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Abstract

Continuous glucose monitor is a popular way of measuring glucose level in peo-
ple with diabetes. In an artificial pancreas regulation loop the CGM system will
inform an insulin pump about the needing amount of insulin. The CGM sensor
sits in subcutaneous tissue, hence measures the subcutaneous glucose level, not
the actual blood glucose level. The subcutaneous measurements will therefor be
affected by the diffusion process in the body between the blood and the subcu-
taneous tissue which introduces a noticeably delay in glucose level in the subcu-
taneous tissue. This study aims to reconstruct the blood glucose level, using the
subcutaneous glucose measurement, by utilizing different estimation approaches.
A standard Kalman filter, as well as an unknown input Kalman filter was re-
searched and implemented in order to achieve this. An inverse transfer function
of the diffusion process was already a tested estimation method, and became the
competing method to be outperformed. A performance scoring system was also
developed, using statistical accuracy measures. The standard Kalman filter shows
the most promise in reconstructing the blood glucose level, however like the in-
verse transfer function, it is highly sensitive to faulty CGM measurement samples,
and is tuning wise very aggressive. The unknown input Kalman filter was not suc-
cessfully implemented, but shows theoretically good capability in estimating the
blood glucose. The concluding remarks are that the standard Kalman filter needs
adjustments in order to robustly estimate blood glucose, but shows a great deal
of promise, while the unknown input filter must be successfully implemented and
observed in order to evaluate the actual performance.
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1 Introduction

1.1 Diabetes

Diabetes mellitus is a metabolic disorder, that affect millions of people. It is
characterized by chronic hyperglycemia in response to ingestion of carbohydrates,
fat, and protein, resulting from defects of insulin secretion, insulin action, or both
[4]. The disorder can be divided into two conditions: Type 1 Diabetes is caused by
an autoimmune reaction resulting in destruction of insulin producing beta-cells,
which leads to insulin shortage in the body. T1D require consistent measuring
of the BG, and injection of exogenous insulin. Type 2 Diabetes is a result of
inefficient use of insulin in the body, due to reduced insulin sensitivity. Adopting
a healthier lifestyle is often the first course of action in regards to treating T2D.

1.2 Artificial Pancreas

Artificial pancreas is a type of system which aims to automate insulin delivery in
people with diabetes. The system generally consists of a continuous glucose moni-
tor sensor, a control algorithm and an insulin pump. Using closed-loop control the
algorithm will, based on a glucose level measurement, calculate how much insulin
is needed at the relevant time instant, and communicate this to the insulin pump,
which will apply the requested amount. This requires no action from the user.
However, the commercially available AP systems are not perfect. In addition to
the complicated task of compensating for all meals and activities throughout a
day, the general AP must also compensate for the CGM sensor. The CGM sensor
is placed in the subcutaneous tissue of a patient, which results in a measure of
subcutaneous glucose level. Although the dynamics between the blood glucose
level and subcutaneous glucose level are similar, there are some dynamical differ-
ences which could lead to non-optimal control of the closed loop control system.
In addition, the CGM sensor, like any other sensor, is prone to sensor errors and
sensor bias, which also must be compensated for.

1.3 Outline

This report is organized as follows: Section 2 describes relevant background theory
about mathematical modeling, control system theory, relevant filters and statis-
tical methods. In section 3 the aim of the study is presented. A description of the
data sets used in this project is given in section 4. Section 5 describes the differ-
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ent stages of the project’s work, as well as details of the implementation process.
Results and additional observations are presented in section 6. A discussion based
on the theory and the results will take place in section 7, while a conclusion can
be found in section 8. There are also suggestions for future work presented in
section 9.

1.4 Artificial Pancreas Trondheim

This thesis is written in collaboration with Artificial Pancreas Trondheim. The
artificial pancreas Trondheim research group was established in 2013 at The Nor-
wegian University of Science and Technology, in Trondheim. APT is a cross-
disciplinary group of researchers with high competence in the fields of control engi-
neering, biomedical engineering, biosensors, applied clinical research, endocrinol-
ogy, anesthesia and intensive care medicine, pharmacology, biotechnology, math-
ematical modelling, biochemistry and chemometrics, as well as collaboration with
relevant biosensor industry [5]. The long term goal by the APT group is to de-
velop a robust closed-loop glucose control systems for patients with T1D and
T2D.
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2 Theory

In this section theory relevant for this project is presented. It will start with a
brief presentation of the different sensor systems involved in data sets used in
this project’s simulations. Next mathematical models of the glucose dynamics in
the body, as well as a brief introduction to the glucose regulatory system, will
be described. A varied collection of statistical methods for evaluating estima-
tion performance are then introduced. Lastly the selection of methods applied
throughout this project are presented, as well as theory relating to discretization
and observability.

2.1 Sensor systems

For individuals with diabetes, there are two primary methods for measuring the
BG levels; capillary BG measurement, also known as self-monitoring of blood
glucose, SMBG, and continuous glucose monitoring, CGM. Both the SMBG and
the CGM methods are what is called minimal invasive sensor techniques. Blood
gas analyzing of BG is an invasive measurement technique, mostly used in a
hospital setting. This paper will focus on the CGM and BGA sensor systems.

2.1.1 Amperometric Sensor

The amperometric glucose sensing technique is based on a chemically-based method
of glucose sensing [6]. The sensor estimates glucose by measuring an electrical
current generated by the reaction of glucose, either with oxygen or with an im-
mobilized redox mediator [7]. The sensor is in need of calibration, often using
capillary blood glucose for this purpose.

2.1.2 Continous Glucose Monitoring

The CGM system consists of a minimally invasive sensor implantable in subcuta-
neous tissue, a wireless transmitter and a receiver with a display. The sensor part
of the CGM system is an amperometric sensor. CGM technique is based on the
assumption that a correlation exists between the subcutaneous glucose level and
the plasma glucose level. The sensor measures the glucose level in the interstitial
fluid that surrounds all cells under the skin, to reflect the plasma glucose level
[6].
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The assumption of correlation between subcutaneous glucose level and the
plasma glucose level is only valid to a certain degree. Whenever the blood glucose
concentration is rising or falling, the concentrations will differ with a delay of an
average of 10 [min] [6].

Despite being widely used by T1D patients, the sensor is prone to substantial
inaccuracies. Factors that affect the sensor accuracy include calibration error,
sensor bias, sensor delay and sensor drift [7].

Figure 1: Scheme describing how the CGM data stream is modeled [1].

The diagram in fig. 1 describes how a CGM measurement is obtained. First
the BG signal diffuses into the ISF, and is transformed into IG. Then the IG
signal is measured by a sensor. The sensed signal is then affected by noise, and
the result is the CGM signal. In addition to noise the CGM will also be affected
by sensor bias. This bias will be added in the Sensor -block in fig. 1. In [8] the
bias is modeled as a zero process noise parameter, meaning that it is an unknown
constant. This leads to the following sensor equation:

ycgm,k = Gisf + bcgm + vcgm,k, (1)

where bcgm is the bias and vcgm,k is a Gaussian white noise process regarding
the non-constant errors of the CGM measurements.

2.1.3 Bloood Gas Analyzer

Blood gas analyzers are used to measure blood gas, pH, electrolytes and a selec-
tion of metabolites in whole blood specimens [9]. Among the selection of metabo-
lites it can measure the level of glucose in the blood, hence the analyzer can
help determine abnormal glucose levels. In order to do so, the analyzer uses the
amperometric measuring technique [10].

The blood used in the analysis is most commonly drawn from the radial artery
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[11]. This makes the measuring technique an invasive measuring method, which
gives the advantage of enhanced accuracy of the glucose level in the blood [6].

2.2 Mathematical Modeling

2.2.1 Glucose - Insulin regulatory system

In a healthy individual, the blood glucose concentration is narrowly controlled
to be between 80 and 90 mg/100 ml during a fasting period. This concentration
increases to 120 to 140 mg/100 ml during the first hour or so after a meal, but the
feedback systems for control of BG levels restores the glucose concentration back
to the fasting period values, usually within two hours after the last absorption of
carbohydrates. [2]

Figure 2: The BG dynamics after a meal for individuals with and without diabetes [2].

There are two main components in this regulatory loop. Namely the hormones
glucagon and insulin. Both of which are created in the pancreas. When the glucose
concentration rises too high, increased insulin secretion forces the BG concentra-
tion to be restored back to a normal value. As the BG levels are decreasing, there
will be a rise in glucagon secretion. This will cause an opposite effect, making the
BG level rise. Both hormones work together to make the BG level stay around a
healthy interval of level variations, in a healthy individual.

2.2.2 Modeling the plasma glucose concentration

The simplest dynamic model that can represent the glucose dynamics is the Rate-
only model [8]:
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dGp

dt
= Gp, (2)

where Gp is the plasma glucose concentration.

The model in eq. (2) can be expanded, by dividing the glucose rate into two
new states, Cr and Cc. Cr describes a remote compartment, while Cc describes
a central compartment. Insulin going into the system will first affect the central
compartment. Then, by a first order delay, the affect diffuses over to the remote
compartment where it takes effect on the plasma glucose. The state transition
equations are [8]:

dGp

dt
(t) = Cr(t)

dCc
dt

(t) = − 1

Td
Cr(t)

dCr
dt

(t) =
1

Td
(Cc(t)− Cr(t)),

(3)

where Td is a time constant, describing the rapidness of flow between the
central and remote compartment. Td also affects how the variance develops. The
lower this constant is, the faster the process noise relating to Cc propagates to
Cr [8].

Another interpretation of the compartmental states is the description of meal
effects when positive, and insulin effects when negative. These two effects are not
the only effects that influences the change in BG level. Other processes that may
cause increasing or decreasing phenomena in the BG level are also included in
the central and remote compartments.

