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Abstract

In the last decade machine learning and especially deep learning has evolved to be steadily more
engrained in the services we rely on in our societies and lives. With the proliferation of machine
learning algorithms in today’s society, there has been a growing concern for the security guarantees
they provide. This includes the security and privacy of datasets used for training Generative
Adversarial Networks (GANs). In recent years it has been shown that GANs are susceptible to
a plethora of malicious information inferring attacks which aspire to extract information about
GANs and their training sets.

This thesis investigates the applicability of adversarial regularization — a novel regularization
method — on GANs, as a countermeasure to a special breed of information inferring attacks,
namely the membership inference attack (MIA). For testing the effect of adversarial regularization
on a GAN’s ability to withstand MIAs, two different types of MIAs were pitted against a CTGAN
— a GAN architecture which specializes in generating synthetic tabular data. The analysis on
the impact of adversarial regularization on the CTGAN show that adversarial regularization had
mixed results with defending the CTGAN against MIAs. Due to the lack of regularization power
inherent to adversarial regularization, it is shown that adversarial regularization’s ability to bolster
the CTGAN’s robustness to MIAs is subpar to dropout, an alternative regularization method with
which it was compared. Adversarial regularization was however shown to provide an alternative
utility-privacy trade-off than dropout, since it provided better quality in the synthetic tabular data
produced by the CTGAN compared with dropout.
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Sammendrag

I løpet av det siste ti̊aret har maskinlæring og spesielt dyp læring utviklet seg til å bli et stadig
mer brukt verktøy i de digitale tjenestene vi benytter oss av, som dermed gjør at de gjennomsyrer
samfunnene og livene v̊are. Med den økte utbredelsen av maskinlæring i dagens samfunn, har det
blitt stilt stadig flere spørsm̊al til hvor sikre maskinlæringsmodellene egentlig er. Dette inkluderer
hemmelighold av informasjonen som brukes til å trene maskinlæringsmodeller, som for eksempel
”Generative Adversarial”-Nettverk (GAN). GAN er en type generativ maskinlæringsmodell som
kan brukes til å generere syntetisk data som emulerer en ekte datakilde. I nyere tid har det blitt
vist at GAN-modeller er s̊arbare for en del ondsinnede ”informasjons-utledende” angrep som sikter
seg inn p̊a å utlede informasjon om modellene og datasettene de har blitt trent p̊a. Dette kan være
informasjon som ellers er under strengt hemmelighold.

I denne masteroppgaven undersøkes det om ”motstanderdrevet regularisering” (En: ”adversarial
regularization”) kan benyttes som et forsvar av GAN-modeller mot en type angrep, kalt ”medlem-
statusutledende” angrep (En: ”membership inference attack”, MIA). For å analysere effekten
motstanderdrevet regularisering har p̊a en GAN-modells evne til å motst̊a MIA-er, ble to forskjel-
lige MIA-er brukt til å angripe en spesiell GAN-arkitektur kalt CTGAN, som ble regularisert med
motstanderdrevet regularisering. En analyse av de p̊afølgende resultatene viser at motstanderdre-
vet regularisering oppn̊adde blandede resultater i forsøket p̊a å beskytte CTGAN-modellen. P̊a
grunn av at motstanderdrevet regularisering er en relativ svak regulariseringsmetode, vises det at
motstanderdrevet regularisering i mindre grad lykkes med å øke robustheten til CTGAN-modellen,
sammenlignet med en populær, alternativ reguleringsmetode, dropout. Motstanderdrevet regular-
isering lyktes derimot bedre med å ivareta kvaliteten p̊a den syntetiske dataen som ble produsert
av CTGAN-modellen enn dropout og motstanderdrevet regularisering tilbyr dermed et alternativt
kompromiss mellom robusthet og datakvalitet, enn nettopp dropout.
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1 Introduction

In the last decade the machine learning field has been revitalized by the ascent of deep learning. By
stacking layers of simple neuron in ever larger and more complex structures, deep neural networks
(DNNs), powered by increasing access to computing power, have become prominent in many
machine learning fields. For instance in the field of image classification, where DNNs even have
outcompeted in humans[1]. DNNs have also increasingly opened the door for new applications, a
prime example of this is the Generative Adversarial Network[2] which can approximate complex
data distributions. An impressive example of a GAN is the StyleGAN which can generate photo-
realistic images of human faces[3]. Despite of early use-cases of GANs were dominated by image
generation, GANs have evolved to be used for other applications as well, for instance time-series
anomaly detection[4], denoising[5] and natural language processing[6].

More and more of the services we rely on in society are driven by machine learning models, and as
machine learning is applied to an increasing amount of problems, the amount of data which ML
models are exposed to have increased. This has brought about concerns about the privacy of the
data which is being used for training the ML models and the reliability of the models which run
our societies. Two prominent security challenges in the field of machine learning are membership
inference attacks (MIAs) and adversarial samples.

MIAs enable malicious extraction of information from machine learning models about the datasets
which they have been trained on[7][8][9]. Generative models like GANs are not exempt from
the threat of MIAs[10][11][12]. Many defences have been proposed to defend against MIAs. For
instance Salem et al. proposed using model stacking, which entails constructing an ensemble of
hierarchical machine learning models[8]. Chen et al. created a new GAN architecture, GS-WGAN,
which combines the utility of GANs while providing privacy guarantees for the sensitive data it
emulates.

In parallel with MIAs, adversarial samples have risen to the top of potential security risks. They
are input samples which have been mischievously altered in order to fool machine learning models.
Despite DNNs prowess they are surprisingly vulnerable to adversarial samples. Goodfellow et
al.[13] manage to fool a DNN image classifier into misclassifying a picture of a panda, by only
imperceptibly perturbing the original image1. But adversarial samples do not even have to be that
surreptitious. Elsayed et al. engineered images which could fool an image classifier, but also time-
pressed humans[14], and Nguyen et al. created images which were classified with high confidence
by an ML model, despite being totally unrecognizable by humans[15]. But adversarial samples are
not only constrained to the digital realm. Kurakin et al. showed how adversarial image samples
retain their edge over machine learning models even when they were perceived through a camera
lense [16], which for instance pose a security risk for driverless cars relying on camera inputs.
Brown et al. took on the mantle from Kurakin et al. and developed an ”adversarial patch”, which
when placed in any picture, either physical or digital, will make an image classifier, misclassify
it[17].

In recent years the research fields of MIAs and adversarial samples have coalesced into a single
research field. Jia et al. utilized adversarial samples as a tool for increasing the robustness of an
ML classifier against MIAs[18]. There are however still challenges which need to be solved in order
to entirely safeguard the use of machine learning models like GANs.

1.1 Motivations and intuitions

Generative adversarial networks (GANs)[2] are a subset of generative models which can be lever-
aged to produce synthetic data, which emulate the distributions of real datasets. One of the most
prominent use-case for GANs is to generate synthetic data for the use of other machine learning
models. In fact, generative models like GANs, enable more data to be used for machine learning
purposes than would otherwise be available. To illustrate this last point imagine using a machine
learning model to predict the onset of a bodily ailment for a given person. It is probably hard
to tell whether this person will be affected with the ailment or not, so one will preferably have

1



access to a lot of data about this particular disease to train the model on, so as to be precise.
The problem is that such data might not be available, because it contains sensitive and personal
information about individuals. For instance, access to datasets which contain person identifiable
data through the Norwegian governmental repository of medical data (”Helseservice”1) is restric-
ted, because making the datasets publicly available could entail repercussions for the private life
of the persons involved in the datasets. Generative models, like GAN, alleviate this problem by
enabling the creation of synthetic data with approximately the same multivariate distribution as
the original data source, but without person identifiable information.

Worryingly it turns out that generative models, despite the intention, generally do not immediately
protect the information which it is tasked with emulating. In reality there is ample possibility for
ill-intentioned actors to extract information about the underlying data from generative models, if
they are not properly protected.

1.1.1 Overcoming information leakage

One method for revealing the contents of a generative model’s training set, is through membership
inference attacks (MIAs)[7]. Among the most important factors which lead to vulnerability to MIAs
is overfitting[7]. One method for reducing a machine learning model’s vulnerability to MIAs is to
make the model overfit less with the use of regularization. One popular regularization technique
used for regularizing neural networks is dropout[19], which has also been shown to improve privacy
in them[20].

Concurrently with the research on machine learning models robust against information leakage,
another security concern related to ML models has come to the fore, namely adversarial samples.
Adversarial examples are input examples which have been intentionally altered in an imperceptible
and non-random fashion, with the purpose of making an ML model mistake them. For instance,
figure 1 shows how non-randomly devised noise can be added to an image of a panda in order to
make an image classifier mistake the panda for a gibbon.

Figure 1: A small perturbation to the image makes the classifier mistake it.

Source: [2].

As a countermeasure to adversarial samples, a popular defence is to replace ordinary — also called
”benign” — samples in the training set of an ML model with corresponding adversarial samples[21],
dubbed ”adversarial training”. In addition to improving an ML model’s robustness to adversarial
samples, adversarial training also has a regularizing effect on it[13]. This thesis forwards the idea
of harnessing the regularizing effect of adversarial training in order to regularize a GAN, thereby
reducing its vulnerability to MIAs.

1https://helsedata.no/no/
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1.1.2 Intuitions and what to expect

A GAN consists of two neural networks, namely a discriminator and a generator, which are engaged
in an arms race where each network aims to increase its chances of fulfilling its objective. The
discriminator’s objective is to tell apart real data samples from fake ones, while the generator’s
objective is to craft sufficiently real-looking, fake samples with which to deceive the discriminator.
Introducing adversarial samples into the training of the discriminator will make it harder for the
discriminator to tell real and fake samples apart. It will be harder because the adversarial samples
which have replaced parts of the training set, will occupy parts of the input region where the
discriminator has high loss, which in the case of a GAN will be towards the fake data distribution.
This will hopefully have a regularizing effect on the GAN since the critic no longer can rely
on idiosyncrasies in the training set to tell the fake and real distributions apart, and thereby
”remembering” what distinct feature sets the real data apart from the fake data. The critic will
to a lesser degree be able to have confidence in its predictions for a given real sample, because it
during the training process will be replaced by a varied set of adversarial samples. Conducting
adversarial training regularization on the critic alone, will not only yield results for the critic, but
also for the generator, since the two are locked in the aforementioned arms race.

1.2 Research questions

The following are the research questions which will be addressed in this thesis:

• Can regularization through adversarial regularization reduce a GANs vulnerability to mem-
bership inference attacks?

