
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Jo Aleksander Johansen

Techniques for signal reconstruction
from sparsely
compressed vibration measurements

Master’s thesis in Cybernetics and Robotics
Supervisor: Frank Ove Westad
Co-supervisor: Johannes Holm Gjeraker
June 2022M

as
te

r’s
 th

es
is

Jo Aleksander Johansen

Techniques for signal reconstruction
from sparsely
compressed vibration measurements

Master’s thesis in Cybernetics and Robotics
Supervisor: Frank Ove Westad
Co-supervisor: Johannes Holm Gjeraker
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

iii

Amidst the mist, ignorance can be
persuasive

-unknown

Abstract

As the world advances, measuring our surroundings becomes increasingly import-
ant. As the wireless sensors become smaller, they are utilized more places. The
information has a wide range of uses, from monitoring the health of a population
to predicting failures in machinery. This thesis explores how to efficiently capture
and reconstruct data from wireless Internet-of-Things (IoT)-sensors. Lowering the
transmitted data size will increase the longevity of the sensor itself whilst still
providing accurate measurements.

The context of the compression is maintenance prediction on bearings using
vibration sensors from Disruptive Technologies (DT). Time-series from vibration
measurements are used to test multiple techniques for compression and recon-
struction. Currently, DT samples a signal and only selects the 5 frequencies of the
highest magnitude to be transmitted. Their method was recreated and compared
to three other methods; autoencoders, decoder networks, and compressed sens-
ing. Multiple different configurations were tested for each method. Autoencoders
are trained to find some small set of latent features in the data, then reconstruct
the original signal from this set of features. The results from this were not ad-
equate for any predictions. Decoder networks were tested with a random subset
of samples as input to recreate the whole signal. This also showed underwhelming
results.

Two solvers were tested for compressed sensing; Embedded Conic Solver (ECOS)
and Orthant-Wise Limited-memory Quasi-Newton (OWL-QN). ECOS was deemed
too slow to be viable, but OWL-QN showed good results. Both prediction al-
gorithms discussed might be able to predict with the recreated signals when the
sample size is between 10% and 50% of the whole sequence. The Root-Mean-
Square (RMS) over time is surprisingly accurate for a sample size as low as 1%.

v

Sammendrag

Verden er i stadig digitalisering og vi lener oss mer og mer på teknologi for å
fortsette utviklingen av omverdenen. En stor del av dette innebærer å samle in-
formasjon. Ettersom trådløse sensorer blir mindre plasseres de flere steder. In-
formasjonen de samler brukes til alt fra å monitorere menneskers helse til å for-
utse feil i industrielt utstyr.

I denne oppgaven diskuteres kompresjons- og rekonstruksjons-metoder i kon-
tekst av å predikere feil på kulelager. Vibrasjonsmålinger i form av 1 sekund lange
sekvenser med tidsserie blir brukt til å teste 4 forskjellige metoder. Ønsket er å
holde informasjonen som sendes til et minimum og holde prossesringen på en
sensor lav. Den første metoden brukes av Disruptive Technologies (DT) i en pro-
totype. De taster i 1 sekund med en tastetid på 1100Hz før de fem frekvensene
med størst magnitude blir valgt og sendt. Dette sammenliknes med tre andre met-
oder; autoenkodernettverk, dekodernettverk og komprimert sansing.

Autoenkoderen og dekoderen er begge testet med tre forskjellige arkitekturer
som hver endrer dybden og kompresjonen de oppnår. Ingen av akitekturene oppnår
resultater som kan brukes til predikering i noen av de to metodene. Det er vanskelig
å peke på en grunn til dette da spesielt autoenkodere har vist gode resultater i flere
publikasjoner.

Komprimert sansing går ut på å taste et signal tilfeldig, altså med varier-
ende tasteperiode, for så å rekonstruere signalet med konveks optimalisering.
To løsere ble testet; Embedded Conic Solver (ECOS) og Orthant-Wise Limited-
memory Quasi-Newton (OWL-QN). ECOS viste seg å være for treg til å brukes med
så store datamengder. Noen få sekvenser ble testet før den ble vurdert som ubruke-
lig. OWL-QN ble så testet og gav gode resultater. De rekonstruerte signalene med
taste størrelserstørre enn 10% har en spektral omhylling som viser sterke likheter
med det opprinnelige signalets spektrale omhylling. Det gjør komprimert sansing
mulig å bruke i mer avanserte predikasjonsalgoritmer. En enkel måte å predikere
feil på er å forutse Root-Mean-Square (RMS) på fremtidige sekvenser. Testene
viser at en tastestørrelse på bare 1% gir en RMS-kurve som utvikler seg likt med
det opprinnelige signalets RMS-kurve. Det ser derfor ut til at denne predikas-
jonsmetoden er effektiv med tastestørrelse helt ned i 1%.

Hvorfor komprimert sansing fungerer så mye bedre enn de andre metodene er
ikke utforsket i denne oppgaven. Noen betraktninger bør allikevel gis. For å pre-
dikere noe må man ha nok av den riktige informasjonen tilstedet. DT sin metode

vii

viii :

gir, etter alt å dømme, for lite informasjon. Autoenkoderen og dekoderen prøver
å rekonstruere utifra dataene de er gitt, det kan se ut som metodene ikke bringer
mer informasjon til bordet og da blir det for lite å basere predikasjoner på. Det
er her man kan spekulere i om forskjellene ligger. Komprimert sansing prøver å
optimalisere seg frem til mer informasjon, informasjon som matcher det den alt er
gitt. Hvis rekonstruksjonen stemmer bedre overens med det opprinnelige signalet
vil, ikke overaskende, en tilsvarende prediksjon også være mulig.

Preface

My interest in learning, exploring, and making things has led my path throughout
my life. Eventually, it brought me to an engineering degree. Looking back to the
start of this 5-year long journey, I must admit I did not comprehend what was
coming. The amount of work required to get through all the assignments, the lab
exercises, and the accompanying discussions late at night to grasp the abstract
theories has been overwhelming, to say the least. Equally overwhelming is the
joy of understanding those abstract theories, finding solutions, or having made
something. Equally powerful are the friendships, not only forged by the tears of
not knowing but also by knowing.

I am grateful for everyone that I have befriended through studies, group work,
and too many a beer. Our conversations have been helpful, inspiring, and educa-
tional, both personally and at the academic level.

Working with this master thesis forced me to deep dive into the intricacies
of optimization from a math-oriented point of view. Although much of the theory
was taught in classes, I cannot say I had a good understanding of what it all meant.
Nor good knowledge of how different subjects are connected. The exploration I
carried out this final semester has significantly developed a mathematical intuition
for multiple concepts in optimization and related domains. For that, I am grateful.

I want to thank my supervisor Frank Ove Westad for challenging my exper-
iments and my way of thought. Your free reins approach to my thesis subject is
something I value. I hope my work is deserving of the trust you have given me.

I thank my other supervisor Johannes Holm Gjeraker from Disruptive Tech-
nologies. Multiple times you have listened to my, not always so coherent, line of
thought as I found my way through this task. Your straightforwardness and atten-
tion to detail during discussions and proofreading are much appreciated.

I thank Bendik Austnes for proofreading. Without your moral support through
the years, our discussions, and our numerous batches of brews, the thesis I am
about to deliver might not have existed.

Finally, I thank my family and the people closest to me. I always get deeply
engrossed in the things I do, and your patience with me has not gone unnoticed.

ix

Contents

Abstract . v
Sammendrag . vii
Preface . ix
Contents . xi
Figures . xiii
Tables . xv
Acronyms . xvii
Glossary . xxi
1 Introduction . 1
2 Theory . 3

2.1 Transforms . 3
2.1.1 Fourier Transform . 3
2.1.2 Hilbert Transform . 3
2.1.3 Wavelet Transforms . 4
2.1.4 Principal Component Analysis 5

2.2 Statistical Prediction . 6
2.2.1 Weibull Distribution . 6
2.2.2 ARMA & ARIMA Models . 7

2.3 Machine Learning and Deep Neural Networks 8
2.3.1 K-nearest Neighbors . 9
2.3.2 Random Forests . 9
2.3.3 Support Vector Machines . 11
2.3.4 Linear Regression . 12
2.3.5 Gaussian Process Regression . 13
2.3.6 Training Neural Networks . 13
2.3.7 Cross-entropy Loss . 18
2.3.8 Optimizer Algorithms . 18
2.3.9 Activation Functions . 19
2.3.10 Fully Connected Neural Networks 20
2.3.11 Convolutional Neural Networks 21
2.3.12 Residual Neural Networks . 23
2.3.13 Recurrent Neural Networks . 24
2.3.14 Autoencoder Networks . 25

2.4 Convex Optimization and Compressed Sensing 26

xi

xii :

2.4.1 Norms . 27
2.4.2 Convex Optimization . 29
2.4.3 Compressed Sensing . 31

3 Previous Work . 33
4 Methodology . 37

4.1 Disruptive Technologies Sensors . 37
4.2 Dataset . 38

4.2.1 Formatting the Data . 41
4.2.2 Recreating the Existing DT method 41
4.2.3 Autoencoder Architecture . 42
4.2.4 Decoder Architecture . 44
4.2.5 Compressed Sensing Implementation 44
4.2.6 Evaluation Metrics . 45

5 Results . 47
6 Discussion . 59
7 Further Work . 65
8 Conclusion . 67
Bibliography . 69
A Additional Material . 75

Figures

2.1 Common wavelets . 4
2.2 A visualization of the wavelet transform 5
2.3 Weibull distribution . 7
2.4 I term in ARIMA models . 9
2.5 A visualization of kNN . 10
2.6 A visualization of a simple decision tree 11
2.7 Simple illustration of a hyperplane using SVM 12
2.8 A visualization of LR with LS . 12
2.9 Example of GPR with RBF kernel . 14
2.10 Principals of overfitting and underfitting 16
2.11 An illustration of gradient decent . 17
2.12 A demonstration of steps without an adaptive learning rate 19
2.13 Illustration of activation functions . 20
2.14 Architecture of a time-series CNN network 22
2.15 Architecture of a residual block . 23
2.16 Architecture of a LSTM gated unit . 25
2.17 Architecture of a generic autoencoder 26
2.18 Illustration of l1-norm and l2-norm . 28
2.19 A simple illustration of a general barrier method 30

4.1 An illustration of some sensors from the Disruptive Technologies
product line . 38

4.2 Setup for measuring bearing vibrations 39
4.3 The parts of a roller bearing . 40
4.4 A preview of the dataset used in testing 40
4.5 An illustration of the exciting DT method for transmitting vibration

data . 41

5.1 The original signals before any compression 47
5.2 The reconstructed signals using a DT method with 5 peaks at 1100hz 48
5.3 The reconstructed signals using a DT method with 5 peaks at 10000hz 48
5.4 The reconstructed signals using a DT method with 2000 peaks at

10000hz . 48
5.5 The reconstructed signals using a single-layer autoencoder 48

xiii

xiv :

5.6 The reconstructed signals using a two-layer autoencoder 49
5.7 The reconstructed signals using a three-layer autoencoder 49
5.8 The reconstructed signals using a single-layer decoder 49
5.9 The reconstructed signals using a two-layer decoder 49
5.10 The reconstructed signals using a three-layer decoder 50
5.11 The reconstructed signals using ECOS with a sample size of 1% . . 50
5.12 The reconstructed signals using ECOS with a sample size of 10% . . 50
5.13 The reconstructed signals using OWL-QN with a sample size of 1% 50
5.14 The reconstructed signals using OWL-QN with a sample size of 10% 51
5.15 The reconstructed signals using OWL-QN with a sample size of 50% 51
5.16 RMS over time using DT methods . 52
5.17 RMS over time using autoencoders . 52
5.18 RMS over time using decoders . 53
5.19 RMS over time using compressed sensing with OWL-QN 53
5.20 MSE and covariance for DT method with 5 peaks at 550hz 54
5.21 MSE and covariance for DT method with 5 peaks at 10000hz 54
5.22 MSE and covariance for DT method with 2000 peaks at 10000hz . 55
5.23 MSE and covariance for autoencoder with 1 layer 55
5.24 MSE and covariance for autoencoder with 2 layers 55
5.25 MSE and covariance for autoencoder with 3 layers 56
5.26 MSE and covariance for decoder with 1 layer 56
5.27 MSE and covariance for decoder with 2 layers 56
5.28 MSE and covariance for decoder with 3 layers 57
5.29 MSE and covariance for compressed sensing with a sample size of

1% . 57
5.30 MSE and covariance for compressed sensing with a sample size of

10% . 57
5.31 MSE and covariance for compressed sensing with a sample size of

50% . 58

Tables

4.1 Relevant hardware and software specifications 37
4.2 The training specifications for the autoencoders 42
4.3 The compression ratios for the autoencoders 42
4.4 Autoencoder with one layer . 43
4.5 Autoencoder with two layers . 43
4.6 Autoencoder with three layers . 43
4.7 The training specifications for the decoders 44
4.8 Decoder with one layer . 44
4.9 Decoder with two layers . 44
4.10 Decoder with three layers . 45

xv

Acronyms

ADAM Adaptive Moment Estimation. 18, 19

AM Amplitude Modulated. 33

AR Auto Regressive. 7, 33

ARIMA Auto Regressive Integrating Moving Average. 8

ARMA Auto Regressive Moving Average. 7, 8, 33

BFGS Broyden–Fletcher–Goldfarb–Shanno. 30, 31, 44, 45

CFD Computational Fluid Dynamics. 34

CNN Convolutional Neural Network. xiii, 21–23, 34

CPU Central Processing Unit. 37

CUDA Compute Unified Device Architecture. 37

DCT Discrete Cosine Transform. 3, 45

DL Deep Learning. 14, 19

DNN Deep Neural Network. 34

DT Disruptive Technologies. v, vii, xii–xiv, 1, 37, 38, 41, 44, 48, 52, 54, 55, 59–61,
67, 68

DWT Discrete Wavelet Transform. 34

ECOS Embedded Conic Solver. v, vii, xiv, 29, 30, 44, 50, 62, 67

EWT Empirical Wavelet Transform. 33

FCNN Fully Connected Neural Network. 20, 21, 23, 25, 33

FFT Fast Fourier Transform. 38, 41, 42, 68

xvii

xviii :

FM Frequency Modulated. 33

FT Fourier Transform. 3, 4

GP Gaussian Process. 13

GPR Gaussian Process Regression. xiii, xxii, 1, 13, 14, 34, 59–62, 67

GPU Graphical Processing Unit. 37

GRU Gated Recurrent Unite. 24

HT Hilbert Transform. 3, 4, 33

IMS Intelligent Maintenance Systems. 38

IoT Internet-of-Things. v, 59, 67, 68

KL Divergence Kullback-Leibler Divergence. 18

kNN k-nearest neighbors. xiii, 9, 10, 33

L-BFGS Limited Memory BFGS. 30, 31

LR linear regression. xiii, 12, 34

LS Least Square. xiii, 6, 12

LSTM Long-Short Term Memory. xiii, 24

MA Moving Average. 7, 19

MEMS Micro-Electro-Mechanical Systems. 38

ML Machine Learning. 8, 9, 13, 14, 18, 27, 29, 31, 34, 59

MLE Maximum Likelihood Estimation. 6

MPN Multilayer Perceptron Network. 34

MRI Magnetic Resonance Imaging. 26

MSE Mean Square Error. xiv, 42, 44, 46, 54–58, 60–62

NN Neural Network. xxii, 13, 14, 18, 19, 29, 31, 33, 34, 44, 59, 61–63

OWL-QN Orthant-Wise Limited-memory Quasi-Newton. v, vii, xiv, 31, 45, 50, 51,
53, 62, 67, 68

Tables xix

PC Principal Component. 5, 6, 9, 25, 63

PCA Principal Component Analysis. 5, 6, 9, 33, 61, 63

PDF Probability Density Function. xxii, 6, 7, 33

RAM Random Access Memory. 37

RBF Radial Basis Function. xiii, 11, 13

ReLU Rectified Linear Unit. 19, 20, 42

ResNet Residual Neural Network. 23, 34

RIP The Restricted Isometry Property. 32

RMS Root-Mean-Square. v, vii, xiv, 1, 34, 46, 52, 53, 59–62, 67

RNN Recurrent Neural Network. 24, 25, 34

RPCA Recursive PCA. 33

RPM Revolutions Per Minute. 38

SGD Stochastic Gradient Descent. 15, 18, 19

SVM Support Vector Machine. xiii, 11, 12, 33, 34

WNN Wavelet Neural Network. 33

Glossary

conjugate Swapping of the sign. Often used with complex numbers where ex.
2+ i3 has the conjugate 2− i3 [1]. 5

convex set A set S is convex if the straight line connecting any two points in the
set lies inside S [2]. 29

entity embedding When working with categorical data, one would usually one-
hot encodes them. But another way of representing categorical data is entity
embedding, where items with higher relation can be placed closer together
in the embedded space. Further information are given in the original paper
by Guo and Berkhahn [3]. 34

feasible set A set of points that satisfies the constraints given in optimization
problems [2]. 27, 29

flatten The process of manipulating a matrix into an array. 21

gaussian noise Statistical noise adhering to the normal distribution described by
N(µ,σ), [4]. 9

generalizability A models ability to cover variance it has not seen before; gen-
eralizability is high if the model has high accuracy on data it has not seen
before [5]. xxii, 16

gradient Taking the derivative of a function in n-space will generate a hyper-
plane, this is the graident of the function. The gradient is used to find local-
and absolute minima in optimization problems [1]. 14, 15, 17

homotopy Two functions that can be continuously transformed into each other
are called homotopic [6, 7]. 30

hyperplane A line and a plane are easy to visualize in 3d space, but planes in a
higher dimension is an abstract concept hard (if not impossible) to visualize.
These higher dimensional planes are called hyperplanes [1]. 11, 14

xxi

xxii :

isometry When mapping a set of points from one space to another, the mapping
is an isometry if the inter-point distances (shape and size) remain the same
in the new space [8]. 32

kernel trick A set of data that is not linearly separable might become linearly
separable if mapped to a higher dimension, this mapping and splitting is
called the kernel trick and enables effective classification of the data points
[9]. 11

Kriging Another word for Gaussian Process Regression (GPR), based on the name
of a pioneer in the field of geostatistics[10]. 13

kurtosis A measure of the "tailedness" of a PDF [11]. 33

learning rate When optimizing a Neural Network over its gradient the optimizer
has to take steps, the "length" of the step is called learning rate. 18

Nyquist-Shannon sampling theorem To accurately measure a signal one must
sample two times faster than the highest frequency that is measured. 38

orthant A generalization of quadrants and octants into n-dimentional Euclidian
spaces [12]. 31

periodic If a signal repeats it self, in a finite time space or to infinity, it is called
periodic for the given time span [9]. 3

regularization Any method that avoids overfitting is a regularization technique.
Regularization enhances generalizability [5]. 10, 16

skewness A measure of asymmetry of a PDF [11]. 33

spectral envelope A smooth curve defined by the upper boundaries of the spec-
tral density of a time-series. Can be thought of as an enclosing function on
the spectral density of a signal [13]. 1, 45, 60–62, 67, 68

stationary Stationarity is used to describe a statistical property of system gen-
erating a signal. A stationary signal has constant mean and variance [9].
7–9

super position For a linear system, the principle of superposition says that the
net response from multiple stimuli is equal to the sum of each individual
stimuli [1]. 3

Chapter 1

Introduction

Bringing small and cheap sensors to end-users in households, office buildings and
industries might be essential to further modernize the world. At the same time,
current wireless IoT sensors have the flaw of draining the batteries in a relatively
short amount of time. At large scales, frequent battery changes in sensors impose
a large amount of waste on nature. The staff needed to change all these batteries
must also be paid, thus limiting the economical value of the whole system.