2.2.3 Relationship Between Plasma Glucose and Interstitial Fluid Glucose

In [12] a compartmental approach is used to model the plasma-interstitial fluid
glucose dynamics. The dynamic is modeled as a first-order lag, and the mathe-
matical model is:

dC2

dt
(t) = −(k02 + k12)C2(t) + k21

V1

V2

C1(t), (4)
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Figure 3: Compartmental representation of capillary plasma and interstitial fluid glu-
cose dynamics.

where k02 represents a rate constant for the uptake of glucose in ISF in the
subcutaneous tissue, k12 and k21 are rate constants for diffusion between the
plasma and the ISF compartments, V1 and V2 are the volumes of the plasma
and ISF glucose compartments, respectively. C2 is the glucose kinetics in the
ISF, also known as the second compartment, while C1 is the glucose kinetics in
the plasma, the first compartment. The relationship described by eq. (4) is also
visually described by fig. 3. In the reminder of this report C2 = Gisf and C1 = Gp,
in order to avoid confusion.

The relationship between the plasma glucose concentration and the ISF glucose
concentration can then be transformed into:

dGisf

dt
(t) = − 1

Tisf
Gisf (t) +

g

Tisf
Gp(t), (5)

where g =
(
k21

V1
V2

)
Tisf and Tisf = 1

k02+k12
. Tisf is then the diffusion process

time constant, and can be thought of as a constant lag between the two compart-
ments. g functions as the steady state gain of the BG-to-IG kinetics. When the
system in eq. (5) is at steady state, g equals the ratio

Gisf

Gp
of the steady state

concentrations. Physiologically this means that one can expect g = 1 [13]. Hence
the expression from eq. (5) can be simplified:

dGisf

dt
(t) = − 1

Tisf
Gisf (t) +

1

Tisf
Gp(t). (6)

In order to describe the BG-to-IG kinetics, as well as the central and remote
compartments of the BG, eq. (3) together with eq. (6) gives the complete math-
ematical model:
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dGp

dt
(t) = Cr

dCc
dt

(t) = − 1

Td
Cc(t)

dCr
dt

(t) =
1

Td
(Cc(t)− Cr(t))

dGisf

dt
(t) =

1

Tisf
(−Gisf (t) +Gp(t)),

(7)

which can be rewritten into the following system of equations:


Ġp

Ċc
Ċr
˙Gisf

 =


0 0 1 0
0 − 1

Td
0 0

0 1
Td

− 1
Td

0
1

Tisf
0 0 − 1

T isf



Gp

Cc
Cr
Gisf

 . (8)

2.3 Statistical Analysis

When a model or a method is specified, the corresponding performance character-
istics should to be verified or validated by comparison with historical data from
the process it was designed to predict.

Accuracy is the most important criterion when evaluating a model in an esti-
mation related setting. Hence the goal of the relevant model is to minimize the
estimation error between the estimate and the actual real value. The error is
defined as follows

ei = yi − ŷi, (9)

where yi is the actual real value at iteration number i, and ŷi is the estimate
at time iteration number i.

All presented methods for evaluating accuracy, and their explanations are
taken from [14].



2 Theory 9

Mean Absolute Error

Mean absolute error measures an average magnitude of all errors in a set of
forecasts, ignoring the direction of the errors. This can be seen as all errors are
assigned equal weights. The closer the MAE is to zero, the better the method
evaluated fits the past time series. If MAE is shown to have a larger value, it
would indicate that the method evaluated is a poor fit for the past time series.

MAE =
1

n

n∑
i=1

|ei|, (10)

where n is the number of samples used, and ei is the error for sample number
i. This will be the same for all following methods described in this section.

Mean squared error

The mean squared error is very similar to the MAE, but in this measure the error
is squared. This results in that larger errors are given more weight, meaning that
larger errors are more penalized than smaller errors. The MSE is evaluated the
same way as the MAE. The MSE is given in the following equation.

MSE =
1

n

n∑
i=1

e2
i , (11)

Root mean squared error

An alternative to the MSE is the root mean squared error. The RMSE takes the
square root of the sum of MSE. The seriousness of the estimation error is then
denoted in the same dimension as the actual value and the estimate themselves.
The change of dimension does not change how the metric is evaluated, hence
RMSE is evaluated the same way as one evaluates both MAE and MSE. The
RMSE is given in the following equation:

RMSE =
√

MSE. (12)
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Mean absolute percentage error

The mean absolute percentage error corresponds relatively to the MAE, but gives
the accuracy a percentage and expresses the relative error. If the MAPE value is
less than 10% the estimate is considered to be very accurate. As the percentage
increases, the accuracy worsens. A MAPE value between 20− 50% is considered
acceptable, while when the MAPE > 50% the estimate is considered inaccurate.
The following described the computation of MAPE:

MAPE =
1

n

n∑
i=1

|ei|
yi

100%. (13)

2.4 Discretization

A computer cannot process continuous time, hence discretization is a necessary
step for computer simulation. A linear time invariant model consists of continuous
differential equations, which when to be used in numerical computing must be
transformed into their discrete difference equation counterparts.

Consider the linear time invariant system:

ẋ = Ax(t) +Bu(t)

y(t) = Hx(t) +Du(t),
(14)

where x is the state vector, y is the system output, u is the system input and
A, B, C and D are the system matrices.

Under the assumption that the system input is constant during a given sam-
pling time and that A is invertible, the above system will then have the exactly
discretized model as follows:

xk+1 = Adxk +Bduk

yk = Hdxk +Dduk,
(15)

where
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Ad = eA∆t

Bd =

(∫ (k+1)∆t

k∆t

eA[(k+1)∆t−τ ]dτ

)
B

Hd = H

Dd = D

(16)

and ∆t is the sampling time [15].

2.5 Observability

Observability is a way of determine how well the internal states of a system can
be inferred from knowledge of the external outputs. In an estimation problem,
observability is an absolute demand.

The following system:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t),
(17)

is said to be completely observable if for any unknown initial state x(t0) = x0

there exists a finite time t1 > t0 such that the input u(t) and output y(t) over
t0 ≤ t ≤ t1 are sufficient information to uniquely determine the initial condition
x0 [16].

Assuming u(t0) = 0 the following expression for y0(t) is obtained:

y0(t) = CeAtx0. (18)

The n dimensional linear time invariant system (A,C) is observable if and only
if the observability matrix

O =


C
CA

...
CAn−1

 , (19)
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has full rank:

rank(O) = n. (20)

2.6 Standard Kalman Filter

The Kalman Filter is an optimal estimator that provides a recursive computa-
tional methodology for estimating the state of a discrete-data controlled process
from measurements, while also providing an estimate of the uncertainty of the
estimates [17]. A figure showing the filter connected to a system can be found in
fig. 4.

Figure 4: System block diagram with KF.

Given the linear discrete-time system

xk+1 = Axk +Buk + wk

yk = Hxk + vk
(21)

where xk are the states at time k, A is the state transition matrix, uk is the
input at time k, B is the input transition matrix, yk is the measurement vector
and H is the measurement matrix.

The noise processes wk and vk are considered white, zero-mean, uncorrelated
and have known covariance matrices Qk and Rk, respectively:
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wk ∼ (0, Qk)

vk ∼ (0, Rk)

E[wkw
T
j ] = Qkδk−j

E[vkv
T
j ] = Rkδk−j

E[vkw
T
j ] = 0

(22)

where δk−j is the Kronecker delta function. The Kronecker delta function gives
δk−j = 1 if k = j, and δk−j = 0 if k 6= j [18]. Qk is the process noise covariance
at time k, and Rk is the measurement noise covariance at time k.

The goal of the standard Kalman filter is then to estimate the state xk based
on the knowledge of the system dynamics and the availability of measurements,
yk.

The Kalman filter manages this by combining a posteriori and a priori es-
timates of the state xk. The a posteriori estimate is the expected value of xk
conditioned on all of the measurements up to and including time k.

x̂k = E[xk|y1, y2, ..., yk] = a posteriori estimate. (23)

The a priori estimate on the other hand is the expected value of xk conditioned
on all of the measurements prior to time k.

x̄k = E[xk|y1, y2, ..., yk−1] = a priori estimate. (24)

The estimation error covariance matrix of the a posteriori estimate at time k
is denoted by Pk, while the a priori estimation error covaraince matrix at time k
is denoted by P̄k.

Pk = E[(xk − x̂k)(xk − x̂k)T ]

P̄k = E[(xk − x̄k)(xk − x̄k)T ].
(25)

Assuming a prior estimate x̄, the aim is to use the measurement yk to improve
the posterior estimate:

x̂k = x̄k +Kk(yk −Hx̄k), (26)
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where Kk is the Kalman gain. In order to determine Kk the minimum mean-
square error is used as the performance criterion [19]. Consider the covariance
matrix of the estimate, which now can be rewritten using eq. (21) and eq. (26):

Pk = E[(xk − x̂k)(xk − x̂k)T ]

Pk = E[((xk − x̄k)−Kk(Hxk + vk −Hx̄k))
((xk − x̄k)−Kk(Hxk + vk −Hx̄k))T ].

(27)

Recognize that (xk − x̄k) is the a priori estimation error, and that it is un-
correlated with the measurement error vk. Performing the indicated expectation
then yields:

Pk = (I −KkH)P̄k(I −KkH)T +KkRkK
T
k . (28)

Now this expression is expanded into:

Pk = P̄k −KkHP̄k − P̄kHTKT
k +Kk(HP̄kH

T +Rk)K
T
k , (29)

The goal is then to minimize the trace of P , since it is the sum of the MSE in the
estimates of all the elements of the state vector [19]. This is done by differentiating
the trace of Pk with respect to Kk. Note that the trace of P̄kH

T
k K

T
k is equal to

the trace of it’s transpose KkHP̄k. This gives:

d(tracePk)

dKk

= −2(HP̄k)
T + 2Kk(HP̄kH

T +Rk). (30)

Setting the derivative equal to zero and solving for the optimal gain gives:

Kk = P̄kH
T (HP̄kH

T +Rk)
−1. (31)

By routine substitution of the optimal gain in eq. (31) into eq. (29) the fol-
lowing result is obtained:

Pk = (I −KkH)P̄k. (32)

As the first measurement is taken at time k = 1, the initial value of the a
posteriori estimate, x̂0, is set equal to the expected value of the initial state x0.
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x̂0 = E[x0]. (33)

Now, given all of the above, the algorithm of the standard KF can be formu-
lated.