• To which hyper parameter(s) of the adversarial regularization is the resulting regularization
most sensitive?

• What are the trade-offs between regularizing a GAN with adversarial regularization, regu-
larizing with alternative methods or not regularizing at all?

• What are the penalties to the synthetic data quality when conducting adversarial regulariz-
ation on a GAN?

1.3 Thesis outline

This thesis is divided into five parts. The first section is the one which you, the reader, has
already read through. It describes the current state of research on membership inference attacks
and adversarial samples, and the driving motivations behind this thesis. The rest of the thesis is
structured in the following way:

• Section 2 lays out about the necessary background knowledge required to appreciate the
results presented later on in the thesis. The main topics of this section are GANs, MIAs and
adversarial regularization.

• Section 3 describes the methods utilized for attaining the results. Most importantly this
includes the implementations of the key software components: the CTGAN, the adversarial
attack and the membership inference attacks. The section ends with a description of the
experiments which lay the groundwork for the subsequent results section.

• Section 4 presents the results of the experiments and the subsequent discussion of them.
Notably, the section begins with the description of key observations which were made during
the experiments.

• Section 5 concludes the thesis by summarizing the previous section and relating the obtained
results with the research questions.
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2 Background

This sections explains all the relevant theory which is necessary for the reader to appreciate the
purpose of this thesis, why the experiments were implemented as they were and how to understand
the results. Two main topics will be discussed in this section: generative adversarial nets (GANs)
and membership inference attacks (MIAs).

2.1 Generative Adversarial Networks

Generative Adversarial Nets (GANs) is a class of generative models, introduced by Goodfellow et
al. in 2014[2]. GANs learn to generate synthetic data, by leveraging an adversarial competition
between two neural networks. The first of the neural networks, called the generator, is tasked
with generating synthetic data approximating the joint distribution of a real dataset. The second
network, called the discriminator or critic, is tasked with telling real data samples apart from
synthetic data samples synthesized by the generator. By letting the generator compete with the
critic, the aspiration is to let generator progressively improve its ability to create good synthetic
data.

Figure 2: A diagram over the working of a GAN.

Figure 2 exhibits the structure of a GAN. The generator accepts a vector z drawn from a probability
distribution (often the standard normal distribution) and maps it into the distribution G(z;θg),
where θg are the parameters of the generator network. The discriminator outputs the scalar D,
which is the probability of a given input sample x originating from the real data [2].

2.1.1 Training of GANs

The discriminator is trained to maximize the probability of it correctly classifying both the real
and synthetic data samples, i.e. maxD log(D(x)). The generator on the other hand is trained to
maximize the probability of the discriminator failing to classify the generator’s output as synthetic
data, i.e. log(1 −D(G(z))). Together, the combined optimization goals of the discriminator and
generator can be stated as a single cost function:

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x)] + Ez∼pz(z)[log(1−D(G(z))) (1)

In practice, the training of the GAN functions by presenting the discriminator with alternating
sets of data originating from the target distribution and the generator. The training process of a
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GAN is generally characterized by large fluctuations in the two networks’ losses. The aspirations
is to get the two training losses to converge, as is shown in Figure 3.

Figure 3: An example of a GAN training process with convergent losses.

GANs are notoriously difficult to train and there are multiple potential challenges which can
derail the training process. Among them are vanishing gradients, failure to converge and mode
collapse[22].

The vanishing gradients problem relates to the gradients which are utilized for training of neural
networks with gradient descent. The changes made to a neural network’s parameters during
training are proportional to the size of the networks gradients with respect to a cost function. If
the gradients are too small, then the neural network will scarcely be updated and it will stagnate.
In terms of GANs, vanishing gradients can afflict the generator if the discriminator is too good at
its job.

The solution to the min-max optimization problem at the heart of the GAN is a Nash equilibrium,
which is located at the saddle point of the optimization plane. Reaching the saddle point is tricky,
since the objective functions are non-convex, parameters are continuous, the parameter-space is
high-dimensional and the network losses are interdependent[22]. If the power-struggle between the
discriminator and generator is mis-managed, and the generator for instance receive scant gradients,
the optimization process might fail to converge and the losses will continue to fluctuate.

Mode collapse is a phenomenon where the generator’s output distribution collapses to a small share
of the output modes. In practice this means that the generator is only able to produce a small
set of output types after suffering mode collapse, for instance a single number if the generator was
tasked with emulating the MNIST dataset[23].

Many improvements have been proposed in order to alleviate the aforementioned problems. The
first was presented already in the original GAN paper[2], in which the authors proposed to exchange
the generator’s cost function with maxG log(D(G(z))). The new cost function promised to provide
the generator with much better gradients in the early phases of the training, when vanishing
gradients is especially threatening.

2.1.2 Wasserstein GAN

Another improvement was put forward by Arjovsky et al. [24] who thereby introduced the Wasser-
stein GAN (WGAN) which utilizes the Wasserstein-1 distance as the critic’s loss function. Arjovsky
et al. utilize the Kantorovich-Rubinstein duality in order to repurpose the Wasserstein-1 distance
for use in the WGAN:
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min
G

max
D∈D

Ex∼Pr
[D(x)]− Ex̃∼Pg

[D(x̃)] (2)

where Pr and Pg are the real and fake distributions and D is the set of 1-Lipschitz functions[25].

With the WGAN loss, the discriminator’s objective is no longer strictly to classify its inputs
as either originating from the training set or not. Instead, it is tasked with maximizing the
Wasserstein-1 distance between real and fake data inputs. Thus, it maps the input distribution to
an output distribution, instead of a single scalar. Due to this change of objective, the discriminator
is rather referred to as the critic in WGANs.

Arjovsky et al. [24] showed that equipping the GAN with WGAN loss (equation 2) enables the
critic to be trained till optimality whilst providing useful gradients for the generator to learn
from, thereby curtailing the problem of vanishing gradients. In contrast, training a regular GAN’s
discriminator to optimality would induce saturation and useless gradients.

For enforcing the 1-Lipschitz critic, the authors originally utilized weight clipping, i.e. constraining
the size of the network’s parameters to be within a certain interval. Weight clipping did however
entail some disadvantages, for instance exploding or vanishing gradients if the clipping threshold
was not properly tuned. They later revised the weight clipping solution in Gulrajani et al.’s
paper[25] by replacing the weight clipping with a gradient penalty. A function is 1-Lipschitz if
the norm of its gradients is equal to or less than 1 everywhere. Gulrajani et al. enforced the
1-Lipschitz requirement by constraining the norm of the critic’s output with respect to the input.
Their efforts yielded the following cost function:

min
G

max
C∈C

Ex∼Pr [C(x)]− Ex̃∼Pg [C(x̃)] + λEx̂∼Px̂
[(|| ∇x̂C(x̂) ||2 −1)2] (3)

where λ is the penalty coefficient x̂ ∼ Px̂ are randomly generated samples from the linear interpol-
ations between the real and generated samples. The gradient penalty (GP) acts as a regularizer
that smoothes the gradients for competitive learning between the generator and the discriminator.

2.2 Conditional Tabular GAN

The Conditional Tabular GAN (CTGAN) is a WGAN-GP architecture developed to tackle the chal-
lenge of accurately modeling the probability distributions of the rows in a tabular dataset[26]. This
feat is challenging because tabular data can contain mixes of categorical and numerical columns
which can be beset with category imbalances and multi-modal distributions respectively. The CT-
GAN is not the regular run-of-the-mill GAN and its features will have to be explained in some
detail. There are three parts to their implementation: the conditional vector, the data sampler
and the data transformer.

The conditional vector in relation to the CTGAN expresses a preference for a single value of a
single categorical column. In the CTGAN the conditional vector is used to counteract the problem
of imbalanced number of samples for the categorical values. The problem lies in that the generator
will not learn well the samples which are less prevalent in the training set, since they will not
be sufficiently represented. With conditional vectors, samples with less represented categories can
be picked more often than they otherwise would during the training process. Which leads to
the data sampler. Instead of iterating through the training set like it is normally done in the
training process, the CTGAN employs a bespoke data sampler, which utilizes conditional vectors
for selecting samples for training.

The CTGAN uses a three-pronged method for transforming the input data: (1) a variational
Gaussian mixture (VGM) model for transforming numerical columns, (2) one-hot encoding of
categorical columns and (3) conditional vectors.
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1. Each numerical column is handled separately. The VGM estimates the number of modes in
the Gaussian mixture and their respective means and variances. After the Gaussian mixture
has been estimated, each element in the column can be normalized according to the mode
it belongs to. The normalized value is then concatenated with the one-hot encoding of the
selected mode.

2. The categorical columns are simply one-hot encoded.

3. A conditional vector is appended to each transformed data sample after it has been drawn,
before training commences.

2.3 Synthetic data quality

There is yet no established way of assessing the quality of synthetic tabular data, and identifying
such a way could have been a thesis topic in itself. The situation is slightly better for image data,
for which the norm is to consider metrics like the Fréchet inception distance or inception score.
For quantifying the likeness of the synthetic tabular data with the real tabular data, the following
metrics can be applied, which describe different aspects of the data quality:

• RMSE — the root mean square error between the fake and real datasets. The RMSE is in
this thesis used as a measure of the distance between the fake and real datasets.

• Wasserstein-1 distance — is the minimum cost of turning one distribution into another.
It is also referred to as earth mover’s distance, in the analogy of the minimum amount of
work required to turn a pile of dirt into another pile of dirt. The Wasserstein-1 distance is
calculated as W (Pr,Pf ) = infγ∼Π(Pr,Pf ) E(x,y)∼γ [|| x − y ||], where γ(x, y) is the amount of
mass which has to be transported from x to y in order to make the two distributions Pr

and Pf equal[24]. In the case of our experiments it is calculated as the mean Wasserstein-1
distance between each respective pair of corresponding features in the real and fake datasets.

• Kolmogorov-Smirnov statistic — the two-sample KS test. Two samples are drawn from
two respective distributions and the null-hypothesis states that the distributions are the
same. The smaller the KS statistic is, the larger the p-value and the higher the probability
that the null-hypothesis is correct.

• Pairwise unique combinations is the total number of unique combinations of categorical
feature values. High quality synthetic data should contain a similar number of categorical
value combinations as the real dataset. If not, the synthetic dataset can be prone to include
combinations of contradictory categorical values, for instance the combination ”illiterate”
and ”PhD”, which makes no sense.