To enable such large quantities of sensors to report important and detailed in-
formation for years upon years without the need for battery change can be looked
upon as the pinnacle of sensor technology. Therefore it is a need for optimized
hardware as well as processing that uses cutting edge techniques to limit the
power consumption. The theme of this paper will be signal reconstruction. The
focus will be on limiting the content of wireless transmissions as well as limit-
ing the processing required on the sensor. It is building upon already optimized
hardware from Disruptive Technologies (DT) in the form of a prototype vibration
sensor. Also, the project will be built upon the work done by myself in my project
thesis [14]. Some interesting techniques discussed in that paper will be considered
with regards to the results in this paper.

Multiple methods of reconstruction will be implemented, tested, and com-
pared; the original method implemented on the DT sensors, auto-encoders, a de-
coder network and compressed sensing. The results from the reconstructions will
be evaluated and a discussion of how the loss will impact maintenance prediction
algorithms will be given. There are two maintenance algorithms of interest. (1) A
method by ‘Wavelet filter-based weak signature detection method and its applica-
tion on rolling element bearing prognostics’ that tries to enhance weak signatuers
of a failure in a signal. The accuracy of the recreated spectral envelope is essen-
tial for such an approach to work. (2) Predicting the n next Root-Mean-Square
(RMS) values using Gaussian Process Regression (GPR), a method presented by
Hong and Zhou [16]. Implementing and testing the said prediction algorithms is
not in the scope of this thesis.

In chapter 2 the thesis starts by presenting the theory needed to understand the
previous work and the methods tested and discussed. Some previous work on both

1

https://www.sciencedirect.com/science/article/pii/S0022460X0500221X
https://www.sciencedirect.com/science/article/pii/S0022460X0500221X

2 :

maintenance prediction algorithms and compression algorithms will be presented
in chapter 3 as well as some reasoning as to why the methods tested is chosen.
Then a description of the methods used is given in chapter 4 before the results are
presented in chapter 5. Some discussion takes place in chapter 6. Comments on
possible work to be executed going forward are mentioned in chapter 7, before a
conclusion is given in chapter 8.

Chapter 2

Theory

2.1 Transforms

2.1.1 Fourier Transform

Given a periodic signal, the signal can be decomposed into a sum of sines and
cosines with a limited set of frequencies ω. The technique for doing so is called a
Fourier Transform (FT), essentially mapping the signal form the time domain to
the frequency domain. Mathematically it is described as

f̂ (ω) = F(f (x)) =
∫ ∞

−∞
f (x)e−iωx d x (2.1a)

f (x) = F−1(f̂ (ω)) =

∫ ∞

−∞
f̂ (ω)e−iωx dω (2.1b)

where (2.1a) is the transformation from the time domain to the frequency domain,
and (2.1b) is the inverse transform [17].

The FT is a cornerstone to digital signal processing and compression. JPEG
use a slightly modified version of FT called Discrete Cosine Transform (DCT) to
decompose a picture and remove weights that are negligible before reconstructing
the image [18]. DCT is essentially Fourier series with only cosines.

2.1.2 Hilbert Transform

Although the Hilbert Transform (HT) and FT are closely related, they differ in the
assumptions of the signal. FT assumes the incoming signal as a super position of
sines and cosines. The HT, on the other hand, demodulates the signal only using
a single sine which is modulated. Feldman [19] states that vibration signals are
"exactly of that model", which is convenient for the topic of this paper.

The HT is a phase-shifted transform which has a linear relation to FT. For a

3

4 :

signal, u, it is given by

F(H(u)) = σHF(u) (2.2a)

σ =

i, x < 0

0, x = 0

−i, x > 0

(2.2b)

where F is the FT and H is the HT. Thus a way of calculating the HT is to (1)
Fourier Transform the signal, (2) shift the phase by 90◦ then (3) inverse FT [19].

2.1.3 Wavelet Transforms

Wavelet transform is a generalization of the Fourier Transform described in sub-
section 2.1.1, letting functions other than sines and cosines represent the input
signal. These functions are called wavelets, hence the name, and can be scaled
and translated to form a set of wavelets. As the wavelets are convolved with the
input, one can visualize the transforms as a filter, the wavelet, moved across the
input. This generates a set of corresponding weights. A chosen wavelet function is
called the mother wavelet [17]. One highly used and known wavelet is the morlet
wavelet, but others are frequently used as well. There is no scientific way to de-
termine if one wavelet is better than another; it is a matter of trial and error as it
also depends on the input signal [20]. An illustration of some common wavelets,
including morlet, is shown in Figure 2.1, and a visualization of the transformation
is shown in Figure 2.2.

Morlet

(a)

Mexican hat

(b)

Haar

(c)

Figure 2.1: Figure 2.1a show the morlet wavelet, probably the most known of
the three. In Figure 2.1b, a "Mexican hat" wavelet is shown, also called a Ricket
wavelet. At last, a wavelet named after one of the first persons to explore wavelets;
the Haar wavelet

As described by Brunton and Kutz [17], the wavelets are given by

ψa,b(t) =
1

p
aψ(t−b

a)
, (2.3)

where a and b scales and translates the wavelet. The transform is then described
as

Chapter 2: Theory 5

0 10 20 30 40 50
t

Morlet 1
Morlet 2
signal

Figure 2.2: The mother wavelet is scaled multiple times to form a set of wavelets
that are convolved with the input signal. Such operations can be thought of as
filters sweeping over the input as illustrated with the arrows, thus generating a
set of weights. These weights combined with the wavelets form a decomposed
representation of the data.

Wψ(f)(a, b) = 〈 f ,ψa,b〉=
∫ ∞

−∞
f (t)ψ̄a,bd t, (2.4)

where ψ̄a,b is the conjugate of ψa,b. It’s inverse is

f (t) =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞
Wψ(f)(a, b)ψa,b(t)

1
a2

dad b. (2.5)

2.1.4 Principal Component Analysis

Processing multidimensional data can be computationally expensive and the res-
ults hard to interpret. With many variables in a dataset, it might be hard to know
if some are highly correlated or the significance or their effect on a measured
response. A common method for analyzing such data, finding the correlated or
insignificant factors, is called Principal Component Analysis (PCA).

PCA assumes factors of high variance are more important to the output than
factors of low variance. Thus the method will generate a new basis for the data,
where the axes maximize the variance. The first Principal Component, PC1, max-
imizes the variance without constraints and the following n PCs have to be ortho-
gonal to the previous PCs. By adding one more Principal Component, more of the
variance in the original data is captured/explained [21].

This leads to multiple uses, where the main ones are; looking for some hidden
relationships by analyzing on the new basis, performing regression on the new
basis, and dimensional reduction [21]. If 5 PCs can explain 90% of the variance
in an n= 20-dimensional dataset, further processing or modeling might be more
effective due to the reduced set of dimensions.

6 :

Given a set of data X where the samples are the row vectors the data must be
normalized before executing Principal Component Analysis [17]. The normalized
data, B, is calculated by

B = X − X̄ , (2.6)

where X̄ is the mean of the set. With B, Brunton and Kutz [17] describe the PCA
process by first calculating the covariance matrix of the rows by

C =
1

n− 1
B⊛ B (2.7)

and so the first PC, u1, is given as

u1 = arg max
||u1||=1

u1⊛ B⊛ Bu1. (2.8)

2.2 Statistical Prediction

2.2.1 Weibull Distribution

According to Walpole et al. [4] the Weibull distribution has been popular among
engineers in the last decade to describe and predict the lifetime of components.
The distribution is defined as

f (x;α;β) =

¨

αβ xβ−1e−αxβ , x > 0

0, elsewhere
(2.9a)

F(x) = 1− e−αxβ , x > 0 (2.9b)

Z(t) =
f (t)

1− F(t)
(2.9c)

= αβ tβ−1, t > 0 (2.9d)

where (2.9a) is the density function, (2.9b) is the cumulative distribution func-
tion and (2.9d) is the failure rate, also called the hazard function. β is the shape
parameter and α is the scale parameter.

The Probability Density Function (PDF) is plotted in Figure 2.3a with different
β values. One reason for the popularity of the Weibull distribution is its flexibil-
ity; as can be seen from Figure 2.3b when α is constant and β = 1 it becomes
memoryless, meaning the probability of something happening at time t1 given it
survived to t0 is the same as the probability for surviving to t1. This is not the case
when β ̸= 1. From the plot in 2.3b it is clear that β < 1 makes an event less prob-
able over time, while β > 1 makes an event more probable over time. Because of
this flexibility, the distribution parameters can be estimated to fit a wider range of
systems using, for example, the Maximum Likelihood Estimation (MLE) or Least
Square (LS) method [22].

Chapter 2: Theory 7

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

0.0

0.5

1.0

1.5

2.0

2.5

f(t
)

Weibull PDF
α: 1 | β: 0.8
α: 1 | β: 1
α: 1 | β: 2
α: 1 | β: 4

(a) PDF for the Weibull distribution, using different values for β . As the x-axis is time
the PDF describes the probability of an event after the time t. The event might be an
electrical component or a mechanical part where the distribution explains the probability
of a failure within a certain time.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

0

1

2

3

4

5

6

Z(
t)

Weibull failure rate
α: 1 | β: 0.8
α: 1 | β: 1
α: 1 | β: 2
α: 1 | β: 4

(b) The failure rate for the Weibull distribution, using different values for β . From this
plot, it should be clear that Weibull distribution can represent both memoryless systems,
and systems of wear or strengthening with respect to time.

Figure 2.3: Weibull distribution

2.2.2 ARMA & ARIMA Models

Auto Regressive Moving Average (ARMA) and its perturbations model a time-
series based on its previous steps. The assumptions for ARMA to work are (1) the
system generating the signal, say X , is stationary, and (2) there is a linear relation-
ship between some previous step(s) and the next. Before looking at mathematics,
let us review the name. Auto Regressive (AR) tells us that the model assumes a
relationship with p previous steps with auto meaning self and regression is the
technique of fitting a line to some points. Mathematically, it can be formulated as

x̂ t+1 = x t +αp x t−p, (2.10)

where x̂ t+1 is the next predicted value, αp are the regression coefficients, and x t−p
are the steps previously observed [9].

Moving Average (MA) is an averaging of the errors that move along the time-
series data. MA uses the q previous steps to compute the average at any point in

8 :

time, thus

ε̂=
1
q

t
∑

i=−q

(x i − x̂ i). (2.11)

Knowing this, it should make sense to call this method ARMA(p, q). Combining
Equation 2.10 and Equation 2.11 gives

x t+1 = x t +αp x t−p + βqε̂t−q + ε, (2.12)

where x t+1 is the accurate prediction of the next step, since ε is the error. ε,
however, is unknown, thus it is removed to give the estimate of the next value.
The final formulation is

x̂ t+1 = x t +αp x t−p + βqε̂t−q. (2.13)

[9]
Auto Regressive Integrating Moving Average (ARIMA) is only different from

ARMA in that it only requires a system with stationary variance. The changing
mean is first compensated for by the integration part, moving the time-series X
to a time-series Z . The ARMA model is now predicting the new time-series Z
which is stationary. ARIMA models are also noted as ARIMA(p, d, q), where d
is the number of integrations. Mathematically, the new time-series for d = 1 is
described as

zt = x t+1 − x t , (2.14)

and for d = 2 the procedure is done once more, thus

wt = zt+1 − zt . (2.15)

The pattern continues for d = n where n ∈ 0, N . An illustration of a time-series
before and after the procedure described in Equation 2.15 is shown in Figure 2.4
[23].

2.3 Machine Learning and Deep Neural Networks

Since its first successful deployment by Samuel [24] in the 1950-s, Machine Learn-
ing (ML) has been subject to extensive research. The early models used manmade
algorithms for prediction and classification, which led to huge advancements in
automation in industries as well as in everyday lives. Modern ML uses optim-
ized hardware to process models with incredible complexity. Where traditional
methods were explainable, modern models prove extremely hard to comprehend
by humans. These models now control an ever-increasing portfolio of problems
spanning everything from facial identification for security purposes to the regu-
lation and control of big oil platforms. A rundown of different machine learning
principles, new and traditional, and techniques are given below.

Chapter 2: Theory 9

0 5 10 15 20
t

0

5

10

15

20

25

x(
t)

Signal with changing mean
signal
mean
variance

(a)

0 5 10 15 20
t

−10

−5

0

5

10

z(
t)

Signal after I | d=1
signal
mean
variance

(b)

Figure 2.4: Figure 2.4a show a signal with added gaussian noise. The mean is
increasing with time, t, thus it is not a stationary signal. After the first step of
ARIMA, the signal is moved to have constant mean as shown in Figure 2.4b The
signal is now stationary.

2.3.1 K-nearest Neighbors

A simple and effective method for supervised classification of data samples is
called k-nearest neighbors (kNN) [17]. Given a set of labeled samples with n
classes, which preferably show some clustering on a given basis, kNN will use
the k number of closest labeled data points to vote on a predicted class. The basis
used to represent the data can be the raw measurements of the samples, the Prin-
cipal Components from a PCA, or some other representation that is meaningful.
Popular frameworks for ML and data science in multiple languages have imple-
mented effective algorithms for this technique making it easy to utilize. 1 2 An
illustration of kNN is given in Figure 2.5.

2.3.2 Random Forests

Before taking a look at random forests, an explanation of its building blocks, de-
cision trees, shall be given. A set of data points from n measured variables, say xn,
are used to build a decision tree. Visually the tree consists of nodes, some nodes
have a criterion that splits the data and forwards the splits to other nodes. Leaf
nodes are endpoints of the data where a cluster of points is gathered as a class. On
top of the tree is the first node which will use the variable x1 to find a threshold
that best splits the data. The two sets are forwarded to the next nodes where one
might be a leaf node representing a predicted class, and the other node might be
a new criterion splitting its share of the first split. The splitting will go on like this
until the data are classified; thus, the domain space is sectioned to fit the classes.

1https://scikit-learn.org/stable/modules/neighbors.html
2https://www.geeksforgeeks.org/k-nn-classifier-in-r-programming/

https://scikit-learn.org/stable/modules/neighbors.html
https://www.geeksforgeeks.org/k-nn-classifier-in-r-programming/

10 :

−2 0 2 4 6 8
−2

0

2

4

6

8
kNN

class 1
class 2
k=3
k=5
new data

Figure 2.5: This example shows how the k-nearest neighbors algorithm classifies
new datapoints given the k number of nearest neighbors. It also displays how the
number k affect the classification.

A tree might look like what is shown in Figure 2.6. Such a tree is highly sensitive
to the starting variable and the order in which it propagates through decisions.

Multiple splits can be chosen for a given node, but some measure of what is
most effective is necessary. There are multiple ways of computing this measure,
and one of them is to compute the entropy of each choice similarly to what is
described in subsection 2.3.7.

To combat the sensitivity a random forest is used. It is called a forest because it
uses multiple trees to produce multiple predictions, then a final prediction is given
from the highest vote. The randomness comes from bootstrapping the data set, that
is producing new datasets from a random subset of the original. The data in these
subsets are also of random order, meaning a new decision tree will start with a
different variable and propagate through a new order of variables than the last.
Random forests are thus a regularization method expanded from decision trees,
making it less biased to a dataset and capturing more variance. Random forests
are implemented in coding languages often used by data scientists, making the
method easy to explore. 3 4 [25]

3https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html

4https://www.rdocumentation.org/packages/randomForest/versions/4.6-14/topics/
randomForest

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://www.rdocumentation.org/packages/randomForest/versions/4.6-14/topics/randomForest
https://www.rdocumentation.org/packages/randomForest/versions/4.6-14/topics/randomForest

Chapter 2: Theory 11

Figure 2.6: A visualization of a simple decision tree

Source: https://www.geeksforgeeks.org/python-decision-tree-regression-using-
sklearn/

2.3.3 Support Vector Machines

Support Vector Machine (SVM) is another way of classifying high-dimensional
data. Based on some kernel function this algorithm will make hyperplanes that
effectively split the data so that a hyperplane has the longest distance to the
clusters it is separating. Hyperplanes that tangent the clusters are called the mar-
gins. The kernels deciding how a hyperplane is placed can vary in accordance
with the problem-domain. A linear kernel will only be able to classify problems
that are linearly separable while a non-linear kernel can split more complex prob-
lems. Many non-linear problems use the kernel trick to capture the discriminant
features of the data [9].

For a lot of classification problems, the classes overlap, meaning a hard margin
will not yield a solution. Therefore soft margin SVMs exist, where some points are
allowed to cross the margins. Such a solution address the bias-variance tradeoff
in SVMs [9]. A simple illustration of linear classification using both hard margin
and soft margin SVMs is shown in Figure 2.7.

One of the popular kernels is the Radial Basis Function (RBF) given by

K(x , x ′) = exp(−γ||x − x ′||), (2.16)

which enables non-linear classification [25].

12 :

0 1 2 3 4 5 6

−2

0

2

4

6

8

SVM | Hard margin

(a)

0 1 2 3 4 5 6

−2

0

2

4

6

8

SVM | Soft margin

(b)

Figure 2.7: Two illustrations of Support Vector Machines, one with hard margin
2.7a and one with soft margin 2.7b. SVMs try to fit hyperplanes so that they split
clusters of data by maximizing the distance to the margins (yellow lines). Many
problems are not linearly separable, thus a soft margin is implemented such that
some overlapping data points are allowed.

2.3.4 Linear Regression

Regression is a different form of machine learning. Instead of classifying data
points, regression is trying to fit a function to the set of points by minimizing
their distance to the function. There are multiple choices of distances that can be
minimized, but the most known might be Least Square (LS) [9].

With linear regression (LR) one assumes the data points hold a linearity, thus a
line can be fitted to the points. When the data has one variable x and one response
y it is called a simple linear regression. When the data has more than one variable
it is called multiple linear regression. An illustration of linear regression with LS is
presented in Figure 2.8.

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Linear regression with Least Squares

Figure 2.8: A simple illustration of linear regression (black line) on some data
points (red dots) using Least Square (green lines). The total distance from the
data points to the line is minimized to make an optimal, linear, model. The tech-
nique can be expanded to functions of higher order as well as systems of multiple
dimensions.

Chapter 2: Theory 13

2.3.5 Gaussian Process Regression

Gaussian Process Regression (GPR), or Kriging, is the technique of calculating a
distribution over functions, rather than the function parameters.

First, given a set of stochastic variables xn for n ∈ {1, N}. For those to be
a Gaussian Process (GP) it is assumed that the probability p(f (x1), ..., f (xn)) is
jointly normally distributed with a mean, µ, and a variance given by the kernel,
or covariance, Σ(x) = K(x i , x j).

Then, for GPR to work the idea is that for two similar x a correspondingly
similar output y will be observed. A confidence interval can be computed on the
regression and from the idea of similarity it should be clear that the interval is
smaller where similar samples are observed [9].

K(x i , x j) denotes the kernel function used to compute the similarity of the
inputs, thus it represents all possible parameter combinations of the kernel given
the inputs it has seen. How suitable the kernel is to the data is the only variable
affecting a GPR’s performance. A popular kernel used in Gaussian Process Regres-
sion is the previously described Radial Basis Function (2.3.3). Given µ = 0 and
kernel K , the general formulation of the predictive density is

p(f∗|X∗, X , y) =N (f∗|µ∗,Σ∗) (2.17a)

µ∗ = K T
∗ K−1 y (2.17b)

Σ∗ = K ∗∗ − K T
∗ K−1K ∗. (2.17c)

where the distribution is calculated over the function f∗, given possible inputs X∗
and the previously observed inputs X with corresponding responses y . A powerful
trait of Kriging is that it gives a confidence interval describing the certainty of the
model in unobserved areas. An example showing the distribution over functions
before and after the model has seen data are displayed in Figure 2.9.

