiv.org/abs/1703.04977
https://doi.org/10.48550/ARXIV.1805.11913
https://arxiv.org/abs/1805.11913
https://arxiv.org/abs/1805.11913
https://arxiv.org/abs/1903.03273
https://arxiv.org/abs/1806.01260
https://arxiv.org/abs/1807.02570
https://arxiv.org/abs/1807.02570
https://doi.org/10.48550/ARXIV.1804.02505
https://arxiv.org/abs/1804.02505
https://arxiv.org/abs/1804.02505
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[29] C. Li, High quality, fast, modular reference implementation of SSD in PyTorch, https://

github.com/lufficc/SSD, 2018.

[30] D. L. MacAdam, ‘Projective transformations of i. c. i. color specifications,’ J. Opt. Soc. Am.,
vol. 27, no. 8, pp. 294–299, 1937. DOI: 10.1364/JOSA.27.000294. [Online]. Available:

http://opg.optica.org/abstract.cfm?URI=josa-27-8-294.

[31] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, A. C. Berg and L. Fei-Fei, ‘Imagenet large scale visual recognition

challenge,’ 2014. DOI: 10.48550/ARXIV.1409.0575. [Online]. Available: https://arxiv.

org/abs/1409.0575.

[32] J. McCormac, A. Handa, S. Leutenegger and A. J.Davison, ‘Scenenet rgb-d: Can 5m syn-

thetic images beat generic imagenet pre-training on indoor segmentation?,’ 2017.

[33] C. Godard, O. Mac Aodha and G. J. Brostow, ‘Unsupervised monocular depth estimation

with left-right consistency,’ 2016. DOI: 10.48550/ARXIV.1609.03677. [Online]. Available:

https://arxiv.org/abs/1609.03677.

[34] J. Canny, ‘A computational approach to edge detection,’ IEEE Transactions on Pattern Ana-
lysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679–698, 1986. DOI: 10.1109/

TPAMI.1986.4767851.

[35] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan and S. Belongie, ‘Feature pyramid net-

works for object detection,’ 2016. DOI: 10.48550/ARXIV.1612.03144. [Online]. Available:

https://arxiv.org/abs/1612.03144.

[36] T. Zhou, M. Brown, N. Snavely and D. G. Lowe, ‘Unsupervised learning of depth and

ego-motion from video,’ 2017. DOI: 10.48550/ARXIV.1612.03144. [Online]. Available:

https://arxiv.org/abs/1704.07813.

[37] C. Campos, R. Elvira, J. J. Gómez, J. M. M. Montiel and J. D. Tardós, ‘ORB-SLAM3: An

accurate open-source library for visual, visual-inertial and multi-map SLAM,’ IEEE Trans-
actions on Robotics, vol. 37, no. 6, pp. 1874–1890, 2021.

[38] F. Ma and S. Karaman, ‘Sparse-to-dense: Depth prediction from sparse depth samples and

a single image,’ 2017. DOI: 10.48550/ARXIV.1709.07492. [Online]. Available: https:

//arxiv.org/abs/1709.07492.

[39] A. Geiger, P. Lenz, C. Stiller and R. Urtasun, ‘Vision meets robotics: The kitti dataset,’

International Journal of Robotics Research (IJRR), 2013.

[40] J.-W. Bian, Z. Li, N. Wang, H. Zhan, C. Shen, M.-M. Cheng and I. Reid, ‘Unsupervised

scale-consistent depth and ego-motion learning from monocular video,’ 2019. DOI: 10.

48550/ARXIV.1908.10553. [Online]. Available: https://arxiv.org/abs/1908.10553.

[41] P. G. O. Zwilgmeyer, M. Yip, A. L. Teigen, R. Mester and A. Stahl, ‘The varos synthetic

underwater data set: Towards realistic multi-sensor underwater data with ground truth,’

in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Work-
shops, 2021, pp. 3722–3730.

[42] P. K. Nathan Silberman Derek Hoiem and R. Fergus, ‘Indoor segmentation and support

inference from rgbd images,’ in ECCV, 2012.

