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1 Preface

Concluding 5 years of studies, students who study Cybernetics and Robotics at the Norwegian
University of Science and Technology are to deliver a thesis for the 30-credit course TTK4900
Engineering Cybernetics, Master’s Thesis. This thesis, Sparse IR sensor EKF-SLAM for MQTT-
SN/Thread connected robot, presents the work done from January to June 2022 and builds upon
the work from Andersen (2022) [5].

For working on the project I was given a workstation, a nRF52840-based robot, a Raspberry Pi
3b+, a nRF52840 dongle, and access to the motion tracking system OptiTrack in room B333 in
Elektrobygget at campus Gløshaugen.

I would like to thank all the personnel at the ITK workshop by Forsøkshallen for helping out with
hardware-related issues of the robot. Moreover, I would like to extend my appreciation to my
supervisor, Tor Onshus, for always being available for guidance and discussions during work on
the project. Last but not least I would like thank all my student colleagues, family, and especially
Johanna for all the support.
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2 Summary and conclusion

The robot-project, also known as the SLAM-project, involves student contributions to a system
comprising of several robots wirelessly connected to a local server application. The system intends
to use the robots to map out an indoor environment. It is a goal that the hardware compon-
ents involved should be of low-cost in order to motivate smart software solutions and increased
accessibility of affordable robotics systems.

This thesis’ contributions to the robot-project may be seen as twofold - one part involving em-
bedded software development of the communication system used between robots and the server,
and the second part comprising development of a Simultanous Localization and Mapping (SLAM)
algorithm for the robots. The main focus has been directed at implementing software for a differen-
tial drive robot built by previous student contributions based around the nRF52840 Development
Kit ported with FreeRTOS. The software implementations are written in C for the nRF52840 based
robot, C++ for minor contributions to the server application and python for testing, logging and
plotting results.

In regards to the development of the communication system, a multi-threaded MQTT-SN client
was developed for the robot. Furthermore, a Raspberry Pi was configured to run as a MQTT-SN
gateway and broker. The developed communication system was extensively used for both debug-
ging, testing and recording results from the state estimation and mapping part of the assignment.

The existing server-robot system before work on this thesis was carried out could be characterized
by a master-slave relationship. The robots were responsible for collecting measurements of their
surrounding environment, and these measurements along with the robot’s pose were sent to the
server. The server would command the robots to move to a given target position, and use the
information provided by the robot to concurrently build a map and place the robot inside the map.
The server application has a simple GUI for observing the robot’s position and the incrementally
generated map, as well controls for human operators for commanding the robots. In an attempt to
remove the master-slave relationship, the robots should be able to operate autonomously (without
server interaction) and generate a map by themselves. Thus, rendering the server application only
a tool for visualization, data collection and analysis. I.e. the aim is to demote the server application
from being a core part of the robot’s navigation system.

As a first step towards making the robots of the SLAM-project fully autonomous, a feature-based
Extended Kalman Filter (EKF)-SLAM algorithm intended for the nRF52840 robot was developed.
The robot utilizes a set of four low-end infrared sensors mounted on top of a rotating tower for
exteroceptive sensing. Line segments are used as features, and are used in the state estimation
framework provided by the Kalman filter for fusion with odometry and inertial measurements in
order to simultaneously provide estimates of the robot’s two-dimensional position and heading,
and build a map. The line extraction algorithm is based upon the density based clustering method
known as DBSCAN, the Iterative Endpoint Filter (IEPF), and minimum-square-error line fitting.
The feature extraction algorithm was implemented for the nRF52840 robot, however, due to time
constraints of the project the EKF-SLAM algorithm implementation for the robot was not finished.
Testing of the SLAM approach was still conducted as the algorithm was developed initially in
python. Testing the algorithm was done by creating a dataset utilizing the developed MQTT-
SN client to publish data from the robot running the line extraction algorithm whilst navigating
through a maze. The results show that the EKF-SLAM algorithm outperforms the pose estimates
of the EKF currently running on the nRF52840 robot in the presence of loop-closures. However,
the generated map appears slightly skewed and displaced likely due to the simplistic closed-form
line uncertainty method used in the line extraction process.
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3 Sammendrag og konklusjon

Robot-prosjektet ogs̊a kjent som SLAM-prosjektet er et resultat av flere studentbidrag til et system
bestpende av flere roboter med tr̊adløstilkobling til en lokal server applikasjon. Systemets form̊al er
å kartlegge et innendørs omr̊ade. Det er et m̊al at maskinutstyr som inng̊ar i prosjektet skal være
billig for å motivere smarte programvareløsninger og kunne øke tilgang p̊a rimelige robotsystemer.

Denne avhandlingens bidrag til robot-prosjektet er kan ansees som todelt - en del som omhand-
ler utvikling av programvare i tilknytning til kommunikasjonssystemet brukt mellom robotene og
serveren, og en annen del som handler om utvikling av en algoritme for lokalisering og kartleg-
ging for robotene. Hovedfokuset har vært rettet mot utvikling av programvare for en tohjulet
robot laget av tidligere studenter som er basert p̊a utviklingskortet nRF52840 portert med FreeR-
TOS. Programvareløsningene er utviklet i C for nRF52840-roboten, C++ for sm̊a bidrag til server
applikasjonen og python for testing, logging og plotting av resultater.

I forbindelse med utvikling av kommunikasjonssystemet ble en fler-tr̊adet MQTT-SN klient laget
for roboten. Ytterligere ble en Raspberry Pi konfigurert som en MQTT-SN gateway og MQTT
server. Kommunikasjonssystemet ble tatt i bruk for feilsøking, testing og innhenting av resultater
fra tilstandsestimering- og kartleggingsdelen av oppgaven.

Det eksisterende server-robot systemet før arbeid p̊a oppgaven ble utført kunne vært beskrevet
som et master-slave forhold. Robotene var ansvarlige for å hente m̊alinger fra omverdenen som ble
sendt sammen med robotens posisjon og retning til serveren. Serverens oppgave var å kommandere
robotene til et m̊alomr̊ade, og bruke informasjonen sendt fra robotene til å bygge et kart og plassere
robotene i kartet. Server applikasjonene har et enkelt brukergrensesnitt for å observere robotenes
posisjon og kartet, i tillegg til knapper for å manuelt styre robotene. I et forsøk p̊a å fjerne master-
slave forholdet bør robotene operere autonomt (uten å m̊atte forholde seg til serveren) og kunne
generere et kart selv. Det er et m̊al at server applikasjonen kun skal bli brukt som et verktøy for
visualisering, datainnhenting og analyse, og ikke fungere som en sentral del av navigasjonssystemet
for roboten.

Som et første steg mot å gjøre robotene autonome ble en algoritme basert p̊a et utvidet Kalman
Filter utviklet for nRF52840-roboten. Algoritmen detekterer linjestykker som brukes i tilstand-
sestimeringen for å b̊ade kartlegge og korrektere posisjon og retningen til roboten (EKF-SLAM).
Roboten bruker fire rimelige infrarødsensorer plassert p̊a toppen av et roterende t̊arn for å hente
data fra omgivelsene sine. Linjedetekterings-algoritmen er basert p̊a grupperingsmetodene DB-
SCAN og IEPF, og minste kvadraters metode for lineær regresjon. Linjedetekterings-algoritmen
ble implementert for roboten, men EKF-SLAM implementasjonen ble ikke ferdigstilt i tide. Likevel
ble implementasjonen testet ettersom den først var implementert i python. For å teste algoritmen
ble et dataset laget ved å bruke den utviklede MQTT-SN klienten til å sende data fra roboten
samtidig som roboten kjørte rundt en labyrint og detekterte linjestykker. Resultatene tyder p̊a at
EKF-SLAM algoritmen er i stand til å estimere posisjon og retning p̊a roboten bedre enn EKF
algoritmen som kjører p̊a roboten n̊ar roboten gjenkjenner omr̊ader den har besøkt tidligere. Kar-
tet som genereres samtidig som roboten estimerer sin egen posisjon og retning stemmer ikke helt
overens med de faktiske omgivelsene roboten prøver å kartlegge. Dette skyldes antakeligvis den
enkle formen for estimering av linjestykkenes usikkerhet i linjedetektsjons-algoritmen.
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4 Introduction

The relevance of autonomous mobile robots for society continuous to grow as advancements in
technology make the use-cases for robots extend into a multitude of domains [3]. Mobile robots
may be used for tasks such as rescue and recovery missions in hazardous environments, industrial
manufacturing, and for consumer-oriented applications such as lawn mowing and home cleaning.
Moreover, the rise of Industry 4.0 enables robotics systems to operate more efficiently, provides
real-time surveillance and remote control, as well as expanding the list of possible use-cases for
autonomous mobile robots[17].

The SLAM-project was first started in 2004 by the Department of Engineering Cybernetics. Pre-
viously the project was referred to as the LEGO-project, since the robots were based on the LEGO
Mindstorms robotics kits. Since then new robots have been built based around the family of
Arduino boards, and most lately the nRF52840 development kit.

The goal of the SLAM-project is to make multiple low-end robots cooperate with a local server in
order to map out an unknown indoor area. The server application remotely controls the robots to
explore their surrounding environment, and receives updates of the robots’ location and information
regarding the robots’ perceived local surroundings.

The main focus of this thesis will be surrounding software development for the nRF52840-based
robot. More specifically, building upon the work done in [5] to make the robot less dependent on
server interactions by instructing the robot to do the computations involved in generating a map
whilst navigating through an unknown area itself.
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5 Problem statement

Implementation of a SLAM solution on a nRF52840 DK based robot ported with FreeRTOS
connected to a local server for visualization is the main goal of the work on this thesis. More
specifically this entails:

• Exploiting the correlations between the range-bearing measurements of the rotating IR-sensor
tower with odometry and inertial measurements to minimize pose drift.

• Incrementally building a two-dimensional representation of the environment the robot ex-
plores suitable for autonomous operation of the robot without the need for communication
with the server.

• The SLAM implementation should be extendable to multi-robot SLAM.

• Setting up a robust communication link to the server application.

• Being able to send target positions from the server application to the robot.

• Use the server application to visualize the map made by the robot and its trajectory.
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6 Previous work

Every year since the SLAM-project was initiated students have contributed to the project in various
ways such as hardware-focused building of the robots, low-level embedded software development
of drivers for interfacing the hardware components, high-level embedded software for control, nav-
igation and communication, and various implementations of server-side logic.

Jølsg̊ard (2020) [22] contributed to the SLAM-project by building the nRF52840-based robot re-
sembling the new one used for software development in this thesis. Additionally, Jølsg̊ard adapted
the software of the older nRF52832-robot from the work done by Korsnes (2018) [23], Leithe
(2019) [25] and Stenset (2020) [47]. These collections of contributions to the SLAM-project form
the main part of the software running on the nRF52840-robot encompassing a control system cap-
able of steering the robot to a target position, an inertial navigation system, and software related
to server communication.

Later on H̊aland (2021) [19] improved upon the navigation system of the nRF52832-robot which also
was adapted for the nRF52840-robot and serves as a starting point for further software development
for the author’s specialization project [5]. In [5] a newly built nRF52840-robot closely based of the
design by Jølsg̊ard was put into use. During work on the specialization project, the robot’s sensor
suite was calibrated in collaboration with Lindefjeld (2021) [27], and tuning of the control and
navigation system was conducted. Furthermore, a line feature extraction method was developed
and implemented for the nRF52840-robot, however, due to server communication issues testing the
method was restricted by that the robot had to extract line segments while at rest in order to collect
results over a wired connection. The problems related to server communication over Bluetooth
is likely caused by multiple access to the shared resources of the communication module. This
became apparent during testing in [5] when both point clouds and extracted line segments were
tried to be sent concurrently. Moreover, the resulting detected line segments were questionable to
be used for a reliable SLAM method.

Two server implementations are currently available for usage in the SLAM-project. The first server
was developed in Java in 2016 and is referred to as the Java-server. The current version of the Java-
server is a result of the work last conducted by Lien (2017) [26]. Robots communicate with the Java
server over Bluetooth Low-Energy (BLE), which was what [5] was trying to use for documenting the
results from the line extraction method. Development of the second server implemented in C++
was started in 2019 motivated by that most Cybernetics students at NTNU are more familiar with
the C++ programming language over Java in addition to the new communication stack available
for the nRF52-series of robots. With the new communication stack the robots form a Thread-
based mesh network and communicate with the C++-server over MQTT-SN. A legacy layer was
designed by Grindvik (2019) [18] which acts as a connectivity chip for older robots to access the
Thread network, and Murad (2021) [30] tried to implement an MQTT-SN client for the nRF52840-
robot since these robots do not need the additional legacy layer. Murad was not able to successfully
create a reliable messaging link using MQTT-SN from the newer robots, instead a CoAP messaging
system was implemented which also removed the need for a Thread Border Router. However, the
C++-server is not currently able to communicate with the robots over CoAP.
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7 System overview from starting point

Figure 1: System overview

7.1 Robot hardware

The main hardware components of the robot are briefly outlined in the following sections. Figure
2a-2c are illustrations of the robot from different perspectives with descriptions of the components
in use, and its dimensions.

7.1.1 nRF52840 Development Kit

Nordic Semiconductor’s nRF52840 Development Kit (DK) board PCA10056 is used for develop-
ing embedded applications for the nRF52840 System-on-Chip (SoC) which serves as the main
computing module for the robot. The nRF52840 SoC embeds a 32-bit ARM Cortex-M4 central
processing unit (CPU). Using the development kit for programming the SoC enables fast prototyp-
ing of Bluetooth, Thread, and various other wireless communication applications due to the rich
set of peripherals the DK provides. In addition to the 802.15.4 2.4 GHz radio, the board has 64
Mb of external flash memory available, easily accessible GPIO (General Purpose Input/Output)
ports for additional peripherals, programmable buttons and LEDs, and power supply options such
as both a USB- and Lithium Polymer (Li-Po) battery connector. [33]

7.1.2 Machifit 25GA370 DC motors

The differential drive robot’s wheels turn using two separate 12V DC motors from Machifit. Un-
fortunately there seems to be no known datasheet for the motors. However, the motors are stated
to be capable of running at 110 rpm from the website where they were purchased. Additionally,
each motor has built-in quadrature encoders for measuring wheel displacement.
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7.1.3 L298N Motor Driver

The L298N motor driver board is based on the L298 Dual H-bridge integrated circuit. The purpose
of the board is to provide an analog interface for controlling the two DC motors independently.
The nRF52840 SoC uses PWM-signal generation as input to the L298N for controlling each wheel’s
rotational velocity, whilst digital signal inputs to the motor driver board provide the means for
controlling the rotation direction. The input PWM-signals are essentially low-pass filtered and
boosted by the motor driver board in order to provide a stable 0-12 voltage to each of the motors.
[48]

7.1.4 IR sensor tower

On top of the robot there is a set of four 2YA21 Sharp infrared (IR) sensors. The IR sensors are
placed radially with respect to each other mounted on a S05NF servo motor to make the set of IR
sensors rotate. The sensor tower has a maximum rotation angle of 90°, with a resolution of ∼ 1°.
Each of the IR sensors have a valid measurement range of 0.1− 0.8 [m] [42]. One of the IR sensors
used in [5] was faulty, and was therefore replaced with an equivalent model.

7.1.5 ICM-20948 Inertial Measurement Unit

The ICM-20948 Inertial Measurement Unit (IMU) from InvenSense is located on the bottom part
of the robot’s chassis. The IMU consists of a 3-axis MEMS based gyroscope, accelerometer and
compass. Additionally the board is equipped with a digital motion processor used for simple
filtering of sensor measurements, and power management. The IMU’s datasheet [21] claims that
it is the world’s lowest power 9-axis motion tracking device, and is a good fit for smartphones,
wearable sensors and IoT applications.

7.1.6 Custom peripheral shield

The custom-made peripheral shield by Jølsg̊ard [22] is attached on the top of the nRF52840 DK.
The peripheral shield’s primary purpose is to easily connect all peripherals mentioned above to the
GPIO headers of the development kit.

7.2 Robot application

The code base at project start-up from [5] consisted of mainly five threads of execution, these were:

• A pose controller. Runs a PID controller for controlling the robot’s position and heading
to a target position. The control output is fed as speed references to the underlying wheel
speed controllers. The pose controller thread is structured as a finite state machine where its
current state is dependent on the robot’s current pose. When the pose controller thread is
in the moveForward state, the robot will move in a straight line towards its target position.
In this case only the residual distance of the robot’s current position and target is used as
feedback. When the pose controller is in the moveClockwise state, the robot rotates in place
in the clockwise direction. Similarly, the robot rotates counter-clockwise whilst at rest when
in the moveCounterClockwise state. The robot transitions from the moveForward state to
rotating in place whenever the angle to the target position exceeds a given threshold. Lastly,
when the robot arrives at the target position it is stopped and enters the moveStop state.

• A speed controller. Runs two PID controllers for controlling each wheel’s rotational velocity
by providing a suitable varying voltage to the L298N motor driver. Feedback is provided
from the built-in encoders of the DC-motors.
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• An estimator. Implements an Extended Kalman Filter (EKF) for pose estimation utilizing
measurements from the wheel encoders and IMU. Note that due to the high noise levels of
the IMU, the EKF primarly relies on the encoders for pose estimation.

• A sensor tower task. Responsible for actuating the servo motor turning the tower, as well
as sampling range-bearing measurements from the four IR sensors. The sensor tower only
rotates whilst the robot is stationary. The robot still samples IR sensor measurements while
the robot moves, however, the sensor tower does not rotate.

• A mapping task. Runs the line extraction process from [5].

• A communication task. Depending on the configuration from robot config.h handles either
Bluetooth communication for use with the Java server, or interfaces an additional onboard
nRF52 dongle over I2C for MQTT-SN communication with the C++ server.

The application is built using Nordic Semiconductor’s nRF5 SDK version 15.0.

7.3 Server application

The C++-server application is also multi-threaded and its main threads of execution are:

• A renderer for a graphical user interface (GUI). Used to display the robot’s location and a
map.

• An MQTT client for communicating with robots. The MQTT client transmits and receives
messages through a public broker maintained by Eclipse as illustrated in figure 1.

• A RBPF-SLAM solution for simultaneously estimating each robot’s pose and generating a
map. For more details refer to Mullins (2020) [29].
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(a) Robot top view

(b) Robot bottom view

(c) Robot side view
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8 Theory

The following sections will first present the reader with theory related to online SLAM, a collection
of pose- and map estimation techniques for mobile robotics applications. The SLAM problem will
be described with special emphasis on how the problem has been solved by others with similar low-
cost hardware as is used for robots of the SLAM-project. Secondly, theory about the nRF52840-
robot’s communication stack will be presented covering both Thread and MQTT-SN. Lastly, a
brief introduction to the real-time operating system FreeRTOS will be given.

8.1 SLAM

Simultaneous Localization and Mapping (SLAM) is an estimation problem at the heart of autonom-
ous mobile robot navigation. A solution to the SLAM problem provides estimates of the robot’s
relative position to its surrounding environment. Mathematically we may express the estimation
problem as finding the a posteriori estimate of the probability density function describing the joint

pose-landmark vector νk =
[
xT
k mT

k

]T
at every discrete time-step k. The pose vector xk typ-

ically holds information on the robot’s position and heading, and the landmark vector mk stores
landmarks making out the robot’s explored surroundings. Thus, as the name implies, SLAM may
be described as the process of a robot concurrently mapping out an a priori unknown environment
and placing itself in the map being built.

The most common use case for SLAM methods are for autonomous robots in GNSS denied en-
vironments, i.e. in situations where the robot does not have any prior knowledge of its local sur-
roundings. Typically the operating environments of SLAM robots either have limited GNSS-signal
access, or none at all. Examples of such operating environments are inside buildings, underwater,
in mountainous or urban areas with large obstructions, or on another planet than Earth. Even
under circumstances when GNSS is commonly available it is not uncommon for autonomous robots
to tackle the SLAM problem to increase the navigation system’s robustness in case of GNSS-signal
loss. For GNSS to work at all there must always be at least three GNSS satellites available, thus
rendering GNSS a vulnerable system.

Other factors that motivate for usage of SLAM methods is the generation of a map itself as the
robot explores the environment. The map may be used as a core part of other systems of the
robot, for instance for path planning and to aid in collision avoidance. Moreover, the map of the
environment may serve as a visual tool for human operators.

All SLAM systems depend on the use of exteroceptive sensors to capture measurements of the
robot’s environment. Typically SLAM systems employ ultrasonic sensors, LiDARs, or various
types of cameras (these types of systems are commonly referred to as Visual SLAM systems).