The dynamical system is described by the following equations [18]:

xk+1 = Axk +Buk + wk

yk = Hxk+1 + vk

E[wkw
T
j ] = Qkδk−j

E[vkv
T
j ] = Rkδk−j

E[vkw
T
j ] = 0

(34)

The KF is initialized as follows:

x̂0 = E[x0]

P0 = E[(x0 − x̂0)(x0 − x̂0)T ]
(35)

For time step k = 1, 2, ... the standard KF is given by the following equations:

Prediction:

x̄k = Ax̂k−1 +Buk−1

P̄k = APk−1A
T +Qk

Correction:

Kk = P̄kH
T (HP̄kH

T +Rk)
−1

x̂k = x̄k +Kk(yk −Hx̄k)
Pk+1 = (I −KkH)P̄k.

(36)

2.7 Unkown Input Klaman Filter

When estimating the state of a dynamical system using a Kalman Filter it is
generally assumed that all system parameters, noise covariances and inputs are
known. However, in practice there exists many systems in which these assump-
tions does not hold. Under those circumstances the Kalman Filter technique may
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not find the optimal estimate, due to the uncertainties in the assumed known
parameters.

A solution to this is presented in [20], where an Unknown Input Kalman Filter
is derived. The problem is formulated as state estimation of stochastic singular
systems with no assumptions about the unknown inputs. The rest of this sub
section is devoted to describing the suggested method. A figure describing the
connection between the UIKF and a system can be found in fig. 5

Figure 5: System block diagram with UIKF.

Assume the following linear discrete-time system:

xk+1 = Axk +Buk + Fdk + wk,

yk = Hxk + vk,
(37)

where xk are the states at time k where xk ∈ Rn, A is the transition matrix, uk
are the known input at time k, B is the input transition matrix, dk is the unknown
input at time k where dk ∈ Rq and F is the unknown input transition matrix. yk
is the measurement of time k where yk ∈ Rp, and H is the measurement matrix.

The noise processes wk and vk follow the same assumptions as for the standard
Kalman filter (see section 2.6), hence

wk ∼ (0, Qk)

vk ∼ (0, Rk)

E[wkw
T
j ] = Qkδk−j

E[vkv
T
j ] = Rkδk−j

E[vkw
T
j ] = 0,

(38)
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where Qk is the process noise covariance at time k, and Rk is the measurement
noise covariance at time k.

The unknown input Kalman filter aims to estimate the state xk and the un-
known input dk, assuming no knowledge about dk. This is only possible under
the following assumptions:

• Assumption 1 - rank(H) = p

• Assumption 2 - rank(F ) = q

• Assumption 3 - q ≤ p

• Assumption 4 - rank(HF ) = q

The system described in eq. (37) can be formulated as the singular system
given in eq. (39). A system is called singular if it is described on the matrix form
Eẋ = Ax+Bu, and E is a singular matrix [21].

EXk+1 = AXk +Buk + wk

yk = HXk + vk,
(39)

where Xk =

[
xk
dk−1

]
, E =

[
I −F

]
, A =

[
A 0

]
and H =

[
H 0

]
.

The original state and unknown input estimation problem is now reduced to
estimation of the semi-states of the singular system given in eq. (39).

From the singular system the following result can be obtained

rank

([
E
H

])
= rank

([
I −F
H 0

])
= rank

([
I 0
H I

] [
I −F
H 0

])
= rank

([
I −F
0 HF

])
= n+ rank(HF)

= n+ q.
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Now consider the following stochastic singular system

Exk+1 = Axk +Buk + wk

yk = Hxk + vk,
(40)

where xk ∈ Rn, uk ∈ Rr, yk ∈ Rm andE ∈ R(p,n), and assume that rank

([
E
H

])
= n.

Under all the above assumptions, the optimal state estimator for the singular
system in eq. (40) is given by the following recursion:

x̂k+1 = Pk+1(ET (Q+ APkA
T )−1(Ax̂k) +HTR−1yk+1) (41)

where x̂k is the estimate of xk based on the measurement at time instant k,
and

Pk = E[(x̂k − xk)(x̂k − xk)T ] (42)

is the estimation error covariance matrix, subject to the following Generalized
Riccati Difference Equation:

Pk+1 = (ET (Q+ APkA
T )−1E +HTR−1H)−1. (43)

The estimate for both the states and the unkown input, based on the measure-

ment, up to time k is given by X̂k =

[
x̂k
d̂k

]
, and the estimation covariance matrix

is given by P k = E[(X̂k −Xk)(X̂k −Xk)
T ] which is partitioned as follows

P k =

[
P x
k P xd

k

P dx
k P d

k

]
, (44)

where

P x
k = E[(x̂k − xk)(x̂k − xk)T ] (45)

is the state estimation error covariance matrix,
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P d
k = E[(d̂k − dk−1)(d̂k − dk−1)T ] (46)

is the unknown input estimation error covariance matrix,

P xd
k = E[(x̂k − xk)(d̂k − dk−1)T ] (47)

is the cross state and unknown input estimation errors covariance matrix,
where P xd

k = (P dx
k )T .

From eq. (41) and eq. (43), as well as the definition of E, A and H the
following is obtained

X̂k+1 = P k+1

[
I
−F T

]
P̄−1
k x̄k + P k+1

[
HTR−1

0

]
yk+1 (48)

where

P−1
k+1 =

[
P̄−1
k +HTR−1H −P̄−1

k F
−F T P̄−1

k F T P̄−1
k F

]
x̄k = Ax̂k +Buk

P̄k = AP x
kA

T +Q.

(49)

Equation eq. (48) yields

x̂k+1 = (P x
k+1 − P xd

k+1F
T )P̄−1

k x̄k + P x
k+1H

TR−1yk+1

d̂k+1 = (P dx
k+1 − P d

k+1F
T )P̄−1

k x̄k + P dx
k+1H

TR−1yk+1.
(50)

Now using the inverse of the partitioned matrix P k+1 the following set of
difference equations i obtained

P x
k+1 = (P̄−1

k +HTR−1H − P̄−1
k F (F T P̄−1

k F )−1F T P̄−1
k )−1

P d
k+1 = (F THT (V +HP̄kH

T )−1HF )−1

P xd
k+1 = P x

k+1P̄
−1
k F (F T P̄−1

k F )−1

P dx
k+1 = P d

k+1F
T P̄−1

k (P̄−1
k +HTR−1H)−1.

(51)
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The above equations gives the following:

(P x
k+1 − P xd

k+1F
T )P̄−1

k = I − P x
k+1H

TR−1H

(P dx
k+1 − P d

k+1F
T )P̄−1

k = −P dx
k+1H

TR−1H

P x
k+1 = (P̄−1

k +HTR−1H)−1 + P xd
k+1(P dx

k+1)−1P dx
k+1.

(52)

By then inserting eq. (52) in eq. (50) the following is obtained:

x̂k+1 = x̄k + P x
k+1H

TR−1(yk+1 −Hx̄k)
d̂k+1 = P dx

k+1H
TR−1(yk+1 −Hx̄k).

(53)

Then by substituting for P x
k+1 in eq. (53), and completing resulting calculations

one obtains the optimal state and unknown input estimates:

x̄k = Ax̂k +Buk

x̂k+1 = x̄k + F d̂k+1 +Kx
k+1(yk+1 −H(x̄k + F d̂k+1))

d̂k+1 = Kd
k+1(yk+1 −Hx̄k),

(54)

where

Kx
k+1 = (P̄−1

k +HTR−1H)−1HTR−1

Kd
k+1 = P dx

k+1H
TR−1

(55)

and where P̄−1
k and P dx

k+1 are given by eq. (49) and eq. (51).

2.8 Inverse Transfer Function

A transfer function is a theoretical function representing the relationship between
input signals and output signals of a system. Consider the state space form:

ẋ = Ax+Bu

y = Cx,
(56)
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where x is the states of the system, u is the input and y is the output. A, B and
C are the system matrices.

The transfer function in the Laplace domain from input u to output y is then
given by [22]:

y(s)

u(s)
= C(sI − A)−1B = G(s), (57)

This system is presented visually in fig. 6.

Figure 6: TF from u(s) to y(s).

If the reveres relationship is to be obtained, it will have the following form:

u(s)

y(s)
=

1

G(s)
. (58)

See fig. 7 for a visual representation.

Figure 7: TF from y(s) to u(s).

The inverse of the TF from eq. (58) is only possible if the system has more
poles than finite zeros. In other words 1

G(s)
must be causal. A workaround in the

situation that 1
G(s)

is in fact not causal is to approximate it to some causal system.

One approximation of 1
G(s)

is:

1

G(s)
≈ αG(s)

1 + αG(s)2
, (59)
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Figure 8: Approximated TF from u(s) to y(s).

where α is considered the close loop gain and αG(s)2 >> 1.

This gives the following transfer function:

u(s)

y(s)
=

αG(s)

1 + αG(s)2
≈ 1

G(s)
, (60)

which is visualized in fig. 8.
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3 Aim of the project

The aim of this project is to use subcutaneous glucose measurements for esti-
mating blood glucose. This implies modeling of the sensor dynamics, the phar-
macodynamics between blood plasma and subcutaneous tissue. The estimation
method has to be able to be applicable in a real-time setting.

An already established method have been tested during previous work, relating
to blood glucose reconstruction using subcutaneous glucose measurements. One of
the goals of the methods developed trough this project is therefor to outperform
this already established method.

The aim of the project can be divided into the following elements:

• Finding a potential model sufficiently describing the relevant physiological
processes, through a literature search.

• Finding potential method candidates for blood glucose estimation, through
a literature search.

• Implementing the potential model and method candidates.

• Evaluate performance of method candidates.

• Discuss and compare the different method candidates, as well as the model.

• Review the possibility of blood glucose reconstruction in a real-time setting.
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4 Data aquisition

The data used for the simulations in this project is collected trough animal ex-
periments performed between 2018-2021, by APT research group. The animals
participating in the experiments were pigs.