[43] Z. Li, X. Wang, X. Liu and J. Jiang, ‘Binsformer: Revisiting adaptive bins for monocular

depth estimation,’ 2022. DOI: 10.48550/ARXIV.2204.00987. [Online]. Available: https:

//arxiv.org/abs/2204.00987.

56

https://github.com/lufficc/SSD
https://github.com/lufficc/SSD
https://doi.org/10.1364/JOSA.27.000294
http://opg.optica.org/abstract.cfm?URI=josa-27-8-294
https://doi.org/10.48550/ARXIV.1409.0575
https://arxiv.org/abs/1409.0575
https://arxiv.org/abs/1409.0575
https://doi.org/10.48550/ARXIV.1609.03677
https://arxiv.org/abs/1609.03677
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.48550/ARXIV.1612.03144
https://arxiv.org/abs/1612.03144
https://doi.org/10.48550/ARXIV.1612.03144
https://arxiv.org/abs/1704.07813
https://doi.org/10.48550/ARXIV.1709.07492
https://arxiv.org/abs/1709.07492
https://arxiv.org/abs/1709.07492
https://doi.org/10.48550/ARXIV.1908.10553
https://doi.org/10.48550/ARXIV.1908.10553
https://arxiv.org/abs/1908.10553
https://doi.org/10.48550/ARXIV.2204.00987
https://arxiv.org/abs/2204.00987
https://arxiv.org/abs/2204.00987

[44] M. Song, S. Lim and W. Kim, ‘Monocular depth estimation using laplacian pyramid-based

depth residuals,’ IEEE Transactions on Circuits and Systems for Video Technology, vol. 31,

no. 11, pp. 4381–4393, 2021. DOI: 10.1109/TCSVT.2021.3049869.

[45] K. B. Petersen and M. S. Pedersen, ‘The matrix cookbook,’ 2012, Version 20121115. [On-

line]. Available: http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html.

57

https://doi.org/10.1109/TCSVT.2021.3049869
http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html

A | Proofs

A.1 Marginal log-likelihood for VAEs

The aim is to find the best approximation qφ(z|x) to the intractable pθ(z|x), which can be done

by minimizing the KL divergence (2.18) between the two distributions:

DKL

(
qφ(z|x)

∣∣∣∣∣∣pθ(z|x
)

= Eqφ(z|x) [log qφ(z|x)− log pθ(z|x)] .

Using Bayes’ rule (2.15) on log pθ(z|x), the KL divergence takes the form

DKL

(
qφ(z|x)

∣∣∣∣∣∣pθ(z|x
)

= Eqφ(z|x) [log qφ(z|x)− (log pθ(x|z) + log pθ(z)− pθ(x))]

= Eqφ(z|x) [log qφ(z|x)− log pθ(x|z)− log pθ(z)] + pθ(x) (A.1)

where pθ(x) is taken out of the expectation as it is not a function of z. Finally, (A.1) is solved for

the marginal log-likelihood,

pθ(x) = DKL

(
qφ(z|x)

∣∣∣∣∣∣pθ(z|x
)

+ Eqφ(z|x) [− log qφ(z|x) + log pθ(x|z) + log pθ(z)] (A.2)

= DKL

(
qφ(z|x)

∣∣∣∣∣∣pθ(z|x
)

+ L(θ,φ,x),

where the expectation in (A.2) is the variational lower bound.

58

A.2 KL divergence between two Gaussians

For two multivariate Gaussians, N1(µ1,Σ1) and N2(µ2,Σ2), the KL divergence takes the explicit

form

DKL

(
N1(µ1,Σ1)

∣∣∣∣N2(µ2,Σ2)
)

= EN1
[logN1(µ1,Σ1)− logN2(µ2,Σ2)]

= EN1

[
− log(2π)

k
2 − log |Σ1|

1
2 − 1

2
(x− µ1)TΣ−1

1 (x− µ1)

−
(
− log(2π)

k
2 − log |Σ2|

1
2 − 1

2
(x− µ2)TΣ−1

2 (x− µ2)