A key point to how most SLAM implementations work is that they exploit the inherent correlations
between consecutive robot poses and landmarks. Take for instance a robot that gathers odometry
measurements from its wheel encoders for measuring the robot’s relative displacement from its
starting position. Furthermore, the robot is equipped with some kind of exteroceptive sensor for
collecting range-bearing measurements of local landmarks. If the robot is able to associate mul-
tiple range-bearing readings with the same landmark as the robot moves closer to that landmark,
intuitively the robot may increase its belief in its own position and orientation as the odometry
and range-bearing measurements correlate with the robot moving towards the landmark. In the
case of the robot revisiting an area it has previously explored (and the robot is able to correctly
identify that it has been in the same location before) SLAM implementations may try to exploit
this match in a way that uses previous correlations to update and correct the entire map. This
is commonly referred to as a loop-closure. Loop-closures are a key component in the success of
SLAM methods, however, they also highlight one of the major vulnerabilities of SLAM. Wrongly
claiming that a loop-closure has taken place will for many systems make the robot not able to
further function properly and the robot’s state estimation will be left unrecoverable.

Most SLAM architectures are characterized by being separable by a front-end and a back-end.
The front-end’s responsibility is to interface the sensors used by the SLAM method. Mainly this
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involves gathering sensor data, and performing any necessary pre-processing steps on the data
before the information is fed into the back-end. The back end is responsible for performing the
optimization steps required for estimating the system state. At its core the back-end performs
maximum a posteriori (MAP) estimation, thus seeking to find the pose-landmark vector which
minimizes errors in our predictions given a set of measurements. The methods used in the back-
end of a SLAM solution are typically divided into two paradigms, these are; recursive filtering
approaches, and probabilistic graph methods. The recursive filtering approaches include various
flavours of Kalman Filters and particle filters. Graph methods address some of the drawbacks of
many of the filtering approaches, for instance they quickly become computationally demanding
with a large amount of landmarks. Graph methods try to take advantage of the structure of the
SLAM problem with graph optimization techniques.

[9] [11]

8.1.1 Map representation

Various SLAM methods may typically be placed into one of two categories mainly dependent
on how the developer of the method chooses to represent the robot’s surroundings. These are,
feature-based and dense SLAM methods.

Dense SLAM methods are characterised by that there is no need to manipulate measurements
from exteroceptive sensors to extract features from the environment. I.e. the measurements from
exteroceptive sensors are used directly as landmarks to be used in the estimation problem. Using
dense SLAM methods, 2D or 3D occupancy grids are commonly used for representing the map. An
occupancy grid is a set of cells with a given resolution and position that may represent a probability
or simply a boolean indicating an obstruction in the environment corresponding to that particular
cell. On the other hand, feature-based SLAM methods process measurements from exteroceptive
sensors in such a way that features of the environment are collected. The most basic features are
lines or line segments corresponding to walls of the environment. Other features may be corners,
trees, or any object that may be extracted from sensor readings of the surroundings.

8.1.2 Dense vs. feature-based

The main advantage of dense SLAM methods over feature-based methods is that the information
loss of not trying to find features from sensor measurements is kept at a minimum. I.e. dense
methods do not care about the classification of the sensor data, only the data itself. One can only
classify data to a finite set of categories. Thus, there will always be a risk of throwing away parts
of the information stream from sensors that might be vital in order to accurately generate a map.
Followingly, it should not come as a surprise that dense SLAM methods generally require more
storage resources and computational power than feature-based methods since the sensory data has
not been aggregated in any way. Therefore constrained embedded devices, such as the nRF52840
robot, are in general not fit for dense SLAM methods. However, feature-based methods still rely
on the pre-processing step of feature extraction which also might be troublesome with regards to
the extra computational effort required.

8.1.3 SLAM with sparse sensing

Most SLAM implementations rely on exteroceptive sensors that provide accurate and dense meas-
urements. However, less work has been done on SLAMmethods where range-bearing measurements
are considered sparse with higher noise levels. Similar cases to the sensing system for the nRF52840
robot which uses range-bearing measurements from low-cost IR sensors is even less mentioned in
litterature. Using an array of four slowly rotating IR sensors for mapping is not the most conven-
tional use of IR sensors in robotics. More than often the IR sensor’s limited sensing range (typically
< 1.0 m) and dependence on the reflectance properties of surfaces renders them primarly used for
binary obstacle detection and collision avoidance [8] [1].
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The research considering sparse sensing SLAM methods is motivated by lowering the cost of the
robot, which in turn would make autonomous robots more accessible for consumers and educational
institutions. Moreover, many of the sensing systems for robotic SLAM applications may simply not
be fit for smaller robots. Smaller robots, such as the nRF52840 based robot, must adhere to more
strict constraints regarding the physical size and weight of the equipment, power consumption, and
the complexity of neccessary software drivers for extracting data from the sensors. To the author’s
knowledge, only filtering-based approaches to solving the SLAM problem have previously been
used for robot’s with a low-end sensor suite and where only sparse exteroceptive measurements are
available.

Beever and Huang [7] developed a SLAM method based on a Rao-Blackwellized particle filtering
(RBPF) approach with line and line segment features for a similar low-cost sensing system as the
nRF52840 robot. Particle filtering is a nonlinear filtering technique based on random sampling.
Unlike Kalman filtering approaches, the particle filter does not assume that the estimated state
vector is Gaussian distributed. Instead, the particle filter will estimate the state density by iter-
atively resampling a set of weighted particles representing most likely robot poses and landmarks.
Particles that do not match the observed state from odometry and range-bearing measurements
are discarded, and new samples are redrawn from the estimated density during the next update. A
common problem with the particle filtering approach is that a large number of particles are needed
in order to estimate the state with sufficient accuracy. Hence, many particle filtering implementa-
tions adopt the Rao-Blackwellized variant which aims to increase the computational efficiency by
exploiting that not all system states necessarily require nonlinear models. Rao-Blackwellization
essentially boils down to using random sampling for the nonlinear states, and Kalman filtering for
the linear states [9]. Beever and Huang’s approach is based on collecting multiple sparse scans of
the environment whilst the robot moves in order to group the range-bearing readings into what
they refer to as multiscans. They argue that the tradeoff in the uncertainty of the robot pose
whilst it dead-reacons between updates of multiscans is low enough in order to more accurately
extract features that are better suited to be used in the estimation process. SLAM updates are
only performed after a multiscan has been formed after a given number of robot poses. To further
increase efficiency their particle filter implementation does not keep track of each pose between
multiscans in order to avoid extracting features for every particle for each pose of the multiscan.

Similarly to Beever and Huang, Yatim and Buniyamin [53] developed a RBPF SLAM algorithm
with low-cost IR sensors. However, Yatim and Buniyamin opted for a dense approach and use
occupancy grids to represent the map as opposed to a feature-based map. The probability of a cell
of the occupancy grid being obstructed is computed by a neural network with the pose of the robot
and range-bearing measurements as inputs. The authors advocate for the usage of the machine
learning method due to it being hard to establish sufficiently accurate measurement models for IR
sensors.

Abrate et al. [1] approached the SLAM problem with low-end IR sensors using an Extended
Kalman Filter (EKF) with line features. Mane et al. [28] also use the EKF for pose and map
estimation, and also use the same Sharp IR sensors as are in use for the nRF52840-robot. For
Gaussian and linear state dynamics the Kalman Filter provides a well-established framework for
recursive state estimation, illustrated by the block schematic in figure 3. The Kalman Filter
provides online estimates through two important steps; a prediction, and update step. Specific for
SLAM, when no information about the robot’s local surroundings are available the robot relies on
the prediction step based on a motion model describing the robot’s kinematics. Predictions are
typically computed from the control input, and/or readily available high-frequency measurements.
The output of the prediction step is a prediction of the state vector xk|k−1 and a state covariance
P k|k−1 representing the filter’s belief in the state at the next time step k, given what is known
about the system state at the current time step k − 1. The Kalman Filter performs an update
sequence when information about the environment is available, with the optional step of extracting
features from the raw exteroceptive data. The resulting computations of an update sequence gives
xk|k and P k|k which ideally should represent the most accurate estimate of the system state and its
uncertainty at time step k. The output from the update step may be viewed as a weighted correction
step, where one compares an exteroceptive measurement to the filter’s prediction. Depending on
how the different states and measurements are weighted, the update step will correct the robot’s
predictions according to what it is currently observing. For linear systems exposed to Gaussian
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Figure 3: Block schematic for Kalman Filtering framework for SLAM. Adapted from Mane et al.
[28]

noise the Kalman Filter will mathematically provide optimal estimates. In the case of systems with
nonlinear dynamics, such as the movement of a differential drive robot in 2-dimensional space, it
is still possible to use the Kalman filtering framework. However, the nonlinearities of the problem
must be handled appropriately. In the case of the EKF the nonlinearities are handled by means of
linearization. The EKF will linearize the system’s process model and measurement model around
the most recent estimate for the prediction step, and the latest prediction for the update step of
the filter.

Choi et al. [12] also propose to use the EKF for low-end exteroceptive sensors for solving the
SLAM problem and additionally constrain the problem to environments consisting of only parallel
or perpendicular walls. Similarly, Yap and Shelton [52] use the orthogonality assumption for their
low-cost sonar-based RBPF-SLAM approach.

8.1.4 Feature extraction with sparse sensing

Beevers and Huang’s Rao-Blackwellized particle filter SLAM solution was implemented with both
line and line segment features. Their feature extraction algorithm initially performs a threshold
based clustering of points from a multiscan which are transformed to a global Cartesian frame.
The feature extraction scheme followingly performs Iterative Endpoint Filter (IEPF) clustering on
each of the previously found clusters. The IEPF clustering is used to group points that belong to
the same line. The initially distance based clustering is required since the IEPF scheme expects a
set of points that form line segments with connecting endpoints. Thus, the initial clustering step
functions as a breakpoint detector. Computation of maximum likelihood line parameters of each
IEPF cluster concludes the line extraction process. Using the maximum likelihood method one is
able to also compute the covariance of the extracted line feature. For extracting line segments, the
same line extraction algorithm is employed, however an additional step of finding the endpoints of
the line is required. This was done by orthogonally projecting the Cartesian points onto the line,
and letting the pair of projections which make up the longest segment represent the endpoints.

Abrate et al. also extract line features for their SLAM implementation. After a given number
of raw range-bearing measurements from the robot’s IR sensors are collected their line extraction
implementation initially perform a segmentation step. The segmentation step involves grouping
the measured points of the environment in a sliding window, and for each group of points a non-
linear fitting scheme is employed. This is followed by a merging step where similar lines are merged
together, and an information filter is used to compute an expression for each of the extracted line
features’ uncertainties.

The feature extraction method employed by Choi et al. consists of five steps. The first step entails
sampling range-bearing measurements over a number of poses, and computing a set of point cloud
means from the raw measurements to reduce both the number of points and noise level. After
sorting the points by bearing, the IEPF based clustering method is used to find points that make
up straight line segments. In the third step a least square line is computed for each IEPF based
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cluster. Since the least squares line fitting strategy is prone to computing inaccurate line segments
with respect to the actual environment due to outliers, Choi et al. use a modified version of the
Hough Transform to counteract the effect of outliers in addition to estimate the line parameters’
uncertainties. Their version of the Hough Transform uses the initial estimates of the line provided
by the least square fit to perform a constrained search for line features in Hough space.
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8.2 Thread

Thread is an open standard full-stack architecture for wireless IoT applications. Furthermore,
Thread may be described as a framework for creating wireless personal area networks. Thread
is mostly used in the domain of consumer oriented home automation, however, is also used for
industrial applications such as asset monitoring [20].

OpenThread is an open-source implementation of Thread released by Google Nest certified by
the Thread Group. OpenThread implements the main part of the communication stack used for
creating the MQTT-SN client on the nRF52840 robot.

8.2.1 Stack

As depicted in figure 4, the link- and physical layers of the Thread stack is implemented with IEEE
802.15.4. The physical layer operates at 250 kbps in the 2.4 GHz radio frequency band [4]. The
link layer uses CSMA/CA (Carrier-sense multiple access with collision avoidance) as its multiple
access method in order for nodes to be able to sense the channel’s availability and provides link
layer re-transmission.

The network layer of the stack is carried out by 6LoWPAN (IPv6 over Low-Power Wireless Personal
Area Networks), a version of the IPv6 protocol designed for constrained battery-powered devices.
The network layer enables IP addressed end-to-end packet delivery across networks.

UDP (User Datagram Protocol) serves as the transport layer of the Thread stack. The Thread
Specification states that TCP (Transmission Control Protocol) may optionally be used although
6LowPAN-based stacks tend to run into performance issues with the packet flow control overhead
of TCP in contrast to UDP [20].

The application layer protocol of the Thread stack is CoAP (Constrained Application Protocol).
Similarly to most HTTP(S)-based APIs CoAP follows the principles of the REST model. I.e.
application message flow is characterized by a request/response architecture; a CoAP server exposes
its resources through a URL and CoAP clients may retrieve and/or manipulate the resources with
GET-, POST-, DELETE-, etc. requests. Unlike HTTP, CoAP is designed specifically for embedded
IoT devices. For the Thread stack CoAP is used for the control messaging procedures involved in
for instance how a node is assigned to take on the Leader role, and for managing IP addresses [43].

Figure 4: Thread stack

8.2.2 Motivation for Thread

There are several reasons that motivate for usage of Thread for connected embedded applications
other than the stack’s design emphasis on conforming to the constraints of these types of devices.
Firstly, being an IP-based protocol Thread networks are able to seamlessly incorporate into other
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IP networks. E.g. battery-powered devices forming a Thread network may easily be monitored by
a smart phone or laptop over IEEE 802.11 (Wi-Fi) connected to a local area IP network.

Secondly, Thread is designed to provide reliable end-to-end communication. Thread’s reliability
is based on the concept of having no single point of failure due to that the devices forming the
Thread network are able to take on different roles depending on the current active nodes of the
network. I.e. when a certain node fails Thread defines the mechanisms that should take place in
order for the network to automatically heal and re-configure. For instance reassigning the failed
node’s role to another (active) node.

Moreover, the Thread stack implements mesh routing in order to further strengthen end-to-end
reliability of message delivery. This entails that Thread devices are able to forward messages via
other certain types of devices of the network. The mesh forwarding feature of Thread enhances
the robustness of the network in situations where a node is not able to directly communicate with
another node due to for example signal fading or interference.

Lastly, considering Thread was designed for end-devices that might control various processes such
as light switches at home or actuators in industrial plants, security becomes a major consideration.
Therefore, the Thread architecture is implemented with security in mind in several layers of its
stack. UDP datagrams are secured by DTLS, a variant of TLS, which in the case of the Thread
implementation for the nRF52840 robot encrypts datagrams with AES (Advanced Encryption
Standard), and provides other cryptographic mechanisms to hinder man-in-the-middle attacks
such as manipulating in-flight messages and authentication schemes to verify the sender. The
IEEE 802.15.4 protocol also provides security at the link-layer, thus ensuring that frames are
secured over each hop in the mesh network on the way to their end destination. Furthermore,
as mentioned above Thread may also be described as a framework for deployment of wireless
personal area networks, this is especially evident considering the process of a device joining the
Thread network referred to as device commissioning.

8.2.3 Device types

Devices constituting a Thread network may be divided into two types; routers and end-devices.
The main tasks of a router is to forward packets to other devices on the network and serve as a
device commissioner when a new node attempts to join the network. End-devices are typically only
able to take part in the Thread network via a router, and are not capable of forwarding packets
to other devices. Thus, one may label an end-device as a child, whilst the router the end-device
communicates with (directly i.e. one hop) is its parent.

There is a special type of router that extends the standard Thread router’s specification referred
to as a border router. The border router is responsible for providing connectivity to other IP-based
networks that run on other physical layers than IEEE 802.15.4. The most common use cases for
a border router is to unite a Thread network with a LAN/WAN or the internet with Ethernet or
Wi-Fi.

End-devices may be further split into four types; Router Eligble End-Devices (REEDs), Full End-
Devices (FEDs), Minimal End Devices (MEDs), and Sleepy End Devices (SEDs). REEDs may
serve as both a router and end-device. The role the REED takes is dependent on the current
topology of the network or network conditions. The transition from a router to an end-device
and vice versa is managed automatically by the network. FEDs do not have the ability to take
on the role as a router. However, FEDs are normally categorized into the same group of devices
as routers and REEDs referred to as Full Thread Devices (FTDs) since these types of nodes are
required to always have their radio on, and will maintain IPv6 address mappings in order to link
with all neighbouring routers. On the other hand, the last two groups of devices MEDs and SEDs
make up the class of devices referred to as Minimal Thread Devices (MTDs). MTDs do not keep
track of IPv6 address mappings, thus, they are only able to communicate through a single router.
MEDs always have their radio turned on, however, SEDs may turn off their radio to lower their
power consumption. Whenever a SED turns on the radio it must poll for awaiting messages from
its parent router. [4][51][20]
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8.3 MQTT

For a better understanding of the MQTT-SN protocol it is necessary to be familiar with its parent
protocol MQTT, Message Queuing Telemetry Transport.

8.3.1 Broker

The MQTT protocol is commonly referred to as a publish/subscribe protocol. All MQTT messages
are published by clients to a server (not to be confused with the C++ server application), commonly
denoted as a broker. The responsibilities of the MQTT broker are to

• manage connection/disconnection of clients,

• listen for published application messages (also referred to as PUBLISH messages) from clients,

• process topic subscription/unsubscription requests from clients,

• and distribution of PUBLISH messages to clients that have subscribed to the PUBLISH mes-
sage’s topic.

8.3.2 Motivation for MQTT

The publish/subscribe characteristic of the MQTT protocol is well suited for networks that require
one-to-many distribution of messages which is one of the main reasons for the protocol gaining
popularity in the domain of Machine to Machine (M2M) communication and Internet of Things
(IoT). These types of applications are often comprised of networks of connected devices which are
required to share large amounts of information with other devices in real-time. More than often
the client devices comprising these types of networks require either all or only certain parts of the
information passed over the network. Moreover, the identity of the devices sending information
is not necessarily important compared to the content of the information itself. Furthermore, the
protocol’s small code footprint, simplicity and low bandwidth requirements due to small header
sizes and minimal protocol exchanges between communicating entities makes the MQTT protocol
ideal for M2M and IoT applications. [37]

8.3.3 Protocol stack

The Oasis MQTT protocol specification [37] states that MQTT may be run over TCP/IP, or over
any other network that provides ordered, lossless, bi-directional connections. In other words, the
network layer of the MQTT client implementation must be a connection-oriented protocol. The
MQTT OSI protocol stack for a client running over TCP/IP with example link- and physical layers
is illustrated in figure 5.

Unsurprisingly most out-of-the-box client implementations such as the Paho MQTT clients avail-
able for both C/C++ and python developed by Eclipse run over TCP/IP. Other implementations
such as the FreeRTOS coreMQTT library provides an interface for application developers to specify
custom underlying network drivers.

8.3.4 Topics

PUBLISH messages of the MQTT protocol are always labeled by a topic name, a series of characters
used to match the different subscriptions. At the application layer, the MQTT client will only
receive PUBLISH messages labeled by a certain topic if the specific topic has already been subscribed
to by the client.
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Figure 5: OSI model for MQTT over TCP/IP

Certain characters are reserved in order to handle filtering of topics when used in a topic name.
Among the reserved characters are forward slashes (”/”) which are used to structure the application
messages into several levels. E.g. a set of connected mobile robots in different locations may want
to exchange information with one another, whilst a central server aims to record all measurements
from the robots in every location to provide insights for human operators. Robots in location
A publish their own position to the topic name robot/A/position and their current velocity to
the topic name robot/A/velocity, robots in location B publish messages to robot/B/position

and robot/B/velocity. All robots in location A may subscribe to the topic robot/A in order
receive updates on the whereabouts and velocities of other robots in the same area to aid collision
avoidance. On the other hand, the central server would subscribe to the topic name robot in order
to gather information from all of the robots in both location A and B.

8.3.5 Quality of Service

The MQTT protocol features three different types of application messages which dictate the level
of reliability of message delivery referred to as Quality of Service (QoS).