The subcutaneous sensor used was the Medtronic Enlite sensor, which is as-
sumed to be related to the ISO 15197:2015 standard. This sensor was paired with
an Inreada transmitter, which had a sampling time of 1.2 [sec], in order to make a
CGM system. The CGMs system measures the IG level of the pigs in the experi-
ments. Two CGM sensors were attached to the pigs during each experiment. The
reason for this was redundancy. The BG was measured using a ABL800 FLEX
analyzer, which is a BGA system.

A number of three data sets were chosen at random to be used in this project’s
work. The chosen data sets where from the experiments performed on the 20th
Nov 2020, the 1st Mar 2021, and the 5th Mar 2021. On Nov 20th 2020 the
duration of the experiment was approximately 12 hours, on Mar 1st and 5th 2021
the duration was approximately 24 hours.
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5 Method description and implementation

This section will describe the process of researching and developing a model of
the BG-to-IG kinetics as well as relevant methods for BG reconstruction based
on IG levels. The code for running the simulations will also also be explained. It
will be sectioned according to different stages of the work-process of this project.

A code file was given at the start of the project. This included the process of
reading in and structuring the data from the data sets, as well as an already tried
approach. This will not be elaborated on in detail. The function convertToRel-

ativeTime.m used in this project is borrowed from an open Git repository, and
will not be explained in great detail. This includes all the code up until code line
69 in the Matlab file main.m, as well as invTF.m and convertToRelativeTime.m.
A finial version of the code can be found in Appendix A.

The block diagrams found in this report is made with the program PowerPoint,
which is part of the Microsoft Office software package. This includes fig. 3, fig. 6,
fig. 7, fig. 8, fig. 4 and fig. 5.

5.1 Initial problem set up

A hand-out code was provided by one of the projects supervisors at the start
of the project. The programming language in this code was Matlab, hence this
is the programming language used in the developed project code. The hand-out
code provided a solid foundation, where reading in data, structuring the data,
and plotting mechanisms were already in place.

To understand the problem, the BGA measurement array was plotted against
the CGM measurement array. The BGA was in the inital hand-out code plotted
using dots, this was changed to be a continuous line. A comparison between the
two measurements were made, and a problem to be solved was formulated.

An already tried approach for reconstructing BG was also included in the
hand-out code. Namely the inverse TF method. This method uses the BG-to-IG
kinetics, see eq. (6), and reverses it, in the Laplace domain, in order to obtain a
BG estimate, where the IG is then the system input.

The transfer function from Gp to Gisf can by assuming that the kinetics are
linear, and that parameters are time-invariant, be modeled as a first order transfer
function [1]:



26 5 Method description and implementation

Gp(s)

Gisf (s)
=

b
1

Tisf
s+ 1

=
bTisf
s+ Tisf

=
B

s+ a
, (61)

where a = Tisf is the pole of the system, Tisf is the diffusion process time
constant and B = bTisf where b is considered a gain originating from the calibra-
tion errors of the CGM sensor. Inverting this system will make 1

G(s)
a non causal

system, hence the approximation introduced in section 2.8 is used:

Gisf (s)

Gp(s)
=

αB(s+ a)

(s+ a)2 + αB
=

αBs+ αBa

s2 + 2as+ (a2 + αB2)
, (62)

where α is the closed loop gain of the inverse transfer function for the BG-to-IG
kinetics.

In order to understand the workings of this method, it was tuned, and the
response was observed. This method can be found in Appendix A, under the
function name invTF(...).

5.2 Literature search

The search engine used for finding literature was Google Scholar. Searching for
relevant literature was structured according to the problems to be solved, namely:

• Finding an appropriate mathematical model for describing the physiological
process

• Finding a suitable method for estimation

• Finding a way of evaluating the fit of the method/model

Finding the appropriate model was the starting point. The typical search words
used for this part of the literature search was ”diffusion”, ”plasma and subcuta-
neous tissue glucose dynamics” and ”mathematical modeling glucose”.

Once a model was determined, the search proceeded into finding a suitable
method. Kalman filters was a natural first step in investigating appropriate es-
timation methods. Very early on it was also suggested that an unknown input
Kalman filter might be a suitable choice, hence this was the predominately used
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search word. Other search words used was ”Kalman filter blood glucose”, ”blood
glucose estimation”, ”blood glucose reconstruction using subcutaneous sensor”.

Having found literature on suitable methods, a way of evaluating them was the
next step in the literature search. This part of the search consisted of looking into
various statistical methods, and finding the most suitable for evaluating accuracy.

5.3 Implementation

5.3.1 Mathematical Implementation

Based on the literature search, the glucose-interstitial fluid dynamic model of
choice was the compartmental model presented in 2.2.3, and derived in eq. (7).
The model needed to be rewritten into a state space form, in order to be used by

Kalman filters, see eq. (21). This gives the state vector x =
[
Gp Cc Cr Gisf

]T
,

and the system matrix A derived in eq. (8). No known input was set to affect the
system, hence B is not present in the model. Since only the CGM measurement
would be available to use in the simulations the measurement matrix H, had to
be in accordance with this knowledge. This gives the following result:

ẋ =


0 0 1 0
0 − 1

Td
0 0

0 1
Td

− 1
Td

0
1

Tisf
0 0 − 1

T isf



Gp

Cc
Cr
Gisf



y =
[
0 0 0 1

] 
Gp

Cc
Cr
Gisf

 .
(63)

eq. (63) was an appropriate inputless model when using the standard Kalman
filter. When using the unkown input Kalman filter, a modification had to be
made, namely the inclusion of F and d from eq. (54). The unknown input was
set to affect all the states. This results in the following system:
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ẋ =


0 0 1 0
0 − 1

Td
0 0

0 1
Td

− 1
Td

0
1

Tisf
0 0 − 1

T isf



Gp

Cc
Cr
Gisf

+


0.1
0.1
0.1
1

 d

y =
[
0 0 0 1

] 
Gp

Cc
Cr
Gisf

 .
(64)

For both filters the noise covariance matrices Qk and Rk was assumed constant
throughout the entire simulation time. Hence Qk = Q and Rk = R. The time
constants from eq. (7) needed to be determined before implementing the model
in Matlab. Td was set to be 10 [min]. Tisf was set to 12 [min]. The sensor bias,
relating to eq. (1) was set to be 0.01 [mmol/L].

5.3.2 Code Implementation

A great deal of inspiration for the code is taken from [23], which is the open Git
Repository for the code developed in [8]. The function named convertToRela-

tiveTime(...) is borrowed from this Git repository. This function was deemed
necessary due to the difference in sampling time between the BGA measurement
vector and the CGM measurement time vector. Converting to relative time was
an easy workaround when tBGA and tCGM was of different lengths and using date

time as their data types.

The model was built as an object, with the system matrices as properties.
This was done for each Kalman filter individually, and the functions are named
setDynModel(...). As the model in eq. (7) is defined in continuous time, it was
necessary to discretize it. This was done in accordance with the discretization
process described in section 2.4, and using the Matlab function expm(...). Notice
that A is not invertible, however this is handled in the discretization process by
expm(...) which uses the Taylor series approximation in order to find the matrix
exponential. The discretized system transition matrix is called Phi in the model.
CGM would be the only available measurement to use in the simulations, hence
an observability check, see section 2.5 is also done in the same function. For this
the Matlab inbuilt function obsv(...) was used.

When building the standard Kalman filter it was decided to do so in a function.
The function is named standardKF(...), and can be found in Appendix A. The
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first thing done in the function is to build the model, as described above. All
system matrices, and their values can be found in table 2, and the connected
model parameters can be found in table 1. After building the model the time t is
converted to relative time, so the filter output time can be used in the plots. The
filter equations, see eq. (36), are then put in a for-loop, which iterates trough time
vector t. At t = 1 the inital value of the estimates for Gp and Gisf is set to ycgm−b,
in order to eliminate the sensor bias, while the initial value of Cc and Cr is set
to 0. Once the for-loop is finished an output object is built, where the estimated
states are set as the object’s properties, in addition to the Gp covariance matrix,
PGp and the relative time vector.

The unknown input Kalman filter function is built much the same way as
standardKF(...), but has some modifications. The function is named unknown-

InputKF(...), and can be found in Appendix A. Since the UIKF deals with
an unknown input, the unknown input system matrix had to be added to the
model. This matrix is named F , see table 2. Once the model has been set, the
assumptions presented in section 2.7 are checked, using the function checkAs-

sumptions(...). The filter equations, see eq. (54), eq. (49) and eq. (51), are then
set in a for-loop which iterates through t. The reminder of the filter function is
performed equal to that of the standard Kalman filter.

Next step was to develop some form of performance score. This was done in
the computeError(...) function. BGA was to be used as the ”real” value when
calculating the error. Due to the difference in tBGA and tCGM a method for finding
corresponding points in time had to be developed. This was done by finding the
minimum value of the absolute value between all of the estimate’s time and the
real time, at index i. In mathematical terms this looks like j = min[abs(t2−t1(i))],
where t2 is the estimate’s time vector, while t1 is be the real value time vector.
Note that both time vectors had to be converted to relative time in order for this
to work. ŷ(j) is then the closest point of ŷ in time to y(i). After determining the
correct index of ŷ MAE is computed according to eq. (10), MSE is computed
according to eq. (11), RMSE is computed according to eq. (12) and MAPE is
computed according to eq. (13). All accuracy measures are then set as properties
for the function output object, error.

In main.m the first thing done is retrieving the data from the data sets. In the
handed out code, both sensors from each data sets were used, however this was
changed to just include one sensor in this project’s code. For all filters and all data
sets the chosen sensor was always the first sensor. The rest of the processing of
data from the data sets remained the same as the handed out code. First the BGA
time is converted from date time to relative time, so the the BGA measurements
can be plotted with the estimates. main.m then has a Choose method section,
where each method has a do_methodX variable which is set to 1 if the method
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is to be performed, and 0 if the method is to be skipped in a code run through.
For each method the function containing the estimation calculation is first called,
then the statistical score function is called, and lastly plots are produced. The
plots all have glucose level [mmol/L] on the y-axis, and time [min] on the x-axis.
For the KF and UIKF there is an additional figure, in order to plot Cc and Cr.