There are implementations of Gaussian Process Regression in multiple frame-
works for multiple languages, but one power full tool worth mentioning is the
GPyTorch for Python which utilizes modern parallelized hardware for accelerated
processing. 5

2.3.6 Training Neural Networks

Before talking about different modern ML architectures one should first under-
stand what ML solutions are on a meta-level. ML is not a magic box that learns
like a human, it is more useful to think of it as an optimization problem. The goal
of every Neural Network (NN) is to regress or classify some form of information
subject to its statistical distributions. A good analogy for this is fitting a line to
some measured samples. To do this accurately a need for optimization quickly oc-
curs, the goal is to optimize the fitted line subject to some measure of error. A
simple illustration can be seen in Figure 2.10.

5gpytorch.ai

gpytorch.ai

14 :

0 2 4 6 8 10
t

−3

−2

−1

0

1

2

3 Before observed data

Mean
± 1 std. dev.

(a)

0 2 4 6 8 10
t

−3

−2

−1

0

1

2

3 After observed data
Mean
± 1 std. dev.
Observations

(b)

Figure 2.9: A Gaussian Process Regression model before 2.9a and after 2.9b some
observed data. Before any observed data the confidence interval is huge as illus-
trated by the subset of plotted possible functions, thus the model is of little use.
After some points are observed a model is formed and the subset of possible func-
tions are "drawn" into the points. The black line is the fitted model and the blue
lines represents the uncertainty in the model at each point. Such a feature is
power full as it can, for any input, give both the predicted output as well as a
measure of certainty based on the statistical properties of the kernel.

Such problems have been addressed by traditional Machine Learning for a long
time, but the last decade has brought us Deep Learning (DL). New techniques and
architectures that inhabit large parameter counts allow us to capture more vari-
ance in complex tasks. Every NN consists of several layers of which each layer
has a number of nodes. A node represents some weighted mathematical opera-
tion connecting the inputs to the output. Think of each layer as a matrix for now.
When optimizing a NN, the weights in each node in each layer must be changed
incrementally to train the network. That is; enhancing the performance of the
network, by minimizing some objective function. The training starts by feeding
the network with some labeled information. Since the information is labeled a
comparison between the output of the network and the label can be made. The
result from the comparison triggers a change in the weights of the network. With
the results from the comparisons at the output, one works backward through the
network, computing the gradient. The gradient is a hyperplane that locally ap-
proximates a description of how changes in the weights affect the performance

Chapter 2: Theory 15

of the network. The method of calculating the gradient is called backpropaga-
tion, or "backprop". Each iteration in the optimization process takes a step on the
gradient, meaning it will find a direction of the steepest descent and move all the
weights in that direction. An illustration of a gradient and the steps taken during
optimization is shown in Figure 2.11.

Taking these steps can generate some problems, where the two main ones are
an exploding gradient and a vanishing gradient. When calculating the gradient from
the output side of a deep network the parameters on the input side can be subject
to their gradient zeroing out, i.e. vanishing. Therefore the network becomes hard
to train and the benefit of many parameters is not utilized. Different solutions are
implemented depending on the architecture.

Paying too much attention to certain parts of the information might generate
huge weights at certain nodes in the network. The gradient around these nodes
will get disproportionately steep and potentially encourage a big step in the optim-
ization. Big steps might lead to more big steps and the network becomes unstable
as described by Pascanu et al. [26]. This phenomenon is called exploding gradient.
Preventing this is usually done by clipping the gradient, thus only using the direc-
tional information in the step, not the step size. The popular Stochastic Gradient
Descent (SGD) optimizer also solves the problem in many instances [5].

16 :

Underfit model using | Linear Regression
Fitted Model
True function
Samples/Measurements

(a) Underfitted model. The model is too simplistic, not being able to
explain the variance of the given data.

Good fit model using | Linear Regression
Fitted Model
True function
Samples/Measurements

(b) A model with good fit, the least complex model that covers the vari-
ance of the given data.

Overfit model using | Linear Regression

Fitted Model
True function
Samples/Measurements

(c) Overfitted model. It covers variance which is too specific for the
given data, thus it is not going to perform well on new data. Regulariz-
ation methods is needed to generalize the model.

Figure 2.10: A simple illustration with samples (blue dots) from a system (or-
ange line) showing the principals of overfitting and underfitting a model (blue
line). In 2.10a) it is clear that the model does not capture the variance of the
measured samples, which is opposite to 2.10c) that captures to much variance.
Both situations is a problem since they cannot represent the true model and thus
it has low generalizability. Figure 2.10b is closest to the true function, it is the
least complex model that fits the data points at hand.

Chapter 2: Theory 17

Figure 2.11: This illustrates a simplified gradient computed during the optimiza-
tion of a neural network. Steps taken during optimization should follow the black
line as it is the direction of steepest descent.

Source: https://sciencesprings.wordpress.com/tag/stochastic-gradient-descent/

18 :

2.3.7 Cross-entropy Loss

To optimize a model there is a need for a function to minimize. This function is
called the loss function in the ML community, and it describes how well the model
performs.

Cross-entropy loss is a way to quantify the distance between two probabil-
ity distributions. In the case of supervised machine learning the labeled data are
one-hot encoded to describe the true class. Similarly, the output of the model is an
array with a score given to each class. These two arrays can be interpreted as two
probability distributions, thus the distance between them can be calculated. Math-
ematically, cross-entropy is closely related to Kullback-Leibler Divergence (KL Di-
vergence):

H(P,Q) = −EX∼P log(Q(x)), (2.18)

where P and Q are the two probability distributions, and E is the expected value
of some distribution [5].

2.3.8 Optimizer Algorithms

As described briefly in subsection 2.3.6, optimizing a Neural Network involves
computing a gradient; a hyperplane describing how a change in parameters affects
the objective. When optimizing on this plane the algorithm has to take one step
at a time to find a minimum. How big these steps are is called the learning rate.
For fast training of the model, it is beneficial to have a large learning rate, but this
could make for problems when closing in on a minimum. Looking at Figure 2.12b
it is clear that the model is missing the optimal point by "jumping over it", this
could be avoided by choosing a smaller learning rate at the cost of training time.
To get the best of both worlds the learning rate should be adaptive, decreasing the
size of the step as the optimizer gets closer to the minima. A demonstration of a too
short and too large learning rate, where adaptive learning rate would be a solution,
is shown in Figure 2.12. There are several methods that utilize this principle, for
example, Adagrad [27], Stochastic Gradient Descent [28], and Adaptive Moment
Estimation (ADAM) [29].

All the mentioned optimizers are gradient descent methods, but SGD is an
important and highly used technique. When datasets becomes big the normal
gradient descent method is computationally expensive as it computes the gradi-
ent across all the data in the dataset. To mitigate this cost of optimization, while
still achieving comparable accuracy, stochastic behavior was introduced by only
calculating the gradient in a uniformly chosen subset of the data, a mini-batch.
This does not ensure that the next step is the true optimal direction, but rather a
step close to it. As a result, the set of steps will be uneven, but heading towards
the minima [5].

A challenge with SGD and ADAM is that the uneven steps might jump back
and forth excessively. To compensate for this, both algorithms use previous steps to
"guide" the new steps; this is called momentum. One difference between SGD and

Chapter 2: Theory 19

(a) (b)

Figure 2.12: In Figure 2.12a the learning rate is small and converges to the min-
ima, but, with such small steps, it might take some time to get there. And so,
in Figure 2.12b, the step size is increased in the hopes of converging faster, but
what can happen is the model steps over the minima and might also diverge.
Both problems can be solved by adapting the step size to its current place in the
gradient.

Source: https://laptrinhx.com/understanding-optimization-algorithms-3\
818430905/

ADAM is the implementation of momentum. Where SGD uses the actual gradient
to compute the momentum, ADAM uses a Moving Average (MA) of the gradient
[29]

2.3.9 Activation Functions

Between layers in a NN it is normal to use activation functions. Activation functions
can be any function whose purpose is to map an input to an output. It is preferably
a function whose derivative is continuous, which makes optimization with the
gradient easier. Non-linear activation functions make a linear system of layers non-
linear. Without a non-linear activation function, a NN would simply be a linear
combination of factors, not being able to capture the more complex dependencies
in a system. Rectified Linear Unit (ReLU) is an activation function given by

y(x) =

¨

0 , x < 0,

x , x > 0
(2.19)

for x ∈ {−∞,∞}. It is probably the most used activation function between the
hidden layers in modern DL. One reason might be that the derivative of ReLU is
1 for all x > 0, which mitigates the problem of vanishing gradients; multiplying
with one does not contribute to a change in the parameters. A second reason might
be its low computational complexity, as opposed to, for example, sigmoid, which
is also a common activation function.

https://laptrinhx.com/understanding-optimization-algorithms-3\818430905/
https://laptrinhx.com/understanding-optimization-algorithms-3\818430905/

20 :

A sigmoid is given by

y(x) =
1

1+ e−x
. (2.20)

The sigmoid function will map any input x ∈ {−∞,∞} to an output y ∈ {0, 1}.
It is used as the last layer activation function in binary classification to ensure an
output contained within the boundaries 0 and 1. For classification with more than
two classes, the most common function is Softmax. Softmax looks and behaves
similar to a sigmoid activation, but it also ensures that the sum of the scores across
all classes equals to one. It is given by

y(x)i =
ex

i
∑K

j=1 ex j
(2.21)

−4 −2 0 2 4
0

1

2

3

4

5
ReLU activation

(a)

−10 −5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0
Sigmoid activation

(b)

Figure 2.13: The ReLU activation is shown in Figure 2.13a. ReLU will zero out
any x ∈ {−∞, 0〉 and pass through all values x ∈ [0,∞}. The sigmoid function,
shown in Figure 2.13b, will take any x ∈ {−∞,∞} and map it to a value y ∈
{0, 1}.

2.3.10 Fully Connected Neural Networks

The most basic neural network is called a Fully Connected Neural Network (FCNN).
FCNNs are built by stacking multiple layers of nodes, connecting all nodes between
each layer. FCNNs are usually made with one or more layers between the input
and the output. These layers are called hidden layers, and the total number of lay-
ers is referred to as the depth of the network. An input of size n is fed through the
layers of the network. The output of the network corresponds to the k number of
classes, so FCNN maps an input to a class [5, 30].

Mathematically, it is convenient to look at a shallow network with only one
hidden layer. The first layer in the network is the input layer, thus it equates to
x. As explained by Goodfellow et al. [5], a set of weights is then multiplied by x

Chapter 2: Theory 21

to map the input to the hidden layer. These first weights can be denoted as the
ω0 matrix. Adding some bias, b, and assigning h to the output yields the linear
system

f (x) = h=ω⊺0x+ b. (2.22)

This maps the input to the hidden layer, and the same procedure is done to map
the hidden layer to the output classes:

f (x) = y=ω⊺1h+ b=ω⊺1(ω
⊺
0x+ b) + b (2.23)

Continuing this pattern results in a chained system of functions where

f (x) = f N (f N−1(f ...(f 0(x)))). (2.24)

This forwarding of the data is the reason why this architecture is sometimes called
feed forward networks. An FCNNs depth and width determines its complexity thus
the variance it can capture when trained. FCNNs can be given any input vector,
but usually one would feed the network features from the system being modeled
[5].

2.3.11 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a different form of network archi-
tecture where the input matrix is convolved with one or multiple kernels of a
predetermined size, k. The depth of this network is determined by how many lay-
ers of convolution is being done, in addition to this CNNs often use pooling layers
between convolutions. The pooling layers use methods such as maximum value
or average value to extract features and downsize the information, thus reducing
the computational need for the next layer. This technique can also be used dynam-
ically to ensure that different input sizes result in the same number of features,
which is important when the features are put into an FCNN for classification.
FCNNs use pure matrix multiplication, as described in subsection 2.3.10, which is
dependent on matching matrix sizes. CNNs works in multiple dimensions, but an
illustration of an architecture for time-series can be seen in Figure 2.14 [30].

CNNs are often used to extract features, especially in the field of computer vis-
ion. A trained network is extremely effective in finding the most basic structures
in an input, resulting in a set of feature maps corresponding to these structures.
These feature maps are the result of optimizing the kernels during training; fea-
ture maps are normally flattened and fed through a FCNN for classification.

As exemplified by Goodfellow et al. [5], convolution for discrete problems is
mathematically noted as

f (x) = (x ∗ω)(t) =
∑

n

x(a)ω(t − a), (2.25)

where x is an input and ω is the kernel. Visually, one can think of the kernel ω as
a filter that slides over the input. The numbers held by the kernel determine the

22 :

Figure 2.14: An illustration of a single channel CNN. For the context of time-
series, one would call it one dimentional, then time will be the second dimension.
As illustrated above the the convolutions will generate multiple feature maps
according to the architecture perameters, before they are all flattened and fed
through the fully connected part of the ntework.

Source: [31]

feature it extracts. Kernels can be edge extractors by emphasizing different lines,
they can be derivatives emphasizing areas of rapid change, or even shapes that
resemble specific or profound features. These filters are interesting to visualize in
the shallow layers, since the feature they extract is visible and interpretable. As
we convolve into the network, the features become more and more abstract. An
example of the convolution procedure is visualized in Equation 2.26, where the
colors show how the kernel "slides" over the input matrix producing the elements
in the resulting matrix.

0 | 0 0 0 0 0 | 0
0 | 1⃝ 0 2 3 1 | 0
0 | 3 2 0 7 0 | 0
0 | 0 6 1 1 4 | 0
0 | 0 0 0 0 0 | 0

⊛

−1 0 1
−2 0 2
−1 0 1

2⃝ ? ? ? ?
? ? ? ? ?
? ? ? ? ?

(2.26a)

0 | 0 0 0 0 0 | 0
0 | 1 0 2 3 1 | 0
0 | 3 2 0⃝ 7 0 | 0
0 | 0 6 1 1 4 | 0
0 | 0 0 0 0 0 | 0

⊛

−1 0 1
−2 0 2
−1 0 1

2 −1 11 −2 −13
10 −4 8⃝ ? ?
? ? ? ? ?

(2.26b)

A key feature of CNNs with pooling layers is the loss of spatial information,
which enables the detection of known distributions without them appearing in
the same part of the input [30]. For example, a network classifying cats and dogs
would achieve the same accuracy no matter where the animal is placed in the
picture; for time-series the network would observe the same pattern no matter
when it happens.

Chapter 2: Theory 23

The biggest breakthrough of Convolutional Neural Networks is their relatively
low computational complexity. They are easy to train, tune and test which makes
them practical and powerful to deploy in real-world applications. Convolution and
pooling are, by design, the main reason for this computational efficiency [5].

2.3.12 Residual Neural Networks

Residual Neural Networks (ResNets) is based upon the normal Fully Connected
Neural Network and/or Convolutional Neural Network. In a paper by He et al.
[32] a residual block is defined as one or more weight operations with a ReLU
activation layer between them. They add a shortcut connection from the input to
the output of the block, thus forwarding the information to the input of the next
block. An illustration of the residual block can be seen in Figure 2.15

Figure 2.15: An illustration of a single residual block used in Residual Neural
Networks.

Source: https://neurohive.io/en/popular-networks/resnet/

Mathematically, the operation can be described as

output = F(x) + x (2.27)

where F(x) is the weight operations in one node as illustrated in Figure 2.15. This
expands to

output = F(x , Ws) +Wi ∗ x (2.28)

where W project the output and the input to equal dimensions. W is necessary
when residual blocks convolve the input, as convolution downsizes the data.

Although the shortcut connection does not add computational complexity to
the network it inhabits two major advantages compared to the previously men-
tioned FCNN and CNN [32]. It enables simple optimization of extremely deep
neural networks while achieving a significantly lower training error than its coun-
terparts. Deeper networks have more parameters allowing them to capture more
variance, therefore this is a powerful feature [31].

https://neurohive.io/en/popular-networks/resnet/

24 :

2.3.13 Recurrent Neural Networks

There is another group of networks that tackle sequential problems; they are
called Recurrent Neural Networks (RNNs). In general, a hidden state is imple-
mented in the model. When a sequence of inputs is given, a state will receive the
previous state and one point in the sequence as input. The information is pro-
cessed, and the state is updated and fed into the next state. In its most basic form,
RNN is formulated as

ht = f (ht−1, x t), (2.29)

where h is the hidden state [5]. This concept is expanded to solve problems in dif-
ferent domains, where some might have a sequence of inputs and a single output
and others might have a sequence of inputs with a sequence of outputs.

RNNs suffers from the exploding and vanishing gradients explained in subsec-
tion 2.3.6. Exploding gradients is solved by scaling down the update values[5],
but vanishing gradients are solved by controlling the error/gradient flow [33].
Solutions are implemented in Long-Short Term Memory (LSTM) and Gated Re-
current Unite (GRU) networks [5]. They both add an internal state, c, alongside
the hidden units, h, and implement slightly different versions of gated units. At
every point in the sequence, these gated units choose which information to include
or forget in the internal state, as well as its impact. Gated units can be described
as

i
f
o
g

=

σ

σ

σ

tanh

W

�

ht−1
x t

�

, (2.30)

where W is the weights as a function of the previous hidden units ht−1 and the
current input x t . i, g , f , and o is the gates respectively deciding if a cell should
be written to, how much to write, if a cell should be deleted, and how much of
a cell should contribute to the output [33, 34]. The middle parenthesis describes
the activation function for each gate.

The internal state is updated by

ct = f · ct−1 + i · g, (2.31)

before ct are used to compute the hidden units which are propagated forward in
the network. ht is given by

ht = o · tanh(ct). (2.32)

Equation 2.31, the internal state, is what solves the majority of the vanishing
gradient problem. When computing the gradient, the output of the weights in each
unit is contained in the internal state, which avoids the problem of multiplying the
same small numbers over and over. An illustration of a gated LSTM, implementing
Equation 2.30, 2.31, and 2.32, are shown in Figure 2.16.

Chapter 2: Theory 25

Figure 2.16: The previously hidden unit ht−1 and the current point in a sequence
X are inputs to the RNN unit where the internal state is also accessible. The in-
ternal state and the hidden units are computed according to Equation 2.30, 2.31
and 2.32. The gradient will be computed on the internal state ct from which W
is updated.

Source: [34]

2.3.14 Autoencoder Networks

A method for dimensional reduction that can be exploited for the purpose of com-
pression is called an autoencoder. Autoencoders are described by Goodfellow et al.
[5] as a special case of FCNN, where the purpose of the model, h, is to recreate
the input:

h(x)≈ x (2.33)

A generic illustration of an autoencoder is shown in Figure 2.17, displaying the
three parts of the network; the encoder, the code, and the decoder. The encoder
inputs the full-size data before extracting some form of meaningful representa-
tion which is the code. The code is also called, by some researchers, the latent
representation of the data. This code is fed into the decoder which will process it
back to a lossy copy of the input.

An autoencoder could be a network of equally sized hidden layers, but re-
ducing the hidden layer sizes as the data are propagated through the network
will restrict its capacity and might make the network discover some prominent
features in the data. Such "bottlenecked" networks are called undercomplete, and
linear activations between the layers yield results closely linked to the Principal
Components of the data [5].