QoS 0 PUBLISH messages are the least reliable types of messages. The MQTT protocol guarantees
at most once delivery for QoS 0 messages, i.e., similar to the UDP protocol no application layer
confirmation of successful delivery is required for these message types. The at most once guarantee
for QoS 0 message delivery might sound overly pessimistic given the MQTT protocol’s require-
ment of a lossless underlying transport service. However, a TCP packet being acknowledged at
the transport layer does not necessarily make its way up to the application layer since the QoS
guarantee holds for end-to-end distribution of MQTT messages (most of which are distributed to
another client through a broker). E.g. a client publishing a QoS 0 message on a given topic may
not necessarily be delivered to all clients subscribing to the given topic if the MQTT broker crashes
before transmitting to all subscribing clients.

QoS 1 guarantees at least once message delivery, in this case a PUBACK message will be sent from
the broker back to the client who sent the application message once the broker has received a
PUBACK message from all subscribers. Note that QoS 1 messages may be duplicates of previously
sent messages.

QoS 2 is the most reliable application message type as it guarantees exactly once delivery of
messages. In order to guarantee that a message is only delivered once a process similar to a TCP
3-way handshake is required, obviously consuming the most time and network bandwidth compared
to the other QoS-levels.
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8.4 MQTT-SN

MQTT-SN, MQTT for Sensor Networks, is the application layer protocol used by the nRF52840-
based robot for communicating with the C++ server. The following sections will give an overview
of elements of the MQTT-SN protocol which are specifically important to know for understanding
the implementation of the MQTT-SN client to be run on the robot.

8.4.1 Motivation for MQTT-SN

The MQTT-SN protocol was designed to resemble MQTT whilst conforming to the constraints of
low-cost, battery-powered embedded devices. These types of devices are commonly characterized
by their limited computational power and storage resources. Furthermore, MQTT-SN is adapted
for usage in wireless networks. Wireless communication systems will always be effected by signal
strength fading with distance, and disturbances due to interference tends to be more pronounced
than in wired networks.

8.4.2 MQTT-SN protocol stack

Contrary to MQTT, the MQTT-SN protocol does not require a connection-oriented transport
layer. Therefore, UDP is commonly used as the transport layer of the protocol stack. The smaller
overhead of the UDP packets and connection-less properties of the protocol makes it more suitable
for constrained devices and networks. For instance, consider the delivery of a QoS 0 MQTT
application message. Although no guarantee is made for message delivery, TCP being a lossless
and connection-oriented protocol will (if necessary) set up the required TCP connection, and follow
the TCP packet control flow. For many systems that depend on a wireless network with many
connected devices TCP packets would put an unnecessary large toll on the load capacity of the
network. An illustration showing the MQTT-SN protocol stack run over Thread is given in figure
6.

Figure 6: OSI model of MQTT-SN/Thread protocol stack

8.4.3 Architecture

In addition to the broker-client relationship of MQTT, MQTT-SN features gateways as part of the
communication system’s architecture. The purpose of a MQTT-SN gateway is to make devices on
entirely different underlying network protocols capable of communicating through the same broker.
This enables for instance a MQTT-SN client apart of a Thread network able to communicate with
any IP-based network (e.g. internet) through a gateway as if both clients were apart of a network
with the same underlying data-transfer services. In fact, any network which supports bi-directional
traffic should be able to support MQTT-SN provided there exists a supporting gateway [46]. Figure
7 illustrates how the gateway functions as a translator between MQTT-SN and MQTT, thus joining
two networks with different underlying protocols into the same network.
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Figure 7: Illustration of MQTT/MQTT-SN communication architecture

8.4.4 Gateway discovery

Before a MQTT-SN client is able to connect to a broker a gateway discovery procedure must take
place. After a gateway has successfully connected to a broker, the gateway will start to periodically
broadcast a ADVERTISE message on the network to advertise to any MQTT-SN clients about its
presence. When a MQTT-SN client discovers a gateway by receiving a ADVERTISE message, the
client responds with a GWINFO message thereby confirming the client-gateway connection.

Following the standards of the MQTT-SN version 1.2 protocol specification [46], ADVERTISE mes-
sages should be sent relatively infrequently in order to prevent congesting the network. Therefore,
in order to speed up the gateway discovery process the client may optionally broadcast a SEARCHGW
message. When a gateway discovers a new client it also responds with a GWINFO message.

8.4.5 Topic registration

Unlike MQTT, the MQTT-SN protocol specifies that topics must be registered before any applica-
tion messages may be published on the given topic. The purpose of topic registration is to increase
the available space for the shortened message payloads, and to limit usage of network bandwidth.

Instead of transmitting a series of characters representing a topic name, a two-byte topic id is
added to a PUBLISH message. Therefore, in order for the gateway to be able to translate MQTT
application message to MQTT-SN (and vice versa) the MQTT-SN client must exchange the topic
name string for a topic id before publishing or subscribing to a topic.

For a client to register a topic name the client must start the topic registration procedure by
transmitting a REGISTER message to the gateway. In response to the reception of a REGISTER

message the gateway will assign a topic id to the received topic name. The topic id is sent back
to the client in a REGACK message. When the client receives the REGACK message the client is free
to publish and subscribe to the given topic using the topic id. Note that a MQTT-SN client’s
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publish procedure is exactly the same as how the MQTT protocol states to publish messages for
all QoS-levels.
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8.5 FreeRTOS

The nRF52840 is ported with the Real-Time Operating System FreeRTOS. FreeRTOS is specifically
designed for embedded applications that use microcontrollers with real-time constraints. At its
core FreeRTOS implements a real-time scheduler which enables single-core processors to run multi-
threaded applications.

FreeRTOS refers to each thread of execution as a task. The robot application is structured as
a set of individual tasks assigned with different responsibilities for making the robot function as
intended. Only one task is allowed to execute at the same time. Each task at any point in time
will be in one of four states, managed by the scheduler. A task is in the RUNNING state when
the task is executing. When a task is ready to be run, however, another task is currently in the
RUNNING state with higher or equal priority to the task waiting to be run the task is said to be
in the READY state. A task is in the BLOCKED state whenever the task is haulted in order to wait
for a timer to expire, typically in conjunction with waiting for a an external event to take place,
e.g. receiving information from another task. When a task is blocked, the scheduler decides which
other task should switch to the RUNNING state. Additionally, a task may be in the SUSPENDED state.
Unlike entering the BLOCKED state caused by waiting for an event to take place, a task will only be
suspended if explicitly told so (either by the task itself, or another task). Similarly, to transition
from the SUSPENDED state to the READY state the suspended task must also explicitly be resumed
from another task. Tasks are assigned different priorities pre-runtime in order for the scheduler to
choose which tasks should be run at a given time. Tasks with higher priorities are prioritized for
execution over tasks with lower priorities. Moreover, each task is allocated its own stack memory
when the task is created. Following the standards of FreeRTOS a task should never return (may
of course be suspended from further execution by another task).

FreeRTOS exposes a rich set of API functions which may be used as building blocks for application
development. For inter-task communication FreeRTOS provides software objects such as queues,
notifications and message buffers. Synchronization primitives such as semaphores and mutexes are
provided by FreeRTOS. Additionally, API’s for memory management, task- and scheduler control,
and software timers are readily available. [6]
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9 Implementation

All software for the robot is implemented using Nordic Semiconductor’s nRF5 SDK for Thread
and Zigbee version 4.1.0. Segger Embedded Studio for ARM version 3.34a was used as the IDE
for writing and compiling the source code.

The following two sections will describe how the multi-threaded MQTT-SN client was implemen-
ted for the robot application and how the Raspberry Pi was configured to serve as a Thread
Border Router and broker. This is followed by a section describing a new line extraction method
implemented for the nRF52840-robot, and lastly a line-feature based EKF-SLAM approach.

9.1 MQTT-SN client for nRF52840 robot

The MQTT-SN client implementation is based on Nordic Semiconductor’s Thread MQTT-SN
client example [36], and FreeRTOS CoAP server example [32]. Both of Nordic Semiconductor’s
examples utilize the Openthread API as an interface to the network’s transport layer. The MQTT-
SN client example demonstrates the usage of the MQTT-SN client by toggling one of the on-
board LEDs of the nRF52840 DK when a publish message has been received on a certain topic.
Similarly, the CoAP server example demonstrates toggling of LEDs as a response to receiving
CoAP messages, and is also implemented with FreeRTOS. Since the MQTT-SN client example
was not configured with any RTOS, the FreeRTOS CoAP server example was used as a starting
point for the implementation. More specifically, the FreeRTOS task which runs the Openthread
stack of the CoAP server example was taken into use, whilst the single threaded MQTT-SN client
provided by Nordic Semiconductor’s example was implemented in another task with an interface
for other FreeRTOS tasks of the robot application.

9.1.1 Thread stack task

The thread stack task is responsible for initializing the thread interface, and drives the underlying
thread stack of the MQTT-SN protocol. The implementation of the Openthread stack task can be
seen in listing 1.

1 void thread_stack_task(void * arg)

2 {

3 UNUSED_PARAMETER(arg);

4

5 thread_instance_init ();

6

7 // Notify MQTT -SN task

8 UNUSED_RETURN_VALUE(xTaskNotifyGive(mqttsn_task_handle));

9

10 while (1)

11 {

12 thread_process ();

13

14 UNUSED_RETURN_VALUE(ulTaskNotifyTake(pdTRUE , portMAX_DELAY));

15 }

16 }

Listing 1: Thread stack task

The function thread instance init() is responsible for initializing the the thread stack task for
the client to operate as a REED. This can be broken down into three main steps. Firstly, the
function initializes all OpenThread drivers through a call to otSysInit() from the pre-compiled
Openthread library. Secondly, the 802.15.4 embedded radio on the nRF52840 SoC is initialized for
thread communication. Lastly, the Mbed TLS library with hardware acceleration provided by the
SoC’s Cryptocell module is initialized for multi-threaded usage. The Mbed TLS library provides
the application programmer with a set of functions for performing cryptographic operations and
is used to ensure both integrity and confidentiality of messages over the thread network. As
many of the cryptographic operations are computationally demanding there is a dedicated piece of
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hardware on the nRF52840 SoC able to handle these operations, e.g. AES encryption/decryption.
After initialization the thread stack task notifies the MQTT-SN task to start its initialization
procedure.

In the main-loop of the thread stack task the function thread process() is called. This function
wraps the Openthread API functions otTaskletsProcess() and otSysProcessDrivers() and is
responsible for processing any pending tasks of the thread stack. After processing all tasks in its
internal task queue the thread stack (FreeRTOS-)task will wait for the task queue to be filled up
again before continuing execution.

9.1.2 Starting point for multi-threaded MQTT-SN client

The MQTT-SN client provided by Nordic Semiconductor’s example runs as a single-threaded (bare-
metal) application. Lower level serialization/deserialization, i.e. the process of adding/parsing the
required MQTT-SN headers of a specific MQTT-SN packet in order to comply to the MQTT-SN
specification, is provided by the source code from the Eclipse Paho MQTT-SN C/C++ client for
Embedded Platforms repository [13]. Outgoing and incoming serialized MQTT-SN packets are sent
and received using the Openthread UDP API [50].

The MQTT-SN client implementation is event-driven by the usage of Nordic Semiconductor’s
Application Timer SDK library [34]. The Application Timer library is used for managing multiple
software timers based on one of the nRF52840 SoC’s real-time counters (RTC1). The MQTT-SN
client relies on software-based interrupts triggered by timeouts from a timer initialized by the
library. In this way the MQTT-SN client may schedule asynchronous events to fulfill operations
such as holding the connection to the broker alive by periodically scheduling a PINGREQ message,
or retransmitting a lost Qos=1 MQTT-SN packet after not having received the expected PUBACK

message corresponding to the previously sent MQTT-SN packet.

The MQTT-SN client utilizes an internal packet queue for reliable delivery of Qos=1 PUBLISH

packets, subscribe-, and topic registration requests. The packet queue temporarily stores unac-
knowledged packets that have been sent to the broker which are deleted upon reception of the
packet’s corresponding acknowledgement-type message (PUBACK, SUBACK or REGACK) for a given
message id.

9.1.3 MQTT-SN task

The main responsibilities of the MQTT-SN task are:

• Initializing the MQTT-SN client, and dependencies of the client such as data structures and
queues.

• Gateway discovery.

• Keeping the connection to the broker active.

• Topic registration.

• Topic subscription.

• Handling reception of messages for subscribed topics, and distributing these messages to the
appropriate task.

• Dequeuing internal messages from other publishing tasks from an outgoing message queue,
and publishing these messages on registered topics to the network.

In contrast to the previous implementation of server communication over Bluetooth, the MQTT-
SN task may run at a lower priority than the other tasks of the robot application. This is a clear
step forwards in terms of making the robot autonomous without the need for server interactions in
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order to successfully navigate and map its surroundings. For instance, previous implementations
of several FreeRTOS tasks of the robot would have to wait for establishing a connection with the
server in order to start execution. This example underlines the previously strong coupling between
the robot and server. It should be a goal that the robot is able to operate on its own making the
server only serve as an interface for human operators, thus removing the master-slave relationship
of the server-robot system. Moreover, the downgraded priority of the main communication task
reflects the removal of the robot’s dependency of the server, thus tasks such as the pose controller
and estimator may be granted higher priorities.

9.1.4 Adapting MQTT-SN client for FreeRTOS

Since the MQTT-SN client provided by Nordic Semiconductor runs in a bare-metal environment,
the client had to be adapted to work in a multi-threaded FreeRTOS application in order for existing
work on the robot project to be taken into use.

Making the MQTT-SN client compatible for multi-threaded usage with FreeRTOS was solved
by first implementing an own thread of execution for the MQTT-SN client itself referred to as
the MQTT-SN task. Other FreeRTOS tasks interface the MQTT-SN task primarily through the
FreeRTOS queue management API. Figure 8 illustrates how other tasks of the robot application
communicate with the MQTT-SN task. Thick arrows in figure 8 represent shared queue objects
between a specific task and the MQTT-SN task. Tick arrows pointing out from a task illustrate a
task placing an instance of a data structure in the corresponding queue designated for publishing
or subscribing to a certain topic. The data structure instances are passed by copy through each
queue, and match the MQTT-SN payload format for the given topic. Be aware that a given queue
may be used for any topic, the only requirement is that the datastructures passed through the same
queue are the same. Passing the queued data structures by copy ensures that tasks publishing or
subscribing at different rates than the MQTT-SN task is able to read or write to the collection of
queues does not overwrite MQTT-SN packets in-transit between tasks.

Figure 8: Illustration of MQTT-SN task interface

Secondly, in order to maintain the event-driven software architecture of the bare-metal MQTT-SN
client Nordic Semiconductor’s App Timer library was replaced by a FreeRTOS compatible version
of the library. The libaries are implemented with a shared interface, however, the FreeRTOS version
of the App Timer library serves as a wrapper for the FreeRTOS Software Timer Management API.
Using FreeRTOS software timers one may schedule the execution of a callback function either
periodically, or at some set time in the future. Unlike using one of the nRF52840 SoC’s hardware
timers directly, the software timers are controlled by the FreeRTOS kernel. Moreover, the software
timers execute in the context of a timer service task. Thus, in order to ensure that the timing
requirements of the MQTT-SN protocol are satisfied, the timer service task must have the highest
priority. The priority of the timer service task is set by the configTIMER TASK PRIORITY macro
in FreeRTOSConfig.h. Not setting the priority of the timer service task appropriately will for
instance lead to the MQTT-SN client not being able to reply with a PINGRESP message fast enough
after having received a PINGREQ message from the broker. This will make the broker believe the
MQTT-SN client is not active anymore. It was also necessary to increase the timer service task’s
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pre-allocated stack size in order to accommodate for the increased stack usage of the MQTT-SN
task’s timer callback.

Thirdly, one of the precompiled openthread drivers (specifically the driver for the IEEE 802.15.4
radio) uses hardware timer 1 on the nRF52840 SoC. The encoder driver for the robot also initially
used timer 1 for counting high-level voltage pulses as one of the wheels of the robot rotates.
Therefore peripheral resources of the nRF52840 had to be swapped around in order to avoid the
collision in peripheral usage. Table 1 summarizes which peripherals are in use specific for the robot
application. Additional requirements for nRF52840 Thread support are listed in [41].

Peripheral Used by Comment
TIMER0 Sensor tower servo PWM-signal generation.
TIMER1 IEEE 802.15.4 radio driver Part of Thread protocol stack (6LoWPAN).
TIMER2 Motor PWM-signal generation.
TIMER3 Left wheel encoder Counts encoder ticks/pulses.
TIMER4 Right wheel encoder Counts encoder ticks/pulses.

SAADC channel 0-3 IR sensor x4
Successive approximation
analog-to-digital converter.
For sampling range to objects.

RTC1 FreeRTOS scheduler

Real-time counter 1.
For the FreeRTOS kernel’s
ability to decide when to
resume/suspend and switch
between execution of tasks.

Table 1: Robot application peripherals

9.1.5 MQTT-SN task interface

Other FreeRTOS tasks publish messages through a set of shared queues. For convenience, functions
for queuing these messages were made. All publish functions intended to be used by other tasks
follow the same logical structure, however, not all message payloads are defined by the same data
structure. As an example, given in listing 2 is the function used for publishing data structures
of type mqttsn line msg t. The only difference between the different publish functions is the
payload data structure, and followingly the outgoing message queue it is appended to.

1 typedef struct mqttsn_line_msg {

2 uint8_t identifier; // 1 byte

3 int16_t xdelta; // 2 bytes

4 int16_t ydelta; // 2 bytes

5 int16_t thetadelta; // 2 bytes

6 coordinate_t startPoint; // 4 bytes

7 coordinate_t endPoint; // 4 bytes

8 } __attribute__ (( packed)) mqttsn_line_msg_t; // __attribute__ (( packed)) to

explicitly tell the compiler to not add any padding

9

10 uint32_t publish_line(char* topic_name , mqttsn_line_msg_t payload , uint8_t

payload_size , uint8_t qos , uint16_t msg_id) {

11 if (! mqttsn_client_is_connected ()) {

12 return NRF_ERROR_BUSY;

13 }

14

15 mqttsn_line_msg_queue_element_t queue_element;

16 queue_element.msg_id = msg_id;

17 queue_element.qos = qos;

18 queue_element.payload_size = payload_size;

19 queue_element.payload = payload;

20 queue_element.topic_id = get_topic_id(topic_name);

21 if (queue_element.topic_id == NULL) {

22 return NRF_ERROR_NULL;

23 }

24
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25 if (mqttsn_outgoing_line_message_queue != NULL && xQueueSend(

mqttsn_outgoing_line_message_queue , &queue_element , 10) != pdPASS) {

26

27 NRF_LOG_ERROR("Failed to post mqttsn message to outgoing message queue");

28 return NRF_ERROR_NULL;

29

30 }

31 return NRF_SUCCESS;

32

33 }

Listing 2: MQTT-SN Publish line

When the client receives a publish message from the broker, similarly, the MQTT-SN task will
distribute the message to other tasks through an inter-task queue specific for the format of the re-
ceived message. For instance, the controller task may poll new target positions sent from the server
by reading from the designated queue as seen in listing 3. Note that the application programmer
must be aware which data structure is expected for a given topic.

1

2 typedef struct mqttsn_target_msg {

3 uint8_t identifier;

4 int16_t target_x;

5 int16_t target_y;

6 } __attribute__ (( packed)) mqttsn_target_msg_t;

7

8 if (xQueueReceive(get_queue_handle("v2/server/NRF_5/cmd"), &target_msg , (TickType_t

) 0) == pdTRUE) {

9 float x_target = target_msg.target_x;

10 float y_target = target_msg.target_y;

11 // Set new target position ...

12 }

Listing 3: MQTT-SN Receive target position

9.1.6 MQTT-SN topic and payload formats for server communication

Stenset (2020) designed the newest payload and topic formats of MQTT-SN messages sendt to the
C++ server. With the introduction of the work carried out in this thesis involving line segment
detection, a new message type for sending line segments was developed. In order to maintain
consistency, the topic and payload format of the new line messages were designed to fit into the
framework developed by Stenset.

For completeness, the MQTT-SN payloads and topics designed by Stenset are repeated in table
2-4. The message format for detected line segments sent from the robot to the C++-server is
given in table 5. All payloads are little-endian formatted, and start with a 1-byte message code
intended for the receiver for identifying the payload format. This is the way different messages are
separated from each other by the C++-server. Note that applications that use MQTT(-SN) for
communication typically separate different message payloads from each other by topic. However,
the MQTT client running for the C++ server differentiates between received message formats
with the message code, and therefore extending the C++ server to be capable of receiving the
new payload format for line segments was easier to implement when using the additional 1-byte
message code. Moreover, this allows for backward-compatibility with older robots that use the
legacy layer developed by Grindvik (2019) [18] for communication with the C++-server.