The final metric used for assessing the synthetic data quality, and arguably the most important, is
machine learning utility. Machine learning utility epitomizes the use-case for generative models. It
is measured in the performance other machine learning models have in machine learning problems,
after having been trained on the synthetic data produced by a generative model. Machine learning
utility is therefore the single most important metric since it ultimately decides how useful the
synthetic data is for real-world applications. Machine learning utility is not a metric in its own
right, but is rather a loose term for one or more metrics used for assessing the machine learning
model’s performance. For instance if the synthetic data is to be used for the purpose of training a
classifier, the metrics accuracy and F1 score are applicable. They are expressed through the four
possible outcomes of a prediction: true positive, false positive, true negative and false negative.
The classifier predicts the belonging of a sample to a given class as either true or false, and
positive/negative is the ground truth. A given prediction is correct if it is either true positive or
false negative. With respect to this framework, accuracy and F1 score are stated as:
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Accuracy score =
True Positives + True Negative

Positives + Negatives
(4)

Precision =
True Positives

True Positives + False Positives
(5)

Recall =
True Positives

True Positives + False Negatives
(6)

F1 score =
2 · Precision · Recall
Precision + Recall

=
True Positives

True Positives + 1
2 (False Positives + False Negatives)

(7)

Whereas the accuracy score only accounts for the ratio of correct predictions to total predictions,
the F1 score strikes a balance between precision and recall, which each captures a different aspect
of the classification performance. The F1 score is a useful metric in cases where there are class
imbalances in the dataset. Consider a binary classification problem of a dataset with 95 instances
of ”class 1” and 5 instances of ”class 2”. If a classifier predicts class 1 for all the samples in the
dataset, it would get a precision rate and accuracy of 0.95, even if it misclassified all of the samples
in class 2. The F1 score curtails this fallacy by striking a compromise between precision and recall,
where the latter would account for the 5 misclassified members of class 2 in the toy classification
problem.

2.4 Membership Inference Attacks

Membership Inference Attacks (MIAs) are methods used for inferring whether a given data sample
have been used in the training of a machine learning model. Machine learning models generally
behave slightly different when they are presented with data on which they previously have been
trained, than when they are presented with brand new data, and MIAs exploit this fact to establish
samples’ membership status[7]. The behaviour difference which can make a ML model inform the
membership inference attacker about the membership status of a given sample, might be as simple
as an increased confidence in the output corresponding to the sample. Vulnerability to MIAs are
generally due to the model in question being overfitted to its training data or the training data
not being representative of the data source’s true distribution[7]. If either of these conditions are
fulfilled, the model will leak information about its training set when confronted by a membership
inference attacker.

A precondition for this kind of attacks is that the perpetrator has obtained a set of data samples,
among which they suspect that at least some of them originally were part of the training set of
the victim generative model. The attacker can then leverage their access to the victim model for
inferring whether each individual samples was or was not part of the training set.

What makes MIAs such a formidable threat is that the attacker does not necessarily have to
have direct access to the victim model. In some cases, access to the input and output of the
victim generative model is sufficient preconditions for an MIA[10], and more intimate access to
the generative model will give the attacker more leverage. This means that publicly available
generative modes can be at risk for having MIAs perpetrated against them, even if there is only a
website interface available for leveraging. Generative models which are publicized in their entirety
are even more at risk due to the increased leverage.

The premise of MIAs might seem unrealistic, because it is perhaps unlikely for a perpetrator to
obtain a set of data samples on which a machine learning model has been trained, before having
attacked the model. MIAs should perhaps rather be thought of as a test for seeing whether a
model leaks information about its training set or not, rather than what an actual attack might
look like, and a model is proved to leak information, there are other methods available for extracting
information about it.

MIAs are typically categorized after how much information about the victim they are reliant on.
White-box is the scenario where the attacker has access to the most information about the victim
model, which includes information like model structure and parameters etc. On the opposite end
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of the scale are the black-box attacks, which do not assume anything about the victim model, not
even what kind of machine learning model it is. Between these two extremes there are

There is a further distinction separating MIAs in the case of GANs, namely whether the attack
targets the generator or critic part of the GAN. The most relevant of these is the one aimed at
the generator, since the discriminator often is discarded when the model is published, since there
is no further need for the discriminator after the GAN has been trained.

2.4.1 Receiver operating characteristic

For evaluating the strength of MIAs, the receiver operating characteristic (ROC) curve is often
used. The ROC curve captures the classification performance of the MIA through the true and
false positive rates for all confidence thresholds in the predictions. The graph plots the true and
false positive rates on the y and x axis respectively. In a query set which contains a 50-50 mix
of samples which were part of the model’s training set and not, the benchmark is a diagonal line
across the plot, because it is the expected ROC for an MIA which randomly selects whether a
given sample belonged to the model’s training set or not.

Figure 4: Example of an ROC curve.

Figure 4 is an example of an ROC curve diagram, in which the random choice diagonal line and
an ROC curve are displayed.

2.5 Regularization

Regularization is any modification made to a machine learning algorithm in order to prevent
memorizing the training data and better generalizing on unseen data. A machine learning model’s
inability to generalize can be due to it overfitting to the data on which is has been trained.
Overfitting can be thought of as the idiom ”missing the forest for the trees”. In the case of a
machine learning model, an overfitted model might have leveraged the idiosyncrasies of the training
data for reducing the training error, when they do not apply outside of the training set. The goal of
regularization is to dissuade a learning algorithm from learning idiosyncrasies and rather learn the
ulterior structures in the data. The easiest way of regularizing a learning algorithm is possibly early
stopping, in which the learning process is aborted when the generalization error stops decreasing,
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even if the training error might still be improving. Other examples of regularization are ridge
and lasso which directly constrain the norm of the model parameters, in order to induce model
simplicity.

2.5.1 Regularization of GANs

Regularization can serve multiple purposes in GANs. The foremost purpose is perhaps to mediate
the power struggle between the discriminator and generator in their min-max game. Regularization
methods can be implemented in order to hamper the discriminator’s prowess in face with the
generator, thereby ensuring that the generator is provided with ample gradients to learn from.
Regularization can also be applied in order to fulfill a requirement, as is the case with the gradient
penalty utilized in the WGAN-GP[25], which ensures that the critic conforms with the 1-Lipschitz
constraint. Additionally, since regularization reduces an ML model’s ability to overfit to its training
data, it is utilized in GANs for the purpose of defending against membership inference attacks[27].

2.5.2 Dropout

Dropout is a method of regularizing neural networks. It functions by dropping randomly picked
hidden units in the network each time the network is presented with new training data[19]. Since
the network layout is steadily shifting during training, each neuron cannot rely on any other neuron
always being present. This inhibits neurons from relying too much on inputs from specific neurons.
Utilizing dropout amounts to the equivalent of training a number of different neural networks as
an ensemble, and combining their outputs in each prediction[28]. Each ”thinned” network — after
having dropped a subset of the neurons — corresponds to a single entity in the ensemble. A neural
network trained with dropout can be seen as a collection of possibly 2n individual neural networks,
which at the same time only contains as few parameters as the original network[28].

The dropout hyper parameter retains a value in the interval (0, 1), which corresponds to the
probability of omitting a given neuron from the network. The regularizing effect which dropout
impinges on a GAN has been shown to effectively thwart membership inference attacks[11][18].
Salem et al. highlighted dropout’s dual capability in both improving a GAN’s synthetic data
quality and increasing its robustness to membership inference attacks simultaneously[8].

2.6 Adversarial examples

The term ”adversarial example” first appeared in seminal paper by Szegedy et al.[29], in which the
authors described how small, non-random and otherwise imperceptible alterations to the input can
make change the prediction of a classification model arbitrarily. This was the case even though
the targeted models were believed to generalize well, even with human-level accuracy. Adversarial
samples have been shown to affect most modern machine learning models[30]. Adversarial samples
originated with the classification of image data, but has later been identified for different to exist
for different types of data and across different types of machine learning problems.

Figure 1 displays how imperceptible perturbations made to the image pixels, make a classifier
mistake a picture of a panda. Furthermore, the adversarial perturbations feign the classifier into
being very confident in its prediction as well, exacerbating the situation.

2.7 Adversarial attacks

Adversarial samples are created by algorithms called adversarial attacks, which convert benign
input samples into adversarial ones, by applying a perturbation δ to the sample x, so that f(x+
δ) ̸= f(x), where f is the classifying function. Most adversarial attacks accomplish this feat by
conducting an optimization process wherein the benign sample is translated across the input space
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in search for regions where the classifier’s decision boundary diverges from the true divide between
classes. A visualization of such ”adversarial regions” is shown in figure 5.

Figure 5: Adversarial regions occur where the class boundaries diverge from the decision boundary.

Source: [31].

The regions in which the classifier mistakes the input are naturally characterized by high loss,
so the optimization process employed by the adversarial attacks typically seek to maximize the
classifier’s loss.

Similarly to membership inference attacks, adversarial attacks are generally assessed with respect
to a threat model. The primary feature of the threat model and the feature which has the largest
impact on the potential success of an adversarial attack, is the type of access the attacker has to
the victim model. Black-box access is the most restricted mode of access, in which the attacker has
no prior information about the victim model to leverage in its attack. The only allowed interaction
between the attacker and its prey are inputs and outputs. The attacker might not even know what
kind of machine learning model it is attacking. On the other end of the spectrum are white-box
attacks, which entail full access to the victim model. This includes knowledge of the victim model’s
structure, access to model parameters and gradients. White-box attacks are the most powerful
attacks since they have direct access to the gradients of the victim’s loss with respect to the input,
which enables the attacker to swiftly identify adversarial samples.

Another aspect of the threat model is the amount of alterations the attacker is allowed to make to
the victim model’s input data. Originally constraints were used on the adversarial attacks in order
to retain the imperceptibility of the perturbations made to the samples, for instance in Szegedey et
al.’s paper[29]. Since then, the constraints have evolved to become a tool for certifying the ability
of defences to thwart adversarial attacks[32].

The problem of adversarial samples is exacerbated by the transferability of them. That is to say
adversarial samples which were created against one victim model, often are adversarial also to
other models[33]. This enables attackers to create adversarial samples with no access to the victim
model. Instead the attacker can create adversarial samples against a ”surrogate” victim model
and later apply them against the true victim.