The inverse TF method code was slightly changed so it would fit in to the
same output format as the KF and the UIKF output objects. Throughout the
development of the code, some inbuilt Matlab functions has been used. This will
not be elaborated on, but they can all be found, in addition to a description
of their return value, in table 3. Only the inbuilt functions used by the author
is included, hence not the ones used in the handed-out code, nor the borrowed
function.

Model parameters Value
Tisf 12 [min]
Td 10 [min]
Bias 0.01 [mmol/L]

Table 1: Model parameters for the compartmental model presented in eq. (7).

System matrices KF UIKF

A


0 0 1 0
0 − 1

Td
0 0

0 1
Td

− 1
Td

0
1

Tisf
0 0 − 1

T isf




0 0 1 0
0 − 1

Td
0 0

0 1
Td

− 1
Td

0
1

Tisf
0 0 − 1

T isf


B Not in model Not in model
H

[
0 0 0 1

] [
0 0 0 1

]
D Not in model Not in model

F Not in model
[
0.1 0.1 0.1 1

]T
Table 2: System matrices, continuous and discrete, for KF and UIKF, based on eq. (36)

and eq. (54).
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Function name Return value
size(...) Returns the array size.
rank(...) Returns the rank of a vector/matrix.
obsv(...) Returns the observability matrix.
nan(...) Returns array of scalar representations of ”not a number”, or NaN.

isnan(...) Returns logical array corresponding to if value is NaN or not.
length(...) Returns length of an array.
inv(...) Returns the inverse square matrix of a value/matrix.
diag(...) Returns diagonal matrix with specified values at the diagonal.
eye(...) Returns the identity matrix.
min(...) Returns the minimum of an array.
abs(...) Returns the absolute value of each element of an array.
sum(...) Returns the sum of an array.
sqrt(...) Returns the square root of each element of an array.
expm(...) Returns the matrix exponential of the input.

Table 3: Used Matlab inbuilt functions when developing the code for this project. De-
scriptions retrieved from [3]

.



32 6 Results and observations

6 Results and observations

This section will present the results, and elaborate on some observations based
on the results. The section is divided into five parts, where each part, except for
the first one, is devoted to one method. The first part is devoted to illustrate the
problem at hand, comparing CGM measurements to BGA measurements. The
results will, for all tried methods, be presented by a plot with the BGA measure-
ment and CGM measurement for comparison, together with a table showing the
initial values, as well as the tuning variables. A statistical analysis of all meth-
ods, where the BGA measurement is considered as the real value can be found in
table 4. All methods were tested on three different data sets, and the data sets
were chosen at random. All methods were tuned using the Mar 5th 2021 data set.

Date Statistical Method Inverse TF KF UIKF
MAE 1.13 0.66 -

Mar 1st 2021 MSE 4.70 1.082 -
RMSE 2.022 1.040 -
MAPE 20.023% 11.34% -
MAE 0.81 0.63 -

Mar 5th 2021 MSE 1.18 1.20 -
RMSE 1.084 1.096 -
MAPE 12.66% 10.016% -
MAE 0.88 0.62 -

Nov 20th 2020 MSE 5.70 4.80 -
RMSE 2.39 2.19 -
MAPE 16.57% 11.65% -

Table 4: Performance score for all methods.

6.1 Measurement

Observe the lag between the two measurement slopes in fig. 9. This illustrates the
difference of measuring glucose in plasma versus interstitial fluid. One can clearly
see the lagging characteristics between the BGA BG measurement and CGM IG
measurement. However, notice that this lagging effect is not constant throughout
the time window. Notice also that on several instances yCGM overshoots yBGA.
Also notice the drop in the CGM towards the end of the time window, and how
it will effect the following methods.
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Figure 9: CGM and BGA measurement, Mar 5th

6.2 The Inverse Transfer Function

Initial conditions Value

x1

[
0.05 0.05

]T
Tuning variables Value

Pole (a) 0.2
Gain (B) a1.05

Closed-loop gain (α) 35

Table 5: Invers TF initial and tuning variables value.

System matrices Value

A

[
−0.40 −1.58

1 0

]
B

[
1 0

]T
H

[
7.35 1.47

]
Table 6: Reveres BG to IG system matrices.

Immediately one can observe that the inverse TF method is very sensitive
to sudden changes in the CGM measurements, see fig. 10, fig. 12 and fig. 13.
Whenever there is a sudden drop, or increase in the CGM measurement, the
inverse TF estimate starts to oscillate for some time, before it stabilizes again.
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Figure 10: Inverse TF reconstruction of BG on Mar 1st data set
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Figure 11: Inverse TF reconstruction of BG on Mar 5th data set, zoomed in.

In the zoomed in figure, see fig. 11, the inverse TF function does seem to be
capturing the BGA dynamics, despite the oscillations. The statistical scores are
given in table 4, and the initial and tuning variables are given in table 5.

Based on the tuning variables in table 5, the reversed BG to IG system matrices
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Figure 12: Inverse TF reconstruction of BG on Mar 5th data set
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Figure 13: Inverse TF reconstruction of BG on Nov 20th data set

was obtained, whereGisf is considered the input u andGp is considered the output
y, see table 6.
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6.3 Standard Kalman Filter

Initial conditions Value

x1

[
y1 − bias 0 0 y1 − bias

]T
P1 diag(

[
0.25 1 1 0.25

]
)

Tuning variables Value
Q diag(

[
0.01 0.03 0.01 0.01

]
)

R 2

Table 7: KF initial and tuning variables value.
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(a) Mar 1st 2021.
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(b) Mar 5th 2021
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(c) Nov 20th 2020.

Figure 14: KF estimate of Cc and Cr.

Observe the significant spikes especially at the beginning of the x-axis in all
plots relating to the KF. Looking at fig. 17, one can observe that the KF barely
manages to eliminate the lag at the start of both peaks, however as the BGA rises
the estimate improves. In fig. 15 one can see the estimate being very reactant,
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Figure 15: KF reconstruction of BG on Mar 1st data set.
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Figure 16: KF reconstruction of BG on Mar 5th data set.

due to noisy measurements. The estimate in fig. 18 is very accurate right from
the beginning, but is struggling more in the mid section of the time window. The
initial values, as well as the final tuning variables belonging to the KF, can be
found in table 7, while the performance score can be found in table 4.
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Figure 17: KF reconstruction of BG on Mar 5th data set, zoomed in.
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Figure 18: KF reconstruction of BG on Mar 20th data set.

The central and remote compartment estimates can be found in fig. 14. Observe
that the value of the states are centered around zero.

The Gisf estimate is equal to the CGM measurement for the final tuning
values, hence not depicted here.
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6.4 Unknown Input Kalman Filter
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Figure 19: UIKF reconstruction of BG on Mar 5th data set.
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Figure 20: UIKF estimate of Cc and Cr on Mar 5th data set.

Notice the timing of the peaks in fig. 19. Also observe the difference in dynam-
ics of Cc and Cr between fig. 20 and fig. 14b. Final tuning values for the UIKF
can be found in table 8.
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Initial conditions Value

x1

[
y1 − bias 0 0 y1 − bias

]T
P1 diag(

[
0.25 1 1 0.25

]
)

d1 0.5
Tuning variables Value

Q diag(
[
0.1 0.1 0.1 0.1

]
)

R 2

Table 8: UIKF initial and tuning variables value.
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7 Discussion

This section will discuss the results from section 6 as well as the observations
made from the results. First however, some discussion based on the code im-
plementation will be presented. This will not elaborate on the specific methods,
seen as this will be done separately for each method, but function as an overall
code evaluation. Then some points will be discussed regarding both the BGA and
the CGM measurements. Then the three tested methods will be evaluated and
discussed, both the results and the theory relating to them. The tuning process
will be explained, as well as interesting observations made during this process.
Potential pros and cons will be discussed, and comparison between the methods
will be made. Lastly some thoughts on the performance scoring system will be
presented.

7.1 The code

The code up until code line 69, is code from previous work. Hence the discussion
regarding the code will be from code line 69 and onward. When choosing which
method to run, one has to go into the code and switch the value of certain variables
from 0 to 1. This is perhaps a bit cumbersome, but seen as this project is only
considered a first step in the process of developing a method for BG estimation,
it was seen as acceptable. Time was not spent on optimizing the code, but rather
improving the estimates of the different methods.

There are in all four different sections to run in the code; the measurement
comparison, the standard KF, the UIKF and the inverse TF method. The code
for the inverse TF method was from previous work, while the remaining code was
developed in this project. The measurement comparison was fairly simple, and
only consists of a time conversion and a plot. The time conversion is a borrowed
function from [23]. This is an open Git repository. The KF and UIKF code were
more comprehensive, UIKF being the most complex implementation of the two.

In hindsight it is observed that the build of each section could be simplified.
A function could have done all of what is performed for each section in main.m.
This would have made the main file cleaner. However it might have been at the
cost of understanding what was going on in the code. The advantage of having
all operations done separately is that it is easy to see what is being done for each
method, by only looking at the main.m file. In order to understand the code, one
does not have to look into each function, which might be a positive contribution.
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7.2 Comparison to BGA samples

In this report it is chosen to compare the estimates to the BGA measurements.
This is because BGA measures the glucose level directly from the blood, hence it
is as close one can get to the true BG value. Despite this, there are some problems
with using especially this BGA measurement as the ”true” value.

The first issue is that the BGA measurement was sampled at a different rate
compared to the CGM. New measurements arrive every 1.2 [sec] in the CGM sys-
tem, while a varying amount of minutes passes between every new measurement
in the BGA. This is the reason why the BGA measurement looks so rigid com-
pared to the CGM slope in fig. 9. Looking at the figure one can see that instead
of following a natural curve the BGA cuts to a new values at certain points in
time. Due to the long sampling time one cannot completely capture the true BG
dynamics with the BGA measurement. It could therefor be that the BG estimates
actually show a more true dynamic of the real BG level at certain times in the
plots.