The C++-server MQTT client subscribes to the topic v2/robot, and expects all received messages
from robots to be published to a topic with the following format: v2/robot/<ROBOT ID>/<RESOURCE>.
The first layer of the topic name corresponds to the message format version (currently at version
2). The second layer of the message format represents that the message was sent from a robot.
The third layer is expected to be a unique string used for identifying a particular robot, for our
case this is NRF 5. The last layer of the topic format describes the contents of the payload. As
stated in the previous paragraph, the C++-server does not separate messages by topic, therefore
for messages published to the C++-server the last layer’s purpose is only for the developer’s clarity.
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This does not mean that the last layer may be omitted, this will cause the C++-server to reject
the message. For the robot used during development, line segments may be published to the topic
v2/robot/NRF 5/line with payload format as stated in table 5 in order for the C++-server to
receive the message. The C++-server will discover a robot after a valid message has been received,
and the user will be prompted with a GUI for selecting the robot’s initial pose. After the user has
confirmed the robot’s initial pose, the C++-server publishes the message given in table 2 on the
topic v2/server/<ROBOT ID>/init. Target positions sent from the server following the format
given in table 3 are published on the topic v2/server/<ROBOT ID>/cmd.

Byte # Low/High byte Parameter
1 Low Message code
2
3

Low
High

Initial robot x position [mm]

6
7

Low
High

Initial robot y position [mm]

8
9

Low
High

Initial robot heading [°]

Table 2: MQTT-SN payload format for initial robot pose sent from server to robot developed by
Stenset (2020)

Byte # Low/High byte Parameter
1 Low Message code
2
3

Low
High

Robot target x-coordinate [mm]

6
7

Low
High

Robot target y-coordinate [,m]

Table 3: MQTT-SN payload format for target coordinates sent from server to robot developed by
Stenset (2020).

29



Byte # Low/High byte Parameter
1 Low Message code
2
3

Low
High

Robot x position change [mm]

6
7

Low
High

Robot y position change [mm]

8
9

Low
High

Robot heading change [°]

10
11

Low
High

IR sensor 1 x-coordinate

12
13

Low
High

IR sensor 1 y-coordinate [mm]

14
15

Low
High

IR sensor 2 x-coordinate [mm]

16
17

Low
High

IR sensor 2 y-coordinate [mm]

18
19

Low
High

IR sensor 3 x-coordinate [mm]

20
21

Low
High

IR sensor 3 y-coordinate [mm]

22
23

Low
High

IR sensor 4 x-coordinate [mm]

24 Low Valid detection

Table 4: MQTT-SN payload format sent from robot to server for robot pose updates and objects
detected by the four IR sensors developed by Stenset (2020).

Byte # Low/High byte Parameter
1 Low Message code
2
3

Low
High

Robot x position [mm]

6
7

Low
High

Robot y position [mm]

8
9

Low
High

Robot heading [°]

10
11

Low
High

x-coordinate of line start point [mm]

12
13

Low
High

y-coordinate of line start point [mm]

14
15

Low
High

x-coordinate of line end point [mm]

16
17

Low
High

y-coordinate of line end point [mm]

Table 5: MQTT-SN payload format sent from robot to server for robot pose updates and detected
line segments.
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9.1.7 Bug-fixing provided MQTT-SN client

The provided bear-metal MQTT-SN client provided by Nordic Semiconductor was not able to
register multiple topics. Diving into the source code of the client revealed that MQTT-SN REGACK

messages were dequeued from the client’s internal received packet queue before reading the contents
of the packet. Since dequeuing the packet also would deallocate the memory for the given packet
reading the contents would result in undefined behaviour. I.e. it would in many circumstances
appear to work as intended since the same region of memory would not have been altered, however,
when registering multiple topics the problem became apparent. Since the 2-byte topic id would
be lost, the client would receive error messages from the gateway when publishing to the topic
corresponding to the erroneous topic id. The problem was fixed by ensuring that the REGACK

packet was dequeued after reading the contents of the packet.

9.1.8 QoS 0

The MQTT-SN client was initially only capable of publishing with QoS = 1. Implementing QoS = 0
is straight forward as the client will not be expecting any acknowledgement of message delivery
there is no need to buffer transmitted QoS = 0 messages. Since the underlying paho implementation
for serializing MQTT-SN messages supports all MQTT-SN QoS levels, the only requirement for
the application layer is to check the QoS level of the message. If the QoS level is 0, then simply
publish the message and return. In order to add support for QoS = 2 one would have to implement
an event handler for PUBREC packets as an acknowledgement for the publish which would deallocate
the reference to the published message, followed by transmitting a PUBREL to signal the broker that
it also may delete its locally stored copy of the initial publish. Furthermore an event handler for
PUBCOMP packets must be implemented as an acknowledgement for completing the exactly once
delivery process.

1 uint32_t mqttsn_packet_sender_publish(mqttsn_client_t * p_client , mqttsn_topic_t *

p_topic , const uint8_t * payload , uint16_t payload_len , uint8_t qos) {

2 uint32_t err_code = NRF_SUCCESS;

3

4 unsigned char dup = 0;

5 unsigned char retained = 0;

6 // qos=-1 and qos=2 is currently not supported

7

8 uint32_t packet_len = MQTTSN_PACKET_PUBLISH_LENGTH + payload_len;

9 uint8_t * p_data = nrf_malloc(packet_len);

10 uint8_t * p_packet_copy = NULL;

11

12 do {

13 if (p_data == NULL) {

14 err_code = NRF_ERROR_NO_MEM;

15 NRF_LOG_ERROR("PUBLISH message cannot be allocated\r\n");

16 break;

17 }

18

19 MQTTSN_topicid topic;

20 memset( & topic , 0, sizeof(MQTTSN_topicid));

21 topic.type = MQTTSN_TOPIC_TYPE_NORMAL;

22 topic.data.id = p_topic -> topic_id;

23

24 uint16_t datalen = MQTTSNSerialize_publish(p_data ,

25 packet_len ,

26 dup ,

27 qos ,

28 retained ,

29 next_packet_id_get(p_client),

30 topic ,

31 (uint8_t * ) payload ,

32 payload_len);

33 if (datalen == 0) {

34 err_code = NRF_ERROR_INVALID_PARAM;

35 break;

36 }

37
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38 if (qos == 1) {

39 // Prepare retransmission packet in case of packet loss.

40 p_packet_copy = nrf_malloc(datalen);

41 if (p_packet_copy == NULL) {

42 err_code = NRF_ERROR_NO_MEM;

43 break;

44 }

45

46 memcpy(p_packet_copy , p_data , datalen);

47

48 mqttsn_packet_t retransmission_packet;

49 memset( & retransmission_packet , 0, sizeof(mqttsn_packet_t));

50 retransmission_packet.retransmission_cnt = MQTTSN_DEFAULT_RETRANSMISSION_CNT;

51 retransmission_packet.p_data = p_packet_copy;

52 retransmission_packet.len = datalen;

53 retransmission_packet.id = p_client -> message_id;

54 retransmission_packet.timeout =

55 mqttsn_platform_timer_set_in_ms(MQTTSN_DEFAULT_RETRANSMISSION_TIME_IN_MS);

56 retransmission_packet.topic = * p_topic;

57

58 if (mqttsn_packet_fifo_elem_add(p_client , & retransmission_packet) !=

NRF_SUCCESS) {

59 err_code = NRF_ERROR_NO_MEM;

60 break;

61 }

62

63 if (mqttsn_client_timeout_schedule(p_client) != NRF_SUCCESS) {

64 uint32_t fifo_dequeue_rc = mqttsn_packet_fifo_elem_dequeue(p_client ,

65 p_client -> message_id ,

66 MQTTSN_MESSAGE_ID);

67 ASSERT(fifo_dequeue_rc == NRF_SUCCESS);

68 err_code = NRF_ERROR_INTERNAL;

69 break;

70 }

71 } else if (qos < 0 || qos > 1) {

72 NRF_LOG_WARNING("Publish with qos %d is not supported", qos);

73 }

74

75 err_code = mqttsn_packet_sender_send(p_client , & (p_client -> gateway_info.addr

), p_data , datalen);

76

77 } while (0);

78

79 if (p_data) {

80 nrf_free(p_data);

81 }

82

83 if (p_packet_copy && err_code != NRF_SUCCESS) {

84 nrf_free(p_packet_copy);

85 }

86

87 return err_code;

88 }

Listing 4: MQTT-SN client publish
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9.1.9 MQTT-SN task initialization

The initialization sequence of the MQTT-SN task may be described by the flow diagram in figure
9. When the MQTT-SN task is notified after initialization of the Thread stack task, an MQTT-SN
client instance is initialized by the MQTT-SN task. The initialization of the client instance involves
creating a Openthread network port and initializing a timer used for scheduling events with the
App Timer library. After the MQTT-SN client instance has been initialized it will always start
in the DISCONNECTED state, and will immediately broadcast a SEARCHGW message and transition
to the SEARCHING FOR GATEWAY state. The MQTT-SN task will not continue execution until it
has received a direct-to-task notification using the FreeRTOS API function ulTaskNotifyTake

(serving as a lightweight binary semaphore).

All following transitions are executed in the context of the timer task which periodically is scheduled
to execute the event handlers (callbacks). In the event of receiving a GWINFO message from the
gateway, the client transitions to the GATEWAY FOUND state and transmits a CONNECT message.
When the timer task discovers that a CONNACK message has been received from the broker the
client will start the topic registration sequence.

In order for topics to be registered they must be added to a list of topics before the robot application
is run. The list holds the mqttsn topic t data structures given in listing 5, which holds the
information that ties a topic name (string) to a numeric topic id. The topic id should be initalized
to NULL, and the topic name must conform to the MQTT-SN protocol specification for topic names.
One-by-one the client will exchange the topic names for topic ids with the gateway. When a REGACK
has been received for each registration the MQTT-SN task will be woken up by a notification using
xTaskNotifyGive.

1 typedef struct mqttsn_topic_t {

2 const uint8_t * p_topic_name; /**< Topic name. */

3 uint16_t topic_id; /**< Topic ID. */

4 } mqttsn_topic_t;

Listing 5: MQTT-SN Topic data structure

After topic registration, the client will perform a subscribe sequence. All topics which the client
wishes to subscribe to must be added to a subscription list. The subscription list holds pointers to
topics of the topic list. Iterating through the subscription list, each topic which have been given a
topic id (!=NULL) will be attempted to be subscribed to.

Initialization of the MQTT-SN task is considered finished whenever the client has been able to
successfully connect to the broker and executed the registration process. After initialization other
FreeRTOS tasks of the robot application are able to queue messages to one of the MQTT-SN task’s
outgoing message queues.

9.1.10 Reconnection

The client will hold the connection to the broker alive by transmitting PINGREQ messages to the
broker, this is also scheduled to run in the context of the timer task. In the event of not re-
ceiving a PINGRESP reply for a third PINGREQ within a set period of time (in our case approxim-
ately 8 seconds), the timer task will transmit a DISCONNECT message and transition to the initial
DISCONNECTED state from figure 9. It is then up to the MQTT-SN task to start the initialization
sequence again. The same reconnection process will also be triggered for not receiving a PUBACK for
the third time of retransmitting the same PUBLISH with QoS = 1. If the robot application only uses
QoS = 0 messages, the client will only be able to reconnect after not having received a PINGREQ.

9.2 MQTT-SN gateway and broker

All communication goes through the MQTT-SN gateway and broker. The MQTT-SN gateway
and broker both run on a Raspberry Pi 3b+ connected to a local network. Placed in one of the
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Figure 9: MQTT-SN task initialization flow diagram

Raspberry Pi’s USB ports is a nRF52840 dongle. The dongle was flashed with Nordic Semicon-
ductor’s NCP (Network Co-Processor) firmware in order to serve as a connectivity chip utilizing
the dongle’s IEEE 802.15.4 embedded radio for taking part in the Thread network [35]. The Rasp-
berry Pi was flashed with Nordic Semiconductor’s debian based Thread Border Router image.
The image includes software for the Eclipse Paho MQTT-SN gateway and its dependencies. The
nRF52840 dongle together with the Raspberry Pi serve as the Thread Border router as depicted
in figure 10.

A Mosquitto MQTT broker (version 2.0.14) was installed on the Raspberry Pi. The MQTT-SN
gateway needs to know the IP address of the MQTT broker in order for the gateway to be able to
listen for MQTT messages to be forwarded to the Thread network and forward messages from the
Thread network to the broker. Since, the broker is run locally on the Raspberry Pi one must set the
BrokerName entry in the gateway’s configuration file paho-mqtt-sn-gateway.conf to the loopback
address 127.0.0.1. Furthermore, the Mosquitto broker needs to be supplied with a configuration
file which makes the broker listen for connections on port 1883, and allow anonymous connections.

Figure 10: Illustration of a Thread Border Router with a Thread Network Co-Processor architec-
ture. Adapted from [49]

.
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9.3 Line segment extraction

The new line segment extraction algorithm implemented for the nRF52840 robot consists of a series
of filtering steps, eventually outputting a set of line segments along with a measure of uncertainty
of the extracted line parameters. The steps of the line extraction algorithm are illustrated in figure
11.

The first step in the line extraction scheme is a data collection (and preprocessing) step. In this
step IR-range bearing measurements are sampled together with the current estimated pose of
the robot in order to store multiple points of the environment in the global frame over several
robot poses. Adopting a multiscan approach is a necessity in order to extract line features of
the environment from measurements from the four IR sensors of the robot. Extraction of line
segments commences either when enough points of the environment have been collected, the robot
transitions from moving in a straight line, or turning around its own z-axis, or, whenever the robot
has completed a full 360° scan of the environment by rotating the sensor tower 90° whilst the
robot is not moving. When points of the robot’s surroundings have been collected, and one of the
aforementioned conditions to start processing the collected IR measurements have been met, the
line extraction algorithm starts its second step. In the second step the clustering method commonly
used for unsupervised machine learning applications known as Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) is performed on the buffered point-measurements of the
environment. This is followed by a line segmentation step using Iterative Endpoint Filter (IEPF)
based clustering to find the points which make up individual line segments. The fourth step of the
line extraction scheme involves fitting the IEPF clustered points to a line. Up until the fifth step
of the line extraction process, all computations have been done individually on the set of points
stemming from one IR sensor. Thus, we may expect that several of the lines extracted so far
actually are part the same line feature, therefore, a recursive merging of line segments is conducted
in the fifth step in order to attempt finding line segments from the union of points collected from
the neighbour IR sensors. The line parameters found after this step along with a measure of their
uncertainty, function as measurements for the EKF-SLAM implementation.

Figure 11: Line extraction steps

The line extraction algorithm runs in its own FreeRTOS task referred to as the mapping task given
in pseudo code in algorithm 1. The task exposes an inter-task FIFO queue for the sensor tower
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task to append IR sensor measurements and robot poses to as the robot explores the environment.
The following sections will go into depth on each step of the extraction process.

Algorithm 1 Mapping task

1: procedure mapping task
2: minRange ← 100 ▷ Minimum IR sensor range [mm]
3: maxRange ← 800 ▷ Maximum IR sensor range [mm]
4:

5: ϵ← radius for cluster expansion from point for DBSCAN [mm] ▷ DBSCAN parameters
6: minPts← minimum number of points for DBSCAN cluster
7:

8: T ← distance from middle point to projection point on line between endpoints for IEPF ▷
IEPF parameter

9:

10: α← Angle threshold for line merging [rad] ▷ Line merging parameters
11: β ← Distance threshold for normal line [mm]
12: ζ ← Distance threshold between point to line segment [mm]
13:

14: PB1 ← [] ▷ Initialize point buffers
15: PB2 ← []
16: PB3 ← []
17: PB4 ← []
18: PB ← [PB1, PB2, PB3, PB4]

19: LB ← [] ▷ Initialize line buffer
20: while True do
21: if received measurement from sensor tower task then
22: updatePointBuffers(PB, measurement, minRange, maxRange) ▷ Transform

range-bearing to {G}, and append valid points to respective point buffer
23: end if
24: if obtained mutex then ▷ Trigger line extraction
25: for each point buffer i do
26: clusters ← DBSCAN(PB[i], ϵ, minPts, euclidean) ▷ DBSCAN clustering
27: lineClusters ← [] ▷ initialize output for IEPF
28: IEPF(clusters, lineClusters, T ) ▷ IEPF clustering
29: lines ← MSE line fit(lineClusters) ▷ MSE line fitting
30: Append lines to LB

31: end for
32: merge linebuffer(LB, α, β, ζ)
33: for each line in LB do
34: Compute covariance matrix according to eq. 19
35: end for
36: Clear PB and LB

37: release mutex
38: end if ▷ Line segments and their uncertainty are now stored in LB

39: end while
40: end procedure

9.3.1 Data collection and preprocessing

Similarly to other line extraction implementations with sparse and noisy range-bearing measure-
ments[7][12][24][53], enough measurements have to be collected before it would be beneficial to
start the line extraction process. The approach of sampling measurements over multiple robot
poses solves the problem of sparsity of exteroceptive measurements, and reduces the impact of
noise in the line extraction process.

The mapping task receives four IR measurements (one from each sensor) along with the current
estimate of the robot’s pose from the sensor tower task. The reason behind collecting both pose
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and IR measurements from the sensor tower task was for fast development given the pre-existing
code base. In previous implementations of the sensor tower task, the task was responsible for also
sending the raw IR sensor measurements to the server along with the current pose estimates from
the EKF of the estimator task. I.e. synchronization primitives were already implemented in order
to correctly line up pose estimates from the estimator task with the IR sensor readings from the
sensor tower task. This makes it easy to send measurements from each of the four IR sensors with
synchronized pose estimates to the mapping task.

The FreeRTOS queue management API [6, p. 102-147] was used to implement inter-task com-
munication between the sensor tower task and the mapping task. The data structure which is
sent from the sensor tower task with the FreeRTOS API function xQueueSendToBack is given in
listing 6. Each element in the queue is queued by copy (not by reference) in order to avoid the
sensor tower task overwriting data as writing and then reading from the queue does not necessarily
happen sequentially.

1 typedef struct ir_measurement {

2 uint8_t servo_angle;

3 uint16_t measurements [4];

4 float x;

5 float y;

6 float theta

7 } ir_measurement_t;

Listing 6: Data structure sent from sensor tower task to mapping task

On the receiving side of the queue, the mapping task will extract the range-bearing measurements
from each received ir measurement t and transform the measurement given in the robot’s sensor
frame to the the global frame using (1) and (2). (1) transforms the IR sensor range-bearing
measurement from the sensor frame {Si} to the robot’s body frame {B}, di denotes the range, s
is length from the origin of the {B}-frame to the origin of the {Si}-frame,and βi is the rotation
of the {Si}-frame relative to the {B}-frame. For radially placed IR sensors we have that βi

= servo angle ×iπ2+ theta for IR sensor index i = [0, ..., 3], where servo angle rotates with
respect to the body frame of the robot in the interval [0, π

2 ]. ∆xi and ∆yi is the x-axis and y-axis
translations from the origin of sensor frame {Si} to the origin of the robot’s body frame {B} for
sensor index i.

PB =

[
xB

yB

]
=

[
(di + s)cos(βi) + ∆xi

di + s)sin(βi) + ∆yi

]
, i = [0, ..., 3] (1)

After transforming the point from {Si} to {B}, we transform the point to the global Cartesian
frame {G} by applying the transformation given in (2), where (x, y) is the position and θ is
the heading of the robot with respect to {G}. It is necessary to do the line segment extraction
computations in the global frame of reference since the robot samples range-bearing measurements
over multiple poses.

PG =

[
xBcos(θ)− yBsin(θ) + x
xBsin(θ) + yBcos(θ) + y

]
(2)

Only measurements that are within the valid measurement range of the IR sensor (100 < di <
800)[mm] are appended to a fixed-size point buffer. Each IR sensor is allocated one fixed-size
point buffer each for buffering of measurements until the conditions for starting line extraction
are satisfied. Storing point measurements in separate buffers (one for each IR sensor) will make
segmentation easier in the following steps of the line extraction task.