)]
=

1

2

(
log |Σ2| − log |Σ1|+ EN1

[
−tr

(
(x− µ1)TΣ−1

1 (x− µ1)
)]

+ EN1

[
(x− µ2)TΣ−1

2 (x− µ2)
])

=
1

2

(
log
|Σ2|
|Σ1|

+ EN1

[
−tr

(
Σ−1

1 (x− µ1)(x− µ1)T
)]

+ (µ1 − µ2)TΣ−1
2 (µ1 − µ2) + tr

(
Σ−1

2 Σ1

))
=

1

2

(
log
|Σ2|
|Σ1|

+ EN1

[
−tr

(
Σ−1

1 Σ1

)]
+ (µ1 − µ2)TΣ−1

2 (µ1 − µ2)

+ tr
(
Σ−1

2 Σ1

))
=

1

2

(
log
|Σ2|
|Σ1|

+ EN1
[−tr (I)] + (µ1 − µ2)TΣ−1

2 (µ1 − µ2)

+ tr
(
Σ−1

2 Σ1

))
=

1

2

(
log
|Σ2|
|Σ1|

− k + (µ1 − µ2)TΣ−1
2 (µ1 − µ2) + tr

(
Σ−1

2 Σ1

))
,

where identities from [45] and the cyclic property of the trace are used. In the special case where

one of the Gaussians is standard, the KL divergence is

DKL

(
N (µ,Σ)

∣∣∣∣N (0, I)
)

=
1

2

(
tr(Σ) + µTµ− k − log |Σ|

)
.

59

B | Depth-CVAE architecture

B.1 U-Net

Layer Layer type Act Norm Input Output shape
Encoder (E) 0 Input - - - 3× 288× 512

1 Conv2d 7× 7 ReLU BN - 64× 144× 256
2 Max-pool 3× 3 - - - 64× 72× 128

BasicBlock ×2 ReLU BN - 64× 72× 128
3 BasicBlock ×2 ReLU BN - 128× 36× 64
4 BasicBlock ×2 ReLU BN - 256× 18× 32
5 BasicBlock ×2 ReLU BN - 512× 9× 16

Decoder (D) 0 BasicBlock ReLU BN - 512× 9× 16
1 Upsample - - - 512× 18× 32

Conv2d 3× 3 - - - 256× 18× 32
Concatenate - - E4 512× 18× 32
BasicBlock ReLU BN - 256× 18× 32

2 Upsample - - - 256× 36× 64
Conv2d 3× 3 - - - 128× 36× 64
Concatenate - - E3 256× 36× 64
BasicBlock ReLU BN - 128× 36× 64

3 Upsample - - - 128× 72× 128
Conv2d 3× 3 - - - 64× 72× 128
Concatenate - - E2 128× 72× 128
BasicBlock ReLU BN - 64× 72× 128

4 Upsample - - - 64× 144× 256
Conv2d 3× 3 - - - 64× 144× 256
Concatenate - - E1 128× 144× 256
BasicBlock ReLU BN - 64× 144× 256

5 Upsample - - - 64× 288× 512
Conv2d 3× 3 Sigmoid - - 1× 288× 512

Table B.1: Detailed network architecture for the U-Net stream of the Depth-CVAE. BN is batch normalization, BasicBlock is a
residual layer as depicted in Figure B.1 and Upsample layers use bilinear interpolation. The output shape gives information
about stride and padding used in convolutional layers. Notice that the encoder is a ResNet-18[6].

ReLUConv2d + BN Conv2d + BN ReLU

Figure B.1: BasicBlock: a residual connection with two convolutional layers consisting of 3× 3 filters and batch normaliza-
tion.