Visualizing BGA with a continuous graph probably enhances this strange dy-
namic, however in order to visually compare the estimates of BG it was deemed
necessary. The issue is also present in the statistical analysis, and must therefor
also be pointed out. The statistical methods uses BGA as the true value, and
again due to the sample rate they cannot be viewed as a perfect analysis. This
will be more explored in the discussion of each method separately. Comparing the
difference in score with the different plots for each method, one can argue that
despite a somewhat flawed true value in the computations, the scores do tell the
truth about the most accurate method. Although not without flaws, it was for
this term-project considered good enough. In further development however, the
statistical analysis should be improved, see section 9.

7.3 CGM Measurement

The CGM measurements are considered the base of all BG estimates, and is there-
for an important part of the simulations. Only one stream of CGM measurements
was chosen per data set in this project. Although the used measurements streams
was of good quality, it was observed that not all sensors provided the same qual-
ity. Fault detection was not developed in this project, hence it is logical to think
that the estimates would show much worse performance, had more faulty sensor
data been used.

Comparing CGM and BGA one can clearly see the Tisf effect, see fig. 9. The
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diffusion from blood to ISF causes a delayed effect in the sensing of glucose
with the CGM sensor. However there is a noticeably bigger deviation in the first
third of the time window. The CGM seems to drop and increase quite rapidly.
This is because the CGM sensor spends some time calibrating. There was not
implemented any sort of pre-processing of the measurement, in order to avoid the
effects of calibration. The estimates are therefor also affected by this.

A possible solution would be to low-pass filter the CGM, or smooth it in any
other way. However, any type of smoothing will introduce additional lag. As the
goal of this project is to estimate the BG from CGM, introducing additional
lag was viewed a bit counterproductive. However, this additional filter lag could
perhaps be eliminated by the filters by altering the model. It is therefor considered
a future possibility.

It is also possible to spot some sudden changes in the CGM later in the time
window. These are most likely due to faulty measurement samples. A contributing
factor to these suggestions is that so sudden changes are not typical characteris-
tics of glucose level change. It is believed that sensor fault detection could have
eliminated these samples. There is also a long spike pointing towards zero at the
end of the time window in fig. 9. This could be a result of dismounting the sen-
sor, or simply a consequences of stopping the sensor recording. As this anomaly
will affect the estimates, it is not considered a counting factor in evaluating the
estimates.

7.4 The Inverse Transfer Function

The inverse TF method had already been tested, hence not much time was spent
tuning this method to perfection. However, some time was spent on just observing
the filter responses based on different tuning variables. The variables in table 5
was chosen as they seemed to provide the best estimate.

Setting a quite low caused the estimate to over estimate some of the peaks
in the time window. The oscillations also worsened at certain times, while im-
proving at other times. The estimate could be described as looking somewhat
more aggressive. The opposite was observed when a was set high. Now very little
oscillations were present, except at the start of the time window, however the
estimate was not able to capture the BG dynamics. In other words the estimate
became too conservative, only following the CGM slope. Seen as a is the pole of
the system, this is very much in line with control system theory.

When slightly adjusting b the estimate was observed to have a seemingly fixed
offset value, as seen from the CGM slope, while maintaining the same dynamic.
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Increasing b too much, caused the response to became unstable. When setting α
too low, the oscillating effects was reduced, but the estimate also worsened, not
being able to capture the BG dynamics. Increasing α resulted in more oscillations,
and bigger amplitudes. Both b and α are considered gains in the system at play
here, hence the estimate’s response is not surprising. A collection of plots of the
different tuning responses can be found in Appendix B.

This method for estimating BG level can be considered suitable, since it is a
fast method, hence applicable in a real-time setting. An obvious drawback is of
course the oscillations. It looks like the inverse TF is very sensitive to changes
in the CGM, since whenever there is a sudden change in the CGM a oscillating
response is starting in the estimate. This is especially noticeable in fig. 10, which
is the data set containing the noisiest CGM measurements. Some mechanic to
reduce the oscillations should be in place, if the method is to be used in an
real-time setting, where precision is important. Time was not spent on perfecting
this method, hence no such mechanism was developed in this project. It can also
be noted that it isn’t until the latter three peaks in fig. 12 that the estimate
seems to be accurately capturing the true BG dynamics. This is slower than the
competitive KF method for the same data set.

In fig. 13 the opposite response is present. Here the estimate seems to fit better
at the first half of the time window, compared to the reminder. In this data set
the glucose seems to be rising and falling at a slower rate compared to the other
two data sets. The rate of change in glucose could therefor be a counting factor in
the inverse TF’s performance. Since the oscillating effects are only present in the
beginning and towards the end in fig. 13, this theory becomes more believable.

However, one can observe that the inverse TF seems to be estimating the peak
value better than the KF, avoiding over estimating th BG level, which is definitely
a factor in favour of this method. Compared to the KF this method seems a bit
less aggressive. A possible drawback worth mentioning, is that the only output
of the filter as of now, is the estimate itself. In some scenarios one could benefit
from having more estimated states, as well as an estimate of the uncertainty of
the estimated states at one’s disposal, which makes this method, less beneficial.

The statistical scores depicted in table 4 show that the quality of the inverse
TF estimate is somewhat inconsistent. Especially regarding the MSE and MAPE
values. A reason for this inconsistency may be due to the oscillations occurring
whenever there is a sudden change in the CGM. yBGA on average consists of only
about 100 samples, while the estimate on average consists of over 70 000 samples,
for the 24 [h] experiments. If then by chance the estimate is oscillating at the
exact same time as the comparing yBGA sample is timed, it would greatly impact
the performance score. Between the data sets it could then be by sheer chance
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that the estimates are not better, or worse. The scores in table 4 may then not be
accurately showing the true inverse TF method’s performance. Since the estimate
shown in fig. 13 is affected by the least amount of oscillations, it gives reason to
believe that the scores for the Nov 20th 2020 data set are the most true scores
for the inverse TF method, when BGA measurements is set to be the truth.

7.5 The Model

The choice of model for the Kalman filters is motivated by primarily two things.
Firstly the model has to be observable when only the CGM is available. Secondly
the model should have no known external input. Having a zero known input
system makes the model simpler, more generalized and applicable. Hence the
model in eq. (7) was chosen. The compartmental model was also used in [8], hence
it was already tested and documented to work well in an offline setting. There
was no indication that the model would not also work in a real-time application
using other variations of Kalman filters, hence the same model was used in this
project. The inverse TF method on the other hand, inverts the simpler kinetics
from eq. (6).

Non of the implemented KF’s were capable of handling non-linear systems,
hence Tisf needed to be determined before constructing the model. As this project
is concerned about the Kalman filter’s capability of reconstructing BG level,
time was not spent on estimating Tisf . Determining Tisf could then probably
be viewed as a tuning variable, seen as it was adjusted slightly to perfect the
estimate. Due to this, Tisf was also assumed to be constant. Different values for
Tisf were tested, and the responses were as one would expect. If Tisf was set too
low, the estimate would lag behind the BGA together with the CGM, hence the
performance suffered. If too high it did not affect the estimate greatly.

Looking at fig. 9 one can see that the assumption of constant lag between the
BG and the CGM measurement is not entirely true. The CGM lags behind the
BGA by a varying amount, contributing to the belief that Tisf is in fact varying
through time. This could be a result of the calibration of the CGM sensor, or be
due a physiological response. Also it can be mentioned that, despite Tisf = 12,
seemingly fitting all the chosen data sets well, it might not be representative for
all individuals. Individual differences should be accounted for, and could, when
Tisf is set to a constant value, greatly effect the estimates performance. This is
an interesting observation, and makes the argument for estimating Tisf together
with Gp all the more stronger. This will however be a main focus in future work,
see section 9.

The second time constant to be determined was Td. This constant describes the
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rapidness of flow between the central and remote compartments in eq. (7). Given
the information about how Td affects variance in Cc and Cr, see section 2.2.2, it
should be tuned together with the process noise covariance matrix Q. 600 [s] =
10 [min] was the value that was used for Td in [8]. The model is adapted from
this article, hence the same value was tried in this project. Changing Td did not
seem to affect the estimate greatly, hence it was also set to 10 [min] in this work.
σ2
Cc

and σ2
Cr

was then tuned to fit Td = 10 [min].

The resulting KF estimate’s behaviour based on different values of Tisf and
Td can be found in Appendix B.

When implementing the model in Matlab code, it was done in two separate
functions relating to the KF and the UIKF. Both functions are in essence the
same, with the addition of the unknown input transition vector for the UIKF.
Seen as this was the only difference, a more elegant way of implementing the
model would be to have a base function, and then augment the system with the
necessary, depending on the method.

The model also needed to be discretized from eq. (7), hence this was done
according to section 2.4. Since the model has no known inputs, only the A matrix
needed to be discretized. In order to do this a sample time ∆t had to be set. New
CGM measurements arrived every 1.2 [sec], hence ∆t was set to 1.2 [sec]. Not all
CGM sensors have the same sampling rate, hence if a different sensor, or data-set
with different sampling time is to be used, ∆t needs to be adjusted thereafter.
The location of this parameter could then perhaps be more reachable, since one
would have to go into the function of constructing the model in order to find it.
This will be taken into consideration in future work, and may be optimized. F
in the UIKF was assumed constant, hence there was no need for discretization of
this matrix.

Relating to eq. (1), the bias had to be determined. This value is used when
initializing the state vector. Since only CGM measurements were to be used,
it proved to be very difficult estimating a possible bias. Since the implemented
filters would have to work in a real-time setting, finding the bias by comparing
the CGM and BGA measurements was not an option. The bias was therefor set
to various constant values, and the response of the Gp estimate was observed in
order to find the correct one. Slightly adjusting the bias did not seem to affect
the estimate in a great manner. Seen as the bias can vary from sensor to sensor,
it would be preferable to construct a method for getting a suitable value for this
constant in future work.
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7.6 Standard Kalman Filter

The goal of a Kalman filter is to estimate the states of a system, based on outputs
of that system. Hence the standard linear Kalman filter was a natural first choice
of method to try in regards to this problem. Early on in the project lifetime the
standard Kalman Filter was however not considered a good fit. The Gp estimate
was not able to eliminate any lag, and only followed the CGM slope. Tuning the
filter did not improve the performance. It was considered very odd, and illogical
when looking at the model. One would think that the filter, based on the model in
eq. (7), would at least make an attempt of trying to mimic some other dynamic
than the CGM dynamic. After some time a bug in the Matlab code, relating
to sampling time, was discovered. This bug was the cause of the ineffective KF.
Fixing this bug resulted in the Kalman filter actually producing an estimate that
made theoretical sense. The bug will be discussed in further detail in section 7.7.