2.7.1 Projected Gradient Descent Attack

Projected gradient descent (PGD) is a constrained optimization method which is closely related
with gradient descent. The PGD attack[34] maximizes the loss of the victim model’s cost function
while being constrained by the L∞ norm:

xt+1 = Πx+S(x
t + αsgn(∇xL(Θ, x))) (8)
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The PGD attack is a first-order attack, which makes it quick and effective. The Πx+S operator
projects xt + αsgn(∇xL(Θ, x)) back within the norm, if xt+1 strays beyond L∞ norm, given by
distance S from x.

In order to create consistently good adversarial samples, i.e. adversarial samples which have higher
loss than their benign counterparts, one parameter is of upmost importance: step size. If the step
size is too large the attack will struggle to consistently increase the loss by finding local maxima,
and if the PGD attack perturbs a sample far beyond the L∞ norm then the sample might be
projected back within the norm in a piece of the feature space which decreases the loss instead of
increasing it.

Algorithm 1 Projected Gradient Descent

1: x← input
2: α← step size
3: ϵ← constraints
4: if random start then
5: xadv ← U[x−ϵ,x+ϵ]

6: else
7: xadv ← x
8: end if
9: repeat

10: xadv ← x+ α ∗ sign(∇xC)
11: xadv ← clip(xadv, ϵ)
12: until max iteration

2.8 Adversarial training

Adversarial training was conceived as a defence against adversarial samples. It seeks to make
a given model more robust by training it partly on adversarial samples, which are continuously
funneled into the model’s training set during training. The objective of adversarial training is
essentially to fill in the adversarial regions in the input space (5) with adversarial samples which
the model can then train on, thus making the classifier’s decision boundary conform better to the
true class divides.

Adversarial training has a regularizing effect since it enforces conformity around the input samples.
For a given benign input sample, a multitude of adversarial counterparts will be made during the
training process. They will all occupy the space in the benign sample’s vicinity, limited by the
constraint placed on the adversarial attack. All of the samples will have the same label as the benign
one. The classifier is regularized because it is taught that contiguous samples in the input space
should be labeled similarly. Regularization with use of adversarial training is dubbed adversarial
regularization.

2.9 Adversarial regularization and data augmentation

Adversarial training might be conflated with data augmentation which is also a regularization
method which works through the input data regularizing[35], but the methods are quite different.
Data augmentation works by randomly augmenting the data, in order to inflate the total amount
of training data a model can be trained on. Adversarial training, by definition, utilize non-random
perturbations to the model input[29], in order to deliberately increase the classifier’s loss. The
differences in how these two methods function makes adversarial training a much more potent
regularizer[36].
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3 Method

This section outlines which methods were used in order to procure the results which are presented
in section 4. The section starts off with a motivation for the choice of the GAN architecture
and how it was adapted to serve this thesis. Thereafter the implementation of the adversarial
regularization is explained along with the intuition behind the combination of Wasserstein loss
and adversarial samples. Subsequently, the MIAs selected for use in this thesis are presented, and
lastly the section ends with a description of the experiments which were conducted in order to
obtain the desired results.

3.1 Choice and implementation of GAN model

Due to constraints in access to computing power, the decision was made to conduct experiments on
a tabular GAN, which requires much less computing power than an equivalent GAN for image data.
The reduction in require computing power also allowed for quicker model iterations. The choice fell
on the Conditional Tabular GAN, which was easily accessible through open-source repositories2.

The CTGAN architecture was not out-of-the-box compatible with the experiments envisioned for
this thesis and it did bring some implementation challenges. The following bullet points describe
them and how they were solved.

• The original CTGAN utilized packing[37], which involves combining an arbitrary number of
samples together with a single target value. Packing is used for preventing mode collapse[26].
The experimental results obtained in the early phases of testing with the CTGAN demon-
strated that packing only marginally circumvented mode collapse. Packing was therefore
disabled, since it was an unnecessary complication which would not aid in the procurement
of good results.

• The conditional vector is a tool mainly used in the training of the CTGAN, where it condi-
tions the generator into producing samples which contain a certain categorical value, or for
selecting samples for the critic to train on. The MIAs still had to conform to the required
input dimensions of the critic and generator, so the conditional vectors could not be omitted
entirely. The solution to this problem was to replace the conditional vectors with zero arrays,
which did not hamper the MIAs in any way.

• The data transformer utilized by the CTGAN was a bit problematic to use since the trans-
formation is non-deterministic. The transformation held a lot of sway over the resulting
MIA, and introduced a bit of variability. Every result concerning the membership inference
attacks are therefore presented as a mean and standard deviation of at least 3 separate test
results.

The data transformer normalizes each value in every numerical column with respect to one of the
modes in the Gaussian mixture model (GMM) which has been fitted to the column. Since each
numerical table value has been normalized with respect to one mode of the GMM, the ϵ constraint
in the adversarial attack can be interpreted as the amount the sample can be moved along the
standard Gaussian distribution. The use of a GMM is an inherent feature of the CTGAN, so this
line of thought does not extend to applications of adversarial regularization to other GANs, but it
serves as a measuring stick for the selection of values for the ϵ hyper parameter.

For each dataset considered the CTGAN was re-tuned and the parameters which resulted in the
best combined machine learning efficacy, in terms of accuracy, ROCAUC and F1 score were kept.
The parameters which the performance was most sensitive to were the critic and generator learning
rates, and β1 and β2 of the Adam optimizer. Each CTGAN model was trained for a maximum of
500 epochs. All of the network and optimizer parameters utilized are gathered in table 6 in the
appendix.

2https://github.com/sdv-dev/CTGAN
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3.2 Adversarial regularization implementation

The goal of the adversarial regularization was two-fold:

1. Decrease the critic’s affinity to overfit to the real data samples (which is the main cause of
vulnerability to MIAs).

2. Preserve the quality of the synthetic data produced by the CTGAN.

where the first goal was the main attraction of adversarial regularization and the second was an
auxiliary goal. Both goals were achieved by conducting adversarial training — otherwise referred
to as adversarial regularization — on the CTGAN’s critic.

The implementation of adversarial regularization utilized in this thesis is non-orthodox, due to
the critic being trained with Wasserstein loss, in contrast with the classifiers which are normally
the target of adversarial samples. Hence, the concept of adversarial samples must be re-imagined.
In this thesis, adversarial samples are thought of as benign samples in a batch drawn from a real
distribution, which have been perturbed in such a way as to minimize the Wasserstein distance
between the real and fake batches in the critic’s output.

3.2.1 Wasserstein loss and adversarial examples

Adversarial samples originally occurred as a phenomenon affecting classifiers and so it has been
defined and researched with respect to classifiers. Adversarial samples do however not have to be
restrained to classifiers, since any ML model which inputs are adversarially perturbed can expect
a decrease in its performance. This thesis presents a new use for adversarial samples, namely for
regularizing a Wasserstein GAN. Regularization with the use of adversarial samples will henceforth
be referred to as adversarial regularization.

Figure 6: Visualization of how the input samples are perturbed during adversarial regularization.
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Figure 6 exhibits how the critic’s inputs are perturbed during adversarial regularization. The
critic’s objective in a Wasserstein GAN is to map the two input distributions to the output in a
way which maximizes the Wasserstein distance, i.e. the difference between them. The adversarial
samples are created by maximizing the loss of the critic with respect to its input samples, or put
differently, minimize the Wasserstein distance in the critic’s output. The adversarial samples are
perturbed in the direction which maximize the critic’s loss and this will conceivably be in the
direction which makes PR more similar to PG. In figure 6 the adversarial attack — turning benign
samples into adversarial samples — is depicted as arrows along which the benign samples are
perturbed, enclosed by the square-appearing infinity norm. The arrows point in the direction of
the fake data distribution, PG, making it harder for the critic to discern between real and fake
data — thereby having a regularizing effect on the GAN.

3.2.2 Regularization implementation

Adversarial regularization was enabled for each batch in every epoch of the training process. For
every batch, a predefined number of samples were perturbed in an adversarial attack, creating
adversarial samples. These adversarial samples replaced their benign counterparts in the batch,
before the critic was trained on it. By replacing benign samples with adversarial counterparts,
the total number of samples in the batch was kept identical to the original batch. All adversarial
samples were discarded after use. The WGAN loss for the critic is stated as:

max Ex∼Pr [C(x)]− Ex̃∼Pg [C(x̃)] (9)

where x are samples drawn from the real data distribution Pr and x̃ are samples drawn from the fake
data distribution Pg Equation 9 when altered to encompass the effect of adversarial regularization
can be rewritten as:

max Exadv∼Pr
[C(xadv)]− Ex̃∼Pg

[C(x̃)]) + λEx̂∼Px̂
[(|| ∇x̂C(x̂) ||2 −1)2] (10)

where x̃ are the synthetic samples, xadv is a mix of real and adversarially perturbed real samples,
and the rightmost term is a gradient penalty[25], which is an auxiliary part of the critic’s loss
function. Noticeably absent in equation 10 is a scaling parameter for the adversarial training
regularization. This additional parameter was left out since it was believed to be surplus to re-
quirements. The regularization effect of the adversarial regularization implementation was instead
controlled by two parameters: the size of the maximum aggregate perturbation, ϵ and the share
of adversarial samples, i.e. the share of benign samples replaced by adversarial samples in each
training batch. Algorithm 2 describes the CTGAN’s training process with enabled adversarial
regularization.

3.2.3 Choice of adversarial attack

The adversarial attack is the algorithm which is tasked with converting benign samples in a model’s
input into adversarial samples. There are a plethora of different attacks with different strengths
and weaknesses. For this thesis, the Projected Gradient Descent (PGD) attack was chosen as the
preferred mode of attack due to it being very effective and also easily compliant with constraints.
Since PGD is a first order attack (i.e. it utilizes the Jacobian) it is very quick, which allows for
not-so-cumbersome optimizations. It is also easy to constrain the attack, since the L∞ can be
enforced by simply clipping any feature value which exceeds the norm for each individual sample.
The PGD attack was implemented with inspiration from Madry et al. [34]3. The objective funtion
of the optimization process instigated by the PGD is given by:

3https://github.com/MadryLab/mnist challenge/blob/master/pgd attack.py
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min Exadv∼Pr
[C(xadv)]− Ex̃∼Pg

[C(x̃)]) (11)

s.t. || x− xadv ||∞≤ ϵ (12)

where equation 11 equates to minimizing the Wasserstein distance between the outputs of the real
and fake data batches, and equation 12 convey the L∞ constraints enforced on the PGD attack.