60

B.2 CVAE

Layer Layer type Act Norm Input Output shape
Encoder 0 Input - - - 1× 288× 512

1 Conv2d 7× 7 ReLU BN - 64× 144× 256
Concatenate - - UNET-D4 128× 144× 256
BasicBlock ReLU BN - 64× 144× 256

2 Conv2d 3× 3 - BN - 64× 72× 128
Concatenate - - UNET-D3 128× 72× 128
BasicBlock ReLU BN - 64× 72× 128

3 Conv2d 3× 3 - BN - 128× 36× 64
Concatenate - - UNET-D2 256× 36× 64
BasicBlock ReLU BN - 128× 36× 64

4 Conv2d 3× 3 - BN - 256× 18× 32
Concatenate - - UNET-D1 512× 18× 32
BasicBlock ReLU BN - 256× 18× 32

5 Conv2d 3× 3 - BN - 512× 9× 16
Concatenate - - UNET-D0 1024× 9× 16
BasicBlock ReLU BN - 512× 9× 16

Code 0 Flatten - - - 1× (512 · 9 · 16)
1 Linear(µ) - - - 1× 128

Linear(log Σ) - - - 1× 128
Reparameterize(z) - - - 1× 128
Linear - - - 1× (512 · 9 · 16)

2 Reshape - - - 512× 9× 16

Decoder 0 Concatenate - - UNET-D0 1024× 9× 16
BasicBlock ReLU BN - 512× 9× 16

1 Upsample - - - 512× 18× 32
Conv2d 3× 3 - - - 256× 18× 32
Concatenate - - UNET-D1 512× 18× 32
BasicBlock ReLU BN - 256× 18× 32

2 Upsample - - - 256× 36× 64
Conv2d 3× 3 - - - 128× 36× 64
Concatenate - - UNET-D2 256× 36× 64
BasicBlock ReLU BN - 128× 36× 64

3 Upsample - - - 128× 72× 128
Conv2d 3× 3 - - - 64× 72× 128
Concatenate - - UNET-D3 128× 72× 128
BasicBlock ReLU BN - 64× 72× 128

4 Upsample - - - 64× 144× 256
Conv2d 3× 3 - - - 64× 144× 256
Concatenate - - UNET-D4 128× 144× 256
BasicBlock ReLU BN - 64× 144× 256

5 Upsample - - - 64× 288× 512
Conv2d 3× 3 Sigmoid - - 1× 288× 512

Table B.2: Detailed network architecture for the CVAE stream of the Depth-CVAE. BN is batch normalization, BasicBlock is a
residual layer as depicted in Figure B.1 and Upsample layers use bilinear interpolation. The output shape gives information
about stride and padding used in convolutional layers. The linear layers in the code are separate, not subsequent, and each
predict µ or logΣ.

61

C | Motion autoencoder architecture

Layer Layer type Act Norm Output shape
Encoder 0 Input - - 3× 375× 1242

1 Conv2d 7× 7 ReLU BN 64× 187× 621
2 Max-pool 3× 3 - - 64× 93× 310

BasicBlock ×2 ReLU BN 64× 93× 310
3 BasicBlock ×2 ReLU BN 128× 46× 155
4 BasicBlock ×2 ReLU BN 256× 23× 77
5 BasicBlock ×2 ReLU BN 512× 11× 38

Decoder 0 BasicBlock ReLU BN 256× 11× 38
Upsample - BN 256× 22× 76

1 BasicBlock ReLU BN 128× 22× 76
Upsample - BN 128× 44× 152

2 BasicBlock ReLU BN 64× 44× 152
Upsample - BN 64× 88× 304

3 BasicBlock ReLU BN 64× 88× 304
Upsample - BN 64× 176× 608

4 BasicBlock ReLU BN 1× 176× 608
Upsample Sigmoid BN 1× 352× 1216

Table C.1: Detailed network architecture for the motion autoencoder. BN is batch normalization, BasicBlock is a residual
layer as depicted in Figure B.1 and Upsample layers use transposed convolutions with 2 × 2 filters. The output shape gives
information about stride and padding used in convolutional layers. Notice that the encoder is a ResNet-18[6].