Once the filter was running as it should in Matlab, it was tuned in order to
enhance the performance. To evaluate the tuning, comparison with BGA was
done visually by looking at plots, as well as observing the statistical measures,
and trying to lower them. Extensive tuning was done, in order to observe the
response and understand the filter better.

Increasing R caused the estimate to be smoother, but at the cost of being
accurate. No change was immediately visible while plotting the estimate together
with the BGA measurement, but the statistical scores slightly increased. However
it must be noted that R had to be increased quite extensively in order to provoke
a significantly worse response. Decreasing R showed minimal effect. Since R de-
scribes the measurement covariance, this response is not surprising. Increasing R
means that the measurements are more penalized, which again tells the system to
trust the measurements less. The ISO standard was not taken into consideration
when tuning R, however in further development of the code it will be fairly easy
to implement, and will be a prioritized task. It can be considered an overlook
in this version of the code. However seen seen as adjusting R did not seem to
massively change the outcome, until an extreme adjustment, the overlook is not
critical.

Since the system is a four state system, Q is a four by four matrix. Each of
the values located on the diagonal of Q describes a variance that corresponds to
one of the states in the system. Each of these values were tuned individually and
the response was observed. Q is the process covariance matrix of the system, so
just like for R, increasing a value of Q penalizes the model of that state more,
hence trusting the model less.

Increasing the variance of blood glucose, σ2
Gp

, caused the spikes of the estimate,
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see fig. 16, to get bigger, hence the filter became more aggressive. Decreasing the
variance seemed to have no effect on the estimate. The variance of the remote
compartment, σ2

Cc
, did not seem to affect the Gp estimate when adjusted neither

down nor up. The response of Cc and Cr became overall bigger when σ2
Cc

was
increased, compared to the response seen in fig. 14b. Decreasing σ2

Cc
caused both

Cc and Cr to be very damped. Increasing σ2
Cr

caused the same effects for Cr, but
not for Cc. This is as one would expect, since Cr is not set to affect Cc in the
model, only the other way around. The spikes in Gp was also enhanced, which
is also in agreement with the model, see eq. (7). Decreasing σ2

Cr
made Cr less

reactant, and more similar to Cc. The Gp showed no visible response. The last
variance is σ2

Gisf
. When this was increased the estimate only followed the CGM, as

well as the estimate for Gp became much worse, lagging behind the CGM. When
decreased, Gisf still followed the CGM slope, but showed a slight more dramatic
response at the peaks. The Gp estimate was not greatly affected by this, only
showing a very small increase in the statistical scores. A collection of plots of the
different tuning responses can be found in Appendix B.

The filter seems very sensitive to sudden changes in the CGM, see fig. 16
and fig. 15. One can see the same characteristics in fig. 14b, where the spikes
occur at about the exact same time as in the plots for the Gp estimate. It was
tried to reduce the spikes of the estimate by tuning the filter, however it was not
accomplished without going at the cost of the Gp estimate accuracy. However,
despite the noise, the estimate does seem to be capturing the BG dynamic quite
well. Just like for the inverse TF method the filter shows the most dramatic
response at the start and at the end of the time window. This is most likely due
to the CGM calibrating, hence giving non optimal measurement samples. Despite
this the KF still outperforms the inverse TF method, see table 4.

There is however one consistent characteristic for the KF that makes it less
favorable. The filter seem to consistently over-estimate BG level at the peaks,
see fig. 17 and fig. 15. It was tried to reduce this characteristic, but that proved
difficult without it going at the cost of the estimate accuracy elsewhere in the time
window. For almost all the over-estimated peaks this behaviour can be explained
by the filters sensitivity to changes in CGM. Whenever CGM rises slightly, the
filter does so as well, only in a more dramatic manner. This gives indication that
the filter is too aggressive. However, in fig. 18 the same aggressive behaviour is
not present. The reason for this could be that the glucose dynamics seems to be
slower in this data set, hence the filter becomes less reactant.

One peak however cannot be explained by this in fig. 17. The right most peak
shows very different dynamics compered both to the CGM and the BGA slopes.
The true BG dynamic at this exact point in time is however unknown, as BGA
can be seen ”cutting” to a new value after the estimate’s odd peak. Therefor one
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cannot know if the filter is describing the actual hidden BG dynamic at this point,
or simply estimating wrongly. It is an interesting behaviour nonetheless, as it is
not seen elsewhere in fig. 16, nor in fig. 15 or fig. 18.

In the KF model it is assumed that the noise relating to the measurement equa-
tion, eq. (1), is a Guassian white noise process. This assumption can be debated,
and might be the cause of some of the estimate’s flaws. Some researches claims
that the CGM measurement noise is in fact non-Gaussian, and that other prob-
ability distributions are more appropriate. Some also argue that the sensor noise
is confounded by BG-to-IG kinetics model inaccuracies, and calibration errors
[8]. There are also a wide variety of CGM systems, and their sensing technique,
although very similar, are not equal.

Meal effects and insulin are also modeled as noise, and much of the other
reactions causing BG level to rise or fall is lumped together in the compartmental
states. The implications this causes for the system is not known, seen as models
with inputs were not tested using the KF. It can however be considered that
input-less models, although very general and applicable, might be simplifying the
system too much. More models should therefor be tested using the KF, in order
to find the best model, or simply confirm that the input-less model is a sufficient
model.

The KF seems reasonably consistent regardless of the above, based on the
scores in table 4, more so than the inverse TF. This is a positive sign, and gives
credibility that the KF will work on any arbitrary data set. The same effect men-
tioned in section 7.4, about the sample time of yBGA relating to the performance
scores, will have an effect also for the KF. However, seen as the KF is very con-
sistent in the scores, there is a notably less effect of this phenomenon. It should
however still be taken into consideration when evaluating the values in table 4.

One can see that the Nov 20th 2020 data set has the worst performance, and
looking at fig. 18 it is not surprising. The deviation between the estimat and the
BGA value is very large at certain times, and looking at table 4 the prominent
measure is MSE. Recall that larger errors are given more weight in this accuracy
measure.

Despite th KF not performing perfectly now, it is a suitable method considering
a real-time application. Looking at eq. (36), one can see that the filter only uses
the current measurement, as well as the previous states, as well as the previous
covariance matrix. The filter can therefor be called causal. Seen as this is an
absolute demand for BG estimation in this project, this counts in favour of the
KF.

Another positive side of the KF is that one can easily obtain the covariance
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matrix of the estimated states. This could prove very useful in a number of
applications. The diagonal of the covariance matrix is made up of the variances
of every estimated state in the system. In sensor fusion applications, knowing
the variance of the estimates using a specific sensors output is a key factor. It
could for example tell the algorithm which sensor to trust more at specific times,
by looking at how much the estimate varies. This could prove useful, and would
elevate the accuracy of the estimate.

7.7 Unknown Input Kalman Filter

The UIKF is an extension of the standard KF, hence the arguments in favour of
KF is automatically applied also for the UIKF. What distinguishes the UIKF is
the ability to estimate an input, for which nothing is known. The idea of a filter
where one could simultaneously estimate the states and an unknown input, was
an attractive idea in regards to this project.

Recall section 2.1, where there are mentions of problems relating to the CGM
sensor, as well as the concern of assumed noise processes in section 7.6. The model
in eq. (7) is also an input-less model, where reacting hormones to glucose, such
as glucagon and insulin, are modeled as noise. It would seem that the assumption
of all white, zero-mean Gaussian noise processes, has less credibility the more
processes it is said to model. If then, instead of white noise, the processes can be
modeled as unknown inputs, it would theoretically perhaps be a more accurate
model. In addition there are many processes happening simultaneously in the
body, which may or may not affect the glucose concentration in the blood. All
these process will in the KF model also be assumed as white-noise processes, or
lumped into the central and remote states. It is in this project not thoroughly
investigated what some of these processes may be, and this should be prioritized
in future work. Regardless, it will in many cases not be processes happening in
complete randomness, hence the assumption of white noise may not hold. Hence
the need of unknown input estimation is only amplified.

An UIKF was then implemented in Matlab according to the theory of the filter,
presented in section 2.7. One modification was made. In [20] the filter equations
uses the next measurement yk+1 in order to compute the estimate. A demand for
this project is that the BG estimation must be performed by a causal system.
In order for the UIKF to be a qualified candidate, this was changed to yk. It
did not seem to affect the response of the filter, neither concerning the visuals
nor the performance scores. The transition vector F was also set to affect all the
states. The reason for this is simply that all states were assumed to have some
sort of unknown input affecting their response, that could not be modeled as a



7 Discussion 51

white-noise process.

For a period this filter was the primary focus of this project. However, later
in the project lifetime it was discovered that there was a bug relating to the
sampling time of the model, as briefly mentioned in section 7.6. ∆t was set to be
10 [sec], while the actual sampling time in the data sets used for the simulation
is 1.2 [sec]. Since the UIKF produced a somewhat sensible output despite this
wrongful sampling time, it was not discovered earlier. In hindsight however, one
could notice signs that the filter was not working as it should, despite the output.
Tuning the R did not produce the expected response, just shifted the value of
estimate slope on the y-axis. Adjusting Q also produced some odd behaviour,
however not as noticeable as for R.

Setting ∆t to the correct value resulted in massive changes, both for the KF
and the UIKF. Not only did it make the standard KF actually produce a very
precise estimate, it also made the UIKF estimate very reactant and odd. The
UIKF showed a very illogical response, and despite spending time trying to tune
this odd response away, it was not accomplished. It was decided, based on these
responses, that tuning the KF should be prioritized over investigating the odd
behaviour of the UIKF.