9.3.2 Triggering line segment extraction

The triggering of the line segment extraction process, i.e. starting step 2 (DBSCAN) of figure 11
is one of the responsibilities of the sensor tower task. In order for line segments to be extracted
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successfully it is important that the triggering of the process happens at the right moment. The
reason for this is that the line segment extraction algorithm expects points of the environment
to be buffered sorted in order of the point’s bearing. One could of course initially perform a
sorting algorithm on the buffered points before proceeding to the feature extraction computations.
However, in an effort to speed up the extraction process we would rather exploit that we know
the servo angle of the sensor tower and the order of placement of the IR sensors. Thus, as long
as the robot does not maneuver in such a manner that changes the heading of the robot whilst
sampling range-bearing measurements we know that the buffered points will be stored in order
by their bearing. It does not matter in which bearing-direction they are stored, only that they
are sorted. The requirement for having the points sorted by bearing is to be able to easily find
endpoints of line segments. For a set of sorted points measured by one IR sensor we know that the
first point placed in the buffer and the last point placed in the buffer correspond to endpoints of
line segments. This should not be understood as the endpoints of the final extracted line segments,
but as the endpoints of a set of points which might form multiple line segments in the view of one
IR sensor as illustrated in figure 12.

Figure 12: Endpoints as seen from the view of one rotating IR sensor

For triggering the extraction process a FreeRTOS mutex (mutual exclusion) object must be released
by the sensor tower task. The mapping task must hold the mutex in order to proceed from
buffering points to extracting line segments. Whilst the mapping task performs the computations
for extracting line segments the sensor tower task should not be permitted to queue more range-
bearing measurements, therefore, the sensor tower task will not have access to the inter-task queue
before holding the mutex again. This is required in order to synchronize between the sets of sorted
buffered points. Albeit, most of the time triggering the extraction process would not require
synchronizing access to the queue since the extraction algorithm generally will always finish before
the next set of sorted points are placed on the queue due to the motion characteristics of the robot
- it either moves in a straight line, stays idle, or rotates in place without quick transitions from
one state to the other.

The sensor tower task releases the mutex in order for line segment extraction to commence
when the robot transitions from one move-state to the other, i.e moveStop, moveClockwise,
moveCounterClockwise or moveForward. The sensor tower task will also release the mutex when
changing the direction of rotation of the sensor tower whilst the robot is in the moveStop state.
The mapping task may also initiate the extraction process itself when either one of its point buffers
are full, which typically happens as the robot is moving straight forward over a longer distance.
The only difference here from the triggering of the extraction process in [5] is the use of the mutex
instead of the direct-to-task notification.

38



9.3.3 Density Based Spatial Clustering of Applications with Noise

The second step of the line extraction algorithm is to perform the density based clustering algorithm
known as DBSCAN once for each of the four IR sensor point buffers. DBSCAN attempts to cluster
measured points of the environment in such a way that each cluster of points distinguish separate
partial or full contours of an object. Furthermore, DBSCAN may be used to classify certain
points as noise, these points are therefore removed from further processing in the line extraction
algorithm. In other words, DBSCAN can be considered a breakpoint detector with the additional
advantage of filtering out the most noisy point measurements.

DBSCAN uses two parameters to classify clusters of points, ϵ and minPts. The threshold minPts

denotes the minimum number of points within the ϵ-neighborhood points. The distance measure
between points may also be considered a parameter, in our case the euclidean distance was used.
If the number of points within the ϵ-neighborhood of a point is larger than minPts, then that
point is considered to be a core point. All points within the ϵ-neighborhood are labeled to belong
to the same cluster. Expanding the cluster, i.e. searching for more core points is carried out by
querying the distance to neighbors of the neighbors of the point as seen in the pseudo code given in
the expandCluster procedure in algorithm 2. Again, if the queried point has a sufficient amount
of neighboring points within the radius of ϵ, then these points also belong to the same cluster.
Eventually during the expansion of a cluster, DBSCAN will reach a point where the number of
neighbors is less than minPts, these types of points are referred to as border points. Border points
also belong to the set of points of the expanding cluster, however, we do not continue the recursion
of expanding the cluster from these points. Any points that are neither core points or border points
are classified as noise since these points have less than minPts in their ϵ-neighborhood. [14] [40]

Figure 13: DBSCAN cluster model
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Figure 13 illustrates principally how DBSCAN clusters a set of points from an IR scan of an
environment with multiple line segments. In figure 13 DBSCAN has found two clusters marked
with red and green points. The circles around each point illustrates the ϵ-parameter. Points within
these clusters with solid borders are core points, and points with dotted borders are border points.
The blue points in figure 13 are classified as noise.

9.3.4 Iterative Endpoint Filter based clustering

After clustering the points of an IR sensor’s point buffer using DBSCAN, the next step in the line
extraction scheme is to perform iterative endpoint filter based clustering on each DBSCAN cluster.
The goal of IEPF based clustering is to cluster the input points into clusters that form straight
line segments.

The IEPF based clustering method works by first finding the endpoints of set of input points. Since
the points were already placed in sorted order by bearing in the fixed-size point buffer from step one
of the line extraction algorithm (and is maintained in order after clustering with DBSCAN) there
is no need to sort the points as is done in [12]. I.e. the endpoints of the set of points will always
be the first and last point of the input buffer. The IEPF based clustering method proceeds to find
the middle point between the endpoints in the input buffer. Further on, the IEPF algorithm finds
the orthogonal projection of the middle point on the line between the endpoints. If the euclidean
distance between the projected point and the middle point is less than a given threshold distance
T , then, all points of the input buffer belong to the same line segment. Otherwise, the IEPF
algorithm splits the input buffer in two separate buffers, the first buffer holding all points up until
and including the split point, and the second buffer holding all points after and including the split
point as seen in lines 15-18 in algorithm 3. The IEPF algorithm is then recursively performed
on both of the new buffers. This is why the IEPF algorithm is commonly referred to as a split
and merge approach to finding clusters of points forming line segments. The recursion along one
branch haults when either the distance between the orthogonal projection of the middle point is
less than T , or the length of the input buffer is ≤ 2. The IEPF algorithm then does the same for
the other branch (second buffer).

Figure 14 illustrates the principal of the IEPF algorithm and how it manages to cluster the points
of the buffer point buffer into two line segments. Green points belong to one IEPF cluster, whilst
blue points belong to the other cluster. In the case of figure 14 only one split was necessary in
order to satisfy the conditions for terminating the IEPF recursion since the distance from point
the split point M to its projection on the line between the endpoints P was found to be less than
T .

9.3.5 Line fitting

The third step of the line extraction scheme computes estimates for the line parameters of each
cluster of points comprising individual line segments found by the IEPF algorithm in the last step.
The line fitting procedure is described by [44], and is here repeated in the following paragraphs.

The standard (Cartesian) model of a straight line y = ax + b (a representing the slope of the
line and b the y-axis intercept), is problematic to use when dealing with vertical lines. Therefore,
the Hesse normal form stated in (3) is a more suitable choice of line model to avoid dealing with
infinite slopes. Figure 15 illustrates r as the line with the shortest distance between the origin of
the Cartesian coordinate system to the line we are trying to estimate the parameters of, and θ as
the angle between the x-axis and r.

r = x cos(θ) + y sin(θ) (3)

In order to find the Hesse normal form parameters of a line (r, θ) that fit the measured points of
the environment a weighted mean squared error (MSE) line fitting procedure is employed. The

40



Algorithm 2 DBSCAN

1: procedure DBSCAN(pointBuffer, ϵ, numPoints, distFunc) ▷ Density-based Spatial
Clustering for Applications with Noise

2: n ← 0 ▷ Initialize number of clusters
3: l ← length of pointBuffer
4: i ← 0 ▷ pointBuffer index
5: while i < l do
6: if point == UNDEFINED then
7: neighbors = getNeighbors(pointBuffer[i], pointBuffer, ϵ, distFunc)

8: if length of neighbors < minPts then
9: point ← NOISE

10: else
11: n ← n+ 1 ▷ Found a valid cluster
12: pointBuffer[i] ← n ▷ Label point with the cluster it belongs to
13: expandCluster(n, neighbors, pointBuffer, distFunc, ϵ, minPts)

14: end if
15: end if
16: i ← i+ 1
17: end while
18: return pointBuffer ▷ Points labeled by which cluster they belong to or noise
19: end procedure

1: procedure getNeigbors(point, pointBuffer, ϵ, distFunc)
2: i ← 0
3: l ← length of pointbuffer
4: neighbors ← [] ▷ Initialize list for points that are neighbors to point

5: while i < l do
6: dist ← distFunc(point, pointBuffer[i]) ▷ For this implementation the distance

measure used is the euclidean distance
7: if dist ≤ ϵ then
8: Append point to neighbors

9: end if
10: i ← i+ 1
11: end while
12: return neighbors

13: end procedure

1: procedure expandCluster(numClusters, neighbors, pointBuffer, distFunc, ϵ, minPts)
2: i ← 0
3: l ← length of neighbors
4: while i < l do
5: if neighbors[i] == UNDEFINED then
6: expandedNeighbors ← getNeighbors(neighbors[i], pointBuffer, ϵ, distFunc)
7: if length of neighbors < minPts then
8: Append expandedNeighbors to neighbors

9: end if
10: end if
11: if neighbors[i] == UNDEFINED or neighbors[i] == NOISE then
12: neighbors[i] ← numClusters ▷ Label point with cluster number
13: end if
14: i ← i+ 1
15: end while
16: end procedure
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Figure 14: Illustration of IEPF based clustering

Algorithm 3 IEPF

1: procedure IEPF(inputPoints, outputPoints, T ) ▷ outputPoints is initialized as an
empty list

2: n ← length of inputPoints
3: if n == 2 then
4: outputPoints ← inputPoints

5: else
6: A ← inputPoints[0] ▷ First endpoint
7: middleIndex ← floor(n / 2)

8: B ← inputPoints[middleIndex] ▷ Middle point
9: C ← inputPoints[n-1] ▷ Last endpoint

10: AC ← line segment from A to C

11: projectedPoint ← getProjectedPointOnLine(AC, B)

12: if |AC| < T then
13: Append inputPoints to outputPoints

14: else ▷ Perform split
15: leftPoints ← all points in inputPoints up to index n

16: IEPF(leftPoints, outputPoints, T)
17: rightPoints ← all points in inputPoints from n

18: IEPF(rightPoints, outputPoints, T)
19: end if
20: end if
21: end procedure ▷ outputPoints contains lists of points that belong to the same cluster

perpendicular distance from a measured point (xi, yi) to the fitted line is given by (4)

ρi = xicos(θ) + yisin(θ)− r (4)

The estimated line parameters (r, θ) that minimize the perpendicular distance from of all measured
points of a cluster may be found by minimizing the weighted mean squared error (MSE) defined
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Figure 15: Illustration of parameters for a line on Hesse normal form

by (5). The scaling values si are used in order to account for the reliability of a point i. Note that
for the current implementation for the robot the scaling values are all set to 1, thus this is not a
weighted line fitting scheme at the time being. However, we will later discuss how one may want
to employ the scaling factors for making the line extraction algorithm more accurate.

MSE(r, θ) =

N∑
i=1

(siρi)
2 (5)

An analytical expression for the optimum values of the line parameters for a given set of points
may be found by computing the partial derivatives of r and θ, and solving the normal equations.
This gives the estimators for r and θ given in (6) and (7).

r̂ =
cos(θ̂)

N

N∑
i=1

xi +
sin(θ̂)

N

N∑
j=1

yj (6)

θ̂ =
1

2
atan2(−2σxy, σ

2
y − σ2

x) (7)

The variances σ2
x and σ2

y and covariance σxy used in (7) are given in (8)-(10), where the weights
wi are computed from the scaling factors si using (11) and then normalized.

σ2
x =

1

N

N∑
i=1

wi(xi −
1

N

N∑
j=1

xj)
2 (8)

σ2
y =

1

N

N∑
i=1

wi(yi −
1

N

N∑
j=1

yj)
2 (9)

σxy =
1

N

N∑
i=1

wi(xi −
1

N

N∑
i=j

xj)(yi −
1

N

N∑
j=1

yj) (10)
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wi =
s2i

1
N

∑N
i=1 s

2
i

(11)

After computing the MSE fit parameters from (6) and (7), the orthogonal projections of the
endpoints on the fitted line are used as the endpoints of the line segment. Projecting the endpoints
onto the fitted line parametrized by r and θ is illustrated in figure 16. The red point shows point
P’s projection onto the fitted line which may be computed by (12)-(14), and depending on the sign
of rp − r, one may either subtract or add dx and dy to the coordinates of P to find its projection.

rp = x cos θ + y sin(θ) (12)

dx = |rp − r| cos θ (13)

dy = |rp − r| sin θ (14)

Figure 16: Orthogonally project endpoints on to fitted line parametrized by r and θ

9.3.6 Line merging

At this point in the line segment detection scheme, initial line segments are finally found from
the noisy IR sensors. However, the line segments are only derived from points from the same
point buffer. Line segments derived from different point buffers may be fragments of the same line
segment. Therefore, line segments derived from different point buffers that should be represented
by one line segment are merged together in the fifth step of the line extraction procedure.

After having found initial line segments derived from points from each individual point buffer, line
segments are gathered into a common line buffer. The line merging procedure will perform data
association on neighbouring line segments, and if two line segments are deemed mergeable, the line
segments are merged. Whenever a merge occurs the same procedure is carried out on the merged
line segment for the next stored line in the line buffer. Thus, also in this step we exploit that we
know how line segments are placed in relation to each other due to the bearing ordering of the
points forming the line segments. The recursive merging of line segments terminates when none of
the neighbouring line segments of the buffer meet the conditions for merging, or there is only one
line segment in the buffer.
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In order for two lines segments to be merged they must satisfy the conditions given in (15)-
(17). Here ri, θi denotes the normal form parameters of the line passing through the endpoints
(Pi, Qi) of line segment li. In (15) the function ssa(θ1, θ2) given in listing 7 returns the smallest
signed angle between θ1 and θ2. It is necessary to find the smallest signed angle between the
normal form angle parameters in order to avoid not being able to detect that a line segment with
for instance θ1 ≈ 0 and another line segment with θ ≈ 2π have almost the same orientation
relative to each other. Note that since the C-language modulo operator, %, returns the same
sign as the dividend a custom modulo function must be used instead [15, p. 388]. The function
dist from point to line segment(pi, lj) given in listing 8 returns the shortest distance between
an endpoint of a line segment to a point on the line of the other line segment. α, β and ζ are
constant threshold parameters.

|ssa(θ1, θ2)| < α (15)

|r1 − r2| < β (16)

dist from point to line segment(p1, l2) < ζ (17)

1 float mod(float a, float b) {

2 return a - floorf(a / b)*b;

3 }

4

5 float ssa(float rad) {

6 return mod(rad + M_PI , 2*M_PI) - M_PI;

7 }

Listing 7: Smallest signed angle

1

2 typedef struct point {

3 // Cartesian coordinates

4 float x;

5 float y;

6 } point_t;

7

8 typedef struct line {

9 // Endpoints of line segment

10 point_t P;

11 point_t Q

12 }line_t;

13

14 // Returns shortest distance from a point to a line passing through two points

15 float distance_from_point_to_line(point_t point , line_t line) {

16 return fabs((line.Q.x - line.P.x)*(line.P.y - point.y) - (line.P.x - point.x)*(

line.Q.y - line.P.y))/get_length(line);

17 }

18

19 // Returns shortest distance from a point to a line segment

20 float distance_from_point_to_line_segment(point_t point , line_t line) {

21 float t = -((line.P.x - point.x)*(line.Q.x - line.P.x) + (line.P.y - point.y)*(

line.Q.y - line.P.y)) / (pow(get_length(line), 2));

22 if (t >= 0 && t <= 1) {

23 // The point is perpendicular to the line segment

24 return distance_from_point_to_line(point , line);

25 }

26 float d1 = get_length (( line_t){.P = point , .Q = line.P});

27 float d2 = get_length (( line_t){.P = point , .Q = line.Q});

28 if (d1 < d2) {

29 return d1;

30 }

31 return d2;

32 }

Listing 8: Distance from point to line segment
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During line extraction merging the points forming a particular line segment are still readily avail-
able. The points are not removed until after the line extraction process (over one scan) has
finished. Therefore, whenever two lines have been found to satisfy the criteria for merging, the
merge procedure of the line extraction process will join the buffers holding the points of the two
line segments. This is followed by computing the MSE line fitting parameters again for the union
of points of the two mergeable line segments. Note that for the implementation for the nRF52840
robot given in listing 9 it was necessary to rewrite the recursive (calling the function inside the
function itself) merge procedure to do the computations iteratively in order to prevent the function
from consuming too much stack memory.

1 void merge_linebuffer(line_segment_buffer_t* lb , float alpha , float beta , float

zeta) {

2 int i = 0;

3 while (i != lb ->len -1 && lb->len > 1) {

4 for (i=0; i<lb->len -1; i++) {

5 line_segment_t line = lb->buffer[i];

6 line_segment_t nextLine = lb ->buffer[i+1];

7 if (is_mergeable(line , nextLine , alpha , beta , zeta)) {

8 // Line and nextLine satisfy eq. (15) - (17)
9

10 line_segment_t joint_line_segment;

11 // Perform MSE line fitting on points from line and nextLine

12 join_line_segments (& joint_line_segment , line , nextLine);

13

14 // Move lines of line buffer up one index (overwriting line at

index i)

15 lb->buffer[i] = joint_line_segment;

16 for (int j=i+1; j<lb ->len -1; j++) {

17 lb->buffer[j] = lb->bufffer[j+1];

18 }

19 lb->len -= 1; // decrease length of line buffer

20

21 }

22

23 }

24 if (i == lb ->len -1 && lb->len > 1) {

25 // Check if last line in buffer is mergeable with first line (wrap

around)

26 line_segment_t line = lb->buffer [0];

27 line_segment_t line = lb->buffer[lb->len -1];

28 if (is_mergeable(line , nextLine , alpha , beta , zeta)) {

29 join_line_segments (& joint_line_segment , line , nextLine);

30 // Perform MSE line fitting on points from line and nextLine

31 join_line_segments (& joint_line_segment , line , nextLine);

32

33 }

34 lb->buffer [0] = joint_line_segment;

35

36 }

37

38

39 }

40

41 }

Listing 9: Merge lines of line segment buffer

9.3.7 Line uncertainty estimation

In order to use detected line segments in the EKF framwork for sensor fusion with odometry and
inertial measurements of the robot, an error model for the detected lines has to be established.
Specifically, we are interested in the finding estimates of the errors of r and θ, and how these
correlate. I.e. the covariance matrix of the line parameters given in (18) must be found.

Rrθ =

[
σ2
r σrθ

σrθ σ2
θ

]
(18)
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The simplified closed-form error model of a straight line proposed by Sommer (2018)[44] was chosen
to be used for line uncertainty estimation in this thesis. Sommer claims that using the estimated
covariance matrix for the line parameters r and θ given in (19) gives a sufficiently accurate estimate
of (18) for most applications. Furthermore, computing the estimated covariance matrix is fast,
and does not suffer from numerical instability such as the analytically derived exact solution.

Rrθ ≈ σ2
ρ

[
12x2

off

L2N + 1
N

−12xoff

L2N−12xoff

L2N
12

L2N

]
(19)

Following the derivation from [44], the elements of the estimated covariance matrix (19) are para-
metrized by the variance of the distance between a sampled point and the fitted line σ2

ρ, the number
of sampled points in the line segment cluster N , the length of the fitted line segment L and the
geometric offset xoff illustrated in figure 17. xoff and σ2

ρ are computed using (20) and (21).

xoff =
r

2
(tan(θ − θN ) + tan(θ − θ1)) (20)

σ2
ρ =

N∑
i=1

siρi(r, θ)
2 (21)

Figure 17: Illustration of parameters of the estimated closed-form error model. Adapted from [44]
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9.4 EKF-SLAM

The following sections will derive the filter equations used for the line segment based EKF-SLAM
implementation, in addition to presenting how the SLAM approach handles updates, initializing
new line segments, predictions and map management. The whole filter algorithm is outlined in
pseudo code in algorithm 4. Most derivations of the filter equations follow the recipe provided
by Brekke (2020) [9], Fossen (2021) [15] and Solà (2007) [38] applied to models specific for the
characteristics of the robot in-use.

9.4.1 Motion model

In order to derive the filter equations used for the EKF-SLAM implementation we have to obtain
a suitable kinematics model for the differential drive robot. Two-wheeled robots such as the
nRF52840-based robot are capable of moving forwards by rotating both wheels at the same speed,
and turn by rotating one of the wheels at a higher speed than the other. However, they are not
able to suddenly move laterally. This is known as a non-holonomic system, and the kinematics
describing these types of robots’ movement may be captured by the unicycle model [10][2]. The
unicycle model was also used by [19] when designing the EKF for the nRF52832-robot.