62

D | RefineNet architecture

Layer Layer type Act Norm Input Output shape
Encoder (E) 0 Input - - - 3× 288× 512

1 Conv2d 7× 7 ReLU BN - 64× 144× 256
BasicBlock ReLU BN - 64× 144× 256

2 BasicBlock ReLU BN - 128× 72× 128
3 BasicBlock ReLU BN - 256× 36× 64
4 BasicBlock ReLU BN - 512× 18× 32

Decoder (D) 0 BasicBlock ReLU BN - 512× 18× 32
1 Upsample - - - 512× 36× 64

Conv2d 3× 3 - - - 256× 36× 64
Concatenate - - E3 512× 36× 64
BasicBlock ReLU BN - 256× 36× 64

2 Upsample - - - 256× 72× 128
Conv2d 3× 3 - - - 128× 72× 128
Concatenate - - E2 256× 372× 128
BasicBlock ReLU BN - 128× 72× 128

3 Upsample - - - 128× 144× 256
Conv2d 3× 3 - - - 64× 144× 256
Concatenate - - E1 128× 144× 256
BasicBlock ReLU BN - 64× 144× 256

4 Upsample - - - 64× 288× 512
Conv2d 3× 3 Sigmoid - - 1× 288× 512

Table D.1: Detailed network architecture for RefineNet. BN is batch normalization, BasicBlock is a residual layer as depicted
in Figure B.1 and Upsample layers use bilinear interpolation. The output shape gives information about stride and padding
used in convolutional layers.

63

E | Additional results

Figure E.1: Additional results from the baseline Depth-CVAE with RGB input.

Figure E.2: Additional results from the baseline Depth-CVAE with grayscale input.

64

Figure E.3: Additional results from the VAROS train set (top) and test set (bottom). From left to right: RGB image, ground
truth depth, predicted depth and uncertainty of predicted depth. Brighter areas indicate higher values.

65

0 10000 20000 30000 40000
Iterations

−5

−4

−3

−2

−1

To
ta

ll
os

s

0 10000 20000 30000 40000
Iterations

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

R
ec

on
st

ru
ct

io
n

lo
ss

0 10000 20000 30000 40000
Iterations

0

50

100

150

200

K
L

di
ve

rg
en

ce

0 10000 20000 30000 40000
Iterations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

m
ea

n(
B

)

0 10000 20000 30000 40000
Iterations

0.02

0.03

0.04

0.05

0.06

0.07

R
M

SE

0 10000 20000 30000 40000
Iterations

0.04

0.06

0.08

0.10

A
R

D

0 10000 20000 30000 40000
Iterations

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

SR
D

0 10000 20000 30000 40000
Iterations

0.88

0.90

0.92

0.94

0.96

0.98

A
cc

ur
ac

y
(δ
<

1.
25

)

Figure E.4: Losses and metrics during training for the baseline Depth-CVAE with RGB input. B is the uncertainty map
predicted by the model.

66

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Anders Thallaug Fagerli

Deep Monocular Depth Estimation
for Autonomous Underwater
Vehicles

Master’s thesis in Cybernetics and Robotics
Supervisor: Annette Stahl
Co-supervisor: Mauhing Yip, Rudolf Mester
June 2022M

as
te

r’s
 th

es
is

	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Problem description
	Contributions
	Thesis outline

	Background
	Camera geometry
	3D geometry
	The perspective camera model
	From 2D to 3D

	Autoencoders
	Vanilla autoencoders
	Variational autoencoders
	Conditional variational autoencoders

	Uncertainty estimation
	Epistemic uncertainty
	Aleatoric uncertainty
	Confidence propagation

	Evaluation metrics
	Related work

	Method
	Architecture
	Single-view depth estimation
	Baseline
	Transfer learning
	Uncertainty-aware smoothness
	Multi-scale loss
	Depth in the top stream
	Auxiliary sparse depth
	Data augmentation

	Temporal multi-view depth estimation
	Baseline
	Motion filter pre-training
	Multi-view consistency
	Depth refinement network

	Results and Discussion
	Dataset
	Experiments
	Experimental setup
	Experimental results: Single-view
	Experimental results: Multi-view
	Summary

	Conclusion
	Further work

	Bibliography
	Proofs
	Marginal log-likelihood for VAEs
	KL divergence between two Gaussians

	Depth-CVAE architecture
	U-Net
	CVAE

	Motion autoencoder architecture
	RefineNet architecture
	Additional results