The PGD attack is not guaranteed to deliver successive higher-loss adversarial samples, due to the
enforcement of the L∞ constraints. The constraints are enforced by clipping, which simply entails
that the value of a given sample is reverted back to the maximum or minimum if the PGD attack
perturbs it beyond either of the extremes. The loss associated with the adversarial sample might
therefore decrease if it is perturbed outside the L∞ constraint and subsequently clipped. The
PGD implementation utilized in this thesis curtails the possibility of the aforementioned problem
by saving checkpoints during the optimization process, so that the best adversarial sample is
retained.

Figure 7 displays a diagram over the flow of data during the training of the CTGAN when with
enabled adversarial regularization. The PGD intercepts the benign batch and replaces a given
share of the benign samples with corresponding adversarial samples.

Figure 7: Diagram of GAN with adversarial regularization.

3.2.4 Adversarial regularization algorithm

Algorithm 2 summarizes the the functioning of the adversarial regularization described in the
current chapter.

Algorithm 2 Adversarial training of CTGAN.

1: repeat
2: Read minibatch Breal = {X1, ..., Xn} from the training set
3: Generate fake samples with the generator Bfake ← G(z)

4: Wloss ← −( 1
N

∑N
i=1(C(Breal)− 1

N

∑N
i=1 C(Bfake)

5: Badv ← PGD(Breal) ▷ Create the adversarial samples with the PGD attack
6: Merge Breal and Badv into B by randomly picking a share of the samples in Breal and

replacing them with their adversarial counterparts
7: Wloss ← −( 1

N

∑N
i=1(C(B)− 1

N

∑N
i=1 C(Bfake) ▷ Calculate Wasserstein loss anew

8: Backpropagate through the critic network
9: Conduct an optimization step with ∇CWloss

10: until training completes
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3.3 Adversarial regularization hyper parameters

In the PGD attack there were five parameters of importance: the step size, ϵ, the number of
iterations in each attack, the share of adversarial samples and random start.

The combination of step size and number of attack iterations effectively decides the reach of each
attack inside the L∞ constraints. The combined choice of these parameters was motivated by a
combination of a constrained time budget and the adversarial attack’s proficiency. The choice of
step size was the largest which would reliably increase the critic’s loss and the number of attack
iterations was capped at 50 iterations. The combined step size and maximum number of iterations
did in most cases not allow the PGD to perturb the benign samples to within reach of the L∞
constraint, but the lack of range was alleviated by random start — more about that later — and the
fact that the input space generally is pockmarked with many local maxima with well-concentrated
loss values[34].

The share of adversarial samples decide how large the share of benign samples in a given batch
will be replaced with adversarial counterparts. Together with ϵ, i.e. the maximum perturbation
size in terms of the L∞ norm, they control the severity of the adversarial regularization effect .
These parameters will be discussed in greater detail in section 4.4.

3.3.1 Random start

The principal motivation of conducting adversarial training, was to regularize the model as ex-
plained above, but there was also an auxiliary benefit brought about by the adversarial training,
namely the implicit enlargement of the training set. Given a single benign data sample in the
training set, the PGD will conceivably not produce exactly the same adversarial counterpart for
every time it comes across this exact sample. This is the case because the optimization plane sur-
rounding the sample will change from batch-to-batch and epoch-to-epoch as the critic is trained.
In addition, when the critic is trained with adversarial samples, the adversarial regions will not
stay put, since the critic’s loss in these regions will be lowered.

Figure 8: Random start disabled.
Figure 9: Random start enabled.

To facilitate for this effect, it is important to enable random start. Random start is a feature of
the PGD attack which moves the optimization starting point to a random location within L∞.
Figures 8 and 9 visualize the difference between disabling and enabling random start. The arrows
track hypothetical paths the optimization process might take across the optimization plane, when
the same benign sample is perturbed in different epochs of the training process. With disabled
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random start, the benign sample is less likely to yield a varied set of adversarial samples across
the training epochs, than if random start is enabled.

3.4 Membership inference attacks

Strong membership inference attacks were selected in order to thoroughly test the impact of ad-
versarial regularization on model robustness. This entailed the adoption of white-box assumption,
since white-box attacks are more proficient in attacking generative models than black-box attacks,
although state-of-the-art black-box attacks generally perform as well as white-box attacks on reg-
ular classifiers[10].

The most direct recipient of the regularization effect provided by adversarial regularization is the
critic, but the regularization will at the same time heavily influence the generator, since the two
neural networks are interlocked in the would-be arms-race. Therefore it is necessary to assess the
impact of adversarial regularization on robustness for both the critic and the generator.

3.4.1 Critic membership inference attack

The white-box MIA aimed at the critic emulates the attack designed by Hayes et al.[11]. This
white-box attack is aimed at the critic and assumes that the whole trained neural network for
some reason is available to the attacker, conceivably because of a lapse in security or that the
model was publicly published in good faith. The access to the full model entails access to the
supporting functionality as well, for instance the data transformer, sampler and functions for
constructing the conditional vectors.

This attack is as simple as it gets, and directly leverages a victim model’s overconfidence in its
training samples, if any. The attacker simply passes all the samples which they want to query
through the critic, and select the samples which the critic assigns the highest confidence to. In a
WGAN the critic does not assign a confidence score between 0 and 1 to its predictions, as a normal
classifier does, but due to the the critic’s Wasserstein loss function (equation 9), it will tend to
assign higher output values to real samples than fake ones.

Figure 10: White-box critic MIA diagram.

Source: [11]

3.4.2 Generator membership inference attack

Chen et al. designed a membership inference attack which leverages a GAN’s generator in a white-
box setting[10], which made an excellent choice for the generator attack in this thesis. Chen et
al. stated that an optimal attacker will compute P (mi = 1 | xi,Θv), i.e. the probability of a
given sample, xi being classified as belonging to the victim model’s training set (mi = 1) given a
victim generative model, Gv with the parameters Θv. They hypothesize that P (mi = 1 | xi,Θv) ∝
PGv (x | Θv), i.e. the probability of a given xi belonging to the victim’s training set is proportional
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to the probability of the victim generator having produced it. This assumption is the cornerstone
of their attack. To calculate PGv (x | Θv) is intractable so they approximate it with:

PGv
(x | Θv) ≈

1

k

k∑
i=1

exp(−L(x,Gv(zi))) (13)

where zi is the input to the generator. Equation 13 entails that the attacker approximates PGv
(x |

Θv) by the error between x and a reconstruction, R of x, Gv(zi).

R(x | Gv) = Gv(z∗) (14)

(15)

The reconstruction process is conducted by optimizing the input z to the victim generator, Gv:

z∗ = min
z

L(x,Gv(z)) (16)

The loss function which governs the optimization of z, is given by equation 17:

L(x,Gv(z)) = λ1L2(x,Gv(z)) + λ2Lreg(z) (17)

Lreg(z) = (|| z ||22 −dim(z))2 (18)

where L2 is the euclidean distance and Lreg is a regularization term penalizes zs which are far
from the prior.

Figure 11: White-box generator MIA diagram.

Source: [10].

Figure 11 exhibits visually how the attack infers which of samples x1 and x2 were part of the victim
model’s training set, Dtrain. The recreation of x1, R(x1 | G⊑), should have a shorter distance to
x1 on PG⊑ , than the distance between x2 and its recreation R(x2 | G⊑).
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The generator MIAs performed as a part of this thesis, were performed without the regularizing
term, due to the attack performance improving with it disabled. As Chen et al. proposed in their
article, z was initialized as a zero vector. The hyper parameters employed in the generator MIAs
are displayed in 7 in the appendix.

3.5 On evaluating the effect of adversarial regularization

There were three aspects of the CTGAN’s performance with which it was prudent to evaluate the
impact of adversarial regularization.

1. The impact on robustness to membership inference attacks.

2. The impact on the synthetic data quality, i.e. the likeness between the synthetic and real
data distributions.

3. The impact on machine learning efficacy, i.e. how well a classifier trained on synthetic data
produced by the CTGAN will perform on data it has not seen before.

The ROCAUC metric was utilized in order to assess the effect of adversarial regularization on
the CTGAN’s robustness to membership inference attacks. One problem a membership inference
attacker has to solve is where to set the threshold for which samples to consider as originating from
the victim model’s training set or not. When evaluating model robustness, the ROCAUC metric
curtails this challenge and instead returns a score which summarizes the attacker’s success across
all possible thresholds.

For assessing the adversarial regularization’s impact on the quality of the synthetic data produced
by the CTGAN, a collection of metrics were selected, which could capture the nuances of the
resulting synthetic data. They include Wasserstein distance, root mean square error (RMSE), the
two-sample Kolmogorov-Smirnov test and the number of fake pairwise unique samples.

For evaluating the machine learning utility of the synthetic data, three classifiers were trained on
the synthetic datasets produced by the CTGAN and tested on hold-out test sets drawn from each
dataset. The set of classifiers consisted of an AdaBoost classifier[38], a random forest classifier
and a logistic regression model, which performances were assessed with the use of the metrics:
accuracy, ROCAUC and F1 score.

3.6 Experiments

Among the experiments there were three parallel sets of models which were trained. They were:

• The first model type, referred to as ”regular”, was trained without dropout or adversarial
regularization.

• The second model type was trained with adversarial regularization, with varying combina-
tions of ϵ and share of adversarial samples.

• The final model type was trained with dropout.

Due to the CTGAN being a WGAN and the regularization effect provided by the CTGAN’s
inherent gradient penalty, there were no problems with training the regular model without any
extra regularization. Additionally, the generator was regularized with batch normalization during
all experiments. Therefore, even if neither dropout or adversarial regularization was enabled during
the training of the CTGAN, there were still active regularizing effects provided by the gradient
penalty and batch normalization, which steadied the training process.

The regular model was employed as a benchmark with which to compare the regularization effects
of dropout and adversarial regularization, as the regularization parameters of the latter models
were varied.

20



3.6.1 Datasets

The effect of adversarial regularization on the CTGAN, and its comparison with the regular and
dropout models were tested with a varied set of four datasets. The datasets varied in width, number
of categorical and numerical columns and in number of labels. They all represented classification
problems. Table 1 includes all the specifics of the training sets utilized in this thesis. Each training
set was accompanied with a test set of similar size, which was used for assessing the machine
learning utility of the synthetic data produced by the CTGAN models. Four additional query
datasets were fashioned for the membership inference attacks. They were comprised of a total of
1000 samples; 500 sampled from each training set, and 500 from each test set, concocting 50-50
mixes.