Instead of analyzing the reduced space, one can separate the encoder and de-
coder using the code as a compressed version of the data [35].

26 :

Figure 2.17: An illustration of a general autoencoder architecture. The truncating
side is called the encoder, it takes the full input size and processes it into a smaller
set of values. This set of values is called the code and hopefully contains some
prominent features from the input. The expanding side is called the decoder. It
tries to recreate the input data from the code if trained to do so.

Source: https://blog.paperspace.com/content/images/2020/01/1_
oUbsOnYKX5DEpMOK3pH_lg.png

2.4 Convex Optimization and Compressed Sensing

Compression of data has traditionally been done by transforming the data onto a
new basis, usually some form of frequency space, where the original signal can be
represented as a sparse vector of coefficients. The sparsity comes from the removal
of coefficients of low significance [17]. The amount of information removed in
this process is so big that most of the information we capture is excessive when it
comes to reconstructing the data [36]. This knowledge leads to the thought that
one might only capture the data of interest in the first place, eliminating the need
for compression. Only the captured data should then be used in the reconstruction
of the measured variable. Compressed sensing is an attempt at doing exactly such
a maneuver.

Other names for compressed sensing often used in the literature are compress-
ive sensing [37], compressive sampling [38], and sparse sampling [39]. Faster
Magnetic Resonance Imaging (MRI) scans are one of the most known uses of com-
pressed sensing [40], but other uses include high-resolution radar imaging [41]
and image up-scaling (super-resolution) [42]. First a look at convex optimization
which is the workhorse of compressed sensing.

https://blog.paperspace.com/content/images/2020/01/1_oUbsOnYKX5DEpMOK3pH_lg.png
https://blog.paperspace.com/content/images/2020/01/1_oUbsOnYKX5DEpMOK3pH_lg.png

Chapter 2: Theory 27

2.4.1 Norms

A useful measure to talk of within linear algebra is the length of a vector and the
size of a matrix. Different measures for quantifying the length and size exist and
the most known are norms.

The lp-norm is defined as

||x ||p = (x
p
0 + x p

1 + · · ·+ x p
n)

1
p (2.34)

for any x ∈ Rn [43]. Let p = 2 and Equation 2.34 yields the widely known Euc-
lidian norm, or l2-norm:

||x ||2 = (x2
0 + x2

1 + · · ·+ x2
n)

1
2 =

√

√

√

n
∑

k=0

(x2
k) (2.35)

The definition allows for the l1-norm which is the sum of absolute values:

||x ||1 = (|x0|+ |x1|+ · · ·+ |xn|) =
n
∑

k=0

|xk|, (2.36)

and the max-norm, l∞-norm, given by

||x ||∞ = max{x0, x1, . . . , xn} (2.37)

In terms of ML and optimization; norms are often used to regularize the solu-
tion, meaning a penalty is given if too many parameters are activated. Different
norms yields different results, for example; the l2-norm penalizes less the closer
a parameter gets to zero. It is unlikely that any parameter will be pushed to zero,
which again leads to lots of small parameters. l1 on the other hand penalizes
equally even though a parameter is close to zero, so it yields solutions with few
active parameters and many zeroed out parameters. A simple example of a penalty
is when given a vector where x0 = 2 and x1 = 2 the norm will be

||x ||1 = (|2|+ |2|) = 4, (2.38)

and
||x ||2 = (22 + 22)

1
2 ≈ 2, 828 (2.39)

meaning an algorithm generating a solution x0 = 2, x1 = 2 will get penalized
harder if the l1-norm is used rather than l2-norm.

Visually one can look at the illustrations in Figure 2.18, where the red lines
represent the norms. When a norm intersects a solution in the feasible set a black
point is made, the figure illustrates two different points of intersection. The l2-
norm in Figure 2.18b intersects between the two axes meaning both axes are
used when providing a solution, but the l1-norm in Figure 2.18a intersects on an
axis leaving the other axis zeroed out. For this reason, optimizing with the l1-
norm often results in sparse solutions, which is useful in many fields of science
and engineering [17]. This is also the key to why l1-norm is used for compressed
sensing as will be further explained in subsection 2.4.2 and subsection 2.4.3.

28 :

(a) (b)

Figure 2.18: In Figure 2.18a an illustration are shown of where the L1-norm
might intersect a feasible solution. The black dot shows that the intersection is
found on an axis, resulting in a solution where one axis is zeroed out and the other
is active. Figure 2.18b shows the L2-norm intersecting feasible solution between
the two axes, resulting in a solution where both axes are active.

Source: https://freakonometrics.hypotheses.org/57790

https://freakonometrics.hypotheses.org/57790

Chapter 2: Theory 29

2.4.2 Convex Optimization

Although NNs are an example of convex-like optimization and a high-level ex-
planation of how they are trained has been given in subsection 2.3.6, a more
mathematically intense overview of convex optimization will be given here. From
Nocedal and Wright [2] a definition of a convex function, f , is when its domain S
is a convex set and any two points in S satisfy the property given in Equation 2.40
[2].

f (αx + (1−α))≤ α f (x) + (1−α) f (y), ∀ α ∈ [0,1] (2.40)

In its standard form, convex problems are written as

minimize f0(x) (2.41)

subject to fi(x)≤ 0, for i = 1, . . . , m (2.42)

aT
i x = b, for i = 1, . . . , p (2.43)

where the objective function, f0, is convex, the inequality functions, fi , are convex
and the equality constraints, aT

i x − b = 0, must be affine. There are multiple ways
to numerically calculate a solution for convex problems, while some that are often
used for ML are mentioned in subsection 2.3.8. A couple more will now be touched
upon.

A rigorous rundown of different optimization techniques is outside the scope
of this thesis, but some details should be mentioned. Starting with the well known
Newtons method; given a twice differentiable function to minimize, f , the Newton
step is given by [43]

∆xnt = −∆2 f (x)−1∆ f (x) (2.44)

Equation 2.44 says that x+∆xnt is the step needed to minimize f . If f is quadratic
the step is an exact minimizer, if f is close to quadratic; an approximation, f̂ , is
made. For the approximation a second-order Taylor series is used:

f̂ = f (x) +∆ f (x)T v
1
2

vT∆2 f (x)v, (2.45)

where v = ∆xnt . A step that minimizes the Taylor approximation should also
minimize the objective function.

Embedded Conic Solver (ECOS)6 is one solver based on Newtons method and
was presented by Domahidi et al. [44]. It uses a barrier method, an interior point
method; a rewrite of the standard form problem shown in (2.43) to shift the un-
constrained minima into the feasible set. The problem (2.43) can then generally
be written in the form

minimize f0(x)−µ
m
∑

i=1

fi(x) (2.46)

subject to c(x) = 0 (2.47)

6ECOS is available in Python through the package CVXPY

https://www.cvxpy.org/

30 :

4 5 6 7 8 9 10
x

0

25

50

75

100

125

150

175

200
f(x

)
Illustration of barrier method

f(x)
μ: 2
μ: 1μ
μ: 35
μ: 6μ
Constraint: x>6

Figure 2.19: In this plot, the function f (x) = (x − 5)2 is minimized subject to
the constraint x > 6. With a barrier method the problem becomes to minimize
f (x) = (x − 5)2 − µln(x − 6). One can see that the new problem moves the
unconstrained minima into the feasible set and that decreasing µ brings the ap-
proximated optimum point closer to the actual solution.

where µ is the variable controlling how shifted the function is; the homotopy
variable. During optimization µ is iteratively pushed to 0; consequently moving
the unconstrained minima towards the constrained minima [45]. Figure 2.19 il-
lustrates a greatly simplified barrier optimization. The reformulated problem can
then be solved using Newtons method, per iteration of µ whilst checking for con-
vergence for each solution.

Equation 2.44 makes it clear that it is necessary to store the Hessian matrix,
H =∆2 f , and calculate its inverse [43]. For bigger problems, this results in costly
computations requiring expensive hardware, a lot of time, or both. Further read-
ings on ECOS are found in [46] and [44]. Bypassing this problem of calculating
and storing the Hessian is done with quasi-newton methods [43]. One popular al-
gorithm is Broyden–Fletcher–Goldfarb–Shanno (BFGS)7 which avoids computing
the Hessian inverse by replacing it with an approximated matrix, M , given by

Mk+1 = Mk −
MksksT

k Mk

sT
k Mksk

+
yk y T

k

y T
k sk

(2.48)

The important point to make from Equation 2.48 is that to calculate the approx-
imated matrix Mk+1 the previous approximation is needed; thus it must still be
stored.

An even less memory-intensive version was proposed and is called Limited
Memory BFGS (L-BFGS)8. L-BFGS does not store the approximated M between

7BFGS is available in Python through the package SciPy
8L-BFGS is available in Python through the package PyTorch

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html
https://pytorch.org/docs/stable/generated/torch.optim.LBFGS.html

Chapter 2: Theory 31

each step; it uses the identity matrix, I , as a replacement for the previous ap-
proximation [5]. Also, Andrew and Gao [47] clarify that L-BFGS does not really
estimate the M , but merely the search direction −H kJ(Θ). This results in a much
faster numerical optimization algorithm suited for large-scale problems.

There is one major problem with BFGSs and L-BFGS that prevents them from
being used in compressed sensing. To successfully generate a sparse solution to
a linear problem, one will have to use the l1-norm (2.36) of which derivative is
not defined at x = 0 [47]. Andrew and Gao [47] provide a solution with their
algorithm Orthant-Wise Limited-memory Quasi-Newton (OWL-QN). By realizing
that the l1-norm is differentiable and linear in any orthant, they made minor
changes to the L-BFGS algorithm, limiting the search area to one orthant at a time.
Through the optimization iterations, the active orthant is re-selected, thereby its
name, and so the algorithm converges to a minimum. OWL-QN minimizes object-
ive functions on the form

f (x) = l(x) + C |x |1 for any C > 0, (2.49)

where l(x) is an arbitrary convex and differentiable function and C is a constant.
It is difficult to illustrate the algorithm due to the nature of orthants, but further
information on algorithmic details can be found in the original paper by Andrew
and Gao [47].

Finally, some comments on the difference between optimizing Neural Net-
works and optimizing convex problems should be given. The reason optimizing
NN is stated as "convex-like" at the start of this chapter is that although the prob-
lem is non-linear, it is not necessarily convex. As stated by Boyd et al. [43], convex
optimization plays an important role in non-linear optimization as "...there is value
in finding a good point, if not the very best." [43]. On the contrary, Goodfellow et
al. [5] states that there might not be any critical point at all. Furthermore, Good-
fellow et al. [5] point to a difference in the objective functions; when performing
convex optimization one usually wants to directly optimize some performance
measure P, whereas in Machine Learning some other objective function, J , is op-
timized of which one hopes will affect P. As the reader will understand in the next
section, the optimization techniques for Compressed Sensing tend more towards
that of ML as the objective function is the l1-norm, optimizing for some sparse
solution that can recreate a given signal.

2.4.3 Compressed Sensing

Given some data, x , of length n, the goal is to make p measurements where p≪ n
and still recover the signal. Assuming x to be compressible it can be represented
by a sparse vector s in a transform basis Ψ, thus

x = Ψs . (2.50)

Measuring x so that y ∈ Rp, gives

y = C x = CΨs , (2.51)

32 :

where y is the captured information and C is the measurement matrix. At this
point, the signal could be reconstructed if the sparse vector of coefficients s is
known, and therefore the core of compressed sensing is to find the sparsest vector
s that satisfy the measurements in Equation 2.51 [17].

For compressed sensing to work, two criteria must be met. The measurement
matrix C must be incoherent to the transformed basis, meaning the rows of C
should be close to normal to the columns of Ψ. This effectively tests (or excites)
more of the transformed space, widening the range of signals it can reproduce.
Randomly sampled matrices are often good measurement strategies to ensure in-
coherence [17]. Uniformly sampled measurement matrices do not work, as it leads
to multiple solutions with equal probability of being correct, a behavior correlat-
ing to the aliasing seen in undersampled signals [40]. Secondly, for a K-sparse
signal in the basis Ψ, the number of samples, p, needed to recreate the signal is

p ∼ k1K log(
n
K
), (2.52)

where n is the number of samples in the original signal and K is the sparsity of the
signal on the basis Ψ. k1 is a constant that describes the quality of the measure-
ment, which is a measure of the incoherence of C and Ψ. A better measurement
matrix C means that fewer samples are needed. When these two conditions are
satisfied, CΨ has The Restricted Isometry Property (RIP), thus CΨ acts like an iso-
metry on sparse vectors [17]. This property is important as the geometry between
the sparse samples taken from the data must be contained in the reconstructed
signal.

Finding this sparsest vector s is a matter of optimization. Assuming CΦ to hold
RIP, Equation 2.51 is solvable with convex l1 minimization. In standard form, the
minimization problem is formulated as

minimize ||s ||1 (2.53)

subject to y = CΨs (2.54)

where s is a vector of coefficients and y is the captured information [17].

Chapter 3

Previous Work

Although the subject of this thesis is signal reconstruction, the end goal is to use
compressed signals for predictive maintenance. Therefore a look at the work re-
garding predictive maintenance is given alongside the work on signal reconstruc-
tion.

In the field of predictive maintenance, there have been multiple attempts at
making accurate algorithms, and the techniques vary equally as much as the res-
ults. First off is Wang and Vachtsevanos [48] who try to establish a framework, or
a set of metrics, for testing future predictive maintenance algorithms. After read-
ing multiple papers on the subject it does not seem their metrics became industry
standard. In the same paper, they also compared two methods for maintenance
prediction; Wavelet Neural Network (WNN) and an AR model. WNN is an FCNN
with a wavelet decomposed signal as input. Great results were achieved with the
WNN model and other attempts of using wavelets in different ways have also been
proposed in [15, 49, 50].

Instead of using wavelets with a Neural Network, Qiu et al. [15] use wavelets
to both filter out noise from signals and enhance weak periodic signals. Enhancing
weak periodic signals enables earlier detection of faults, which their approach
is successful at. Deng et al. [49] use wavelets in the form of Empirical Wavelet
Transform (EWT) to extract AM-FM components of a signal. The method is used as
a first step in the prepossessing of the signal before predicting using SVM. Finally,
Rezamand et al. [50] propose a method where the first step is to feed raw data
through an ensemble of Neural Networks for regression, then the output is fed
through an online PCA called Recursive PCA (RPCA). Wavelets are then used to
estimate the Probability Density Functions (PDFs) of a signal state, thus predicting
faults as a likelihood threshold. The methods using wavelets all seem promising.

More traditional methods have also been proposed including feature extrac-
tion from a HT as proposed by Durbhaka and Selvaraj [51]. The features extracted
are classified using different techniques including SVM and kNN, where the latter
achieve 87% accuracy on fault detection. Baptista et al. [52] use features gen-
erated by an ARMA model alongside other statistical features, like kurtosis and
skewness, as input to a data-driven model. They also test different classification

33

34 :

models; NN, random forests, SVM, and LR. Their baseline is the Weibull distri-
bution which all methods beat except the NN. A method as interesting as it is
simple is explored by Hong and Zhou [16], who simply predict the future Root-
Mean-Square (RMS) values using GPR. The authors show good results only by
thresholding the RMS value, but it is evident that this approach is highly fitted
to their chosen data set, thus a dynamic way of selecting a threshold should be
explored.

Looking at modern methods two papers should be mentioned. Firstly, Amihai
et al. [53] are using RNN for computing time-series data in a bidirectional manner.
Feeding data forward through one RNN model, then back through another cap-
tures more information than traditional RNNs, they claim. Their technique uses
entity embedding and categorical metadata in parallel and they claim good res-
ults, although hard to verify. An industrial case study was also done by Amihai et
al. [54] claiming good results, but proprietary algorithms make it hard to verify.
For a more black-box approach, Ismail Fawaz et al. [31] present multiple known
ML methods modified to classify time-series data. It is maybe the most interest-
ing paper as it tests and compares modern architectures like CNN, ResNet, and
MPN. All the architectures and corresponding theories are thoroughly explained
and illustrated as well as the experiment results. The code used for all their ex-
periments is also publicly available 1 making it easy to verify. Their paper was the
basis for the literature study leading up to this master thesis. A full rundown of
all the theories and a more in-depth rundown of the papers are given there [14].

Compression of signals has also been a topic of high interest for many dec-
ades. The goal is to remove redundancy and only represent information neces-
sary to recreate the data. Recent papers on compression include Krishnaraj et al.
[55] who try to compress underwater pictures using CNNs in combination with
Discrete Wavelet Transform (DWT). Their goal is to extract the most prominent
features of an image before finding a sparse representation of those features using
DWT. Transmission of the signal can then be done with low energy consumption.
Reconstruction on the signal is done with the same setup in reverse and their res-
ults are promising. Azar et al. [56] use DWT and a compressor they call squeeze
to compress multivariate time-series data. Reconstruction is done with the same
system in reverse except for a DNN at the end. They compare the results to com-
pressed sensing, among others, and claim good results. Glaws et al. [57] are using
deep convolutional autoencoder networks with skip-connections as described in
subsection 2.3.12, to compress and reconstruct data during Computational Fluid
Dynamics (CFD) simulations. The performance of their model is good and they
argue autoencoders are a good choice of compression compared to optimization-
based techniques. When autoencoders are trained the computation time and the
compression size is known, thus one can guarantee a result to some criteria. Such
attributes might not be certain when compression and reconstruction are done
using optimization. Helal et al. [58] also use a version of convolutional autoen-
coders to compress seismic data in the same manner as Glaws et al. [57]with CFD

1https://github.com/hfawaz/dl-4-tsc

Chapter 3: Previous Work 35

simulations. Helal et al. [58] also report good compression ratios.

Chapter 4

Methodology

A description of the different methods and processes executed during the exper-
iments will follow. All computation was done on a computer with the technical
specifications given in Table 4.1.

Hardware Type
CPU AMD Ryzen 1700x
RAM DDR4 16GB
GPU NVIDIA GTX1070 6GB
Software Version
Ubuntu OS 20.04.3 LTS
Python 3.7.11
GPU-driver 460.91.03
CUDA 11.3
cudatoolkit 11.3.1
cvxpy 1.1.8
pylbfgs 0.1.3

Table 4.1: Relevant hardware and software specifications

4.1 Disruptive Technologies Sensors

DT sensor products are made in a form factor of 19x19x2.5mm with a dual-sided
sticker to fasten them to objects. A picture of some sensors is shown in Figure 4.1.
They use a proprietary ultra-low power microprocessor developed in-house to
control the sampling of a sensor and communication with the cloud. Different DT
sensors can measure variables like temperature, humidity, and presence among
others and their product line is ever increasing. All sensors will, by default, make
one transmission of measurement(s) at 15-minute intervals. With their innovative
technology and techniques, DT sensors sip 20nA at idle providing a battery life
of approximately 15 years. Use cases for such a product are endless, but some

37

38 :

worth mentioning are remote monitoring of the transmission grid 1, monitoring
cold storage for food safety and preventing waste 2, and desk occupancy for free
seating office spaces 3.

Figure 4.1: An illustration of some sensors from the Disruptive Technologies
product line

Source: https://www.disruptive-technologies.com/

There is a sensor prototype from Disruptive Technologies which can measure
vibrations. Although not directly used in this thesis, all experiments are carried
out with their use cases in mind. From internal documentation, one can read that
the product uses a three-axis Micro-Electro-Mechanical Systems (MEMS) acceler-
ometer to measure the frequency of the vibrations of an object. Its sample rate is
1100 hz which implies, at least in terms of Nyquist-Shannon sampling theorem,
≈550hz is the highest measurable frequency. A wireless vibration sensor with a
battery life of 15 years should be of high value for monitoring and predicting faults
in old machinery.