For the unicycle model the pose vector of the robot given in (22) contains the x- and y-coordinates
of the robot, and θ is the heading of the robot, with respect to a two-dimensional global reference
frame. The origin of the global reference frame is set to the initial pose of the robot.

x =

xy
θ

 (22)

Using the unicycle model the pose of the robot evolves over time by the non-linear differential
equation given in (23), where v is the linear velocity and ω is the rotational velocity of the robot.
The process noise (24) is modeled as an additive zero-mean Gaussian term w, with a diagonal
covariance matrix Q.

ẋ =

ẋẏ
θ̇

 =

vcos(θ)vsin(θ)
ω

+w (23)

w ∼N (0, Q) (24)

The linear velocity v and rotational velocity ω are considered as control inputs to the system, thus
we may define the control vector given in (25). Following the lines of [19], v may be computed from
counting the number of encoder ticks between each cycle of the filter. w can be extracted from the
gyroscope. It was decided not to use the accelerometer of the IMU due to its high noise level as
explained in [19]. The variance elements of Q must be set appropriately in order to capture the
uncertainty from the encoder and gyroscope measurements.

u =

[
v
ω

]
(25)

Following Fossen (2021)[15] one may discretize (23) using forward Euler integration and setting
the Gaussian white noise term to zero. This results in the discrete-time predictor for the k-th
time-step given in (26), where h is the sample period of the estimator.

x[k + 1] = fx(x[k],u[k]) =

x[k] + hv[k] cos θ[k]
y[k] + hv[k] sin θ[k]

θ[k] + hω[k]

 (26)
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Algorithm 4 EKF-SLAM

1: procedure EKF-SLAM
2: ν ← 03×1 ▷ Initialize state vector
3: P← 03×3 ▷ Initialize state covariance matrix
4: R ← [] ▷ Initialize stacked measurement covariance matrix
5: endpoints ← [] ▷ Initialize list for endpoints
6: n← 0 ▷ Number of landmarks
7:

8: while True do
9: tmp ← [] ▷ Temporary list for storing indexes of updated landmarks

10: while new line segment available y, Rrϕ, e do ▷ y = [r, ϕ]T ,
Rrϕ = [[σ2

r , σrϕ], [σϕr, σ
2
ϕ]] e = [[xs, ys]

T , [xe, ye]
T ]T

11:

12: merged ← False

13: i ← 0
14:

15: while i < n do ▷ Iterate through map
16: idx ← 3 + i ∗ 2 ▷ Landmark index in ν
17: if isMergeable(y, e, [ν[idx], ν[idx+1]], endpoints[i]) then
18: ν,P← update(ν,P,R, idx,y,Rrϕ, e) ▷ Perform update sequence
19: Append i to tmp ▷ Keep track of updated line segments
20:

21: p1, p2, p3, p4 ← Compute projections of points in endpoints[i] and e
onto updated line

22:

23: p s, p e ← Find the pair of points among (p1, p2, p3, p4) that form the
longest line segment

24:

25: endpoints[i] ← [p s, p e] ▷ Update endpoints corresponding to updated
line

26: merged ← True

27: end if
28: i ← i+ 1
29: end while
30:

31: if not merged then ▷ New line segment was not mergeable with any stored line
segments

32: add new landmark(ν, P, R, y, Rrϕ) ▷ Append y to ν, and extend P
33: n = n+ 1
34: end if
35: end while
36:

37: mapManagement(tmp, ν, P, R, endpoints) ▷
Perform update sequence again for all mergeable line segments that were updated during this
iteration, and remove redundant features.

38: tmp ← [] ▷ Clear tmp
39:

40: u← [linear velocity, rotational velocity]

41: dt ← delta time
42: ν,P← predict(ν, P, u, dt, n) ▷ Predict state for next time step
43:

44: end while
45: end procedure
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9.4.2 Map

The map of the robot’s environment is comprised of n line features parametrized using the Hesse
normal form. (27) represents line i extracted from the points of the environment collected by the
IR sensors. ri is the perpendicular distance from the origin of the global reference frame to line
i, and ϕi is the angle from the x-axis of the global reference frame to the line spanning from the
origin to line i.

li =

[
ri
ϕi

]
(27)

Thus, one may represent the entire map of the environment with (28). Note that in this EKF-
SLAM solution only the line parameters ri and ϕi are used in the estimation problem. In order to
form the line segments we obviously also need the endpoints of the line. Although the endpoints
of the line segment are not part of the state estimation they must be stored and used for data
association and line segment merging.

m =


l1
l2
...
ln

 (28)

It is reasonable to assume that line-features are both stationary and permanent. Thus, there is no
need to model the kinematics of the line features forming the map, and the map prediction may
be simply written as given in (29).

m[k + 1] = m[k] (29)

9.4.3 Measurement model for a line feature

In order to exploit correlations between observed line features and the robot’s pose we need find
a relationship between the line features and the pose. This is where the measurement model and
its inverse come in to play.

We may define the measurement model for a line i at time-step k as given in (30), similarly as used
in Garulli et al. (2005)[16]. The measurement prediction hi(x[k], li) is the state-to-measurement
mapping, i.e. it transforms line features in the state vector to observations of line features from
the point of view of a robot with the given input pose as illustrated in figure 18. Similarly, the
inverse measurement prediction for a line i given in (31) yields the measurement-to-state mapping.

y[k] = hi(x[k], li) + ϵi[k] =

[
rBi + ϵr,i[k]
ϕB
i + ϵϕ,i[k]

]
=

[
rGi − (x[k] cosϕG

i + y[k] sinϕG
i ) + ϵr,i[k]

ϕG
i − θ[k] + ϵϕ,i[k]

]
(30)

g(x[k], li) =

[
rGi
ϕG
i

]
=

[
rBi + x cos (ϕB

i + θ) + y sin (ϕB
i + θ)

ϕB
i + θ

]
(31)

Stacking each measurement model of a line into the same vector gives the full measurement model
in (32).

y[k] = h(x[k],m) + ϵ[k] =

h1(x[k], l1)
...

hn(x[k], ln)

+ ϵ[k] (32)

We may assume that each measurement of a line are independent of one another and is Gaussian
distributed according to N (0, Ri

rϕ). The closed-form line uncertainty estimation technique from
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Figure 18: Illustration of parameters for line feature measurement model

section 9.3.7 has been used to find an estimate of the covariance matrix Ri
rϕ for a line i. Therefore,

the covariance matrix of the full (stacked) measurement noise vector ϵ[k] may be expressed as given
in (33).

R =

R
1
rϕ

. . .

Rn
rϕ

 (33)

9.4.4 Prediction

In SLAM we wish to estimate both the pose of the robot and the map of the robot’s surroundings
simultaneously, thus, we define the joint pose-map vector given in (34).

ν =

[
x
m

]
∈ R3+2n (34)

Combining the derivations from section 9.4.1 and 9.4.3 one may formulate the joint pose-map
discrete prediction given in (36). For clarity we drop indexing with time-step k.

ν̇ = f(ν,u) +Nw (35)

ν ← f(ν,u) =

[
fx(x,u)

m

]
(36)

N =

[
I3

02n×3

]
(37)

The state (joint pose-map) covariance matrix is given in (38).

P =


Pxx Pxl1 . . . Pxln

Pl1x Pl1l1 . . . Pl1ln
...

...
. . .

...
Plnx Plnl1 . . . Plnln

 (38)
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Pxx =

 σ2
x σxy σxθ

σyx σ2
y σyθ

σθx σθy σ2
θ

 (39)

Plix = Pxli
T =

[
σrix σriy σriθ

σϕix σϕiy σϕiθ

]
(40)

Plilj = Pljli
T =

[
σrirj σriϕj

σϕirj σϕiϕj

]
(41)

The goal of EKF-SLAM is to maintain estimates of the state vector ν and the state covariance P
in every iteration of the filter. All variants of the Kalman filter have in common that estimates
are computed with a prediction step in every iteration. Whenever a measurement is available an
update step allows for the filter to correct its estimates. The EKF state prediction is already given
in (36). Following Brekke (2020) [9] and Solà (2007) [38], in order to tackle the nonlinearities
in the process and measurement model in order to apply the Kalman filter framework, the EKF
solution involves finding the Jacobians of the process and measurement models. Thus, computing
the Jacobian of the part of the process model including the robot pose with respect to the pose
yields (42).

Fx =
∂fx(x,u)

∂x
=

1 0 −hvsin(θ)
0 1 hvcos(θ)
0 0 1

 (42)

To find the Jacobian of h(ν), we may break down the problem by finding the Jacobian of the
measurement prediction function of a single line feature hi(x, li) with respect to the pose and line
feature vector separately.

Hi
x =

∂h(x, li)

∂x
=

[
− cosϕi − sinϕi 0

0 0 −1

]
(43)

Hi
l =

∂h(x, li)

∂li
=

[
1 x sinϕ− y cosϕ
0 1

]
(44)

Followingly, the joint pose-map Jacobians can be defined as given in (45)-(46) [9][38].

F =

[
Fx 0
0 I

]
(45)

H =

Hx
1 Hl

1

...
. . .

Hx
n Hl

n

 (46)

Thus, the state covariance prediction may be formulated according to (47).

P ← FPF T +NQNT (47)

1

2 def f(nu, u, dt):

3 x = nu[0,0] + dt*u[0]*np.cos(nu[2,0])

4 y = nu[1,0] + dt*u[0]*np.sin(nu[2,0])

5 theta = nu[2,0] + dt*u[1]

6 state = np.array([

7 [x],

52



8 [y],

9 [theta],

10 ])

11 if (np.shape(nu)[0] > 3):

12 # State vector contains line features

13 return np.block ([[ state],

14 [nu[3: ,:]]])

15 else:

16 # State does currently not contain any line features

17 return state

18

19 def Fx(nu , u, dt):

20 matrix = np.eye(3,3)

21 matrix [0,2] = -dt*u[0]*np.sin(nu[2, 0])

22 matrix [1,2] = dt*u[0]*np.cos(nu[2, 0])

23 return matrix

24

25

26 def F(nu, u, dt):

27 n = int((np.shape(nu)[0] - 3) / 2)

28 matrix = np.block ([[Fx(nu, u, dt), np.zeros((3,n*2))],

29 [np.zeros ((n*2,3)), np.eye(n*2,n*2)]])

30 return matrix

31

32 def N(n):

33 return np.block ([[np.eye(3,3)],

34 [np.zeros ((n*2,3))]])

35

36 def predict(nu , P, u, dt , num_landmarks):

37 # Predict state

38 nu_ = f(nu, u, dt)

39 # Predict covariance

40 P_ = F(nu , u, dt) @ P @ F(nu , u, dt).T + N(num_landmarks) @ Q @ N(num_landmarks

).T

41 return nu_ , P_

Listing 10: EKF-SLAM prediction (python)

9.4.5 Initializing new line segments

As the robot explores its surrounding environment whenever the robot observes a new line segment
- one that was not mergeable with any of the exisiting line features of the state vector, it should
be added to the map. I.e. the state vector increases its size by two when we add the newly
observed line parameterized by r and ϕ. Since the state vector stores line features with respect
to the global frame, and the mapping task outputs the extracted lines with respect to the same
coordinate system, the measurement may be added directly to the state vector. Seperately from
the state vector ν, the endpoints corresponding to the line parametrized by r and ϕ are appended
to a list. One may find the normal form parameters of endpoint i (zero-indexed) in the the state
vector at index position 3+2*i.

Additionally, the state covariance matrix must be appended with the newly extracted line feature’s
covariance and its cross-variance with the existing line features constituting the map. According
to [38], the new line feature’s covariance and cross-covariance may be computed from the Jacobian
of the inverse measurement model. For our case, the Jacobian of (31) with respect to the robot
pose and the measurement may be computed as given in (48)-(49). Note that the measurement

y =
[
rG ϕG

]T
first has to be converted to the body-frame {B} of the robot.

Gx =
∂g(ν,y)

∂x
=

[
cos (ϕB + θ) sin (ϕB + θ) −x sin (ϕB + θ) + y cos (ϕR + θ)

0 0 1

]
(48)

Gy =
∂g(ν,y)

∂y
=

[
1 −x sin (ϕB + θ) + y cos (ϕB + θ)
0 1

]
(49)
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Followingly, the covariance and cross-variance of the new line feature ln+1 may be computed using
(50)-(51)

P ln+1ln+1
= GxPxxGx

T +GyRn+1Gy
T (50)

P ln+1x = Gx

[
Pxx Pxm P xl1 . . . P xln

]
(51)

1

2 def add_new_landmark(nu , P, R, y_meas , R_meas):

3 # Map landmark to state using inverse measurement model

4 l = inv_h(nu, y_meas)

5 nu_ = add_new_landmark_to_state(nu, y_meas) # Append new landmark to state

vector

6

7 # Initial landmark covariance

8 P_ll = Gx(nu_ , l) @ P[0:3, 0:3] @ Gx(nu_ , l).T + Gy(nu_ , l) @ R_meas @ Gy(nu_ ,

l).T

9 # Initial landmark cross -covariance

10 P_lx = Gx(nu_ , l) @ P[0:3, :]

11 # Append initial landmark covariance matrix to full -state covariance matrix

12 P_ = np.block ([[P, P_lx.T],

13 [P_lx , P_ll ]])

14

15 if np.shape(nu)[0]-3 > 1:

16 R = add_new_landmark_covariance(R, R_meas)

17 return nu_ , P_ , R

18 else:

19 # This line is the first one observed

20 return nu_ , P_ , R_meas

Listing 11: EKF-SLAM Initializing new line segments (python)

9.4.6 Update

In order for an update to take place for correcting the state estimates, the robot must observe a line
feature which already has been added to the state vector. The robot should be able to recognize
partial observations of line segments due to the short measurement range of the IR sensors. I.e. the
data association approach should both be able to infer that a new observation of a line feature is an
extension of a previous observation, thus, updating the line segment with endpoints further apart
and correcting the line features parameters r and ϕ, and the robot’s pose x in such a way that
the new observation makes sense from the perspective of the pose. Additionally, the robot might
observe a line segment which is embedded inside a larger segment which should result in using the
same previously observed line segment’s endpoints for the updated line segment’s endpoints whilst
also correcting the state vector.

For recognizing previously observed lines, the new observation is checked against all previous
observations stored in the current state vector to test if the new observation meets the condition’s
for merging line segments given in (15)-(17). Note that when using the same merging conditions
for data association in the filter as for when merging line segments during feature extraction does
not imply that the same thresholds should be used. During feature-extraction the robot collects
range-bearing measurements over several poses from a much smaller area than the potential size of
the whole map. Therefore, the feature-extraction thresholds for merging may be set more relaxed.
However, during an update step of the EKF the entire map is being searched through, and falsly
claiming that two line segments should be merged would most likely lead to the filter diverging.
This would not only make the map of the environment bad, but also following pose estimates would
be useless.

Whenever a new observation of a line y is found to be mergeable with a line feature i already
stored in the state vector, the EKF update given in (53)-(54) from [38] is computed. Also here, y
has to be transformed to the robot’s frame of reference in order for the computations to be carried
out properly.
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z = y − hi(x, li) (52)

x← x+Kz (53)

P ← P −KZKT (54)

The Kalman gain K is computed according to (56).

Z =
[
Hx

i Hi
l

] [Pxx Pxli

Plix Plili

] [
Hi

x

T

Hli
T

]
+Ri (55)

K =

[
Pxx Pxli

Pmx Pmli

] [
Hi

x

T

Hli
T

]
Z−1 (56)

Through the Kalman gain, the single re-observation of a landmark will correct the entire state
including previous observations of other line features. Followingly, the separately stored endpoints
must be updated. The endpoints corresponding to a updated line are updated by orthogonally
projecting the endpoints onto the line. Special care has to be taken for the line feature that was
found to be mergeable starting the update sequence. For this particular line one must find the
endpoints which are furthest apart among the endpoints of the two merged lines. The endpoints
that are furthest apart are then projected onto the updated line.

1 ''' Called when the robot observes a line feature already part of the map.

2

3 nu: State vector with dimensions (3+2*n, 1), for n landmarks already stored.

4

5 P: State covariance matrix with dimensions (3+2*n, 3+2*n).

6

7 R: Full measurement covariance matrix with dimensions (2*n, 2*n).

8

9 landmark_index: Index of state vector for line feature to be updated

10

11 y_meas: Measurement with dimensions (2, 1)

12

13 R_meas: Measurement covariance matrix with dimensions (2,2)

14

15 endpoints: List of endpoints , where endpoints[i] gives the endpoints of line

feature i in state vector (nu[3+2*i:3+2*i+2])

16

17 '''
18 def update(nu, P, R, landmark_index , y_meas , R_meas , endpoints):

19 i = landmark_index

20

21 R_ = update_measurement_noise_for_observation(R, R_meas , i)

22

23 P_xx = P[0:3 ,0:3]

24 P_xli = P[0:3 ,3+i*2:3+i*2+2]

25

26 P_lli = P[3+i*2:3+i*2+2, 3+i*2:3+i*2+2]

27

28

29

30 # computing the innovation is sparse: only take care of the robot state , the

concerned landmark and the robot -landmark i covariances

31 Z = np.block ([[Hx(nu,i), Hl(nu, i)]]) @ np.block ([[P_xx , P_xli],

32 [P_xli.T, P_lli ]]) @ np.block

([[Hx(nu, i).T],

33

[Hl(nu, i).T]]) + R_[i*2:i*2+2, i*2:i*2+2]

34

35 P_mr = P[3: ,0:3]

36 P_mli = P[3:, 3+i*2:3+i*2+2]

37

38 # Compute Kalman gain
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39 K = np.block ([[P_xx , P_xli],

40 [P_mr , P_mli ]]) @ np.block ([[Hx(nu, i).T],

41 [Hl(nu, i).T]]) @ inv(Z)

42

43 # ssa() computes smallest signed angle for the angle term

44 z = ssa(convert_measurement_to_robot_frame(nu, y_meas), h_i(nu , i))

45

46 nu_ = nu + K @ z # Update state

47 P_ = P - K @ Z @ K.T # Update covariance

48

49 for j in range(len(endpoints)):

50 if (nu_ [3+j*2] < 0):

51 nu_ [3+j*2] = np.abs(nu_ [3+j*2])

52 nu_ [3+j*2+1] += np.pi

53

54 # Update endpoints

55 endpoints_ = []

56 for j in range(len(endpoints)):

57 proj_point_p = get_projected_point_on_line(nu_[3+j*2], nu_[3+j*2+1] ,

endpoints[j][0])

58 proj_point_q = get_projected_point_on_line(nu_[3+j*2], nu_[3+j*2+1] ,

endpoints[j][1])

59 endpoints_.append ([ proj_point_p , proj_point_q ])

60

61 return nu_ , P_ , R_ , endpoints_

Listing 12: EKF-SLAM Update (python)

9.4.7 Map management and loop-closing

As explained in section 9.4.6, whenever a new line segment has been extracted, this line segment
is checked if it is mergeable with all previously observed line features. However, from the line
extraction process, multiple new line segments may be available at a given time-step. Followingly,
an update step is carried out one-by-one for each mergeable line segment. After every update step
from the current set of new line features, the updated line feature is kept track of until all the
new line features have been processed by the filter (either being added directly to the state, or
updating a re-observed line feature). For all the updated line features after one line extraction
scan, these are again checked if they are mergeable with line features that were updated from the
same scan. If the updated line segments are mergable with other merged (updated) line segments,
they are merged through an additional update sequence. This may be seen as a map management
step, as the goal of checking the newly updated line features with line features that were updated
is to remove redundant line features. Intuitively this makes sense to do for a line-feature based
SLAM approach, as after an initial update is performed on a newly extracted line segment and
a line already stored in the state, the resulting updated line feature may now be mergeable with
other line features it previously would not consider to be the same line feature. This is required in
order to generate a map with the least amount of features necessary whilst still representing the
surrounding environment with enough accuracy.

The requirement for an additional update step is most visible from the perspective of the generated
map after a full loop-closure, i.e. when the robot is able to recognize that it has returned to a
previously observed part of the map which also encloses the robot’s surroundings. In this case
the robot will have observed a line segment which stitches together two previously observed line
features - placing the last piece of the jigsaw-puzzle. Since updates are performed one-by-one, two
update steps are required in order to represent the three observations as one feature.
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10 Testing and verification

10.1 Robot-server MQTT-SN communication

One may verify that the robot and server are able to communicate by examining the logs from
the Mosquitto broker. Figure 19 shows a screenshot of the Raspberry pi terminal displaying how
messages are sendt from the C++-server to the robot and vice versa.