The filter was therefor tuned into giving the best possible response. In fig. 19
one can clearly see that the estimates are extensively gained. The peaks can be
seen climbing at ridiculously high values of BG, well above the 103 range. Even
so, if one compares fig. 19 with fig. 16, one sees that the BG dynamic is similar
to that of the KF estimates. The peaks occur at about the same times as the
peaks in the KF estimate. This proves that there is potential in the UIKF. The
tuning of R and Q might be the issue at play here, however the possibility of
a bug relating to the matrix computations, resulting in a gaining effect, is also
considered.

Looking at the Cc and Cr estimates, peculiar behaviour can also be spotted.
In section 2.2.2 these compartments is said to be swinging around zero, showing
positive values when describing meal effects and negative values when showing
insulin effects. This is not in agreement with the response in fig. 20. As we know
from looking at fig. 14b, as well as the information about insulin in the data
sets, insulin is not continuously supplied to the subject, and definitely not in the
quantity as fig. 20 would suggest, the filter response is considered faulty. Seen
as Gp is set to be affected by Cr, it leads to the belief that the tuning of these
two states might be the problem. However, non of the attempted tuning value
combinations of R and Q were able to change the faulty Cc and Cr dynamics,
hence neither Gp. It was also attempted to reduce the impact of the unknown
input on these states, by reducing their corresponding value in F . This attempt
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did however also fail, and the compartmental states were still observed to be
extensively low in value, and behaving illogical, according to theory.

Some tuning results can be found in Appendix B. There are fewer plots than
for the KF and inverse TF, however the ones that are included are from the tuning
variable combinations that provided a solid difference in the estimate response.
The ones that did not provoke any significant difference are omitted.

Although not visible in fig. 19, Gisf was seen to be quite elevated from the
CGM measurements, while maintaining the same dynamic. This is not surprising
as Gisf is affected by Gp, see eq. (6). The reason why it is not visible, is because
the elevation is of such small contrast to the gained Gp estimate, that the plot is
not able to show both graphs simultaneously.

The potential of the UIKF, despite the odd responses, is not forgotten. Seen
as the Gp estimate is not of a completely wrong dynamic, only gained quite
extensively, it is assumed that a desired response is within reach. This will require
matrix computation debugging of the code, as well as more finely tuning of the
filter. Debugging and tuning are time consuming tasks, hence no further effort
was given in this project for finding out what causes this gaining effect in Gp.
However, in future work this would be of top priority, seen as according to theory
of the UIKF, in addition to the Gp estimate’s dynamic in fig. 19, it would be very
interesting to see if the UIKF does outperform the standard KF. In addition, it
must be mentioned that the UIKF has, like the standard KF, the capability to
operate in real-time. This makes the UIKF a valid method to use for estimation
of BG in this project. No performance score is given to the UIKF in table 4, since
it is known that the current resulting response is not the correct response. Having
scores for UIKF would then give a wrongful impression of the filter’s capability.
The formal evaluation of the filter is therefor saved for future work.

7.8 The Statistical Scores

Since the problems related to the performance score calculations in the code
has already been elaborated on, this subsection will rather focus on the chosen
statistical methods, and their use.

The statistical methods was chosen based on the work done in [14]. This ar-
ticle presents a smoothing filter algorithm, and thereafter evaluates the filters
performance. It is stated in the article that: ”The performance should be verified
or validated by comparison of its forecast with historical data for the process it
was designed to forecast” [14]. Seen as the goal of this project is very similar to
that of this article, the same ways of evaluating the performance was used in this
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work. This included MAE, MSE, RMSE and MAPE.

There is no consensus among researches as to what the best measure to de-
termine a filters performance is. Hence it seemed reasonable to have a collection
of measures, which together could paint an overall picture of the performance.
In addition, accuracy is thought of as the most important concern regarding the
filter’s quality. The more accurate the filter, or the estimate, the smaller devia-
tion from the actual value there is. All the statistical measures used in this work
are methods for evaluating accuracy. The collection of methods are also easily
interpreted, which helps simplify the overall evaluation. The smaller the value
they produce, the better the estimate.

There are more elegant and complex ways of estimating a filter’s performance.
However, this is saved for future work. It was not a main focus of this project
to discover an optimal way of measuring the BG estimates performance, hence
these simple methods proved good enough. However, it was discovered that their
resulting values were beneficial in more ways, than just evaluating the final per-
formance. While tuning the filters, they proved very useful, seen as not all changes
were visible to the eye in the plots when only slightly adjusting the tuning vari-
ables. The changes was however very visible in the scores, which made it easier
to find the best combination of tuning variables.

One can see in table 4 that all the calculated MAPE scores are well within
the accurate and acceptable range, however non of them are within the very
accurate range, < 10%. This could, as previously mentioned, be the result of the
oscillations, or the spares BGA measurements to use for comparison. However for
the Mar 5th data set, the standard KF comes very close. All the remaining values
show very promising results.
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8 Conclusion

In a real-time setting, both the KF and the inverse TF could be considered suit-
able methods. However, neither prove to be able to produce a robust estimate
of the BG based on subcutaneous sensor measurements. Some form of noise re-
duction mechanism must be in place in order to make use of the estimate. Seen
as the KF outperforms the inverse TF it is concluded in this report that KF is
the preferable method to use for BG reconstruction out of the two. The KF also
estimates more states than only the blood glucose, and provides an estimated un-
certainty of all the estimated states. All of which counts in the KF’s favour. The
KF remains a good possibility of a real-time reconstruction of BG, and should be
further refined in order to improve the estimate.

In regards to the UIKF, very little can be concluded, seen as the filter output
is not tuned properly, and some errors are at play. The filter should however
still be considered as a candidate, as based on the theory it could be able to
eliminate the factors contaminating the measurement samples, as well as handle
other unknown system inputs. It is therefor in this report concluded that the
UIKF is still a possibility, and should be investigated further.

The comparison with BGA is viewed as not optimal, due to the slow sampling
rate of the BGA measurement. This, together with the use of very simple perfor-
mance measures, causes randomness in the performance score, seen as both the
KF and the inverse TF shows oscillating or spiking characteristics. It is however a
interesting proof of concept and should in future work be built upon, and further
refined, in order to improve the accuracy of the performance scoring.
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9 Suggestions for future work

This section will list suggestions for future work relating to this project. Those
will be based on the experiences made throughout this project, as well as tasks
that were down-prioritized in this project.

Topic 1 Implement measurement covariance matrix in accordance with the rele-
vant ISO standard.

Topic 2 Tune and/or debug the UIKF function in order to determine, and resolve,
the gaining effect of the BG estimate.

Topic 3 Having the UIKF working correctly, the response based on the various
tuning variables should be observed and reflected upon, just like it has been
done for the standard KF in this report. The performance scores should be
calculated, and comparison with the inverse TF and KF method should be
performed.

Topic 4 Develop a method for estimating the bias and the BG-to-IG diffusion
process time constant, Tisf .

Topic 5 Extending the linear Kalman filters into handling nonlinear systems.
Estimating Tisf will make the current model non-linear, hence if this is ac-
complished, a need for non-linear filtering techniques will be required. It
is therefor listed as a topic for future work. There are two options that
should be immediately considered: the extended Kalman filter and the un-
scented Kalman filter. Both of these build upon the standard Kalman filter,
hence a way of applying their way of handling non-linear system should be
incorporated in the UIKF.

Topic 6 Investigate how to accomplish robust estimation of blood glucose, based
on CGM measurements. Robust estimation could help reducing the spiking
and oscillating effects, as well as the filters sensitivity to faulty measurement
samples. A Robust Kalman filter is a potential candidate that should be
investigated.

Topic 7 Improve the performance scoring system developed in this project. It
is mentioned in this report that the BGA is not the perfect comparing
candidate, suffering from slow sampling rate. Hence a more refined way of
computing and evaluating the estimate performance should be in place.
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Appendix A Source code from Matlab

The code Matlab code files can be found in attachments, in a zip-file. Here is a
list of what is included in the zip-file, as well as a short description:

• main.m, the main file of the code. Reads in the data, runs the estimation
functions, runs the performance score function and plots the estimate to-
gether with the measurements.

• standardKF.m, computes the KF estimate, as well as builds the KF model
of the system. The model is built by setDynModel(...) which is a function
included in the file.

• unknownInputKF.m, computes the UIKF estimate, as well as builds the
UIKF model of the system. The model is built by setDynModel(...) which
is a function included in the file. The file also contains a function for check-
ing the UIKF assumptions, checkAssumptions(...)

• invTF.m, computes the inverted TF estimate of the diffusion model. Note:
Not developed in this project, but adjusted to fit in this project.

• computeError.m, calculates MAE, MSE, RMSE, MAPE of an estimate.

• convertToRelativeTime.m, converts date time data type to relative time
data type. Borrowed from the open Git repository in [3].
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Appendix B Tuning Results

All following plots are of the Mar 5th 2021 data set.
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Figure 23: R = 20.
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Figure 24: R = 0.0001.
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Figure 25: σ2
Gp
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Figure 28: σ2
Cc

= 0.0001.
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(a) Gp estimate.

0 200 400 600 800 1000 1200

Time [min]

-20

-10

0

10

20

30

40

G
lu

c
o

s
e
 [

m
m

o
l/
L

]

C
c
 and C

r
 KF

C
c

C
r

(b) Cc and Cr estimate.

Figure 29: σ2
Cr
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(a) Gp estimate.
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Figure 30: σ2
Cr

= 0.0001.
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(a) Gp estimate.
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(b) Cc and Cr estimate.

Figure 31: σ2
Gisf
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(a) Gp estimate.
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Figure 32: σ2
Gisf

= 0.0001.
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(a) Gp estimate.
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(b) Cc and Cr estimate.

Figure 33: R = 100.
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(a) Gp estimate.
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= 10.
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(a) a = 0.7.
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(b) a = 0.1

Figure 35
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(a) b = 2.
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(b) b = 0.8

Figure 36
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(a) α = 200.
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(b) α = 10

Figure 37
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