The size of data sent to the cloud is kept to a minimum for two reasons; trans-
mission is the most power-consuming action in the sensor, and storage of data is
limited. For the vibration sensor, this means that samples are taken for 1 second
at a time every 15. minutes. A spectrum is generated using FFT of which the 5
frequencies with the highest magnitude are sent to the cloud.

4.2 Dataset

A bearing dataset from Intelligent Maintenance Systems4 is used to test the com-
pression methods. Four force lubricated double row Rexnord ZA2115 bearings
were placed individually in a row of housings. A shaft was placed through all the
four bearings and coupled to an AC motor, spinning at a constant 2000RPM. Force
was applied to the shaft as a radial load of 2721 kg.

1https://datascience.statnett.no/tag/disruptive-technologies/
2https://www.disruptive-technologies.com/blog/global-restaurant-chain-saved-1.

25m-in-food-with-sensor-technology
3https://www.disruptive-technologies.com/blog/how-sensor-technology-is-helping-design-the-workspace-of-the-future
4https://ti.arc.nasa.gov/c/3/

https://www.disruptive-technologies.com/
https://datascience.statnett.no/tag/disruptive-technologies/
https://www.disruptive-technologies.com/blog/global-restaurant-chain-saved-1.25m-in-food-with-sensor-technology
https://www.disruptive-technologies.com/blog/global-restaurant-chain-saved-1.25m-in-food-with-sensor-technology
https://www.disruptive-technologies.com/blog/how-sensor-technology-is-helping-design-the-workspace-of-the-future
https://ti.arc.nasa.gov/c/3/

Chapter 4: Methodology 39

PCB 353B33 Quartz accelerometers are placed orthogonally on the bearing
housing, capturing vibration measurements with a sampling frequency of 20kHz.
Each sequence is a continuous measurement for 1s and is taken at 10-minute
intervals. Both a picture and an illustration of the setup are shown in Figure 4.2.

(a) A picture of the setup
(b) An illustration of the setup

Figure 4.2: Setup for measuring bearing vibrations

Source: [15]

Thus, each bearing has two channels of vibration data stacked. All the 2 channels∗
4 bearings = 8 sequences are stacked column-wise in one file per 1s measure-
ment. There are three sets of sequences corresponding to three distinct runs of
the experiment, each a run-to-failure experiment. Three different failures were
detected during the runs; inner race failure, outer race failure, and roller element
failure. The different parts of a roller bearing is shown in Figure 4.3. Multiple
faults were detected during the tests:

• Set 1: Inner race defect in bearing 3 and roller element defect in bearing 4
• Set 2: Outer race failure in bearing 1
• Set 3: Outer race failure in bearing 3

A preview of the data is shown in Figure 4.4. The vibrations from bearing 4,
set 1 are shown at a healthy state and with severe failure, both raw measurements
and a spectrum from Fourier Transform are displayed.

40 :

Figure 4.3: An illustration of the different parts of a roller bearing. In this figure,
the outer race is fastened to the housing. The rotating part is the axle which is
held by the inner race.

Source: https://www.researchgate.net/figure/
Typical-roller-bearing-showing-different-component-parts_fig1_
3413987

Time
−0.5

0.0

0.5

Am
pl
itu

de

Raw data | healty

Time

Raw data | failure

Frequency
0

200

400

M
ag

ni
tu
de

Spectrum | healty

Frequency

Spectrum | failure

Figure 4.4: The plots are from set 1 bearing 4, showing raw measurement data
over time with the corresponding frequency spectrum. The left sample column
displays a healthy state and the right displays a severe fault in the bearing.

https://www.researchgate.net/figure/Typical-roller-bearing-showing-different-component-parts_fig1_3413987
https://www.researchgate.net/figure/Typical-roller-bearing-showing-different-component-parts_fig1_3413987
https://www.researchgate.net/figure/Typical-roller-bearing-showing-different-component-parts_fig1_3413987

Chapter 4: Methodology 41

4.2.1 Formatting the Data

To generate the dataset, each file is loaded and its content separated by chan-
nels. Each channel is stored in separate files which are named corresponding to
the test set, the time of sampling, and the channel it came from. For example,
1st_test_2003.10.22.12.09.13_CH5.csv is the first experiment, at the specified date
and time, and it is from the fifth channel. All the files were shuffled and split into
a training set containing 80% of the data, or 30525 files, and a test set containing
the remaining 20% of the data, that is 7700 files.

4.2.2 Recreating the Existing DT method

As touched upon in section 4.1, the current sensor implementation samples for one
second. The samples are then Fourier transformed to make a spectrum, from which
the 5 frequencies with the biggest magnitude are selected. These frequencies are
transmitted to the cloud where they can be accessed by the user. An illustration
of the procedure is shown in Figure 4.5.

1. Signal 2. Detected peaks on spectrum

3. Spectrum from transmitted peaks 4. Reconstructed signal

Figure 4.5: In the upper-left plot, a vibration signal has been loaded. The spec-
trum of the signal is calculated with FFT(upper-right) before the peaks are located
and selected (orange dots). The peaks are transmitted and projected onto an ar-
ray of zeros, illustrated in the lower-left plot, generating a new array of Fourier
coefficients. Inverse FFT on the new coefficient array yields a reconstructed signal
(lower-right)

To compare the usefulness of the information given by the DT method with the
other methods, the procedure had to be recreated. Since the sensor only samples at
1100hz the 5 peaks from the sensor must be in the range of 0 to 550hz, but for the
sake of experimenting two more tests were executed. Selecting 5 peaks from the
full 10000hz-range might make for a more comparable experiment regarding the

42 :

signal reconstruction. With that said, 5 points is a lot less information to send than
the smallest set of points tested with the other methods. Therefore, the third test
was selecting 2000 points from the full 10000hz-range, which is a more realistic
comparison in terms of the information transmitted, ≈ 10% of the samples. The
three tests are:

1. Selecting 5 peaks in the range 0hz to 550hz
2. Selecting 5 peaks from the full 10000hz-range
3. Selecting 2000 peaks from the full 10000hz-range

The dataset is already consisting of time-series data spanning 1 second each,
so the following pseudo-code illustrates the steps implemented for a signal x:

1. fft_x = FFT of x
2. numpy.find_peaks of fft_x, which yields an array of indices pointing to peaks
3. sort the indices with respect to peak magnitude in declining order
4. copy n first indecies with corresponding magnitudes
5. allocate an array of zeros with the size of fft_x
6. project the selected points onto the array of zeros
7. inverse FFT if necessary

4.2.3 Autoencoder Architecture

A simple network architecture was used consisting of fully connected layers with
ReLU activation in between. The implementation was made so that the depth
of the network could be changed making it easier to test multiple compression
ratios. Each model compression ratio is displayed in Table 4.3. The architechture
of model 1 is shown in Table 4.4, model 2 in Table 4.5, and model 3 in Table 4.6.

The training dataset described in subsection 4.2.1 was used for training the
models and the final evaluation was then done using the test set. All the architec-
tures was trained using the specifications shown in Table 4.2.

Specification Name Parameters
Optimizer Adam Learning rate = 0.1, weight decay = 0.8

Loss function MSE n/a

Table 4.2: The training specifications for the autoencoders

Layer # Compression ratio
1 16384/8192= 2 : 1
2 16384/2048= 5 : 1
3 16384/256= 64 : 1

Table 4.3: The compression ratios for the autoencoders

Chapter 4: Methodology 43

Layer Layer Type In features Out features Comment
1 Linear 16384 8192 -
2 Linear 8192 16384 -

Table 4.4: Autoencoder with one layer, which essentially is linear combinations
as there are no activation layers

Layer Layer Type In features Out features Comment
1 Linear 16384 8192 -
2 Activation - ReLU
3 Linear 8192 2048 -
4 Linear 2048 8192 -
5 Activation - ReLU
6 Linear 8192 16384 -

Table 4.5: Autoencoder with two layers

Layer Layer Type In features Out features Comment
1 Linear 16384 8192 -
2 Activation - ReLU
3 Linear 8192 2048 -
4 Activation - ReLU
5 Linear 2048 256 -
6 Linear 256 2048 -
7 Activation - ReLU
8 Linear 2048 8192 -
9 Activation - ReLU
10 Linear 8192 16384 -

Table 4.6: Autoencoder with three layers

44 :

4.2.4 Decoder Architecture

During the experiments the decision was made to only decode a set of random
samples. The reasoning for this choice is that IoT sensors, DTs in particular, has ex-
tremely limited computing power. To make a more relevant comparison between
Neural Networks and compressed sensing the architectures specified in Table 4.8,
Table 4.9, and Table 4.10 were implemented. For each 1-second sequence, a ran-
dom subset of samples was used as input to the model. The size of this subset cor-
responds to the size of the input layer of the model in question, thus the compres-
sion ratios are the same as shown in Table 4.3. All the architectures was trained
using the specifications shown in Table 4.7.

Specification Name Parameters
Optimizer Adam Learning rate = 0.1, weight decay = 0.8

Loss function MSE n/a

Table 4.7: The training specifications for the decoders

Layer Layer Type In features Out features Comment
1 Linear 8192 16384 -

Table 4.8: Decoder with one layer
Decoder with one layer, which essentially is linear combinations as there are no

activation layers

Layer Layer Type In features Out features Comment
1 Linear 2048 8192 -
2 Activation - ReLU
3 Linear 8192 16384 -

Table 4.9: Decoder with two layers

4.2.5 Compressed Sensing Implementation

Since there is no training involved in compressed sensing only the test set was
used in this part. Experiments were done using two different packages in Python,
CVXPY and PyBFGS, and all with comparable compression ratios to what is de-
scribed in subsection 4.2.3; 100 : 1, 10 : 1 and 2 : 1. Both algorithms were used
with an orthogonal cosine basis.

First, the CVXPY pack was used to do l1 optimization with the ECOS solver
described in subsection 2.4.2. During the implementation, it became evident that
the solver is too slow to process all the 7700 test samples in a reasonable time. To
illustrate the problem; it took ≈ 1.1 minute to converge for one sequence with a
sample size of 1% and almost 1 hour for a sequence with a sample size of 10% to

Chapter 4: Methodology 45

Layer Layer Type In features Out features Comment
1 Linear 256 2048 -
2 Activation - ReLU
3 Linear 2048 8192 -
4 Activation - ReLU
5 Linear 8192 16384 -

Table 4.10: Decoder with three layers

converge. A subset containing 4 test samples was made just to get some results, the
same files have also been tested separately on the other models for comparison.
When starting to reconstruct from a 50% sample size the optimization stopped
due to insufficient RAM. In the chapter 5 only sample sizes of 1% and 10% will
be shown for that reason.

The other Python package, PyBFGS, containing the OWL-QN was used to
speed up the processing. With this method, convergance was achieved in 1 to
2 seconds, depending on the sample size. It took 11.7 hours to compute all the
data; 7700 test sequences × 3 different sample sizes = 23100 optimizations. An
evaluation function is required by the solver which must return the computed loss
l(x) and its gradient. After some trial and error (partially due to non-existent
documentation) an evaluation function was implemented with a least squares-
approach. A cosine space was chosen as a sparsifying basis due to its widespread
uses in multiple fields of engineering. The Discrete Cosine Transform (DCT) is
highly related to Fourier Transform, using only the real numbers. Given a solu-
tion x from the solver, a gradient vector g, and the random samples b, the two
functions calculated are

l(x) = ||Ax − b||22, (4.1)

∆l(x) = 2AT (Ax − b). (4.2)

To be clear; the sum of squares in Equation 4.1 will be regularized by the l1-norm
(2.49) in the solver. An implementation was made with the following steps.

1. Inverse-DCT(x), which yields Ax
2. Compute the residual r = Ax − b, the result is of same size as b
3. Compute the sum of squares of the r vector, the value is returned as the

evaluation
4. Make an array of zeros, Ax b, with the same dimensions as x
5. Project r onto the empty matrix Ax b
6. The gradient (4.2) is calculated by DCT(Ax b) which yields AT (Ax − b)
7. Multiply the result in 5. by 2 and add the result to the gradient vector g

4.2.6 Evaluation Metrics

A set of metrics will be used to evaluate the effectiveness of the different methods.
Some qualitative considerations of the spectral envelope will also be discussed

46 :

alongside the RMS over time. The metrics are known and considered useful for
this purpose [59]. For the qualitative evaluation, a difference in RMS of each time-
series sample will be considered as well as the difference in spectrum.

The selected metrics are covariance and MSE. Covariance quantifies the rela-
tionship between two variables and is calculated as

cov(x , y) =
1
N

N
∑

i=1

(x i − x̄)(yi − ȳ) (4.3)

where x̄ , ȳ is the mean of the variables. The result can be any number between
−∞ and∞, a greater number means a stronger relationship.

MSE measures the difference between the original signal and the reconstruc-
ted signal. MSE is calculated as

MSE(x , y) =

∑N
i=1(x i − yi)

N
, (4.4)

Chapter 5

Results

The test results are presented in different ways to enable a proper evaluation.
First, a qualitative approach to representing the results are given before some
quantitative results will be presented.

A qualitative illustration of the test results is given with plots from Figure 5.1
to Figure 5.15. The two same samples have been used throughout these plots;
test 1, channel 8 with the healthy sample 2003.10.22 12:39:13 and the end-of-
life/failure sample 2003.11.25 23:39:56. To the left in each plot is the same win-
dow of the time-series data of the healthy sample, then comes the spectrum of the
healthy sample in the middle and the failure sample to the right. Figure 5.1 is the
original signals from the dataset, thus all methods are compared to this.

0.010 0.011 0.012 0.013 0.014 0.015
Time []

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Am
pl
itu

de

Signal

0 2000 4000 6000 8000 10000
Frequenzy [hz]

0

50

100

150

200

250

300

M
ag

ni
tu
de

Healthy pectrum

0 2000 4000 6000 8000 10000
Frequenzy [hz]

0

50

100

150

200

250

300

M
ag

ni
tu
de

Failure pectrum
Te t ample | raw data

Figure 5.1: The original signals before any compression

47

48 :

0.010 0.011 0.012 0.013 0.014 0.015
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Am
 l
itu

de
Signal

0 2000 4000 6000 8000 10000
Frequenzy [hz]

0

50

100

150

200

250

300

M
ag
ni
tu
de

Healthy s ectrum

0 2000 4000 6000 8000 10000
Frequenzy [hz]

0

50

100

150

200

250

300

M
ag
ni
tu
de

Failure s ectrum
DT method 5 eaks | 1100hz

Figure 5.2: The reconstructed signals using a DT method with 5 peaks at 1100hz

0.010 0.011 0.012 0.013 0.014 0.015
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Am
 l
itu

de

Signal

0 2000 4000 6000 8000 10000
Frequenzy [hz]

0

50

100

150

200

250

300

M
ag
ni
tu
de

Healthy s ectrum

0 2000 4000 6000 8000 10000
Frequenzy [hz]

0

50

100

150

200

250

300

M
ag
ni
tu
de

Failure s ectrum
DT method 5 eaks | 20000hz

Figure 5.3: The reconstructed signals using a DT method with 5 peaks at 10000hz

0.010 0.011 0.012 0.013 0.014 0.015
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Am
 l
itu

de

Signal

0 2000 4000 6000 8000 10000
Frequenzy [hz]

0

50

100

150

200

250

300

M
ag
ni
tu
de

Healthy s ectrum

0 2000 4000 6000 8000 10000
Frequenzy [hz]

0

50

100

150

200

250

300

M
ag
ni
tu
de

Failure s ectrum
DT method 2000 eaks | 20000hz

Figure 5.4: The reconstructed signals using a DT method with 2000 peaks at
10000hz

0.010 0.011 0.012 0.013 0.014 0.015
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Am
pl

itu
de

Signal

0 2000 4000 6000 8000
F equenzy [hz]

0

50

100

150

200

250

300

M
ag

ni
tu

de

Healthy spect um

0 2000 4000 6000 8000
F equenzy [hz]

0

50

100

150

200

250

300

M
ag

ni
tu

de

Failu e spect um
Autoencode | 1 laye

Figure 5.5: The reconstructed signals using a single-layer autoencoder

Chapter 5: Results 49

0.010 0.011 0.012 0.013 0.014 0.015
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Am
pl

itu
de

Signal

0 2000 4000 6000 8000
F equenzy [hz]

0

50

100

150

200

250

300

M
ag

ni
tu

de

Healthy spect um

0 2000 4000 6000 8000
F equenzy [hz]

0

50

100

150

200

250

300

M
ag

ni
tu

de

Failu e spect um
Autoencode | 2 laye

Figure 5.6: The reconstructed signals using a two-layer autoencoder

0.010 0.011 0.012 0.013 0.014 0.015
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Am
pl

itu
de

Signal

0 2000 4000 6000 8000
F equenzy [hz]

0

50

100

150

200

250

300

M
ag

ni
tu

de

Healthy spect um

0 2000 4000 6000 8000
F equenzy [hz]

0

50

100

150

200

250

300

M
ag

ni
tu

de

Failu e spect um
Autoencode | 3 laye

Figure 5.7: The reconstructed signals using a three-layer autoencoder

0.010 0.011 0.012 0.013 0.014 0.015
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Am
pl
itu

de

Signal

0 2000 4000 6000 8000
Fre uenzy [hz]

0

50

100

150

200

250

300

M
ag
ni
tu
de

Healthy spectrum

0 2000 4000 6000 8000
Fre uenzy [hz]

0

50

100

150

200

250

300

M
ag
ni
tu
de

Failure spectrum
Decoder | 1 layer

Figure 5.8: The reconstructed signals using a single-layer decoder

0.010 0.011 0.012 0.013 0.014 0.015
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Am
pl
itu

de

Signal

0 2000 4000 6000 8000
Fre uenzy [hz]

0

50

100

150

200

250

300

M
ag
ni
tu
de

Healthy spectrum

0 2000 4000 6000 8000
Fre uenzy [hz]

0

50

100

150

200

250

300

M
ag
ni
tu
de

Failure spectrum
Decoder | 2 layer

Figure 5.9: The reconstructed signals using a two-layer decoder

50 :

0.010 0.011 0.012 0.013 0.014 0.015
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Am
pl
itu

de
Signal

0 2000 4000 6000 8000
Fre uenzy [hz]

0

50

100

150

200

250

300

M
ag
ni
tu
de

Healthy spectrum

0 2000 4000 6000 8000
Fre uenzy [hz]

0

50

100

150

200

250

300

M
ag
ni
tu
de

Failure spectrum
Decoder | 3 layer

Figure 5.10: The reconstructed signals using a three-layer decoder

0.010 0.011 0.012 0.013 0.014 0.015
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Am
pl
itu

de

Sig al

0 2000 4000 6000 8000 10000
Freque zy [hz]

0

50

100

150

200

250

300

M
ag
 i
tu
de

Healthy spectrum

0 2000 4000 6000 8000 10000
Freque zy [hz]

0

50

100

150

200

250

300

M
ag
 i
tu
de

Failure spectrum
Compressed se si g ECOS | s=0.01

Figure 5.11: The reconstructed signals using ECOS with a sample size of 1%

0.010 0.011 0.012 0.013 0.014 0.015
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Am
pl
itu

de

Sig al

0 2000 4000 6000 8000 10000
Freque zy [hz]

0

50

100

150

200

250

300

M
ag
 i
tu
de

Healthy spectrum

0 2000 4000 6000 8000 10000
Freque zy [hz]

0

50

100

150

200

250

300

M
ag
 i
tu
de

Failure spectrum
Compressed se si g ECOS | s=0.1

Figure 5.12: The reconstructed signals using ECOS with a sample size of 10%

0.010 0.011 0.012 0.013 0.014 0.015
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Am
pl
itu

de

Signal

0 2000 4000 6000 8000 10000
Frequen−y [−]

0

50

100

150

200

250

300

M
ag
ni
tu
de

Healt y spectrum

0 2000 4000 6000 8000 10000
Frequen−y [−]

0

50

100

150

200

250

300

M
ag
ni
tu
de

Failure spectrum
Compressed sensing OWL-QN | s=0.01

Figure 5.13: The reconstructed signals using OWL-QN with a sample size of 1%

Chapter 5: Results 51

0.010 0.011 0.012 0.013 0.014 0.015
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Am
pl
itu

de

Signal

0 2000 4000 6000 8000 10000
Frequen−y [−]

0

50

100

150

200

250

300

M
ag
ni
tu
de

Healt y spectrum

0 2000 4000 6000 8000 10000
Frequen−y [−]

0

50

100

150

200

250

300

M
ag
ni
tu
de

Failure spectrum
Compressed sensing OWL-QN | s=0.1

Figure 5.14: The reconstructed signals using OWL-QN with a sample size of 10%

0.010 0.011 0.012 0.013 0.014 0.015
Time [s]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Am
pl
itu

de

Signal

0 2000 4000 6000 8000 10000
Frequen−y [−]

0

50

100

150

200

250

300

M
ag
ni
tu
de

Healt y spectrum

0 2000 4000 6000 8000 10000
Frequen−y [−]

0

50

100

150

200

250

300

M
ag
ni
tu
de

Failure spectrum
Compressed sensing OWL-QN | s=0.5

Figure 5.15: The reconstructed signals using OWL-QN with a sample size of 50%

52 :

The quantitative representation of the results are illustrated by computing the
RMS of each test-sample during a test and plotting them over time. The same
is done with each compression method. Test 1 and 2 is used for this with chan-
nel 8 and channel 1 respectively. Channel 1 in test 2 shows sever degradation of
the bearing, thus it is a useful example for evaluation. The plots are shown in
Figure 5.16 to Figure 5.19.