Figure 19: Raspberry Pi terminal showing MQTT broker log

10.2 Step-by-step line extraction

For initial testing of the line extraction process the robot was placed inside a garage as illustrated
in figure 20 in order to compare the extracted line segments from the method used in [5] and from
the method developed during work on this thesis. Similarly to [5], verifying the algorithm was done
by collecting data from the robot at each step of the extraction scheme from section 9.3. However,
instead of collecting data over a wired connection as done in [5], the developed MQTT-SN task
was put into use by making the mapping task publish various data whilst extracting line segments.
On the receiving side a subscribing MQTT client, implemented in python with the Paho MQTT
client library, was run on the computer at the workstation.

10.2.1 Data collection and preprocessing

Figure 21 shows the point cloud collected from each of the IR sensors after a 90° turn of the sensor
tower. The color of a point illustrates which IR sensor the point was sampled from. The most
important part of this step is removing any points that are outside the valid measuring range of
the IR sensors. Not seen in the figure is that a number of the points would erroneously be placed
on top of the robot (marked with a green square).

10.2.2 DBSCAN

In figure 22 the output clusters after DBSCAN has been performed once on each of the IR sensor
point buffers is plotted. During this test the parameter ϵ defining the neighborhood radius of a
point was set to 20 mm, and min Pts which sets the minimum number of points in a cluster was set
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Figure 20: Test setup for line extraction verification

to 5. Larger dots with the same colour are part of the same cluster. Smaller gray dots in the figure
were labeled as noise by DBSCAN. From inspecting figure 22 it is evident that one could fine-tune
especially ϵ smaller to remove the smaller deviations from the apparent line’s mean. However,
DBSCAN is still capable of removing the most noisy point measurements.

10.2.3 IEPF

The third step of the line extraction process is plotted in figure 23. Here the IEPF algorithm has
been performed on each of the clusters produced by DBSCAN in order to find clusters of points
which form straight line segments. For this test parameter T defining the maximum length between
the line spanning from the middle indexed point of a cluster to the projection point on the line
between the endpoints was set to 10 mm. Of particular interest in the figure are the corners of
the garage where the IEPF algorithm has successfully clustered both the DBSCAN clusters (blue
cluster in upper corner and yellow cluster in lower corner in figure 22) into two clusters each. From
the figure one could state that the IEPF algorithm has over-segmented its input clusters from
DBSCAN, i.e. T should have been set lower to allow for the more points to be considered as part
of the same cluster. This is especially clear for the lower most wall of the garage where ideally the
IEPF algorithm should not have further clustered the points from DBSCAN. However, the IEPF
cluster results from the upper and inner wall are satisfactory given the DBSCAN cluster inputs
since no further clustering has taken place. Note that all points within every cluster throughout
the feature extraction process has maintained its sorted order by bearing, thus, there is no need
to search for endpoints of the input clusters for the IEPF algorithm.

10.2.4 MSE line fitting

In figure 24 the IEPF clustered points are fitted onto a line which minimizes the distance among all
points in the cluster to the fitted line. In order for the MSE fitted line to represent the environment
accurately outliers must be kept at a minimum since each point’s contribution is weighted equally.
For the case of figure 24, DBSCAN has performed sufficiently well in removing outliers, therefore
using the MSE approach works reasonably well for finding initial line segments.
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Figure 21: Step 1 of line extraction: Data collection and preprocessing

10.2.5 Line segment merging

Using the MSE fitted line segments directly from figure 24 as measurements for EKF-SLAM would
not not be ideal - a line segment merging step within the extraction process is needed to represent
the environment with the least amount of features as possible. Figure 25 shows one step in the
recursive merging process of the feature extraction scheme. More specifically, the figure shows two
dotted line segments, and the resulting merged line. The rightmost (orange) dotted line segment
has previously already been merged with the first two line segments from the left of the upper
corner of the garage seen in 24. Since the MSE fitted line’s points are temporarily stored during
line extraction the points of the two mergeable line segments may be used for MSE fitting again,
and the resulting fitted line is the blue line in figure 25. The red points in the figure depict which
points are used to form the merged line segment.

10.2.6 Extracted line segments

Figure 26 shows the final extracted line segments. Given the points sampled from the IR sensors,
the line segments are able to make out the contours of the garage, albeit, they appear slightly
slanted. The main reason behind the errors in the line segments’ orientations may be due to the
lack of points in the corners of the garage. Unsurprisingly, points that are sampled at a right angle
from the IR sensor to the point of contact appear more dense, and less dense the higher the angle
of attack becomes. I.e. the reflection angle of the IR beam plays a major role in the discrepancies
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Figure 22: DBSCAN clustering per IR sensor point measurement

between the extracted line segments and the actual line features of the environment.
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Figure 23: IEPF-based clustering per DBSCAN cluster
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Figure 24: MSE line fitting performed on each IEPF cluster

Figure 25: Line segment merging
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Figure 26: Extracted line segment features
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10.3 Line segments extracted at several robot poses

In figure 27a the extracted line segments are plotted whilst the robot was commanded around
the maze illustrated in figure 27b. The robot was stopped at every colored dot of figure 27a, line
segments with the same color as the position marker illustrate which line segments were extracted
at the given pose. Most notable from figure 27a is that the robot struggles to extract line segments
close to corners of the maze. Moreover, the length of the extracted line segments are generally
smaller close to the corners. The results are plotted by making the robot publish extracted line
segments to a subscribing MQTT client in python for plotting, thus, also serves to verify the
MQTT-SN task is working as intended. The python script used for collecting data from the robot
is given for reference in appendix A.

(a) Lines extracted from several robot poses

(b) Maze

10.4 Line feature EKF-SLAM on dataset from robot

Due to lack of time an EKF-SLAM implementation in C for the nRF52840 robot was not finished.
However, a python implementation of the EKF-SLAM approach described in section 9.4 was made.
A dataset from the robot was created by publishing over MQTT-SN extracted line segments, pose
estimates and control inputs from the estimator task running a standard EKF. Using the dataset
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the EKF-SLAM approach was tested.

Initially it was thought that using the linear velocity computed from encoder ticks, and gyro
readings for rotational velocity would be enough to drive the EKF-SLAM predictions with similar
accuracy as the existing EKF by [19] running on the robot. However, this was not the case as
may be observed in figure 31. [19] additionally also used the encoder ticks for computing the
rotational velocity of the robot, and these measurements proved to be more reliable than any of
the measurements from the IMU. As the created dataset only contained control inputs for linear
velocity computed from encoder ticks and gyro measurements, the EKF state estimates themselves
were used to compute the control inputs, u, which drive the EKF-SLAM predictions. In effect, this
should be similar to fusing measurements of rotational velocity from the encoders into the filter.
However, instead of explicitly adding a new element in the control vector, the rotational velocity
component ω may be seen as a combination of both encoder derived and gyroscope measurements.
Of course, this would not be the case for when EKF-SLAM is implemented for running on the
robot. For the robot implementation of the EKF-SLAM approach described here the control vector
should be expanded for additional measurements, thus, most notably the Q matrix also would have
to be expanded to account for this change. Alternatively, one may compute rotational velocity from
the encoder ticks alone - disregarding using any inertial measurements due to the high noise level
of the IMU. In this case, the EKF-SLAM approach could be implemented for the nRF52840-robot
exactly as described here.

Figure 28a shows the robot’s track and extracted features while exploring the maze seen in figure
28c. Since all the thresholds for merging were set to zero no updates take place, and the robot relies
solely on its predictions for pose estimation. The green dotted line is considered the ground truth
position of the robot measured by the OptiTrack motion system. OptiTrack uses the reflective balls
mounted on the robot to track the robot’s position with high enough accuracy to be considered
the ground truth for our purposes. The blue dotted line is the estimates from the EKF computed
onboard the robot. The black dotted line represents the EKF-SLAM estimates. Unsurprisingly,
the EKF pose estimates are more or less the same as the EKF-SLAM predictions alone since the
predictions are based on the control input computed from the EKF. From figure 28a it is interesting
to see how the pose has drifted away from the ground truth. Followingly, the generated map is
also displaced according to the discrepancies between the filter’s pose estimates and ground truth.

In figure 28b the conditions for merging have been set appropriately in order to allow for EKF-
SLAM updates to take place. Table 6 summarizes the parameters used for the EKF-SLAM results.
Note that using the line uncertainty estimation technique from section 9.3.7 was not used as the
computed variances and covariances of the line parameters r and ϕ would ruin the filter. Instead,
the measurements covariance matrix of a line Ri was set to be a constant. Tuning Q and Ri is
quite demanding as none of the elements of matrices are directly related to the characteristics of
the sensors of the robot. Tuning was therefore done experimentally.

From figure 29e one can see how the robot correctly updates its pose estimates as it approaches
its starting position. I.e. a loop closure has taken place as the robot is able to recognize that the
leftmost wall of the maze is the same wall it observed close to its starting position. Followingly,
the robot is able to merge the last extracted line features with the first extracted line features.
Since the robot re-observes the same line features it is able to detect the pose drift, and updates
its pose accordingly. Note that the entire map is also updated when the robot corrects its pose.
From figure 28b this is especially evident as the walls further away from the robot’s origin have
been corrected in an unwanted manner.

The robot’s pose is not only corrected after a full loop-closure. For instance, as can be seen in figure
29a the robot re-observes the same line feature forming the upper wall of the maze at multiple
time-steps. When an update occurs one can distinctly see that the robot’s trajectory is corrected
closer to the ground truth as the robot is using the wall as a point of reference. The same can also
be seen in figures 29b-29c where the longest line segment to the right is used to correct the robot’s
trajectory.

Figures 28a-28b also show how the robot struggles to extract line segments from the corners of
the maze whilst the robot is moving. With the approach developed in this thesis the robot should
preferably stop and capture full scans of the environment as was done in figure 27a for areas of the
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Parameter Value Comment

α 0.7854

Defines similarity
threshold for
ϕ-parameter of

normal form line.

β 4.5

Defines similarity
threshold for
r-parameter of

normal form line.

ζ 0.3
Max distance from

point to line
segment.

Q

0.0001 0 0
0 0.0001 0
0 0 0.001

 Process noise
covariance.

Ri

[
0.3 0
0 0.4

]
Used instead of
line uncertainty

estimation
technique from

section 9.3.7 due to
unreasonably large

values.

Table 6: Parameters for EKF-SLAM

map where the IR sensor’s of the sensor tower are not able to gather enough valid range-bearing
measurements.

In figure 30 the covariance ellipses of the robot’s pose have been plotted at several time-steps
whilst the robot explores the maze. For figure 30a the conditions for merging have again been set
too strict, thus only EKF predictions are performed for pose estimation. As one would expect,
since the robot is dead-reckoning, the robot’s uncertainty in its position and heading increase all
the way around the maze. On the other hand, in figure 30b the robot’s pose covariance is limited
by updates caused by re-observing line segment features. One may say that the observed line
segments anchor the relative odometry measurements to the fixed (absolute) reference the line
segments provide. From figure 30b one may also observe that the covariance ellipses at the bottom
of the maze are relatively large compared to the other ellipses. This may partially explain why the
the loop-closure updates the line segments at the bottom more dramatically than the other line
segments of the map.
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(a) EKF-SLAM predictions only (no updates), EKF, and ground truth

(b) EKF-SLAM, EKF, and ground truth

(c) Maze
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(a) 15 line segments extracted. 2 line features. (b) 30 line segments extracted. 6 line features.

(c) 45 line segments extracted. 9 line features. (d) 60 line segments extracted. 10 line features.

(e) 63 line segments extracted. 10 line features. Full loop-
closure.

Figure 29: Robot gradually maps out its surrounding environment whilst estimating its current
pose
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(a) Pose covariance ellipses with only predictions.

(b) Pose covariance ellipses with line feature updates.

Figure 30: Covariance ellipses of the robot’s pose with and without updates.
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Figure 31: Using gyroscope measurements directly to drive EKF-SLAM predictions does not work.
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11 Discussion

11.1 Details on MQTT-SN task implementation

The MQTT-SN task implementation from section 9.1 provides a reliable communication link
without the need for Grindvik’s legacy layer capable of publishing outgoing messages from other
FreeRTOS tasks, distributing received messages to designated tasks, handles reconnections with
the broker and retransmission of packets. In the following paragraphs some of the thoughts behind
the design choices of the task will be elaborated on.

The reason for dedicating an own task for handling MQTT-SN communication is both a necessity
in terms of the protocol being connection-oriented, ensures that access to internal data structures
of the MQTT-SN client is not subject to race conditions, and keeps the robot application modular.
Periodic keep-alive messages have to be scheduled in order to keep the connection to the broker
alive. Furthermore, handling disconnections and re-connections to the broker has to be dealt with
in order to provide a fault-tolerant communication module for the robot. It is therefore a natural
design choice to run the MQTT-SN client in its own task which also makes it easy for future
developers to add the MQTT-SN task to other Thread-supporting, FreeRTOS-robot applications.

The MQTT-SN task functions as a post box for other FreeRTOS tasks which is beneficial in order
to comply with the timing requirements of the robot application. This ensures that tasks with
harder real-time constraints such as the controller- or estimator task are minimally delayed when
publishing messages. It is only when these time critical tasks are in either a blocked or suspended
state that the lower priority MQTT-SN task may read the contents of the shared inter-task queue
and publish messages to the network. Consider a design where instead the methods and data
structures of the bear-metal MQTT-SN client are protected with mutual exclusions. This may
either lead to a task having to wait for access to the client (which may take too long time), or the
task may end up not being able to access the client at all causing possibly valuable information
for other nodes on the network to be lost.

The choice of using FreeRTOS queue objects with entries in the queue inserted by copy was made
to ensure that the entries would not be lost in the case where the MQTT-SN task is not able to
read from the queue before the publishing task overwrites the original message. This does have
several drawbacks. Firstly, FreeRTOS queue objects are only capable of inserting entries with the
same data structure in one queue. Therefore, multiple queues must be used for multiple MQTT-SN
payload formats. This is not scalable when introducing more MQTT-SN payloads. Additionally,
queuing large data structures by copy requires more RAM than if the data structures were queued
by reference. An alternative solution could be to queue pointers to dynamically allocated memory,
and make the MQTT-SN task deal with deallocating the memory when the message has been
published. In this way, only one queue holding pointers would have to be used, thus creating a
more generic and scalable interface for other FreeRTOS tasks. This does however come at the
risk of invalid reads since the publishing tasks are able to modify the contents the pointers are
referencing.

11.2 Properties of MQTT(-SN)

There are both advantages and disadvantages of using MQTT(-SN) as the communication protocol
between devices of the SLAM-project.

The most prominent advantage of using MQTT(-SN) is the protocol’s characteristic publish/sub-
scribe architecture and data-centricity. The CoAP implementations by Murad (2021) [30] will likely
not be as scalable as using MQTT(-SN) due to the CoAP protocol’s request/response pattern. If
one should increase the number of robots communicating over CoAP in the SLAM-project, at a
certain point managing connections to other robots at the application layer will not be feasible.
With the argument of scalability in mind, using BLE broadcasts would be more beneficial than
CoAP. However, BLE does not have the favourable semantics of exposing a node’s resources by
topics such as MQTT(-SN).
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The need for an additional device, the Raspberry Pi running the MQTT-SN gateway, in the
system architecture is one of the disadvantages of using MQTT-SN over both CoAP and BLE.
Murad discovered a way to join the C++-server directly to the Thread network using a nRF52
USB-dongle inserted into the workstation running the server. This entails essentially implementing
a serial-to-CoAP/Thread gateway. Similarly, when using BLE all one needs to connect the robots
to the server is a dongle inserted into the workstation running the server.

Using MQTT-SN over Thread may also be viewed as wasting valuable network bandwidth. Since
all communication has to be relayed through the broker, one does not take advantage of mesh-
networking properties of Thread. E.g. an MQTT-SN client may publish messages that are for-
warded through another MQTT-SN client to the broker only for the broker to distribute the same
message back to the client who forwarded the message.

11.3 Details on line segment extraction implementation

With hindsight the line segment extraction implementation should not have focused on buffering
points from each of the IR sensors into separate point buffers and performing the DBSCAN and
IEPF clustering computations on each buffer. The speed performance gain of not having to sort the
points in order to find the endpoints of line segments is small compared to especially the runtime of
DBSCAN. An alternative implementation would be to store points in the same point buffer when
receiving new range-bearing measurements from the sensor tower task. From a logical point of
view, the series of steps of the line extraction algorithm would not have to change. DBSCAN takes
care of finding clusters of points that form individual features of the environment, not necessarily
only straight line segments as well as removing noisy points. The clusters produced by DBSCAN
may then be fed into the IEPF clustering scheme. Followingly, the IEPF clusters may be fitted to a
straight line segment. This approach would have several benefits over the current implementation.
Firstly, there would be no need for synchronizing the contents of the FreeRTOS queue which the
sensor tower task places the range-bearing measurements into. This does not imply that operations
on the queue itself do not require usage of synchronization primitives, e.g. placing and removing
elements from the queue between the tasks. However, such access synchronization is provided
out-the-box by the FreeRTOS queue management API. The current implementation adds a syn-
chronization layer on top of the FreeRTOS API functions for controlling the contents of the queue
since it was a requirement that range-bearing elements were sorted by bearing before triggering
the line extraction process. Secondly, given that the IEPF parameter T is set appropriately, there
would be no need for the last merging step of the line extraction algorithm. The merging step
was necessary for the current implementation in order to join similar line segments whose points
were derived from different IR sensors. Lastly, since the described modification of the algorithm
does not have a requirement in regards to when feature extraction should take place, triggering the
extraction process could be done after a given number of range-bearing measurements have been
sampled. Thus, no samples would go to waste and the accuracy of the extracted segments may be
improved by the higher number of samples.

One could of course make the claim that doing the computations on each of the point buffers
separately could be useful in the case where one or several of the robot’s IR sensors are replaced
by another model with different characteristics than the ones that are currently in use. Thus, one
could start tuning the parameters of the line extraction algorithm per IR sensor - a neat feature,
however over-complicates the line extraction process.

Further improvements on the line extraction algorithm could involve a weighted line fitting ap-
proach as described in section 9.3.5. MSE line fitting without weighting is vulnerable to outliers
and may be the source of the extracted line segments appearing slightly skewed in comparison to
the contours of the surrounding environment. Since the IR beam’s angle of attack on the reflection
surface plays an important part in the robot’s perceived surroundings one could for instance opt
for a weighting scheme which weights points further away from the endpoints of a line segment
higher in combination with the measured range. This might help alleviate the problems of finding
line segments in corners.

72



11.4 Comparison of implemented line extraction algorithms

Comparing the line extraction algorithm from [5] to the algorithm developed during the course of
this thesis one may conclude that the new implementation is better at extracting line segments
from the noisy IR sensor range-bearing measurements. It must be pointed out that in [5] one of
the IR sensors were found to be faulty whilst running the tests. Therefore, to be fair, only line
segments extracted from the IR sensors in [5] with a similar noise level from the tests in section
10.2 are considered. Additionally, the fact that the extraction method in [5] fails whilst the robot
is moving will be disregarded.

The line extraction method used in [5] essentially boils down to a greedy search for collinear
points. Although this makes the extraction process faster than the method developed here, the
resulting line segments would be sub-optimal as measurements for EKF-SLAM. Consider figure
18a from section 10 in [5], the figure illustrates extracted lines after the sensor tower has rotated
90°. Comparing this to figure 26 it is evident that the new line extraction method is able to
capture the contours of the garage more accurately and with less features. The main reason for
the improvement in accuracy is likely due to DBSCAN detecting the most noisy measurements
and removing these from the following steps of the extraction process.