Dataset name # categorical columns # numerical columns # labels # samples
Covertype [39] 4 2 11 10 10 000

UAV intrusion detection[40]5 0 55 2 10 000
Adult[39]6 15 6 2 10 000
Musk[39]7 0 168 2 1000

Table 1: Training sets.

21



4 Results and discussion

In this section the results of the experiments are presented and discussed. The general causes of
overfitting and thereby vulnerability to membership inference attacks is the first talking-point of
this section. Subsequently, a number of observations regarding the use of adversarial regularization
will be presented. Lastly the effect of adversarial regularization on model robustness, machine
learning utility and synthetic data quality will be compared with the same effects of dropout
regularization.

4.1 Impact of overfitting on model robustness

In order to assess how robust a given GAN model is to membership inference attacks, it is important
to have a clear understanding of the primary drivers of overfitting.

Figure 12: Caption

Figure 12 displays the effect of increased training samples and number of training epochs on the
CTGAN’s vulnerability to MIAs for the UAV intrusion detection dataset. The heat map shows
how robustness to MIAs is related to overfitting. The degree to which the model was overfitted
was controlled with the size of the training set and the number of training epochs. The size of
the training set was the main driver of overfitting, although it was only significant when there
were 100 samples in the training set, which is very few. For smaller datasets, a GAN model
is more prone to memorizing the training set, rather than generalizing from it, and is therefore
more susceptible to MIAs. Secondary to the size of the training set, with respect to its effect
on overfitting, is the number of training samples. For the four largest datasets there were slight
positive correlations between the ROCUAC and the number of training epochs, while the smallest
dataset showed a marked increase in ROCAUC — from 0.53 after 100 epochs to 0.60 after 500
epochs. In summary, dataset size is the primary reason for overfitting, while the effect of training
length is only significant when the training set size is sufficiently small.

As will later be made clear, the success rate of MIAs is heavily related to the width of the dataset.
For a wider dataset than UAV intrusion detection, i.e. a dataset with more columns, overfitting
would be apparent for much larger datasets and comparably fewer training epochs.
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4.2 Observations from adversarial regularization

From the experiments conducted in this thesis a collection of observations were extracted. They
will be summarily described in this section. They were:

1. Adversarial regularization increased the critic’s robustness to MIAs.

2. The critic’s vulnerability to MIAs increased with the number of training epochs, but not
linearly.

3. The susceptibility to MIAs were closely linked with their training losses.

4. The generator benefited much less from adversarial regularization than the critic, despite its
training being seemingly more affected by it.

Figure 13: ROCAUC graphs for a regular and adversarially regularized model attacked in a critic
MIA.

Figure 13 highlights the first lesson, namely that adversarial regularization increases the model’s
robustness to MIAs. It displays the success rate of the membership inference attacker as ROCAUC,
at different stages of the training process for two CTGAN models: one version which has been
regularized with adversarial training and another which has not been regularized neither adversarial
regularization nor dropout. The lines are the mean ROCAUCs for the attacks conducted against
the models and the shaded areas enclosing the lines are one standard deviation. The figure shows
how the adversarial training regularized model’s mean robustness is consistently lower than that of
the regular model for any number of training epochs. Although adversarial regularization improves
the robustness of the CTGAN, it is by no means a perfect solution. A perfect robustness outcome
would entail the attacker purely guessing whether a given sample was part of the training set or
not, i.e. ROCAUC = 0.5.

One might be forgiven in believing that the model’s vulnerability to membership inference attacks
would increase linearly or at least monotonously with the number of training epochs, vulnerability
to MIAs is correlated with the length of the training process, as was established in the previous
section. Figure 13 disproves this notion. In fact, for both models the attack’s ROCAUC decreased
until 100 epochs, before it rapidly overshot the level where it would eventually converge after 300
epochs. The answer to this problem lies in the training of the critic.

Figure 14 displays the training losses of the critic and generator, corresponding to the models
attacked in figure 13. The trough and peak in the critic’s training loss at epochs 100 and 150
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Figure 14: Training loss corresponding to figure 13.

coincide with the attack’s smallest and highest ROCAUC scores. These were also moments in the
training of the CTGAN where the strength of the critic relative to the generator shifted greatly.
In the trough before epoch 100 the critic’s loss decreased steeply, which indicates that the critic
had strengthened itself in comparison with the generator, i.e. it has evolved network parameters
which allowed it to more easily tell real from fake data. Immediately after finding this new set of
network parameters, the critic was less overfitted to the training set because it had not had the
time to hone its parameters in this new ”paradigm” which was just brought about. After epoch
100 the loss of the critic stabilized somewhat and the ROCAUC of the attack increased, since the
critic got to progressively improve its parameters and thereby overfit. This example illustrates how
the critic’s vulnerability to MIAs is intertwined with its training process.

The training of a GAN is a two-player game where the critic and generator are tightly inter-
dependent. The regularization of the critic should therefore also affect the generator. This appears
at first glance to be the case. As figures 15 and 16 show, the generator’s losses are greatly affected
by adversarial regularization, even more so than the critic is.

Figure 15: Critic training loss for varying ϵ. Figure 16: Generator training loss for varying ϵ.

In contrast with the critic, the effect of adversarial regularization did not translate to significantly
increased robustness to membership inference attacks for the generator, as can bee seen in figure
17. For ϵ = 1.0, which is the strictest amount of adversarial regularization considered in this
thesis, the attacker attained roughly the same ROCAUC as in the attack of the regular model.
What seems clear is that the adversarial regularization which had significant effect on the critic’s
robustness did not translate to the generator in a similar manner. The adversarial regularization
did however affect the synthetic data produced by the generator considerably, as will be discussed
in subsequent sections.
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Figure 17: ROCAUC graphs for a regular and adversarially regularized model attacked in a gen-
erator MIA.

4.3 Adversarial regularization’s effect on synthetic data quality

For the discussion of how the adversarial regularization affects the quality of the synthetic data
produced by the CTGAN, the results obtained from the Covertype dataset are again utilized.
Covertype is arguably the most difficult dataset to emulate of the four considered in this thesis.
It consists of a mix of numerical and categorical columns, with a total of 44 individual categorical
values, and ten labels.How should one regard the effects on the synthetic data quality with respect
to the adversarial regularization? The generator does not have access to the target data distribu-
tion, i.e. the training set. Access to information about the target distribution is mediated by the
critic. The generator will instead improve itself solely based on what increases its ability to deceive
the critic. When the critic is trained on adversarial samples, it will regard them as originating
from the target distribution. If ϵ is too large and the adversarial samples differ considerably from
the target distribution, the generator will, through the critic, learn to generate aberrant samples,
thereby deteriorating the synthetic data quality.

Figures 18, 19, 20, and 21 exhibit how adversarial regularization affects the quality of synthetic
data produced by the CTGAN at different stages of the training process, with respect to the
metrics which were determined to of interest in section 3.5. The increasing value of ϵ represents
the increasing severity of the adversarial regularization. The plots show how moderate adversarial
regularization (ϵ ∈ (0.1, 0.4)) can be implemented without a significant penalty to the synthetic
data quality for relatively small values of ϵ. However, excessive adversarial regularization was not
beneficial to the synthetic data quality, similarly to what one would have expected of alternat-
ive regularization methods too. The different aspects of the synthetic data quality, i.e. RMSE,
Wasserstein distance, the Kolmogorov-Smirnov (KS) statistic and the number of fake pairwise
unique combinations, are affected somewhat differently by the adversarial regularization. Figure
exhibits the RMSE between the synthetic and real data 19. The RMSE decreased unequivocally
with increasing ϵ, i.e. the severity of the adversarial regularization. The same was not true for the
Wasserstein distance and the KS statistic. Moderate values of ϵ(∈ (0.1, 0.4)) had a beneficial and
lasting effect on the Wasserstein distance and KS statistic, while larger ϵs contributed to a sharp
initial decrease in both metrics, which bottomed around 150-200 epochs, before they rose to as bad
levels as at the beginning of the training. This suggests that adversarial regularization mostly was
beneficial in the initial phases of the GAN training, regardless of the size of ϵ, but not necessarily
if enabled throughout the entire training process. Adversarial regularization proved to be some-
what advantageous to the number of fake pairwise unique combinations, putting a slight downward
pressure on the total number and bringing it closer to the 71 real pairwise unique combinations
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found in the training set.

Figure 18: Wasserstein distance during the train-
ing process for varying ϵ.

Figure 19: RMSE during the training process for
varying ϵ.

Figure 20: Kolmogorov-Smirnov statistc during
the training process for varying ϵ..

Figure 21: Number of fake pairwise unique com-
binations during the training process for varying
ϵ.

Figure 22: Accuracy at several stages of the train-
ing process with varying ϵ.

Figure 23: ROCAUC at several stages of the
training process with varying ϵ..

Similarly to the synthetic data quality metrics, the machine learning efficacy metrics also deteri-
orated with excessive adversarial regularization. For ϵ ∈ (0.1, 0.3) adversarial regularization did
not incur great losses in utility, at least in terms of accuracy and ROCAUC. Accuracy is the most
accommodating metric, because it is just the ratio between the number of correct predictions and
the total number of predictions, without paying heed to how the errors are distributed between
true positives and negatives, and false positive and negatives. The F1 score is the most punishing
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Figure 24: F1 score at several stages of the training process with varying ϵ.

of the three metrics and figure 24 shows a clear reduction in F1 score as ϵ increases. The reduction
entails that larger proportions of the classifiers’ predictions are rendered false positives or false
negatives as ϵ increased.

4.4 To which parameters of the adversarial attack is adversarial regu-
larization most sensitive?

The effect of the adversarial regularization was controlled with the help of two hyper parameters:
ϵ and the share of adversarial samples in a given training set batch. In order to analyze the effects
of these two hyper parameters on the regularization effect, the Musk dataset again took center
stage, since it lead to the model most vulnerable to MIAs.

4.4.1 Results from varying epsilon

Increasing ϵ entails loosening of the constraints limiting the adversarial attacks in the input space.
With looser constraints, each benign sample in the training set can give spawn to a more varied set
of corresponding adversarial samples across the CTGAN’s training process. Previously it has been
stated that ϵ correlated positively with the critic’s robustness to membership inference attacks,
but an excessive ϵ will deteriorate the quality of the synthetic data produced by the generator.

Figure 25: The critic’s susceptibility to MIA for
varying values ϵ.

Figure 26: The generator’s susceptibility to MIA
for varying values ϵ.