0 100 200 300 400
Time [s]

0.05

0.10

0.15

0.20

0.25

0.30

0.35

RM
S

Testrun 1st - CH8

0 25 50 75 100 125 150 175 200
Time [s]

0.0

0.1

0.2

0.3

0.4

RM
S

Testrun 2nd - CH1

Original
20000hz 5 peaks
1100hz 5 peaks
20000hz 2000 peaks

DT method

Figure 5.16: RMS over time using DT methods

0 100 200 300 400
Time [s]

0.0

0.1

0.2

0.3

0.4

RM
S

Testrun 1st - CH8

0 25 50 75 100 125 150 175 200
Time [s]

0.0

0.1

0.2

0.3

0.4

RM
S

Testrun 2nd - CH1

Original
1 layer
2 layers
3 layers

Autoencoder

Figure 5.17: RMS over time using autoencoders

Chapter 5: Results 53

0 100 200 300 400
Time [s]

0.0

0.1

0.2

0.3

0.4

RM
S

Testrun 1st - CH8

0 25 50 75 100 125 150 175 200
Time [s]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

RM
S

Testrun 2nd - CH1
Original
1 layer
2 layers
3 layers

Decoder

Figure 5.18: RMS over time using decoders

0 100 200 300 400
Time [s]

0.050

0.075

0.100

0.125

0.150

0.175

0.200

RM
S

Testrun 1st - CH8

0 25 50 75 100 125 150 175 200
Time [s]

0.1

0.2

0.3

0.4

RM
S

Testrun 2nd - CH1
Original
Sample size: 1%
Sample size: 10%
Sample size: 50%

Compressed sensing OWL-QN

Figure 5.19: RMS over time using compressed sensing with OWL-QN

54 :

MSE and covariance were calculated for each sample. The channel-wise mean
of the values was then stored for every combination of method, method specific-
ation, and test from the dataset. The results are plotted for illustration in Fig-
ure 5.20 to Figure 5.31. Two points should be known to the reader before con-
tinuing; (1) some bars climb outside of the plotted range, which has little to no
impact on the discussion of the results. Should there be a need to raise the results
beyond any shadow of a doubt, the exact numbers can be found in Appendix A.
(2) The y-axis is scaled logarithmically.

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH80
100
101
102
103
104
105
106
107
108
109
1010
1011
1012
1013
1014
1015
1016
1017
1018

M
SE

Mean MSE per channel
Te t 1
Te t 2
Te t 3

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8−103

−102

−101

−100
0

100

101

102

103

104

105

106

107

108

109

1010

Co
va

ria
nc

e

Mean covariance per channel
Te t 1
Te t 2
Te t 3

DT method | 550hz 5 peak

Figure 5.20: MSE and covariance for DT method with 5 peaks at 550hz

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH80
100
101
102
103
104
105
106
107
108
109
1010
1011
1012
1013
1014
1015
1016
1017
1018

M
SE

Mean MSE per channel
Te t 1
Te t 2
Te t 3

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8−103

−102

−101

−100
0

100

101

102

103

104

105

106

107

108

109

1010

Co
va

ria
nc

e

Mean covariance per channel
Te t 1
Te t 2
Te t 3

DT method | 10000hz 5 peak

Figure 5.21: MSE and covariance for DT method with 5 peaks at 10000hz

Chapter 5: Results 55

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH80
100
101
102
103
104
105
106
107
108
109
1010
1011
1012
1013
1014
1015
1016
1017
1018

M
SE

Mean MSE per channel
Te t 1
Te t 2
Te t 3

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8−103

−102

−101

−100
0

100

101

102

103

104

105

106

107

108

109

1010

Co
va

ria
nc

e

Mean covariance per channel
Te t 1
Te t 2
Te t 3

DT method | 10000 hz 2000 peak

Figure 5.22: MSE and covariance for DT method with 2000 peaks at 10000hz

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH80
100
101
102
103
104
105
106
107
108
109
1010
1011
1012
1013
1014
1015
1016
1017
1018

M
SE

Mean MSE per channel
Test 1
Test 2
Test 3

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8−103
−102
−101

−100
0

100

101
102
103
104
105
106
107
108
109
1010

Co
va
ria

nc
e

Mean covariance per channel
Test 1
Test 2
Test 3

A toencoder | 1 layer

Figure 5.23: MSE and covariance for autoencoder with 1 layer

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH80
100
101
102
103
104
105
106
107
108
109
1010
1011
1012
1013
1014
1015
1016
1017
1018

M
SE

Mean MSE per channel
Test 1
Test 2
Test 3

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8−103
−102
−101

−100
0

100

101
102
103
104
105
106
107
108
109
1010

Co
va
ria

nc
e

Mean covariance per channel
Test 1
Test 2
Test 3

A toencoder | 2 layers

Figure 5.24: MSE and covariance for autoencoder with 2 layers

56 :

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH80
100
101
102
103
104
105
106
107
108
109
1010
1011
1012
1013
1014
1015
1016
1017
1018

M
SE

Mean MSE per channel
Test 1
Test 2
Test 3

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8−103
−102
−101

−100
0

100

101
102
103
104
105
106
107
108
109
1010

Co
va
ria

nc
e

Mean covariance per channel

Test 1
Test 2
Test 3

A toencoder | 3 layers

Figure 5.25: MSE and covariance for autoencoder with 3 layers

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH80
100
101
102
103
104
105
106
107
108
109
1010
1011
1012
1013
1014
1015
1016
1017
1018

M
SE

Mean MSE per channel
Test 1
Test 2
Test 3

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8−103
−102
−101

−100
0

100

101
102
103
104
105
106
107
108
109
1010

Co
 a

ria
nc
e

Mean co ariance per channel
Test 1
Test 2
Test 3

Decoder | 1 layer

Figure 5.26: MSE and covariance for decoder with 1 layer

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH80
100
101
102
103
104
105
106
107
108
109
1010
1011
1012
1013
1014
1015
1016
1017
1018

M
SE

Mean MSE per channel
Test 1
Test 2
Test 3

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8−103
−102
−101

−100
0

100

101
102
103
104
105
106
107
108
109
1010

Co
 a

ria
nc
e

Mean co ariance per channel
Test 1
Test 2
Test 3

Decoder | 2 layers

Figure 5.27: MSE and covariance for decoder with 2 layers

Chapter 5: Results 57

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH80
100
101
102
103
104
105
106
107
108
109
1010
1011
1012
1013
1014
1015
1016
1017
1018

M
SE

Mean MSE per channel
Test 1
Test 2
Test 3

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8−103
−102
−101

−100
0

100

101
102
103
104
105
106
107
108
109
1010

Co
 a

ria
nc
e

Mean co ariance per channel
Test 1
Test 2
Test 3

Decoder | 3 layers

Figure 5.28: MSE and covariance for decoder with 3 layers

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH80
100
101
102
103
104
105
106
107
108
109

1010
1011
1012
1013
1014
1015
1016
1017
1018

M
SE

Mean MSE per channe
Test 1
Test 2
Test 3

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8−103

−102

−101

−100
0

100

101

102

103

104

105

106

107

108

109

1010

Co
va

ria
nc

e

Mean covariance per channe
Test 1
Test 2
Test 3

Compressed sensing OWL-QN | sample size 1%

Figure 5.29: MSE and covariance for compressed sensing with a sample size of
1%

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH80
100
101
102
103
104
105
106
107
108
109

1010
1011
1012
1013
1014
1015
1016
1017
1018

M
SE

Mean MSE per channe
Test 1
Test 2
Test 3

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8−103

−102

−101

−100
0

100

101

102

103

104

105

106

107

108

109

1010

Co
va

ria
nc

e

Mean covariance per channe
Test 1
Test 2
Test 3

Compressed sensing OWL-QN | sample size 10%

Figure 5.30: MSE and covariance for compressed sensing with a sample size of
10%

58 :

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH80
100
101
102
103
104
105
106
107
108
109

1010
1011
1012
1013
1014
1015
1016
1017
1018

M
SE

Mean MSE per channe
Test 1
Test 2
Test 3

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8−103

−102

−101

−100
0

100

101

102

103

104

105

106

107

108

109

1010

Co
va

ria
nc

e

Mean covariance per channe
Test 1
Test 2
Test 3

Compressed sensing OWL-QN | sample size 50%

Figure 5.31: MSE and covariance for compressed sensing with a sample size of
50%

Chapter 6

Discussion

There has been a lot of work on both predictive maintenance and compression
of signals, as described in chapter 3. Detecting early signs of failure in indus-
trial equipment is important to increase revenue and safety, and some methods
already work adequately. Although research in this area must be continued, there
is another problem emerging from the literature related to measuring the world:
all the sensors needed to collect and transmit the measurements must be oper-
ated. To reduce the cost of installation and operation, both the sensor itself and
the transmission of signals must be done in an energy-efficient way. Disruptive
Technologies have already developed a miniature platform for ultra-low power
wireless IoT devices. What is left then is to find better ways of transmitting the
data. This leads up to the use of compression, which also has been an area of
research for many years.

Advancements in computational hardware and optimization algorithms en-
able new ways of compression, and some recent papers have been mentioned. As
the world is currently surfing the Machine Learning wave it is no surprise that all
of them use a Neural Network of some sort. From these papers, it is clear that some
form of autoencoder should be tested on the time-series data used in this thesis,
but another highly relevant technique is mentioned by most of the mentioned pa-
pers; compressed sensing. Although many of them discuss compressed sensing,
they all have one thing in common; they capture all the data points before com-
pression. Thus, the most powerful feature of compressed sensing is not utilized; a
sparse sampling of the data. Regarding an energy-limited wireless sensor, it should
give two advantages; less energy being used to sample data and less information
to transmit. Effectively moving most of the computation to a receiver. This is why
experiments on different compression techniques, including compressed sensing,
are explored in this thesis.

The results from the experiments are all considered in regards to two main-
tenance prediction algorithms touched upon in chapter 3. (1) Firstly, the novel
method of Gaussian Process Regression presented by Hong and Zhou [16] only
predicts the future path of the RMS values. A method that effectively yields a prob-
ability of the RMS exceeding a threshold. The RMS calculated from a received sig-

59

60 :

nal must contain some form of information that make it possible to calculate an
RMS that at least follows a similar path to the actual RMS, and is preferably close
in value. (2) The second maintenance prediction algorithm considered is presen-
ted by Qiu et al. [15]; using wavelets to enhance weak signatures corresponding to
a failure, the wavelet method from now on. For this approach to work the received
signal must contain some information that closely represents the actual signal. If
a failure corresponds to some arbitrary frequency, that frequency must be seen in
the reconstructed signal.

The current method implemented by Disruptive Technologies in their vibration
sensor prototype might spark some initial concerns. Only selecting the 5 biggest
peaks in a spectrum builds upon an assumption that the relevant features of a
measured object will present themselves as frequencies of the highest magnitudes.
A rather bold assumption to make on a general basis. Adding to this the small
range of measurable frequencies, 0 to 550hz, one is entitled to question its use-
fulness, at least regarding the prediction of failure in bearings. Simply illustrated;
if a bearing spins at 100 rounds per second, an outer race fault might show as a
peak around 100hz. If it spins at 3000 rounds per second the fault might appear
as a peak at around 3000hz. If the fault was in a roller element on the bearing
is spinning at 100 rounds per second the peaks might appear at the rolling speed
of the particular element. Intuitively, the range 0hz to 550 hz will not be able to
capture such variance.

From the original signal in Figure 5.1, it seems like the progression from a
healthy state to an end-of-life state is manifested as an increase in some frequen-
cies that eventually dominate. Comparing this to the DT method in Figure 5.3 to
Figure 5.4, one might think that the approach will work with the full frequency
range. The frequencies of the highest amplitude are indeed preserved.

The biggest problem with only selecting 5 peaks comes with the wavelet method.
As it tries to enhance the early signatures of a defect, the early signatures must
be captured in the first place. One cannot rely on the DT method to extract the
peaks representing these signatures early on, or at all. The DT method is not de-
terministic in what it extracts; a random set of frequencies that happened to have
large magnitude at the time of sampling. This observation is substantiated when
considering the MSE and covariance shown in Figure 5.21. An evenly large MSE
can be observed across all channels. The relationship between the spectrum of the
raw data and the spectrum from DT method has, at times, negative values. Two
spectral envelopes that should resemble the same signal are far from resemblant
when the mean covariance is negative. This underpins the claim of the method
being non-deterministic, thus it is expected to not work with the wavelet method.
When 2000 peaks are selected it might be plausible for the algorithm to work
better as the spectral envelope is better represented. Again, looking at the covari-
ance showing negative relationships; it might seem like no such predictions are
possible.

When it comes to GPR, Figure 5.16 shows that a few Fourier coefficients are
not enough to calculate the correct RMS values. An explanation is that the recon-

Chapter 6: Discussion 61

structed signals in Figure 5.2 to Figure 5.4 all have small amplitudes. All those
small frequencies observed in the whole spectrum add up when removed. What
might be more surprising is that even with 2000 peaks in the spectrum, the RMS
value still shows little correlation with the path of the RMS of the actual signal.
Certainly, none of the tested DT method alterations will work for RMS prediction
using GPR.

Of course, one could select the 5 frequencies transmitted more smartly. An
example might be to do a PCA to find the relevant frequencies for a given setup.
There are multiple drawbacks of such an approach. One is the loss of generality;
the relevant frequencies when predicting bearing failure are probably different
from wind turbines. Another related one is that the signatures of faults should,
preferably, be known, which also translates to a loss of generality of the method.

Moving on to alternative methods for compression. Autoencoders were first
implemented and tested because of the promising results in previous literature.
During testing a realization was made that autoencoders violate a premise in this
thesis; the sensor itself has limited processing power and energy capacity. Com-
pressing a signal using a NN on-device does fit the problem description. While con-
tinuing to test with the autoencoders, an alternative approach was made. By just
using the decoder part of the network to reconstruct from some random samples,
all the processing is done at the receiver. The decoder method can be viewed as a
hybrid between compressed sensing and autoencoders.

With autoencoders one hopes the network will find some relationship in the
data which, in this case, enables reconstruction from a smaller set of code. Nor-
mally, a network needs a high amount of parameters to capture the variance
presented in the classifying or regressing domain, and so the results of the single-
layer autoencoder are as expected. From Figure 5.5 there is an indication that the
output is noise, close to random. With the number of transmitted samples halved,
the result shows an unusable architecture which is to be expected. The network
is only matrix multiplication.

Upping the number of layers to two and three also adds activation layers which
might make the autoencoder capture non-linearities in the data. Evidently, from
Figure 5.6 and Figure 5.7 it seems like the reconstruction became a tiny bit bet-
ter; the amplitude of the signals is comparable and the spectral envelope show
some resemblance, albeit far from representative. Keep in mind that these signals
were reconstructed from ≈ 10% and ≈ 1% data respectively. With that said, the
spectrum of the reconstructed signals does not display the frequencies found in
the original data, thus none of the architectures are likely to work with the wave-
let method. When it comes to GPR, Figure 5.17 neither the two-layer architecture
nor the three-layer architecture manages to follow the RMS path. The single-layer
version shows some resemblance to the path although quite noisy. Looking at the
evaluation matrics in Figure 5.23 to Figure 5.25 it is clear that the MSE is high and
all over the place. Covariance is low and equally all over. None of the autoencoder
setups tested would be viable for neither GPR nor the wavelet method.

For the decoder approach, the single layer and two-layer architectures seem to

62 :

produce nothing but noise as seen in Figure 5.8 and Figure 5.9. The spectral en-
velopes of both are generally flat which means they most likely do not contain the
information needed to detect failure signatures with the wavelet method. A three-
layered decoder seems to capture some latent relationships in the data. Both the
healthy spectrum and the failure spectrum, seen in Figure 5.10, have clear simil-
arities with the original spectrum in Figure 5.1. Although the magnitude differs, it
seems like the spectral envelope is preserved. Comparing the evaluation metrics in
Figure 5.26 to Figure 5.28 one can confirm that the reconstruction error (MSE) is
substantially lower for the three-layered decoder. Keeping in mind that the three-
layered decoder uses the least amount of information, ≈ 1%, this observation is
interesting. Without making any conclusions, one might view this as an example
of how deeper NNs can extract and learn possible non-linearities. Regarding RMS
prediction, Figure 5.18 shows that the single layer and the two-layer decoder seem
to follow some path similar to the actual RMS, albeit extremely noisy. Because of
this noise, it is hard to imagine that this method is useful for predicting RMS with
GPR.

Compressed sensing starts off underwhelming. In Figure 5.11 and Figure 5.12
results from the ECOS solver are shown. It does not seem to have converged to
a good solution as the spectral envelope of both scenarios does not resemble the
actual spectral envelope. Combining this with the computation time leaves these
results rather uninteresting, with its only contribution being to switch the solver
algorithm.