11.5 Line parametrization

During design of the data association scheme used in both the line extraction process and for
the EKF-SLAM it was also experimented with only using the endpoints of two line segments for
determining if the segments in consideration should be merged given in (57) in addition to (17). In
(57) m1 and m2 are the slopes of the two line segments, respectively. (57) tests if the angle between
the two line segments under consideration to be merged is smaller than a threshold α [rad]. Special
consideration has to be taken in situations when m1m2 ≈ −1, meaning the lines spanning through
their respective endpoints are perpendicular to one another. In the case of perpendicular lines, the
test may return immediately that no merge should take place. Additionally, representing slopes
parallel (or almost) to the y-axis of the global frame must be done carefully. This would require
extra thresholds for when to determine a slope should be represented as infinite. Considering
that the C-language will not have any problem with multiplying two floats represented by their
maximum value (for most hardware this would simply result in the floating point number wrapping
around) one would have to deal with such edge cases in software. This is the main reason why the
normal form parameters of the line were used.

arctan(
|m1 −m2|
1 +m1m2

) < α (57)

At the cost of increased robustness of using the normal form parameters of a line is that setting the
threshold parameters for the data association becomes less intuitive. Additionally one also must
take into consideration that the parameters r and ϕ have a sensitive relationship dependent on
where along the infinitely long line the endpoints of the corresponding line segments are located.

11.6 The uncertainty of a line parametrized by r and ϕ

Any line in the Cartesian plane may be represented using the normal form parameters r and ϕ,
thus also any line segment may easily be represented using the normal form parameters given two
points representing the line segment’s endpoints. However, computing an error model describing
a given line segment’s uncertainty may become demanding. This is the reason why the simplistic
closed-form solution from section 9.3.7 was tried out for the described EKF-SLAM approach.
In order for the measurement covariance matrix for a line segment i, Ri (computed according
to (19)) to represent the true uncertainty of the line segment with enough accuracy more range-
bearing measurements would have to be used in the extraction process than what is currently used.
Thus, the improvements on the line extraction scheme described in section 11.3 may also increase
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the accuracy of the computed measurement covariance matrix. This would allow for more data
points to be collected before triggering the extraction process. Additionally one would expect the
length of the extracted line segments to increase with the described improvements on the extraction
algorithm. Thus, the problems regarding the blow-up of the measurement covariance matrix might
be solved, and one might get away with using the simple computation of the covariance matrix.

Alternatively [44] also outlines how one could compute an estimate of the measurement covariance
matrix by propagating the covariance matrix of individual range bearing measurements. At the
cost of being more computationally demanding, it may be preferable as one could use information
from the datasheet of the servo rotating the IR sensor tower, and the datasheet of the IR sensors to
find reasonable values for the variance in bearing, and range. Anyway, the results from section 10.4
may indicate that using a constant measurement covariance matrix is not sufficient for generating
an accurate map. The main concern here is the sensitivity of the normal form parameters. Consider
figure 17 from section 9.3.7, one can see how small changes in r may influence ϕ. This is what
the xoffset term is trying to account for in the computation of Ri. Thus without the cross-
covariance terms in the measurement covariance matrix, it is believed that the EKF is not able to
properly propagate the contributions of a measurement which results in the the map being updated
slightly wrong when a loop-closure takes place. However, the higher pose covariance where the
line segments are updated in an unwanted manner compared to the rest of the map should also be
taken into consideration of why these line segments were updated accordingly.

11.7 EKF-SLAM for the nRF52840 robot

The choice of EKF-SLAM for tackling pose estimation and mapping may be summarized by three
points. First of all other SLAM approaches described in literature with a low-end sensor suite where
only sparse measurements of the environment are available generally seem to solve the SLAM
problem with the classical filtering approaches [7][53][12][52][45][28][24][31][1]. Of course many
of these approaches precede the era of when graph-based approaches gained traction, however,
state-of-the-art graph SLAM implementations are normally used when cameras are available (not
designed for the sparse sensing capabilities of the nRF52840 robot). Secondly, EKF-SLAM is a
natural development step towards making the nRF52840 robot autonomous considering it builds
upon the work done by [19] in design of the EKF. Therefore, since for instance general matrix
operations are already implemented in C for the nRF52840 robot one could reuse this for the
EKF-SLAM implementation. Thirdly, the environments the robots of the SLAM-project are to
explore are assumed to be small. It is generally known that EKF-SLAM does not scale well when
many landmarks are present. In terms of memory usage the state covariance matrix P requires
allocating (3 + 2n)2 floating point values (4 bytes) for n line features. Calling the FreeRTOS
API function xPortGetFreeHeapSize() whilst running the current robot application returns that
approximately 8kB of heap memory remains unused. Therefore one may presume the robot will
struggle to map an area with double the amount of features that was tested. Also with the increase
in number of landmarks the matrix operations may become computationally demanding. This also
underlines the importance of using a feature-based SLAM method for the robots, unlike the dense
SLAM approach used by the C++-server. Storing raw point-measurements would most likely not
be feasible in terms of available memory, and additionally does not deal with the high noise level
of the low-cost IR sensors. Using a feature extractor for detecting line segments enables the robot
to more efficiently represent its surroundings whilst also provides a way to filter away the most
noisy point-measurements. Moreover, the computational capacity of the nRF52840 SoC should be
able to handle the extra step of extracting line segments from the range-bearing measurements
considering Mane et al. [28] also use a line-feature EKF-SLAM approach for a robot built upon
the less powerful 8-bit AVR ATmega2560.

The data association scheme used for the developed EKF-SLAM approach will likely not work for
more complex environments than what has been tested. Considering that most of the walls of
the maze are long, and all of the walls are placed orthogonal in relation to each other makes the
task of identifying line segment features easy since the data association method was tuned for that
particular environment. For more complex surroundings it is more probable that false loop-closures
will be made, and setting the thresholds for the data association conditions will become hard. A
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more robust form of data association could involve a probabilistic approach.
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12 Further work

A natural progression for the SLAM-project following the contributions of this thesis is to finish the
embedded C implementation for the developed EKF-SLAM approach. This would entail replacing
the estimator task currently running an EKF on the nRF52840-based robot with an EKF-SLAM
task resembling the developed python implementation of the SLAM solution. Figure 32 illustrates
the suggested architecture of the robot from a functional point of view.

Figure 32: Suggested robot application functional architecture.

Furthermore, it would be interesting to extend the EKF-SLAM solution to incorporate features
extracted from other robots as well. Theoretically the EKF framework allows for simply appending
new line features to the state vector whenever they are available [39]. As long as all robots are
exploring the same map it would not matter which robot detected any line segment, or where any
of the robots would be located at the time of extraction. Using the multi-threaded MQTT-SN
client, robots may subscribe to a topic reserved for publishing lines, and whenever the EKF-SLAM
task of a robot receives a line segment from another robot it would either initialize it as a new
feature or proceed with an update step. Although the main part of the EKF-SLAM algorithm
would not have to change, one would have to consider how one should initialize the pose of each
robot if one were to extend this to a multi-robot SLAM problem. With the current solution, the
robot’s initial pose is set from the C++ server (by default set to 0). With multiple robots, one
would have to design a procedure for determining a common frame of reference used by all robots.

When a functional SLAM system has been implemented for one of the robots of the SLAM-project
it would be reasonable to start designing path planning and guidance algorithms for the robots
in order for the robots themselves to make decisions on what part of the incrementally built map
should be explored. For the current system, these decisions are made by the server.

The C++ server application should be further extended with settings in order to turn off the
server-side RBPF-SLAM for robots that do the mapping by themselves. Instead of computing
SLAM estimates for these robots, the server application should render the most recent update
of the map computed by the robots. Furthermore, the server application should be extended to
serve as a real-time control center for all robots. I.e. the server application could function as a
program for logging and plotting historical data sent from the robots. This is similar to how the
plots seen in section 10 were generated. Ideally it would in terms of practicality be beneficial to
make the server application run on the Raspberry Pi instead of an additional machine (windows
workstation/laptop) as was used during the course of this project. This would make the the system
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as a whole more portable and less time would be used for setting up the required devices and
software. Alternatively, conducting research on how one may run the MQTT-SN gateway software
on the windows machine running the C++-server would remove the need for the Raspberry Pi.
The MQTT-SN gateway which is bundled together with Nordic Semiconductor’s debian-based
Raspberry Pi image currently only has working versions for Linux distributions.
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[38] Joan Solà Ortega. ‘Towards Visual Localization, Mapping and Moving Objects Tracking by
a Mobile Robot: a Geometric and Probabilistic Approach’. In: Networked Digital Library of
Theses and Dissertations (2007).

[39] Sajad Saeedi et al. ‘Multiple-Robot Simultaneous Localization and Mapping: A Review’. In:
Journal of field robotics 33 (1) (2016), pp. 3–46.

[40] Erich Schubert et al. ‘DBSCAN Revisited, Revisited: Why and How You Should (Still) Use
DBSCAN’. In: ACM transactions on database systems 42 (3) (2017), pp. 1–21.

[41] Nordic Semiconductor.Getting started with Thread and Zigbee: Hardware support and require-
ments. url: https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.
threadsdk.v0.8.0%2Fgroup udp.html (visited on 1st June 2021).

[42] Sharp. GP2YA021YK datasheet. url: https://global.sharp/products/device/lineup/data/pdf/
datasheet/gp2y0a21yk e.pdf (visited on 17th Dec. 2021).

[43] Silicon Laboratories. Thread Fundamentals. url: https://www.silabs.com/documents/public/
user-guides/ug103-11-fundamentals-thread.pdf (visited on 28th May 2021).

[44] Volker Sommer. ‘A Closed-Form Error Model of Straight Lines for Improved Data Association
and Sensor Fusing’. In: Sensors (MDPI) (2018).

79

https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_tz_v4.1.0%2Fthread_client_server_example.html&cp=8_3_2_10_4_2_3&anchor=thread_client_server_example_coap-freertos-server
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_tz_v4.1.0%2Fthread_client_server_example.html&cp=8_3_2_10_4_2_3&anchor=thread_client_server_example_coap-freertos-server
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_tz_v4.1.0%2Fthread_client_server_example.html&cp=8_3_2_10_4_2_3&anchor=thread_client_server_example_coap-freertos-server
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v15.0.0%2Fgroup__app__timer.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v15.0.0%2Fgroup__app__timer.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v15.0.0%2Fgroup__app__timer.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_tz_v4.1.0%2Fthread_mqttsn_example.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_tz_v4.1.0%2Fthread_mqttsn_example.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fstruct_sdk%2Fstruct%2Fsdk_thread_zigbee_latest.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fstruct_sdk%2Fstruct%2Fsdk_thread_zigbee_latest.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.threadsdk.v0.8.0%2Fgroup__udp.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.threadsdk.v0.8.0%2Fgroup__udp.html
https://global.sharp/products/device/lineup/data/pdf/datasheet/gp2y0a21yk_e.pdf
https://global.sharp/products/device/lineup/data/pdf/datasheet/gp2y0a21yk_e.pdf
https://www.silabs.com/documents/public/user-guides/ug103-11-fundamentals-thread.pdf
https://www.silabs.com/documents/public/user-guides/ug103-11-fundamentals-thread.pdf


[45] Z. Song, K. L. Chen Y.Q. Moore and L. Ma. ‘Applications of the sparse Hough transform
for laser data line fitting and segmentation’. In: International Journal of Robotics and Auto-
mation 21 (3) (2006).

[46] Andy Stanford-Clark and Hong Linh Truong. ‘MQTT For Sensor Networks (MQTT-SN)
Protocol Specification - Version 1.2’. In: (2013).

[47] Arild Stenset. ‘nRF52 robot with OpenThread’. In: Master’s Thesis, NTNU, Trondheim
(2019).

[48] Handson Technology. L298N Dual H-Bridge Motor Driver. url: http://www.handsontec.
com/dataspecs/L298N%20Motor%20Driver.pdf (visited on 8th Nov. 2021).

[49] Thread Group, Inc. Co-Processor Designs. 2022. url: https://openthread.io/platforms/co-
processor (visited on 27th May 2022).

[50] Thread Group, Inc. Openthread API reference - UDP. 2022. url: https://openthread. io/
reference/group/api-udp (visited on 8th Mar. 2022).

[51] Thread Group, Inc.OpenThread Guides: Node Roles and Types. 2022. url: https://openthread.
io/guides/thread-primer/node-roles-and-types (visited on 3rd May 2022).

[52] T.N Yap and C. R. Shelton. ‘SLAM in Large Indoor Environments with Low-Cost, Noisy,
and Sparse Sonars’. In: IEEE International Conference on Robotics and Automation (2009),
pp. 1395–1401.

[53] N. M. Yatim and N. Buniyamin. ‘Development of Rao-Blackwellized Particle Filter (RBPF)
SLAM Algorithm Using Low Proximity Infrared Sensors’. In: 9th International Conference
on Robotic, Vision, Signal Processing and Power Applications 398 (2016), pp. 395–405.

80

http://www.handsontec.com/dataspecs/L298N%20Motor%20Driver.pdf
http://www.handsontec.com/dataspecs/L298N%20Motor%20Driver.pdf
https://openthread.io/platforms/co-processor
https://openthread.io/platforms/co-processor
https://openthread.io/reference/group/api-udp
https://openthread.io/reference/group/api-udp
https://openthread.io/guides/thread-primer/node-roles-and-types
https://openthread.io/guides/thread-primer/node-roles-and-types


Appendix

A Python MQTT subscriber script for logging data from
robot

1 '''
2

3 Script for receiving data from robot. Subscribes to several MQTT topics , and saves

the received payloads as JSON -formatted .txt files

4

5 '''
6 import paho.mqtt.client as mqtt

7 import struct

8 import json

9 import matplotlib.pyplot as plt

10 import signal

11

12 ip_addr = "10.53.49.161" # Find broker address on Raspberry Pi with 'ifconfig -a'
13 port = 1883

14 keepalive = 60

15

16 class SignalHandler ():

17

18 def __init__(self):

19 self.state = False

20 signal.signal(signal.SIGINT , self.change_state)

21

22 def change_state(self , signum , frame):

23 signal.signal(signal.SIGINT , signal.SIG_DFL)

24 self.state = True

25

26 def exit(self):

27 return self.state

28

29

30 flag = SignalHandler ()

31

32

33 line_file = open("line_log.txt", "w")

34 point_file = open("point_log.txt", "w")

35 dbscan_file = open("dbscan_log.txt", "w")

36 iepf_file = open("iepf_log.txt", "w")

37 common_point_file = open("common_point_log.txt", "w")

38 mse_file = open("mse_log.txt", "w")

39 mse_point_file = open("mse_point_log.txt", "w")

40 merge_file = open("merge_log.txt", "w")

41 join_file = open("join_log.txt", "w")

42 debug_file = open("debug_log.txt", "w")

43 estimator_file = open("estimator_log.txt", "w")

44

45 def on_connect(client , userdata , flags , rc):

46 print("Connected with result code", rc)

47 client.subscribe("v2/robot/NRF_5/controller", qos=0)

48 client.subscribe("v2/robot/NRF_5/coordinate", qos=0)

49 client.subscribe("v2/robot/NRF_5/DBSCAN", qos =0)

50 client.subscribe("v2/robot/NRF_5/IEPF", qos=0)

51 client.subscribe("v2/robot/NRF_5/line", qos=0)

52 client.subscribe("v2/robot/NRF_5/adv", qos=0)

53 client.subscribe("v2/robot/NRF_5/point", qos=0)

54 client.subscribe("v2/robot/NRF_5/MSE", qos=0)

55 client.subscribe("v2/robot/NRF_5/mse_point", qos=0)

56 client.subscribe("v2/robot/NRF_5/merge", qos=0)

57 client.subscribe("v2/robot/NRF_5/join", qos=0)

58 client.subscribe("v2/robot/NRF_5/debug", qos=0)

59 client.subscribe("v2/robot/NRF_5/estimator", qos=0)

60

61

62 def on_message(client , userdata , msg):

63 if (msg.topic == 'v2/robot/NRF_5/DBSCAN '):
64 (cluster_id , x, y) = struct.unpack('<bhh', msg.payload)
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65 entry = json.dumps ({"id": cluster_id , "x": x, "y": y}) + '\n'
66 dbscan_file.write(entry)

67

68 elif (msg.topic == 'v2/robot/NRF_5/point '):
69 (cluster_id , x, y) = struct.unpack('<bhh', msg.payload)

70 entry = json.dumps ({"id": cluster_id , "x": x, "y": y}) + '\n'
71 point_file.write(entry)

72

73 elif (msg.topic == 'v2/robot/NRF_5/IEPF'):
74 (cluster_id , x, y) = struct.unpack('<bhh', msg.payload)

75 entry = json.dumps ({"id": cluster_id , "x": x, "y": y}) + '\n'
76 iepf_file.write(entry)

77

78 elif (msg.topic == 'v2/robot/NRF_5/join'):
79 (cluster_id , x, y) = struct.unpack('<bhh', msg.payload)

80 entry = json.dumps ({"id": cluster_id , "x": x, "y": y}) + '\n'
81 join_file.write(entry)

82

83 elif (msg.topic == 'v2/robot/NRF_5/debug '):
84 (cluster_id , x, y) = struct.unpack('<bhh', msg.payload)

85 entry = json.dumps ({"id": cluster_id , "x": x, "y": y}) + '\n'
86 debug_file.write(entry)

87

88 elif (msg.topic == 'v2/robot/NRF_5/mse_point '):
89 (cluster_id , x, y) = struct.unpack('<bhh', msg.payload)

90 entry = json.dumps ({"id": cluster_id , "x": x, "y": y}) + '\n'
91 mse_point_file.write(entry)

92

93

94 elif (msg.topic == 'v2/robot/NRF_5/line'):
95 (time , start_x , start_y , end_x , end_y , sigma_r2 , sigma_theta2 , sigma_rtheta

) = struct.unpack('<fhhhhfff ', msg.payload)

96 entry = json.dumps ({"time": time , "start": {"x": start_x , "y": start_y}, "

end": {"x": end_x , "y": end_y}, "sigma_r2": sigma_r2 , "sigma_theta2":

sigma_theta2 , "sigma_rtheta": sigma_rtheta }) + '\n'
97 line_file.write(entry)

98

99 elif (msg.topic == 'v2/robot/NRF_5/MSE'):
100 (id , start_x , start_y , end_x , end_y , sigma_r2 , sigma_theta2 , sigma_rtheta)

= struct.unpack('<Bhhhhfff ', msg.payload)

101 entry = json.dumps ({"start": {"x": start_x , "y": start_y}, "end": {"x":

end_x , "y": end_y}, "sigma_r2": sigma_r2 , "sigma_theta2": sigma_theta2 , "

sigma_rtheta": sigma_rtheta }) + '\n'
102 mse_file.write(entry)

103

104 elif (msg.topic == 'v2/robot/NRF_5/merge '):
105 (id , start_x , start_y , end_x , end_y , sigma_r2 , sigma_theta2 , sigma_rtheta)

= struct.unpack('<Bhhhhfff ', msg.payload)

106 entry = json.dumps ({"id": id, "start": {"x": start_x , "y": start_y}, "end":

{"x": end_x , "y": end_y}, "sigma_r2": sigma_r2 , "sigma_theta2": sigma_theta2 ,

"sigma_rtheta": sigma_rtheta }) + '\n'
107 merge_file.write(entry)

108

109 elif (msg.topic == 'v2/robot/NRF_5/adv'):
110 (id , x, y, theta , ir1x , ir1y , ir2x , ir2y , ir3x , ir3y , ir4x , ir4y , valid) =

struct.unpack('<B11hB ', msg.payload)

111 entry = json.dumps ({"x": x, "y": y, "theta": theta , "ir1": {"x": ir1x , "y":

ir1y}, "ir2": {"x": ir2x , "y": ir2y}, "ir3": {"x": ir3x , "y": ir3y}, "ir4": {"

x": ir4x , "y": ir4y }}) + '\n'
112 point_file.write(entry)

113

114 elif (msg.topic == 'v2/robot/NRF_5/estimator '):
115 (time , x, y, theta , enc , gyro) = struct.unpack('<6f', msg.payload)

116 entry = json.dumps ({"time": time , "x": x, "y": y, "theta": theta , "enc":

enc , "gyro": gyro}) + '\n'
117 estimator_file.write(entry)

118

119

120

121 client = mqtt.Client(client_id="robot -subscriber")

122 client.connect(ip_addr , port , keepalive)

123 client.on_connect = on_connect

124 client.on_message = on_message
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125

126 client.loop_start ()

127

128 while(True):

129 if flag.exit():

130 print("Closing files")

131 point_file.close ()

132 line_file.close()

133 dbscan_file.close()

134 iepf_file.close()

135 common_point_file.close()

136 mse_file.close()

137 mse_point_file.close()

138 merge_file.close ()

139 join_file.close()

140 debug_file.close ()

141 estimator_file.close()

142 exit()

Listing 13: Python MQTT subscriber script for logging data from robot
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