The critic’s robustness to membership inference attacks correlated positively with ϵ, as can be seen
in figure 25, which plots the reduction in MIA ROCAUC for the critic compared to the regularly
trained model. The same did not apply for the generator. Figure 26 shows that adversarial
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regularization tends to reduce the attacker’s ROCAUC against the generator, although there is no
clear correlation between the reductions and ϵ. Additionally, the reductions are much smaller in
scale compared with adversarial regularization on the critic, which reiterates the results presented
in figures 13 and 17.

Hernandez-Garcia et al. distinguish between implicit and explicit regularization methods, where
the explicit methods decrease the representational capacity of the model[41]. The implicit methods
on the other hand, do not reduce representational capacity, but rather effective capacity. Regulariz-
ation methods like weight decay, which directly limit the model weights, fall into the first category,
while adversarial regularization falls into the second. Therefore, it is important to beware that
the regularization effect is not necessarily perfectly correlated with the size of the perturbation
constraint ϵ. The regularization effect will not necessarily increase monotonously with the size of
ϵ, i.e. the accumulated weights in the CTGAN layer will not necessarily decrease with a corres-
ponding increase in ϵ. This feature is inherent to adversarial regularization, and is an outcome
of the optimization process in the adversarial attacks. For a given input sample, the adversarial
attack searches for regions of high loss surrounding the sample. Loosening the constraints of the
adversarial attack by increasing ϵ does not guarantee that the attack will converge in a region with
higher loss than it would have in for a lower ϵ.

4.4.2 Varying the share of adversarial samples

The hyper parameter ”share of adversarial samples” relates to the share of benign samples which
are replaced by adversarial sample counterparts in each training batch during the CTGAN training
process.

Figure 27: The critic’s susceptibility to MIA for
varying shares of adversarial samples.

Figure 28: The generator’s susceptibility to MIA
for varying share of adversarial samples.

Increasing the share of adversarial samples in each training batch, was not as decisive for the CT-
GAN’s robustness as increasing ϵ was. Figures 27 and 28 display the mean reduction in ROCAUC
attacks against the critic and generator for increasing share of adversarial samples. The correla-
tion between increased share and decrease in attack ROCAUC was much less pronounced than the
correlation between ϵ and ROCAUC, and it was not even discernible in the generator’s case.

Figures 29, 30, 31 and 32 exhibit how the synthetic data quality metrics change when the share of
adversarial samples included in each training batch varies, for a fixed ϵ. The figures show that the
synthetic data quality is affected similarly by increasing the share of adversarial samples, as they
were when ϵ was increased.
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Figure 29: Wasserstein distance at several stages
of the training process with varying share of ad-
versarial samples.

Figure 30: RMSE at several stages of the training
process with varying share of adversarial samples.

Figure 31: Kolmogorov-Smirnov statistc at sev-
eral stages of the training process with varying
share of adversarial samples.

Figure 32: Number of fake pairwise unique com-
binations at several stages of the training process
with varying share of adversarial samples

In summary, the share of adversarial samples seems to be the parameter of secondary importance
compared to the size of the constraints on the adversarial attacks, ϵ. The two parameters have
the same effect on the synthetic data quality, but ϵ is associated with higher robustness against
membership inference attacks. The reason for this disparity between the effects on the CTGAN’s
robustness may be found by examining the parts each parameter plays in adversarial regularization.
Loosening the constraints on the total perturbation size in the adversarial attack, i.e. increasing
ϵ, will include more local maxima in the vicinity of each benign sample. This entails a higher
number of high-loss regions in the input space whereto benign samples can be perturbed. The
regularization effect of adversarial regularization is grounded in finding regions in the input space
in which there is high loss, so it makes sense that increasing ϵ will increase the severity of the
regularization effect. The share of adversarial samples does not limit which benign samples are
used for adversarial regularization, but rather how many are used at the same time. Which benign
samples are to be replaced with adversarial counterparts are picked randomly for each batch. Over
the course of the entire training process, all samples from the training set will likely be replaced with
a number of adversarial counterparts. The difference between a low and a high share of adversarial
samples is therefore not fundamentally important for the prospect of adversarial regularization.
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4.5 Adversarial regularization compared with dropout

Dropout is a regularization method with which it was natural to compare adversarial regularization.
Due to its ease of use and benefits on both of the GANs utility with respect to synthetic data quality
and beneficial effect on model robustness[8], it is a popular choice. Dropout is also the inherent
regularization method in the CTGAN model, making it even more relevant as a comparison to
adversarial regularization.

Figure 33: ROCAUC graphs for a regular and a dropout-trained model attacked in a critic MIA.

Regularizing the critic with dropout resulted in an increased robustness to MIAs, as shown in figure
33. Dropout proved to be a more powerful regularization method than adversarial regularization
with respect to increasing the robustness to MIAs. As figure 33 shows, the ROCAUC of the MIA
against the critic trained with dropout, was at most 0.25 less than the equivalent figure for the
critic trained without dropout.

In contrast with adversarial regularization, dropout was much more effective at increasing the
generator’s robustness. Figure 34 exhibits how dropout= 0.5 decreased the attacker’s ROCAUC
with at most 0.08 around epoch 350, and generally tracks well below the ROCAUC graph of the
unregularized model’s generator.

There are several key differences separating dropout and adversarial regularization which might
explain the discrepancy between dropout and adversarial regularization’s effect on generator ro-
bustness. Firstly, the former is an explicit form of regularization and affects the critic directly,
while the latter — as aforementioned — is an implicit form of regularization and only affects the
input data from which the critic learns. Another key difference between dropout and adversarial
regularization, is that the latter only affects the numerical input features, while dropout regularizes
the network regardless of what type of input the network is presented with. This is however not
the cause of the discrepancy, since the largest difference in the regularization methods’ ability to
reduce vulnerability to MIAs were observed with the Musk dataset, which only contained numerical
columns. The conclusion might be that dropout, with its direct impact on the network parameters,
is a more powerful method of regularization than adversarial regularization, and therefore has a
better ability to reduce ovefitting and thereby vulnerability to MIAs for both the critic and the
generator. This conclusion is corroborated by figures 35, 36, 37 and 38, which show that increases
in dropout reduced ROCAUC of the MIAs against both the critic and generator much more than
adversarial regularization was able to.

Compared with dropout, adversarial regularization proved to be less effective for all of the data-
sets experimented with in this thesis. The bar plots displayed in figures 39 and 40 exhibit the
attacker’s ROCAUC score against the unregularized model, the model trained with adversarial
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Figure 34: ROCAUC graphs for a regular and a dropout-trained model attacked in a generator
MIA.

Figure 35: ROCAUC graphs for critic MIAs with
varying ϵ.

Figure 36: ROCAUC graphs for critic MIAs with
varying dropout.

Figure 37: ROCAUC graphs for generator MIAs
with varying ϵ.

Figure 38: ROCAUC graphs for generator MIAs
with varying dropout.

regularization, and the model trained with dropout for all the datasets, are compared. The bars
corresponding to the regularization methods convey the smallest ROCAUC the MIAs attained
against the regularized models, while the bar corresponding to the regular model is the maximum
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ROCAUC attained by the attacker against the regular model. Thus the bar plot conveys the reg-
ularization methods’ maximum ability. The bar plots show how dropout outcompetes adversarial
regularization in all but one case. The single case in which adversarial regularization performed
better than dropout, namely for the adult test set in the generator MIA, the difference was mar-
ginal and both ROCAUC scores were approximately 0.5 which indicates that the attacker would
have had no ability to identify training samples for either model anyway.

Figure 39: Critic MIA ROCAUC barplot for all
datasets.

Figure 40: Generator MIA ROCAUC barplot for
all datasets.

The reduction in ROCAUC facilitated by adversarial regularization relative to dropout in figures
39 and 40, show that dropout was more adept at translating the regularization effect from the
critic to the generator, than adversarial regularization was. Dropout facilitated almost the same
drop in ROCAUC for both the critic and the generator, while adversarial regularization’s effect
reduced markedly when translated to the generator. The inability of adversarial regularization to
significantly lower the attackers ROCAUC against the generator, is a bad predicament because
it is the generator’s defence which it is most important to bolster. The critic is often discarded
when a GAN is made publicly available, since only the generator is necessary for the production
of synthetic data. The generator is therefore more prone to attacks. This is the main Achilles heel
of the adversarial regularization implementation presented in this thesis.

Figures 41 42, 43 and 44 display how the synthetic data quality produced by the CTGAN was
affected by dropout. The effect was much less discernable than the equivalent effect on the syn-
thetic data quality of adversarial regularization. Dropout and its ability to decrease the critic’s
representation capacity, thus has a lesser effect on the synthetic data produced by the generator
than adversarial regularization.

In a real world utilization of the CTGAN, one might be more concerned with the utility of the
synthetic data, rather than solely the privacy guarantees which comes along with it or the syn-
thetic data quality metrics, which are just an indication of the data’s usefulness. If the choice
of regularization method is to be mainly informed by which model provides the best utility, the
comparison between dropout and regularization falls out differently. Tables 3, 4 and 5 encompass
all metrics considered for assessing the utility, robustness and synthetic data quality respectively,
for the four datasets included in this thesis. The results are color coded in traffic-light style: red
indicates the model which performed worst for the given metric, while yellow and green indicates
the second-to-best and best models respectively.

As can be seen in table 3 Adversarial regularization generally outcompeted dropout in terms of
utility in the datasets which only contain numerical columns, i.e. the UAV intrusion detection
and Musk datasets. In the mixed datasets (Adult and Covertype) either the regular model or the
dropout-regularized models performed best. The reason for this discrepancy, is conceivably due to
the adversarial regularization not affecting the categorical columns in the mixed datasets, while
the numerical datasets allowed attacks on all columns.

The same message is reflected in tables 4 and 5; adversarial regularization outperformed dropout for
the numerical datasets. Remember, figures 39 and 40 show the regularization methods’ maximum
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Figure 41: Wasserstein distance at several stages
of the training process with varying dropout.

Figure 42: RMSE at several stages of the training
process with varying dropout.

Figure 43: Kolmogorov-Smirnov statistc at sev-
eral stages of the training process with varying
dropout.

Figure 44: Fake pairwise unique combinations at
several stages of the training process with varying
dropout

ability to reduce the membership inference attacker’s ROCAUC, while table 4 convey the ROCAUC
of the differently trained models for their respective utility optimums. The results suggest that
adversarial regularization provide a different utility-security trade-off than the one inherent to
dropout[8]. The trade-off adversarial regularization struck was tilted more in favour of maintaining
(or even improving) the synthetic data quality, for all-numerical datasets.