When using the more advanced OWL-QN algorithm, the results are unlike
anything that has been seen in this paper so far. At 1% of the samples taken, Fig-
ure 5.14, a familiar spectrum starts forming. Going up to 50% of the samples, in
Figure 5.15, the similarity in the reconstructed spectral envelope is striking, visu-
ally at least. With these lightweight qualitative observations in mind, a look at the
evaluation matrics in Figure 5.29 to Figure 5.31 is reassuring. Although neither
MSE nor the covariance is remarkably better than for example the three-layer de-
coder, they are consistent. For each sample size across all tests and channels, the
MSE sees little variance. The MSE is still substantial, but the spectral envelope
can still be close to correct. As far as detecting weak signatures with the wavelet
method go, it is the envelope that is important. These tests indicate that com-
pressed sensing with OWL-QN is capable of providing the necessary details for
failure prediction with highly sparse samples. When it comes to predicting the
RMS the results are still highly positive. Looking at Figure 5.19 it is clear that
even with a sample size of 1% the RMS paths closely align with only an offset.
The reconstruction becomes really useful when the sample size increases to 10%.
As seen in Figure 5.19, a clear pattern emerges that certainly is usable when pre-
dicting RMS values with Gaussian Process Regression.

Why compressed sensing using OWL-QN outperforms the other methods have
not been explored in the experiments. The autoencoder and decoder methods
should perform better than what was achieved in this thesis. With that said, one
could question what a decoder network would learn. Some research indicates

Chapter 6: Discussion 63

that a single-layered autoencoder learns to find features comparable to Principal
Components from PCA. Might the decoder learn some kind of equivalent to com-
pressed sensing? The answer is probably no, as a trained NN does not perform
optimization. Compressed sensing might be better for that exact reason; it is act-
ively trying to find more information that fits what was given. The others do not.

Chapter 7

Further Work

From this paper there is a lot of possible work one can undertake as there are many
questions still to be answered. Knowing how many years the battery will last if
1% to 10% of the data was transmitted would make for an interesting evaluation
of its economical use-cases. The value of 15 years of too little data versus 5 years
of accurate data might be highly dependent on the use case, but instinctively the
latter sounds better.

On a more technical note, further alterations of the decoder could be explored.
Although the architectures in this paper show poor performance, there might be
other versions of the architectures that perform better. Examples include using a
fully convolutional decoder, other activation layers, and/or more hidden layers.

In this thesis, optimizing for a sparse solution was regularized using the l1-
norm. Another implementation to try is an approximation of the l0-norm. Some
experiments have been done by Wei et al. [60] on which another paper could be
based. Also, the sparsifying basis used in these experiments is the cosine space, but
any space where the signal has a sparse representation could work. Which space
works best for vibration data has not been explored in this paper, but a wavelet
basis might be a good place to start.

The technicalities of actually performing randomly sparse sampling with a
discrete sensor are not touched upon in this thesis. It was assumed to be possible.
If this is a challenge then it should be subject to further work.

65

Chapter 8

Conclusion

By now, it should be clear that compression is essential when the world is moving
into the IoT space. This thesis has looked at methods of compressing data and
sampling data to use with maintenance prediction.

A look at previous attempts at making maintenance prediction algorithms
were first given. Although many of the papers lack the details to recreate their
proposed algorithms, some ways of predicting faults seem promising. Two of the
methods were brought into this thesis when an evaluation of the compression
methods was given. The first method calculates the RMS of a signal and tries to
predict the n next RMS values using GPR. The second method chosen focused on
enhancing the early fault signatures using wavelet decomposition.

Then, some recent papers on compression was presented where the methods
of interest to this thesis were brought to light; autoencoder and compressed sens-
ing. Two more methods were also tested and discussed; the method currently im-
plemented in vibration sensors from Disruptive Technologies (DT) and a decoder
network.

The DT method was tested with three different configurations, but none could
achieve any results usable for maintenance prediction. It provides too little inform-
ation and, possibly, the wrong information to enable a representative "picture" of
what it is measuring.

The autoencoder and the decoder show some more promising results, but
the usefulness of the recreated signal is questionable anyhow. Results from these
methods are noisy, the RMS values do not change correctly over time, and the
spectral envelopes they provide is not resembling the measured signal. They are
deemed useless in the context of this thesis.

Two different solvers were used for testing compressed sensing; ECOS and
OWL-QN. ECOS was too slow and memory intensive to be practical with the large
size of the data, and so the method was not tested for more than a couple of
samples. OWL-QN was then used which computed signals quickly. The results
from compressed sensing with OWL-QN were good. With only 1% of the data
sampled, the RMS over time closely followed the original signal. This makes it
useful for failure prediction with GPR. When the sample size was adjusted to 10%

67

68 :

and above, the spectral envelope show a clear resemblance to the original spectral
envelope. When the recreated signals have captured the essence in the spectra,
the weak signatures should be present. Thus, compressed sensing with OWL-QN
should work with the data provided.

The results in this paper indicate multiple advantages of using compressed
sensing when designing a low energy vibration IoT sensor. Where the original DT
method fails to capture the important spectral envelope of the signal, compressed
sensing can reconstruct it accurately. The computational load on the sensor-processor
is also removed as it does not have to compute the FFT nor locate any peaks. By just
random sampling in a fixed time window, the optimization running somewhere
else will take care of the rest. This point is also valid for the decoder method,
but as the results have shown the simple architectures tested were not able to
provide adequate reconstructions. The biggest downfall of compressed sensing is
that size of the data transmitted increases, even with a sample size of only 1%.
With the technology provided by DT, a choice must be made; battery life versus
useful information.

Making new technologies smart is obvious, retrofitting old technology with
smart sensors; is not. With the Disruptive Technologies sensor platform and the
techniques described in this paper, a step closer to a simple transition to a world
of IoT is hopefully taken.

Bibliography

[1] E. Kreyszig, H. Kreyszig and E. J. Norminton, Advanced Engineering Math-
ematics, Tenth. Hoboken, NJ: Wiley, 2011, ISBN: 0470458364.

[2] J. Nocedal and S. J. Wright, Numerical Optimization, 2e. New York, NY,
USA: Springer, 2006.

[3] C. Guo and F. Berkhahn, ‘Entity embeddings of categorical variables,’ arXiv
preprint arXiv:1604.06737, 2016.

[4] R. E. Walpole, R. H. Myers, S. L. Myers and K. Ye, Probability and statistics
for engineers and scientists, 9th edition. Pearson, 2016, ISBN: 1292161361.

[5] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[6] A. Hatcher, Algebraic topology. Cambridge University Press, 2005.

[7] G. P. Collins, ‘The shapes of space,’ Scientific American, vol. 291, no. 1,
pp. 94–103, 2004.

[8] H. S. M. Coxeter and S. L. Greitzer, Geometry revisited. Maa, 1967, vol. 19.

[9] K. P. Murphy, Machine learning: a probabilistic perspective, 1st ed. MIT press,
2012.

[10] Memorial Tributes: Danie G. Krige. 2015, vol. 19.

[11] H.-Y. Kim, ‘Statistical notes for clinical researchers: assessing normal distri-
bution (2) using skewness and kurtosis,’ Restorative dentistry & endodontics,
vol. 38, no. 1, pp. 52–54, 2013.

[12] S. Roman, S. Axler and F. Gehring, Advanced linear algebra. Springer, 2005,
vol. 3.

[13] A. McDougall, D. Stoffer and D. Tyler, ‘Optimal transformations and the
spectral envelope for real-valued time series,’ Journal of statistical planning
and inference, vol. 57, no. 2, pp. 195–214, 1997.

[14] S. Wold, K. Esbensen and P. Geladi, ‘A literature review of maintenance pre-
diction techniques with preliminary tests using vibration data from bear-
ings,’ 2021.

[15] H. Qiu, J. Lee, J. Lin and G. Yu, ‘Wavelet filter-based weak signature de-
tection method and its application on rolling element bearing prognostics,’
Journal of sound and vibration, vol. 289, no. 4-5, pp. 1066–1090, 2006.

69

https://arxiv.org/pdf/1604.06737.pdf?source=post_page---------------------------
https://www.deeplearningbook.org/
http://www.deeplearningbook.org
https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
https://www.jstor.org/stable/26060612?seq=1
http://noiselab.ucsd.edu/ECE228/Murphy_Machine_Learning.pdf
https://www.nap.edu/read/21785/chapter/35
https://synapse.koreamed.org/articles/1090037
https://synapse.koreamed.org/articles/1090037
https://link.springer.com/content/pdf/10.1007/0-387-27474-X.pdf
https://reader.elsevier.com/reader/sd/pii/S0378375896000444?token=EDA6F029FCF1E2C47336AE461D8FA3D6350364D29A71C30383F33D8C276D8F5283D54CB55391F5EFA5E816CCBB2DD5D5&originRegion=eu-west-1&originCreation=20220523125238
https://reader.elsevier.com/reader/sd/pii/S0378375896000444?token=EDA6F029FCF1E2C47336AE461D8FA3D6350364D29A71C30383F33D8C276D8F5283D54CB55391F5EFA5E816CCBB2DD5D5&originRegion=eu-west-1&originCreation=20220523125238
https://www.sciencedirect.com/science/article/pii/S0022460X0500221X
https://www.sciencedirect.com/science/article/pii/S0022460X0500221X

70 :

[16] S. Hong and Z. Zhou, ‘Application of Gaussian process regression for bear-
ing degradation assessment,’ in 2012 6th International Conference on New
Trends in Information Science, Service Science and Data Mining (ISSDM2012),
IEEE, 2012, pp. 644–648.

[17] S. L. Brunton and J. N. Kutz, Data-driven science and engineering: Machine
learning, dynamical systems, and control. Cambridge University Press, 2019.

[18] G. K. Wallace, ‘The JPEG still picture compression standard,’ IEEE transac-
tions on consumer electronics, vol. 38, no. 1, pp. xviii–xxxiv, 1992.

[19] M. Feldman, ‘Hilbert transform in vibration analysis,’ Mechanical systems
and signal processing, vol. 25, no. 3, pp. 735–802, 2011.

[20] M. Misiti, Y. Misiti, G. Oppenheim and J.-M. Poggi, Wavelets and their Ap-
plications. Iste UK and EEUU, 2007, vol. 330.

[21] S. Wold, K. Esbensen and P. Geladi, ‘Principal component analysis,’ Chemo-
metrics and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37–52, 1987.

[22] F. N. Nwobi and C. A. Ugomma, ‘A comparison of methods for the estima-
tion of Weibull distribution parameters,’ Metodoloski zvezki, vol. 11, no. 1,
p. 65, 2014.

[23] J. D. Hamilton, Time series analysis. Princeton university press, 2020.

[24] A. L. Samuel, ‘Some studies in machine learning using the game of check-
ers,’ IBM Journal of research and development, vol. 3, no. 3, pp. 210–229,
1959.

[25] J. Friedman, T. Hastie, R. Tibshirani et al., The elements of statistical learn-
ing, 2nd ed. Springer series in statistics New York, 2009, ISBN: 978-0-387-
84858-7. DOI: 10.1007/978-0-387-84858-7.

[26] R. Pascanu, T. Mikolov and Y. Bengio, ‘On the difficulty of training recurrent
neural networks,’ in International conference on machine learning, PMLR,
2013, pp. 1310–1318.

[27] J. Duchi, E. Hazan and Y. Singer, ‘Adaptive subgradient methods for online
learning and stochastic optimization.,’ Journal of machine learning research,
vol. 12, no. 7, 2011.

[28] N. Ketkar, ‘Stochastic gradient descent,’ in Deep learning with Python, Springer,
2017, pp. 113–132.

[29] D. P. Kingma and J. Ba, ‘Adam: A method for stochastic optimization,’ arXiv
preprint arXiv:1412.6980, 2014.

[30] S. Albawi, T. A. Mohammed and S. Al-Zawi, ‘Understanding of a convolu-
tional neural network,’ in 2017 International Conference on Engineering and
Technology (ICET), Ieee, 2017, pp. 1–6.

[31] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar and P.-A. Muller,
‘Deep learning for time series classification: a review,’ Data Mining and
Knowledge Discovery, vol. 33, no. 4, pp. 917–963, 2019.

https://ieeexplore.ieee.org/abstract/document/6528712
https://ieeexplore.ieee.org/abstract/document/6528712
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=125072
https://reader.elsevier.com/reader/sd/pii/S0888327010002542?token=C4FFB4F3A7EE2F4CD7636FB90378F8887682A03F38139CD93B718512DED7EFDACDE58003C3560146D5373F6065FF9B04&originRegion=eu-west-1&originCreation=20211212152716
https://www.e-reading-lib.com/bookreader.php/141448/Wavelets_and_Their_Applications.pdf
https://www.e-reading-lib.com/bookreader.php/141448/Wavelets_and_Their_Applications.pdf
https://reader.elsevier.com/reader/sd/pii/0169743987800849?token=3DCE9F0D46D70BC0A0DAF0C35B66B665A8090ADB7CFD4230E6DE6F8928A135003FD78E5E72F42A02262F34A88C1546D1&originRegion=eu-west-1&originCreation=20211213102444
https://ibmi.mf.uni-lj.si/mz/2014/no-1/Nwobi2014.pdf
https://ibmi.mf.uni-lj.si/mz/2014/no-1/Nwobi2014.pdf
https://www.ctanujit.org/uploads/2/5/3/9/25393293/time_series_analysis_sd1final.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5392560
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5392560
https://doi.org/10.1007/978-0-387-84858-7
http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf
https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://link.springer.com/chapter/10.1007/978-1-4842-2766-4_8
https://arxiv.org/pdf/1412.6980.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8308186
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8308186
https://arxiv.org/abs/2010.00567

Bibliography 71

[32] K. He, X. Zhang, S. Ren and J. Sun, ‘Deep residual learning for image recog-
nition,’ in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[33] S. Hochreiter and J. Schmidhuber, ‘Long short-term memory,’ Neural com-
putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[34] F.-F. Li, J. Johnson and S. Yeung, Lecture 10: Recurrent Neural Networks,
May 2017.

[35] G. E. Hinton and R. R. Salakhutdinov, ‘Reducing the dimensionality of data
with neural networks,’ science, vol. 313, no. 5786, pp. 504–507, 2006.

[36] D. L. Donoho, ‘Compressed sensing,’ IEEE Transactions on information the-
ory, vol. 52, no. 4, pp. 1289–1306, 2006.

[37] M. Davenport, ‘The fundamentals of compressive sensing,’ IEEE Signal Pro-
cessing Society Online Tutorial Library, vol. 12, 2013.

[38] E. J. Candès and M. B. Wakin, ‘An introduction to compressive sampling,’
IEEE signal processing magazine, vol. 25, no. 2, pp. 21–30, 2008.

[39] T. Blu, P.-L. Dragotti, M. Vetterli, P. Marziliano and L. Coulot, ‘Sparse sampling
of signal innovations,’ IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 31–
40, 2008.

[40] M. Lustig, D. L. Donoho, J. M. Santos and J. M. Pauly, ‘Compressed sensing
MRI,’ IEEE signal processing magazine, vol. 25, no. 2, pp. 72–82, 2008.

[41] M. A. Herman and T. Strohmer, ‘High-resolution radar via compressed sens-
ing,’ IEEE transactions on signal processing, vol. 57, no. 6, pp. 2275–2284,
2009.

[42] P. Sen and S. Darabi, ‘Compressive image super-resolution,’ in 2009 Confer-
ence Record of the Forty-Third Asilomar Conference on Signals, Systems and
Computers, IEEE, 2009, pp. 1235–1242.

[43] S. Boyd, S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[44] A. Domahidi, E. Chu and S. Boyd, ‘ECOS: An SOCP solver for embedded sys-
tems,’ in 2013 European Control Conference (ECC), IEEE, 2013, pp. 3071–
3076.

[45] A. Wächter and L. T. Biegler, ‘On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming,’ Math-
ematical programming, vol. 106, no. 1, pp. 25–57, 2006.

[46] L. Vandenberghe, ‘The CVXOPT linear and quadratic cone program solvers,’
Online: http://cvxopt. org/documentation/coneprog. pdf, 2010.

[47] G. Andrew and J. Gao, ‘Scalable training of l 1-regularized log-linear mod-
els,’ in Proceedings of the 24th international conference on Machine learning,
2007, pp. 33–40.

https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.676.4320&rep=rep1&type=pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf
https://www.science.org/doi/pdf/10.1126/science.1127647
https://www.science.org/doi/pdf/10.1126/science.1127647
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1614066&casa_token=p3oL4A5DVzAAAAAA:TKoNCYXj9kIhRl6fMXJsHDF9-xkJuyRlHOkI3qm7N8PocEKeN1VUN_FQvqlp5bt_554_zTkX-Q
https://mdav.ece.gatech.edu/talks/taiwan-2012.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4472240
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4472241
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4472241
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4472246
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4472246
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4770164
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4770164
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5469968
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6669541
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6669541
https://link.springer.com/content/pdf/10.1007/s10107-004-0559-y.pdf
https://link.springer.com/content/pdf/10.1007/s10107-004-0559-y.pdf
https://www.seas.ucla.edu/~vandenbe/publications/coneprog.pdf
https://dl.acm.org/doi/pdf/10.1145/1273496.1273501
https://dl.acm.org/doi/pdf/10.1145/1273496.1273501

72 :

[48] P. Wang and G. Vachtsevanos, ‘Fault prognostics using dynamic wavelet
neural networks,’ AI EDAM, vol. 15, no. 4, pp. 349–365, 2001.

[49] W. Deng, S. Zhang, H. Zhao and X. Yang, ‘A novel fault diagnosis method
based on integrating empirical wavelet transform and fuzzy entropy for
motor bearing,’ IEEE Access, vol. 6, pp. 35 042–35 056, 2018.

[50] M. Rezamand, M. Kordestani, R. Carriveau, D. S.-K. Ting and M. Saif, ‘A
new hybrid fault detection method for wind turbine blades using recursive
PCA and wavelet-based PDF,’ IEEE Sensors Journal, vol. 20, no. 4, pp. 2023–
2033, 2019.

[51] G. K. Durbhaka and B. Selvaraj, ‘Predictive maintenance for wind turbine
diagnostics using vibration signal analysis based on collaborative recom-
mendation approach,’ in 2016 International Conference on Advances in Com-
puting, Communications and Informatics (ICACCI), IEEE, 2016, pp. 1839–
1842.

[52] M. Baptista, S. Sankararaman, I. P. de Medeiros, C. Nascimento Jr, H. Pren-
dinger and E. M. Henriques, ‘Forecasting fault events for predictive main-
tenance using data-driven techniques and ARMA modeling,’ Computers &
Industrial Engineering, vol. 115, pp. 41–53, 2018.

[53] I. Amihai, M. Chioua, R. Gitzel, A. M. Kotriwala, D. Pareschi, G. Sosale
and S. Subbiah, ‘Modeling machine health using gated recurrent units with
entity embeddings and k-means clustering,’ in 2018 IEEE 16th International
Conference on Industrial Informatics (INDIN), IEEE, 2018, pp. 212–217.

[54] I. Amihai, R. Gitzel, A. M. Kotriwala, D. Pareschi, S. Subbiah and G. So-
sale, ‘An industrial case study using vibration data and machine learning
to predict asset health,’ in 2018 IEEE 20th Conference on Business Informat-
ics (CBI), IEEE, vol. 1, 2018, pp. 178–185.

[55] N. Krishnaraj, M. Elhoseny, M. Thenmozhi, M. M. Selim and K. Shankar,
‘Deep learning model for real-time image compression in Internet of Un-
derwater Things (IoUT),’ Journal of Real-Time Image Processing, vol. 17,
no. 6, pp. 2097–2111, 2020.

[56] J. Azar, A. Makhoul, R. Couturier and J. Demerjian, ‘Robust IoT time series
classification with data compression and deep learning,’ Neurocomputing,
vol. 398, pp. 222–234, 2020.

[57] A. Glaws, R. King and M. Sprague, ‘Deep learning for in situ data com-
pression of large turbulent flow simulations,’ Physical Review Fluids, vol. 5,
no. 11, p. 114 602, 2020.