4.6 On dataset meta characteristics and vulnerability to membership
inference attacks

In the comparisons made in figures 39 and 40, the Musk dataset stands out as the dataset which
leads to the most vulnerable models. The most intuitive explanation of this is that it is also
the widest dataset with 168 columns. In order to conceptualize this, one can conjure a simple
analogy: human fingerprints. For a human population of a given size, imagine the problem of
telling the individuals apart by their fingerprints. This is an accomplishable task, but what if the
resolution of the fingerprints was lowered drastically, for instance to the resolution of a 28x28 pixel
MNIST image? Chances are, the fingerprints would have been turned into blobs instead of the
clear lines they normally trace, which would have made identifying anyone by their fingerprints
impossible. An additional, but more technical analogy can be drawn with regards to a support
vector classifier. An SVC maps its inputs to higher dimensional spaces, in order to more easily
classify the inputs[42]. Similarly to the fingerprints analogy, the conclusion remains: it is easier to
tell high-dimensional data apart, than low-dimensional data. This seems also to apply to datasets
and their vulnerability to membership inference attacks.
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5 Conclusion and future work

In this thesis adversarial regularization has been tested as a method of defence against membership
inference attacks. The conclusion with respect to the research questions are:

• Can regularization reduce a GANs vulnerability to membership inference at-
tacks? Yes, utilizing adversarial regularization reduced the CTGAN’s vulnerability to mem-
bership inference attacks, although the reduction was only slight for the generator. The
inability of adversarial regularization to increase the generator’s robustness to MIAs weakens
the case for the use of it, since the generator generally is the part of the GAN which is
published and therefore is prone to attacks, while the critic is discarded.

• To which hyper parameter(s) of the adversarial regularization is the resulting
regularization most sensitive? ϵ proved to be the most important hyper parameter with
respect to the adversarial regularization’s effect on model robustness. For the synthetic data
quality, ϵ and the share of adversarial samples in each training batch proved to have the same
effect.

• What are the trade-offs between regularizing a GAN with adversarial regular-
ization, regularization with alternative methods or not regularizing at all? Ad-
versarial regularization proved to be the second-best option in terms of reduction in model
vulnerability, behind dropout, due to it being a less powerful method of regularization. How-
ever, adversarial regularization proved to be the most prolific option of the three in terms of
robustness, utility and synthetic data quality, when considering which models provided the
best utility on the all-numerical datasets.

• What are the penalties to the synthetic data quality when conducting adversarial
regularization on a GAN? Moderate adversarial regularization was shown to increase the
quality of all-numerical synthetic datasets. For mixed-datasets, adversarial regularization
generally fared worse, due to it being incompatible with categorical columns.

Adversarial regularization has proven itself to be able to regularize a GAN and improve its ro-
bustness to MIAs, although the effect was subpar to that of dropout. It is safe to say that the
use of adversarial regularization in GANs is an under-researched subject, with a lot of potential
with respect to improving the implementation of adversarial regularization, understanding why
the regularization effect dissipates when translated from the critic to the generator and harnessing
the effect of adversarial regularization on the ability of GAN’s to produce synthetic data.
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Appendix

A Appendix

Appendices A, B and C present results obtained from all datasets in terms of machine learning
efficacy, robustness to MIAs and synthetic data quality. The results were procured by three
differently trained CTGAN models: a regular model, a model trained with dropout and a model
trained with adversarial regularization. For each dataset and model type, the best parameterized
model in terms of machine learning efficacy was selected. Table 2 contains the hyper parameters
used for the selected models.

Dataset / Training mode Regular Dropout Adversarial regularization
Adult 200 epochs Dropout = 0.3, 350 epochs ϵ = 0.3, 350 epochs

Covertype 350 epochs Dropout= 0.1, 500 epochs ϵ = 0.2, 350 epochs
UAV intrusion detection 350 epochs Dropout = 0.7, 400 epochs ϵ = 0.2, 250 epochs

Musk 500 epochs Dropout= 0.1, 500 epochs ϵ = 0.4, 500 epochs

Table 2: Hyper parameters of the models with best utility.

For all the models trained with adversarial regularization, the share of adversarial samples was
50%.

Appendices D and E respectively presents the hyper parameters used in the networks and optim-
izers, and the software requirements for running the code.

A Machine learning efficacy

Table 3 exhibits the machine learning efficacy of three model types with the hyper parameters
indicated in table 2.

Dataset Metric Regular Dropout Adversarial regularization

Adult Accuracy 0.833± 1.30e−5 0.822± 5.20e−5 0.825± 7.30e5

ROCAUC 0.882± 9.00e−6 0.885± 1.00e−6 0.887± 6.00e−6

F1 score 0.603± 1.72e−3 0.658± 1.20e−5 0.658± 2.20e−5

Covertype Accuracy 0.625± 1.71e−4 0.634± 4.21e−5 0.613± 3.79e−4

ROCAUC 0.846± 1.97e−4 0.841± 2.38e−5 0.835± 1.50e−5

F1 score 0.396± 5.00e−5 0.355± 7.29e−4 0.379± 7.65e−4

UAV intrusion detection Accuracy 0.991± 2.6e−3 0.992± 1.8e−3 0.995± 2.0e−3

ROCAUC 0.997± 1.4e−3 0.997± 4.0e−3 0.999± 7.5e−4

F1 score 0.992± 2.2e−3 0.993± 1.7e−3 0.995± 1.7e−3

Musk Accuracy 0.617± 1.9e−2 0.603± 1.0e−2 0.645± 2.3e−3

ROCAUC 0.642± 2.5e−2 0.640± 1.2e−2 0.674± 1.7e−2

F1 score 0.544± 5.1e−1 0.517± 4.0e−2 0.581± 1.8e−2

Table 3: Machine learning efficacy for all datasets.
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B Robustness to membership inference attacks

Table 4 exhibits the mean attack ROCAUC against the critic and generator from the models
trained with the hyper parameters indicated in table 2.

Dataset Target Regular Dropout Adversarial regularization
Adult Critic 0.533± 8.45e−3 0.533± 0.0197 0.550± 5.44e−3

Generator 0.527± 8.71e−3 0.482± 3.2e−3 0.492± 0.0125

Covertype Critic 0.505± 0.0189 0.520± 0.0152 0.509± 0.0161
Generator 0.497± 5.80e−3 0.509± 0.0175 0.503± 4.80e−3

UAV intrusion detection Critic 0.519± 9.19e−3 0.521± 0.0163 0.501± 4.15e−3

Generator 0.516± 2.12e−3 0.514± 1.25e−4 0.509± 6.38e−3

Musk Critic 0.725± 7.92e−3 0.716± 0.0265 0.693± 0.0108
Generator 0.702± 7.80e−3 0.694± 4.11e−3 0.680± 9.60e−4

Table 4: Attack ROCAUC for all datasets.

C Synthetic data quality

Table 5 exhibits the quality of the synthetic data produced by the three model types with the
hyper parameters indicated in table 2.

Dataset Metric Regular Dropout Adversarial regularization

Adult Wasserstein distance 2062± 798.4 3737± 585.4 3291± 485.1
RMSE 0.0251± 1.53e−3 0.0281± 8.72e−3 0.0280± 4.77e−3

Kolmogorov-Smirnov statistc 0.144± 0.0256 0.187± 0.0157 0.148± 0.0216
Fake pairwise unique combinations* 2466± 26.9 2440± 30.0 2470± 40.2

Covertype Wasserstein distance 110± 32.9 86.2± 31.8 87.6± 23.8
RMSE 0.0596± 5.94e−3 0.0573± 6.48e−4 0.0577± 9.67e−3

Kolmogorov-Smirnov statistc 0.154± 0.0218 0.134± 0.0108 0.153± 0.0363
Fake pairwise unique combinations** 116± 1.25 107± 1.41 110± 1.70

UAV Wasserstein distance 22.2± 2.49 24.8± 0.903 24.6± 3.10
intrusion RMSE 0.131± 0.0484 0.180± 0.0186 0.0755± 7.39e−3

detection Kolmogorov-Smirnov statistc 0.331± 5.10e−3 0.352± 4.82e−3 0.302± 2.32e−3

Musk Wasserstein distance 22.5± 0.134 23.0± 0.368 21.7± 0.234
RMSE 0.0605± 1.45e−3 0.0632± 2.17e−3 0.0523± 2.28e−3

Kolmogorov-Smirnov statistc 0.191± 1.20e−3 0.204± 2.83e−3 0.176± 1.27e−3

Table 5: Synthetic data quality metrics for all datasets. (*The total number of unique pairwise
combinations in the adult set was 2323, **and 71 in the covertype dataset.)
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D Network and optimizer parameters

The following are the hyper parameters used in the CTGAN for all datasets:

Dataset Adult Covertype UAV intrusion detection Musk
Critic LR 5e−4 9e−4 2e−4 2e−4

Generator LR 5e−4 9e−4 2e−4 2e−4

Batch size 500 500 500 500
Embedding dim 128 128 128 128
Generator dim (256, 256) (256, 256) (256, 256) (256, 256)

Discriminator dim (256, 256) (256, 256) (256, 256) (256, 256)
Number of critic steps 1 1 1 1

Optimizer Adam Adam Adam Adam
β1 0.4 0.5 0.5 0.5
β2 0.8 0.9 0.9 0.9

Decay 1e−6 1e−6 1e−6 1e−6

Table 6: Network and optimizer parameters.

The following are the hyper parameters utilized in the generator membership inference attack for
all datasets:

Dataset/Parameter LR # iterations Batch size Optimizer (β1, β2)
Adult 0.25 1000 250 Adam (0.5,0.9)

Covertype 0.25 1000 250 Adam (0.5,0.9)
Intrusion detection 0.25 1000 250 Adam (0.5,0.9)

Musk 0.025 500 250 Adam (0.5, 0.9)

Table 7: Generator MIA hyper parameters.

E Software requirements

Table 8 describes the main python dependencies for the code developed by the author for this
thesis.

Python library Version

ctgan 0.5.0
matplotlib 3.5.0
numpy 1.21.5
pandas 1.4.0
python 3.8.12
pytorch 1.10.2

scikit-learn 1.0.2
scipy 1.8.0

seaborn 0.11.2

Table 8: Major software dependencies.
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