[58] E. B. Helal, O. M. Saad, A. G. Hafez, Y. Chen and G. M. Dousoky, ‘Seismic
Data Compression Using Deep Learning,’ IEEE Access, vol. 9, pp. 58 161–
58 169, 2021.

https://www.cambridge.org/core/journals/ai-edam/article/fault-prognostics-using-dynamic-wavelet-neural-networks/FED190E3D183E9B47C60DB0D6233E7CA
https://www.cambridge.org/core/journals/ai-edam/article/fault-prognostics-using-dynamic-wavelet-neural-networks/FED190E3D183E9B47C60DB0D6233E7CA
https://ieeexplore.ieee.org/abstract/document/8356572
https://ieeexplore.ieee.org/abstract/document/8356572
https://ieeexplore.ieee.org/abstract/document/8356572
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8879580
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8879580
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8879580
https://ieeexplore.ieee.org/abstract/document/7732316
https://ieeexplore.ieee.org/abstract/document/7732316
https://ieeexplore.ieee.org/abstract/document/7732316
https://www.sciencedirect.com/science/article/pii/S036083521730520X
https://www.sciencedirect.com/science/article/pii/S036083521730520X
https://ieeexplore.ieee.org/abstract/document/8472065
https://ieeexplore.ieee.org/abstract/document/8472065
https://ieeexplore.ieee.org/abstract/document/8452671
https://ieeexplore.ieee.org/abstract/document/8452671
https://link.springer.com/content/pdf/10.1007/s11554-019-00879-6.pdf
https://link.springer.com/content/pdf/10.1007/s11554-019-00879-6.pdf
https://reader.elsevier.com/reader/sd/pii/S0925231220302939?token=2251917CCC6D97ABD9C285663A387803FBF862B86BE1A14983F511AD8E0DF7CC826ABFFFE41527A766A582122BDBFC82&originRegion=eu-west-1&originCreation=20220321093615
https://reader.elsevier.com/reader/sd/pii/S0925231220302939?token=2251917CCC6D97ABD9C285663A387803FBF862B86BE1A14983F511AD8E0DF7CC826ABFFFE41527A766A582122BDBFC82&originRegion=eu-west-1&originCreation=20220321093615
https://journals.aps.org/prfluids/pdf/10.1103/PhysRevFluids.5.114602
https://journals.aps.org/prfluids/pdf/10.1103/PhysRevFluids.5.114602
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9402266
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9402266

Bibliography 73

[59] F. Salahdine, E. Ghribi and N. Kaabouch, ‘Metrics for evaluating the effi-
ciency of compressing sensing techniques,’ in 2020 International Conference
on Information Networking (ICOIN), IEEE, 2020, pp. 562–567.

[60] Z. Wei, J. Zhang, Z. Xu, Y. Huang, Y. Liu and X. Fan, ‘Gradient projection
with approximate L0 norm minimization for sparse reconstruction in com-
pressed sensing,’ Sensors, vol. 18, no. 10, p. 3373, 2018.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9016490
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9016490
https://www.mdpi.com/1424-8220/18/10/3373
https://www.mdpi.com/1424-8220/18/10/3373
https://www.mdpi.com/1424-8220/18/10/3373

Appendix A

Additional Material

75

DT method
5 peaks at 550

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8
Test 1 | MSE 1.393622328130588401e+06 1.490427343406841625e+06 3.799117889712288976e+06 8.370553834597004578e+06 2.949474451870576944e+06 2.138229358071683440e+06 1.281928793872042326e+06 3.815165240059590898e+06
Test 1 | COV 1.048958154763419337e+01 -7.192958315990664708e+00 6.920395643336274105e+00 -6.785151234249296337e+00 -5.469000350879137384e-01 -1.105510529787310459e+00 1.920647110974886829e+01 8.201461400047323380e+00
Test 2 | MSE 2.643100138807475567e+06 5.280935545313508250e+06 6.384666437418897636e+06 5.370962326043351553e+06 n/a n/a n/a n/a
Test 2 | COV 1.320024256365706306e+00 7.680759392850260880e+00 -9.097868060912582822e-01 4.204502397823662641e+00 n/a n/a n/a n/a
Test 3 | MSE 3.855792790713205934e+06 6.030738239727609791e+06 1.149122910208127089e+07 3.627107929459680803e+06 n/a n/a n/a n/a
Test 3 | COV 3.941525141271226662e+00 6.945233407371070200e+00 -7.699417000460968830e-02 -1.466539298207672204e-01 n/a n/a n/a n/a

DT method
5 peaks at 10000hz

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8
Test 1 | MSE 2.844212802539634332e+07 1.528523684714080580e+07 4.177079685052900761e+07 3.141946202730499208e+07 1.062301203279210441e+07 4.244429920220618136e+06 1.185929736181650870e+07 6.778451027927610092e+06
Test 1 | COV -9.298048236569474767e+00 -8.729805739624113770e+00 1.897342822530007567e+01 6.696004089813680338e+00 -5.554296438991456419e+00 1.343346671057613584e+01 -2.271565419509639128e+01 -1.317521588124516896e+01
Test 2 | MSE 3.023304432740109414e+07 4.462827864974663407e+07 2.219888556517611817e+07 2.429269520889344439e+07 n/a n/a n/a n/a
Test 2 | COV 2.891888942481055125e+01 1.339867422244893902e+01 -1.069697544968732394e+01 2.752852637383163170e+01 n/a n/a n/a n/a
Test 3 | MSE 3.136642182644686103e+07 4.623670257805746049e+07 2.388185999993267283e+07 1.897152760581874475e+07 n/a n/a n/a n/a
Test 3 | COV -5.201907160461962221e+00 1.924862656901208169e+01 -6.638528846014388307e+00 -7.070536786502399362e-01 n/a n/a n/a n/a

DT method
2000 peaks at 10000hz

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8
Test 1 | MSE 1.209055411985414177e+08 1.052758696479572803e+08 1.253388639714757502e+08 1.168671899995569438e+08 1.064078566033818871e+08 9.726729182252615690e+07 1.146526908222461343e+08 1.023605888753243834e+08
Test 1 | COV -1.530383819170825177e+02 1.599684989736520180e+01 -1.913199219580759518e+02 1.056356013457559584e+02 1.020033668713685273e+02 -2.402412686633374594e+00 -8.546659800866235912e+01 1.790598754474592980e+01
Test 2 | MSE 1.312696494094050229e+08 1.261298041288526505e+08 1.126076715551437885e+08 1.235838361083655804e+08 n/a n/a n/a n/a
Test 2 | COV -1.325650605406139659e+00 1.377437656035934488e+01 -5.168783842587539867e-01 5.009403907206500861e+01 n/a n/a n/a n/a
Test 3 | MSE 1.227763941270773709e+08 1.262246819095009416e+08 1.115094874356980473e+08 1.180236801442140341e+08 n/a n/a n/a n/a
Test 3 | COV 2.731704965955462683e+01 3.678990039563744574e+01 -2.091159879062830296e+00 1.073703713328080767e+01 n/a n/a n/a n/a

Autoencoder
1 layer

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8
Test 1 | MSE 2.408488473766756952e+08 1.648816600163049102e+08 1.712232135049584508e+08 1.163662061743448973e+08 2.573676785737839043e+08 2.820697436435102224e+08 2.084285465817244649e+08 2.325477646587332487e+08
Test 1 | COV 2.625015095839610440e+05 2.217369199902455439e+05 2.216446817630167352e+05 1.850247826773251581e+05 2.708564538395260461e+05 2.510158154601632268e+05 2.329600848608649394e+05 2.478705120838846778e+05
Test 2 | MSE 7.397122651588450670e+08 1.724831684752695858e+08 1.780876693219014108e+08 8.901507830018529296e+07 n/a n/a n/a n/a
Test 2 | COV 5.225671918025631385e+03 3.121676259551717976e+03 2.553319823737099341e+03 3.857792491861408962e+03 n/a n/a n/a n/a
Test 3 | MSE 1.076647560278687179e+08 9.014620423437382281e+07 8.389628857397617400e+07 5.594348448263374716e+07 n/a n/a n/a n/a
Test 3 | COV 3.405219091170237789e+03 2.920124308718724023e+03 2.548595934780662446e+03 3.685969574816708246e+03 n/a n/a n/a n/a

Autoencoder
2 layer

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8
Test 1 | MSE 4.528214194511554524e+03 1.522385880247892773e+13 4.527595709781394362e+03 5.775854345855247000e+15 1.348327821703363750e+14 4.626845618764898063e+03 4.581314266205911736e+03 4.591219864182956371e+03
Test 1 | COV 1.949759575662905490e+03 3.536571277768551838e+06 1.946200583402717712e+03 6.812789641794726253e+07 1.017703699389486946e+07 1.892875599724914309e+03 1.898356724857248537e+03 1.889558717973591229e+03
Test 2 | MSE 7.022286447863097237e+03 6.981764992355872891e+03 6.991009558139830006e+03 6.901778207591708451e+03 n/a n/a n/a n/a
Test 2 | COV 2.641542065142652262e+01 2.289754458037775819e+01 1.969898938244218556e+01 4.575191052097166278e+01 n/a n/a n/a n/a
Test 3 | MSE 6.927261270655274529e+03 9.278454290045237566e+22 6.926516665329490024e+03 6.884374568705996353e+03 n/a n/a n/a n/a
Test 3 | COV 3.398468987664653440e+01 1.152111010160497665e+10 2.828149426095248131e+01 5.176925607510975169e+01 n/a n/a n/a n/a

Autoencoder
3 layer

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8
Test 1 | MSE 2.126286889029704192e+18 2.120882080369323520e+18 2.118767474856602880e+18 2.117151758048523008e+18 2.029990802741289216e+18 2.018610760961132288e+18 2.022396936766479616e+18 2.014569987890757376e+18

Test 1 | COV 3.415409049443491745e+10 3.401621837847265244e+10 3.402103004972167587e+10 3.397587194208972168e+10 3.239114950093693161e+10 3.229642354370628357e+10 3.245462233628812408e+10 3.227646219371915436e+10
Test 2 | MSE 8.009233280480659375e+13 8.985155843472393750e+14 1.066694524924140781e+14 3.665304990172205625e+14 n/a n/a n/a n/a
Test 2 | COV 1.138080819415348349e+06 1.516950506124934740e+07 1.325682982811074471e+06 6.975927360221965238e+06 n/a n/a n/a n/a
Test 3 | MSE 1.059512153256169062e+14 2.733095232114952500e+15 1.405576081526362344e+14 5.302450472175020625e+14 n/a n/a n/a n/a
Test 3 | COV 1.841578127163342200e+06 2.918761807415320724e+07 2.220831626526521984e+06 1.039593409985646233e+07 n/a n/a n/a n/a

Decoder
1 layer

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8
Test 1 | MSE 3.946294027256350499e+06 3.643290902067882475e+06 3.809002832739434671e+06 2.885368017293198965e+06 5.657450570336458273e+06 6.249298326130573638e+06 3.842684793285682797e+06 3.833944408879209775e+06
Test 1 | COV 1.771652831024251282e+04 1.722999062416938978e+04 1.673033903922672107e+04 1.443598343970317910e+04 2.147782613972757827e+04 2.213886409573175843e+04 1.621486465427356961e+04 1.653568189572889969e+04
Test 2 | MSE 4.127603353556471411e+06 2.877505390228958335e+06 3.600196073908374645e+06 1.136455081122891512e+06 n/a n/a n/a n/a
Test 2 | COV 2.440829988128194827e+02 2.016384433950568109e+02 2.257925009143657746e+02 2.695579026165376604e+02 n/a n/a n/a n/a
Test 3 | MSE 1.657712587298569502e+06 1.855712463797598379e+06 1.219791066527955467e+06 8.974807519515962340e+05 n/a n/a n/a n/a
Test 3 | COV 2.213541626477892805e+02 2.064555348772916545e+02 1.623965312698178707e+02 2.570651141565599573e+02 n/a n/a n/a n/a

Decoder
2 layer

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8
Test 1 | MSE 1.414424794678807855e+08 1.365688483029343486e+08 1.414012479969825745e+08 1.288553647413551360e+08 9.230835810419328308e+10 1.560859720374978185e+08 1.366569890089822710e+08 1.395360799690653980e+08
Test 1 | COV 2.613341495744019921e+05 2.579482305094530748e+05 2.605421917497758986e+05 2.531721579521078093e+05 6.231410424245957984e+05 2.603673494444378593e+05 2.494847716168051702e+05 2.502686114442519611e+05
Test 2 | MSE 5.967436828380957794e+10 1.698396848529457855e+10 2.857455118691996765e+10 3.659068380158524513e+09 n/a n/a n/a n/a
Test 2 | COV 3.042105845242579380e+04 1.992615331866401175e+04 2.759240924405829719e+04 1.758085771556473628e+04 n/a n/a n/a n/a
Test 3 | MSE 6.705141870728878021e+09 2.695212512148351669e+10 5.650775581092918396e+09 1.604255231577508926e+09 n/a n/a n/a n/a
Test 3 | COV 2.176470884078076415e+04 7.370843914638047863e+04 1.595789180764942466e+04 1.409989967215549586e+04 n/a n/a n/a n/a

Decoder
3 layer

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8
Test 1 | MSE 1.523001501791838324e+06 1.260961397516635945e+06 1.463495823376373388e+06 1.097645269592777826e+06 2.107984755705568474e+06 1.991409989792311564e+06 1.448001858069201466e+06 1.283163667843575822e+06
Test 1 | COV 2.292601124192955831e+04 2.068995711284238132e+04 2.194475192285525918e+04 1.902805707680588239e+04 2.556289473812082724e+04 2.343468978507881911e+04 2.042493840566462313e+04 1.922560332244137317e+04
Test 2 | MSE 3.055026218848623466e+04 2.189802054882355733e+05 8.966092413011849858e+05 4.944436167393431970e+04 n/a n/a n/a n/a
Test 2 | COV 1.566214556955926440e+01 7.874634610264926948e+01 3.747770290788211867e+01 3.309602836815968629e+01 n/a n/a n/a n/a
Test 3 | MSE 9.063289042323119065e+04 1.647908779432526208e+05 1.629260523549946956e+05 1.357738532977987197e+05 n/a n/a n/a n/a
Test 3 | COV 2.617655044054141911e+01 3.787588008947837892e+01 2.666451462922259807e+01 5.792727157805530425e+01 n/a n/a n/a n/a

Compressed sensing OWL-QN
Sample size: 1%

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8
Test 1 | MSE 4.249786901218965068e+05 4.291046701698167599e+05 4.368533740919217817e+05 4.422074414298877819e+05 3.914082093200428062e+05 3.915066598604135797e+05 4.101410622784211300e+05 4.005830913247716380e+05
Test 1 | COV 1.476912270260763398e+04 1.474106118273814536e+04 1.522105835765609663e+04 1.524356193724893274e+04 1.300108350380697811e+04 1.293103721435618718e+04 1.387822019048961920e+04 1.359478681507147121e+04
Test 2 | MSE 6.207841088018705341e+04 4.699402346440585825e+04 4.961736838759281818e+04 1.533718118953239173e+04 n/a n/a n/a n/a
Test 2 | COV 3.481464992230320377e+02 6.484760493068382630e+02 3.207496557451964350e+02 1.081191720250234880e+02 n/a n/a n/a n/a
Test 3 | MSE 2.135758364969710601e+04 2.962856633206527840e+04 1.739871203518420589e+04 1.042743527343513233e+04 n/a n/a n/a n/a
Test 3 | COV 1.972384280583580107e+02 4.791841159590479151e+02 7.494666144963294130e+01 4.110118004635305766e+01 n/a n/a n/a n/a

Compressed sensing OWL-QN
Sample size: 10%

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8
Test 1 | MSE 6.044425597198811593e+05 5.810043869569100207e+05 6.034307526917003561e+05 5.754105063174954848e+05 5.956708779830506537e+05 5.965663272582957288e+05 5.634489018844402162e+05 5.623798420838776510e+05
Test 1 | COV 1.793066995810406661e+04 1.720922045621654615e+04 1.828667113775945109e+04 1.756098066826082504e+04 1.637151036990158900e+04 1.601963115700381422e+04 1.653238699615524820e+04 1.612920515179641916e+04
Test 2 | MSE 1.309184002211074985e+05 9.966992424207445583e+04 9.863982588805923297e+04 3.260839911039598155e+04 n/a n/a n/a n/a
Test 2 | COV 2.430795354073842645e+03 1.723271797823820407e+03 1.028969457988074964e+03 4.737542804522068423e+02 n/a n/a n/a n/a

Test 3 | MSE 4.639734449963921361e+04 6.307647780176149536e+04 3.735161872284601850e+04 2.248058572121092948e+04 n/a n/a n/a n/a
Test 3 | COV 6.504406695765134145e+02 1.120545458315941687e+03 3.918392642295011115e+02 2.249134958664542978e+02 n/a n/a n/a n/a

Compressed sensing OWL-QN
Sample size: 50%

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8
Test 1 | MSE 6.945118280397618655e+05 6.605421862763895188e+05 6.848875486169225769e+05 6.370581124609321123e+05 7.217064846299318597e+05 7.293680217009644257e+05 6.520174657145628007e+05 6.539568105125237489e+05
Test 1 | COV 1.950134194234678216e+04 1.825368574177053597e+04 1.968173983200711518e+04 1.845213022975073545e+04 1.809504619247519804e+04 1.759654868030479338e+04 1.820396485255123480e+04 1.733740334885967604e+04
Test 2 | MSE 2.330449658097256615e+05 1.605489098956142843e+05 1.702477207417858008e+05 5.792791759308025939e+04 n/a n/a n/a n/a
Test 2 | COV 4.668558307261637310e+03 2.670141627229381356e+03 2.009061793751382993e+03 1.042121489420562057e+03 n/a n/a n/a n/a
Test 3 | MSE 7.937541681848754524e+04 1.013819724984406203e+05 6.652648165061228792e+04 4.097000147177395411e+04 n/a n/a n/a n/a
Test 3 | COV 1.274297258562139859e+03 1.733568418728000097e+03 7.670773285231294949e+02 5.888166647970214171e+02 n/a n/a n/a n/a

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Jo Aleksander Johansen

Techniques for signal reconstruction
from sparsely
compressed vibration measurements

Master’s thesis in Cybernetics and Robotics
Supervisor: Frank Ove Westad
Co-supervisor: Johannes Holm Gjeraker
June 2022M

as
te

r’s
 th

es
is

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Acronyms
	Glossary
	Introduction
	Theory
	Transforms
	Fourier Transform
	Hilbert Transform
	Wavelet Transforms
	Principal Component Analysis

	Statistical Prediction
	Weibull Distribution
	ARMA & ARIMA Models

	Machine Learning and Deep Neural Networks
	K-nearest Neighbors
	Random Forests
	Support Vector Machines
	Linear Regression
	Gaussian Process Regression
	Training Neural Networks
	Cross-entropy Loss
	Optimizer Algorithms
	Activation Functions
	Fully Connected Neural Networks
	Convolutional Neural Networks
	Residual Neural Networks
	Recurrent Neural Networks
	Autoencoder Networks

	Convex Optimization and Compressed Sensing
	Norms
	Convex Optimization
	Compressed Sensing

	Previous Work
	Methodology
	dt Sensors
	Dataset
	Formatting the Data
	Recreating the Existing dt method
	Autoencoder Architecture
	Decoder Architecture
	Compressed Sensing Implementation
	Evaluation Metrics

	Results
	Discussion
	Further Work
	Conclusion
	Bibliography
	Additional Material

